--- jsr166/src/main/java/util/Vector.java 2006/05/28 23:36:29 1.13 +++ jsr166/src/main/java/util/Vector.java 2006/06/25 19:58:14 1.15 @@ -8,18 +8,18 @@ package java.util; /** - * The Vector class implements a growable array of + * The {@code Vector} class implements a growable array of * objects. Like an array, it contains components that can be * accessed using an integer index. However, the size of a - * Vector can grow or shrink as needed to accommodate - * adding and removing items after the Vector has been created. + * {@code Vector} can grow or shrink as needed to accommodate + * adding and removing items after the {@code Vector} has been created. * *

Each vector tries to optimize storage management by maintaining a - * capacity and a capacityIncrement. The - * capacity is always at least as large as the vector + * {@code capacity} and a {@code capacityIncrement}. The + * {@code capacity} is always at least as large as the vector * size; it is usually larger because as components are added to the * vector, the vector's storage increases in chunks the size of - * capacityIncrement. An application can increase the + * {@code capacityIncrement}. An application can increase the * capacity of a vector before inserting a large number of * components; this reduces the amount of incremental reallocation. * @@ -36,7 +36,7 @@ package java.util; *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators - * throw ConcurrentModificationException on a best-effort basis. + * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. @@ -63,18 +63,18 @@ public class Vector /** * The array buffer into which the components of the vector are * stored. The capacity of the vector is the length of this array buffer, - * and is at least large enough to contain all the vector's elements.

+ * and is at least large enough to contain all the vector's elements. * - * Any array elements following the last element in the Vector are null. + *

Any array elements following the last element in the Vector are null. * * @serial */ protected Object[] elementData; /** - * The number of valid components in this Vector object. - * Components elementData[0] through - * elementData[elementCount-1] are the actual items. + * The number of valid components in this {@code Vector} object. + * Components {@code elementData[0]} through + * {@code elementData[elementCount-1]} are the actual items. * * @serial */ @@ -100,8 +100,8 @@ public class Vector * @param initialCapacity the initial capacity of the vector * @param capacityIncrement the amount by which the capacity is * increased when the vector overflows - * @exception IllegalArgumentException if the specified initial capacity - * is negative + * @throws IllegalArgumentException if the specified initial capacity + * is negative */ public Vector(int initialCapacity, int capacityIncrement) { super(); @@ -117,8 +117,8 @@ public class Vector * with its capacity increment equal to zero. * * @param initialCapacity the initial capacity of the vector - * @exception IllegalArgumentException if the specified initial capacity - * is negative + * @throws IllegalArgumentException if the specified initial capacity + * is negative */ public Vector(int initialCapacity) { this(initialCapacity, 0); @@ -126,7 +126,7 @@ public class Vector /** * Constructs an empty vector so that its internal data array - * has size 10 and its standard capacity increment is + * has size {@code 10} and its standard capacity increment is * zero. */ public Vector() { @@ -153,8 +153,8 @@ public class Vector /** * Copies the components of this vector into the specified array. - * The item at index k in this vector is copied into - * component k of anArray. + * The item at index {@code k} in this vector is copied into + * component {@code k} of {@code anArray}. * * @param anArray the array into which the components get copied * @throws NullPointerException if the given array is null @@ -172,7 +172,7 @@ public class Vector * Trims the capacity of this vector to be the vector's current * size. If the capacity of this vector is larger than its current * size, then the capacity is changed to equal the size by replacing - * its internal data array, kept in the field elementData, + * its internal data array, kept in the field {@code elementData}, * with a smaller one. An application can use this operation to * minimize the storage of a vector. */ @@ -190,14 +190,14 @@ public class Vector * the minimum capacity argument. * *

If the current capacity of this vector is less than - * minCapacity, then its capacity is increased by replacing its - * internal data array, kept in the field elementData, with a + * {@code minCapacity}, then its capacity is increased by replacing its + * internal data array, kept in the field {@code elementData}, with a * larger one. The size of the new data array will be the old size plus - * capacityIncrement, unless the value of - * capacityIncrement is less than or equal to zero, in which case + * {@code capacityIncrement}, unless the value of + * {@code capacityIncrement} is less than or equal to zero, in which case * the new capacity will be twice the old capacity; but if this new size - * is still smaller than minCapacity, then the new capacity will - * be minCapacity. + * is still smaller than {@code minCapacity}, then the new capacity will + * be {@code minCapacity}. * * @param minCapacity the desired minimum capacity */ @@ -212,7 +212,7 @@ public class Vector * method for ensuring capacity without incurring the cost of an * extra synchronization. * - * @see java.util.Vector#ensureCapacity(int) + * @see #ensureCapacity(int) */ private void ensureCapacityHelper(int minCapacity) { int oldCapacity = elementData.length; @@ -229,9 +229,9 @@ public class Vector /** * Sets the size of this vector. If the new size is greater than the - * current size, new null items are added to the end of + * current size, new {@code null} items are added to the end of * the vector. If the new size is less than the current size, all - * components at index newSize and greater are discarded. + * components at index {@code newSize} and greater are discarded. * * @param newSize the new size of this vector * @throws ArrayIndexOutOfBoundsException if new size is negative @@ -252,7 +252,7 @@ public class Vector * Returns the current capacity of this vector. * * @return the current capacity (the length of its internal - * data array, kept in the field elementData + * data array, kept in the field {@code elementData} * of this vector) */ public synchronized int capacity() { @@ -271,9 +271,9 @@ public class Vector /** * Tests if this vector has no components. * - * @return true if and only if this vector has + * @return {@code true} if and only if this vector has * no components, that is, its size is zero; - * false otherwise. + * {@code false} otherwise. */ public synchronized boolean isEmpty() { return elementCount == 0; @@ -281,12 +281,11 @@ public class Vector /** * Returns an enumeration of the components of this vector. The - * returned Enumeration object will generate all items in - * this vector. The first item generated is the item at index 0, - * then the item at index 1, and so on. + * returned {@code Enumeration} object will generate all items in + * this vector. The first item generated is the item at index {@code 0}, + * then the item at index {@code 1}, and so on. * * @return an enumeration of the components of this vector - * @see Enumeration * @see Iterator */ public Enumeration elements() { @@ -309,13 +308,13 @@ public class Vector } /** - * Returns true if this vector contains the specified element. - * More formally, returns true if and only if this vector - * contains at least one element e such that + * Returns {@code true} if this vector contains the specified element. + * More formally, returns {@code true} if and only if this vector + * contains at least one element {@code e} such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this vector is to be tested - * @return true if this vector contains the specified element + * @return {@code true} if this vector contains the specified element */ public boolean contains(Object o) { return indexOf(o, 0) >= 0; @@ -324,7 +323,7 @@ public class Vector /** * Returns the index of the first occurrence of the specified element * in this vector, or -1 if this vector does not contain the element. - * More formally, returns the lowest index i such that + * More formally, returns the lowest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. * @@ -338,17 +337,17 @@ public class Vector /** * Returns the index of the first occurrence of the specified element in - * this vector, searching forwards from index, or returns -1 if + * this vector, searching forwards from {@code index}, or returns -1 if * the element is not found. - * More formally, returns the lowest index i such that + * More formally, returns the lowest index {@code i} such that * (i >= index && (o==null ? get(i)==null : o.equals(get(i)))), * or -1 if there is no such index. * * @param o element to search for * @param index index to start searching from * @return the index of the first occurrence of the element in - * this vector at position index or later in the vector; - * -1 if the element is not found. + * this vector at position {@code index} or later in the vector; + * {@code -1} if the element is not found. * @throws IndexOutOfBoundsException if the specified index is negative * @see Object#equals(Object) */ @@ -368,7 +367,7 @@ public class Vector /** * Returns the index of the last occurrence of the specified element * in this vector, or -1 if this vector does not contain the element. - * More formally, returns the highest index i such that + * More formally, returns the highest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. * @@ -382,16 +381,16 @@ public class Vector /** * Returns the index of the last occurrence of the specified element in - * this vector, searching backwards from index, or returns -1 if + * this vector, searching backwards from {@code index}, or returns -1 if * the element is not found. - * More formally, returns the highest index i such that + * More formally, returns the highest index {@code i} such that * (i <= index && (o==null ? get(i)==null : o.equals(get(i)))), * or -1 if there is no such index. * * @param o element to search for * @param index index to start searching backwards from * @return the index of the last occurrence of the element at position - * less than or equal to index in this vector; + * less than or equal to {@code index} in this vector; * -1 if the element is not found. * @throws IndexOutOfBoundsException if the specified index is greater * than or equal to the current size of this vector @@ -413,18 +412,15 @@ public class Vector } /** - * Returns the component at the specified index.

+ * Returns the component at the specified index. * - * This method is identical in functionality to the get method - * (which is part of the List interface). + *

This method is identical in functionality to the {@link #get(int)} + * method (which is part of the {@link List} interface). * * @param index an index into this vector * @return the component at the specified index - * @exception ArrayIndexOutOfBoundsException if the index - * is negative or not less than the current size of this - * Vector object. - * @see #get(int) - * @see List + * @throws ArrayIndexOutOfBoundsException if the index is out of range + * ({@code index < 0 || index >= size()}) */ public synchronized E elementAt(int index) { if (index >= elementCount) { @@ -435,11 +431,11 @@ public class Vector } /** - * Returns the first component (the item at index 0) of + * Returns the first component (the item at index {@code 0}) of * this vector. * * @return the first component of this vector - * @exception NoSuchElementException if this vector has no components + * @throws NoSuchElementException if this vector has no components */ public synchronized E firstElement() { if (elementCount == 0) { @@ -453,7 +449,7 @@ public class Vector * * @return the last component of the vector, i.e., the component at index * size() - 1. - * @exception NoSuchElementException if this vector is empty + * @throws NoSuchElementException if this vector is empty */ public synchronized E lastElement() { if (elementCount == 0) { @@ -463,11 +459,11 @@ public class Vector } /** - * Sets the component at the specified index of this + * Sets the component at the specified {@code index} of this * vector to be the specified object. The previous component at that * position is discarded.

* - * The index must be a value greater than or equal to 0 + * The index must be a value greater than or equal to {@code 0} * and less than the current size of the vector.

* * This method is identical in functionality to the set method @@ -478,7 +474,7 @@ public class Vector * * @param obj what the component is to be set to * @param index the specified index - * @exception ArrayIndexOutOfBoundsException if the index was invalid + * @throws ArrayIndexOutOfBoundsException if the index was invalid * @see #size() * @see List * @see #set(int, java.lang.Object) @@ -494,14 +490,14 @@ public class Vector /** * Deletes the component at the specified index. Each component in * this vector with an index greater or equal to the specified - * index is shifted downward to have an index one + * {@code index} is shifted downward to have an index one * smaller than the value it had previously. The size of this vector - * is decreased by 1.

+ * is decreased by {@code 1}. * - * The index must be a value greater than or equal to 0 - * and less than the current size of the vector.

+ *

The index must be a value greater than or equal to {@code 0} + * and less than the current size of the vector. * - * This method is identical in functionality to the remove method + *

This method is identical in functionality to the remove method * (which is part of the List interface). Note that the remove method * returns the old value that was stored at the specified position. * @@ -530,17 +526,17 @@ public class Vector /** * Inserts the specified object as a component in this vector at the - * specified index. Each component in this vector with - * an index greater or equal to the specified index is + * specified {@code index}. Each component in this vector with + * an index greater or equal to the specified {@code index} is * shifted upward to have an index one greater than the value it had - * previously.

+ * previously. * - * The index must be a value greater than or equal to 0 + *

The index must be a value greater than or equal to {@code 0} * and less than or equal to the current size of the vector. (If the * index is equal to the current size of the vector, the new element - * is appended to the Vector.)

+ * is appended to the Vector.) * - * This method is identical in functionality to the add(Object, int) method + *

This method is identical in functionality to the add(Object, int) method * (which is part of the List interface). Note that the add method reverses * the order of the parameters, to more closely match array usage. * @@ -592,8 +588,8 @@ public class Vector * method (which is part of the List interface). * * @param obj the component to be removed - * @return true if the argument was a component of this - * vector; false otherwise. + * @return {@code true} if the argument was a component of this + * vector; {@code false} otherwise. * @see List#remove(Object) * @see List */ @@ -628,7 +624,7 @@ public class Vector /** * Returns a clone of this vector. The copy will contain a * reference to a clone of the internal data array, not a reference - * to the original internal data array of this Vector object. + * to the original internal data array of this {@code Vector} object. * * @return a clone of this vector */ @@ -731,7 +727,7 @@ public class Vector * Appends the specified element to the end of this Vector. * * @param e element to be appended to this Vector - * @return true (as specified by {@link Collection#add}) + * @return {@code true} (as specified by {@link Collection#add}) * @since 1.2 */ public synchronized boolean add(E e) { @@ -745,7 +741,7 @@ public class Vector * Removes the first occurrence of the specified element in this Vector * If the Vector does not contain the element, it is unchanged. More * formally, removes the element with the lowest index i such that - * (o==null ? get(i)==null : o.equals(get(i))) (if such + * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such * an element exists). * * @param o element to be removed from this Vector, if present @@ -832,7 +828,7 @@ public class Vector * specified Collection is this Vector, and this Vector is nonempty.) * * @param c elements to be inserted into this Vector - * @return true if this Vector changed as a result of the call + * @return {@code true} if this Vector changed as a result of the call * @throws NullPointerException if the specified collection is null * @since 1.2 */ @@ -895,7 +891,7 @@ public class Vector * @param index index at which to insert the first element from the * specified collection * @param c elements to be inserted into this Vector - * @return true if this Vector changed as a result of the call + * @return {@code true} if this Vector changed as a result of the call * @exception ArrayIndexOutOfBoundsException index out of range (index * < 0 || index > size()) * @throws NullPointerException if the specified collection is null @@ -924,9 +920,9 @@ public class Vector * Compares the specified Object with this Vector for equality. Returns * true if and only if the specified Object is also a List, both Lists * have the same size, and all corresponding pairs of elements in the two - * Lists are equal. (Two elements e1 and - * e2 are equal if (e1==null ? e2==null : - * e1.equals(e2)).) In other words, two Lists are defined to be + * Lists are equal. (Two elements {@code e1} and + * {@code e2} are equal if {@code (e1==null ? e2==null : + * e1.equals(e2))}.) In other words, two Lists are defined to be * equal if they contain the same elements in the same order. * * @param o the Object to be compared for equality with this Vector @@ -974,7 +970,7 @@ public class Vector } /** - * Save the state of the Vector instance to a stream (that + * Save the state of the {@code Vector} instance to a stream (that * is, serialize it). This method is present merely for synchronization. * It just calls the default writeObject method. */