ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.11
Committed: Mon May 2 16:35:52 2005 UTC (19 years ago) by jsr166
Branch: MAIN
Changes since 1.10: +2 -2 lines
Log Message:
redundant parens

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10
11 /**
12 * Red-Black tree based implementation of the <tt>NavigableMap</tt> interface.
13 * This class guarantees that the map will be in ascending key order, sorted
14 * according to the <i>natural order</i> for the keys' class (see
15 * <tt>Comparable</tt>), or by the comparator provided at creation time,
16 * depending on which constructor is used.<p>
17 *
18 * This implementation provides guaranteed log(n) time cost for the
19 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
20 * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
21 * Rivest's <I>Introduction to Algorithms</I>.<p>
22 *
23 * Note that the ordering maintained by a sorted map (whether or not an
24 * explicit comparator is provided) must be <i>consistent with equals</i> if
25 * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
26 * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
27 * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
28 * interface is defined in terms of the equals operation, but a map performs
29 * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
30 * method, so two keys that are deemed equal by this method are, from the
31 * standpoint of the sorted map, equal. The behavior of a sorted map
32 * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
33 * just fails to obey the general contract of the <tt>Map</tt> interface.<p>
34 *
35 * <b>Note that this implementation is not synchronized.</b> If multiple
36 * threads access a map concurrently, and at least one of the threads modifies
37 * the map structurally, it <i>must</i> be synchronized externally. (A
38 * structural modification is any operation that adds or deletes one or more
39 * mappings; merely changing the value associated with an existing key is not
40 * a structural modification.) This is typically accomplished by
41 * synchronizing on some object that naturally encapsulates the map. If no
42 * such object exists, the map should be "wrapped" using the
43 * <tt>Collections.synchronizedMap</tt> method. This is best done at creation
44 * time, to prevent accidental unsynchronized access to the map:
45 * <pre>
46 * Map m = Collections.synchronizedMap(new TreeMap(...));
47 * </pre><p>
48 *
49 * The iterators returned by all of this class's "collection view methods" are
50 * <i>fail-fast</i>: if the map is structurally modified at any time after the
51 * iterator is created, in any way except through the iterator's own
52 * <tt>remove</tt> or <tt>add</tt> methods, the iterator throws a
53 * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent
54 * modification, the iterator fails quickly and cleanly, rather than risking
55 * arbitrary, non-deterministic behavior at an undetermined time in the
56 * future.
57 *
58 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
59 * as it is, generally speaking, impossible to make any hard guarantees in the
60 * presence of unsynchronized concurrent modification. Fail-fast iterators
61 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
62 * Therefore, it would be wrong to write a program that depended on this
63 * exception for its correctness: <i>the fail-fast behavior of iterators
64 * should be used only to detect bugs.</i>
65 *
66 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
67 * and its views represent snapshots of mappings at the time they were
68 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
69 * method. (Note however that it is possible to change mappings in the
70 * associated map using <tt>put</tt>.)
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/../guide/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @author Josh Bloch and Doug Lea
77 * @version %I%, %G%
78 * @see Map
79 * @see HashMap
80 * @see Hashtable
81 * @see Comparable
82 * @see Comparator
83 * @see Collection
84 * @see Collections#synchronizedMap(Map)
85 * @since 1.2
86 */
87
88 public class TreeMap<K,V>
89 extends AbstractMap<K,V>
90 implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91 {
92 /**
93 * The Comparator used to maintain order in this TreeMap, or
94 * null if this TreeMap uses its elements natural ordering.
95 *
96 * @serial
97 */
98 private Comparator<? super K> comparator = null;
99
100 private transient Entry<K,V> root = null;
101
102 /**
103 * The number of entries in the tree
104 */
105 private transient int size = 0;
106
107 /**
108 * The number of structural modifications to the tree.
109 */
110 private transient int modCount = 0;
111
112 private void incrementSize() { modCount++; size++; }
113 private void decrementSize() { modCount++; size--; }
114
115 /**
116 * Constructs a new, empty map, sorted according to the keys' natural
117 * order. All keys inserted into the map must implement the
118 * <tt>Comparable</tt> interface. Furthermore, all such keys must be
119 * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw a
120 * ClassCastException for any elements <tt>k1</tt> and <tt>k2</tt> in the
121 * map. If the user attempts to put a key into the map that violates this
122 * constraint (for example, the user attempts to put a string key into a
123 * map whose keys are integers), the <tt>put(Object key, Object
124 * value)</tt> call will throw a <tt>ClassCastException</tt>.
125 *
126 * @see Comparable
127 */
128 public TreeMap() {
129 }
130
131 /**
132 * Constructs a new, empty map, sorted according to the given comparator.
133 * All keys inserted into the map must be <i>mutually comparable</i> by
134 * the given comparator: <tt>comparator.compare(k1, k2)</tt> must not
135 * throw a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
136 * <tt>k2</tt> in the map. If the user attempts to put a key into the
137 * map that violates this constraint, the <tt>put(Object key, Object
138 * value)</tt> call will throw a <tt>ClassCastException</tt>.
139 *
140 * @param c the comparator that will be used to sort this map. A
141 * <tt>null</tt> value indicates that the keys' <i>natural
142 * ordering</i> should be used.
143 */
144 public TreeMap(Comparator<? super K> c) {
145 this.comparator = c;
146 }
147
148 /**
149 * Constructs a new map containing the same mappings as the given map,
150 * sorted according to the keys' <i>natural order</i>. All keys inserted
151 * into the new map must implement the <tt>Comparable</tt> interface.
152 * Furthermore, all such keys must be <i>mutually comparable</i>:
153 * <tt>k1.compareTo(k2)</tt> must not throw a <tt>ClassCastException</tt>
154 * for any elements <tt>k1</tt> and <tt>k2</tt> in the map. This method
155 * runs in n*log(n) time.
156 *
157 * @param m the map whose mappings are to be placed in this map.
158 * @throws ClassCastException the keys in t are not Comparable, or
159 * are not mutually comparable.
160 * @throws NullPointerException if the specified map is null.
161 */
162 public TreeMap(Map<? extends K, ? extends V> m) {
163 putAll(m);
164 }
165
166 /**
167 * Constructs a new map containing the same mappings as the given
168 * <tt>SortedMap</tt>, sorted according to the same ordering. This method
169 * runs in linear time.
170 *
171 * @param m the sorted map whose mappings are to be placed in this map,
172 * and whose comparator is to be used to sort this map.
173 * @throws NullPointerException if the specified sorted map is null.
174 */
175 public TreeMap(SortedMap<K, ? extends V> m) {
176 comparator = m.comparator();
177 try {
178 buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
179 } catch (java.io.IOException cannotHappen) {
180 } catch (ClassNotFoundException cannotHappen) {
181 }
182 }
183
184
185 // Query Operations
186
187 /**
188 * Returns the number of key-value mappings in this map.
189 *
190 * @return the number of key-value mappings in this map.
191 */
192 public int size() {
193 return size;
194 }
195
196 /**
197 * Returns <tt>true</tt> if this map contains a mapping for the specified
198 * key.
199 *
200 * @param key key whose presence in this map is to be tested.
201 *
202 * @return <tt>true</tt> if this map contains a mapping for the
203 * specified key.
204 * @throws ClassCastException if the key cannot be compared with the keys
205 * currently in the map.
206 * @throws NullPointerException if key is <tt>null</tt> and this map uses
207 * natural ordering, or its comparator does not tolerate
208 * <tt>null</tt> keys.
209 */
210 public boolean containsKey(Object key) {
211 return getEntry(key) != null;
212 }
213
214 /**
215 * Returns <tt>true</tt> if this map maps one or more keys to the
216 * specified value. More formally, returns <tt>true</tt> if and only if
217 * this map contains at least one mapping to a value <tt>v</tt> such
218 * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
219 * operation will probably require time linear in the Map size for most
220 * implementations of Map.
221 *
222 * @param value value whose presence in this Map is to be tested.
223 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
224 * <tt>false</tt> otherwise.
225 * @since 1.2
226 */
227 public boolean containsValue(Object value) {
228 return (root==null ? false :
229 (value==null ? valueSearchNull(root)
230 : valueSearchNonNull(root, value)));
231 }
232
233 private boolean valueSearchNull(Entry n) {
234 if (n.value == null)
235 return true;
236
237 // Check left and right subtrees for value
238 return (n.left != null && valueSearchNull(n.left)) ||
239 (n.right != null && valueSearchNull(n.right));
240 }
241
242 private boolean valueSearchNonNull(Entry n, Object value) {
243 // Check this node for the value
244 if (value.equals(n.value))
245 return true;
246
247 // Check left and right subtrees for value
248 return (n.left != null && valueSearchNonNull(n.left, value)) ||
249 (n.right != null && valueSearchNonNull(n.right, value));
250 }
251
252 /**
253 * Returns the value to which this map maps the specified key. Returns
254 * <tt>null</tt> if the map contains no mapping for this key. A return
255 * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
256 * map contains no mapping for the key; it's also possible that the map
257 * explicitly maps the key to <tt>null</tt>. The <tt>containsKey</tt>
258 * operation may be used to distinguish these two cases.
259 *
260 * @param key key whose associated value is to be returned.
261 * @return the value to which this map maps the specified key, or
262 * <tt>null</tt> if the map contains no mapping for the key.
263 * @throws ClassCastException if key cannot be compared with the keys
264 * currently in the map.
265 * @throws NullPointerException if key is <tt>null</tt> and this map uses
266 * natural ordering, or its comparator does not tolerate
267 * <tt>null</tt> keys.
268 *
269 * @see #containsKey(Object)
270 */
271 public V get(Object key) {
272 Entry<K,V> p = getEntry(key);
273 return (p==null ? null : p.value);
274 }
275
276 /**
277 * Returns the comparator used to order this map, or <tt>null</tt> if this
278 * map uses its keys' natural order.
279 *
280 * @return the comparator associated with this sorted map, or
281 * <tt>null</tt> if it uses its keys' natural sort method.
282 */
283 public Comparator<? super K> comparator() {
284 return comparator;
285 }
286
287 /**
288 * Returns the first (lowest) key currently in this sorted map.
289 *
290 * @return the first (lowest) key currently in this sorted map.
291 * @throws NoSuchElementException Map is empty.
292 */
293 public K firstKey() {
294 return key(getFirstEntry());
295 }
296
297 /**
298 * Returns the last (highest) key currently in this sorted map.
299 *
300 * @return the last (highest) key currently in this sorted map.
301 * @throws NoSuchElementException Map is empty.
302 */
303 public K lastKey() {
304 return key(getLastEntry());
305 }
306
307 /**
308 * Copies all of the mappings from the specified map to this map. These
309 * mappings replace any mappings that this map had for any of the keys
310 * currently in the specified map.
311 *
312 * @param map mappings to be stored in this map.
313 * @throws ClassCastException class of a key or value in the specified
314 * map prevents it from being stored in this map.
315 *
316 * @throws NullPointerException if the given map is <tt>null</tt> or
317 * this map does not permit <tt>null</tt> keys and a
318 * key in the specified map is <tt>null</tt>.
319 */
320 public void putAll(Map<? extends K, ? extends V> map) {
321 int mapSize = map.size();
322 if (size==0 && mapSize!=0 && map instanceof SortedMap) {
323 Comparator c = ((SortedMap)map).comparator();
324 if (c == comparator || (c != null && c.equals(comparator))) {
325 ++modCount;
326 try {
327 buildFromSorted(mapSize, map.entrySet().iterator(),
328 null, null);
329 } catch (java.io.IOException cannotHappen) {
330 } catch (ClassNotFoundException cannotHappen) {
331 }
332 return;
333 }
334 }
335 super.putAll(map);
336 }
337
338 /**
339 * Returns this map's entry for the given key, or <tt>null</tt> if the map
340 * does not contain an entry for the key.
341 *
342 * @return this map's entry for the given key, or <tt>null</tt> if the map
343 * does not contain an entry for the key.
344 * @throws ClassCastException if the key cannot be compared with the keys
345 * currently in the map.
346 * @throws NullPointerException if key is <tt>null</tt> and this map uses
347 * natural order, or its comparator does not tolerate *
348 * <tt>null</tt> keys.
349 */
350 private Entry<K,V> getEntry(Object key) {
351 // Offload comparator-based version for sake of performance
352 if (comparator != null)
353 return getEntryUsingComparator(key);
354 Comparable<K> k = (Comparable<K>) key;
355 Entry<K,V> p = root;
356 while (p != null) {
357 int cmp = k.compareTo(p.key);
358 if (cmp < 0)
359 p = p.left;
360 else if (cmp > 0)
361 p = p.right;
362 else
363 return p;
364 }
365 return null;
366 }
367
368 /**
369 * Version of getEntry using comparator. Split off from getEntry
370 * for performance. (This is not worth doing for most methods,
371 * that are less dependent on comparator performance, but is
372 * worthwhile here.)
373 */
374 private Entry<K,V> getEntryUsingComparator(Object key) {
375 K k = (K) key;
376 Comparator<? super K> cpr = comparator;
377 Entry<K,V> p = root;
378 while (p != null) {
379 int cmp = cpr.compare(k, p.key);
380 if (cmp < 0)
381 p = p.left;
382 else if (cmp > 0)
383 p = p.right;
384 else
385 return p;
386 }
387 return null;
388 }
389
390 /**
391 * Gets the entry corresponding to the specified key; if no such entry
392 * exists, returns the entry for the least key greater than the specified
393 * key; if no such entry exists (i.e., the greatest key in the Tree is less
394 * than the specified key), returns <tt>null</tt>.
395 */
396 private Entry<K,V> getCeilingEntry(K key) {
397 Entry<K,V> p = root;
398 if (p==null)
399 return null;
400
401 while (true) {
402 int cmp = compare(key, p.key);
403 if (cmp < 0) {
404 if (p.left != null)
405 p = p.left;
406 else
407 return p;
408 } else if (cmp > 0) {
409 if (p.right != null) {
410 p = p.right;
411 } else {
412 Entry<K,V> parent = p.parent;
413 Entry<K,V> ch = p;
414 while (parent != null && ch == parent.right) {
415 ch = parent;
416 parent = parent.parent;
417 }
418 return parent;
419 }
420 } else
421 return p;
422 }
423 }
424
425 /**
426 * Gets the entry corresponding to the specified key; if no such entry
427 * exists, returns the entry for the greatest key less than the specified
428 * key; if no such entry exists, returns <tt>null</tt>.
429 */
430 private Entry<K,V> getFloorEntry(K key) {
431 Entry<K,V> p = root;
432 if (p==null)
433 return null;
434
435 while (true) {
436 int cmp = compare(key, p.key);
437 if (cmp > 0) {
438 if (p.right != null)
439 p = p.right;
440 else
441 return p;
442 } else if (cmp < 0) {
443 if (p.left != null) {
444 p = p.left;
445 } else {
446 Entry<K,V> parent = p.parent;
447 Entry<K,V> ch = p;
448 while (parent != null && ch == parent.left) {
449 ch = parent;
450 parent = parent.parent;
451 }
452 return parent;
453 }
454 } else
455 return p;
456
457 }
458 }
459
460 /**
461 * Gets the entry for the least key greater than the specified
462 * key; if no such entry exists, returns the entry for the least
463 * key greater than the specified key; if no such entry exists
464 * returns <tt>null</tt>.
465 */
466 private Entry<K,V> getHigherEntry(K key) {
467 Entry<K,V> p = root;
468 if (p==null)
469 return null;
470
471 while (true) {
472 int cmp = compare(key, p.key);
473 if (cmp < 0) {
474 if (p.left != null)
475 p = p.left;
476 else
477 return p;
478 } else {
479 if (p.right != null) {
480 p = p.right;
481 } else {
482 Entry<K,V> parent = p.parent;
483 Entry<K,V> ch = p;
484 while (parent != null && ch == parent.right) {
485 ch = parent;
486 parent = parent.parent;
487 }
488 return parent;
489 }
490 }
491 }
492 }
493
494 /**
495 * Returns the entry for the greatest key less than the specified key; if
496 * no such entry exists (i.e., the least key in the Tree is greater than
497 * the specified key), returns <tt>null</tt>.
498 */
499 private Entry<K,V> getLowerEntry(K key) {
500 Entry<K,V> p = root;
501 if (p==null)
502 return null;
503
504 while (true) {
505 int cmp = compare(key, p.key);
506 if (cmp > 0) {
507 if (p.right != null)
508 p = p.right;
509 else
510 return p;
511 } else {
512 if (p.left != null) {
513 p = p.left;
514 } else {
515 Entry<K,V> parent = p.parent;
516 Entry<K,V> ch = p;
517 while (parent != null && ch == parent.left) {
518 ch = parent;
519 parent = parent.parent;
520 }
521 return parent;
522 }
523 }
524 }
525 }
526
527 /**
528 * Returns the key corresponding to the specified Entry. Throw
529 * NoSuchElementException if the Entry is <tt>null</tt>.
530 */
531 private static <K> K key(Entry<K,?> e) {
532 if (e==null)
533 throw new NoSuchElementException();
534 return e.key;
535 }
536
537 /**
538 * Associates the specified value with the specified key in this map.
539 * If the map previously contained a mapping for this key, the old
540 * value is replaced.
541 *
542 * @param key key with which the specified value is to be associated.
543 * @param value value to be associated with the specified key.
544 *
545 * @return the previous value associated with specified key, or <tt>null</tt>
546 * if there was no mapping for key. A <tt>null</tt> return can
547 * also indicate that the map previously associated <tt>null</tt>
548 * with the specified key.
549 * @throws ClassCastException if key cannot be compared with the keys
550 * currently in the map.
551 * @throws NullPointerException if key is <tt>null</tt> and this map uses
552 * natural order, or its comparator does not tolerate
553 * <tt>null</tt> keys.
554 */
555 public V put(K key, V value) {
556 Entry<K,V> t = root;
557
558 if (t == null) {
559 incrementSize();
560 root = new Entry<K,V>(key, value, null);
561 return null;
562 }
563
564 while (true) {
565 int cmp = compare(key, t.key);
566 if (cmp == 0) {
567 return t.setValue(value);
568 } else if (cmp < 0) {
569 if (t.left != null) {
570 t = t.left;
571 } else {
572 incrementSize();
573 t.left = new Entry<K,V>(key, value, t);
574 fixAfterInsertion(t.left);
575 return null;
576 }
577 } else { // cmp > 0
578 if (t.right != null) {
579 t = t.right;
580 } else {
581 incrementSize();
582 t.right = new Entry<K,V>(key, value, t);
583 fixAfterInsertion(t.right);
584 return null;
585 }
586 }
587 }
588 }
589
590 /**
591 * Removes the mapping for this key from this TreeMap if present.
592 *
593 * @param key key for which mapping should be removed
594 * @return the previous value associated with specified key, or <tt>null</tt>
595 * if there was no mapping for key. A <tt>null</tt> return can
596 * also indicate that the map previously associated
597 * <tt>null</tt> with the specified key.
598 *
599 * @throws ClassCastException if key cannot be compared with the keys
600 * currently in the map.
601 * @throws NullPointerException if key is <tt>null</tt> and this map uses
602 * natural order, or its comparator does not tolerate
603 * <tt>null</tt> keys.
604 */
605 public V remove(Object key) {
606 Entry<K,V> p = getEntry(key);
607 if (p == null)
608 return null;
609
610 V oldValue = p.value;
611 deleteEntry(p);
612 return oldValue;
613 }
614
615 /**
616 * Removes all mappings from this TreeMap.
617 */
618 public void clear() {
619 modCount++;
620 size = 0;
621 root = null;
622 }
623
624 /**
625 * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
626 * values themselves are not cloned.)
627 *
628 * @return a shallow copy of this Map.
629 */
630 public Object clone() {
631 TreeMap<K,V> clone = null;
632 try {
633 clone = (TreeMap<K,V>) super.clone();
634 } catch (CloneNotSupportedException e) {
635 throw new InternalError();
636 }
637
638 // Put clone into "virgin" state (except for comparator)
639 clone.root = null;
640 clone.size = 0;
641 clone.modCount = 0;
642 clone.entrySet = null;
643 clone.descendingEntrySet = null;
644 clone.descendingKeySet = null;
645
646 // Initialize clone with our mappings
647 try {
648 clone.buildFromSorted(size, entrySet().iterator(), null, null);
649 } catch (java.io.IOException cannotHappen) {
650 } catch (ClassNotFoundException cannotHappen) {
651 }
652
653 return clone;
654 }
655
656 // NavigableMap API methods
657
658 /**
659 * Returns a key-value mapping associated with the least
660 * key in this map, or <tt>null</tt> if the map is empty.
661 *
662 * @return an Entry with least key, or <tt>null</tt>
663 * if the map is empty.
664 */
665 public Map.Entry<K,V> firstEntry() {
666 Entry<K,V> e = getFirstEntry();
667 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
668 }
669
670 /**
671 * Returns a key-value mapping associated with the greatest
672 * key in this map, or <tt>null</tt> if the map is empty.
673 *
674 * @return an Entry with greatest key, or <tt>null</tt>
675 * if the map is empty.
676 */
677 public Map.Entry<K,V> lastEntry() {
678 Entry<K,V> e = getLastEntry();
679 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
680 }
681
682 /**
683 * Removes and returns a key-value mapping associated with
684 * the least key in this map, or <tt>null</tt> if the map is empty.
685 *
686 * @return the removed first entry of this map, or <tt>null</tt>
687 * if the map is empty.
688 */
689 public Map.Entry<K,V> pollFirstEntry() {
690 Entry<K,V> p = getFirstEntry();
691 if (p == null)
692 return null;
693 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
694 deleteEntry(p);
695 return result;
696 }
697
698 /**
699 * Removes and returns a key-value mapping associated with
700 * the greatest key in this map, or <tt>null</tt> if the map is empty.
701 *
702 * @return the removed last entry of this map, or <tt>null</tt>
703 * if the map is empty.
704 */
705 public Map.Entry<K,V> pollLastEntry() {
706 Entry<K,V> p = getLastEntry();
707 if (p == null)
708 return null;
709 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
710 deleteEntry(p);
711 return result;
712 }
713
714 /**
715 * Returns a key-value mapping associated with the least key
716 * greater than or equal to the given key, or <tt>null</tt> if
717 * there is no such entry.
718 *
719 * @param key the key.
720 * @return an Entry associated with ceiling of given key, or
721 * <tt>null</tt> if there is no such Entry.
722 * @throws ClassCastException if key cannot be compared with the
723 * keys currently in the map.
724 * @throws NullPointerException if key is <tt>null</tt> and this map uses
725 * natural order, or its comparator does not tolerate
726 * <tt>null</tt> keys.
727 */
728 public Map.Entry<K,V> ceilingEntry(K key) {
729 Entry<K,V> e = getCeilingEntry(key);
730 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
731 }
732
733
734 /**
735 * Returns least key greater than or equal to the given key, or
736 * <tt>null</tt> if there is no such key.
737 *
738 * @param key the key.
739 * @return the ceiling key, or <tt>null</tt>
740 * if there is no such key.
741 * @throws ClassCastException if key cannot be compared with the keys
742 * currently in the map.
743 * @throws NullPointerException if key is <tt>null</tt> and this map uses
744 * natural order, or its comparator does not tolerate
745 * <tt>null</tt> keys.
746 */
747 public K ceilingKey(K key) {
748 Entry<K,V> e = getCeilingEntry(key);
749 return (e == null)? null : e.key;
750 }
751
752
753
754 /**
755 * Returns a key-value mapping associated with the greatest key
756 * less than or equal to the given key, or <tt>null</tt> if there
757 * is no such entry.
758 *
759 * @param key the key.
760 * @return an Entry associated with floor of given key, or <tt>null</tt>
761 * if there is no such Entry.
762 * @throws ClassCastException if key cannot be compared with the keys
763 * currently in the map.
764 * @throws NullPointerException if key is <tt>null</tt> and this map uses
765 * natural order, or its comparator does not tolerate
766 * <tt>null</tt> keys.
767 */
768 public Map.Entry<K,V> floorEntry(K key) {
769 Entry<K,V> e = getFloorEntry(key);
770 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
771 }
772
773 /**
774 * Returns the greatest key
775 * less than or equal to the given key, or <tt>null</tt> if there
776 * is no such key.
777 *
778 * @param key the key.
779 * @return the floor of given key, or <tt>null</tt> if there is no
780 * such key.
781 * @throws ClassCastException if key cannot be compared with the keys
782 * currently in the map.
783 * @throws NullPointerException if key is <tt>null</tt> and this map uses
784 * natural order, or its comparator does not tolerate
785 * <tt>null</tt> keys.
786 */
787 public K floorKey(K key) {
788 Entry<K,V> e = getFloorEntry(key);
789 return (e == null)? null : e.key;
790 }
791
792 /**
793 * Returns a key-value mapping associated with the least key
794 * strictly greater than the given key, or <tt>null</tt> if there
795 * is no such entry.
796 *
797 * @param key the key.
798 * @return an Entry with least key greater than the given key, or
799 * <tt>null</tt> if there is no such Entry.
800 * @throws ClassCastException if key cannot be compared with the keys
801 * currently in the map.
802 * @throws NullPointerException if key is <tt>null</tt> and this map uses
803 * natural order, or its comparator does not tolerate
804 * <tt>null</tt> keys.
805 */
806 public Map.Entry<K,V> higherEntry(K key) {
807 Entry<K,V> e = getHigherEntry(key);
808 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
809 }
810
811 /**
812 * Returns the least key strictly greater than the given key, or
813 * <tt>null</tt> if there is no such key.
814 *
815 * @param key the key.
816 * @return the least key greater than the given key, or
817 * <tt>null</tt> if there is no such key.
818 * @throws ClassCastException if key cannot be compared with the keys
819 * currently in the map.
820 * @throws NullPointerException if key is <tt>null</tt> and this map uses
821 * natural order, or its comparator does not tolerate
822 * <tt>null</tt> keys.
823 */
824 public K higherKey(K key) {
825 Entry<K,V> e = getHigherEntry(key);
826 return (e == null)? null : e.key;
827 }
828
829 /**
830 * Returns a key-value mapping associated with the greatest
831 * key strictly less than the given key, or <tt>null</tt> if there is no
832 * such entry.
833 *
834 * @param key the key.
835 * @return an Entry with greatest key less than the given
836 * key, or <tt>null</tt> if there is no such Entry.
837 * @throws ClassCastException if key cannot be compared with the keys
838 * currently in the map.
839 * @throws NullPointerException if key is <tt>null</tt> and this map uses
840 * natural order, or its comparator does not tolerate
841 * <tt>null</tt> keys.
842 */
843 public Map.Entry<K,V> lowerEntry(K key) {
844 Entry<K,V> e = getLowerEntry(key);
845 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
846 }
847
848 /**
849 * Returns the greatest key strictly less than the given key, or
850 * <tt>null</tt> if there is no such key.
851 *
852 * @param key the key.
853 * @return the greatest key less than the given
854 * key, or <tt>null</tt> if there is no such key.
855 * @throws ClassCastException if key cannot be compared with the keys
856 * currently in the map.
857 * @throws NullPointerException if key is <tt>null</tt> and this map uses
858 * natural order, or its comparator does not tolerate
859 * <tt>null</tt> keys.
860 */
861 public K lowerKey(K key) {
862 Entry<K,V> e = getLowerEntry(key);
863 return (e == null)? null : e.key;
864 }
865
866 // Views
867
868 /**
869 * Fields initialized to contain an instance of the entry set view
870 * the first time this view is requested. Views are stateless, so
871 * there's no reason to create more than one.
872 */
873 private transient Set<Map.Entry<K,V>> entrySet = null;
874 private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
875 private transient Set<K> descendingKeySet = null;
876
877 /**
878 * Returns a Set view of the keys contained in this map. The set's
879 * iterator will return the keys in ascending order. The set is backed by
880 * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
881 * the Set, and vice-versa. The Set supports element removal, which
882 * removes the corresponding mapping from the map, via the
883 * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
884 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support
885 * the <tt>add</tt> or <tt>addAll</tt> operations.
886 *
887 * @return a set view of the keys contained in this TreeMap.
888 */
889 public Set<K> keySet() {
890 Set<K> ks = keySet;
891 return (ks != null) ? ks : (keySet = new KeySet());
892 }
893
894 class KeySet extends AbstractSet<K> {
895 public Iterator<K> iterator() {
896 return new KeyIterator(getFirstEntry());
897 }
898
899 public int size() {
900 return TreeMap.this.size();
901 }
902
903 public boolean contains(Object o) {
904 return containsKey(o);
905 }
906
907 public boolean remove(Object o) {
908 int oldSize = size;
909 TreeMap.this.remove(o);
910 return size != oldSize;
911 }
912
913 public void clear() {
914 TreeMap.this.clear();
915 }
916 }
917
918 /**
919 * Returns a collection view of the values contained in this map. The
920 * collection's iterator will return the values in the order that their
921 * corresponding keys appear in the tree. The collection is backed by
922 * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
923 * the collection, and vice-versa. The collection supports element
924 * removal, which removes the corresponding mapping from the map through
925 * the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
926 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
927 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
928 *
929 * @return a collection view of the values contained in this map.
930 */
931 public Collection<V> values() {
932 Collection<V> vs = values;
933 return (vs != null) ? vs : (values = new Values());
934 }
935
936 class Values extends AbstractCollection<V> {
937 public Iterator<V> iterator() {
938 return new ValueIterator(getFirstEntry());
939 }
940
941 public int size() {
942 return TreeMap.this.size();
943 }
944
945 public boolean contains(Object o) {
946 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
947 if (valEquals(e.getValue(), o))
948 return true;
949 return false;
950 }
951
952 public boolean remove(Object o) {
953 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
954 if (valEquals(e.getValue(), o)) {
955 deleteEntry(e);
956 return true;
957 }
958 }
959 return false;
960 }
961
962 public void clear() {
963 TreeMap.this.clear();
964 }
965 }
966
967 /**
968 * Returns a set view of the mappings contained in this map. The set's
969 * iterator returns the mappings in ascending key order. Each element in
970 * the returned set is a <tt>Map.Entry</tt>. The set is backed by this
971 * map, so changes to this map are reflected in the set, and vice-versa.
972 * The set supports element removal, which removes the corresponding
973 * mapping from the TreeMap, through the <tt>Iterator.remove</tt>,
974 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
975 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
976 * <tt>addAll</tt> operations.
977 *
978 * @return a set view of the mappings contained in this map.
979 * @see Map.Entry
980 */
981 public Set<Map.Entry<K,V>> entrySet() {
982 Set<Map.Entry<K,V>> es = entrySet;
983 return (es != null) ? es : (entrySet = new EntrySet());
984 }
985
986 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
987 public Iterator<Map.Entry<K,V>> iterator() {
988 return new EntryIterator(getFirstEntry());
989 }
990
991 public boolean contains(Object o) {
992 if (!(o instanceof Map.Entry))
993 return false;
994 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
995 V value = entry.getValue();
996 Entry<K,V> p = getEntry(entry.getKey());
997 return p != null && valEquals(p.getValue(), value);
998 }
999
1000 public boolean remove(Object o) {
1001 if (!(o instanceof Map.Entry))
1002 return false;
1003 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1004 V value = entry.getValue();
1005 Entry<K,V> p = getEntry(entry.getKey());
1006 if (p != null && valEquals(p.getValue(), value)) {
1007 deleteEntry(p);
1008 return true;
1009 }
1010 return false;
1011 }
1012
1013 public int size() {
1014 return TreeMap.this.size();
1015 }
1016
1017 public void clear() {
1018 TreeMap.this.clear();
1019 }
1020 }
1021
1022 /**
1023 * Returns a set view of the mappings contained in this map. The
1024 * set's iterator returns the mappings in descending key order.
1025 * Each element in the returned set is a <tt>Map.Entry</tt>. The
1026 * set is backed by this map, so changes to this map are reflected
1027 * in the set, and vice-versa. The set supports element removal,
1028 * which removes the corresponding mapping from the TreeMap,
1029 * through the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1030 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1031 * operations. It does not support the <tt>add</tt> or
1032 * <tt>addAll</tt> operations.
1033 *
1034 * @return a set view of the mappings contained in this map, in
1035 * descending key order
1036 * @see Map.Entry
1037 */
1038 public Set<Map.Entry<K,V>> descendingEntrySet() {
1039 Set<Map.Entry<K,V>> es = descendingEntrySet;
1040 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1041 }
1042
1043 class DescendingEntrySet extends EntrySet {
1044 public Iterator<Map.Entry<K,V>> iterator() {
1045 return new DescendingEntryIterator(getLastEntry());
1046 }
1047 }
1048
1049 /**
1050 * Returns a Set view of the keys contained in this map. The
1051 * set's iterator will return the keys in descending order. The
1052 * map is backed by this <tt>TreeMap</tt> instance, so changes to
1053 * this map are reflected in the Set, and vice-versa. The Set
1054 * supports element removal, which removes the corresponding
1055 * mapping from the map, via the <tt>Iterator.remove</tt>,
1056 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1057 * and <tt>clear</tt> operations. It does not support the
1058 * <tt>add</tt> or <tt>addAll</tt> operations.
1059 *
1060 * @return a set view of the keys contained in this TreeMap.
1061 */
1062 public Set<K> descendingKeySet() {
1063 Set<K> ks = descendingKeySet;
1064 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1065 }
1066
1067 class DescendingKeySet extends KeySet {
1068 public Iterator<K> iterator() {
1069 return new DescendingKeyIterator(getLastEntry());
1070 }
1071 }
1072
1073 /**
1074 * Returns a view of the portion of this map whose keys range from
1075 * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive. (If
1076 * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned
1077 * navigable map is empty.) The returned navigable map is backed
1078 * by this map, so changes in the returned navigable map are
1079 * reflected in this map, and vice-versa. The returned navigable
1080 * map supports all optional map operations.<p>
1081 *
1082 * The navigable map returned by this method will throw an
1083 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1084 * less than <tt>fromKey</tt> or greater than or equal to
1085 * <tt>toKey</tt>.<p>
1086 *
1087 * Note: this method always returns a <i>half-open range</i> (which
1088 * includes its low endpoint but not its high endpoint). If you need a
1089 * <i>closed range</i> (which includes both endpoints), and the key type
1090 * allows for calculation of the successor of a given key, merely request the
1091 * subrange from <tt>lowEndpoint</tt> to <tt>successor(highEndpoint)</tt>.
1092 * For example, suppose that <tt>m</tt> is a navigable map whose keys are
1093 * strings. The following idiom obtains a view containing all of the
1094 * key-value mappings in <tt>m</tt> whose keys are between <tt>low</tt>
1095 * and <tt>high</tt>, inclusive:
1096 * <pre> NavigableMap sub = m.navigableSubMap(low, high+"\0");</pre>
1097 * A similar technique can be used to generate an <i>open range</i> (which
1098 * contains neither endpoint). The following idiom obtains a view
1099 * containing all of the key-value mappings in <tt>m</tt> whose keys are
1100 * between <tt>low</tt> and <tt>high</tt>, exclusive:
1101 * <pre> NavigableMap sub = m.navigableSubMap(low+"\0", high);</pre>
1102 *
1103 * @param fromKey low endpoint (inclusive) of the subMap.
1104 * @param toKey high endpoint (exclusive) of the subMap.
1105 *
1106 * @return a view of the portion of this map whose keys range from
1107 * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1108 *
1109 * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1110 * cannot be compared to one another using this map's comparator
1111 * (or, if the map has no comparator, using natural ordering).
1112 * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1113 * <tt>toKey</tt>.
1114 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1115 * <tt>null</tt> and this map uses natural order, or its
1116 * comparator does not tolerate <tt>null</tt> keys.
1117 */
1118 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1119 return new SubMap(fromKey, toKey);
1120 }
1121
1122
1123 /**
1124 * Returns a view of the portion of this map whose keys are strictly less
1125 * than <tt>toKey</tt>. The returned navigable map is backed by this map, so
1126 * changes in the returned navigable map are reflected in this map, and
1127 * vice-versa. The returned navigable map supports all optional map
1128 * operations.<p>
1129 *
1130 * The navigable map returned by this method will throw an
1131 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1132 * greater than or equal to <tt>toKey</tt>.<p>
1133 *
1134 * Note: this method always returns a view that does not contain its
1135 * (high) endpoint. If you need a view that does contain this endpoint,
1136 * and the key type allows for calculation of the successor of a given key,
1137 * merely request a headMap bounded by <tt>successor(highEndpoint)</tt>.
1138 * For example, suppose that suppose that <tt>m</tt> is a navigable map whose
1139 * keys are strings. The following idiom obtains a view containing all of
1140 * the key-value mappings in <tt>m</tt> whose keys are less than or equal
1141 * to <tt>high</tt>:
1142 * <pre>
1143 * NavigableMap head = m.navigableHeadMap(high+"\0");
1144 * </pre>
1145 *
1146 * @param toKey high endpoint (exclusive) of the headMap.
1147 * @return a view of the portion of this map whose keys are strictly
1148 * less than <tt>toKey</tt>.
1149 *
1150 * @throws ClassCastException if <tt>toKey</tt> is not compatible
1151 * with this map's comparator (or, if the map has no comparator,
1152 * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1153 * @throws IllegalArgumentException if this map is itself a subMap,
1154 * headMap, or tailMap, and <tt>toKey</tt> is not within the
1155 * specified range of the subMap, headMap, or tailMap.
1156 * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1157 * this map uses natural order, or its comparator does not
1158 * tolerate <tt>null</tt> keys.
1159 */
1160 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1161 return new SubMap(toKey, true);
1162 }
1163
1164 /**
1165 * Returns a view of the portion of this map whose keys are greater than
1166 * or equal to <tt>fromKey</tt>. The returned navigable map is backed by
1167 * this map, so changes in the returned navigable map are reflected in this
1168 * map, and vice-versa. The returned navigable map supports all optional map
1169 * operations.<p>
1170 *
1171 * The navigable map returned by this method will throw an
1172 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1173 * less than <tt>fromKey</tt>.<p>
1174 *
1175 * Note: this method always returns a view that contains its (low)
1176 * endpoint. If you need a view that does not contain this endpoint, and
1177 * the element type allows for calculation of the successor of a given value,
1178 * merely request a tailMap bounded by <tt>successor(lowEndpoint)</tt>.
1179 * For example, suppose that <tt>m</tt> is a navigable map whose keys
1180 * are strings. The following idiom obtains a view containing
1181 * all of the key-value mappings in <tt>m</tt> whose keys are strictly
1182 * greater than <tt>low</tt>: <pre>
1183 * NavigableMap tail = m.navigableTailMap(low+"\0");
1184 * </pre>
1185 *
1186 * @param fromKey low endpoint (inclusive) of the tailMap.
1187 * @return a view of the portion of this map whose keys are greater
1188 * than or equal to <tt>fromKey</tt>.
1189 * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1190 * with this map's comparator (or, if the map has no comparator,
1191 * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1192 * @throws IllegalArgumentException if this map is itself a subMap,
1193 * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1194 * specified range of the subMap, headMap, or tailMap.
1195 * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1196 * this map uses natural order, or its comparator does not
1197 * tolerate <tt>null</tt> keys.
1198 */
1199 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1200 return new SubMap(fromKey, false);
1201 }
1202
1203 /**
1204 * Equivalent to <tt>navigableSubMap</tt> but with a return
1205 * type conforming to the <tt>SortedMap</tt> interface.
1206 * @param fromKey low endpoint (inclusive) of the subMap.
1207 * @param toKey high endpoint (exclusive) of the subMap.
1208 *
1209 * @return a view of the portion of this map whose keys range from
1210 * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1211 *
1212 * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1213 * cannot be compared to one another using this map's comparator
1214 * (or, if the map has no comparator, using natural ordering).
1215 * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1216 * <tt>toKey</tt>.
1217 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1218 * <tt>null</tt> and this map uses natural order, or its
1219 * comparator does not tolerate <tt>null</tt> keys.
1220 */
1221 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1222 return new SubMap(fromKey, toKey);
1223 }
1224
1225
1226 /**
1227 * Equivalent to <tt>navigableHeadMap</tt> but with a return
1228 * type conforming to the <tt>SortedMap</tt> interface.
1229 *
1230 * @param toKey high endpoint (exclusive) of the headMap.
1231 * @return a view of the portion of this map whose keys are strictly
1232 * less than <tt>toKey</tt>.
1233 *
1234 * @throws ClassCastException if <tt>toKey</tt> is not compatible
1235 * with this map's comparator (or, if the map has no comparator,
1236 * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1237 * @throws IllegalArgumentException if this map is itself a subMap,
1238 * headMap, or tailMap, and <tt>toKey</tt> is not within the
1239 * specified range of the subMap, headMap, or tailMap.
1240 * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1241 * this map uses natural order, or its comparator does not
1242 * tolerate <tt>null</tt> keys.
1243 */
1244 public SortedMap<K,V> headMap(K toKey) {
1245 return new SubMap(toKey, true);
1246 }
1247
1248 /**
1249 * Equivalent to <tt>navigableTailMap</tt> but with a return
1250 * type conforming to the <tt>SortedMap</tt> interface.
1251 *
1252 * @param fromKey low endpoint (inclusive) of the tailMap.
1253 * @return a view of the portion of this map whose keys are greater
1254 * than or equal to <tt>fromKey</tt>.
1255 * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1256 * with this map's comparator (or, if the map has no comparator,
1257 * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1258 * @throws IllegalArgumentException if this map is itself a subMap,
1259 * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1260 * specified range of the subMap, headMap, or tailMap.
1261 * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1262 * this map uses natural order, or its comparator does not
1263 * tolerate <tt>null</tt> keys.
1264 */
1265 public SortedMap<K,V> tailMap(K fromKey) {
1266 return new SubMap(fromKey, false);
1267 }
1268
1269 private class SubMap
1270 extends AbstractMap<K,V>
1271 implements NavigableMap<K,V>, java.io.Serializable {
1272 private static final long serialVersionUID = -6520786458950516097L;
1273
1274 /**
1275 * fromKey is significant only if fromStart is false. Similarly,
1276 * toKey is significant only if toStart is false.
1277 */
1278 private boolean fromStart = false, toEnd = false;
1279 private K fromKey, toKey;
1280
1281 SubMap(K fromKey, K toKey) {
1282 if (compare(fromKey, toKey) > 0)
1283 throw new IllegalArgumentException("fromKey > toKey");
1284 this.fromKey = fromKey;
1285 this.toKey = toKey;
1286 }
1287
1288 SubMap(K key, boolean headMap) {
1289 compare(key, key); // Type-check key
1290
1291 if (headMap) {
1292 fromStart = true;
1293 toKey = key;
1294 } else {
1295 toEnd = true;
1296 fromKey = key;
1297 }
1298 }
1299
1300 SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1301 this.fromStart = fromStart;
1302 this.fromKey= fromKey;
1303 this.toEnd = toEnd;
1304 this.toKey = toKey;
1305 }
1306
1307 public boolean isEmpty() {
1308 return entrySet().isEmpty();
1309 }
1310
1311 public boolean containsKey(Object key) {
1312 return inRange((K) key) && TreeMap.this.containsKey(key);
1313 }
1314
1315 public V get(Object key) {
1316 if (!inRange((K) key))
1317 return null;
1318 return TreeMap.this.get(key);
1319 }
1320
1321 public V put(K key, V value) {
1322 if (!inRange(key))
1323 throw new IllegalArgumentException("key out of range");
1324 return TreeMap.this.put(key, value);
1325 }
1326
1327 public V remove(Object key) {
1328 if (!inRange((K) key))
1329 return null;
1330 return TreeMap.this.remove(key);
1331 }
1332
1333 public Comparator<? super K> comparator() {
1334 return comparator;
1335 }
1336
1337 public K firstKey() {
1338 TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1339 K first = key(e);
1340 if (!toEnd && compare(first, toKey) >= 0)
1341 throw new NoSuchElementException();
1342 return first;
1343 }
1344
1345 public K lastKey() {
1346 TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1347 K last = key(e);
1348 if (!fromStart && compare(last, fromKey) < 0)
1349 throw new NoSuchElementException();
1350 return last;
1351 }
1352
1353 public Map.Entry<K,V> firstEntry() {
1354 TreeMap.Entry<K,V> e = fromStart ?
1355 getFirstEntry() : getCeilingEntry(fromKey);
1356 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1357 return null;
1358 return e;
1359 }
1360
1361 public Map.Entry<K,V> lastEntry() {
1362 TreeMap.Entry<K,V> e = toEnd ?
1363 getLastEntry() : getLowerEntry(toKey);
1364 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1365 return null;
1366 return e;
1367 }
1368
1369 public Map.Entry<K,V> pollFirstEntry() {
1370 TreeMap.Entry<K,V> e = fromStart ?
1371 getFirstEntry() : getCeilingEntry(fromKey);
1372 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1373 return null;
1374 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1375 deleteEntry(e);
1376 return result;
1377 }
1378
1379 public Map.Entry<K,V> pollLastEntry() {
1380 TreeMap.Entry<K,V> e = toEnd ?
1381 getLastEntry() : getLowerEntry(toKey);
1382 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1383 return null;
1384 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1385 deleteEntry(e);
1386 return result;
1387 }
1388
1389 private TreeMap.Entry<K,V> subceiling(K key) {
1390 TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1391 getCeilingEntry(fromKey) : getCeilingEntry(key);
1392 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1393 return null;
1394 return e;
1395 }
1396
1397 public Map.Entry<K,V> ceilingEntry(K key) {
1398 TreeMap.Entry<K,V> e = subceiling(key);
1399 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1400 }
1401
1402 public K ceilingKey(K key) {
1403 TreeMap.Entry<K,V> e = subceiling(key);
1404 return e == null? null : e.key;
1405 }
1406
1407
1408 private TreeMap.Entry<K,V> subhigher(K key) {
1409 TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1410 getCeilingEntry(fromKey) : getHigherEntry(key);
1411 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1412 return null;
1413 return e;
1414 }
1415
1416 public Map.Entry<K,V> higherEntry(K key) {
1417 TreeMap.Entry<K,V> e = subhigher(key);
1418 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1419 }
1420
1421 public K higherKey(K key) {
1422 TreeMap.Entry<K,V> e = subhigher(key);
1423 return e == null? null : e.key;
1424 }
1425
1426 private TreeMap.Entry<K,V> subfloor(K key) {
1427 TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1428 getLowerEntry(toKey) : getFloorEntry(key);
1429 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1430 return null;
1431 return e;
1432 }
1433
1434 public Map.Entry<K,V> floorEntry(K key) {
1435 TreeMap.Entry<K,V> e = subfloor(key);
1436 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1437 }
1438
1439 public K floorKey(K key) {
1440 TreeMap.Entry<K,V> e = subfloor(key);
1441 return e == null? null : e.key;
1442 }
1443
1444 private TreeMap.Entry<K,V> sublower(K key) {
1445 TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1446 getLowerEntry(toKey) : getLowerEntry(key);
1447 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1448 return null;
1449 return e;
1450 }
1451
1452 public Map.Entry<K,V> lowerEntry(K key) {
1453 TreeMap.Entry<K,V> e = sublower(key);
1454 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1455 }
1456
1457 public K lowerKey(K key) {
1458 TreeMap.Entry<K,V> e = sublower(key);
1459 return e == null? null : e.key;
1460 }
1461
1462 private transient Set<Map.Entry<K,V>> entrySet = null;
1463
1464 public Set<Map.Entry<K,V>> entrySet() {
1465 Set<Map.Entry<K,V>> es = entrySet;
1466 return (es != null)? es : (entrySet = new EntrySetView());
1467 }
1468
1469 private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1470 private transient int size = -1, sizeModCount;
1471
1472 public int size() {
1473 if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1474 size = 0; sizeModCount = TreeMap.this.modCount;
1475 Iterator i = iterator();
1476 while (i.hasNext()) {
1477 size++;
1478 i.next();
1479 }
1480 }
1481 return size;
1482 }
1483
1484 public boolean isEmpty() {
1485 return !iterator().hasNext();
1486 }
1487
1488 public boolean contains(Object o) {
1489 if (!(o instanceof Map.Entry))
1490 return false;
1491 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1492 K key = entry.getKey();
1493 if (!inRange(key))
1494 return false;
1495 TreeMap.Entry node = getEntry(key);
1496 return node != null &&
1497 valEquals(node.getValue(), entry.getValue());
1498 }
1499
1500 public boolean remove(Object o) {
1501 if (!(o instanceof Map.Entry))
1502 return false;
1503 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1504 K key = entry.getKey();
1505 if (!inRange(key))
1506 return false;
1507 TreeMap.Entry<K,V> node = getEntry(key);
1508 if (node!=null && valEquals(node.getValue(),entry.getValue())){
1509 deleteEntry(node);
1510 return true;
1511 }
1512 return false;
1513 }
1514
1515 public Iterator<Map.Entry<K,V>> iterator() {
1516 return new SubMapEntryIterator(
1517 (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1518 (toEnd ? null : getCeilingEntry(toKey)));
1519 }
1520 }
1521
1522 private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1523 private transient Set<K> descendingKeySetView = null;
1524
1525 public Set<Map.Entry<K,V>> descendingEntrySet() {
1526 Set<Map.Entry<K,V>> es = descendingEntrySetView;
1527 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
1528 }
1529
1530 public Set<K> descendingKeySet() {
1531 Set<K> ks = descendingKeySetView;
1532 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
1533 }
1534
1535 private class DescendingEntrySetView extends EntrySetView {
1536 public Iterator<Map.Entry<K,V>> iterator() {
1537 return new DescendingSubMapEntryIterator
1538 ((toEnd ? getLastEntry() : getLowerEntry(toKey)),
1539 (fromStart ? null : getLowerEntry(fromKey)));
1540 }
1541 }
1542
1543 private class DescendingKeySetView extends AbstractSet<K> {
1544 public Iterator<K> iterator() {
1545 return new Iterator<K>() {
1546 private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1547
1548 public boolean hasNext() { return i.hasNext(); }
1549 public K next() { return i.next().getKey(); }
1550 public void remove() { i.remove(); }
1551 };
1552 }
1553
1554 public int size() {
1555 return SubMap.this.size();
1556 }
1557
1558 public boolean contains(Object k) {
1559 return SubMap.this.containsKey(k);
1560 }
1561 }
1562
1563
1564 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1565 if (!inRange2(fromKey))
1566 throw new IllegalArgumentException("fromKey out of range");
1567 if (!inRange2(toKey))
1568 throw new IllegalArgumentException("toKey out of range");
1569 return new SubMap(fromKey, toKey);
1570 }
1571
1572 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1573 if (!inRange2(toKey))
1574 throw new IllegalArgumentException("toKey out of range");
1575 return new SubMap(fromStart, fromKey, false, toKey);
1576 }
1577
1578 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1579 if (!inRange2(fromKey))
1580 throw new IllegalArgumentException("fromKey out of range");
1581 return new SubMap(false, fromKey, toEnd, toKey);
1582 }
1583
1584
1585 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1586 return navigableSubMap(fromKey, toKey);
1587 }
1588
1589 public SortedMap<K,V> headMap(K toKey) {
1590 return navigableHeadMap(toKey);
1591 }
1592
1593 public SortedMap<K,V> tailMap(K fromKey) {
1594 return navigableTailMap(fromKey);
1595 }
1596
1597 private boolean inRange(K key) {
1598 return (fromStart || compare(key, fromKey) >= 0) &&
1599 (toEnd || compare(key, toKey) < 0);
1600 }
1601
1602 // This form allows the high endpoint (as well as all legit keys)
1603 private boolean inRange2(K key) {
1604 return (fromStart || compare(key, fromKey) >= 0) &&
1605 (toEnd || compare(key, toKey) <= 0);
1606 }
1607 }
1608
1609 /**
1610 * TreeMap Iterator.
1611 */
1612 abstract class PrivateEntryIterator<T> implements Iterator<T> {
1613 int expectedModCount = TreeMap.this.modCount;
1614 Entry<K,V> lastReturned = null;
1615 Entry<K,V> next;
1616
1617 PrivateEntryIterator(Entry<K,V> first) {
1618 next = first;
1619 }
1620
1621 public boolean hasNext() {
1622 return next != null;
1623 }
1624
1625 Entry<K,V> nextEntry() {
1626 if (next == null)
1627 throw new NoSuchElementException();
1628 if (modCount != expectedModCount)
1629 throw new ConcurrentModificationException();
1630 lastReturned = next;
1631 next = successor(next);
1632 return lastReturned;
1633 }
1634
1635 public void remove() {
1636 if (lastReturned == null)
1637 throw new IllegalStateException();
1638 if (modCount != expectedModCount)
1639 throw new ConcurrentModificationException();
1640 if (lastReturned.left != null && lastReturned.right != null)
1641 next = lastReturned;
1642 deleteEntry(lastReturned);
1643 expectedModCount++;
1644 lastReturned = null;
1645 }
1646 }
1647
1648 class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1649 EntryIterator(Entry<K,V> first) {
1650 super(first);
1651 }
1652
1653 public Map.Entry<K,V> next() {
1654 return nextEntry();
1655 }
1656 }
1657
1658 class KeyIterator extends PrivateEntryIterator<K> {
1659 KeyIterator(Entry<K,V> first) {
1660 super(first);
1661 }
1662 public K next() {
1663 return nextEntry().key;
1664 }
1665 }
1666
1667 class ValueIterator extends PrivateEntryIterator<V> {
1668 ValueIterator(Entry<K,V> first) {
1669 super(first);
1670 }
1671 public V next() {
1672 return nextEntry().value;
1673 }
1674 }
1675
1676 class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1677 private final K firstExcludedKey;
1678
1679 SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1680 super(first);
1681 firstExcludedKey = (firstExcluded == null
1682 ? null
1683 : firstExcluded.key);
1684 }
1685
1686 public boolean hasNext() {
1687 return next != null && next.key != firstExcludedKey;
1688 }
1689
1690 public Map.Entry<K,V> next() {
1691 if (next == null || next.key == firstExcludedKey)
1692 throw new NoSuchElementException();
1693 return nextEntry();
1694 }
1695 }
1696
1697
1698 /**
1699 * Base for Descending Iterators.
1700 */
1701 abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1702 DescendingPrivateEntryIterator(Entry<K,V> first) {
1703 super(first);
1704 }
1705
1706 Entry<K,V> nextEntry() {
1707 if (next == null)
1708 throw new NoSuchElementException();
1709 if (modCount != expectedModCount)
1710 throw new ConcurrentModificationException();
1711 lastReturned = next;
1712 next = predecessor(next);
1713 return lastReturned;
1714 }
1715 }
1716
1717 class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1718 DescendingEntryIterator(Entry<K,V> first) {
1719 super(first);
1720 }
1721 public Map.Entry<K,V> next() {
1722 return nextEntry();
1723 }
1724 }
1725
1726 class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1727 DescendingKeyIterator(Entry<K,V> first) {
1728 super(first);
1729 }
1730 public K next() {
1731 return nextEntry().key;
1732 }
1733 }
1734
1735
1736 class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1737 private final K lastExcludedKey;
1738
1739 DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1740 super(last);
1741 lastExcludedKey = (lastExcluded == null
1742 ? null
1743 : lastExcluded.key);
1744 }
1745
1746 public boolean hasNext() {
1747 return next != null && next.key != lastExcludedKey;
1748 }
1749
1750 public Map.Entry<K,V> next() {
1751 if (next == null || next.key == lastExcludedKey)
1752 throw new NoSuchElementException();
1753 return nextEntry();
1754 }
1755
1756 }
1757
1758
1759 /**
1760 * Compares two keys using the correct comparison method for this TreeMap.
1761 */
1762 private int compare(K k1, K k2) {
1763 return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
1764 : comparator.compare((K)k1, (K)k2));
1765 }
1766
1767 /**
1768 * Test two values for equality. Differs from o1.equals(o2) only in
1769 * that it copes with <tt>null</tt> o1 properly.
1770 */
1771 private static boolean valEquals(Object o1, Object o2) {
1772 return (o1==null ? o2==null : o1.equals(o2));
1773 }
1774
1775 private static final boolean RED = false;
1776 private static final boolean BLACK = true;
1777
1778 /**
1779 * Node in the Tree. Doubles as a means to pass key-value pairs back to
1780 * user (see Map.Entry).
1781 */
1782
1783 static class Entry<K,V> implements Map.Entry<K,V> {
1784 K key;
1785 V value;
1786 Entry<K,V> left = null;
1787 Entry<K,V> right = null;
1788 Entry<K,V> parent;
1789 boolean color = BLACK;
1790
1791 /**
1792 * Make a new cell with given key, value, and parent, and with
1793 * <tt>null</tt> child links, and BLACK color.
1794 */
1795 Entry(K key, V value, Entry<K,V> parent) {
1796 this.key = key;
1797 this.value = value;
1798 this.parent = parent;
1799 }
1800
1801 /**
1802 * Returns the key.
1803 *
1804 * @return the key.
1805 */
1806 public K getKey() {
1807 return key;
1808 }
1809
1810 /**
1811 * Returns the value associated with the key.
1812 *
1813 * @return the value associated with the key.
1814 */
1815 public V getValue() {
1816 return value;
1817 }
1818
1819 /**
1820 * Replaces the value currently associated with the key with the given
1821 * value.
1822 *
1823 * @return the value associated with the key before this method was
1824 * called.
1825 */
1826 public V setValue(V value) {
1827 V oldValue = this.value;
1828 this.value = value;
1829 return oldValue;
1830 }
1831
1832 public boolean equals(Object o) {
1833 if (!(o instanceof Map.Entry))
1834 return false;
1835 Map.Entry e = (Map.Entry)o;
1836
1837 return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1838 }
1839
1840 public int hashCode() {
1841 int keyHash = (key==null ? 0 : key.hashCode());
1842 int valueHash = (value==null ? 0 : value.hashCode());
1843 return keyHash ^ valueHash;
1844 }
1845
1846 public String toString() {
1847 return key + "=" + value;
1848 }
1849 }
1850
1851 /**
1852 * Returns the first Entry in the TreeMap (according to the TreeMap's
1853 * key-sort function). Returns null if the TreeMap is empty.
1854 */
1855 private Entry<K,V> getFirstEntry() {
1856 Entry<K,V> p = root;
1857 if (p != null)
1858 while (p.left != null)
1859 p = p.left;
1860 return p;
1861 }
1862
1863 /**
1864 * Returns the last Entry in the TreeMap (according to the TreeMap's
1865 * key-sort function). Returns null if the TreeMap is empty.
1866 */
1867 private Entry<K,V> getLastEntry() {
1868 Entry<K,V> p = root;
1869 if (p != null)
1870 while (p.right != null)
1871 p = p.right;
1872 return p;
1873 }
1874
1875 /**
1876 * Returns the successor of the specified Entry, or null if no such.
1877 */
1878 private Entry<K,V> successor(Entry<K,V> t) {
1879 if (t == null)
1880 return null;
1881 else if (t.right != null) {
1882 Entry<K,V> p = t.right;
1883 while (p.left != null)
1884 p = p.left;
1885 return p;
1886 } else {
1887 Entry<K,V> p = t.parent;
1888 Entry<K,V> ch = t;
1889 while (p != null && ch == p.right) {
1890 ch = p;
1891 p = p.parent;
1892 }
1893 return p;
1894 }
1895 }
1896
1897 /**
1898 * Returns the predecessor of the specified Entry, or null if no such.
1899 */
1900 private Entry<K,V> predecessor(Entry<K,V> t) {
1901 if (t == null)
1902 return null;
1903 else if (t.left != null) {
1904 Entry<K,V> p = t.left;
1905 while (p.right != null)
1906 p = p.right;
1907 return p;
1908 } else {
1909 Entry<K,V> p = t.parent;
1910 Entry<K,V> ch = t;
1911 while (p != null && ch == p.left) {
1912 ch = p;
1913 p = p.parent;
1914 }
1915 return p;
1916 }
1917 }
1918
1919 /**
1920 * Balancing operations.
1921 *
1922 * Implementations of rebalancings during insertion and deletion are
1923 * slightly different than the CLR version. Rather than using dummy
1924 * nilnodes, we use a set of accessors that deal properly with null. They
1925 * are used to avoid messiness surrounding nullness checks in the main
1926 * algorithms.
1927 */
1928
1929 private static <K,V> boolean colorOf(Entry<K,V> p) {
1930 return (p == null ? BLACK : p.color);
1931 }
1932
1933 private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
1934 return (p == null ? null: p.parent);
1935 }
1936
1937 private static <K,V> void setColor(Entry<K,V> p, boolean c) {
1938 if (p != null)
1939 p.color = c;
1940 }
1941
1942 private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
1943 return (p == null) ? null: p.left;
1944 }
1945
1946 private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
1947 return (p == null) ? null: p.right;
1948 }
1949
1950 /** From CLR **/
1951 private void rotateLeft(Entry<K,V> p) {
1952 Entry<K,V> r = p.right;
1953 p.right = r.left;
1954 if (r.left != null)
1955 r.left.parent = p;
1956 r.parent = p.parent;
1957 if (p.parent == null)
1958 root = r;
1959 else if (p.parent.left == p)
1960 p.parent.left = r;
1961 else
1962 p.parent.right = r;
1963 r.left = p;
1964 p.parent = r;
1965 }
1966
1967 /** From CLR **/
1968 private void rotateRight(Entry<K,V> p) {
1969 Entry<K,V> l = p.left;
1970 p.left = l.right;
1971 if (l.right != null) l.right.parent = p;
1972 l.parent = p.parent;
1973 if (p.parent == null)
1974 root = l;
1975 else if (p.parent.right == p)
1976 p.parent.right = l;
1977 else p.parent.left = l;
1978 l.right = p;
1979 p.parent = l;
1980 }
1981
1982
1983 /** From CLR **/
1984 private void fixAfterInsertion(Entry<K,V> x) {
1985 x.color = RED;
1986
1987 while (x != null && x != root && x.parent.color == RED) {
1988 if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
1989 Entry<K,V> y = rightOf(parentOf(parentOf(x)));
1990 if (colorOf(y) == RED) {
1991 setColor(parentOf(x), BLACK);
1992 setColor(y, BLACK);
1993 setColor(parentOf(parentOf(x)), RED);
1994 x = parentOf(parentOf(x));
1995 } else {
1996 if (x == rightOf(parentOf(x))) {
1997 x = parentOf(x);
1998 rotateLeft(x);
1999 }
2000 setColor(parentOf(x), BLACK);
2001 setColor(parentOf(parentOf(x)), RED);
2002 if (parentOf(parentOf(x)) != null)
2003 rotateRight(parentOf(parentOf(x)));
2004 }
2005 } else {
2006 Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2007 if (colorOf(y) == RED) {
2008 setColor(parentOf(x), BLACK);
2009 setColor(y, BLACK);
2010 setColor(parentOf(parentOf(x)), RED);
2011 x = parentOf(parentOf(x));
2012 } else {
2013 if (x == leftOf(parentOf(x))) {
2014 x = parentOf(x);
2015 rotateRight(x);
2016 }
2017 setColor(parentOf(x), BLACK);
2018 setColor(parentOf(parentOf(x)), RED);
2019 if (parentOf(parentOf(x)) != null)
2020 rotateLeft(parentOf(parentOf(x)));
2021 }
2022 }
2023 }
2024 root.color = BLACK;
2025 }
2026
2027 /**
2028 * Delete node p, and then rebalance the tree.
2029 */
2030
2031 private void deleteEntry(Entry<K,V> p) {
2032 decrementSize();
2033
2034 // If strictly internal, copy successor's element to p and then make p
2035 // point to successor.
2036 if (p.left != null && p.right != null) {
2037 Entry<K,V> s = successor (p);
2038 p.key = s.key;
2039 p.value = s.value;
2040 p = s;
2041 } // p has 2 children
2042
2043 // Start fixup at replacement node, if it exists.
2044 Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2045
2046 if (replacement != null) {
2047 // Link replacement to parent
2048 replacement.parent = p.parent;
2049 if (p.parent == null)
2050 root = replacement;
2051 else if (p == p.parent.left)
2052 p.parent.left = replacement;
2053 else
2054 p.parent.right = replacement;
2055
2056 // Null out links so they are OK to use by fixAfterDeletion.
2057 p.left = p.right = p.parent = null;
2058
2059 // Fix replacement
2060 if (p.color == BLACK)
2061 fixAfterDeletion(replacement);
2062 } else if (p.parent == null) { // return if we are the only node.
2063 root = null;
2064 } else { // No children. Use self as phantom replacement and unlink.
2065 if (p.color == BLACK)
2066 fixAfterDeletion(p);
2067
2068 if (p.parent != null) {
2069 if (p == p.parent.left)
2070 p.parent.left = null;
2071 else if (p == p.parent.right)
2072 p.parent.right = null;
2073 p.parent = null;
2074 }
2075 }
2076 }
2077
2078 /** From CLR **/
2079 private void fixAfterDeletion(Entry<K,V> x) {
2080 while (x != root && colorOf(x) == BLACK) {
2081 if (x == leftOf(parentOf(x))) {
2082 Entry<K,V> sib = rightOf(parentOf(x));
2083
2084 if (colorOf(sib) == RED) {
2085 setColor(sib, BLACK);
2086 setColor(parentOf(x), RED);
2087 rotateLeft(parentOf(x));
2088 sib = rightOf(parentOf(x));
2089 }
2090
2091 if (colorOf(leftOf(sib)) == BLACK &&
2092 colorOf(rightOf(sib)) == BLACK) {
2093 setColor(sib, RED);
2094 x = parentOf(x);
2095 } else {
2096 if (colorOf(rightOf(sib)) == BLACK) {
2097 setColor(leftOf(sib), BLACK);
2098 setColor(sib, RED);
2099 rotateRight(sib);
2100 sib = rightOf(parentOf(x));
2101 }
2102 setColor(sib, colorOf(parentOf(x)));
2103 setColor(parentOf(x), BLACK);
2104 setColor(rightOf(sib), BLACK);
2105 rotateLeft(parentOf(x));
2106 x = root;
2107 }
2108 } else { // symmetric
2109 Entry<K,V> sib = leftOf(parentOf(x));
2110
2111 if (colorOf(sib) == RED) {
2112 setColor(sib, BLACK);
2113 setColor(parentOf(x), RED);
2114 rotateRight(parentOf(x));
2115 sib = leftOf(parentOf(x));
2116 }
2117
2118 if (colorOf(rightOf(sib)) == BLACK &&
2119 colorOf(leftOf(sib)) == BLACK) {
2120 setColor(sib, RED);
2121 x = parentOf(x);
2122 } else {
2123 if (colorOf(leftOf(sib)) == BLACK) {
2124 setColor(rightOf(sib), BLACK);
2125 setColor(sib, RED);
2126 rotateLeft(sib);
2127 sib = leftOf(parentOf(x));
2128 }
2129 setColor(sib, colorOf(parentOf(x)));
2130 setColor(parentOf(x), BLACK);
2131 setColor(leftOf(sib), BLACK);
2132 rotateRight(parentOf(x));
2133 x = root;
2134 }
2135 }
2136 }
2137
2138 setColor(x, BLACK);
2139 }
2140
2141 private static final long serialVersionUID = 919286545866124006L;
2142
2143 /**
2144 * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2145 * serialize it).
2146 *
2147 * @serialData The <i>size</i> of the TreeMap (the number of key-value
2148 * mappings) is emitted (int), followed by the key (Object)
2149 * and value (Object) for each key-value mapping represented
2150 * by the TreeMap. The key-value mappings are emitted in
2151 * key-order (as determined by the TreeMap's Comparator,
2152 * or by the keys' natural ordering if the TreeMap has no
2153 * Comparator).
2154 */
2155 private void writeObject(java.io.ObjectOutputStream s)
2156 throws java.io.IOException {
2157 // Write out the Comparator and any hidden stuff
2158 s.defaultWriteObject();
2159
2160 // Write out size (number of Mappings)
2161 s.writeInt(size);
2162
2163 Set<Map.Entry<K,V>> es = entrySet();
2164 // Write out keys and values (alternating)
2165 for (Iterator<Map.Entry<K,V>> i = es.iterator(); i.hasNext(); ) {
2166 Map.Entry<K,V> e = i.next();
2167 s.writeObject(e.getKey());
2168 s.writeObject(e.getValue());
2169 }
2170 }
2171
2172
2173
2174 /**
2175 * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2176 * deserialize it).
2177 */
2178 private void readObject(final java.io.ObjectInputStream s)
2179 throws java.io.IOException, ClassNotFoundException {
2180 // Read in the Comparator and any hidden stuff
2181 s.defaultReadObject();
2182
2183 // Read in size
2184 int size = s.readInt();
2185
2186 buildFromSorted(size, null, s, null);
2187 }
2188
2189 /** Intended to be called only from TreeSet.readObject **/
2190 void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2191 throws java.io.IOException, ClassNotFoundException {
2192 buildFromSorted(size, null, s, defaultVal);
2193 }
2194
2195 /** Intended to be called only from TreeSet.addAll **/
2196 void addAllForTreeSet(SortedSet<Map.Entry<K,V>> set, V defaultVal) {
2197 try {
2198 buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2199 } catch (java.io.IOException cannotHappen) {
2200 } catch (ClassNotFoundException cannotHappen) {
2201 }
2202 }
2203
2204
2205 /**
2206 * Linear time tree building algorithm from sorted data. Can accept keys
2207 * and/or values from iterator or stream. This leads to too many
2208 * parameters, but seems better than alternatives. The four formats
2209 * that this method accepts are:
2210 *
2211 * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2212 * 2) An iterator of keys. (it != null, defaultVal != null).
2213 * 3) A stream of alternating serialized keys and values.
2214 * (it == null, defaultVal == null).
2215 * 4) A stream of serialized keys. (it == null, defaultVal != null).
2216 *
2217 * It is assumed that the comparator of the TreeMap is already set prior
2218 * to calling this method.
2219 *
2220 * @param size the number of keys (or key-value pairs) to be read from
2221 * the iterator or stream.
2222 * @param it If non-null, new entries are created from entries
2223 * or keys read from this iterator.
2224 * @param str If non-null, new entries are created from keys and
2225 * possibly values read from this stream in serialized form.
2226 * Exactly one of it and str should be non-null.
2227 * @param defaultVal if non-null, this default value is used for
2228 * each value in the map. If null, each value is read from
2229 * iterator or stream, as described above.
2230 * @throws IOException propagated from stream reads. This cannot
2231 * occur if str is null.
2232 * @throws ClassNotFoundException propagated from readObject.
2233 * This cannot occur if str is null.
2234 */
2235 private
2236 void buildFromSorted(int size, Iterator it,
2237 java.io.ObjectInputStream str,
2238 V defaultVal)
2239 throws java.io.IOException, ClassNotFoundException {
2240 this.size = size;
2241 root =
2242 buildFromSorted(0, 0, size-1, computeRedLevel(size),
2243 it, str, defaultVal);
2244 }
2245
2246 /**
2247 * Recursive "helper method" that does the real work of the
2248 * of the previous method. Identically named parameters have
2249 * identical definitions. Additional parameters are documented below.
2250 * It is assumed that the comparator and size fields of the TreeMap are
2251 * already set prior to calling this method. (It ignores both fields.)
2252 *
2253 * @param level the current level of tree. Initial call should be 0.
2254 * @param lo the first element index of this subtree. Initial should be 0.
2255 * @param hi the last element index of this subtree. Initial should be
2256 * size-1.
2257 * @param redLevel the level at which nodes should be red.
2258 * Must be equal to computeRedLevel for tree of this size.
2259 */
2260 private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2261 int redLevel,
2262 Iterator it,
2263 java.io.ObjectInputStream str,
2264 V defaultVal)
2265 throws java.io.IOException, ClassNotFoundException {
2266 /*
2267 * Strategy: The root is the middlemost element. To get to it, we
2268 * have to first recursively construct the entire left subtree,
2269 * so as to grab all of its elements. We can then proceed with right
2270 * subtree.
2271 *
2272 * The lo and hi arguments are the minimum and maximum
2273 * indices to pull out of the iterator or stream for current subtree.
2274 * They are not actually indexed, we just proceed sequentially,
2275 * ensuring that items are extracted in corresponding order.
2276 */
2277
2278 if (hi < lo) return null;
2279
2280 int mid = (lo + hi) / 2;
2281
2282 Entry<K,V> left = null;
2283 if (lo < mid)
2284 left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2285 it, str, defaultVal);
2286
2287 // extract key and/or value from iterator or stream
2288 K key;
2289 V value;
2290 if (it != null) {
2291 if (defaultVal==null) {
2292 Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2293 key = entry.getKey();
2294 value = entry.getValue();
2295 } else {
2296 key = (K)it.next();
2297 value = defaultVal;
2298 }
2299 } else { // use stream
2300 key = (K) str.readObject();
2301 value = (defaultVal != null ? defaultVal : (V) str.readObject());
2302 }
2303
2304 Entry<K,V> middle = new Entry<K,V>(key, value, null);
2305
2306 // color nodes in non-full bottommost level red
2307 if (level == redLevel)
2308 middle.color = RED;
2309
2310 if (left != null) {
2311 middle.left = left;
2312 left.parent = middle;
2313 }
2314
2315 if (mid < hi) {
2316 Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2317 it, str, defaultVal);
2318 middle.right = right;
2319 right.parent = middle;
2320 }
2321
2322 return middle;
2323 }
2324
2325 /**
2326 * Find the level down to which to assign all nodes BLACK. This is the
2327 * last `full' level of the complete binary tree produced by
2328 * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2329 * set of color assignments wrt future insertions.) This level number is
2330 * computed by finding the number of splits needed to reach the zeroeth
2331 * node. (The answer is ~lg(N), but in any case must be computed by same
2332 * quick O(lg(N)) loop.)
2333 */
2334 private static int computeRedLevel(int sz) {
2335 int level = 0;
2336 for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2337 level++;
2338 return level;
2339 }
2340
2341 }