ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.40
Committed: Mon Jun 12 14:00:38 2006 UTC (17 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.39: +1 -1 lines
Log Message:
Avoid overflow on midpoint calculation

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * A Red-Black tree based {@link NavigableMap} implementation.
12 * The map is sorted according to the {@linkplain Comparable natural
13 * ordering} of its keys, or by a {@link Comparator} provided at map
14 * creation time, depending on which constructor is used.
15 *
16 * <p>This implementation provides guaranteed log(n) time cost for the
17 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
18 * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
19 * Rivest's <I>Introduction to Algorithms</I>.
20 *
21 * <p>Note that the ordering maintained by a sorted map (whether or not an
22 * explicit comparator is provided) must be <i>consistent with equals</i> if
23 * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
24 * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
25 * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
26 * interface is defined in terms of the equals operation, but a map performs
27 * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
28 * method, so two keys that are deemed equal by this method are, from the
29 * standpoint of the sorted map, equal. The behavior of a sorted map
30 * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
31 * just fails to obey the general contract of the <tt>Map</tt> interface.
32 *
33 * <p><strong>Note that this implementation is not synchronized.</strong>
34 * If multiple threads access a map concurrently, and at least one of the
35 * threads modifies the map structurally, it <i>must</i> be synchronized
36 * externally. (A structural modification is any operation that adds or
37 * deletes one or more mappings; merely changing the value associated
38 * with an existing key is not a structural modification.) This is
39 * typically accomplished by synchronizing on some object that naturally
40 * encapsulates the map.
41 * If no such object exists, the map should be "wrapped" using the
42 * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
43 * method. This is best done at creation time, to prevent accidental
44 * unsynchronized access to the map: <pre>
45 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
46 *
47 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
48 * returned by all of this class's "collection view methods" are
49 * <i>fail-fast</i>: if the map is structurally modified at any time after the
50 * iterator is created, in any way except through the iterator's own
51 * <tt>remove</tt> method, the iterator will throw a {@link
52 * ConcurrentModificationException}. Thus, in the face of concurrent
53 * modification, the iterator fails quickly and cleanly, rather than risking
54 * arbitrary, non-deterministic behavior at an undetermined time in the future.
55 *
56 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
57 * as it is, generally speaking, impossible to make any hard guarantees in the
58 * presence of unsynchronized concurrent modification. Fail-fast iterators
59 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
60 * Therefore, it would be wrong to write a program that depended on this
61 * exception for its correctness: <i>the fail-fast behavior of iterators
62 * should be used only to detect bugs.</i>
63 *
64 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
65 * and its views represent snapshots of mappings at the time they were
66 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
67 * method. (Note however that it is possible to change mappings in the
68 * associated map using <tt>put</tt>.)
69 *
70 * <p>This class is a member of the
71 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
72 * Java Collections Framework</a>.
73 *
74 * @param <K> the type of keys maintained by this map
75 * @param <V> the type of mapped values
76 *
77 * @author Josh Bloch and Doug Lea
78 * @version %I%, %G%
79 * @see Map
80 * @see HashMap
81 * @see Hashtable
82 * @see Comparable
83 * @see Comparator
84 * @see Collection
85 * @since 1.2
86 */
87
88 public class TreeMap<K,V>
89 extends AbstractMap<K,V>
90 implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91 {
92 /**
93 * The comparator used to maintain order in this tree map, or
94 * null if it uses the natural ordering of its keys.
95 *
96 * @serial
97 */
98 private final Comparator<? super K> comparator;
99
100 private transient Entry<K,V> root = null;
101
102 /**
103 * The number of entries in the tree
104 */
105 private transient int size = 0;
106
107 /**
108 * The number of structural modifications to the tree.
109 */
110 private transient int modCount = 0;
111
112 /**
113 * Constructs a new, empty tree map, using the natural ordering of its
114 * keys. All keys inserted into the map must implement the {@link
115 * Comparable} interface. Furthermore, all such keys must be
116 * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
117 * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
118 * <tt>k2</tt> in the map. If the user attempts to put a key into the
119 * map that violates this constraint (for example, the user attempts to
120 * put a string key into a map whose keys are integers), the
121 * <tt>put(Object key, Object value)</tt> call will throw a
122 * <tt>ClassCastException</tt>.
123 */
124 public TreeMap() {
125 comparator = null;
126 }
127
128 /**
129 * Constructs a new, empty tree map, ordered according to the given
130 * comparator. All keys inserted into the map must be <i>mutually
131 * comparable</i> by the given comparator: <tt>comparator.compare(k1,
132 * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
133 * <tt>k1</tt> and <tt>k2</tt> in the map. If the user attempts to put
134 * a key into the map that violates this constraint, the <tt>put(Object
135 * key, Object value)</tt> call will throw a
136 * <tt>ClassCastException</tt>.
137 *
138 * @param comparator the comparator that will be used to order this map.
139 * If <tt>null</tt>, the {@linkplain Comparable natural
140 * ordering} of the keys will be used.
141 */
142 public TreeMap(Comparator<? super K> comparator) {
143 this.comparator = comparator;
144 }
145
146 /**
147 * Constructs a new tree map containing the same mappings as the given
148 * map, ordered according to the <i>natural ordering</i> of its keys.
149 * All keys inserted into the new map must implement the {@link
150 * Comparable} interface. Furthermore, all such keys must be
151 * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
152 * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
153 * <tt>k2</tt> in the map. This method runs in n*log(n) time.
154 *
155 * @param m the map whose mappings are to be placed in this map
156 * @throws ClassCastException if the keys in m are not {@link Comparable},
157 * or are not mutually comparable
158 * @throws NullPointerException if the specified map is null
159 */
160 public TreeMap(Map<? extends K, ? extends V> m) {
161 comparator = null;
162 putAll(m);
163 }
164
165 /**
166 * Constructs a new tree map containing the same mappings and
167 * using the same ordering as the specified sorted map. This
168 * method runs in linear time.
169 *
170 * @param m the sorted map whose mappings are to be placed in this map,
171 * and whose comparator is to be used to sort this map
172 * @throws NullPointerException if the specified map is null
173 */
174 public TreeMap(SortedMap<K, ? extends V> m) {
175 comparator = m.comparator();
176 try {
177 buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
178 } catch (java.io.IOException cannotHappen) {
179 } catch (ClassNotFoundException cannotHappen) {
180 }
181 }
182
183
184 // Query Operations
185
186 /**
187 * Returns the number of key-value mappings in this map.
188 *
189 * @return the number of key-value mappings in this map
190 */
191 public int size() {
192 return size;
193 }
194
195 /**
196 * Returns <tt>true</tt> if this map contains a mapping for the specified
197 * key.
198 *
199 * @param key key whose presence in this map is to be tested
200 * @return <tt>true</tt> if this map contains a mapping for the
201 * specified key
202 * @throws ClassCastException if the specified key cannot be compared
203 * with the keys currently in the map
204 * @throws NullPointerException if the specified key is null
205 * and this map uses natural ordering, or its comparator
206 * does not permit null keys
207 */
208 public boolean containsKey(Object key) {
209 return getEntry(key) != null;
210 }
211
212 /**
213 * Returns <tt>true</tt> if this map maps one or more keys to the
214 * specified value. More formally, returns <tt>true</tt> if and only if
215 * this map contains at least one mapping to a value <tt>v</tt> such
216 * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
217 * operation will probably require time linear in the map size for
218 * most implementations.
219 *
220 * @param value value whose presence in this map is to be tested
221 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
222 * <tt>false</tt> otherwise
223 * @since 1.2
224 */
225 public boolean containsValue(Object value) {
226 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
227 if (valEquals(value, e.value))
228 return true;
229 return false;
230 }
231
232 /**
233 * Returns the value to which the specified key is mapped,
234 * or {@code null} if this map contains no mapping for the key.
235 *
236 * <p>More formally, if this map contains a mapping from a key
237 * {@code k} to a value {@code v} such that {@code key} compares
238 * equal to {@code k} according to the map's ordering, then this
239 * method returns {@code v}; otherwise it returns {@code null}.
240 * (There can be at most one such mapping.)
241 *
242 * <p>A return value of {@code null} does not <i>necessarily</i>
243 * indicate that the map contains no mapping for the key; it's also
244 * possible that the map explicitly maps the key to {@code null}.
245 * The {@link #containsKey containsKey} operation may be used to
246 * distinguish these two cases.
247 *
248 * @throws ClassCastException if the specified key cannot be compared
249 * with the keys currently in the map
250 * @throws NullPointerException if the specified key is null
251 * and this map uses natural ordering, or its comparator
252 * does not permit null keys
253 */
254 public V get(Object key) {
255 Entry<K,V> p = getEntry(key);
256 return (p==null ? null : p.value);
257 }
258
259 public Comparator<? super K> comparator() {
260 return comparator;
261 }
262
263 /**
264 * @throws NoSuchElementException {@inheritDoc}
265 */
266 public K firstKey() {
267 return key(getFirstEntry());
268 }
269
270 /**
271 * @throws NoSuchElementException {@inheritDoc}
272 */
273 public K lastKey() {
274 return key(getLastEntry());
275 }
276
277 /**
278 * Copies all of the mappings from the specified map to this map.
279 * These mappings replace any mappings that this map had for any
280 * of the keys currently in the specified map.
281 *
282 * @param map mappings to be stored in this map
283 * @throws ClassCastException if the class of a key or value in
284 * the specified map prevents it from being stored in this map
285 * @throws NullPointerException if the specified map is null or
286 * the specified map contains a null key and this map does not
287 * permit null keys
288 */
289 public void putAll(Map<? extends K, ? extends V> map) {
290 int mapSize = map.size();
291 if (size==0 && mapSize!=0 && map instanceof SortedMap) {
292 Comparator c = ((SortedMap)map).comparator();
293 if (c == comparator || (c != null && c.equals(comparator))) {
294 ++modCount;
295 try {
296 buildFromSorted(mapSize, map.entrySet().iterator(),
297 null, null);
298 } catch (java.io.IOException cannotHappen) {
299 } catch (ClassNotFoundException cannotHappen) {
300 }
301 return;
302 }
303 }
304 super.putAll(map);
305 }
306
307 /**
308 * Returns this map's entry for the given key, or <tt>null</tt> if the map
309 * does not contain an entry for the key.
310 *
311 * @return this map's entry for the given key, or <tt>null</tt> if the map
312 * does not contain an entry for the key
313 * @throws ClassCastException if the specified key cannot be compared
314 * with the keys currently in the map
315 * @throws NullPointerException if the specified key is null
316 * and this map uses natural ordering, or its comparator
317 * does not permit null keys
318 */
319 final Entry<K,V> getEntry(Object key) {
320 // Offload comparator-based version for sake of performance
321 if (comparator != null)
322 return getEntryUsingComparator(key);
323 if (key == null)
324 throw new NullPointerException();
325 Comparable<? super K> k = (Comparable<? super K>) key;
326 Entry<K,V> p = root;
327 while (p != null) {
328 int cmp = k.compareTo(p.key);
329 if (cmp < 0)
330 p = p.left;
331 else if (cmp > 0)
332 p = p.right;
333 else
334 return p;
335 }
336 return null;
337 }
338
339 /**
340 * Version of getEntry using comparator. Split off from getEntry
341 * for performance. (This is not worth doing for most methods,
342 * that are less dependent on comparator performance, but is
343 * worthwhile here.)
344 */
345 final Entry<K,V> getEntryUsingComparator(Object key) {
346 K k = (K) key;
347 Comparator<? super K> cpr = comparator;
348 if (cpr != null) {
349 Entry<K,V> p = root;
350 while (p != null) {
351 int cmp = cpr.compare(k, p.key);
352 if (cmp < 0)
353 p = p.left;
354 else if (cmp > 0)
355 p = p.right;
356 else
357 return p;
358 }
359 }
360 return null;
361 }
362
363 /**
364 * Gets the entry corresponding to the specified key; if no such entry
365 * exists, returns the entry for the least key greater than the specified
366 * key; if no such entry exists (i.e., the greatest key in the Tree is less
367 * than the specified key), returns <tt>null</tt>.
368 */
369 final Entry<K,V> getCeilingEntry(K key) {
370 Entry<K,V> p = root;
371 while (p != null) {
372 int cmp = compare(key, p.key);
373 if (cmp < 0) {
374 if (p.left != null)
375 p = p.left;
376 else
377 return p;
378 } else if (cmp > 0) {
379 if (p.right != null) {
380 p = p.right;
381 } else {
382 Entry<K,V> parent = p.parent;
383 Entry<K,V> ch = p;
384 while (parent != null && ch == parent.right) {
385 ch = parent;
386 parent = parent.parent;
387 }
388 return parent;
389 }
390 } else
391 return p;
392 }
393 return null;
394 }
395
396 /**
397 * Gets the entry corresponding to the specified key; if no such entry
398 * exists, returns the entry for the greatest key less than the specified
399 * key; if no such entry exists, returns <tt>null</tt>.
400 */
401 final Entry<K,V> getFloorEntry(K key) {
402 Entry<K,V> p = root;
403 while (p != null) {
404 int cmp = compare(key, p.key);
405 if (cmp > 0) {
406 if (p.right != null)
407 p = p.right;
408 else
409 return p;
410 } else if (cmp < 0) {
411 if (p.left != null) {
412 p = p.left;
413 } else {
414 Entry<K,V> parent = p.parent;
415 Entry<K,V> ch = p;
416 while (parent != null && ch == parent.left) {
417 ch = parent;
418 parent = parent.parent;
419 }
420 return parent;
421 }
422 } else
423 return p;
424
425 }
426 return null;
427 }
428
429 /**
430 * Gets the entry for the least key greater than the specified
431 * key; if no such entry exists, returns the entry for the least
432 * key greater than the specified key; if no such entry exists
433 * returns <tt>null</tt>.
434 */
435 final Entry<K,V> getHigherEntry(K key) {
436 Entry<K,V> p = root;
437 while (p != null) {
438 int cmp = compare(key, p.key);
439 if (cmp < 0) {
440 if (p.left != null)
441 p = p.left;
442 else
443 return p;
444 } else {
445 if (p.right != null) {
446 p = p.right;
447 } else {
448 Entry<K,V> parent = p.parent;
449 Entry<K,V> ch = p;
450 while (parent != null && ch == parent.right) {
451 ch = parent;
452 parent = parent.parent;
453 }
454 return parent;
455 }
456 }
457 }
458 return null;
459 }
460
461 /**
462 * Returns the entry for the greatest key less than the specified key; if
463 * no such entry exists (i.e., the least key in the Tree is greater than
464 * the specified key), returns <tt>null</tt>.
465 */
466 final Entry<K,V> getLowerEntry(K key) {
467 Entry<K,V> p = root;
468 while (p != null) {
469 int cmp = compare(key, p.key);
470 if (cmp > 0) {
471 if (p.right != null)
472 p = p.right;
473 else
474 return p;
475 } else {
476 if (p.left != null) {
477 p = p.left;
478 } else {
479 Entry<K,V> parent = p.parent;
480 Entry<K,V> ch = p;
481 while (parent != null && ch == parent.left) {
482 ch = parent;
483 parent = parent.parent;
484 }
485 return parent;
486 }
487 }
488 }
489 return null;
490 }
491
492 /**
493 * Associates the specified value with the specified key in this map.
494 * If the map previously contained a mapping for the key, the old
495 * value is replaced.
496 *
497 * @param key key with which the specified value is to be associated
498 * @param value value to be associated with the specified key
499 *
500 * @return the previous value associated with <tt>key</tt>, or
501 * <tt>null</tt> if there was no mapping for <tt>key</tt>.
502 * (A <tt>null</tt> return can also indicate that the map
503 * previously associated <tt>null</tt> with <tt>key</tt>.)
504 * @throws ClassCastException if the specified key cannot be compared
505 * with the keys currently in the map
506 * @throws NullPointerException if the specified key is null
507 * and this map uses natural ordering, or its comparator
508 * does not permit null keys
509 */
510 public V put(K key, V value) {
511 Entry<K,V> t = root;
512 if (t == null) {
513 // TBD:
514 // 5045147: (coll) Adding null to an empty TreeSet should
515 // throw NullPointerException
516 //
517 // compare(key, key); // type check
518 root = new Entry<K,V>(key, value, null);
519 size = 1;
520 modCount++;
521 return null;
522 }
523 int cmp;
524 Entry<K,V> parent;
525 // split comparator and comparable paths
526 Comparator<? super K> cpr = comparator;
527 if (cpr != null) {
528 do {
529 parent = t;
530 cmp = cpr.compare(key, t.key);
531 if (cmp < 0)
532 t = t.left;
533 else if (cmp > 0)
534 t = t.right;
535 else
536 return t.setValue(value);
537 } while (t != null);
538 }
539 else {
540 if (key == null)
541 throw new NullPointerException();
542 Comparable<? super K> k = (Comparable<? super K>) key;
543 do {
544 parent = t;
545 cmp = k.compareTo(t.key);
546 if (cmp < 0)
547 t = t.left;
548 else if (cmp > 0)
549 t = t.right;
550 else
551 return t.setValue(value);
552 } while (t != null);
553 }
554 Entry<K,V> e = new Entry<K,V>(key, value, parent);
555 if (cmp < 0)
556 parent.left = e;
557 else
558 parent.right = e;
559 fixAfterInsertion(e);
560 size++;
561 modCount++;
562 return null;
563 }
564
565 /**
566 * Removes the mapping for this key from this TreeMap if present.
567 *
568 * @param key key for which mapping should be removed
569 * @return the previous value associated with <tt>key</tt>, or
570 * <tt>null</tt> if there was no mapping for <tt>key</tt>.
571 * (A <tt>null</tt> return can also indicate that the map
572 * previously associated <tt>null</tt> with <tt>key</tt>.)
573 * @throws ClassCastException if the specified key cannot be compared
574 * with the keys currently in the map
575 * @throws NullPointerException if the specified key is null
576 * and this map uses natural ordering, or its comparator
577 * does not permit null keys
578 */
579 public V remove(Object key) {
580 Entry<K,V> p = getEntry(key);
581 if (p == null)
582 return null;
583
584 V oldValue = p.value;
585 deleteEntry(p);
586 return oldValue;
587 }
588
589 /**
590 * Removes all of the mappings from this map.
591 * The map will be empty after this call returns.
592 */
593 public void clear() {
594 modCount++;
595 size = 0;
596 root = null;
597 }
598
599 /**
600 * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
601 * values themselves are not cloned.)
602 *
603 * @return a shallow copy of this map
604 */
605 public Object clone() {
606 TreeMap<K,V> clone = null;
607 try {
608 clone = (TreeMap<K,V>) super.clone();
609 } catch (CloneNotSupportedException e) {
610 throw new InternalError();
611 }
612
613 // Put clone into "virgin" state (except for comparator)
614 clone.root = null;
615 clone.size = 0;
616 clone.modCount = 0;
617 clone.entrySet = null;
618 clone.navigableKeySet = null;
619 clone.descendingMap = null;
620
621 // Initialize clone with our mappings
622 try {
623 clone.buildFromSorted(size, entrySet().iterator(), null, null);
624 } catch (java.io.IOException cannotHappen) {
625 } catch (ClassNotFoundException cannotHappen) {
626 }
627
628 return clone;
629 }
630
631 // NavigableMap API methods
632
633 /**
634 * @since 1.6
635 */
636 public Map.Entry<K,V> firstEntry() {
637 return exportEntry(getFirstEntry());
638 }
639
640 /**
641 * @since 1.6
642 */
643 public Map.Entry<K,V> lastEntry() {
644 return exportEntry(getLastEntry());
645 }
646
647 /**
648 * @since 1.6
649 */
650 public Map.Entry<K,V> pollFirstEntry() {
651 Entry<K,V> p = getFirstEntry();
652 Map.Entry<K,V> result = exportEntry(p);
653 if (p != null)
654 deleteEntry(p);
655 return result;
656 }
657
658 /**
659 * @since 1.6
660 */
661 public Map.Entry<K,V> pollLastEntry() {
662 Entry<K,V> p = getLastEntry();
663 Map.Entry<K,V> result = exportEntry(p);
664 if (p != null)
665 deleteEntry(p);
666 return result;
667 }
668
669 /**
670 * @throws ClassCastException {@inheritDoc}
671 * @throws NullPointerException if the specified key is null
672 * and this map uses natural ordering, or its comparator
673 * does not permit null keys
674 * @since 1.6
675 */
676 public Map.Entry<K,V> lowerEntry(K key) {
677 return exportEntry(getLowerEntry(key));
678 }
679
680 /**
681 * @throws ClassCastException {@inheritDoc}
682 * @throws NullPointerException if the specified key is null
683 * and this map uses natural ordering, or its comparator
684 * does not permit null keys
685 * @since 1.6
686 */
687 public K lowerKey(K key) {
688 return keyOrNull(getLowerEntry(key));
689 }
690
691 /**
692 * @throws ClassCastException {@inheritDoc}
693 * @throws NullPointerException if the specified key is null
694 * and this map uses natural ordering, or its comparator
695 * does not permit null keys
696 * @since 1.6
697 */
698 public Map.Entry<K,V> floorEntry(K key) {
699 return exportEntry(getFloorEntry(key));
700 }
701
702 /**
703 * @throws ClassCastException {@inheritDoc}
704 * @throws NullPointerException if the specified key is null
705 * and this map uses natural ordering, or its comparator
706 * does not permit null keys
707 * @since 1.6
708 */
709 public K floorKey(K key) {
710 return keyOrNull(getFloorEntry(key));
711 }
712
713 /**
714 * @throws ClassCastException {@inheritDoc}
715 * @throws NullPointerException if the specified key is null
716 * and this map uses natural ordering, or its comparator
717 * does not permit null keys
718 * @since 1.6
719 */
720 public Map.Entry<K,V> ceilingEntry(K key) {
721 return exportEntry(getCeilingEntry(key));
722 }
723
724 /**
725 * @throws ClassCastException {@inheritDoc}
726 * @throws NullPointerException if the specified key is null
727 * and this map uses natural ordering, or its comparator
728 * does not permit null keys
729 * @since 1.6
730 */
731 public K ceilingKey(K key) {
732 return keyOrNull(getCeilingEntry(key));
733 }
734
735 /**
736 * @throws ClassCastException {@inheritDoc}
737 * @throws NullPointerException if the specified key is null
738 * and this map uses natural ordering, or its comparator
739 * does not permit null keys
740 * @since 1.6
741 */
742 public Map.Entry<K,V> higherEntry(K key) {
743 return exportEntry(getHigherEntry(key));
744 }
745
746 /**
747 * @throws ClassCastException {@inheritDoc}
748 * @throws NullPointerException if the specified key is null
749 * and this map uses natural ordering, or its comparator
750 * does not permit null keys
751 * @since 1.6
752 */
753 public K higherKey(K key) {
754 return keyOrNull(getHigherEntry(key));
755 }
756
757 // Views
758
759 /**
760 * Fields initialized to contain an instance of the entry set view
761 * the first time this view is requested. Views are stateless, so
762 * there's no reason to create more than one.
763 */
764 private transient EntrySet entrySet = null;
765 private transient KeySet<K> navigableKeySet = null;
766 private transient NavigableMap<K,V> descendingMap = null;
767
768 /**
769 * Returns a {@link Set} view of the keys contained in this map.
770 * The set's iterator returns the keys in ascending order.
771 * The set is backed by the map, so changes to the map are
772 * reflected in the set, and vice-versa. If the map is modified
773 * while an iteration over the set is in progress (except through
774 * the iterator's own <tt>remove</tt> operation), the results of
775 * the iteration are undefined. The set supports element removal,
776 * which removes the corresponding mapping from the map, via the
777 * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
778 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
779 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
780 * operations.
781 */
782 public Set<K> keySet() {
783 return navigableKeySet();
784 }
785
786 /**
787 * @since 1.6
788 */
789 public NavigableSet<K> navigableKeySet() {
790 KeySet<K> nks = navigableKeySet;
791 return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
792 }
793
794 /**
795 * @since 1.6
796 */
797 public NavigableSet<K> descendingKeySet() {
798 return descendingMap().navigableKeySet();
799 }
800
801 /**
802 * Returns a {@link Collection} view of the values contained in this map.
803 * The collection's iterator returns the values in ascending order
804 * of the corresponding keys.
805 * The collection is backed by the map, so changes to the map are
806 * reflected in the collection, and vice-versa. If the map is
807 * modified while an iteration over the collection is in progress
808 * (except through the iterator's own <tt>remove</tt> operation),
809 * the results of the iteration are undefined. The collection
810 * supports element removal, which removes the corresponding
811 * mapping from the map, via the <tt>Iterator.remove</tt>,
812 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
813 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
814 * support the <tt>add</tt> or <tt>addAll</tt> operations.
815 */
816 public Collection<V> values() {
817 Collection<V> vs = values;
818 return (vs != null) ? vs : (values = new Values());
819 }
820
821 /**
822 * Returns a {@link Set} view of the mappings contained in this map.
823 * The set's iterator returns the entries in ascending key order.
824 * The set is backed by the map, so changes to the map are
825 * reflected in the set, and vice-versa. If the map is modified
826 * while an iteration over the set is in progress (except through
827 * the iterator's own <tt>remove</tt> operation, or through the
828 * <tt>setValue</tt> operation on a map entry returned by the
829 * iterator) the results of the iteration are undefined. The set
830 * supports element removal, which removes the corresponding
831 * mapping from the map, via the <tt>Iterator.remove</tt>,
832 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
833 * <tt>clear</tt> operations. It does not support the
834 * <tt>add</tt> or <tt>addAll</tt> operations.
835 */
836 public Set<Map.Entry<K,V>> entrySet() {
837 EntrySet es = entrySet;
838 return (es != null) ? es : (entrySet = new EntrySet());
839 }
840
841 /**
842 * @since 1.6
843 */
844 public NavigableMap<K, V> descendingMap() {
845 NavigableMap<K, V> km = descendingMap;
846 return (km != null) ? km :
847 (descendingMap = new DescendingSubMap(this,
848 true, null, true,
849 true, null, true));
850 }
851
852 /**
853 * @throws ClassCastException {@inheritDoc}
854 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
855 * null and this map uses natural ordering, or its comparator
856 * does not permit null keys
857 * @throws IllegalArgumentException {@inheritDoc}
858 * @since 1.6
859 */
860 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
861 K toKey, boolean toInclusive) {
862 return new AscendingSubMap(this,
863 false, fromKey, fromInclusive,
864 false, toKey, toInclusive);
865 }
866
867 /**
868 * @throws ClassCastException {@inheritDoc}
869 * @throws NullPointerException if <tt>toKey</tt> is null
870 * and this map uses natural ordering, or its comparator
871 * does not permit null keys
872 * @throws IllegalArgumentException {@inheritDoc}
873 * @since 1.6
874 */
875 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
876 return new AscendingSubMap(this,
877 true, null, true,
878 false, toKey, inclusive);
879 }
880
881 /**
882 * @throws ClassCastException {@inheritDoc}
883 * @throws NullPointerException if <tt>fromKey</tt> is null
884 * and this map uses natural ordering, or its comparator
885 * does not permit null keys
886 * @throws IllegalArgumentException {@inheritDoc}
887 * @since 1.6
888 */
889 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
890 return new AscendingSubMap(this,
891 false, fromKey, inclusive,
892 true, null, true);
893 }
894
895 /**
896 * @throws ClassCastException {@inheritDoc}
897 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
898 * null and this map uses natural ordering, or its comparator
899 * does not permit null keys
900 * @throws IllegalArgumentException {@inheritDoc}
901 */
902 public SortedMap<K,V> subMap(K fromKey, K toKey) {
903 return subMap(fromKey, true, toKey, false);
904 }
905
906 /**
907 * @throws ClassCastException {@inheritDoc}
908 * @throws NullPointerException if <tt>toKey</tt> is null
909 * and this map uses natural ordering, or its comparator
910 * does not permit null keys
911 * @throws IllegalArgumentException {@inheritDoc}
912 */
913 public SortedMap<K,V> headMap(K toKey) {
914 return headMap(toKey, false);
915 }
916
917 /**
918 * @throws ClassCastException {@inheritDoc}
919 * @throws NullPointerException if <tt>fromKey</tt> is null
920 * and this map uses natural ordering, or its comparator
921 * does not permit null keys
922 * @throws IllegalArgumentException {@inheritDoc}
923 */
924 public SortedMap<K,V> tailMap(K fromKey) {
925 return tailMap(fromKey, true);
926 }
927
928 // View class support
929
930 class Values extends AbstractCollection<V> {
931 public Iterator<V> iterator() {
932 return new ValueIterator(getFirstEntry());
933 }
934
935 public int size() {
936 return TreeMap.this.size();
937 }
938
939 public boolean contains(Object o) {
940 return TreeMap.this.containsValue(o);
941 }
942
943 public boolean remove(Object o) {
944 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
945 if (valEquals(e.getValue(), o)) {
946 deleteEntry(e);
947 return true;
948 }
949 }
950 return false;
951 }
952
953 public void clear() {
954 TreeMap.this.clear();
955 }
956 }
957
958 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
959 public Iterator<Map.Entry<K,V>> iterator() {
960 return new EntryIterator(getFirstEntry());
961 }
962
963 public boolean contains(Object o) {
964 if (!(o instanceof Map.Entry))
965 return false;
966 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
967 V value = entry.getValue();
968 Entry<K,V> p = getEntry(entry.getKey());
969 return p != null && valEquals(p.getValue(), value);
970 }
971
972 public boolean remove(Object o) {
973 if (!(o instanceof Map.Entry))
974 return false;
975 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
976 V value = entry.getValue();
977 Entry<K,V> p = getEntry(entry.getKey());
978 if (p != null && valEquals(p.getValue(), value)) {
979 deleteEntry(p);
980 return true;
981 }
982 return false;
983 }
984
985 public int size() {
986 return TreeMap.this.size();
987 }
988
989 public void clear() {
990 TreeMap.this.clear();
991 }
992 }
993
994 /*
995 * Unlike Values and EntrySet, the KeySet class is static,
996 * delegating to a NavigableMap to allow use by SubMaps, which
997 * outweighs the ugliness of needing type-tests for the following
998 * Iterator methods that are defined appropriately in main versus
999 * submap classes.
1000 */
1001
1002 Iterator<K> keyIterator() {
1003 return new KeyIterator(getFirstEntry());
1004 }
1005
1006 Iterator<K> descendingKeyIterator() {
1007 return new DescendingKeyIterator(getFirstEntry());
1008 }
1009
1010 static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1011 private final NavigableMap<E, Object> m;
1012 KeySet(NavigableMap<E,Object> map) { m = map; }
1013
1014 public Iterator<E> iterator() {
1015 if (m instanceof TreeMap)
1016 return ((TreeMap<E,Object>)m).keyIterator();
1017 else
1018 return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1019 }
1020
1021 public Iterator<E> descendingIterator() {
1022 if (m instanceof TreeMap)
1023 return ((TreeMap<E,Object>)m).descendingKeyIterator();
1024 else
1025 return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1026 }
1027
1028 public int size() { return m.size(); }
1029 public boolean isEmpty() { return m.isEmpty(); }
1030 public boolean contains(Object o) { return m.containsKey(o); }
1031 public void clear() { m.clear(); }
1032 public E lower(E e) { return m.lowerKey(e); }
1033 public E floor(E e) { return m.floorKey(e); }
1034 public E ceiling(E e) { return m.ceilingKey(e); }
1035 public E higher(E e) { return m.higherKey(e); }
1036 public E first() { return m.firstKey(); }
1037 public E last() { return m.lastKey(); }
1038 public Comparator<? super E> comparator() { return m.comparator(); }
1039 public E pollFirst() {
1040 Map.Entry<E,Object> e = m.pollFirstEntry();
1041 return e == null? null : e.getKey();
1042 }
1043 public E pollLast() {
1044 Map.Entry<E,Object> e = m.pollLastEntry();
1045 return e == null? null : e.getKey();
1046 }
1047 public boolean remove(Object o) {
1048 int oldSize = size();
1049 m.remove(o);
1050 return size() != oldSize;
1051 }
1052 public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1053 E toElement, boolean toInclusive) {
1054 return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1055 toElement, toInclusive));
1056 }
1057 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1058 return new TreeSet<E>(m.headMap(toElement, inclusive));
1059 }
1060 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1061 return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1062 }
1063 public SortedSet<E> subSet(E fromElement, E toElement) {
1064 return subSet(fromElement, true, toElement, false);
1065 }
1066 public SortedSet<E> headSet(E toElement) {
1067 return headSet(toElement, false);
1068 }
1069 public SortedSet<E> tailSet(E fromElement) {
1070 return tailSet(fromElement, true);
1071 }
1072 public NavigableSet<E> descendingSet() {
1073 return new TreeSet(m.descendingMap());
1074 }
1075 }
1076
1077 /**
1078 * Base class for TreeMap Iterators
1079 */
1080 abstract class PrivateEntryIterator<T> implements Iterator<T> {
1081 Entry<K,V> next;
1082 Entry<K,V> lastReturned;
1083 int expectedModCount;
1084
1085 PrivateEntryIterator(Entry<K,V> first) {
1086 expectedModCount = modCount;
1087 lastReturned = null;
1088 next = first;
1089 }
1090
1091 public final boolean hasNext() {
1092 return next != null;
1093 }
1094
1095 final Entry<K,V> nextEntry() {
1096 Entry<K,V> e = lastReturned = next;
1097 if (e == null)
1098 throw new NoSuchElementException();
1099 if (modCount != expectedModCount)
1100 throw new ConcurrentModificationException();
1101 next = successor(e);
1102 return e;
1103 }
1104
1105 final Entry<K,V> prevEntry() {
1106 Entry<K,V> e = lastReturned= next;
1107 if (e == null)
1108 throw new NoSuchElementException();
1109 if (modCount != expectedModCount)
1110 throw new ConcurrentModificationException();
1111 next = predecessor(e);
1112 return e;
1113 }
1114
1115 public void remove() {
1116 if (lastReturned == null)
1117 throw new IllegalStateException();
1118 if (modCount != expectedModCount)
1119 throw new ConcurrentModificationException();
1120 // deleted entries are replaced by their successors
1121 if (lastReturned.left != null && lastReturned.right != null)
1122 next = lastReturned;
1123 deleteEntry(lastReturned);
1124 expectedModCount = modCount;
1125 lastReturned = null;
1126 }
1127 }
1128
1129 final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1130 EntryIterator(Entry<K,V> first) {
1131 super(first);
1132 }
1133 public Map.Entry<K,V> next() {
1134 return nextEntry();
1135 }
1136 }
1137
1138 final class ValueIterator extends PrivateEntryIterator<V> {
1139 ValueIterator(Entry<K,V> first) {
1140 super(first);
1141 }
1142 public V next() {
1143 return nextEntry().value;
1144 }
1145 }
1146
1147 final class KeyIterator extends PrivateEntryIterator<K> {
1148 KeyIterator(Entry<K,V> first) {
1149 super(first);
1150 }
1151 public K next() {
1152 return nextEntry().key;
1153 }
1154 }
1155
1156 final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1157 DescendingKeyIterator(Entry<K,V> first) {
1158 super(first);
1159 }
1160 public K next() {
1161 return prevEntry().key;
1162 }
1163 }
1164
1165 // Little utilities
1166
1167 /**
1168 * Compares two keys using the correct comparison method for this TreeMap.
1169 */
1170 final int compare(Object k1, Object k2) {
1171 return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1172 : comparator.compare((K)k1, (K)k2);
1173 }
1174
1175 /**
1176 * Test two values for equality. Differs from o1.equals(o2) only in
1177 * that it copes with <tt>null</tt> o1 properly.
1178 */
1179 final static boolean valEquals(Object o1, Object o2) {
1180 return (o1==null ? o2==null : o1.equals(o2));
1181 }
1182
1183 /**
1184 * Return SimpleImmutableEntry for entry, or null if null
1185 */
1186 static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1187 return e == null? null :
1188 new AbstractMap.SimpleImmutableEntry<K,V>(e);
1189 }
1190
1191 /**
1192 * Return key for entry, or null if null
1193 */
1194 static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1195 return e == null? null : e.key;
1196 }
1197
1198 /**
1199 * Returns the key corresponding to the specified Entry.
1200 * @throws NoSuchElementException if the Entry is null
1201 */
1202 static <K> K key(Entry<K,?> e) {
1203 if (e==null)
1204 throw new NoSuchElementException();
1205 return e.key;
1206 }
1207
1208
1209 // SubMaps
1210
1211 /**
1212 * @serial include
1213 */
1214 static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1215 implements NavigableMap<K,V>, java.io.Serializable {
1216 /**
1217 * The backing map.
1218 */
1219 final TreeMap<K,V> m;
1220
1221 /**
1222 * Endpoints are represented as triples (fromStart, lo,
1223 * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1224 * true, then the low (absolute) bound is the start of the
1225 * backing map, and the other values are ignored. Otherwise,
1226 * if loInclusive is true, lo is the inclusive bound, else lo
1227 * is the exclusive bound. Similarly for the upper bound.
1228 */
1229 final K lo, hi;
1230 final boolean fromStart, toEnd;
1231 final boolean loInclusive, hiInclusive;
1232
1233 NavigableSubMap(TreeMap<K,V> m,
1234 boolean fromStart, K lo, boolean loInclusive,
1235 boolean toEnd, K hi, boolean hiInclusive) {
1236 if (!fromStart && !toEnd) {
1237 if (m.compare(lo, hi) > 0)
1238 throw new IllegalArgumentException("fromKey > toKey");
1239 } else {
1240 if (!fromStart) // type check
1241 m.compare(lo, lo);
1242 if (!toEnd)
1243 m.compare(hi, hi);
1244 }
1245
1246 this.m = m;
1247 this.fromStart = fromStart;
1248 this.lo = lo;
1249 this.loInclusive = loInclusive;
1250 this.toEnd = toEnd;
1251 this.hi = hi;
1252 this.hiInclusive = hiInclusive;
1253 }
1254
1255 // internal utilities
1256
1257 final boolean tooLow(Object key) {
1258 if (!fromStart) {
1259 int c = m.compare(key, lo);
1260 if (c < 0 || (c == 0 && !loInclusive))
1261 return true;
1262 }
1263 return false;
1264 }
1265
1266 final boolean tooHigh(Object key) {
1267 if (!toEnd) {
1268 int c = m.compare(key, hi);
1269 if (c > 0 || (c == 0 && !hiInclusive))
1270 return true;
1271 }
1272 return false;
1273 }
1274
1275 final boolean inRange(Object key) {
1276 return !tooLow(key) && !tooHigh(key);
1277 }
1278
1279 final boolean inClosedRange(Object key) {
1280 return (fromStart || m.compare(key, lo) >= 0)
1281 && (toEnd || m.compare(hi, key) >= 0);
1282 }
1283
1284 final boolean inRange(Object key, boolean inclusive) {
1285 return inclusive ? inRange(key) : inClosedRange(key);
1286 }
1287
1288 /*
1289 * Absolute versions of relation operations.
1290 * Subclasses map to these using like-named "sub"
1291 * versions that invert senses for descending maps
1292 */
1293
1294 final TreeMap.Entry<K,V> absLowest() {
1295 TreeMap.Entry<K,V> e =
1296 (fromStart ? m.getFirstEntry() :
1297 (loInclusive ? m.getCeilingEntry(lo) :
1298 m.getHigherEntry(lo)));
1299 return (e == null || tooHigh(e.key)) ? null : e;
1300 }
1301
1302 final TreeMap.Entry<K,V> absHighest() {
1303 TreeMap.Entry<K,V> e =
1304 (toEnd ? m.getLastEntry() :
1305 (hiInclusive ? m.getFloorEntry(hi) :
1306 m.getLowerEntry(hi)));
1307 return (e == null || tooLow(e.key)) ? null : e;
1308 }
1309
1310 final TreeMap.Entry<K,V> absCeiling(K key) {
1311 if (tooLow(key))
1312 return absLowest();
1313 TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1314 return (e == null || tooHigh(e.key)) ? null : e;
1315 }
1316
1317 final TreeMap.Entry<K,V> absHigher(K key) {
1318 if (tooLow(key))
1319 return absLowest();
1320 TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1321 return (e == null || tooHigh(e.key)) ? null : e;
1322 }
1323
1324 final TreeMap.Entry<K,V> absFloor(K key) {
1325 if (tooHigh(key))
1326 return absHighest();
1327 TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1328 return (e == null || tooLow(e.key)) ? null : e;
1329 }
1330
1331 final TreeMap.Entry<K,V> absLower(K key) {
1332 if (tooHigh(key))
1333 return absHighest();
1334 TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1335 return (e == null || tooLow(e.key)) ? null : e;
1336 }
1337
1338 /** Returns the absolute high fence for ascending traversal */
1339 final TreeMap.Entry<K,V> absHighFence() {
1340 return (toEnd ? null : (hiInclusive ?
1341 m.getHigherEntry(hi) :
1342 m.getCeilingEntry(hi)));
1343 }
1344
1345 /** Return the absolute low fence for descending traversal */
1346 final TreeMap.Entry<K,V> absLowFence() {
1347 return (fromStart ? null : (loInclusive ?
1348 m.getLowerEntry(lo) :
1349 m.getFloorEntry(lo)));
1350 }
1351
1352 // Abstract methods defined in ascending vs descending classes
1353 // These relay to the appropriate absolute versions
1354
1355 abstract TreeMap.Entry<K,V> subLowest();
1356 abstract TreeMap.Entry<K,V> subHighest();
1357 abstract TreeMap.Entry<K,V> subCeiling(K key);
1358 abstract TreeMap.Entry<K,V> subHigher(K key);
1359 abstract TreeMap.Entry<K,V> subFloor(K key);
1360 abstract TreeMap.Entry<K,V> subLower(K key);
1361
1362 /** Returns ascending iterator from the perspective of this submap */
1363 abstract Iterator<K> keyIterator();
1364
1365 /** Returns descending iterator from the perspective of this submap */
1366 abstract Iterator<K> descendingKeyIterator();
1367
1368 // public methods
1369
1370 public boolean isEmpty() {
1371 return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1372 }
1373
1374 public int size() {
1375 return (fromStart && toEnd) ? m.size() : entrySet().size();
1376 }
1377
1378 public final boolean containsKey(Object key) {
1379 return inRange(key) && m.containsKey(key);
1380 }
1381
1382 public final V put(K key, V value) {
1383 if (!inRange(key))
1384 throw new IllegalArgumentException("key out of range");
1385 return m.put(key, value);
1386 }
1387
1388 public final V get(Object key) {
1389 return !inRange(key)? null : m.get(key);
1390 }
1391
1392 public final V remove(Object key) {
1393 return !inRange(key)? null : m.remove(key);
1394 }
1395
1396 public final Map.Entry<K,V> ceilingEntry(K key) {
1397 return exportEntry(subCeiling(key));
1398 }
1399
1400 public final K ceilingKey(K key) {
1401 return keyOrNull(subCeiling(key));
1402 }
1403
1404 public final Map.Entry<K,V> higherEntry(K key) {
1405 return exportEntry(subHigher(key));
1406 }
1407
1408 public final K higherKey(K key) {
1409 return keyOrNull(subHigher(key));
1410 }
1411
1412 public final Map.Entry<K,V> floorEntry(K key) {
1413 return exportEntry(subFloor(key));
1414 }
1415
1416 public final K floorKey(K key) {
1417 return keyOrNull(subFloor(key));
1418 }
1419
1420 public final Map.Entry<K,V> lowerEntry(K key) {
1421 return exportEntry(subLower(key));
1422 }
1423
1424 public final K lowerKey(K key) {
1425 return keyOrNull(subLower(key));
1426 }
1427
1428 public final K firstKey() {
1429 return key(subLowest());
1430 }
1431
1432 public final K lastKey() {
1433 return key(subHighest());
1434 }
1435
1436 public final Map.Entry<K,V> firstEntry() {
1437 return exportEntry(subLowest());
1438 }
1439
1440 public final Map.Entry<K,V> lastEntry() {
1441 return exportEntry(subHighest());
1442 }
1443
1444 public final Map.Entry<K,V> pollFirstEntry() {
1445 TreeMap.Entry<K,V> e = subLowest();
1446 Map.Entry<K,V> result = exportEntry(e);
1447 if (e != null)
1448 m.deleteEntry(e);
1449 return result;
1450 }
1451
1452 public final Map.Entry<K,V> pollLastEntry() {
1453 TreeMap.Entry<K,V> e = subHighest();
1454 Map.Entry<K,V> result = exportEntry(e);
1455 if (e != null)
1456 m.deleteEntry(e);
1457 return result;
1458 }
1459
1460 // Views
1461 transient NavigableMap<K,V> descendingMapView = null;
1462 transient EntrySetView entrySetView = null;
1463 transient KeySet<K> navigableKeySetView = null;
1464
1465 public final NavigableSet<K> navigableKeySet() {
1466 KeySet<K> nksv = navigableKeySetView;
1467 return (nksv != null) ? nksv :
1468 (navigableKeySetView = new TreeMap.KeySet(this));
1469 }
1470
1471 public final Set<K> keySet() {
1472 return navigableKeySet();
1473 }
1474
1475 public NavigableSet<K> descendingKeySet() {
1476 return descendingMap().navigableKeySet();
1477 }
1478
1479 public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1480 return subMap(fromKey, true, toKey, false);
1481 }
1482
1483 public final SortedMap<K,V> headMap(K toKey) {
1484 return headMap(toKey, false);
1485 }
1486
1487 public final SortedMap<K,V> tailMap(K fromKey) {
1488 return tailMap(fromKey, true);
1489 }
1490
1491 // View classes
1492
1493 abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1494 private transient int size = -1, sizeModCount;
1495
1496 public int size() {
1497 if (fromStart && toEnd)
1498 return m.size();
1499 if (size == -1 || sizeModCount != m.modCount) {
1500 sizeModCount = m.modCount;
1501 size = 0;
1502 Iterator i = iterator();
1503 while (i.hasNext()) {
1504 size++;
1505 i.next();
1506 }
1507 }
1508 return size;
1509 }
1510
1511 public boolean isEmpty() {
1512 TreeMap.Entry<K,V> n = absLowest();
1513 return n == null || tooHigh(n.key);
1514 }
1515
1516 public boolean contains(Object o) {
1517 if (!(o instanceof Map.Entry))
1518 return false;
1519 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1520 K key = entry.getKey();
1521 if (!inRange(key))
1522 return false;
1523 TreeMap.Entry node = m.getEntry(key);
1524 return node != null &&
1525 valEquals(node.getValue(), entry.getValue());
1526 }
1527
1528 public boolean remove(Object o) {
1529 if (!(o instanceof Map.Entry))
1530 return false;
1531 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1532 K key = entry.getKey();
1533 if (!inRange(key))
1534 return false;
1535 TreeMap.Entry<K,V> node = m.getEntry(key);
1536 if (node!=null && valEquals(node.getValue(),entry.getValue())){
1537 m.deleteEntry(node);
1538 return true;
1539 }
1540 return false;
1541 }
1542 }
1543
1544 /**
1545 * Iterators for SubMaps
1546 */
1547 abstract class SubMapIterator<T> implements Iterator<T> {
1548 TreeMap.Entry<K,V> lastReturned;
1549 TreeMap.Entry<K,V> next;
1550 final K fenceKey;
1551 int expectedModCount;
1552
1553 SubMapIterator(TreeMap.Entry<K,V> first,
1554 TreeMap.Entry<K,V> fence) {
1555 expectedModCount = m.modCount;
1556 lastReturned = null;
1557 next = first;
1558 fenceKey = fence == null ? null : fence.key;
1559 }
1560
1561 public final boolean hasNext() {
1562 return next != null && next.key != fenceKey;
1563 }
1564
1565 final TreeMap.Entry<K,V> nextEntry() {
1566 TreeMap.Entry<K,V> e = lastReturned = next;
1567 if (e == null || e.key == fenceKey)
1568 throw new NoSuchElementException();
1569 if (m.modCount != expectedModCount)
1570 throw new ConcurrentModificationException();
1571 next = successor(e);
1572 return e;
1573 }
1574
1575 final TreeMap.Entry<K,V> prevEntry() {
1576 TreeMap.Entry<K,V> e = lastReturned = next;
1577 if (e == null || e.key == fenceKey)
1578 throw new NoSuchElementException();
1579 if (m.modCount != expectedModCount)
1580 throw new ConcurrentModificationException();
1581 next = predecessor(e);
1582 return e;
1583 }
1584
1585 final void removeAscending() {
1586 if (lastReturned == null)
1587 throw new IllegalStateException();
1588 if (m.modCount != expectedModCount)
1589 throw new ConcurrentModificationException();
1590 // deleted entries are replaced by their successors
1591 if (lastReturned.left != null && lastReturned.right != null)
1592 next = lastReturned;
1593 m.deleteEntry(lastReturned);
1594 lastReturned = null;
1595 expectedModCount = m.modCount;
1596 }
1597
1598 final void removeDescending() {
1599 if (lastReturned == null)
1600 throw new IllegalStateException();
1601 if (m.modCount != expectedModCount)
1602 throw new ConcurrentModificationException();
1603 m.deleteEntry(lastReturned);
1604 lastReturned = null;
1605 expectedModCount = m.modCount;
1606 }
1607
1608 }
1609
1610 final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1611 SubMapEntryIterator(TreeMap.Entry<K,V> first,
1612 TreeMap.Entry<K,V> fence) {
1613 super(first, fence);
1614 }
1615 public Map.Entry<K,V> next() {
1616 return nextEntry();
1617 }
1618 public void remove() {
1619 removeAscending();
1620 }
1621 }
1622
1623 final class SubMapKeyIterator extends SubMapIterator<K> {
1624 SubMapKeyIterator(TreeMap.Entry<K,V> first,
1625 TreeMap.Entry<K,V> fence) {
1626 super(first, fence);
1627 }
1628 public K next() {
1629 return nextEntry().key;
1630 }
1631 public void remove() {
1632 removeAscending();
1633 }
1634 }
1635
1636 final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1637 DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1638 TreeMap.Entry<K,V> fence) {
1639 super(last, fence);
1640 }
1641
1642 public Map.Entry<K,V> next() {
1643 return prevEntry();
1644 }
1645 public void remove() {
1646 removeDescending();
1647 }
1648 }
1649
1650 final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1651 DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1652 TreeMap.Entry<K,V> fence) {
1653 super(last, fence);
1654 }
1655 public K next() {
1656 return prevEntry().key;
1657 }
1658 public void remove() {
1659 removeDescending();
1660 }
1661 }
1662 }
1663
1664 /**
1665 * @serial include
1666 */
1667 static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1668 private static final long serialVersionUID = 912986545866124060L;
1669
1670 AscendingSubMap(TreeMap<K,V> m,
1671 boolean fromStart, K lo, boolean loInclusive,
1672 boolean toEnd, K hi, boolean hiInclusive) {
1673 super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1674 }
1675
1676 public Comparator<? super K> comparator() {
1677 return m.comparator();
1678 }
1679
1680 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1681 K toKey, boolean toInclusive) {
1682 if (!inRange(fromKey, fromInclusive))
1683 throw new IllegalArgumentException("fromKey out of range");
1684 if (!inRange(toKey, toInclusive))
1685 throw new IllegalArgumentException("toKey out of range");
1686 return new AscendingSubMap(m,
1687 false, fromKey, fromInclusive,
1688 false, toKey, toInclusive);
1689 }
1690
1691 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1692 if (!inRange(toKey, inclusive))
1693 throw new IllegalArgumentException("toKey out of range");
1694 return new AscendingSubMap(m,
1695 fromStart, lo, loInclusive,
1696 false, toKey, inclusive);
1697 }
1698
1699 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1700 if (!inRange(fromKey, inclusive))
1701 throw new IllegalArgumentException("fromKey out of range");
1702 return new AscendingSubMap(m,
1703 false, fromKey, inclusive,
1704 toEnd, hi, hiInclusive);
1705 }
1706
1707 public NavigableMap<K,V> descendingMap() {
1708 NavigableMap<K,V> mv = descendingMapView;
1709 return (mv != null) ? mv :
1710 (descendingMapView =
1711 new DescendingSubMap(m,
1712 fromStart, lo, loInclusive,
1713 toEnd, hi, hiInclusive));
1714 }
1715
1716 Iterator<K> keyIterator() {
1717 return new SubMapKeyIterator(absLowest(), absHighFence());
1718 }
1719
1720 Iterator<K> descendingKeyIterator() {
1721 return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1722 }
1723
1724 final class AscendingEntrySetView extends EntrySetView {
1725 public Iterator<Map.Entry<K,V>> iterator() {
1726 return new SubMapEntryIterator(absLowest(), absHighFence());
1727 }
1728 }
1729
1730 public Set<Map.Entry<K,V>> entrySet() {
1731 EntrySetView es = entrySetView;
1732 return (es != null) ? es : new AscendingEntrySetView();
1733 }
1734
1735 TreeMap.Entry<K,V> subLowest() { return absLowest(); }
1736 TreeMap.Entry<K,V> subHighest() { return absHighest(); }
1737 TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1738 TreeMap.Entry<K,V> subHigher(K key) { return absHigher(key); }
1739 TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); }
1740 TreeMap.Entry<K,V> subLower(K key) { return absLower(key); }
1741 }
1742
1743 /**
1744 * @serial include
1745 */
1746 static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
1747 private static final long serialVersionUID = 912986545866120460L;
1748 DescendingSubMap(TreeMap<K,V> m,
1749 boolean fromStart, K lo, boolean loInclusive,
1750 boolean toEnd, K hi, boolean hiInclusive) {
1751 super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1752 }
1753
1754 private final Comparator<? super K> reverseComparator =
1755 Collections.reverseOrder(m.comparator);
1756
1757 public Comparator<? super K> comparator() {
1758 return reverseComparator;
1759 }
1760
1761 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1762 K toKey, boolean toInclusive) {
1763 if (!inRange(fromKey, fromInclusive))
1764 throw new IllegalArgumentException("fromKey out of range");
1765 if (!inRange(toKey, toInclusive))
1766 throw new IllegalArgumentException("toKey out of range");
1767 return new DescendingSubMap(m,
1768 false, toKey, toInclusive,
1769 false, fromKey, fromInclusive);
1770 }
1771
1772 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1773 if (!inRange(toKey, inclusive))
1774 throw new IllegalArgumentException("toKey out of range");
1775 return new DescendingSubMap(m,
1776 false, toKey, inclusive,
1777 toEnd, hi, hiInclusive);
1778 }
1779
1780 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1781 if (!inRange(fromKey, inclusive))
1782 throw new IllegalArgumentException("fromKey out of range");
1783 return new DescendingSubMap(m,
1784 fromStart, lo, loInclusive,
1785 false, fromKey, inclusive);
1786 }
1787
1788 public NavigableMap<K,V> descendingMap() {
1789 NavigableMap<K,V> mv = descendingMapView;
1790 return (mv != null) ? mv :
1791 (descendingMapView =
1792 new AscendingSubMap(m,
1793 fromStart, lo, loInclusive,
1794 toEnd, hi, hiInclusive));
1795 }
1796
1797 Iterator<K> keyIterator() {
1798 return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1799 }
1800
1801 Iterator<K> descendingKeyIterator() {
1802 return new SubMapKeyIterator(absLowest(), absHighFence());
1803 }
1804
1805 final class DescendingEntrySetView extends EntrySetView {
1806 public Iterator<Map.Entry<K,V>> iterator() {
1807 return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1808 }
1809 }
1810
1811 public Set<Map.Entry<K,V>> entrySet() {
1812 EntrySetView es = entrySetView;
1813 return (es != null) ? es : new DescendingEntrySetView();
1814 }
1815
1816 TreeMap.Entry<K,V> subLowest() { return absHighest(); }
1817 TreeMap.Entry<K,V> subHighest() { return absLowest(); }
1818 TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1819 TreeMap.Entry<K,V> subHigher(K key) { return absLower(key); }
1820 TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); }
1821 TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); }
1822 }
1823
1824 /**
1825 * This class exists solely for the sake of serialization
1826 * compatibility with previous releases of TreeMap that did not
1827 * support NavigableMap. It translates an old-version SubMap into
1828 * a new-version AscendingSubMap. This class is never otherwise
1829 * used.
1830 *
1831 * @serial include
1832 */
1833 private class SubMap extends AbstractMap<K,V>
1834 implements SortedMap<K,V>, java.io.Serializable {
1835 private static final long serialVersionUID = -6520786458950516097L;
1836 private boolean fromStart = false, toEnd = false;
1837 private K fromKey, toKey;
1838 private Object readResolve() {
1839 return new AscendingSubMap(TreeMap.this,
1840 fromStart, fromKey, true,
1841 toEnd, toKey, false);
1842 }
1843 public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1844 public K lastKey() { throw new InternalError(); }
1845 public K firstKey() { throw new InternalError(); }
1846 public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1847 public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1848 public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1849 public Comparator<? super K> comparator() { throw new InternalError(); }
1850 }
1851
1852
1853 // Red-black mechanics
1854
1855 private static final boolean RED = false;
1856 private static final boolean BLACK = true;
1857
1858 /**
1859 * Node in the Tree. Doubles as a means to pass key-value pairs back to
1860 * user (see Map.Entry).
1861 */
1862
1863 static final class Entry<K,V> implements Map.Entry<K,V> {
1864 K key;
1865 V value;
1866 Entry<K,V> left = null;
1867 Entry<K,V> right = null;
1868 Entry<K,V> parent;
1869 boolean color = BLACK;
1870
1871 /**
1872 * Make a new cell with given key, value, and parent, and with
1873 * <tt>null</tt> child links, and BLACK color.
1874 */
1875 Entry(K key, V value, Entry<K,V> parent) {
1876 this.key = key;
1877 this.value = value;
1878 this.parent = parent;
1879 }
1880
1881 /**
1882 * Returns the key.
1883 *
1884 * @return the key
1885 */
1886 public K getKey() {
1887 return key;
1888 }
1889
1890 /**
1891 * Returns the value associated with the key.
1892 *
1893 * @return the value associated with the key
1894 */
1895 public V getValue() {
1896 return value;
1897 }
1898
1899 /**
1900 * Replaces the value currently associated with the key with the given
1901 * value.
1902 *
1903 * @return the value associated with the key before this method was
1904 * called
1905 */
1906 public V setValue(V value) {
1907 V oldValue = this.value;
1908 this.value = value;
1909 return oldValue;
1910 }
1911
1912 public boolean equals(Object o) {
1913 if (!(o instanceof Map.Entry))
1914 return false;
1915 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1916
1917 return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1918 }
1919
1920 public int hashCode() {
1921 int keyHash = (key==null ? 0 : key.hashCode());
1922 int valueHash = (value==null ? 0 : value.hashCode());
1923 return keyHash ^ valueHash;
1924 }
1925
1926 public String toString() {
1927 return key + "=" + value;
1928 }
1929 }
1930
1931 /**
1932 * Returns the first Entry in the TreeMap (according to the TreeMap's
1933 * key-sort function). Returns null if the TreeMap is empty.
1934 */
1935 final Entry<K,V> getFirstEntry() {
1936 Entry<K,V> p = root;
1937 if (p != null)
1938 while (p.left != null)
1939 p = p.left;
1940 return p;
1941 }
1942
1943 /**
1944 * Returns the last Entry in the TreeMap (according to the TreeMap's
1945 * key-sort function). Returns null if the TreeMap is empty.
1946 */
1947 final Entry<K,V> getLastEntry() {
1948 Entry<K,V> p = root;
1949 if (p != null)
1950 while (p.right != null)
1951 p = p.right;
1952 return p;
1953 }
1954
1955 /**
1956 * Returns the successor of the specified Entry, or null if no such.
1957 */
1958 static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1959 if (t == null)
1960 return null;
1961 else if (t.right != null) {
1962 Entry<K,V> p = t.right;
1963 while (p.left != null)
1964 p = p.left;
1965 return p;
1966 } else {
1967 Entry<K,V> p = t.parent;
1968 Entry<K,V> ch = t;
1969 while (p != null && ch == p.right) {
1970 ch = p;
1971 p = p.parent;
1972 }
1973 return p;
1974 }
1975 }
1976
1977 /**
1978 * Returns the predecessor of the specified Entry, or null if no such.
1979 */
1980 static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
1981 if (t == null)
1982 return null;
1983 else if (t.left != null) {
1984 Entry<K,V> p = t.left;
1985 while (p.right != null)
1986 p = p.right;
1987 return p;
1988 } else {
1989 Entry<K,V> p = t.parent;
1990 Entry<K,V> ch = t;
1991 while (p != null && ch == p.left) {
1992 ch = p;
1993 p = p.parent;
1994 }
1995 return p;
1996 }
1997 }
1998
1999 /**
2000 * Balancing operations.
2001 *
2002 * Implementations of rebalancings during insertion and deletion are
2003 * slightly different than the CLR version. Rather than using dummy
2004 * nilnodes, we use a set of accessors that deal properly with null. They
2005 * are used to avoid messiness surrounding nullness checks in the main
2006 * algorithms.
2007 */
2008
2009 private static <K,V> boolean colorOf(Entry<K,V> p) {
2010 return (p == null ? BLACK : p.color);
2011 }
2012
2013 private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
2014 return (p == null ? null: p.parent);
2015 }
2016
2017 private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2018 if (p != null)
2019 p.color = c;
2020 }
2021
2022 private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
2023 return (p == null) ? null: p.left;
2024 }
2025
2026 private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
2027 return (p == null) ? null: p.right;
2028 }
2029
2030 /** From CLR */
2031 private void rotateLeft(Entry<K,V> p) {
2032 if (p != null) {
2033 Entry<K,V> r = p.right;
2034 p.right = r.left;
2035 if (r.left != null)
2036 r.left.parent = p;
2037 r.parent = p.parent;
2038 if (p.parent == null)
2039 root = r;
2040 else if (p.parent.left == p)
2041 p.parent.left = r;
2042 else
2043 p.parent.right = r;
2044 r.left = p;
2045 p.parent = r;
2046 }
2047 }
2048
2049 /** From CLR */
2050 private void rotateRight(Entry<K,V> p) {
2051 if (p != null) {
2052 Entry<K,V> l = p.left;
2053 p.left = l.right;
2054 if (l.right != null) l.right.parent = p;
2055 l.parent = p.parent;
2056 if (p.parent == null)
2057 root = l;
2058 else if (p.parent.right == p)
2059 p.parent.right = l;
2060 else p.parent.left = l;
2061 l.right = p;
2062 p.parent = l;
2063 }
2064 }
2065
2066 /** From CLR */
2067 private void fixAfterInsertion(Entry<K,V> x) {
2068 x.color = RED;
2069
2070 while (x != null && x != root && x.parent.color == RED) {
2071 if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2072 Entry<K,V> y = rightOf(parentOf(parentOf(x)));
2073 if (colorOf(y) == RED) {
2074 setColor(parentOf(x), BLACK);
2075 setColor(y, BLACK);
2076 setColor(parentOf(parentOf(x)), RED);
2077 x = parentOf(parentOf(x));
2078 } else {
2079 if (x == rightOf(parentOf(x))) {
2080 x = parentOf(x);
2081 rotateLeft(x);
2082 }
2083 setColor(parentOf(x), BLACK);
2084 setColor(parentOf(parentOf(x)), RED);
2085 rotateRight(parentOf(parentOf(x)));
2086 }
2087 } else {
2088 Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2089 if (colorOf(y) == RED) {
2090 setColor(parentOf(x), BLACK);
2091 setColor(y, BLACK);
2092 setColor(parentOf(parentOf(x)), RED);
2093 x = parentOf(parentOf(x));
2094 } else {
2095 if (x == leftOf(parentOf(x))) {
2096 x = parentOf(x);
2097 rotateRight(x);
2098 }
2099 setColor(parentOf(x), BLACK);
2100 setColor(parentOf(parentOf(x)), RED);
2101 rotateLeft(parentOf(parentOf(x)));
2102 }
2103 }
2104 }
2105 root.color = BLACK;
2106 }
2107
2108 /**
2109 * Delete node p, and then rebalance the tree.
2110 */
2111 private void deleteEntry(Entry<K,V> p) {
2112 modCount++;
2113 size--;
2114
2115 // If strictly internal, copy successor's element to p and then make p
2116 // point to successor.
2117 if (p.left != null && p.right != null) {
2118 Entry<K,V> s = successor (p);
2119 p.key = s.key;
2120 p.value = s.value;
2121 p = s;
2122 } // p has 2 children
2123
2124 // Start fixup at replacement node, if it exists.
2125 Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2126
2127 if (replacement != null) {
2128 // Link replacement to parent
2129 replacement.parent = p.parent;
2130 if (p.parent == null)
2131 root = replacement;
2132 else if (p == p.parent.left)
2133 p.parent.left = replacement;
2134 else
2135 p.parent.right = replacement;
2136
2137 // Null out links so they are OK to use by fixAfterDeletion.
2138 p.left = p.right = p.parent = null;
2139
2140 // Fix replacement
2141 if (p.color == BLACK)
2142 fixAfterDeletion(replacement);
2143 } else if (p.parent == null) { // return if we are the only node.
2144 root = null;
2145 } else { // No children. Use self as phantom replacement and unlink.
2146 if (p.color == BLACK)
2147 fixAfterDeletion(p);
2148
2149 if (p.parent != null) {
2150 if (p == p.parent.left)
2151 p.parent.left = null;
2152 else if (p == p.parent.right)
2153 p.parent.right = null;
2154 p.parent = null;
2155 }
2156 }
2157 }
2158
2159 /** From CLR */
2160 private void fixAfterDeletion(Entry<K,V> x) {
2161 while (x != root && colorOf(x) == BLACK) {
2162 if (x == leftOf(parentOf(x))) {
2163 Entry<K,V> sib = rightOf(parentOf(x));
2164
2165 if (colorOf(sib) == RED) {
2166 setColor(sib, BLACK);
2167 setColor(parentOf(x), RED);
2168 rotateLeft(parentOf(x));
2169 sib = rightOf(parentOf(x));
2170 }
2171
2172 if (colorOf(leftOf(sib)) == BLACK &&
2173 colorOf(rightOf(sib)) == BLACK) {
2174 setColor(sib, RED);
2175 x = parentOf(x);
2176 } else {
2177 if (colorOf(rightOf(sib)) == BLACK) {
2178 setColor(leftOf(sib), BLACK);
2179 setColor(sib, RED);
2180 rotateRight(sib);
2181 sib = rightOf(parentOf(x));
2182 }
2183 setColor(sib, colorOf(parentOf(x)));
2184 setColor(parentOf(x), BLACK);
2185 setColor(rightOf(sib), BLACK);
2186 rotateLeft(parentOf(x));
2187 x = root;
2188 }
2189 } else { // symmetric
2190 Entry<K,V> sib = leftOf(parentOf(x));
2191
2192 if (colorOf(sib) == RED) {
2193 setColor(sib, BLACK);
2194 setColor(parentOf(x), RED);
2195 rotateRight(parentOf(x));
2196 sib = leftOf(parentOf(x));
2197 }
2198
2199 if (colorOf(rightOf(sib)) == BLACK &&
2200 colorOf(leftOf(sib)) == BLACK) {
2201 setColor(sib, RED);
2202 x = parentOf(x);
2203 } else {
2204 if (colorOf(leftOf(sib)) == BLACK) {
2205 setColor(rightOf(sib), BLACK);
2206 setColor(sib, RED);
2207 rotateLeft(sib);
2208 sib = leftOf(parentOf(x));
2209 }
2210 setColor(sib, colorOf(parentOf(x)));
2211 setColor(parentOf(x), BLACK);
2212 setColor(leftOf(sib), BLACK);
2213 rotateRight(parentOf(x));
2214 x = root;
2215 }
2216 }
2217 }
2218
2219 setColor(x, BLACK);
2220 }
2221
2222 private static final long serialVersionUID = 919286545866124006L;
2223
2224 /**
2225 * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2226 * serialize it).
2227 *
2228 * @serialData The <i>size</i> of the TreeMap (the number of key-value
2229 * mappings) is emitted (int), followed by the key (Object)
2230 * and value (Object) for each key-value mapping represented
2231 * by the TreeMap. The key-value mappings are emitted in
2232 * key-order (as determined by the TreeMap's Comparator,
2233 * or by the keys' natural ordering if the TreeMap has no
2234 * Comparator).
2235 */
2236 private void writeObject(java.io.ObjectOutputStream s)
2237 throws java.io.IOException {
2238 // Write out the Comparator and any hidden stuff
2239 s.defaultWriteObject();
2240
2241 // Write out size (number of Mappings)
2242 s.writeInt(size);
2243
2244 // Write out keys and values (alternating)
2245 for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2246 Map.Entry<K,V> e = i.next();
2247 s.writeObject(e.getKey());
2248 s.writeObject(e.getValue());
2249 }
2250 }
2251
2252 /**
2253 * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2254 * deserialize it).
2255 */
2256 private void readObject(final java.io.ObjectInputStream s)
2257 throws java.io.IOException, ClassNotFoundException {
2258 // Read in the Comparator and any hidden stuff
2259 s.defaultReadObject();
2260
2261 // Read in size
2262 int size = s.readInt();
2263
2264 buildFromSorted(size, null, s, null);
2265 }
2266
2267 /** Intended to be called only from TreeSet.readObject */
2268 void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2269 throws java.io.IOException, ClassNotFoundException {
2270 buildFromSorted(size, null, s, defaultVal);
2271 }
2272
2273 /** Intended to be called only from TreeSet.addAll */
2274 void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2275 try {
2276 buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2277 } catch (java.io.IOException cannotHappen) {
2278 } catch (ClassNotFoundException cannotHappen) {
2279 }
2280 }
2281
2282
2283 /**
2284 * Linear time tree building algorithm from sorted data. Can accept keys
2285 * and/or values from iterator or stream. This leads to too many
2286 * parameters, but seems better than alternatives. The four formats
2287 * that this method accepts are:
2288 *
2289 * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2290 * 2) An iterator of keys. (it != null, defaultVal != null).
2291 * 3) A stream of alternating serialized keys and values.
2292 * (it == null, defaultVal == null).
2293 * 4) A stream of serialized keys. (it == null, defaultVal != null).
2294 *
2295 * It is assumed that the comparator of the TreeMap is already set prior
2296 * to calling this method.
2297 *
2298 * @param size the number of keys (or key-value pairs) to be read from
2299 * the iterator or stream
2300 * @param it If non-null, new entries are created from entries
2301 * or keys read from this iterator.
2302 * @param str If non-null, new entries are created from keys and
2303 * possibly values read from this stream in serialized form.
2304 * Exactly one of it and str should be non-null.
2305 * @param defaultVal if non-null, this default value is used for
2306 * each value in the map. If null, each value is read from
2307 * iterator or stream, as described above.
2308 * @throws IOException propagated from stream reads. This cannot
2309 * occur if str is null.
2310 * @throws ClassNotFoundException propagated from readObject.
2311 * This cannot occur if str is null.
2312 */
2313 private void buildFromSorted(int size, Iterator it,
2314 java.io.ObjectInputStream str,
2315 V defaultVal)
2316 throws java.io.IOException, ClassNotFoundException {
2317 this.size = size;
2318 root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2319 it, str, defaultVal);
2320 }
2321
2322 /**
2323 * Recursive "helper method" that does the real work of the
2324 * previous method. Identically named parameters have
2325 * identical definitions. Additional parameters are documented below.
2326 * It is assumed that the comparator and size fields of the TreeMap are
2327 * already set prior to calling this method. (It ignores both fields.)
2328 *
2329 * @param level the current level of tree. Initial call should be 0.
2330 * @param lo the first element index of this subtree. Initial should be 0.
2331 * @param hi the last element index of this subtree. Initial should be
2332 * size-1.
2333 * @param redLevel the level at which nodes should be red.
2334 * Must be equal to computeRedLevel for tree of this size.
2335 */
2336 private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2337 int redLevel,
2338 Iterator it,
2339 java.io.ObjectInputStream str,
2340 V defaultVal)
2341 throws java.io.IOException, ClassNotFoundException {
2342 /*
2343 * Strategy: The root is the middlemost element. To get to it, we
2344 * have to first recursively construct the entire left subtree,
2345 * so as to grab all of its elements. We can then proceed with right
2346 * subtree.
2347 *
2348 * The lo and hi arguments are the minimum and maximum
2349 * indices to pull out of the iterator or stream for current subtree.
2350 * They are not actually indexed, we just proceed sequentially,
2351 * ensuring that items are extracted in corresponding order.
2352 */
2353
2354 if (hi < lo) return null;
2355
2356 int mid = (lo + hi) >>> 1;
2357
2358 Entry<K,V> left = null;
2359 if (lo < mid)
2360 left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2361 it, str, defaultVal);
2362
2363 // extract key and/or value from iterator or stream
2364 K key;
2365 V value;
2366 if (it != null) {
2367 if (defaultVal==null) {
2368 Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2369 key = entry.getKey();
2370 value = entry.getValue();
2371 } else {
2372 key = (K)it.next();
2373 value = defaultVal;
2374 }
2375 } else { // use stream
2376 key = (K) str.readObject();
2377 value = (defaultVal != null ? defaultVal : (V) str.readObject());
2378 }
2379
2380 Entry<K,V> middle = new Entry<K,V>(key, value, null);
2381
2382 // color nodes in non-full bottommost level red
2383 if (level == redLevel)
2384 middle.color = RED;
2385
2386 if (left != null) {
2387 middle.left = left;
2388 left.parent = middle;
2389 }
2390
2391 if (mid < hi) {
2392 Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2393 it, str, defaultVal);
2394 middle.right = right;
2395 right.parent = middle;
2396 }
2397
2398 return middle;
2399 }
2400
2401 /**
2402 * Find the level down to which to assign all nodes BLACK. This is the
2403 * last `full' level of the complete binary tree produced by
2404 * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2405 * set of color assignments wrt future insertions.) This level number is
2406 * computed by finding the number of splits needed to reach the zeroeth
2407 * node. (The answer is ~lg(N), but in any case must be computed by same
2408 * quick O(lg(N)) loop.)
2409 */
2410 private static int computeRedLevel(int sz) {
2411 int level = 0;
2412 for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2413 level++;
2414 return level;
2415 }
2416 }