ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.58
Committed: Fri Jul 24 20:57:26 2020 UTC (3 years, 9 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.57: +7 -6 lines
Log Message:
8231800: Better listing of arrays

File Contents

# Content
1 /*
2 * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.io.IOException;
29 import java.io.ObjectInputStream;
30 import java.io.StreamCorruptedException;
31 import java.util.function.Consumer;
32 import java.util.function.Predicate;
33 import java.util.function.UnaryOperator;
34
35 import jdk.internal.util.ArraysSupport;
36
37 /**
38 * The {@code Vector} class implements a growable array of
39 * objects. Like an array, it contains components that can be
40 * accessed using an integer index. However, the size of a
41 * {@code Vector} can grow or shrink as needed to accommodate
42 * adding and removing items after the {@code Vector} has been created.
43 *
44 * <p>Each vector tries to optimize storage management by maintaining a
45 * {@code capacity} and a {@code capacityIncrement}. The
46 * {@code capacity} is always at least as large as the vector
47 * size; it is usually larger because as components are added to the
48 * vector, the vector's storage increases in chunks the size of
49 * {@code capacityIncrement}. An application can increase the
50 * capacity of a vector before inserting a large number of
51 * components; this reduces the amount of incremental reallocation.
52 *
53 * <p id="fail-fast">
54 * The iterators returned by this class's {@link #iterator() iterator} and
55 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
56 * if the vector is structurally modified at any time after the iterator is
57 * created, in any way except through the iterator's own
58 * {@link ListIterator#remove() remove} or
59 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
60 * {@link ConcurrentModificationException}. Thus, in the face of
61 * concurrent modification, the iterator fails quickly and cleanly, rather
62 * than risking arbitrary, non-deterministic behavior at an undetermined
63 * time in the future. The {@link Enumeration Enumerations} returned by
64 * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
65 * Vector is structurally modified at any time after the enumeration is
66 * created then the results of enumerating are undefined.
67 *
68 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
69 * as it is, generally speaking, impossible to make any hard guarantees in the
70 * presence of unsynchronized concurrent modification. Fail-fast iterators
71 * throw {@code ConcurrentModificationException} on a best-effort basis.
72 * Therefore, it would be wrong to write a program that depended on this
73 * exception for its correctness: <i>the fail-fast behavior of iterators
74 * should be used only to detect bugs.</i>
75 *
76 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
77 * implement the {@link List} interface, making it a member of the
78 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
79 * Java Collections Framework</a>. Unlike the new collection
80 * implementations, {@code Vector} is synchronized. If a thread-safe
81 * implementation is not needed, it is recommended to use {@link
82 * ArrayList} in place of {@code Vector}.
83 *
84 * @param <E> Type of component elements
85 *
86 * @author Lee Boynton
87 * @author Jonathan Payne
88 * @see Collection
89 * @see LinkedList
90 * @since 1.0
91 */
92 public class Vector<E>
93 extends AbstractList<E>
94 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
95 {
96 /**
97 * The array buffer into which the components of the vector are
98 * stored. The capacity of the vector is the length of this array buffer,
99 * and is at least large enough to contain all the vector's elements.
100 *
101 * <p>Any array elements following the last element in the Vector are null.
102 *
103 * @serial
104 */
105 @SuppressWarnings("serial") // Conditionally serializable
106 protected Object[] elementData;
107
108 /**
109 * The number of valid components in this {@code Vector} object.
110 * Components {@code elementData[0]} through
111 * {@code elementData[elementCount-1]} are the actual items.
112 *
113 * @serial
114 */
115 protected int elementCount;
116
117 /**
118 * The amount by which the capacity of the vector is automatically
119 * incremented when its size becomes greater than its capacity. If
120 * the capacity increment is less than or equal to zero, the capacity
121 * of the vector is doubled each time it needs to grow.
122 *
123 * @serial
124 */
125 protected int capacityIncrement;
126
127 /** use serialVersionUID from JDK 1.0.2 for interoperability */
128 // OPENJDK @java.io.Serial
129 private static final long serialVersionUID = -2767605614048989439L;
130
131 /**
132 * Constructs an empty vector with the specified initial capacity and
133 * capacity increment.
134 *
135 * @param initialCapacity the initial capacity of the vector
136 * @param capacityIncrement the amount by which the capacity is
137 * increased when the vector overflows
138 * @throws IllegalArgumentException if the specified initial capacity
139 * is negative
140 */
141 public Vector(int initialCapacity, int capacityIncrement) {
142 super();
143 if (initialCapacity < 0)
144 throw new IllegalArgumentException("Illegal Capacity: "+
145 initialCapacity);
146 this.elementData = new Object[initialCapacity];
147 this.capacityIncrement = capacityIncrement;
148 }
149
150 /**
151 * Constructs an empty vector with the specified initial capacity and
152 * with its capacity increment equal to zero.
153 *
154 * @param initialCapacity the initial capacity of the vector
155 * @throws IllegalArgumentException if the specified initial capacity
156 * is negative
157 */
158 public Vector(int initialCapacity) {
159 this(initialCapacity, 0);
160 }
161
162 /**
163 * Constructs an empty vector so that its internal data array
164 * has size {@code 10} and its standard capacity increment is
165 * zero.
166 */
167 public Vector() {
168 this(10);
169 }
170
171 /**
172 * Constructs a vector containing the elements of the specified
173 * collection, in the order they are returned by the collection's
174 * iterator.
175 *
176 * @param c the collection whose elements are to be placed into this
177 * vector
178 * @throws NullPointerException if the specified collection is null
179 * @since 1.2
180 */
181 public Vector(Collection<? extends E> c) {
182 Object[] a = c.toArray();
183 elementCount = a.length;
184 if (c.getClass() == ArrayList.class) {
185 elementData = a;
186 } else {
187 elementData = Arrays.copyOf(a, elementCount, Object[].class);
188 }
189 }
190
191 /**
192 * Copies the components of this vector into the specified array.
193 * The item at index {@code k} in this vector is copied into
194 * component {@code k} of {@code anArray}.
195 *
196 * @param anArray the array into which the components get copied
197 * @throws NullPointerException if the given array is null
198 * @throws IndexOutOfBoundsException if the specified array is not
199 * large enough to hold all the components of this vector
200 * @throws ArrayStoreException if a component of this vector is not of
201 * a runtime type that can be stored in the specified array
202 * @see #toArray(Object[])
203 */
204 public synchronized void copyInto(Object[] anArray) {
205 System.arraycopy(elementData, 0, anArray, 0, elementCount);
206 }
207
208 /**
209 * Trims the capacity of this vector to be the vector's current
210 * size. If the capacity of this vector is larger than its current
211 * size, then the capacity is changed to equal the size by replacing
212 * its internal data array, kept in the field {@code elementData},
213 * with a smaller one. An application can use this operation to
214 * minimize the storage of a vector.
215 */
216 public synchronized void trimToSize() {
217 modCount++;
218 int oldCapacity = elementData.length;
219 if (elementCount < oldCapacity) {
220 elementData = Arrays.copyOf(elementData, elementCount);
221 }
222 }
223
224 /**
225 * Increases the capacity of this vector, if necessary, to ensure
226 * that it can hold at least the number of components specified by
227 * the minimum capacity argument.
228 *
229 * <p>If the current capacity of this vector is less than
230 * {@code minCapacity}, then its capacity is increased by replacing its
231 * internal data array, kept in the field {@code elementData}, with a
232 * larger one. The size of the new data array will be the old size plus
233 * {@code capacityIncrement}, unless the value of
234 * {@code capacityIncrement} is less than or equal to zero, in which case
235 * the new capacity will be twice the old capacity; but if this new size
236 * is still smaller than {@code minCapacity}, then the new capacity will
237 * be {@code minCapacity}.
238 *
239 * @param minCapacity the desired minimum capacity
240 */
241 public synchronized void ensureCapacity(int minCapacity) {
242 if (minCapacity > 0) {
243 modCount++;
244 if (minCapacity > elementData.length)
245 grow(minCapacity);
246 }
247 }
248
249 /**
250 * Increases the capacity to ensure that it can hold at least the
251 * number of elements specified by the minimum capacity argument.
252 *
253 * @param minCapacity the desired minimum capacity
254 * @throws OutOfMemoryError if minCapacity is less than zero
255 */
256 private Object[] grow(int minCapacity) {
257 int oldCapacity = elementData.length;
258 int newCapacity = ArraysSupport.newLength(oldCapacity,
259 minCapacity - oldCapacity, /* minimum growth */
260 capacityIncrement > 0 ? capacityIncrement : oldCapacity
261 /* preferred growth */);
262 return elementData = Arrays.copyOf(elementData, newCapacity);
263 }
264
265 private Object[] grow() {
266 return grow(elementCount + 1);
267 }
268
269 /**
270 * Sets the size of this vector. If the new size is greater than the
271 * current size, new {@code null} items are added to the end of
272 * the vector. If the new size is less than the current size, all
273 * components at index {@code newSize} and greater are discarded.
274 *
275 * @param newSize the new size of this vector
276 * @throws ArrayIndexOutOfBoundsException if the new size is negative
277 */
278 public synchronized void setSize(int newSize) {
279 modCount++;
280 if (newSize > elementData.length)
281 grow(newSize);
282 final Object[] es = elementData;
283 for (int to = elementCount, i = newSize; i < to; i++)
284 es[i] = null;
285 elementCount = newSize;
286 }
287
288 /**
289 * Returns the current capacity of this vector.
290 *
291 * @return the current capacity (the length of its internal
292 * data array, kept in the field {@code elementData}
293 * of this vector)
294 */
295 public synchronized int capacity() {
296 return elementData.length;
297 }
298
299 /**
300 * Returns the number of components in this vector.
301 *
302 * @return the number of components in this vector
303 */
304 public synchronized int size() {
305 return elementCount;
306 }
307
308 /**
309 * Tests if this vector has no components.
310 *
311 * @return {@code true} if and only if this vector has
312 * no components, that is, its size is zero;
313 * {@code false} otherwise.
314 */
315 public synchronized boolean isEmpty() {
316 return elementCount == 0;
317 }
318
319 /**
320 * Returns an enumeration of the components of this vector. The
321 * returned {@code Enumeration} object will generate all items in
322 * this vector. The first item generated is the item at index {@code 0},
323 * then the item at index {@code 1}, and so on. If the vector is
324 * structurally modified while enumerating over the elements then the
325 * results of enumerating are undefined.
326 *
327 * @return an enumeration of the components of this vector
328 * @see Iterator
329 */
330 public Enumeration<E> elements() {
331 return new Enumeration<E>() {
332 int count = 0;
333
334 public boolean hasMoreElements() {
335 return count < elementCount;
336 }
337
338 public E nextElement() {
339 synchronized (Vector.this) {
340 if (count < elementCount) {
341 return elementData(count++);
342 }
343 }
344 throw new NoSuchElementException("Vector Enumeration");
345 }
346 };
347 }
348
349 /**
350 * Returns {@code true} if this vector contains the specified element.
351 * More formally, returns {@code true} if and only if this vector
352 * contains at least one element {@code e} such that
353 * {@code Objects.equals(o, e)}.
354 *
355 * @param o element whose presence in this vector is to be tested
356 * @return {@code true} if this vector contains the specified element
357 */
358 public boolean contains(Object o) {
359 return indexOf(o, 0) >= 0;
360 }
361
362 /**
363 * Returns the index of the first occurrence of the specified element
364 * in this vector, or -1 if this vector does not contain the element.
365 * More formally, returns the lowest index {@code i} such that
366 * {@code Objects.equals(o, get(i))},
367 * or -1 if there is no such index.
368 *
369 * @param o element to search for
370 * @return the index of the first occurrence of the specified element in
371 * this vector, or -1 if this vector does not contain the element
372 */
373 public int indexOf(Object o) {
374 return indexOf(o, 0);
375 }
376
377 /**
378 * Returns the index of the first occurrence of the specified element in
379 * this vector, searching forwards from {@code index}, or returns -1 if
380 * the element is not found.
381 * More formally, returns the lowest index {@code i} such that
382 * {@code (i >= index && Objects.equals(o, get(i)))},
383 * or -1 if there is no such index.
384 *
385 * @param o element to search for
386 * @param index index to start searching from
387 * @return the index of the first occurrence of the element in
388 * this vector at position {@code index} or later in the vector;
389 * {@code -1} if the element is not found.
390 * @throws IndexOutOfBoundsException if the specified index is negative
391 * @see Object#equals(Object)
392 */
393 public synchronized int indexOf(Object o, int index) {
394 if (o == null) {
395 for (int i = index ; i < elementCount ; i++)
396 if (elementData[i]==null)
397 return i;
398 } else {
399 for (int i = index ; i < elementCount ; i++)
400 if (o.equals(elementData[i]))
401 return i;
402 }
403 return -1;
404 }
405
406 /**
407 * Returns the index of the last occurrence of the specified element
408 * in this vector, or -1 if this vector does not contain the element.
409 * More formally, returns the highest index {@code i} such that
410 * {@code Objects.equals(o, get(i))},
411 * or -1 if there is no such index.
412 *
413 * @param o element to search for
414 * @return the index of the last occurrence of the specified element in
415 * this vector, or -1 if this vector does not contain the element
416 */
417 public synchronized int lastIndexOf(Object o) {
418 return lastIndexOf(o, elementCount-1);
419 }
420
421 /**
422 * Returns the index of the last occurrence of the specified element in
423 * this vector, searching backwards from {@code index}, or returns -1 if
424 * the element is not found.
425 * More formally, returns the highest index {@code i} such that
426 * {@code (i <= index && Objects.equals(o, get(i)))},
427 * or -1 if there is no such index.
428 *
429 * @param o element to search for
430 * @param index index to start searching backwards from
431 * @return the index of the last occurrence of the element at position
432 * less than or equal to {@code index} in this vector;
433 * -1 if the element is not found.
434 * @throws IndexOutOfBoundsException if the specified index is greater
435 * than or equal to the current size of this vector
436 */
437 public synchronized int lastIndexOf(Object o, int index) {
438 if (index >= elementCount)
439 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
440
441 if (o == null) {
442 for (int i = index; i >= 0; i--)
443 if (elementData[i]==null)
444 return i;
445 } else {
446 for (int i = index; i >= 0; i--)
447 if (o.equals(elementData[i]))
448 return i;
449 }
450 return -1;
451 }
452
453 /**
454 * Returns the component at the specified index.
455 *
456 * <p>This method is identical in functionality to the {@link #get(int)}
457 * method (which is part of the {@link List} interface).
458 *
459 * @param index an index into this vector
460 * @return the component at the specified index
461 * @throws ArrayIndexOutOfBoundsException if the index is out of range
462 * ({@code index < 0 || index >= size()})
463 */
464 public synchronized E elementAt(int index) {
465 if (index >= elementCount) {
466 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
467 }
468
469 return elementData(index);
470 }
471
472 /**
473 * Returns the first component (the item at index {@code 0}) of
474 * this vector.
475 *
476 * @return the first component of this vector
477 * @throws NoSuchElementException if this vector has no components
478 */
479 public synchronized E firstElement() {
480 if (elementCount == 0) {
481 throw new NoSuchElementException();
482 }
483 return elementData(0);
484 }
485
486 /**
487 * Returns the last component of the vector.
488 *
489 * @return the last component of the vector, i.e., the component at index
490 * {@code size() - 1}
491 * @throws NoSuchElementException if this vector is empty
492 */
493 public synchronized E lastElement() {
494 if (elementCount == 0) {
495 throw new NoSuchElementException();
496 }
497 return elementData(elementCount - 1);
498 }
499
500 /**
501 * Sets the component at the specified {@code index} of this
502 * vector to be the specified object. The previous component at that
503 * position is discarded.
504 *
505 * <p>The index must be a value greater than or equal to {@code 0}
506 * and less than the current size of the vector.
507 *
508 * <p>This method is identical in functionality to the
509 * {@link #set(int, Object) set(int, E)}
510 * method (which is part of the {@link List} interface). Note that the
511 * {@code set} method reverses the order of the parameters, to more closely
512 * match array usage. Note also that the {@code set} method returns the
513 * old value that was stored at the specified position.
514 *
515 * @param obj what the component is to be set to
516 * @param index the specified index
517 * @throws ArrayIndexOutOfBoundsException if the index is out of range
518 * ({@code index < 0 || index >= size()})
519 */
520 public synchronized void setElementAt(E obj, int index) {
521 if (index >= elementCount) {
522 throw new ArrayIndexOutOfBoundsException(index + " >= " +
523 elementCount);
524 }
525 elementData[index] = obj;
526 }
527
528 /**
529 * Deletes the component at the specified index. Each component in
530 * this vector with an index greater or equal to the specified
531 * {@code index} is shifted downward to have an index one
532 * smaller than the value it had previously. The size of this vector
533 * is decreased by {@code 1}.
534 *
535 * <p>The index must be a value greater than or equal to {@code 0}
536 * and less than the current size of the vector.
537 *
538 * <p>This method is identical in functionality to the {@link #remove(int)}
539 * method (which is part of the {@link List} interface). Note that the
540 * {@code remove} method returns the old value that was stored at the
541 * specified position.
542 *
543 * @param index the index of the object to remove
544 * @throws ArrayIndexOutOfBoundsException if the index is out of range
545 * ({@code index < 0 || index >= size()})
546 */
547 public synchronized void removeElementAt(int index) {
548 if (index >= elementCount) {
549 throw new ArrayIndexOutOfBoundsException(index + " >= " +
550 elementCount);
551 }
552 else if (index < 0) {
553 throw new ArrayIndexOutOfBoundsException(index);
554 }
555 int j = elementCount - index - 1;
556 if (j > 0) {
557 System.arraycopy(elementData, index + 1, elementData, index, j);
558 }
559 modCount++;
560 elementCount--;
561 elementData[elementCount] = null; /* to let gc do its work */
562 // checkInvariants();
563 }
564
565 /**
566 * Inserts the specified object as a component in this vector at the
567 * specified {@code index}. Each component in this vector with
568 * an index greater or equal to the specified {@code index} is
569 * shifted upward to have an index one greater than the value it had
570 * previously.
571 *
572 * <p>The index must be a value greater than or equal to {@code 0}
573 * and less than or equal to the current size of the vector. (If the
574 * index is equal to the current size of the vector, the new element
575 * is appended to the Vector.)
576 *
577 * <p>This method is identical in functionality to the
578 * {@link #add(int, Object) add(int, E)}
579 * method (which is part of the {@link List} interface). Note that the
580 * {@code add} method reverses the order of the parameters, to more closely
581 * match array usage.
582 *
583 * @param obj the component to insert
584 * @param index where to insert the new component
585 * @throws ArrayIndexOutOfBoundsException if the index is out of range
586 * ({@code index < 0 || index > size()})
587 */
588 public synchronized void insertElementAt(E obj, int index) {
589 if (index > elementCount) {
590 throw new ArrayIndexOutOfBoundsException(index
591 + " > " + elementCount);
592 }
593 modCount++;
594 final int s = elementCount;
595 Object[] elementData = this.elementData;
596 if (s == elementData.length)
597 elementData = grow();
598 System.arraycopy(elementData, index,
599 elementData, index + 1,
600 s - index);
601 elementData[index] = obj;
602 elementCount = s + 1;
603 }
604
605 /**
606 * Adds the specified component to the end of this vector,
607 * increasing its size by one. The capacity of this vector is
608 * increased if its size becomes greater than its capacity.
609 *
610 * <p>This method is identical in functionality to the
611 * {@link #add(Object) add(E)}
612 * method (which is part of the {@link List} interface).
613 *
614 * @param obj the component to be added
615 */
616 public synchronized void addElement(E obj) {
617 modCount++;
618 add(obj, elementData, elementCount);
619 }
620
621 /**
622 * Removes the first (lowest-indexed) occurrence of the argument
623 * from this vector. If the object is found in this vector, each
624 * component in the vector with an index greater or equal to the
625 * object's index is shifted downward to have an index one smaller
626 * than the value it had previously.
627 *
628 * <p>This method is identical in functionality to the
629 * {@link #remove(Object)} method (which is part of the
630 * {@link List} interface).
631 *
632 * @param obj the component to be removed
633 * @return {@code true} if the argument was a component of this
634 * vector; {@code false} otherwise.
635 */
636 public synchronized boolean removeElement(Object obj) {
637 modCount++;
638 int i = indexOf(obj);
639 if (i >= 0) {
640 removeElementAt(i);
641 return true;
642 }
643 return false;
644 }
645
646 /**
647 * Removes all components from this vector and sets its size to zero.
648 *
649 * <p>This method is identical in functionality to the {@link #clear}
650 * method (which is part of the {@link List} interface).
651 */
652 public synchronized void removeAllElements() {
653 final Object[] es = elementData;
654 for (int to = elementCount, i = elementCount = 0; i < to; i++)
655 es[i] = null;
656 modCount++;
657 }
658
659 /**
660 * Returns a clone of this vector. The copy will contain a
661 * reference to a clone of the internal data array, not a reference
662 * to the original internal data array of this {@code Vector} object.
663 *
664 * @return a clone of this vector
665 */
666 public synchronized Object clone() {
667 try {
668 @SuppressWarnings("unchecked")
669 Vector<E> v = (Vector<E>) super.clone();
670 v.elementData = Arrays.copyOf(elementData, elementCount);
671 v.modCount = 0;
672 return v;
673 } catch (CloneNotSupportedException e) {
674 // this shouldn't happen, since we are Cloneable
675 throw new InternalError(e);
676 }
677 }
678
679 /**
680 * Returns an array containing all of the elements in this Vector
681 * in the correct order.
682 *
683 * @since 1.2
684 */
685 public synchronized Object[] toArray() {
686 return Arrays.copyOf(elementData, elementCount);
687 }
688
689 /**
690 * Returns an array containing all of the elements in this Vector in the
691 * correct order; the runtime type of the returned array is that of the
692 * specified array. If the Vector fits in the specified array, it is
693 * returned therein. Otherwise, a new array is allocated with the runtime
694 * type of the specified array and the size of this Vector.
695 *
696 * <p>If the Vector fits in the specified array with room to spare
697 * (i.e., the array has more elements than the Vector),
698 * the element in the array immediately following the end of the
699 * Vector is set to null. (This is useful in determining the length
700 * of the Vector <em>only</em> if the caller knows that the Vector
701 * does not contain any null elements.)
702 *
703 * @param <T> type of array elements. The same type as {@code <E>} or a
704 * supertype of {@code <E>}.
705 * @param a the array into which the elements of the Vector are to
706 * be stored, if it is big enough; otherwise, a new array of the
707 * same runtime type is allocated for this purpose.
708 * @return an array containing the elements of the Vector
709 * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
710 * a supertype of the runtime type, {@code <E>}, of every element in this
711 * Vector
712 * @throws NullPointerException if the given array is null
713 * @since 1.2
714 */
715 @SuppressWarnings("unchecked")
716 public synchronized <T> T[] toArray(T[] a) {
717 if (a.length < elementCount)
718 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
719
720 System.arraycopy(elementData, 0, a, 0, elementCount);
721
722 if (a.length > elementCount)
723 a[elementCount] = null;
724
725 return a;
726 }
727
728 // Positional Access Operations
729
730 @SuppressWarnings("unchecked")
731 E elementData(int index) {
732 return (E) elementData[index];
733 }
734
735 @SuppressWarnings("unchecked")
736 static <E> E elementAt(Object[] es, int index) {
737 return (E) es[index];
738 }
739
740 /**
741 * Returns the element at the specified position in this Vector.
742 *
743 * @param index index of the element to return
744 * @return object at the specified index
745 * @throws ArrayIndexOutOfBoundsException if the index is out of range
746 * ({@code index < 0 || index >= size()})
747 * @since 1.2
748 */
749 public synchronized E get(int index) {
750 if (index >= elementCount)
751 throw new ArrayIndexOutOfBoundsException(index);
752
753 return elementData(index);
754 }
755
756 /**
757 * Replaces the element at the specified position in this Vector with the
758 * specified element.
759 *
760 * @param index index of the element to replace
761 * @param element element to be stored at the specified position
762 * @return the element previously at the specified position
763 * @throws ArrayIndexOutOfBoundsException if the index is out of range
764 * ({@code index < 0 || index >= size()})
765 * @since 1.2
766 */
767 public synchronized E set(int index, E element) {
768 if (index >= elementCount)
769 throw new ArrayIndexOutOfBoundsException(index);
770
771 E oldValue = elementData(index);
772 elementData[index] = element;
773 return oldValue;
774 }
775
776 /**
777 * This helper method split out from add(E) to keep method
778 * bytecode size under 35 (the -XX:MaxInlineSize default value),
779 * which helps when add(E) is called in a C1-compiled loop.
780 */
781 private void add(E e, Object[] elementData, int s) {
782 if (s == elementData.length)
783 elementData = grow();
784 elementData[s] = e;
785 elementCount = s + 1;
786 // checkInvariants();
787 }
788
789 /**
790 * Appends the specified element to the end of this Vector.
791 *
792 * @param e element to be appended to this Vector
793 * @return {@code true} (as specified by {@link Collection#add})
794 * @since 1.2
795 */
796 public synchronized boolean add(E e) {
797 modCount++;
798 add(e, elementData, elementCount);
799 return true;
800 }
801
802 /**
803 * Removes the first occurrence of the specified element in this Vector
804 * If the Vector does not contain the element, it is unchanged. More
805 * formally, removes the element with the lowest index i such that
806 * {@code Objects.equals(o, get(i))} (if such
807 * an element exists).
808 *
809 * @param o element to be removed from this Vector, if present
810 * @return true if the Vector contained the specified element
811 * @since 1.2
812 */
813 public boolean remove(Object o) {
814 return removeElement(o);
815 }
816
817 /**
818 * Inserts the specified element at the specified position in this Vector.
819 * Shifts the element currently at that position (if any) and any
820 * subsequent elements to the right (adds one to their indices).
821 *
822 * @param index index at which the specified element is to be inserted
823 * @param element element to be inserted
824 * @throws ArrayIndexOutOfBoundsException if the index is out of range
825 * ({@code index < 0 || index > size()})
826 * @since 1.2
827 */
828 public void add(int index, E element) {
829 insertElementAt(element, index);
830 }
831
832 /**
833 * Removes the element at the specified position in this Vector.
834 * Shifts any subsequent elements to the left (subtracts one from their
835 * indices). Returns the element that was removed from the Vector.
836 *
837 * @param index the index of the element to be removed
838 * @return element that was removed
839 * @throws ArrayIndexOutOfBoundsException if the index is out of range
840 * ({@code index < 0 || index >= size()})
841 * @since 1.2
842 */
843 public synchronized E remove(int index) {
844 modCount++;
845 if (index >= elementCount)
846 throw new ArrayIndexOutOfBoundsException(index);
847 E oldValue = elementData(index);
848
849 int numMoved = elementCount - index - 1;
850 if (numMoved > 0)
851 System.arraycopy(elementData, index+1, elementData, index,
852 numMoved);
853 elementData[--elementCount] = null; // Let gc do its work
854
855 // checkInvariants();
856 return oldValue;
857 }
858
859 /**
860 * Removes all of the elements from this Vector. The Vector will
861 * be empty after this call returns (unless it throws an exception).
862 *
863 * @since 1.2
864 */
865 public void clear() {
866 removeAllElements();
867 }
868
869 // Bulk Operations
870
871 /**
872 * Returns true if this Vector contains all of the elements in the
873 * specified Collection.
874 *
875 * @param c a collection whose elements will be tested for containment
876 * in this Vector
877 * @return true if this Vector contains all of the elements in the
878 * specified collection
879 * @throws NullPointerException if the specified collection is null
880 */
881 public synchronized boolean containsAll(Collection<?> c) {
882 return super.containsAll(c);
883 }
884
885 /**
886 * Appends all of the elements in the specified Collection to the end of
887 * this Vector, in the order that they are returned by the specified
888 * Collection's Iterator. The behavior of this operation is undefined if
889 * the specified Collection is modified while the operation is in progress.
890 * (This implies that the behavior of this call is undefined if the
891 * specified Collection is this Vector, and this Vector is nonempty.)
892 *
893 * @param c elements to be inserted into this Vector
894 * @return {@code true} if this Vector changed as a result of the call
895 * @throws NullPointerException if the specified collection is null
896 * @since 1.2
897 */
898 public boolean addAll(Collection<? extends E> c) {
899 Object[] a = c.toArray();
900 modCount++;
901 int numNew = a.length;
902 if (numNew == 0)
903 return false;
904 synchronized (this) {
905 Object[] elementData = this.elementData;
906 final int s = elementCount;
907 if (numNew > elementData.length - s)
908 elementData = grow(s + numNew);
909 System.arraycopy(a, 0, elementData, s, numNew);
910 elementCount = s + numNew;
911 // checkInvariants();
912 return true;
913 }
914 }
915
916 /**
917 * Removes from this Vector all of its elements that are contained in the
918 * specified Collection.
919 *
920 * @param c a collection of elements to be removed from the Vector
921 * @return true if this Vector changed as a result of the call
922 * @throws ClassCastException if the types of one or more elements
923 * in this vector are incompatible with the specified
924 * collection
925 * (<a href="Collection.html#optional-restrictions">optional</a>)
926 * @throws NullPointerException if this vector contains one or more null
927 * elements and the specified collection does not support null
928 * elements
929 * (<a href="Collection.html#optional-restrictions">optional</a>),
930 * or if the specified collection is null
931 * @since 1.2
932 */
933 public boolean removeAll(Collection<?> c) {
934 Objects.requireNonNull(c);
935 return bulkRemove(e -> c.contains(e));
936 }
937
938 /**
939 * Retains only the elements in this Vector that are contained in the
940 * specified Collection. In other words, removes from this Vector all
941 * of its elements that are not contained in the specified Collection.
942 *
943 * @param c a collection of elements to be retained in this Vector
944 * (all other elements are removed)
945 * @return true if this Vector changed as a result of the call
946 * @throws ClassCastException if the types of one or more elements
947 * in this vector are incompatible with the specified
948 * collection
949 * (<a href="Collection.html#optional-restrictions">optional</a>)
950 * @throws NullPointerException if this vector contains one or more null
951 * elements and the specified collection does not support null
952 * elements
953 * (<a href="Collection.html#optional-restrictions">optional</a>),
954 * or if the specified collection is null
955 * @since 1.2
956 */
957 public boolean retainAll(Collection<?> c) {
958 Objects.requireNonNull(c);
959 return bulkRemove(e -> !c.contains(e));
960 }
961
962 /**
963 * @throws NullPointerException {@inheritDoc}
964 */
965 @Override
966 public boolean removeIf(Predicate<? super E> filter) {
967 Objects.requireNonNull(filter);
968 return bulkRemove(filter);
969 }
970
971 // A tiny bit set implementation
972
973 private static long[] nBits(int n) {
974 return new long[((n - 1) >> 6) + 1];
975 }
976 private static void setBit(long[] bits, int i) {
977 bits[i >> 6] |= 1L << i;
978 }
979 private static boolean isClear(long[] bits, int i) {
980 return (bits[i >> 6] & (1L << i)) == 0;
981 }
982
983 private synchronized boolean bulkRemove(Predicate<? super E> filter) {
984 int expectedModCount = modCount;
985 final Object[] es = elementData;
986 final int end = elementCount;
987 int i;
988 // Optimize for initial run of survivors
989 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
990 ;
991 // Tolerate predicates that reentrantly access the collection for
992 // read (but writers still get CME), so traverse once to find
993 // elements to delete, a second pass to physically expunge.
994 if (i < end) {
995 final int beg = i;
996 final long[] deathRow = nBits(end - beg);
997 deathRow[0] = 1L; // set bit 0
998 for (i = beg + 1; i < end; i++)
999 if (filter.test(elementAt(es, i)))
1000 setBit(deathRow, i - beg);
1001 if (modCount != expectedModCount)
1002 throw new ConcurrentModificationException();
1003 modCount++;
1004 int w = beg;
1005 for (i = beg; i < end; i++)
1006 if (isClear(deathRow, i - beg))
1007 es[w++] = es[i];
1008 for (i = elementCount = w; i < end; i++)
1009 es[i] = null;
1010 // checkInvariants();
1011 return true;
1012 } else {
1013 if (modCount != expectedModCount)
1014 throw new ConcurrentModificationException();
1015 // checkInvariants();
1016 return false;
1017 }
1018 }
1019
1020 /**
1021 * Inserts all of the elements in the specified Collection into this
1022 * Vector at the specified position. Shifts the element currently at
1023 * that position (if any) and any subsequent elements to the right
1024 * (increases their indices). The new elements will appear in the Vector
1025 * in the order that they are returned by the specified Collection's
1026 * iterator.
1027 *
1028 * @param index index at which to insert the first element from the
1029 * specified collection
1030 * @param c elements to be inserted into this Vector
1031 * @return {@code true} if this Vector changed as a result of the call
1032 * @throws ArrayIndexOutOfBoundsException if the index is out of range
1033 * ({@code index < 0 || index > size()})
1034 * @throws NullPointerException if the specified collection is null
1035 * @since 1.2
1036 */
1037 public synchronized boolean addAll(int index, Collection<? extends E> c) {
1038 if (index < 0 || index > elementCount)
1039 throw new ArrayIndexOutOfBoundsException(index);
1040
1041 Object[] a = c.toArray();
1042 modCount++;
1043 int numNew = a.length;
1044 if (numNew == 0)
1045 return false;
1046 Object[] elementData = this.elementData;
1047 final int s = elementCount;
1048 if (numNew > elementData.length - s)
1049 elementData = grow(s + numNew);
1050
1051 int numMoved = s - index;
1052 if (numMoved > 0)
1053 System.arraycopy(elementData, index,
1054 elementData, index + numNew,
1055 numMoved);
1056 System.arraycopy(a, 0, elementData, index, numNew);
1057 elementCount = s + numNew;
1058 // checkInvariants();
1059 return true;
1060 }
1061
1062 /**
1063 * Compares the specified Object with this Vector for equality. Returns
1064 * true if and only if the specified Object is also a List, both Lists
1065 * have the same size, and all corresponding pairs of elements in the two
1066 * Lists are <em>equal</em>. (Two elements {@code e1} and
1067 * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1068 * In other words, two Lists are defined to be
1069 * equal if they contain the same elements in the same order.
1070 *
1071 * @param o the Object to be compared for equality with this Vector
1072 * @return true if the specified Object is equal to this Vector
1073 */
1074 public synchronized boolean equals(Object o) {
1075 return super.equals(o);
1076 }
1077
1078 /**
1079 * Returns the hash code value for this Vector.
1080 */
1081 public synchronized int hashCode() {
1082 return super.hashCode();
1083 }
1084
1085 /**
1086 * Returns a string representation of this Vector, containing
1087 * the String representation of each element.
1088 */
1089 public synchronized String toString() {
1090 return super.toString();
1091 }
1092
1093 /**
1094 * Returns a view of the portion of this List between fromIndex,
1095 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1096 * equal, the returned List is empty.) The returned List is backed by this
1097 * List, so changes in the returned List are reflected in this List, and
1098 * vice-versa. The returned List supports all of the optional List
1099 * operations supported by this List.
1100 *
1101 * <p>This method eliminates the need for explicit range operations (of
1102 * the sort that commonly exist for arrays). Any operation that expects
1103 * a List can be used as a range operation by operating on a subList view
1104 * instead of a whole List. For example, the following idiom
1105 * removes a range of elements from a List:
1106 * <pre>
1107 * list.subList(from, to).clear();
1108 * </pre>
1109 * Similar idioms may be constructed for indexOf and lastIndexOf,
1110 * and all of the algorithms in the Collections class can be applied to
1111 * a subList.
1112 *
1113 * <p>The semantics of the List returned by this method become undefined if
1114 * the backing list (i.e., this List) is <i>structurally modified</i> in
1115 * any way other than via the returned List. (Structural modifications are
1116 * those that change the size of the List, or otherwise perturb it in such
1117 * a fashion that iterations in progress may yield incorrect results.)
1118 *
1119 * @param fromIndex low endpoint (inclusive) of the subList
1120 * @param toIndex high endpoint (exclusive) of the subList
1121 * @return a view of the specified range within this List
1122 * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1123 * {@code (fromIndex < 0 || toIndex > size)}
1124 * @throws IllegalArgumentException if the endpoint indices are out of order
1125 * {@code (fromIndex > toIndex)}
1126 */
1127 public synchronized List<E> subList(int fromIndex, int toIndex) {
1128 return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1129 this);
1130 }
1131
1132 /**
1133 * Removes from this list all of the elements whose index is between
1134 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1135 * Shifts any succeeding elements to the left (reduces their index).
1136 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1137 * (If {@code toIndex==fromIndex}, this operation has no effect.)
1138 */
1139 protected synchronized void removeRange(int fromIndex, int toIndex) {
1140 modCount++;
1141 shiftTailOverGap(elementData, fromIndex, toIndex);
1142 // checkInvariants();
1143 }
1144
1145 /** Erases the gap from lo to hi, by sliding down following elements. */
1146 private void shiftTailOverGap(Object[] es, int lo, int hi) {
1147 System.arraycopy(es, hi, es, lo, elementCount - hi);
1148 for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1149 es[i] = null;
1150 }
1151
1152 /**
1153 * Loads a {@code Vector} instance from a stream
1154 * (that is, deserializes it).
1155 * This method performs checks to ensure the consistency
1156 * of the fields.
1157 *
1158 * @param in the stream
1159 * @throws java.io.IOException if an I/O error occurs
1160 * @throws ClassNotFoundException if the stream contains data
1161 * of a non-existing class
1162 */
1163 // OPENJDK @java.io.Serial
1164 private void readObject(ObjectInputStream in)
1165 throws IOException, ClassNotFoundException {
1166 ObjectInputStream.GetField gfields = in.readFields();
1167 int count = gfields.get("elementCount", 0);
1168 Object[] data = (Object[])gfields.get("elementData", null);
1169 if (count < 0 || data == null || count > data.length) {
1170 throw new StreamCorruptedException("Inconsistent vector internals");
1171 }
1172 elementCount = count;
1173 elementData = data.clone();
1174 }
1175
1176 /**
1177 * Saves the state of the {@code Vector} instance to a stream
1178 * (that is, serializes it).
1179 * This method performs synchronization to ensure the consistency
1180 * of the serialized data.
1181 *
1182 * @param s the stream
1183 * @throws java.io.IOException if an I/O error occurs
1184 */
1185 // OPENJDK @java.io.Serial
1186 private void writeObject(java.io.ObjectOutputStream s)
1187 throws java.io.IOException {
1188 final java.io.ObjectOutputStream.PutField fields = s.putFields();
1189 final Object[] data;
1190 synchronized (this) {
1191 fields.put("capacityIncrement", capacityIncrement);
1192 fields.put("elementCount", elementCount);
1193 data = elementData.clone();
1194 }
1195 fields.put("elementData", data);
1196 s.writeFields();
1197 }
1198
1199 /**
1200 * Returns a list iterator over the elements in this list (in proper
1201 * sequence), starting at the specified position in the list.
1202 * The specified index indicates the first element that would be
1203 * returned by an initial call to {@link ListIterator#next next}.
1204 * An initial call to {@link ListIterator#previous previous} would
1205 * return the element with the specified index minus one.
1206 *
1207 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1208 *
1209 * @throws IndexOutOfBoundsException {@inheritDoc}
1210 */
1211 public synchronized ListIterator<E> listIterator(int index) {
1212 if (index < 0 || index > elementCount)
1213 throw new IndexOutOfBoundsException("Index: "+index);
1214 return new ListItr(index);
1215 }
1216
1217 /**
1218 * Returns a list iterator over the elements in this list (in proper
1219 * sequence).
1220 *
1221 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1222 *
1223 * @see #listIterator(int)
1224 */
1225 public synchronized ListIterator<E> listIterator() {
1226 return new ListItr(0);
1227 }
1228
1229 /**
1230 * Returns an iterator over the elements in this list in proper sequence.
1231 *
1232 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1233 *
1234 * @return an iterator over the elements in this list in proper sequence
1235 */
1236 public synchronized Iterator<E> iterator() {
1237 return new Itr();
1238 }
1239
1240 /**
1241 * An optimized version of AbstractList.Itr
1242 */
1243 private class Itr implements Iterator<E> {
1244 int cursor; // index of next element to return
1245 int lastRet = -1; // index of last element returned; -1 if no such
1246 int expectedModCount = modCount;
1247
1248 public boolean hasNext() {
1249 // Racy but within spec, since modifications are checked
1250 // within or after synchronization in next/previous
1251 return cursor != elementCount;
1252 }
1253
1254 public E next() {
1255 synchronized (Vector.this) {
1256 checkForComodification();
1257 int i = cursor;
1258 if (i >= elementCount)
1259 throw new NoSuchElementException();
1260 cursor = i + 1;
1261 return elementData(lastRet = i);
1262 }
1263 }
1264
1265 public void remove() {
1266 if (lastRet == -1)
1267 throw new IllegalStateException();
1268 synchronized (Vector.this) {
1269 checkForComodification();
1270 Vector.this.remove(lastRet);
1271 expectedModCount = modCount;
1272 }
1273 cursor = lastRet;
1274 lastRet = -1;
1275 }
1276
1277 @Override
1278 public void forEachRemaining(Consumer<? super E> action) {
1279 Objects.requireNonNull(action);
1280 synchronized (Vector.this) {
1281 final int size = elementCount;
1282 int i = cursor;
1283 if (i >= size) {
1284 return;
1285 }
1286 final Object[] es = elementData;
1287 if (i >= es.length)
1288 throw new ConcurrentModificationException();
1289 while (i < size && modCount == expectedModCount)
1290 action.accept(elementAt(es, i++));
1291 // update once at end of iteration to reduce heap write traffic
1292 cursor = i;
1293 lastRet = i - 1;
1294 checkForComodification();
1295 }
1296 }
1297
1298 final void checkForComodification() {
1299 if (modCount != expectedModCount)
1300 throw new ConcurrentModificationException();
1301 }
1302 }
1303
1304 /**
1305 * An optimized version of AbstractList.ListItr
1306 */
1307 final class ListItr extends Itr implements ListIterator<E> {
1308 ListItr(int index) {
1309 super();
1310 cursor = index;
1311 }
1312
1313 public boolean hasPrevious() {
1314 return cursor != 0;
1315 }
1316
1317 public int nextIndex() {
1318 return cursor;
1319 }
1320
1321 public int previousIndex() {
1322 return cursor - 1;
1323 }
1324
1325 public E previous() {
1326 synchronized (Vector.this) {
1327 checkForComodification();
1328 int i = cursor - 1;
1329 if (i < 0)
1330 throw new NoSuchElementException();
1331 cursor = i;
1332 return elementData(lastRet = i);
1333 }
1334 }
1335
1336 public void set(E e) {
1337 if (lastRet == -1)
1338 throw new IllegalStateException();
1339 synchronized (Vector.this) {
1340 checkForComodification();
1341 Vector.this.set(lastRet, e);
1342 }
1343 }
1344
1345 public void add(E e) {
1346 int i = cursor;
1347 synchronized (Vector.this) {
1348 checkForComodification();
1349 Vector.this.add(i, e);
1350 expectedModCount = modCount;
1351 }
1352 cursor = i + 1;
1353 lastRet = -1;
1354 }
1355 }
1356
1357 /**
1358 * @throws NullPointerException {@inheritDoc}
1359 */
1360 @Override
1361 public synchronized void forEach(Consumer<? super E> action) {
1362 Objects.requireNonNull(action);
1363 final int expectedModCount = modCount;
1364 final Object[] es = elementData;
1365 final int size = elementCount;
1366 for (int i = 0; modCount == expectedModCount && i < size; i++)
1367 action.accept(elementAt(es, i));
1368 if (modCount != expectedModCount)
1369 throw new ConcurrentModificationException();
1370 // checkInvariants();
1371 }
1372
1373 /**
1374 * @throws NullPointerException {@inheritDoc}
1375 */
1376 @Override
1377 public synchronized void replaceAll(UnaryOperator<E> operator) {
1378 Objects.requireNonNull(operator);
1379 final int expectedModCount = modCount;
1380 final Object[] es = elementData;
1381 final int size = elementCount;
1382 for (int i = 0; modCount == expectedModCount && i < size; i++)
1383 es[i] = operator.apply(elementAt(es, i));
1384 if (modCount != expectedModCount)
1385 throw new ConcurrentModificationException();
1386 // TODO(8203662): remove increment of modCount from ...
1387 modCount++;
1388 // checkInvariants();
1389 }
1390
1391 @SuppressWarnings("unchecked")
1392 @Override
1393 public synchronized void sort(Comparator<? super E> c) {
1394 final int expectedModCount = modCount;
1395 Arrays.sort((E[]) elementData, 0, elementCount, c);
1396 if (modCount != expectedModCount)
1397 throw new ConcurrentModificationException();
1398 modCount++;
1399 // checkInvariants();
1400 }
1401
1402 /**
1403 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1404 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1405 * list.
1406 *
1407 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1408 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1409 * Overriding implementations should document the reporting of additional
1410 * characteristic values.
1411 *
1412 * @return a {@code Spliterator} over the elements in this list
1413 * @since 1.8
1414 */
1415 @Override
1416 public Spliterator<E> spliterator() {
1417 return new VectorSpliterator(null, 0, -1, 0);
1418 }
1419
1420 /** Similar to ArrayList Spliterator */
1421 final class VectorSpliterator implements Spliterator<E> {
1422 private Object[] array;
1423 private int index; // current index, modified on advance/split
1424 private int fence; // -1 until used; then one past last index
1425 private int expectedModCount; // initialized when fence set
1426
1427 /** Creates new spliterator covering the given range. */
1428 VectorSpliterator(Object[] array, int origin, int fence,
1429 int expectedModCount) {
1430 this.array = array;
1431 this.index = origin;
1432 this.fence = fence;
1433 this.expectedModCount = expectedModCount;
1434 }
1435
1436 private int getFence() { // initialize on first use
1437 int hi;
1438 if ((hi = fence) < 0) {
1439 synchronized (Vector.this) {
1440 array = elementData;
1441 expectedModCount = modCount;
1442 hi = fence = elementCount;
1443 }
1444 }
1445 return hi;
1446 }
1447
1448 public Spliterator<E> trySplit() {
1449 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1450 return (lo >= mid) ? null :
1451 new VectorSpliterator(array, lo, index = mid, expectedModCount);
1452 }
1453
1454 @SuppressWarnings("unchecked")
1455 public boolean tryAdvance(Consumer<? super E> action) {
1456 Objects.requireNonNull(action);
1457 int i;
1458 if (getFence() > (i = index)) {
1459 index = i + 1;
1460 action.accept((E)array[i]);
1461 if (modCount != expectedModCount)
1462 throw new ConcurrentModificationException();
1463 return true;
1464 }
1465 return false;
1466 }
1467
1468 @SuppressWarnings("unchecked")
1469 public void forEachRemaining(Consumer<? super E> action) {
1470 Objects.requireNonNull(action);
1471 final int hi = getFence();
1472 final Object[] a = array;
1473 int i;
1474 for (i = index, index = hi; i < hi; i++)
1475 action.accept((E) a[i]);
1476 if (modCount != expectedModCount)
1477 throw new ConcurrentModificationException();
1478 }
1479
1480 public long estimateSize() {
1481 return getFence() - index;
1482 }
1483
1484 public int characteristics() {
1485 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1486 }
1487 }
1488
1489 void checkInvariants() {
1490 // assert elementCount >= 0;
1491 // assert elementCount == elementData.length || elementData[elementCount] == null;
1492 }
1493 }