ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.7
Committed: Mon Dec 5 02:56:59 2005 UTC (18 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.6: +1 -1 lines
Log Message:
copyright update for 2006

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
10
11 /**
12 * The <code>Vector</code> class implements a growable array of
13 * objects. Like an array, it contains components that can be
14 * accessed using an integer index. However, the size of a
15 * <code>Vector</code> can grow or shrink as needed to accommodate
16 * adding and removing items after the <code>Vector</code> has been created.<p>
17 *
18 * Each vector tries to optimize storage management by maintaining a
19 * <code>capacity</code> and a <code>capacityIncrement</code>. The
20 * <code>capacity</code> is always at least as large as the vector
21 * size; it is usually larger because as components are added to the
22 * vector, the vector's storage increases in chunks the size of
23 * <code>capacityIncrement</code>. An application can increase the
24 * capacity of a vector before inserting a large number of
25 * components; this reduces the amount of incremental reallocation. <p>
26 *
27 * As of the Java 2 platform v1.2, this class has been retrofitted to
28 * implement List, so that it becomes a part of Java's collection framework.
29 * Unlike the new collection implementations, Vector is synchronized.<p>
30 *
31 * The Iterators returned by Vector's iterator and listIterator
32 * methods are <em>fail-fast</em>: if the Vector is structurally modified
33 * at any time after the Iterator is created, in any way except through the
34 * Iterator's own remove or add methods, the Iterator will throw a
35 * ConcurrentModificationException. Thus, in the face of concurrent
36 * modification, the Iterator fails quickly and cleanly, rather than risking
37 * arbitrary, non-deterministic behavior at an undetermined time in the future.
38 * The Enumerations returned by Vector's elements method are <em>not</em>
39 * fail-fast.
40 *
41 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
42 * as it is, generally speaking, impossible to make any hard guarantees in the
43 * presence of unsynchronized concurrent modification. Fail-fast iterators
44 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
45 * Therefore, it would be wrong to write a program that depended on this
46 * exception for its correctness: <i>the fail-fast behavior of iterators
47 * should be used only to detect bugs.</i><p>
48 *
49 * This class is a member of the
50 * <a href="{@docRoot}/../guide/collections/index.html">
51 * Java Collections Framework</a>.
52 *
53 * @author Lee Boynton
54 * @author Jonathan Payne
55 * @version %I%, %G%
56 * @see Collection
57 * @see List
58 * @see ArrayList
59 * @see LinkedList
60 * @since JDK1.0
61 */
62 public class Vector<E>
63 extends AbstractList<E>
64 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
65 {
66 /**
67 * The array buffer into which the components of the vector are
68 * stored. The capacity of the vector is the length of this array buffer,
69 * and is at least large enough to contain all the vector's elements.<p>
70 *
71 * Any array elements following the last element in the Vector are null.
72 *
73 * @serial
74 */
75 protected Object[] elementData;
76
77 /**
78 * The number of valid components in this <tt>Vector</tt> object.
79 * Components <tt>elementData[0]</tt> through
80 * <tt>elementData[elementCount-1]</tt> are the actual items.
81 *
82 * @serial
83 */
84 protected int elementCount;
85
86 /**
87 * The amount by which the capacity of the vector is automatically
88 * incremented when its size becomes greater than its capacity. If
89 * the capacity increment is less than or equal to zero, the capacity
90 * of the vector is doubled each time it needs to grow.
91 *
92 * @serial
93 */
94 protected int capacityIncrement;
95
96 /** use serialVersionUID from JDK 1.0.2 for interoperability */
97 private static final long serialVersionUID = -2767605614048989439L;
98
99 /**
100 * Constructs an empty vector with the specified initial capacity and
101 * capacity increment.
102 *
103 * @param initialCapacity the initial capacity of the vector
104 * @param capacityIncrement the amount by which the capacity is
105 * increased when the vector overflows
106 * @exception IllegalArgumentException if the specified initial capacity
107 * is negative
108 */
109 public Vector(int initialCapacity, int capacityIncrement) {
110 super();
111 if (initialCapacity < 0)
112 throw new IllegalArgumentException("Illegal Capacity: "+
113 initialCapacity);
114 this.elementData = new Object[initialCapacity];
115 this.capacityIncrement = capacityIncrement;
116 }
117
118 /**
119 * Constructs an empty vector with the specified initial capacity and
120 * with its capacity increment equal to zero.
121 *
122 * @param initialCapacity the initial capacity of the vector
123 * @exception IllegalArgumentException if the specified initial capacity
124 * is negative
125 */
126 public Vector(int initialCapacity) {
127 this(initialCapacity, 0);
128 }
129
130 /**
131 * Constructs an empty vector so that its internal data array
132 * has size <tt>10</tt> and its standard capacity increment is
133 * zero.
134 */
135 public Vector() {
136 this(10);
137 }
138
139 /**
140 * Constructs a vector containing the elements of the specified
141 * collection, in the order they are returned by the collection's
142 * iterator.
143 *
144 * @param c the collection whose elements are to be placed into this
145 * vector
146 * @throws NullPointerException if the specified collection is null
147 * @since 1.2
148 */
149 public Vector(Collection<? extends E> c) {
150 elementData = c.toArray();
151 elementCount = elementData.length;
152 // c.toArray might (incorrectly) not return Object[] (see 6260652)
153 if (elementData.getClass() != Object[].class)
154 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
155 }
156
157 /**
158 * Copies the components of this vector into the specified array.
159 * The item at index <tt>k</tt> in this vector is copied into
160 * component <tt>k</tt> of <tt>anArray</tt>.
161 *
162 * @param anArray the array into which the components get copied
163 * @throws NullPointerException if the given array is null
164 * @throws IndexOutOfBoundsException if the specified array is not
165 * large enough to hold all the components of this vector
166 * @throws ArrayStoreException if a component of this vector is not of
167 * a runtime type that can be stored in the specified array
168 * @see #toArray(Object[])
169 */
170 public synchronized void copyInto(Object[] anArray) {
171 System.arraycopy(elementData, 0, anArray, 0, elementCount);
172 }
173
174 /**
175 * Trims the capacity of this vector to be the vector's current
176 * size. If the capacity of this vector is larger than its current
177 * size, then the capacity is changed to equal the size by replacing
178 * its internal data array, kept in the field <tt>elementData</tt>,
179 * with a smaller one. An application can use this operation to
180 * minimize the storage of a vector.
181 */
182 public synchronized void trimToSize() {
183 modCount++;
184 int oldCapacity = elementData.length;
185 if (elementCount < oldCapacity) {
186 elementData = Arrays.copyOf(elementData, elementCount);
187 }
188 }
189
190 /**
191 * Increases the capacity of this vector, if necessary, to ensure
192 * that it can hold at least the number of components specified by
193 * the minimum capacity argument.
194 *
195 * <p>If the current capacity of this vector is less than
196 * <tt>minCapacity</tt>, then its capacity is increased by replacing its
197 * internal data array, kept in the field <tt>elementData</tt>, with a
198 * larger one. The size of the new data array will be the old size plus
199 * <tt>capacityIncrement</tt>, unless the value of
200 * <tt>capacityIncrement</tt> is less than or equal to zero, in which case
201 * the new capacity will be twice the old capacity; but if this new size
202 * is still smaller than <tt>minCapacity</tt>, then the new capacity will
203 * be <tt>minCapacity</tt>.
204 *
205 * @param minCapacity the desired minimum capacity
206 */
207 public synchronized void ensureCapacity(int minCapacity) {
208 modCount++;
209 ensureCapacityHelper(minCapacity);
210 }
211
212 /**
213 * This implements the unsynchronized semantics of ensureCapacity.
214 * Synchronized methods in this class can internally call this
215 * method for ensuring capacity without incurring the cost of an
216 * extra synchronization.
217 *
218 * @see java.util.Vector#ensureCapacity(int)
219 */
220 private void ensureCapacityHelper(int minCapacity) {
221 int oldCapacity = elementData.length;
222 if (minCapacity > oldCapacity) {
223 Object[] oldData = elementData;
224 int newCapacity = (capacityIncrement > 0) ?
225 (oldCapacity + capacityIncrement) : (oldCapacity * 2);
226 if (newCapacity < minCapacity) {
227 newCapacity = minCapacity;
228 }
229 elementData = Arrays.copyOf(elementData, newCapacity);
230 }
231 }
232
233 /**
234 * Sets the size of this vector. If the new size is greater than the
235 * current size, new <code>null</code> items are added to the end of
236 * the vector. If the new size is less than the current size, all
237 * components at index <code>newSize</code> and greater are discarded.
238 *
239 * @param newSize the new size of this vector
240 * @throws ArrayIndexOutOfBoundsException if new size is negative
241 */
242 public synchronized void setSize(int newSize) {
243 modCount++;
244 if (newSize > elementCount) {
245 ensureCapacityHelper(newSize);
246 } else {
247 for (int i = newSize ; i < elementCount ; i++) {
248 elementData[i] = null;
249 }
250 }
251 elementCount = newSize;
252 }
253
254 /**
255 * Returns the current capacity of this vector.
256 *
257 * @return the current capacity (the length of its internal
258 * data array, kept in the field <tt>elementData</tt>
259 * of this vector)
260 */
261 public synchronized int capacity() {
262 return elementData.length;
263 }
264
265 /**
266 * Returns the number of components in this vector.
267 *
268 * @return the number of components in this vector
269 */
270 public synchronized int size() {
271 return elementCount;
272 }
273
274 /**
275 * Tests if this vector has no components.
276 *
277 * @return <code>true</code> if and only if this vector has
278 * no components, that is, its size is zero;
279 * <code>false</code> otherwise.
280 */
281 public synchronized boolean isEmpty() {
282 return elementCount == 0;
283 }
284
285 /**
286 * Returns an enumeration of the components of this vector. The
287 * returned <tt>Enumeration</tt> object will generate all items in
288 * this vector. The first item generated is the item at index <tt>0</tt>,
289 * then the item at index <tt>1</tt>, and so on.
290 *
291 * @return an enumeration of the components of this vector
292 * @see Enumeration
293 * @see Iterator
294 */
295 public Enumeration<E> elements() {
296 return new Enumeration<E>() {
297 int count = 0;
298
299 public boolean hasMoreElements() {
300 return count < elementCount;
301 }
302
303 public E nextElement() {
304 synchronized (Vector.this) {
305 if (count < elementCount) {
306 return (E)elementData[count++];
307 }
308 }
309 throw new NoSuchElementException("Vector Enumeration");
310 }
311 };
312 }
313
314 /**
315 * Returns <tt>true</tt> if this vector contains the specified element.
316 * More formally, returns <tt>true</tt> if and only if this vector
317 * contains at least one element <tt>e</tt> such that
318 * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
319 *
320 * @param o element whose presence in this vector is to be tested
321 * @return <tt>true</tt> if this vector contains the specified element
322 */
323 public boolean contains(Object o) {
324 return indexOf(o, 0) >= 0;
325 }
326
327 /**
328 * Returns the index of the first occurrence of the specified element
329 * in this vector, or -1 if this vector does not contain the element.
330 * More formally, returns the lowest index <tt>i</tt> such that
331 * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
332 * or -1 if there is no such index.
333 *
334 * @param o element to search for
335 * @return the index of the first occurrence of the specified element in
336 * this vector, or -1 if this vector does not contain the element
337 */
338 public int indexOf(Object o) {
339 return indexOf(o, 0);
340 }
341
342 /**
343 * Returns the index of the first occurrence of the specified element in
344 * this vector, searching forwards from <tt>index</tt>, or returns -1 if
345 * the element is not found.
346 * More formally, returns the lowest index <tt>i</tt> such that
347 * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
348 * or -1 if there is no such index.
349 *
350 * @param o element to search for
351 * @param index index to start searching from
352 * @return the index of the first occurrence of the element in
353 * this vector at position <tt>index</tt> or later in the vector;
354 * <tt>-1</tt> if the element is not found.
355 * @throws IndexOutOfBoundsException if the specified index is negative
356 * @see Object#equals(Object)
357 */
358 public synchronized int indexOf(Object o, int index) {
359 if (o == null) {
360 for (int i = index ; i < elementCount ; i++)
361 if (elementData[i]==null)
362 return i;
363 } else {
364 for (int i = index ; i < elementCount ; i++)
365 if (o.equals(elementData[i]))
366 return i;
367 }
368 return -1;
369 }
370
371 /**
372 * Returns the index of the last occurrence of the specified element
373 * in this vector, or -1 if this vector does not contain the element.
374 * More formally, returns the highest index <tt>i</tt> such that
375 * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
376 * or -1 if there is no such index.
377 *
378 * @param o element to search for
379 * @return the index of the last occurrence of the specified element in
380 * this vector, or -1 if this vector does not contain the element
381 */
382 public synchronized int lastIndexOf(Object o) {
383 return lastIndexOf(o, elementCount-1);
384 }
385
386 /**
387 * Returns the index of the last occurrence of the specified element in
388 * this vector, searching backwards from <tt>index</tt>, or returns -1 if
389 * the element is not found.
390 * More formally, returns the highest index <tt>i</tt> such that
391 * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
392 * or -1 if there is no such index.
393 *
394 * @param o element to search for
395 * @param index index to start searching backwards from
396 * @return the index of the last occurrence of the element at position
397 * less than or equal to <tt>index</tt> in this vector;
398 * -1 if the element is not found.
399 * @throws IndexOutOfBoundsException if the specified index is greater
400 * than or equal to the current size of this vector
401 */
402 public synchronized int lastIndexOf(Object o, int index) {
403 if (index >= elementCount)
404 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
405
406 if (o == null) {
407 for (int i = index; i >= 0; i--)
408 if (elementData[i]==null)
409 return i;
410 } else {
411 for (int i = index; i >= 0; i--)
412 if (o.equals(elementData[i]))
413 return i;
414 }
415 return -1;
416 }
417
418 /**
419 * Returns the component at the specified index.<p>
420 *
421 * This method is identical in functionality to the get method
422 * (which is part of the List interface).
423 *
424 * @param index an index into this vector
425 * @return the component at the specified index
426 * @exception ArrayIndexOutOfBoundsException if the <tt>index</tt>
427 * is negative or not less than the current size of this
428 * <tt>Vector</tt> object.
429 * @see #get(int)
430 * @see List
431 */
432 public synchronized E elementAt(int index) {
433 if (index >= elementCount) {
434 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
435 }
436
437 return (E)elementData[index];
438 }
439
440 /**
441 * Returns the first component (the item at index <tt>0</tt>) of
442 * this vector.
443 *
444 * @return the first component of this vector
445 * @exception NoSuchElementException if this vector has no components
446 */
447 public synchronized E firstElement() {
448 if (elementCount == 0) {
449 throw new NoSuchElementException();
450 }
451 return (E)elementData[0];
452 }
453
454 /**
455 * Returns the last component of the vector.
456 *
457 * @return the last component of the vector, i.e., the component at index
458 * <code>size()&nbsp;-&nbsp;1</code>.
459 * @exception NoSuchElementException if this vector is empty
460 */
461 public synchronized E lastElement() {
462 if (elementCount == 0) {
463 throw new NoSuchElementException();
464 }
465 return (E)elementData[elementCount - 1];
466 }
467
468 /**
469 * Sets the component at the specified <code>index</code> of this
470 * vector to be the specified object. The previous component at that
471 * position is discarded.<p>
472 *
473 * The index must be a value greater than or equal to <code>0</code>
474 * and less than the current size of the vector. <p>
475 *
476 * This method is identical in functionality to the set method
477 * (which is part of the List interface). Note that the set method reverses
478 * the order of the parameters, to more closely match array usage. Note
479 * also that the set method returns the old value that was stored at the
480 * specified position.
481 *
482 * @param obj what the component is to be set to
483 * @param index the specified index
484 * @exception ArrayIndexOutOfBoundsException if the index was invalid
485 * @see #size()
486 * @see List
487 * @see #set(int, java.lang.Object)
488 */
489 public synchronized void setElementAt(E obj, int index) {
490 if (index >= elementCount) {
491 throw new ArrayIndexOutOfBoundsException(index + " >= " +
492 elementCount);
493 }
494 elementData[index] = obj;
495 }
496
497 /**
498 * Deletes the component at the specified index. Each component in
499 * this vector with an index greater or equal to the specified
500 * <code>index</code> is shifted downward to have an index one
501 * smaller than the value it had previously. The size of this vector
502 * is decreased by <tt>1</tt>.<p>
503 *
504 * The index must be a value greater than or equal to <code>0</code>
505 * and less than the current size of the vector. <p>
506 *
507 * This method is identical in functionality to the remove method
508 * (which is part of the List interface). Note that the remove method
509 * returns the old value that was stored at the specified position.
510 *
511 * @param index the index of the object to remove
512 * @exception ArrayIndexOutOfBoundsException if the index was invalid
513 * @see #size()
514 * @see #remove(int)
515 * @see List
516 */
517 public synchronized void removeElementAt(int index) {
518 modCount++;
519 if (index >= elementCount) {
520 throw new ArrayIndexOutOfBoundsException(index + " >= " +
521 elementCount);
522 }
523 else if (index < 0) {
524 throw new ArrayIndexOutOfBoundsException(index);
525 }
526 int j = elementCount - index - 1;
527 if (j > 0) {
528 System.arraycopy(elementData, index + 1, elementData, index, j);
529 }
530 elementCount--;
531 elementData[elementCount] = null; /* to let gc do its work */
532 }
533
534 /**
535 * Inserts the specified object as a component in this vector at the
536 * specified <code>index</code>. Each component in this vector with
537 * an index greater or equal to the specified <code>index</code> is
538 * shifted upward to have an index one greater than the value it had
539 * previously. <p>
540 *
541 * The index must be a value greater than or equal to <code>0</code>
542 * and less than or equal to the current size of the vector. (If the
543 * index is equal to the current size of the vector, the new element
544 * is appended to the Vector.)<p>
545 *
546 * This method is identical in functionality to the add(Object, int) method
547 * (which is part of the List interface). Note that the add method reverses
548 * the order of the parameters, to more closely match array usage.
549 *
550 * @param obj the component to insert
551 * @param index where to insert the new component
552 * @exception ArrayIndexOutOfBoundsException if the index was invalid
553 * @see #size()
554 * @see #add(int, Object)
555 * @see List
556 */
557 public synchronized void insertElementAt(E obj, int index) {
558 modCount++;
559 if (index > elementCount) {
560 throw new ArrayIndexOutOfBoundsException(index
561 + " > " + elementCount);
562 }
563 ensureCapacityHelper(elementCount + 1);
564 System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
565 elementData[index] = obj;
566 elementCount++;
567 }
568
569 /**
570 * Adds the specified component to the end of this vector,
571 * increasing its size by one. The capacity of this vector is
572 * increased if its size becomes greater than its capacity. <p>
573 *
574 * This method is identical in functionality to the add(Object) method
575 * (which is part of the List interface).
576 *
577 * @param obj the component to be added
578 * @see #add(Object)
579 * @see List
580 */
581 public synchronized void addElement(E obj) {
582 modCount++;
583 ensureCapacityHelper(elementCount + 1);
584 elementData[elementCount++] = obj;
585 }
586
587 /**
588 * Removes the first (lowest-indexed) occurrence of the argument
589 * from this vector. If the object is found in this vector, each
590 * component in the vector with an index greater or equal to the
591 * object's index is shifted downward to have an index one smaller
592 * than the value it had previously.<p>
593 *
594 * This method is identical in functionality to the remove(Object)
595 * method (which is part of the List interface).
596 *
597 * @param obj the component to be removed
598 * @return <code>true</code> if the argument was a component of this
599 * vector; <code>false</code> otherwise.
600 * @see List#remove(Object)
601 * @see List
602 */
603 public synchronized boolean removeElement(Object obj) {
604 modCount++;
605 int i = indexOf(obj);
606 if (i >= 0) {
607 removeElementAt(i);
608 return true;
609 }
610 return false;
611 }
612
613 /**
614 * Removes all components from this vector and sets its size to zero.<p>
615 *
616 * This method is identical in functionality to the clear method
617 * (which is part of the List interface).
618 *
619 * @see #clear
620 * @see List
621 */
622 public synchronized void removeAllElements() {
623 modCount++;
624 // Let gc do its work
625 for (int i = 0; i < elementCount; i++)
626 elementData[i] = null;
627
628 elementCount = 0;
629 }
630
631 /**
632 * Returns a clone of this vector. The copy will contain a
633 * reference to a clone of the internal data array, not a reference
634 * to the original internal data array of this <tt>Vector</tt> object.
635 *
636 * @return a clone of this vector
637 */
638 public synchronized Object clone() {
639 try {
640 Vector<E> v = (Vector<E>) super.clone();
641 v.elementData = Arrays.copyOf(elementData, elementCount);
642 v.modCount = 0;
643 return v;
644 } catch (CloneNotSupportedException e) {
645 // this shouldn't happen, since we are Cloneable
646 throw new InternalError();
647 }
648 }
649
650 /**
651 * Returns an array containing all of the elements in this Vector
652 * in the correct order.
653 *
654 * @since 1.2
655 */
656 public synchronized Object[] toArray() {
657 return Arrays.copyOf(elementData, elementCount);
658 }
659
660 /**
661 * Returns an array containing all of the elements in this Vector in the
662 * correct order; the runtime type of the returned array is that of the
663 * specified array. If the Vector fits in the specified array, it is
664 * returned therein. Otherwise, a new array is allocated with the runtime
665 * type of the specified array and the size of this Vector.<p>
666 *
667 * If the Vector fits in the specified array with room to spare
668 * (i.e., the array has more elements than the Vector),
669 * the element in the array immediately following the end of the
670 * Vector is set to null. (This is useful in determining the length
671 * of the Vector <em>only</em> if the caller knows that the Vector
672 * does not contain any null elements.)
673 *
674 * @param a the array into which the elements of the Vector are to
675 * be stored, if it is big enough; otherwise, a new array of the
676 * same runtime type is allocated for this purpose.
677 * @return an array containing the elements of the Vector
678 * @exception ArrayStoreException the runtime type of a is not a supertype
679 * of the runtime type of every element in this Vector
680 * @throws NullPointerException if the given array is null
681 * @since 1.2
682 */
683 public synchronized <T> T[] toArray(T[] a) {
684 if (a.length < elementCount)
685 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
686
687 System.arraycopy(elementData, 0, a, 0, elementCount);
688
689 if (a.length > elementCount)
690 a[elementCount] = null;
691
692 return a;
693 }
694
695 // Positional Access Operations
696
697 /**
698 * Returns the element at the specified position in this Vector.
699 *
700 * @param index index of the element to return
701 * @return object at the specified index
702 * @exception ArrayIndexOutOfBoundsException index is out of range (index
703 * &lt; 0 || index &gt;= size())
704 * @since 1.2
705 */
706 public synchronized E get(int index) {
707 if (index >= elementCount)
708 throw new ArrayIndexOutOfBoundsException(index);
709
710 return (E)elementData[index];
711 }
712
713 /**
714 * Replaces the element at the specified position in this Vector with the
715 * specified element.
716 *
717 * @param index index of the element to replace
718 * @param element element to be stored at the specified position
719 * @return the element previously at the specified position
720 * @exception ArrayIndexOutOfBoundsException index out of range
721 * (index &lt; 0 || index &gt;= size())
722 * @since 1.2
723 */
724 public synchronized E set(int index, E element) {
725 if (index >= elementCount)
726 throw new ArrayIndexOutOfBoundsException(index);
727
728 Object oldValue = elementData[index];
729 elementData[index] = element;
730 return (E)oldValue;
731 }
732
733 /**
734 * Appends the specified element to the end of this Vector.
735 *
736 * @param e element to be appended to this Vector
737 * @return <tt>true</tt> (as specified by {@link Collection#add})
738 * @since 1.2
739 */
740 public synchronized boolean add(E e) {
741 modCount++;
742 ensureCapacityHelper(elementCount + 1);
743 elementData[elementCount++] = e;
744 return true;
745 }
746
747 /**
748 * Removes the first occurrence of the specified element in this Vector
749 * If the Vector does not contain the element, it is unchanged. More
750 * formally, removes the element with the lowest index i such that
751 * <code>(o==null ? get(i)==null : o.equals(get(i)))</code> (if such
752 * an element exists).
753 *
754 * @param o element to be removed from this Vector, if present
755 * @return true if the Vector contained the specified element
756 * @since 1.2
757 */
758 public boolean remove(Object o) {
759 return removeElement(o);
760 }
761
762 /**
763 * Inserts the specified element at the specified position in this Vector.
764 * Shifts the element currently at that position (if any) and any
765 * subsequent elements to the right (adds one to their indices).
766 *
767 * @param index index at which the specified element is to be inserted
768 * @param element element to be inserted
769 * @exception ArrayIndexOutOfBoundsException index is out of range
770 * (index &lt; 0 || index &gt; size())
771 * @since 1.2
772 */
773 public void add(int index, E element) {
774 insertElementAt(element, index);
775 }
776
777 /**
778 * Removes the element at the specified position in this Vector.
779 * Shifts any subsequent elements to the left (subtracts one from their
780 * indices). Returns the element that was removed from the Vector.
781 *
782 * @exception ArrayIndexOutOfBoundsException index out of range (index
783 * &lt; 0 || index &gt;= size())
784 * @param index the index of the element to be removed
785 * @return element that was removed
786 * @since 1.2
787 */
788 public synchronized E remove(int index) {
789 modCount++;
790 if (index >= elementCount)
791 throw new ArrayIndexOutOfBoundsException(index);
792 Object oldValue = elementData[index];
793
794 int numMoved = elementCount - index - 1;
795 if (numMoved > 0)
796 System.arraycopy(elementData, index+1, elementData, index,
797 numMoved);
798 elementData[--elementCount] = null; // Let gc do its work
799
800 return (E)oldValue;
801 }
802
803 /**
804 * Removes all of the elements from this Vector. The Vector will
805 * be empty after this call returns (unless it throws an exception).
806 *
807 * @since 1.2
808 */
809 public void clear() {
810 removeAllElements();
811 }
812
813 // Bulk Operations
814
815 /**
816 * Returns true if this Vector contains all of the elements in the
817 * specified Collection.
818 *
819 * @param c a collection whose elements will be tested for containment
820 * in this Vector
821 * @return true if this Vector contains all of the elements in the
822 * specified collection
823 * @throws NullPointerException if the specified collection is null
824 */
825 public synchronized boolean containsAll(Collection<?> c) {
826 return super.containsAll(c);
827 }
828
829 /**
830 * Appends all of the elements in the specified Collection to the end of
831 * this Vector, in the order that they are returned by the specified
832 * Collection's Iterator. The behavior of this operation is undefined if
833 * the specified Collection is modified while the operation is in progress.
834 * (This implies that the behavior of this call is undefined if the
835 * specified Collection is this Vector, and this Vector is nonempty.)
836 *
837 * @param c elements to be inserted into this Vector
838 * @return <tt>true</tt> if this Vector changed as a result of the call
839 * @throws NullPointerException if the specified collection is null
840 * @since 1.2
841 */
842 public synchronized boolean addAll(Collection<? extends E> c) {
843 modCount++;
844 Object[] a = c.toArray();
845 int numNew = a.length;
846 ensureCapacityHelper(elementCount + numNew);
847 System.arraycopy(a, 0, elementData, elementCount, numNew);
848 elementCount += numNew;
849 return numNew != 0;
850 }
851
852 /**
853 * Removes from this Vector all of its elements that are contained in the
854 * specified Collection.
855 *
856 * @param c a collection of elements to be removed from the Vector
857 * @return true if this Vector changed as a result of the call
858 * @throws ClassCastException if the types of one or more elements
859 * in this vector are incompatible with the specified
860 * collection (optional)
861 * @throws NullPointerException if this vector contains one or more null
862 * elements and the specified collection does not support null
863 * elements (optional), or if the specified collection is null
864 * @since 1.2
865 */
866 public synchronized boolean removeAll(Collection<?> c) {
867 return super.removeAll(c);
868 }
869
870 /**
871 * Retains only the elements in this Vector that are contained in the
872 * specified Collection. In other words, removes from this Vector all
873 * of its elements that are not contained in the specified Collection.
874 *
875 * @param c a collection of elements to be retained in this Vector
876 * (all other elements are removed)
877 * @return true if this Vector changed as a result of the call
878 * @throws ClassCastException if the types of one or more elements
879 * in this vector are incompatible with the specified
880 * collection (optional)
881 * @throws NullPointerException if this vector contains one or more null
882 * elements and the specified collection does not support null
883 * elements (optional), or if the specified collection is null
884 * @since 1.2
885 */
886 public synchronized boolean retainAll(Collection<?> c) {
887 return super.retainAll(c);
888 }
889
890 /**
891 * Inserts all of the elements in the specified Collection into this
892 * Vector at the specified position. Shifts the element currently at
893 * that position (if any) and any subsequent elements to the right
894 * (increases their indices). The new elements will appear in the Vector
895 * in the order that they are returned by the specified Collection's
896 * iterator.
897 *
898 * @param index index at which to insert the first element from the
899 * specified collection
900 * @param c elements to be inserted into this Vector
901 * @return <tt>true</tt> if this Vector changed as a result of the call
902 * @exception ArrayIndexOutOfBoundsException index out of range (index
903 * &lt; 0 || index &gt; size())
904 * @throws NullPointerException if the specified collection is null
905 * @since 1.2
906 */
907 public synchronized boolean addAll(int index, Collection<? extends E> c) {
908 modCount++;
909 if (index < 0 || index > elementCount)
910 throw new ArrayIndexOutOfBoundsException(index);
911
912 Object[] a = c.toArray();
913 int numNew = a.length;
914 ensureCapacityHelper(elementCount + numNew);
915
916 int numMoved = elementCount - index;
917 if (numMoved > 0)
918 System.arraycopy(elementData, index, elementData, index + numNew,
919 numMoved);
920
921 System.arraycopy(a, 0, elementData, index, numNew);
922 elementCount += numNew;
923 return numNew != 0;
924 }
925
926 /**
927 * Compares the specified Object with this Vector for equality. Returns
928 * true if and only if the specified Object is also a List, both Lists
929 * have the same size, and all corresponding pairs of elements in the two
930 * Lists are <em>equal</em>. (Two elements <code>e1</code> and
931 * <code>e2</code> are <em>equal</em> if <code>(e1==null ? e2==null :
932 * e1.equals(e2))</code>.) In other words, two Lists are defined to be
933 * equal if they contain the same elements in the same order.
934 *
935 * @param o the Object to be compared for equality with this Vector
936 * @return true if the specified Object is equal to this Vector
937 */
938 public synchronized boolean equals(Object o) {
939 return super.equals(o);
940 }
941
942 /**
943 * Returns the hash code value for this Vector.
944 */
945 public synchronized int hashCode() {
946 return super.hashCode();
947 }
948
949 /**
950 * Returns a string representation of this Vector, containing
951 * the String representation of each element.
952 */
953 public synchronized String toString() {
954 return super.toString();
955 }
956
957 /**
958 * Returns a view of the portion of this List between fromIndex,
959 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
960 * equal, the returned List is empty.) The returned List is backed by this
961 * List, so changes in the returned List are reflected in this List, and
962 * vice-versa. The returned List supports all of the optional List
963 * operations supported by this List.<p>
964 *
965 * This method eliminates the need for explicit range operations (of
966 * the sort that commonly exist for arrays). Any operation that expects
967 * a List can be used as a range operation by operating on a subList view
968 * instead of a whole List. For example, the following idiom
969 * removes a range of elements from a List:
970 * <pre>
971 * list.subList(from, to).clear();
972 * </pre>
973 * Similar idioms may be constructed for indexOf and lastIndexOf,
974 * and all of the algorithms in the Collections class can be applied to
975 * a subList.<p>
976 *
977 * The semantics of the List returned by this method become undefined if
978 * the backing list (i.e., this List) is <i>structurally modified</i> in
979 * any way other than via the returned List. (Structural modifications are
980 * those that change the size of the List, or otherwise perturb it in such
981 * a fashion that iterations in progress may yield incorrect results.)
982 *
983 * @param fromIndex low endpoint (inclusive) of the subList
984 * @param toIndex high endpoint (exclusive) of the subList
985 * @return a view of the specified range within this List
986 * @throws IndexOutOfBoundsException endpoint index value out of range
987 * <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
988 * @throws IllegalArgumentException endpoint indices out of order
989 * <code>(fromIndex &gt; toIndex)</code>
990 */
991 public synchronized List<E> subList(int fromIndex, int toIndex) {
992 return Collections.synchronizedList(super.subList(fromIndex, toIndex),
993 this);
994 }
995
996 /**
997 * Removes from this List all of the elements whose index is between
998 * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding
999 * elements to the left (reduces their index).
1000 * This call shortens the ArrayList by (toIndex - fromIndex) elements. (If
1001 * toIndex==fromIndex, this operation has no effect.)
1002 *
1003 * @param fromIndex index of first element to be removed
1004 * @param toIndex index after last element to be removed
1005 */
1006 protected synchronized void removeRange(int fromIndex, int toIndex) {
1007 modCount++;
1008 int numMoved = elementCount - toIndex;
1009 System.arraycopy(elementData, toIndex, elementData, fromIndex,
1010 numMoved);
1011
1012 // Let gc do its work
1013 int newElementCount = elementCount - (toIndex-fromIndex);
1014 while (elementCount != newElementCount)
1015 elementData[--elementCount] = null;
1016 }
1017
1018 /**
1019 * Save the state of the <tt>Vector</tt> instance to a stream (that
1020 * is, serialize it). This method is present merely for synchronization.
1021 * It just calls the default writeObject method.
1022 */
1023 private synchronized void writeObject(java.io.ObjectOutputStream s)
1024 throws java.io.IOException
1025 {
1026 s.defaultWriteObject();
1027 }
1028
1029 /**
1030 * Returns a list-iterator of the elements in this list (in proper
1031 * sequence), starting at the specified position in the list.
1032 * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
1033 *
1034 * The list-iterator is <i>fail-fast</i>: if the list is structurally
1035 * modified at any time after the Iterator is created, in any way except
1036 * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
1037 * methods, the list-iterator will throw a
1038 * <tt>ConcurrentModificationException</tt>. Thus, in the face of
1039 * concurrent modification, the iterator fails quickly and cleanly, rather
1040 * than risking arbitrary, non-deterministic behavior at an undetermined
1041 * time in the future.
1042 *
1043 * @param index index of the first element to be returned from the
1044 * list-iterator (by a call to <tt>next</tt>)
1045 * @return a ListIterator of the elements in this list (in proper
1046 * sequence), starting at the specified position in the list
1047 * @throws IndexOutOfBoundsException {@inheritDoc}
1048 * @see List#listIterator(int)
1049 */
1050 public synchronized ListIterator<E> listIterator(int index) {
1051 if (index < 0 || index > elementCount)
1052 throw new IndexOutOfBoundsException("Index: "+index);
1053 return new VectorIterator(index);
1054 }
1055
1056 /**
1057 * {@inheritDoc}
1058 */
1059 public synchronized ListIterator<E> listIterator() {
1060 return new VectorIterator(0);
1061 }
1062
1063 /**
1064 * Returns an iterator over the elements in this list in proper sequence.
1065 *
1066 * @return an iterator over the elements in this list in proper sequence
1067 */
1068 public synchronized Iterator<E> iterator() {
1069 return new VectorIterator(0);
1070 }
1071
1072 /**
1073 * A streamlined version of AbstractList.ListItr.
1074 */
1075 private final class VectorIterator implements ListIterator<E> {
1076 int cursor; // current position
1077 int lastRet; // index of last returned element
1078 int expectedModCount; // to check for CME
1079
1080 VectorIterator(int index) {
1081 cursor = index;
1082 expectedModCount = modCount;
1083 lastRet = -1;
1084 }
1085
1086 public boolean hasNext() {
1087 // Racy but within spec, since modifications are checked
1088 // within or after synchronization in next/previous
1089 return cursor != elementCount;
1090 }
1091
1092 public boolean hasPrevious() {
1093 return cursor != 0;
1094 }
1095
1096 public int nextIndex() {
1097 return cursor;
1098 }
1099
1100 public int previousIndex() {
1101 return cursor - 1;
1102 }
1103
1104 public E next() {
1105 try {
1106 int i = cursor;
1107 E next = get(i);
1108 lastRet = i;
1109 cursor = i + 1;
1110 return next;
1111 } catch (IndexOutOfBoundsException ex) {
1112 throw new NoSuchElementException();
1113 } finally {
1114 if (expectedModCount != modCount)
1115 throw new ConcurrentModificationException();
1116 }
1117 }
1118
1119 public E previous() {
1120 try {
1121 int i = cursor - 1;
1122 E prev = get(i);
1123 lastRet = i;
1124 cursor = i;
1125 return prev;
1126 } catch (IndexOutOfBoundsException ex) {
1127 throw new NoSuchElementException();
1128 } finally {
1129 if (expectedModCount != modCount)
1130 throw new ConcurrentModificationException();
1131 }
1132 }
1133
1134 public void remove() {
1135 if (lastRet == -1)
1136 throw new IllegalStateException();
1137 if (expectedModCount != modCount)
1138 throw new ConcurrentModificationException();
1139 try {
1140 Vector.this.remove(lastRet);
1141 if (lastRet < cursor)
1142 cursor--;
1143 lastRet = -1;
1144 expectedModCount = modCount;
1145 } catch (IndexOutOfBoundsException ex) {
1146 throw new ConcurrentModificationException();
1147 }
1148 }
1149
1150 public void set(E e) {
1151 if (lastRet == -1)
1152 throw new IllegalStateException();
1153 if (expectedModCount != modCount)
1154 throw new ConcurrentModificationException();
1155 try {
1156 Vector.this.set(lastRet, e);
1157 expectedModCount = modCount;
1158 } catch (IndexOutOfBoundsException ex) {
1159 throw new ConcurrentModificationException();
1160 }
1161 }
1162
1163 public void add(E e) {
1164 if (expectedModCount != modCount)
1165 throw new ConcurrentModificationException();
1166 try {
1167 int i = cursor;
1168 Vector.this.add(i, e);
1169 cursor = i + 1;
1170 lastRet = -1;
1171 expectedModCount = modCount;
1172 } catch (IndexOutOfBoundsException ex) {
1173 throw new ConcurrentModificationException();
1174 }
1175 }
1176 }
1177 }