ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.4
Committed: Tue Mar 22 01:30:10 2005 UTC (19 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.3: +108 -27 lines
Log Message:
NavigableMap.subMap -> NavigableMap.navigableSubMap, and associated changes

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10
11 /**
12 * Red-Black tree based implementation of the <tt>NavigableMap</tt> interface.
13 * This class guarantees that the map will be in ascending key order, sorted
14 * according to the <i>natural order</i> for the key's class (see
15 * <tt>Comparable</tt>), or by the comparator provided at creation time,
16 * depending on which constructor is used.<p>
17 *
18 * This implementation provides guaranteed log(n) time cost for the
19 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
20 * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
21 * Rivest's <I>Introduction to Algorithms</I>.<p>
22 *
23 * Note that the ordering maintained by a sorted map (whether or not an
24 * explicit comparator is provided) must be <i>consistent with equals</i> if
25 * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
26 * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
27 * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
28 * interface is defined in terms of the equals operation, but a map performs
29 * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
30 * method, so two keys that are deemed equal by this method are, from the
31 * standpoint of the sorted map, equal. The behavior of a sorted map
32 * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
33 * just fails to obey the general contract of the <tt>Map</tt> interface.<p>
34 *
35 * <b>Note that this implementation is not synchronized.</b> If multiple
36 * threads access a map concurrently, and at least one of the threads modifies
37 * the map structurally, it <i>must</i> be synchronized externally. (A
38 * structural modification is any operation that adds or deletes one or more
39 * mappings; merely changing the value associated with an existing key is not
40 * a structural modification.) This is typically accomplished by
41 * synchronizing on some object that naturally encapsulates the map. If no
42 * such object exists, the map should be "wrapped" using the
43 * <tt>Collections.synchronizedMap</tt> method. This is best done at creation
44 * time, to prevent accidental unsynchronized access to the map:
45 * <pre>
46 * Map m = Collections.synchronizedMap(new TreeMap(...));
47 * </pre><p>
48 *
49 * The iterators returned by all of this class's "collection view methods" are
50 * <i>fail-fast</i>: if the map is structurally modified at any time after the
51 * iterator is created, in any way except through the iterator's own
52 * <tt>remove</tt> or <tt>add</tt> methods, the iterator throws a
53 * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent
54 * modification, the iterator fails quickly and cleanly, rather than risking
55 * arbitrary, non-deterministic behavior at an undetermined time in the
56 * future.
57 *
58 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
59 * as it is, generally speaking, impossible to make any hard guarantees in the
60 * presence of unsynchronized concurrent modification. Fail-fast iterators
61 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
62 * Therefore, it would be wrong to write a program that depended on this
63 * exception for its correctness: <i>the fail-fast behavior of iterators
64 * should be used only to detect bugs.</i><p>
65 *
66 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
67 * and its views represent snapshots of mappings at the time they were
68 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
69 * method. (Note however that it is possible to change mappings in the
70 * associated map using <tt>put</tt>.)
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/../guide/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @author Josh Bloch and Doug Lea
77 * @version %I%, %G%
78 * @see Map
79 * @see HashMap
80 * @see Hashtable
81 * @see Comparable
82 * @see Comparator
83 * @see Collection
84 * @see Collections#synchronizedMap(Map)
85 * @since 1.2
86 */
87
88 public class TreeMap<K,V>
89 extends AbstractMap<K,V>
90 implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91 {
92 /**
93 * The Comparator used to maintain order in this TreeMap, or
94 * null if this TreeMap uses its elements natural ordering.
95 *
96 * @serial
97 */
98 private Comparator<? super K> comparator = null;
99
100 private transient Entry<K,V> root = null;
101
102 /**
103 * The number of entries in the tree
104 */
105 private transient int size = 0;
106
107 /**
108 * The number of structural modifications to the tree.
109 */
110 private transient int modCount = 0;
111
112 private void incrementSize() { modCount++; size++; }
113 private void decrementSize() { modCount++; size--; }
114
115 /**
116 * Constructs a new, empty map, sorted according to the keys' natural
117 * order. All keys inserted into the map must implement the
118 * <tt>Comparable</tt> interface. Furthermore, all such keys must be
119 * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw a
120 * ClassCastException for any elements <tt>k1</tt> and <tt>k2</tt> in the
121 * map. If the user attempts to put a key into the map that violates this
122 * constraint (for example, the user attempts to put a string key into a
123 * map whose keys are integers), the <tt>put(Object key, Object
124 * value)</tt> call will throw a <tt>ClassCastException</tt>.
125 *
126 * @see Comparable
127 */
128 public TreeMap() {
129 }
130
131 /**
132 * Constructs a new, empty map, sorted according to the given comparator.
133 * All keys inserted into the map must be <i>mutually comparable</i> by
134 * the given comparator: <tt>comparator.compare(k1, k2)</tt> must not
135 * throw a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
136 * <tt>k2</tt> in the map. If the user attempts to put a key into the
137 * map that violates this constraint, the <tt>put(Object key, Object
138 * value)</tt> call will throw a <tt>ClassCastException</tt>.
139 *
140 * @param c the comparator that will be used to sort this map. A
141 * <tt>null</tt> value indicates that the keys' <i>natural
142 * ordering</i> should be used.
143 */
144 public TreeMap(Comparator<? super K> c) {
145 this.comparator = c;
146 }
147
148 /**
149 * Constructs a new map containing the same mappings as the given map,
150 * sorted according to the keys' <i>natural order</i>. All keys inserted
151 * into the new map must implement the <tt>Comparable</tt> interface.
152 * Furthermore, all such keys must be <i>mutually comparable</i>:
153 * <tt>k1.compareTo(k2)</tt> must not throw a <tt>ClassCastException</tt>
154 * for any elements <tt>k1</tt> and <tt>k2</tt> in the map. This method
155 * runs in n*log(n) time.
156 *
157 * @param m the map whose mappings are to be placed in this map.
158 * @throws ClassCastException the keys in t are not Comparable, or
159 * are not mutually comparable.
160 * @throws NullPointerException if the specified map is null.
161 */
162 public TreeMap(Map<? extends K, ? extends V> m) {
163 putAll(m);
164 }
165
166 /**
167 * Constructs a new map containing the same mappings as the given
168 * <tt>SortedMap</tt>, sorted according to the same ordering. This method
169 * runs in linear time.
170 *
171 * @param m the sorted map whose mappings are to be placed in this map,
172 * and whose comparator is to be used to sort this map.
173 * @throws NullPointerException if the specified sorted map is null.
174 */
175 public TreeMap(SortedMap<K, ? extends V> m) {
176 comparator = m.comparator();
177 try {
178 buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
179 } catch (java.io.IOException cannotHappen) {
180 } catch (ClassNotFoundException cannotHappen) {
181 }
182 }
183
184
185 // Query Operations
186
187 /**
188 * Returns the number of key-value mappings in this map.
189 *
190 * @return the number of key-value mappings in this map.
191 */
192 public int size() {
193 return size;
194 }
195
196 /**
197 * Returns <tt>true</tt> if this map contains a mapping for the specified
198 * key.
199 *
200 * @param key key whose presence in this map is to be tested.
201 *
202 * @return <tt>true</tt> if this map contains a mapping for the
203 * specified key.
204 * @throws ClassCastException if the key cannot be compared with the keys
205 * currently in the map.
206 * @throws NullPointerException if key is <tt>null</tt> and this map uses
207 * natural ordering, or its comparator does not tolerate
208 * <tt>null</tt> keys.
209 */
210 public boolean containsKey(Object key) {
211 return getEntry(key) != null;
212 }
213
214 /**
215 * Returns <tt>true</tt> if this map maps one or more keys to the
216 * specified value. More formally, returns <tt>true</tt> if and only if
217 * this map contains at least one mapping to a value <tt>v</tt> such
218 * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
219 * operation will probably require time linear in the Map size for most
220 * implementations of Map.
221 *
222 * @param value value whose presence in this Map is to be tested.
223 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
224 * <tt>false</tt> otherwise.
225 * @since 1.2
226 */
227 public boolean containsValue(Object value) {
228 return (root==null ? false :
229 (value==null ? valueSearchNull(root)
230 : valueSearchNonNull(root, value)));
231 }
232
233 private boolean valueSearchNull(Entry n) {
234 if (n.value == null)
235 return true;
236
237 // Check left and right subtrees for value
238 return (n.left != null && valueSearchNull(n.left)) ||
239 (n.right != null && valueSearchNull(n.right));
240 }
241
242 private boolean valueSearchNonNull(Entry n, Object value) {
243 // Check this node for the value
244 if (value.equals(n.value))
245 return true;
246
247 // Check left and right subtrees for value
248 return (n.left != null && valueSearchNonNull(n.left, value)) ||
249 (n.right != null && valueSearchNonNull(n.right, value));
250 }
251
252 /**
253 * Returns the value to which this map maps the specified key. Returns
254 * <tt>null</tt> if the map contains no mapping for this key. A return
255 * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
256 * map contains no mapping for the key; it's also possible that the map
257 * explicitly maps the key to <tt>null</tt>. The <tt>containsKey</tt>
258 * operation may be used to distinguish these two cases.
259 *
260 * @param key key whose associated value is to be returned.
261 * @return the value to which this map maps the specified key, or
262 * <tt>null</tt> if the map contains no mapping for the key.
263 * @throws ClassCastException if key cannot be compared with the keys
264 * currently in the map.
265 * @throws NullPointerException if key is <tt>null</tt> and this map uses
266 * natural ordering, or its comparator does not tolerate
267 * <tt>null</tt> keys.
268 *
269 * @see #containsKey(Object)
270 */
271 public V get(Object key) {
272 Entry<K,V> p = getEntry(key);
273 return (p==null ? null : p.value);
274 }
275
276 /**
277 * Returns the comparator used to order this map, or <tt>null</tt> if this
278 * map uses its keys' natural order.
279 *
280 * @return the comparator associated with this sorted map, or
281 * <tt>null</tt> if it uses its keys' natural sort method.
282 */
283 public Comparator<? super K> comparator() {
284 return comparator;
285 }
286
287 /**
288 * Returns the first (lowest) key currently in this sorted map.
289 *
290 * @return the first (lowest) key currently in this sorted map.
291 * @throws NoSuchElementException Map is empty.
292 */
293 public K firstKey() {
294 return key(getFirstEntry());
295 }
296
297 /**
298 * Returns the last (highest) key currently in this sorted map.
299 *
300 * @return the last (highest) key currently in this sorted map.
301 * @throws NoSuchElementException Map is empty.
302 */
303 public K lastKey() {
304 return key(getLastEntry());
305 }
306
307 /**
308 * Copies all of the mappings from the specified map to this map. These
309 * mappings replace any mappings that this map had for any of the keys
310 * currently in the specified map.
311 *
312 * @param map mappings to be stored in this map.
313 * @throws ClassCastException class of a key or value in the specified
314 * map prevents it from being stored in this map.
315 *
316 * @throws NullPointerException if the given map is <tt>null</tt> or
317 * this map does not permit <tt>null</tt> keys and a
318 * key in the specified map is <tt>null</tt>.
319 */
320 public void putAll(Map<? extends K, ? extends V> map) {
321 int mapSize = map.size();
322 if (size==0 && mapSize!=0 && map instanceof SortedMap) {
323 Comparator c = ((SortedMap)map).comparator();
324 if (c == comparator || (c != null && c.equals(comparator))) {
325 ++modCount;
326 try {
327 buildFromSorted(mapSize, map.entrySet().iterator(),
328 null, null);
329 } catch (java.io.IOException cannotHappen) {
330 } catch (ClassNotFoundException cannotHappen) {
331 }
332 return;
333 }
334 }
335 super.putAll(map);
336 }
337
338 /**
339 * Returns this map's entry for the given key, or <tt>null</tt> if the map
340 * does not contain an entry for the key.
341 *
342 * @return this map's entry for the given key, or <tt>null</tt> if the map
343 * does not contain an entry for the key.
344 * @throws ClassCastException if the key cannot be compared with the keys
345 * currently in the map.
346 * @throws NullPointerException if key is <tt>null</tt> and this map uses
347 * natural order, or its comparator does not tolerate *
348 * <tt>null</tt> keys.
349 */
350 private Entry<K,V> getEntry(Object key) {
351 // Offload comparator-based version for sake of performance
352 if (comparator != null)
353 return getEntryUsingComparator(key);
354 Comparable<K> k = (Comparable<K>) key;
355 Entry<K,V> p = root;
356 while (p != null) {
357 int cmp = k.compareTo(p.key);
358 if (cmp < 0)
359 p = p.left;
360 else if (cmp > 0)
361 p = p.right;
362 else
363 return p;
364 }
365 return null;
366 }
367
368 /**
369 * Version of getEntry using comparator. Split off from getEntry
370 * for performance. (This is not worth doing for most methods,
371 * that are less dependent on comparator performance, but is
372 * worthwhile here.)
373 */
374 private Entry<K,V> getEntryUsingComparator(Object key) {
375 K k = (K) key;
376 Comparator<? super K> cpr = comparator;
377 Entry<K,V> p = root;
378 while (p != null) {
379 int cmp = cpr.compare(k, p.key);
380 if (cmp < 0)
381 p = p.left;
382 else if (cmp > 0)
383 p = p.right;
384 else
385 return p;
386 }
387 return null;
388 }
389
390 /**
391 * Gets the entry corresponding to the specified key; if no such entry
392 * exists, returns the entry for the least key greater than the specified
393 * key; if no such entry exists (i.e., the greatest key in the Tree is less
394 * than the specified key), returns <tt>null</tt>.
395 */
396 private Entry<K,V> getCeilingEntry(K key) {
397 Entry<K,V> p = root;
398 if (p==null)
399 return null;
400
401 while (true) {
402 int cmp = compare(key, p.key);
403 if (cmp < 0) {
404 if (p.left != null)
405 p = p.left;
406 else
407 return p;
408 } else if (cmp > 0) {
409 if (p.right != null) {
410 p = p.right;
411 } else {
412 Entry<K,V> parent = p.parent;
413 Entry<K,V> ch = p;
414 while (parent != null && ch == parent.right) {
415 ch = parent;
416 parent = parent.parent;
417 }
418 return parent;
419 }
420 } else
421 return p;
422 }
423 }
424
425 /**
426 * Gets the entry corresponding to the specified key; if no such entry
427 * exists, returns the entry for the greatest key less than the specified
428 * key; if no such entry exists, returns <tt>null</tt>.
429 */
430 private Entry<K,V> getFloorEntry(K key) {
431 Entry<K,V> p = root;
432 if (p==null)
433 return null;
434
435 while (true) {
436 int cmp = compare(key, p.key);
437 if (cmp > 0) {
438 if (p.right != null)
439 p = p.right;
440 else
441 return p;
442 } else if (cmp < 0) {
443 if (p.left != null) {
444 p = p.left;
445 } else {
446 Entry<K,V> parent = p.parent;
447 Entry<K,V> ch = p;
448 while (parent != null && ch == parent.left) {
449 ch = parent;
450 parent = parent.parent;
451 }
452 return parent;
453 }
454 } else
455 return p;
456
457 }
458 }
459
460 /**
461 * Gets the entry for the least key greater than the specified
462 * key; if no such entry exists, returns the entry for the least
463 * key greater than the specified key; if no such entry exists
464 * returns <tt>null</tt>.
465 */
466 private Entry<K,V> getHigherEntry(K key) {
467 Entry<K,V> p = root;
468 if (p==null)
469 return null;
470
471 while (true) {
472 int cmp = compare(key, p.key);
473 if (cmp < 0) {
474 if (p.left != null)
475 p = p.left;
476 else
477 return p;
478 } else {
479 if (p.right != null) {
480 p = p.right;
481 } else {
482 Entry<K,V> parent = p.parent;
483 Entry<K,V> ch = p;
484 while (parent != null && ch == parent.right) {
485 ch = parent;
486 parent = parent.parent;
487 }
488 return parent;
489 }
490 }
491 }
492 }
493
494 /**
495 * Returns the entry for the greatest key less than the specified key; if
496 * no such entry exists (i.e., the least key in the Tree is greater than
497 * the specified key), returns <tt>null</tt>.
498 */
499 private Entry<K,V> getLowerEntry(K key) {
500 Entry<K,V> p = root;
501 if (p==null)
502 return null;
503
504 while (true) {
505 int cmp = compare(key, p.key);
506 if (cmp > 0) {
507 if (p.right != null)
508 p = p.right;
509 else
510 return p;
511 } else {
512 if (p.left != null) {
513 p = p.left;
514 } else {
515 Entry<K,V> parent = p.parent;
516 Entry<K,V> ch = p;
517 while (parent != null && ch == parent.left) {
518 ch = parent;
519 parent = parent.parent;
520 }
521 return parent;
522 }
523 }
524 }
525 }
526
527 /**
528 * Returns the key corresponding to the specified Entry. Throw
529 * NoSuchElementException if the Entry is <tt>null</tt>.
530 */
531 private static <K> K key(Entry<K,?> e) {
532 if (e==null)
533 throw new NoSuchElementException();
534 return e.key;
535 }
536
537 /**
538 * Associates the specified value with the specified key in this map.
539 * If the map previously contained a mapping for this key, the old
540 * value is replaced.
541 *
542 * @param key key with which the specified value is to be associated.
543 * @param value value to be associated with the specified key.
544 *
545 * @return previous value associated with specified key, or <tt>null</tt>
546 * if there was no mapping for key. A <tt>null</tt> return can
547 * also indicate that the map previously associated <tt>null</tt>
548 * with the specified key.
549 * @throws ClassCastException if key cannot be compared with the keys
550 * currently in the map.
551 * @throws NullPointerException if key is <tt>null</tt> and this map uses
552 * natural order, or its comparator does not tolerate
553 * <tt>null</tt> keys.
554 */
555 public V put(K key, V value) {
556 Entry<K,V> t = root;
557
558 if (t == null) {
559 incrementSize();
560 root = new Entry<K,V>(key, value, null);
561 return null;
562 }
563
564 while (true) {
565 int cmp = compare(key, t.key);
566 if (cmp == 0) {
567 return t.setValue(value);
568 } else if (cmp < 0) {
569 if (t.left != null) {
570 t = t.left;
571 } else {
572 incrementSize();
573 t.left = new Entry<K,V>(key, value, t);
574 fixAfterInsertion(t.left);
575 return null;
576 }
577 } else { // cmp > 0
578 if (t.right != null) {
579 t = t.right;
580 } else {
581 incrementSize();
582 t.right = new Entry<K,V>(key, value, t);
583 fixAfterInsertion(t.right);
584 return null;
585 }
586 }
587 }
588 }
589
590 /**
591 * Removes the mapping for this key from this TreeMap if present.
592 *
593 * @param key key for which mapping should be removed
594 * @return previous value associated with specified key, or <tt>null</tt>
595 * if there was no mapping for key. A <tt>null</tt> return can
596 * also indicate that the map previously associated
597 * <tt>null</tt> with the specified key.
598 *
599 * @throws ClassCastException if key cannot be compared with the keys
600 * currently in the map.
601 * @throws NullPointerException if key is <tt>null</tt> and this map uses
602 * natural order, or its comparator does not tolerate
603 * <tt>null</tt> keys.
604 */
605 public V remove(Object key) {
606 Entry<K,V> p = getEntry(key);
607 if (p == null)
608 return null;
609
610 V oldValue = p.value;
611 deleteEntry(p);
612 return oldValue;
613 }
614
615 /**
616 * Removes all mappings from this TreeMap.
617 */
618 public void clear() {
619 modCount++;
620 size = 0;
621 root = null;
622 }
623
624 /**
625 * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
626 * values themselves are not cloned.)
627 *
628 * @return a shallow copy of this Map.
629 */
630 public Object clone() {
631 TreeMap<K,V> clone = null;
632 try {
633 clone = (TreeMap<K,V>) super.clone();
634 } catch (CloneNotSupportedException e) {
635 throw new InternalError();
636 }
637
638 // Put clone into "virgin" state (except for comparator)
639 clone.root = null;
640 clone.size = 0;
641 clone.modCount = 0;
642 clone.entrySet = null;
643 clone.descendingEntrySet = null;
644 clone.descendingKeySet = null;
645
646 // Initialize clone with our mappings
647 try {
648 clone.buildFromSorted(size, entrySet().iterator(), null, null);
649 } catch (java.io.IOException cannotHappen) {
650 } catch (ClassNotFoundException cannotHappen) {
651 }
652
653 return clone;
654 }
655
656 // NavigableMap API methods
657
658 /**
659 * Returns a key-value mapping associated with the least
660 * key in this map, or <tt>null</tt> if the map is empty.
661 *
662 * @return an Entry with least key, or <tt>null</tt>
663 * if the map is empty.
664 */
665 public Map.Entry<K,V> firstEntry() {
666 Entry<K,V> e = getFirstEntry();
667 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
668 }
669
670 /**
671 * Returns a key-value mapping associated with the greatest
672 * key in this map, or <tt>null</tt> if the map is empty.
673 * The returned entry does <em>not</em> support
674 * the <tt>Entry.setValue</tt> method.
675 *
676 * @return an Entry with greatest key, or <tt>null</tt>
677 * if the map is empty.
678 */
679 public Map.Entry<K,V> lastEntry() {
680 Entry<K,V> e = getLastEntry();
681 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
682 }
683
684 /**
685 * Removes and returns a key-value mapping associated with
686 * the least key in this map, or <tt>null</tt> if the map is empty.
687 *
688 * @return the removed first entry of this map, or <tt>null</tt>
689 * if the map is empty.
690 */
691 public Map.Entry<K,V> pollFirstEntry() {
692 Entry<K,V> p = getFirstEntry();
693 if (p == null)
694 return null;
695 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
696 deleteEntry(p);
697 return result;
698 }
699
700 /**
701 * Removes and returns a key-value mapping associated with
702 * the greatest key in this map, or <tt>null</tt> if the map is empty.
703 *
704 * @return the removed last entry of this map, or <tt>null</tt>
705 * if the map is empty.
706 */
707 public Map.Entry<K,V> pollLastEntry() {
708 Entry<K,V> p = getLastEntry();
709 if (p == null)
710 return null;
711 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
712 deleteEntry(p);
713 return result;
714 }
715
716 /**
717 * Returns a key-value mapping associated with the least key
718 * greater than or equal to the given key, or <tt>null</tt> if
719 * there is no such entry.
720 *
721 * @param key the key.
722 * @return an Entry associated with ceiling of given key, or
723 * <tt>null</tt> if there is no such Entry.
724 * @throws ClassCastException if key cannot be compared with the
725 * keys currently in the map.
726 * @throws NullPointerException if key is <tt>null</tt> and this map uses
727 * natural order, or its comparator does not tolerate
728 * <tt>null</tt> keys.
729 */
730 public Map.Entry<K,V> ceilingEntry(K key) {
731 Entry<K,V> e = getCeilingEntry(key);
732 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
733 }
734
735
736 /**
737 * Returns least key greater than or equal to the given key, or
738 * <tt>null</tt> if there is no such key.
739 *
740 * @param key the key.
741 * @return the ceiling key, or <tt>null</tt>
742 * if there is no such key.
743 * @throws ClassCastException if key cannot be compared with the keys
744 * currently in the map.
745 * @throws NullPointerException if key is <tt>null</tt> and this map uses
746 * natural order, or its comparator does not tolerate
747 * <tt>null</tt> keys.
748 */
749 public K ceilingKey(K key) {
750 Entry<K,V> e = getCeilingEntry(key);
751 return (e == null)? null : e.key;
752 }
753
754
755
756 /**
757 * Returns a key-value mapping associated with the greatest key
758 * less than or equal to the given key, or <tt>null</tt> if there
759 * is no such entry.
760 *
761 * @param key the key.
762 * @return an Entry associated with floor of given key, or <tt>null</tt>
763 * if there is no such Entry.
764 * @throws ClassCastException if key cannot be compared with the keys
765 * currently in the map.
766 * @throws NullPointerException if key is <tt>null</tt> and this map uses
767 * natural order, or its comparator does not tolerate
768 * <tt>null</tt> keys.
769 */
770 public Map.Entry<K,V> floorEntry(K key) {
771 Entry<K,V> e = getFloorEntry(key);
772 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
773 }
774
775 /**
776 * Returns the greatest key
777 * less than or equal to the given key, or <tt>null</tt> if there
778 * is no such key.
779 *
780 * @param key the key.
781 * @return the floor of given key, or <tt>null</tt> if there is no
782 * such key.
783 * @throws ClassCastException if key cannot be compared with the keys
784 * currently in the map.
785 * @throws NullPointerException if key is <tt>null</tt> and this map uses
786 * natural order, or its comparator does not tolerate
787 * <tt>null</tt> keys.
788 */
789 public K floorKey(K key) {
790 Entry<K,V> e = getFloorEntry(key);
791 return (e == null)? null : e.key;
792 }
793
794 /**
795 * Returns a key-value mapping associated with the least key
796 * strictly greater than the given key, or <tt>null</tt> if there
797 * is no such entry.
798 *
799 * @param key the key.
800 * @return an Entry with least key greater than the given key, or
801 * <tt>null</tt> if there is no such Entry.
802 * @throws ClassCastException if key cannot be compared with the keys
803 * currently in the map.
804 * @throws NullPointerException if key is <tt>null</tt> and this map uses
805 * natural order, or its comparator does not tolerate
806 * <tt>null</tt> keys.
807 */
808 public Map.Entry<K,V> higherEntry(K key) {
809 Entry<K,V> e = getHigherEntry(key);
810 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
811 }
812
813 /**
814 * Returns the least key strictly greater than the given key, or
815 * <tt>null</tt> if there is no such key.
816 *
817 * @param key the key.
818 * @return the least key greater than the given key, or
819 * <tt>null</tt> if there is no such key.
820 * @throws ClassCastException if key cannot be compared with the keys
821 * currently in the map.
822 * @throws NullPointerException if key is <tt>null</tt> and this map uses
823 * natural order, or its comparator does not tolerate
824 * <tt>null</tt> keys.
825 */
826 public K higherKey(K key) {
827 Entry<K,V> e = getHigherEntry(key);
828 return (e == null)? null : e.key;
829 }
830
831 /**
832 * Returns a key-value mapping associated with the greatest
833 * key strictly less than the given key, or <tt>null</tt> if there is no
834 * such entry.
835 *
836 * @param key the key.
837 * @return an Entry with greatest key less than the given
838 * key, or <tt>null</tt> if there is no such Entry.
839 * @throws ClassCastException if key cannot be compared with the keys
840 * currently in the map.
841 * @throws NullPointerException if key is <tt>null</tt> and this map uses
842 * natural order, or its comparator does not tolerate
843 * <tt>null</tt> keys.
844 */
845 public Map.Entry<K,V> lowerEntry(K key) {
846 Entry<K,V> e = getLowerEntry(key);
847 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
848 }
849
850 /**
851 * Returns the greatest key strictly less than the given key, or
852 * <tt>null</tt> if there is no such key.
853 *
854 * @param key the key.
855 * @return the greatest key less than the given
856 * key, or <tt>null</tt> if there is no such key.
857 * @throws ClassCastException if key cannot be compared with the keys
858 * currently in the map.
859 * @throws NullPointerException if key is <tt>null</tt> and this map uses
860 * natural order, or its comparator does not tolerate
861 * <tt>null</tt> keys.
862 */
863 public K lowerKey(K key) {
864 Entry<K,V> e = getLowerEntry(key);
865 return (e == null)? null : e.key;
866 }
867
868 // Views
869
870 /**
871 * Fields initialized to contain an instance of the entry set view
872 * the first time this view is requested. Views are stateless, so
873 * there's no reason to create more than one.
874 */
875 private transient Set<Map.Entry<K,V>> entrySet = null;
876 private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
877 private transient Set<K> descendingKeySet = null;
878
879 transient Set<K> keySet = null; // XXX remove when integrated
880 transient Collection<V> values = null; // XXX remove when integrated
881
882 /**
883 * Returns a Set view of the keys contained in this map. The set's
884 * iterator will return the keys in ascending order. The set is backed by
885 * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
886 * the Set, and vice-versa. The Set supports element removal, which
887 * removes the corresponding mapping from the map, via the
888 * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
889 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support
890 * the <tt>add</tt> or <tt>addAll</tt> operations.
891 *
892 * @return a set view of the keys contained in this TreeMap.
893 */
894 public Set<K> keySet() {
895 Set<K> ks = keySet;
896 return (ks != null) ? ks : (keySet = new KeySet());
897 }
898
899 class KeySet extends AbstractSet<K> {
900 public Iterator<K> iterator() {
901 return new KeyIterator(getFirstEntry());
902 }
903
904 public int size() {
905 return TreeMap.this.size();
906 }
907
908 public boolean contains(Object o) {
909 return containsKey(o);
910 }
911
912 public boolean remove(Object o) {
913 int oldSize = size;
914 TreeMap.this.remove(o);
915 return size != oldSize;
916 }
917
918 public void clear() {
919 TreeMap.this.clear();
920 }
921 }
922
923 /**
924 * Returns a collection view of the values contained in this map. The
925 * collection's iterator will return the values in the order that their
926 * corresponding keys appear in the tree. The collection is backed by
927 * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
928 * the collection, and vice-versa. The collection supports element
929 * removal, which removes the corresponding mapping from the map through
930 * the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
931 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
932 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
933 *
934 * @return a collection view of the values contained in this map.
935 */
936 public Collection<V> values() {
937 Collection<V> vs = values;
938 return (vs != null) ? vs : (values = new Values());
939 }
940
941 class Values extends AbstractCollection<V> {
942 public Iterator<V> iterator() {
943 return new ValueIterator(getFirstEntry());
944 }
945
946 public int size() {
947 return TreeMap.this.size();
948 }
949
950 public boolean contains(Object o) {
951 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
952 if (valEquals(e.getValue(), o))
953 return true;
954 return false;
955 }
956
957 public boolean remove(Object o) {
958 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
959 if (valEquals(e.getValue(), o)) {
960 deleteEntry(e);
961 return true;
962 }
963 }
964 return false;
965 }
966
967 public void clear() {
968 TreeMap.this.clear();
969 }
970 }
971
972 /**
973 * Returns a set view of the mappings contained in this map. The set's
974 * iterator returns the mappings in ascending key order. Each element in
975 * the returned set is a <tt>Map.Entry</tt>. The set is backed by this
976 * map, so changes to this map are reflected in the set, and vice-versa.
977 * The set supports element removal, which removes the corresponding
978 * mapping from the TreeMap, through the <tt>Iterator.remove</tt>,
979 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
980 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
981 * <tt>addAll</tt> operations.
982 *
983 * @return a set view of the mappings contained in this map.
984 * @see Map.Entry
985 */
986 public Set<Map.Entry<K,V>> entrySet() {
987 Set<Map.Entry<K,V>> es = entrySet;
988 return (es != null) ? es : (entrySet = new EntrySet());
989 }
990
991 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
992 public Iterator<Map.Entry<K,V>> iterator() {
993 return new EntryIterator(getFirstEntry());
994 }
995
996 public boolean contains(Object o) {
997 if (!(o instanceof Map.Entry))
998 return false;
999 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1000 V value = entry.getValue();
1001 Entry<K,V> p = getEntry(entry.getKey());
1002 return p != null && valEquals(p.getValue(), value);
1003 }
1004
1005 public boolean remove(Object o) {
1006 if (!(o instanceof Map.Entry))
1007 return false;
1008 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1009 V value = entry.getValue();
1010 Entry<K,V> p = getEntry(entry.getKey());
1011 if (p != null && valEquals(p.getValue(), value)) {
1012 deleteEntry(p);
1013 return true;
1014 }
1015 return false;
1016 }
1017
1018 public int size() {
1019 return TreeMap.this.size();
1020 }
1021
1022 public void clear() {
1023 TreeMap.this.clear();
1024 }
1025 }
1026
1027 /**
1028 * Returns a set view of the mappings contained in this map. The
1029 * set's iterator returns the mappings in descending key order.
1030 * Each element in the returned set is a <tt>Map.Entry</tt>. The
1031 * set is backed by this map, so changes to this map are reflected
1032 * in the set, and vice-versa. The set supports element removal,
1033 * which removes the corresponding mapping from the TreeMap,
1034 * through the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1035 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1036 * operations. It does not support the <tt>add</tt> or
1037 * <tt>addAll</tt> operations.
1038 *
1039 * @return a set view of the mappings contained in this map, in
1040 * descending key order
1041 * @see Map.Entry
1042 */
1043 public Set<Map.Entry<K,V>> descendingEntrySet() {
1044 Set<Map.Entry<K,V>> es = descendingEntrySet;
1045 return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1046 }
1047
1048 class DescendingEntrySet extends EntrySet {
1049 public Iterator<Map.Entry<K,V>> iterator() {
1050 return new DescendingEntryIterator(getLastEntry());
1051 }
1052 }
1053
1054 /**
1055 * Returns a Set view of the keys contained in this map. The
1056 * set's iterator will return the keys in descending order. The
1057 * map is backed by this <tt>TreeMap</tt> instance, so changes to
1058 * this map are reflected in the Set, and vice-versa. The Set
1059 * supports element removal, which removes the corresponding
1060 * mapping from the map, via the <tt>Iterator.remove</tt>,
1061 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1062 * and <tt>clear</tt> operations. It does not support the
1063 * <tt>add</tt> or <tt>addAll</tt> operations.
1064 *
1065 * @return a set view of the keys contained in this TreeMap.
1066 */
1067 public Set<K> descendingKeySet() {
1068 Set<K> ks = descendingKeySet;
1069 return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1070 }
1071
1072 class DescendingKeySet extends KeySet {
1073 public Iterator<K> iterator() {
1074 return new DescendingKeyIterator(getLastEntry());
1075 }
1076 }
1077
1078 /**
1079 * Returns a view of the portion of this map whose keys range from
1080 * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive. (If
1081 * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned
1082 * navigable map is empty.) The returned navigable map is backed
1083 * by this map, so changes in the returned navigable map are
1084 * reflected in this map, and vice-versa. The returned navigable
1085 * map supports all optional map operations.<p>
1086 *
1087 * The navigable map returned by this method will throw an
1088 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1089 * less than <tt>fromKey</tt> or greater than or equal to
1090 * <tt>toKey</tt>.<p>
1091 *
1092 * Note: this method always returns a <i>half-open range</i> (which
1093 * includes its low endpoint but not its high endpoint). If you need a
1094 * <i>closed range</i> (which includes both endpoints), and the key type
1095 * allows for calculation of the successor of a given key, merely request the
1096 * subrange from <tt>lowEndpoint</tt> to <tt>successor(highEndpoint)</tt>.
1097 * For example, suppose that <tt>m</tt> is a navigable map whose keys are
1098 * strings. The following idiom obtains a view containing all of the
1099 * key-value mappings in <tt>m</tt> whose keys are between <tt>low</tt>
1100 * and <tt>high</tt>, inclusive:
1101 * <pre> NavigableMap sub = m.navigableSubMap(low, high+"\0");</pre>
1102 * A similar technique can be used to generate an <i>open range</i> (which
1103 * contains neither endpoint). The following idiom obtains a view
1104 * containing all of the key-value mappings in <tt>m</tt> whose keys are
1105 * between <tt>low</tt> and <tt>high</tt>, exclusive:
1106 * <pre> NavigableMap sub = m.navigableSubMap(low+"\0", high);</pre>
1107 *
1108 * @param fromKey low endpoint (inclusive) of the subMap.
1109 * @param toKey high endpoint (exclusive) of the subMap.
1110 *
1111 * @return a view of the portion of this map whose keys range from
1112 * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1113 *
1114 * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1115 * cannot be compared to one another using this map's comparator
1116 * (or, if the map has no comparator, using natural ordering).
1117 * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1118 * <tt>toKey</tt>.
1119 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1120 * <tt>null</tt> and this map uses natural order, or its
1121 * comparator does not tolerate <tt>null</tt> keys.
1122 */
1123 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1124 return new SubMap(fromKey, toKey);
1125 }
1126
1127
1128 /**
1129 * Returns a view of the portion of this map whose keys are strictly less
1130 * than <tt>toKey</tt>. The returned navigable map is backed by this map, so
1131 * changes in the returned navigable map are reflected in this map, and
1132 * vice-versa. The returned navigable map supports all optional map
1133 * operations.<p>
1134 *
1135 * The navigable map returned by this method will throw an
1136 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1137 * greater than or equal to <tt>toKey</tt>.<p>
1138 *
1139 * Note: this method always returns a view that does not contain its
1140 * (high) endpoint. If you need a view that does contain this endpoint,
1141 * and the key type allows for calculation of the successor of a given key,
1142 * merely request a headMap bounded by <tt>successor(highEndpoint)</tt>.
1143 * For example, suppose that suppose that <tt>m</tt> is a navigable map whose
1144 * keys are strings. The following idiom obtains a view containing all of
1145 * the key-value mappings in <tt>m</tt> whose keys are less than or equal
1146 * to <tt>high</tt>:
1147 * <pre>
1148 * NavigableMap head = m.headMap(high+"\0");
1149 * </pre>
1150 *
1151 * @param toKey high endpoint (exclusive) of the headMap.
1152 * @return a view of the portion of this map whose keys are strictly
1153 * less than <tt>toKey</tt>.
1154 *
1155 * @throws ClassCastException if <tt>toKey</tt> is not compatible
1156 * with this map's comparator (or, if the map has no comparator,
1157 * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1158 * @throws IllegalArgumentException if this map is itself a subMap,
1159 * headMap, or tailMap, and <tt>toKey</tt> is not within the
1160 * specified range of the subMap, headMap, or tailMap.
1161 * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1162 * this map uses natural order, or its comparator does not
1163 * tolerate <tt>null</tt> keys.
1164 */
1165 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1166 return new SubMap(toKey, true);
1167 }
1168
1169 /**
1170 * Returns a view of the portion of this map whose keys are greater than
1171 * or equal to <tt>fromKey</tt>. The returned navigable map is backed by
1172 * this map, so changes in the returned navigable map are reflected in this
1173 * map, and vice-versa. The returned navigable map supports all optional map
1174 * operations.<p>
1175 *
1176 * The navigable map returned by this method will throw an
1177 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1178 * less than <tt>fromKey</tt>.<p>
1179 *
1180 * Note: this method always returns a view that contains its (low)
1181 * endpoint. If you need a view that does not contain this endpoint, and
1182 * the element type allows for calculation of the successor of a given value,
1183 * merely request a tailMap bounded by <tt>successor(lowEndpoint)</tt>.
1184 * For example, suppose that <tt>m</tt> is a navigable map whose keys
1185 * are strings. The following idiom obtains a view containing
1186 * all of the key-value mappings in <tt>m</tt> whose keys are strictly
1187 * greater than <tt>low</tt>: <pre>
1188 * NavigableMap tail = m.tailMap(low+"\0");
1189 * </pre>
1190 *
1191 * @param fromKey low endpoint (inclusive) of the tailMap.
1192 * @return a view of the portion of this map whose keys are greater
1193 * than or equal to <tt>fromKey</tt>.
1194 * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1195 * with this map's comparator (or, if the map has no comparator,
1196 * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1197 * @throws IllegalArgumentException if this map is itself a subMap,
1198 * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1199 * specified range of the subMap, headMap, or tailMap.
1200 * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1201 * this map uses natural order, or its comparator does not
1202 * tolerate <tt>null</tt> keys.
1203 */
1204 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1205 return new SubMap(fromKey, false);
1206 }
1207
1208 /**
1209 * Equivalent to <tt>navigableSubMap</tt> but with a return
1210 * type conforming to the <tt>SortedMap</tt> interface.
1211 * @param fromKey low endpoint (inclusive) of the subMap.
1212 * @param toKey high endpoint (exclusive) of the subMap.
1213 *
1214 * @return a view of the portion of this map whose keys range from
1215 * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1216 *
1217 * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1218 * cannot be compared to one another using this map's comparator
1219 * (or, if the map has no comparator, using natural ordering).
1220 * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1221 * <tt>toKey</tt>.
1222 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1223 * <tt>null</tt> and this map uses natural order, or its
1224 * comparator does not tolerate <tt>null</tt> keys.
1225 */
1226 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1227 return new SubMap(fromKey, toKey);
1228 }
1229
1230
1231 /**
1232 * Equivalent to <tt>navigableHeadMap</tt> but with a return
1233 * type conforming to the <tt>SortedMap</tt> interface.
1234 *
1235 * @param toKey high endpoint (exclusive) of the headMap.
1236 * @return a view of the portion of this map whose keys are strictly
1237 * less than <tt>toKey</tt>.
1238 *
1239 * @throws ClassCastException if <tt>toKey</tt> is not compatible
1240 * with this map's comparator (or, if the map has no comparator,
1241 * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1242 * @throws IllegalArgumentException if this map is itself a subMap,
1243 * headMap, or tailMap, and <tt>toKey</tt> is not within the
1244 * specified range of the subMap, headMap, or tailMap.
1245 * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1246 * this map uses natural order, or its comparator does not
1247 * tolerate <tt>null</tt> keys.
1248 */
1249 public SortedMap<K,V> headMap(K toKey) {
1250 return new SubMap(toKey, true);
1251 }
1252
1253 /**
1254 * Equivalent to <tt>navigableTailMap</tt> but with a return
1255 * type conforming to the <tt>SortedMap</tt> interface.
1256 *
1257 * @param fromKey low endpoint (inclusive) of the tailMap.
1258 * @return a view of the portion of this map whose keys are greater
1259 * than or equal to <tt>fromKey</tt>.
1260 * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1261 * with this map's comparator (or, if the map has no comparator,
1262 * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1263 * @throws IllegalArgumentException if this map is itself a subMap,
1264 * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1265 * specified range of the subMap, headMap, or tailMap.
1266 * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1267 * this map uses natural order, or its comparator does not
1268 * tolerate <tt>null</tt> keys.
1269 */
1270 public SortedMap<K,V> tailMap(K fromKey) {
1271 return new SubMap(fromKey, false);
1272 }
1273
1274 private class SubMap
1275 extends AbstractMap<K,V>
1276 implements NavigableMap<K,V>, java.io.Serializable {
1277 private static final long serialVersionUID = -6520786458950516097L;
1278
1279 /**
1280 * fromKey is significant only if fromStart is false. Similarly,
1281 * toKey is significant only if toStart is false.
1282 */
1283 private boolean fromStart = false, toEnd = false;
1284 private K fromKey, toKey;
1285
1286 SubMap(K fromKey, K toKey) {
1287 if (compare(fromKey, toKey) > 0)
1288 throw new IllegalArgumentException("fromKey > toKey");
1289 this.fromKey = fromKey;
1290 this.toKey = toKey;
1291 }
1292
1293 SubMap(K key, boolean headMap) {
1294 compare(key, key); // Type-check key
1295
1296 if (headMap) {
1297 fromStart = true;
1298 toKey = key;
1299 } else {
1300 toEnd = true;
1301 fromKey = key;
1302 }
1303 }
1304
1305 SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1306 this.fromStart = fromStart;
1307 this.fromKey= fromKey;
1308 this.toEnd = toEnd;
1309 this.toKey = toKey;
1310 }
1311
1312 public boolean isEmpty() {
1313 return entrySet.isEmpty();
1314 }
1315
1316 public boolean containsKey(Object key) {
1317 return inRange((K) key) && TreeMap.this.containsKey(key);
1318 }
1319
1320 public V get(Object key) {
1321 if (!inRange((K) key))
1322 return null;
1323 return TreeMap.this.get(key);
1324 }
1325
1326 public V put(K key, V value) {
1327 if (!inRange(key))
1328 throw new IllegalArgumentException("key out of range");
1329 return TreeMap.this.put(key, value);
1330 }
1331
1332 public V remove(Object key) {
1333 if (!inRange((K) key))
1334 return null;
1335 return TreeMap.this.remove(key);
1336 }
1337
1338 public Comparator<? super K> comparator() {
1339 return comparator;
1340 }
1341
1342 public K firstKey() {
1343 TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1344 K first = key(e);
1345 if (!toEnd && compare(first, toKey) >= 0)
1346 throw(new NoSuchElementException());
1347 return first;
1348 }
1349
1350 public K lastKey() {
1351 TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1352 K last = key(e);
1353 if (!fromStart && compare(last, fromKey) < 0)
1354 throw(new NoSuchElementException());
1355 return last;
1356 }
1357
1358 public Map.Entry<K,V> firstEntry() {
1359 TreeMap.Entry<K,V> e = fromStart ?
1360 getFirstEntry() : getCeilingEntry(fromKey);
1361 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1362 return null;
1363 return e;
1364 }
1365
1366 public Map.Entry<K,V> lastEntry() {
1367 TreeMap.Entry<K,V> e = toEnd ?
1368 getLastEntry() : getLowerEntry(toKey);
1369 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1370 return null;
1371 return e;
1372 }
1373
1374 public Map.Entry<K,V> pollFirstEntry() {
1375 TreeMap.Entry<K,V> e = fromStart ?
1376 getFirstEntry() : getCeilingEntry(fromKey);
1377 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1378 return null;
1379 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1380 deleteEntry(e);
1381 return result;
1382 }
1383
1384 public Map.Entry<K,V> pollLastEntry() {
1385 TreeMap.Entry<K,V> e = toEnd ?
1386 getLastEntry() : getLowerEntry(toKey);
1387 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1388 return null;
1389 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1390 deleteEntry(e);
1391 return result;
1392 }
1393
1394 private TreeMap.Entry<K,V> subceiling(K key) {
1395 TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1396 getCeilingEntry(fromKey) : getCeilingEntry(key);
1397 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1398 return null;
1399 return e;
1400 }
1401
1402 public Map.Entry<K,V> ceilingEntry(K key) {
1403 TreeMap.Entry<K,V> e = subceiling(key);
1404 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1405 }
1406
1407 public K ceilingKey(K key) {
1408 TreeMap.Entry<K,V> e = subceiling(key);
1409 return e == null? null : e.key;
1410 }
1411
1412
1413 private TreeMap.Entry<K,V> subhigher(K key) {
1414 TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1415 getCeilingEntry(fromKey) : getHigherEntry(key);
1416 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1417 return null;
1418 return e;
1419 }
1420
1421 public Map.Entry<K,V> higherEntry(K key) {
1422 TreeMap.Entry<K,V> e = subhigher(key);
1423 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1424 }
1425
1426 public K higherKey(K key) {
1427 TreeMap.Entry<K,V> e = subhigher(key);
1428 return e == null? null : e.key;
1429 }
1430
1431 private TreeMap.Entry<K,V> subfloor(K key) {
1432 TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1433 getLowerEntry(toKey) : getFloorEntry(key);
1434 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1435 return null;
1436 return e;
1437 }
1438
1439 public Map.Entry<K,V> floorEntry(K key) {
1440 TreeMap.Entry<K,V> e = subfloor(key);
1441 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1442 }
1443
1444 public K floorKey(K key) {
1445 TreeMap.Entry<K,V> e = subfloor(key);
1446 return e == null? null : e.key;
1447 }
1448
1449 private TreeMap.Entry<K,V> sublower(K key) {
1450 TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1451 getLowerEntry(toKey) : getLowerEntry(key);
1452 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1453 return null;
1454 return e;
1455 }
1456
1457 public Map.Entry<K,V> lowerEntry(K key) {
1458 TreeMap.Entry<K,V> e = sublower(key);
1459 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1460 }
1461
1462 public K lowerKey(K key) {
1463 TreeMap.Entry<K,V> e = sublower(key);
1464 return e == null? null : e.key;
1465 }
1466
1467 private transient Set<Map.Entry<K,V>> entrySet = new EntrySetView();
1468
1469 public Set<Map.Entry<K,V>> entrySet() {
1470 return entrySet;
1471 }
1472
1473 private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1474 private transient int size = -1, sizeModCount;
1475
1476 public int size() {
1477 if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1478 size = 0; sizeModCount = TreeMap.this.modCount;
1479 Iterator i = iterator();
1480 while (i.hasNext()) {
1481 size++;
1482 i.next();
1483 }
1484 }
1485 return size;
1486 }
1487
1488 public boolean isEmpty() {
1489 return !iterator().hasNext();
1490 }
1491
1492 public boolean contains(Object o) {
1493 if (!(o instanceof Map.Entry))
1494 return false;
1495 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1496 K key = entry.getKey();
1497 if (!inRange(key))
1498 return false;
1499 TreeMap.Entry node = getEntry(key);
1500 return node != null &&
1501 valEquals(node.getValue(), entry.getValue());
1502 }
1503
1504 public boolean remove(Object o) {
1505 if (!(o instanceof Map.Entry))
1506 return false;
1507 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1508 K key = entry.getKey();
1509 if (!inRange(key))
1510 return false;
1511 TreeMap.Entry<K,V> node = getEntry(key);
1512 if (node!=null && valEquals(node.getValue(),entry.getValue())){
1513 deleteEntry(node);
1514 return true;
1515 }
1516 return false;
1517 }
1518
1519 public Iterator<Map.Entry<K,V>> iterator() {
1520 return new SubMapEntryIterator(
1521 (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1522 (toEnd ? null : getCeilingEntry(toKey)));
1523 }
1524 }
1525
1526 private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1527 private transient Set<K> descendingKeySetView = null;
1528
1529 public Set<Map.Entry<K,V>> descendingEntrySet() {
1530 Set<Map.Entry<K,V>> es = descendingEntrySetView;
1531 return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
1532 }
1533
1534 public Set<K> descendingKeySet() {
1535 Set<K> ks = descendingKeySetView;
1536 return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
1537 }
1538
1539 private class DescendingEntrySetView extends EntrySetView {
1540 public Iterator<Map.Entry<K,V>> iterator() {
1541 return new DescendingSubMapEntryIterator
1542 ((toEnd ? getLastEntry() : getLowerEntry(toKey)),
1543 (fromStart ? null : getLowerEntry(fromKey)));
1544 }
1545 }
1546
1547 private class DescendingKeySetView extends AbstractSet<K> {
1548 public Iterator<K> iterator() {
1549 return new Iterator<K>() {
1550 private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1551
1552 public boolean hasNext() { return i.hasNext(); }
1553 public K next() { return i.next().getKey(); }
1554 public void remove() { i.remove(); }
1555 };
1556 }
1557
1558 public int size() {
1559 return SubMap.this.size();
1560 }
1561
1562 public boolean contains(Object k) {
1563 return SubMap.this.containsKey(k);
1564 }
1565 }
1566
1567
1568 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1569 if (!inRange2(fromKey))
1570 throw new IllegalArgumentException("fromKey out of range");
1571 if (!inRange2(toKey))
1572 throw new IllegalArgumentException("toKey out of range");
1573 return new SubMap(fromKey, toKey);
1574 }
1575
1576 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1577 if (!inRange2(toKey))
1578 throw new IllegalArgumentException("toKey out of range");
1579 return new SubMap(fromStart, fromKey, false, toKey);
1580 }
1581
1582 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1583 if (!inRange2(fromKey))
1584 throw new IllegalArgumentException("fromKey out of range");
1585 return new SubMap(false, fromKey, toEnd, toKey);
1586 }
1587
1588
1589 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1590 return navigableSubMap(fromKey, toKey);
1591 }
1592
1593 public SortedMap<K,V> headMap(K toKey) {
1594 return navigableHeadMap(toKey);
1595 }
1596
1597 public SortedMap<K,V> tailMap(K fromKey) {
1598 return navigableTailMap(fromKey);
1599 }
1600
1601 private boolean inRange(K key) {
1602 return (fromStart || compare(key, fromKey) >= 0) &&
1603 (toEnd || compare(key, toKey) < 0);
1604 }
1605
1606 // This form allows the high endpoint (as well as all legit keys)
1607 private boolean inRange2(K key) {
1608 return (fromStart || compare(key, fromKey) >= 0) &&
1609 (toEnd || compare(key, toKey) <= 0);
1610 }
1611 }
1612
1613 /**
1614 * TreeMap Iterator.
1615 */
1616 abstract class PrivateEntryIterator<T> implements Iterator<T> {
1617 int expectedModCount = TreeMap.this.modCount;
1618 Entry<K,V> lastReturned = null;
1619 Entry<K,V> next;
1620
1621 PrivateEntryIterator(Entry<K,V> first) {
1622 next = first;
1623 }
1624
1625 public boolean hasNext() {
1626 return next != null;
1627 }
1628
1629 Entry<K,V> nextEntry() {
1630 if (next == null)
1631 throw new NoSuchElementException();
1632 if (modCount != expectedModCount)
1633 throw new ConcurrentModificationException();
1634 lastReturned = next;
1635 next = successor(next);
1636 return lastReturned;
1637 }
1638
1639 public void remove() {
1640 if (lastReturned == null)
1641 throw new IllegalStateException();
1642 if (modCount != expectedModCount)
1643 throw new ConcurrentModificationException();
1644 if (lastReturned.left != null && lastReturned.right != null)
1645 next = lastReturned;
1646 deleteEntry(lastReturned);
1647 expectedModCount++;
1648 lastReturned = null;
1649 }
1650 }
1651
1652 class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1653 EntryIterator(Entry<K,V> first) {
1654 super(first);
1655 }
1656
1657 public Map.Entry<K,V> next() {
1658 return nextEntry();
1659 }
1660 }
1661
1662 class KeyIterator extends PrivateEntryIterator<K> {
1663 KeyIterator(Entry<K,V> first) {
1664 super(first);
1665 }
1666 public K next() {
1667 return nextEntry().key;
1668 }
1669 }
1670
1671 class ValueIterator extends PrivateEntryIterator<V> {
1672 ValueIterator(Entry<K,V> first) {
1673 super(first);
1674 }
1675 public V next() {
1676 return nextEntry().value;
1677 }
1678 }
1679
1680 class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1681 private final K firstExcludedKey;
1682
1683 SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1684 super(first);
1685 firstExcludedKey = (firstExcluded == null
1686 ? null
1687 : firstExcluded.key);
1688 }
1689
1690 public boolean hasNext() {
1691 return next != null && next.key != firstExcludedKey;
1692 }
1693
1694 public Map.Entry<K,V> next() {
1695 if (next == null || next.key == firstExcludedKey)
1696 throw new NoSuchElementException();
1697 return nextEntry();
1698 }
1699 }
1700
1701
1702 /**
1703 * Base for Descending Iterators.
1704 */
1705 abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1706 DescendingPrivateEntryIterator(Entry<K,V> first) {
1707 super(first);
1708 }
1709
1710 Entry<K,V> nextEntry() {
1711 if (next == null)
1712 throw new NoSuchElementException();
1713 if (modCount != expectedModCount)
1714 throw new ConcurrentModificationException();
1715 lastReturned = next;
1716 next = predecessor(next);
1717 return lastReturned;
1718 }
1719 }
1720
1721 class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1722 DescendingEntryIterator(Entry<K,V> first) {
1723 super(first);
1724 }
1725 public Map.Entry<K,V> next() {
1726 return nextEntry();
1727 }
1728 }
1729
1730 class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1731 DescendingKeyIterator(Entry<K,V> first) {
1732 super(first);
1733 }
1734 public K next() {
1735 return nextEntry().key;
1736 }
1737 }
1738
1739
1740 class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1741 private final K lastExcludedKey;
1742
1743 DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1744 super(last);
1745 lastExcludedKey = (lastExcluded == null
1746 ? null
1747 : lastExcluded.key);
1748 }
1749
1750 public boolean hasNext() {
1751 return next != null && next.key != lastExcludedKey;
1752 }
1753
1754 public Map.Entry<K,V> next() {
1755 if (next == null || next.key == lastExcludedKey)
1756 throw new NoSuchElementException();
1757 return nextEntry();
1758 }
1759
1760 }
1761
1762
1763 /**
1764 * Compares two keys using the correct comparison method for this TreeMap.
1765 */
1766 private int compare(K k1, K k2) {
1767 return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
1768 : comparator.compare((K)k1, (K)k2));
1769 }
1770
1771 /**
1772 * Test two values for equality. Differs from o1.equals(o2) only in
1773 * that it copes with <tt>null</tt> o1 properly.
1774 */
1775 private static boolean valEquals(Object o1, Object o2) {
1776 return (o1==null ? o2==null : o1.equals(o2));
1777 }
1778
1779 private static final boolean RED = false;
1780 private static final boolean BLACK = true;
1781
1782 /**
1783 * Node in the Tree. Doubles as a means to pass key-value pairs back to
1784 * user (see Map.Entry).
1785 */
1786
1787 static class Entry<K,V> implements Map.Entry<K,V> {
1788 K key;
1789 V value;
1790 Entry<K,V> left = null;
1791 Entry<K,V> right = null;
1792 Entry<K,V> parent;
1793 boolean color = BLACK;
1794
1795 /**
1796 * Make a new cell with given key, value, and parent, and with
1797 * <tt>null</tt> child links, and BLACK color.
1798 */
1799 Entry(K key, V value, Entry<K,V> parent) {
1800 this.key = key;
1801 this.value = value;
1802 this.parent = parent;
1803 }
1804
1805 /**
1806 * Returns the key.
1807 *
1808 * @return the key.
1809 */
1810 public K getKey() {
1811 return key;
1812 }
1813
1814 /**
1815 * Returns the value associated with the key.
1816 *
1817 * @return the value associated with the key.
1818 */
1819 public V getValue() {
1820 return value;
1821 }
1822
1823 /**
1824 * Replaces the value currently associated with the key with the given
1825 * value.
1826 *
1827 * @return the value associated with the key before this method was
1828 * called.
1829 */
1830 public V setValue(V value) {
1831 V oldValue = this.value;
1832 this.value = value;
1833 return oldValue;
1834 }
1835
1836 public boolean equals(Object o) {
1837 if (!(o instanceof Map.Entry))
1838 return false;
1839 Map.Entry e = (Map.Entry)o;
1840
1841 return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1842 }
1843
1844 public int hashCode() {
1845 int keyHash = (key==null ? 0 : key.hashCode());
1846 int valueHash = (value==null ? 0 : value.hashCode());
1847 return keyHash ^ valueHash;
1848 }
1849
1850 public String toString() {
1851 return key + "=" + value;
1852 }
1853 }
1854
1855 /**
1856 * Returns the first Entry in the TreeMap (according to the TreeMap's
1857 * key-sort function). Returns null if the TreeMap is empty.
1858 */
1859 private Entry<K,V> getFirstEntry() {
1860 Entry<K,V> p = root;
1861 if (p != null)
1862 while (p.left != null)
1863 p = p.left;
1864 return p;
1865 }
1866
1867 /**
1868 * Returns the last Entry in the TreeMap (according to the TreeMap's
1869 * key-sort function). Returns null if the TreeMap is empty.
1870 */
1871 private Entry<K,V> getLastEntry() {
1872 Entry<K,V> p = root;
1873 if (p != null)
1874 while (p.right != null)
1875 p = p.right;
1876 return p;
1877 }
1878
1879 /**
1880 * Returns the successor of the specified Entry, or null if no such.
1881 */
1882 private Entry<K,V> successor(Entry<K,V> t) {
1883 if (t == null)
1884 return null;
1885 else if (t.right != null) {
1886 Entry<K,V> p = t.right;
1887 while (p.left != null)
1888 p = p.left;
1889 return p;
1890 } else {
1891 Entry<K,V> p = t.parent;
1892 Entry<K,V> ch = t;
1893 while (p != null && ch == p.right) {
1894 ch = p;
1895 p = p.parent;
1896 }
1897 return p;
1898 }
1899 }
1900
1901 /**
1902 * Returns the predecessor of the specified Entry, or null if no such.
1903 */
1904 private Entry<K,V> predecessor(Entry<K,V> t) {
1905 if (t == null)
1906 return null;
1907 else if (t.left != null) {
1908 Entry<K,V> p = t.left;
1909 while (p.right != null)
1910 p = p.right;
1911 return p;
1912 } else {
1913 Entry<K,V> p = t.parent;
1914 Entry<K,V> ch = t;
1915 while (p != null && ch == p.left) {
1916 ch = p;
1917 p = p.parent;
1918 }
1919 return p;
1920 }
1921 }
1922
1923 /**
1924 * Balancing operations.
1925 *
1926 * Implementations of rebalancings during insertion and deletion are
1927 * slightly different than the CLR version. Rather than using dummy
1928 * nilnodes, we use a set of accessors that deal properly with null. They
1929 * are used to avoid messiness surrounding nullness checks in the main
1930 * algorithms.
1931 */
1932
1933 private static <K,V> boolean colorOf(Entry<K,V> p) {
1934 return (p == null ? BLACK : p.color);
1935 }
1936
1937 private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
1938 return (p == null ? null: p.parent);
1939 }
1940
1941 private static <K,V> void setColor(Entry<K,V> p, boolean c) {
1942 if (p != null)
1943 p.color = c;
1944 }
1945
1946 private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
1947 return (p == null) ? null: p.left;
1948 }
1949
1950 private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
1951 return (p == null) ? null: p.right;
1952 }
1953
1954 /** From CLR **/
1955 private void rotateLeft(Entry<K,V> p) {
1956 Entry<K,V> r = p.right;
1957 p.right = r.left;
1958 if (r.left != null)
1959 r.left.parent = p;
1960 r.parent = p.parent;
1961 if (p.parent == null)
1962 root = r;
1963 else if (p.parent.left == p)
1964 p.parent.left = r;
1965 else
1966 p.parent.right = r;
1967 r.left = p;
1968 p.parent = r;
1969 }
1970
1971 /** From CLR **/
1972 private void rotateRight(Entry<K,V> p) {
1973 Entry<K,V> l = p.left;
1974 p.left = l.right;
1975 if (l.right != null) l.right.parent = p;
1976 l.parent = p.parent;
1977 if (p.parent == null)
1978 root = l;
1979 else if (p.parent.right == p)
1980 p.parent.right = l;
1981 else p.parent.left = l;
1982 l.right = p;
1983 p.parent = l;
1984 }
1985
1986
1987 /** From CLR **/
1988 private void fixAfterInsertion(Entry<K,V> x) {
1989 x.color = RED;
1990
1991 while (x != null && x != root && x.parent.color == RED) {
1992 if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
1993 Entry<K,V> y = rightOf(parentOf(parentOf(x)));
1994 if (colorOf(y) == RED) {
1995 setColor(parentOf(x), BLACK);
1996 setColor(y, BLACK);
1997 setColor(parentOf(parentOf(x)), RED);
1998 x = parentOf(parentOf(x));
1999 } else {
2000 if (x == rightOf(parentOf(x))) {
2001 x = parentOf(x);
2002 rotateLeft(x);
2003 }
2004 setColor(parentOf(x), BLACK);
2005 setColor(parentOf(parentOf(x)), RED);
2006 if (parentOf(parentOf(x)) != null)
2007 rotateRight(parentOf(parentOf(x)));
2008 }
2009 } else {
2010 Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2011 if (colorOf(y) == RED) {
2012 setColor(parentOf(x), BLACK);
2013 setColor(y, BLACK);
2014 setColor(parentOf(parentOf(x)), RED);
2015 x = parentOf(parentOf(x));
2016 } else {
2017 if (x == leftOf(parentOf(x))) {
2018 x = parentOf(x);
2019 rotateRight(x);
2020 }
2021 setColor(parentOf(x), BLACK);
2022 setColor(parentOf(parentOf(x)), RED);
2023 if (parentOf(parentOf(x)) != null)
2024 rotateLeft(parentOf(parentOf(x)));
2025 }
2026 }
2027 }
2028 root.color = BLACK;
2029 }
2030
2031 /**
2032 * Delete node p, and then rebalance the tree.
2033 */
2034
2035 private void deleteEntry(Entry<K,V> p) {
2036 decrementSize();
2037
2038 // If strictly internal, copy successor's element to p and then make p
2039 // point to successor.
2040 if (p.left != null && p.right != null) {
2041 Entry<K,V> s = successor (p);
2042 p.key = s.key;
2043 p.value = s.value;
2044 p = s;
2045 } // p has 2 children
2046
2047 // Start fixup at replacement node, if it exists.
2048 Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2049
2050 if (replacement != null) {
2051 // Link replacement to parent
2052 replacement.parent = p.parent;
2053 if (p.parent == null)
2054 root = replacement;
2055 else if (p == p.parent.left)
2056 p.parent.left = replacement;
2057 else
2058 p.parent.right = replacement;
2059
2060 // Null out links so they are OK to use by fixAfterDeletion.
2061 p.left = p.right = p.parent = null;
2062
2063 // Fix replacement
2064 if (p.color == BLACK)
2065 fixAfterDeletion(replacement);
2066 } else if (p.parent == null) { // return if we are the only node.
2067 root = null;
2068 } else { // No children. Use self as phantom replacement and unlink.
2069 if (p.color == BLACK)
2070 fixAfterDeletion(p);
2071
2072 if (p.parent != null) {
2073 if (p == p.parent.left)
2074 p.parent.left = null;
2075 else if (p == p.parent.right)
2076 p.parent.right = null;
2077 p.parent = null;
2078 }
2079 }
2080 }
2081
2082 /** From CLR **/
2083 private void fixAfterDeletion(Entry<K,V> x) {
2084 while (x != root && colorOf(x) == BLACK) {
2085 if (x == leftOf(parentOf(x))) {
2086 Entry<K,V> sib = rightOf(parentOf(x));
2087
2088 if (colorOf(sib) == RED) {
2089 setColor(sib, BLACK);
2090 setColor(parentOf(x), RED);
2091 rotateLeft(parentOf(x));
2092 sib = rightOf(parentOf(x));
2093 }
2094
2095 if (colorOf(leftOf(sib)) == BLACK &&
2096 colorOf(rightOf(sib)) == BLACK) {
2097 setColor(sib, RED);
2098 x = parentOf(x);
2099 } else {
2100 if (colorOf(rightOf(sib)) == BLACK) {
2101 setColor(leftOf(sib), BLACK);
2102 setColor(sib, RED);
2103 rotateRight(sib);
2104 sib = rightOf(parentOf(x));
2105 }
2106 setColor(sib, colorOf(parentOf(x)));
2107 setColor(parentOf(x), BLACK);
2108 setColor(rightOf(sib), BLACK);
2109 rotateLeft(parentOf(x));
2110 x = root;
2111 }
2112 } else { // symmetric
2113 Entry<K,V> sib = leftOf(parentOf(x));
2114
2115 if (colorOf(sib) == RED) {
2116 setColor(sib, BLACK);
2117 setColor(parentOf(x), RED);
2118 rotateRight(parentOf(x));
2119 sib = leftOf(parentOf(x));
2120 }
2121
2122 if (colorOf(rightOf(sib)) == BLACK &&
2123 colorOf(leftOf(sib)) == BLACK) {
2124 setColor(sib, RED);
2125 x = parentOf(x);
2126 } else {
2127 if (colorOf(leftOf(sib)) == BLACK) {
2128 setColor(rightOf(sib), BLACK);
2129 setColor(sib, RED);
2130 rotateLeft(sib);
2131 sib = leftOf(parentOf(x));
2132 }
2133 setColor(sib, colorOf(parentOf(x)));
2134 setColor(parentOf(x), BLACK);
2135 setColor(leftOf(sib), BLACK);
2136 rotateRight(parentOf(x));
2137 x = root;
2138 }
2139 }
2140 }
2141
2142 setColor(x, BLACK);
2143 }
2144
2145 private static final long serialVersionUID = 919286545866124006L;
2146
2147 /**
2148 * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2149 * serialize it).
2150 *
2151 * @serialData The <i>size</i> of the TreeMap (the number of key-value
2152 * mappings) is emitted (int), followed by the key (Object)
2153 * and value (Object) for each key-value mapping represented
2154 * by the TreeMap. The key-value mappings are emitted in
2155 * key-order (as determined by the TreeMap's Comparator,
2156 * or by the keys' natural ordering if the TreeMap has no
2157 * Comparator).
2158 */
2159 private void writeObject(java.io.ObjectOutputStream s)
2160 throws java.io.IOException {
2161 // Write out the Comparator and any hidden stuff
2162 s.defaultWriteObject();
2163
2164 // Write out size (number of Mappings)
2165 s.writeInt(size);
2166
2167 // Write out keys and values (alternating)
2168 for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2169 Map.Entry<K,V> e = i.next();
2170 s.writeObject(e.getKey());
2171 s.writeObject(e.getValue());
2172 }
2173 }
2174
2175
2176
2177 /**
2178 * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2179 * deserialize it).
2180 */
2181 private void readObject(final java.io.ObjectInputStream s)
2182 throws java.io.IOException, ClassNotFoundException {
2183 // Read in the Comparator and any hidden stuff
2184 s.defaultReadObject();
2185
2186 // Read in size
2187 int size = s.readInt();
2188
2189 buildFromSorted(size, null, s, null);
2190 }
2191
2192 /** Intended to be called only from TreeSet.readObject **/
2193 void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2194 throws java.io.IOException, ClassNotFoundException {
2195 buildFromSorted(size, null, s, defaultVal);
2196 }
2197
2198 /** Intended to be called only from TreeSet.addAll **/
2199 void addAllForTreeSet(SortedSet<Map.Entry<K,V>> set, V defaultVal) {
2200 try {
2201 buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2202 } catch (java.io.IOException cannotHappen) {
2203 } catch (ClassNotFoundException cannotHappen) {
2204 }
2205 }
2206
2207
2208 /**
2209 * Linear time tree building algorithm from sorted data. Can accept keys
2210 * and/or values from iterator or stream. This leads to too many
2211 * parameters, but seems better than alternatives. The four formats
2212 * that this method accepts are:
2213 *
2214 * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2215 * 2) An iterator of keys. (it != null, defaultVal != null).
2216 * 3) A stream of alternating serialized keys and values.
2217 * (it == null, defaultVal == null).
2218 * 4) A stream of serialized keys. (it == null, defaultVal != null).
2219 *
2220 * It is assumed that the comparator of the TreeMap is already set prior
2221 * to calling this method.
2222 *
2223 * @param size the number of keys (or key-value pairs) to be read from
2224 * the iterator or stream.
2225 * @param it If non-null, new entries are created from entries
2226 * or keys read from this iterator.
2227 * @param str If non-null, new entries are created from keys and
2228 * possibly values read from this stream in serialized form.
2229 * Exactly one of it and str should be non-null.
2230 * @param defaultVal if non-null, this default value is used for
2231 * each value in the map. If null, each value is read from
2232 * iterator or stream, as described above.
2233 * @throws IOException propagated from stream reads. This cannot
2234 * occur if str is null.
2235 * @throws ClassNotFoundException propagated from readObject.
2236 * This cannot occur if str is null.
2237 */
2238 private
2239 void buildFromSorted(int size, Iterator it,
2240 java.io.ObjectInputStream str,
2241 V defaultVal)
2242 throws java.io.IOException, ClassNotFoundException {
2243 this.size = size;
2244 root =
2245 buildFromSorted(0, 0, size-1, computeRedLevel(size),
2246 it, str, defaultVal);
2247 }
2248
2249 /**
2250 * Recursive "helper method" that does the real work of the
2251 * of the previous method. Identically named parameters have
2252 * identical definitions. Additional parameters are documented below.
2253 * It is assumed that the comparator and size fields of the TreeMap are
2254 * already set prior to calling this method. (It ignores both fields.)
2255 *
2256 * @param level the current level of tree. Initial call should be 0.
2257 * @param lo the first element index of this subtree. Initial should be 0.
2258 * @param hi the last element index of this subtree. Initial should be
2259 * size-1.
2260 * @param redLevel the level at which nodes should be red.
2261 * Must be equal to computeRedLevel for tree of this size.
2262 */
2263 private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2264 int redLevel,
2265 Iterator it,
2266 java.io.ObjectInputStream str,
2267 V defaultVal)
2268 throws java.io.IOException, ClassNotFoundException {
2269 /*
2270 * Strategy: The root is the middlemost element. To get to it, we
2271 * have to first recursively construct the entire left subtree,
2272 * so as to grab all of its elements. We can then proceed with right
2273 * subtree.
2274 *
2275 * The lo and hi arguments are the minimum and maximum
2276 * indices to pull out of the iterator or stream for current subtree.
2277 * They are not actually indexed, we just proceed sequentially,
2278 * ensuring that items are extracted in corresponding order.
2279 */
2280
2281 if (hi < lo) return null;
2282
2283 int mid = (lo + hi) / 2;
2284
2285 Entry<K,V> left = null;
2286 if (lo < mid)
2287 left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2288 it, str, defaultVal);
2289
2290 // extract key and/or value from iterator or stream
2291 K key;
2292 V value;
2293 if (it != null) {
2294 if (defaultVal==null) {
2295 Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2296 key = entry.getKey();
2297 value = entry.getValue();
2298 } else {
2299 key = (K)it.next();
2300 value = defaultVal;
2301 }
2302 } else { // use stream
2303 key = (K) str.readObject();
2304 value = (defaultVal != null ? defaultVal : (V) str.readObject());
2305 }
2306
2307 Entry<K,V> middle = new Entry<K,V>(key, value, null);
2308
2309 // color nodes in non-full bottommost level red
2310 if (level == redLevel)
2311 middle.color = RED;
2312
2313 if (left != null) {
2314 middle.left = left;
2315 left.parent = middle;
2316 }
2317
2318 if (mid < hi) {
2319 Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2320 it, str, defaultVal);
2321 middle.right = right;
2322 right.parent = middle;
2323 }
2324
2325 return middle;
2326 }
2327
2328 /**
2329 * Find the level down to which to assign all nodes BLACK. This is the
2330 * last `full' level of the complete binary tree produced by
2331 * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2332 * set of color assignments wrt future insertions.) This level number is
2333 * computed by finding the number of splits needed to reach the zeroeth
2334 * node. (The answer is ~lg(N), but in any case must be computed by same
2335 * quick O(lg(N)) loop.)
2336 */
2337 private static int computeRedLevel(int sz) {
2338 int level = 0;
2339 for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2340 level++;
2341 return level;
2342 }
2343
2344 }