ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
(Generate patch)

Comparing jsr166/src/main/java/util/Vector.java (file contents):
Revision 1.1 by dl, Fri Nov 25 13:27:29 2005 UTC vs.
Revision 1.21 by jsr166, Sun May 20 07:54:01 2007 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright 1994-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
27  
28   /**
29 < * The <code>Vector</code> class implements a growable array of
29 > * The {@code Vector} class implements a growable array of
30   * objects. Like an array, it contains components that can be
31   * accessed using an integer index. However, the size of a
32 < * <code>Vector</code> can grow or shrink as needed to accommodate
33 < * adding and removing items after the <code>Vector</code> has been created.<p>
32 > * {@code Vector} can grow or shrink as needed to accommodate
33 > * adding and removing items after the {@code Vector} has been created.
34   *
35 < * Each vector tries to optimize storage management by maintaining a
36 < * <code>capacity</code> and a <code>capacityIncrement</code>. The
37 < * <code>capacity</code> is always at least as large as the vector
35 > * <p>Each vector tries to optimize storage management by maintaining a
36 > * {@code capacity} and a {@code capacityIncrement}. The
37 > * {@code capacity} is always at least as large as the vector
38   * size; it is usually larger because as components are added to the
39   * vector, the vector's storage increases in chunks the size of
40 < * <code>capacityIncrement</code>. An application can increase the
40 > * {@code capacityIncrement}. An application can increase the
41   * capacity of a vector before inserting a large number of
42 < * components; this reduces the amount of incremental reallocation. <p>
26 < *
27 < * As of the Java 2 platform v1.2, this class has been retrofitted to
28 < * implement List, so that it becomes a part of Java's collection framework.
29 < * Unlike the new collection implementations, Vector is synchronized.<p>
42 > * components; this reduces the amount of incremental reallocation.
43   *
44 < * The Iterators returned by Vector's iterator and listIterator
44 > * <p>The Iterators returned by Vector's iterator and listIterator
45   * methods are <em>fail-fast</em>: if the Vector is structurally modified
46   * at any time after the Iterator is created, in any way except through the
47   * Iterator's own remove or add methods, the Iterator will throw a
# Line 41 | Line 54 | import java.util.*; // for javadoc (till
54   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
55   * as it is, generally speaking, impossible to make any hard guarantees in the
56   * presence of unsynchronized concurrent modification.  Fail-fast iterators
57 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
57 > * throw {@code ConcurrentModificationException} on a best-effort basis.
58   * Therefore, it would be wrong to write a program that depended on this
59   * exception for its correctness:  <i>the fail-fast behavior of iterators
60 < * should be used only to detect bugs.</i><p>
60 > * should be used only to detect bugs.</i>
61   *
62 < * This class is a member of the
63 < * <a href="{@docRoot}/../guide/collections/index.html">
64 < * Java Collections Framework</a>.
62 > * <p>As of the Java 2 platform v1.2, this class was retrofitted to
63 > * implement the {@link List} interface, making it a member of the
64 > * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
65 > * Collections Framework</a>.  Unlike the new collection
66 > * implementations, {@code Vector} is synchronized.
67   *
68   * @author  Lee Boynton
69   * @author  Jonathan Payne
# Line 66 | Line 81 | public class Vector<E>
81      /**
82       * The array buffer into which the components of the vector are
83       * stored. The capacity of the vector is the length of this array buffer,
84 <     * and is at least large enough to contain all the vector's elements.<p>
84 >     * and is at least large enough to contain all the vector's elements.
85       *
86 <     * Any array elements following the last element in the Vector are null.
86 >     * <p>Any array elements following the last element in the Vector are null.
87       *
88       * @serial
89       */
90      protected Object[] elementData;
91  
92      /**
93 <     * The number of valid components in this <tt>Vector</tt> object.
94 <     * Components <tt>elementData[0]</tt> through
95 <     * <tt>elementData[elementCount-1]</tt> are the actual items.
93 >     * The number of valid components in this {@code Vector} object.
94 >     * Components {@code elementData[0]} through
95 >     * {@code elementData[elementCount-1]} are the actual items.
96       *
97       * @serial
98       */
# Line 103 | Line 118 | public class Vector<E>
118       * @param   initialCapacity     the initial capacity of the vector
119       * @param   capacityIncrement   the amount by which the capacity is
120       *                              increased when the vector overflows
121 <     * @exception IllegalArgumentException if the specified initial capacity
122 <     *               is negative
121 >     * @throws IllegalArgumentException if the specified initial capacity
122 >     *         is negative
123       */
124      public Vector(int initialCapacity, int capacityIncrement) {
125          super();
# Line 120 | Line 135 | public class Vector<E>
135       * with its capacity increment equal to zero.
136       *
137       * @param   initialCapacity   the initial capacity of the vector
138 <     * @exception IllegalArgumentException if the specified initial capacity
139 <     *               is negative
138 >     * @throws IllegalArgumentException if the specified initial capacity
139 >     *         is negative
140       */
141      public Vector(int initialCapacity) {
142          this(initialCapacity, 0);
# Line 129 | Line 144 | public class Vector<E>
144  
145      /**
146       * Constructs an empty vector so that its internal data array
147 <     * has size <tt>10</tt> and its standard capacity increment is
147 >     * has size {@code 10} and its standard capacity increment is
148       * zero.
149       */
150      public Vector() {
# Line 147 | Line 162 | public class Vector<E>
162       * @since   1.2
163       */
164      public Vector(Collection<? extends E> c) {
165 <        Object[] a = c.toArray();
166 <        elementCount = a.length;
167 <        // If c.toArray incorrectly doesn't return Object[], copy it.
168 <        if (a.getClass() == Object[].class)
169 <            elementData = a;
155 <        else
156 <            elementData = Arrays.copyOf(a, a.length, Object[].class);
165 >        elementData = c.toArray();
166 >        elementCount = elementData.length;
167 >        // c.toArray might (incorrectly) not return Object[] (see 6260652)
168 >        if (elementData.getClass() != Object[].class)
169 >            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
170      }
171  
172      /**
173       * Copies the components of this vector into the specified array.
174 <     * The item at index <tt>k</tt> in this vector is copied into
175 <     * component <tt>k</tt> of <tt>anArray</tt>.
174 >     * The item at index {@code k} in this vector is copied into
175 >     * component {@code k} of {@code anArray}.
176       *
177       * @param  anArray the array into which the components get copied
178       * @throws NullPointerException if the given array is null
# Line 177 | Line 190 | public class Vector<E>
190       * Trims the capacity of this vector to be the vector's current
191       * size. If the capacity of this vector is larger than its current
192       * size, then the capacity is changed to equal the size by replacing
193 <     * its internal data array, kept in the field <tt>elementData</tt>,
193 >     * its internal data array, kept in the field {@code elementData},
194       * with a smaller one. An application can use this operation to
195       * minimize the storage of a vector.
196       */
# Line 195 | Line 208 | public class Vector<E>
208       * the minimum capacity argument.
209       *
210       * <p>If the current capacity of this vector is less than
211 <     * <tt>minCapacity</tt>, then its capacity is increased by replacing its
212 <     * internal data array, kept in the field <tt>elementData</tt>, with a
211 >     * {@code minCapacity}, then its capacity is increased by replacing its
212 >     * internal data array, kept in the field {@code elementData}, with a
213       * larger one.  The size of the new data array will be the old size plus
214 <     * <tt>capacityIncrement</tt>, unless the value of
215 <     * <tt>capacityIncrement</tt> is less than or equal to zero, in which case
214 >     * {@code capacityIncrement}, unless the value of
215 >     * {@code capacityIncrement} is less than or equal to zero, in which case
216       * the new capacity will be twice the old capacity; but if this new size
217 <     * is still smaller than <tt>minCapacity</tt>, then the new capacity will
218 <     * be <tt>minCapacity</tt>.
217 >     * is still smaller than {@code minCapacity}, then the new capacity will
218 >     * be {@code minCapacity}.
219       *
220       * @param minCapacity the desired minimum capacity
221       */
# Line 217 | Line 230 | public class Vector<E>
230       * method for ensuring capacity without incurring the cost of an
231       * extra synchronization.
232       *
233 <     * @see java.util.Vector#ensureCapacity(int)
233 >     * @see #ensureCapacity(int)
234       */
235      private void ensureCapacityHelper(int minCapacity) {
236          int oldCapacity = elementData.length;
# Line 234 | Line 247 | public class Vector<E>
247  
248      /**
249       * Sets the size of this vector. If the new size is greater than the
250 <     * current size, new <code>null</code> items are added to the end of
250 >     * current size, new {@code null} items are added to the end of
251       * the vector. If the new size is less than the current size, all
252 <     * components at index <code>newSize</code> and greater are discarded.
252 >     * components at index {@code newSize} and greater are discarded.
253       *
254 <     * @param   newSize   the new size of this vector
255 <     * @throws  ArrayIndexOutOfBoundsException if new size is negative
254 >     * @param  newSize   the new size of this vector
255 >     * @throws ArrayIndexOutOfBoundsException if the new size is negative
256       */
257      public synchronized void setSize(int newSize) {
258          modCount++;
# Line 257 | Line 270 | public class Vector<E>
270       * Returns the current capacity of this vector.
271       *
272       * @return  the current capacity (the length of its internal
273 <     *          data array, kept in the field <tt>elementData</tt>
273 >     *          data array, kept in the field {@code elementData}
274       *          of this vector)
275       */
276      public synchronized int capacity() {
# Line 276 | Line 289 | public class Vector<E>
289      /**
290       * Tests if this vector has no components.
291       *
292 <     * @return  <code>true</code> if and only if this vector has
292 >     * @return  {@code true} if and only if this vector has
293       *          no components, that is, its size is zero;
294 <     *          <code>false</code> otherwise.
294 >     *          {@code false} otherwise.
295       */
296      public synchronized boolean isEmpty() {
297          return elementCount == 0;
# Line 286 | Line 299 | public class Vector<E>
299  
300      /**
301       * Returns an enumeration of the components of this vector. The
302 <     * returned <tt>Enumeration</tt> object will generate all items in
303 <     * this vector. The first item generated is the item at index <tt>0</tt>,
304 <     * then the item at index <tt>1</tt>, and so on.
302 >     * returned {@code Enumeration} object will generate all items in
303 >     * this vector. The first item generated is the item at index {@code 0},
304 >     * then the item at index {@code 1}, and so on.
305       *
306       * @return  an enumeration of the components of this vector
294     * @see     Enumeration
307       * @see     Iterator
308       */
309      public Enumeration<E> elements() {
# Line 314 | Line 326 | public class Vector<E>
326      }
327  
328      /**
329 <     * Returns <tt>true</tt> if this vector contains the specified element.
330 <     * More formally, returns <tt>true</tt> if and only if this vector
331 <     * contains at least one element <tt>e</tt> such that
329 >     * Returns {@code true} if this vector contains the specified element.
330 >     * More formally, returns {@code true} if and only if this vector
331 >     * contains at least one element {@code e} such that
332       * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
333       *
334       * @param o element whose presence in this vector is to be tested
335 <     * @return <tt>true</tt> if this vector contains the specified element
335 >     * @return {@code true} if this vector contains the specified element
336       */
337      public boolean contains(Object o) {
338          return indexOf(o, 0) >= 0;
# Line 329 | Line 341 | public class Vector<E>
341      /**
342       * Returns the index of the first occurrence of the specified element
343       * in this vector, or -1 if this vector does not contain the element.
344 <     * More formally, returns the lowest index <tt>i</tt> such that
344 >     * More formally, returns the lowest index {@code i} such that
345       * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
346       * or -1 if there is no such index.
347       *
# Line 343 | Line 355 | public class Vector<E>
355  
356      /**
357       * Returns the index of the first occurrence of the specified element in
358 <     * this vector, searching forwards from <tt>index</tt>, or returns -1 if
358 >     * this vector, searching forwards from {@code index}, or returns -1 if
359       * the element is not found.
360 <     * More formally, returns the lowest index <tt>i</tt> such that
360 >     * More formally, returns the lowest index {@code i} such that
361       * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
362       * or -1 if there is no such index.
363       *
364       * @param o element to search for
365       * @param index index to start searching from
366       * @return the index of the first occurrence of the element in
367 <     *         this vector at position <tt>index</tt> or later in the vector;
368 <     *         <tt>-1</tt> if the element is not found.
367 >     *         this vector at position {@code index} or later in the vector;
368 >     *         {@code -1} if the element is not found.
369       * @throws IndexOutOfBoundsException if the specified index is negative
370       * @see     Object#equals(Object)
371       */
# Line 373 | Line 385 | public class Vector<E>
385      /**
386       * Returns the index of the last occurrence of the specified element
387       * in this vector, or -1 if this vector does not contain the element.
388 <     * More formally, returns the highest index <tt>i</tt> such that
388 >     * More formally, returns the highest index {@code i} such that
389       * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
390       * or -1 if there is no such index.
391       *
# Line 387 | Line 399 | public class Vector<E>
399  
400      /**
401       * Returns the index of the last occurrence of the specified element in
402 <     * this vector, searching backwards from <tt>index</tt>, or returns -1 if
402 >     * this vector, searching backwards from {@code index}, or returns -1 if
403       * the element is not found.
404 <     * More formally, returns the highest index <tt>i</tt> such that
404 >     * More formally, returns the highest index {@code i} such that
405       * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
406       * or -1 if there is no such index.
407       *
408       * @param o element to search for
409       * @param index index to start searching backwards from
410       * @return the index of the last occurrence of the element at position
411 <     *         less than or equal to <tt>index</tt> in this vector;
411 >     *         less than or equal to {@code index} in this vector;
412       *         -1 if the element is not found.
413       * @throws IndexOutOfBoundsException if the specified index is greater
414       *         than or equal to the current size of this vector
# Line 418 | Line 430 | public class Vector<E>
430      }
431  
432      /**
433 <     * Returns the component at the specified index.<p>
433 >     * Returns the component at the specified index.
434       *
435 <     * This method is identical in functionality to the get method
436 <     * (which is part of the List interface).
435 >     * <p>This method is identical in functionality to the {@link #get(int)}
436 >     * method (which is part of the {@link List} interface).
437       *
438       * @param      index   an index into this vector
439       * @return     the component at the specified index
440 <     * @exception  ArrayIndexOutOfBoundsException  if the <tt>index</tt>
441 <     *             is negative or not less than the current size of this
430 <     *             <tt>Vector</tt> object.
431 <     * @see        #get(int)
432 <     * @see        List
440 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
441 >     *         ({@code index < 0 || index >= size()})
442       */
443      public synchronized E elementAt(int index) {
444          if (index >= elementCount) {
# Line 440 | Line 449 | public class Vector<E>
449      }
450  
451      /**
452 <     * Returns the first component (the item at index <tt>0</tt>) of
452 >     * Returns the first component (the item at index {@code 0}) of
453       * this vector.
454       *
455       * @return     the first component of this vector
456 <     * @exception  NoSuchElementException  if this vector has no components
456 >     * @throws NoSuchElementException if this vector has no components
457       */
458      public synchronized E firstElement() {
459          if (elementCount == 0) {
# Line 458 | Line 467 | public class Vector<E>
467       *
468       * @return  the last component of the vector, i.e., the component at index
469       *          <code>size()&nbsp;-&nbsp;1</code>.
470 <     * @exception  NoSuchElementException  if this vector is empty
470 >     * @throws NoSuchElementException if this vector is empty
471       */
472      public synchronized E lastElement() {
473          if (elementCount == 0) {
# Line 468 | Line 477 | public class Vector<E>
477      }
478  
479      /**
480 <     * Sets the component at the specified <code>index</code> of this
480 >     * Sets the component at the specified {@code index} of this
481       * vector to be the specified object. The previous component at that
482 <     * position is discarded.<p>
482 >     * position is discarded.
483       *
484 <     * The index must be a value greater than or equal to <code>0</code>
485 <     * and less than the current size of the vector. <p>
484 >     * <p>The index must be a value greater than or equal to {@code 0}
485 >     * and less than the current size of the vector.
486       *
487 <     * This method is identical in functionality to the set method
488 <     * (which is part of the List interface). Note that the set method reverses
489 <     * the order of the parameters, to more closely match array usage.  Note
490 <     * also that the set method returns the old value that was stored at the
491 <     * specified position.
487 >     * <p>This method is identical in functionality to the
488 >     * {@link #set(int, Object) set(int, E)}
489 >     * method (which is part of the {@link List} interface). Note that the
490 >     * {@code set} method reverses the order of the parameters, to more closely
491 >     * match array usage.  Note also that the {@code set} method returns the
492 >     * old value that was stored at the specified position.
493       *
494       * @param      obj     what the component is to be set to
495       * @param      index   the specified index
496 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
497 <     * @see        #size()
488 <     * @see        List
489 <     * @see        #set(int, java.lang.Object)
496 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
497 >     *         ({@code index < 0 || index >= size()})
498       */
499      public synchronized void setElementAt(E obj, int index) {
500          if (index >= elementCount) {
# Line 499 | Line 507 | public class Vector<E>
507      /**
508       * Deletes the component at the specified index. Each component in
509       * this vector with an index greater or equal to the specified
510 <     * <code>index</code> is shifted downward to have an index one
510 >     * {@code index} is shifted downward to have an index one
511       * smaller than the value it had previously. The size of this vector
512 <     * is decreased by <tt>1</tt>.<p>
512 >     * is decreased by {@code 1}.
513       *
514 <     * The index must be a value greater than or equal to <code>0</code>
515 <     * and less than the current size of the vector. <p>
514 >     * <p>The index must be a value greater than or equal to {@code 0}
515 >     * and less than the current size of the vector.
516       *
517 <     * This method is identical in functionality to the remove method
518 <     * (which is part of the List interface).  Note that the remove method
519 <     * returns the old value that was stored at the specified position.
517 >     * <p>This method is identical in functionality to the {@link #remove(int)}
518 >     * method (which is part of the {@link List} interface).  Note that the
519 >     * {@code remove} method returns the old value that was stored at the
520 >     * specified position.
521       *
522       * @param      index   the index of the object to remove
523 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
524 <     * @see        #size()
516 <     * @see        #remove(int)
517 <     * @see        List
523 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
524 >     *         ({@code index < 0 || index >= size()})
525       */
526      public synchronized void removeElementAt(int index) {
527          modCount++;
# Line 535 | Line 542 | public class Vector<E>
542  
543      /**
544       * Inserts the specified object as a component in this vector at the
545 <     * specified <code>index</code>. Each component in this vector with
546 <     * an index greater or equal to the specified <code>index</code> is
545 >     * specified {@code index}. Each component in this vector with
546 >     * an index greater or equal to the specified {@code index} is
547       * shifted upward to have an index one greater than the value it had
548 <     * previously. <p>
548 >     * previously.
549       *
550 <     * The index must be a value greater than or equal to <code>0</code>
550 >     * <p>The index must be a value greater than or equal to {@code 0}
551       * and less than or equal to the current size of the vector. (If the
552       * index is equal to the current size of the vector, the new element
553 <     * is appended to the Vector.)<p>
553 >     * is appended to the Vector.)
554       *
555 <     * This method is identical in functionality to the add(Object, int) method
556 <     * (which is part of the List interface). Note that the add method reverses
557 <     * the order of the parameters, to more closely match array usage.
555 >     * <p>This method is identical in functionality to the
556 >     * {@link #add(int, Object) add(int, E)}
557 >     * method (which is part of the {@link List} interface).  Note that the
558 >     * {@code add} method reverses the order of the parameters, to more closely
559 >     * match array usage.
560       *
561       * @param      obj     the component to insert
562       * @param      index   where to insert the new component
563 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
564 <     * @see        #size()
556 <     * @see        #add(int, Object)
557 <     * @see        List
563 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
564 >     *         ({@code index < 0 || index > size()})
565       */
566      public synchronized void insertElementAt(E obj, int index) {
567          modCount++;
# Line 571 | Line 578 | public class Vector<E>
578      /**
579       * Adds the specified component to the end of this vector,
580       * increasing its size by one. The capacity of this vector is
581 <     * increased if its size becomes greater than its capacity. <p>
581 >     * increased if its size becomes greater than its capacity.
582       *
583 <     * This method is identical in functionality to the add(Object) method
584 <     * (which is part of the List interface).
583 >     * <p>This method is identical in functionality to the
584 >     * {@link #add(Object) add(E)}
585 >     * method (which is part of the {@link List} interface).
586       *
587       * @param   obj   the component to be added
580     * @see        #add(Object)
581     * @see        List
588       */
589      public synchronized void addElement(E obj) {
590          modCount++;
# Line 591 | Line 597 | public class Vector<E>
597       * from this vector. If the object is found in this vector, each
598       * component in the vector with an index greater or equal to the
599       * object's index is shifted downward to have an index one smaller
600 <     * than the value it had previously.<p>
600 >     * than the value it had previously.
601       *
602 <     * This method is identical in functionality to the remove(Object)
603 <     * method (which is part of the List interface).
602 >     * <p>This method is identical in functionality to the
603 >     * {@link #remove(Object)} method (which is part of the
604 >     * {@link List} interface).
605       *
606       * @param   obj   the component to be removed
607 <     * @return  <code>true</code> if the argument was a component of this
608 <     *          vector; <code>false</code> otherwise.
602 <     * @see     List#remove(Object)
603 <     * @see     List
607 >     * @return  {@code true} if the argument was a component of this
608 >     *          vector; {@code false} otherwise.
609       */
610      public synchronized boolean removeElement(Object obj) {
611          modCount++;
# Line 613 | Line 618 | public class Vector<E>
618      }
619  
620      /**
621 <     * Removes all components from this vector and sets its size to zero.<p>
621 >     * Removes all components from this vector and sets its size to zero.
622       *
623 <     * This method is identical in functionality to the clear method
624 <     * (which is part of the List interface).
620 <     *
621 <     * @see     #clear
622 <     * @see     List
623 >     * <p>This method is identical in functionality to the {@link #clear}
624 >     * method (which is part of the {@link List} interface).
625       */
626      public synchronized void removeAllElements() {
627          modCount++;
# Line 633 | Line 635 | public class Vector<E>
635      /**
636       * Returns a clone of this vector. The copy will contain a
637       * reference to a clone of the internal data array, not a reference
638 <     * to the original internal data array of this <tt>Vector</tt> object.
638 >     * to the original internal data array of this {@code Vector} object.
639       *
640       * @return  a clone of this vector
641       */
# Line 664 | Line 666 | public class Vector<E>
666       * correct order; the runtime type of the returned array is that of the
667       * specified array.  If the Vector fits in the specified array, it is
668       * returned therein.  Otherwise, a new array is allocated with the runtime
669 <     * type of the specified array and the size of this Vector.<p>
669 >     * type of the specified array and the size of this Vector.
670       *
671 <     * If the Vector fits in the specified array with room to spare
671 >     * <p>If the Vector fits in the specified array with room to spare
672       * (i.e., the array has more elements than the Vector),
673       * the element in the array immediately following the end of the
674       * Vector is set to null.  (This is useful in determining the length
# Line 677 | Line 679 | public class Vector<E>
679       *          be stored, if it is big enough; otherwise, a new array of the
680       *          same runtime type is allocated for this purpose.
681       * @return an array containing the elements of the Vector
682 <     * @exception ArrayStoreException the runtime type of a is not a supertype
682 >     * @throws ArrayStoreException if the runtime type of a is not a supertype
683       * of the runtime type of every element in this Vector
684       * @throws NullPointerException if the given array is null
685       * @since 1.2
# Line 701 | Line 703 | public class Vector<E>
703       *
704       * @param index index of the element to return
705       * @return object at the specified index
706 <     * @exception ArrayIndexOutOfBoundsException index is out of range (index
707 <     *            &lt; 0 || index &gt;= size())
706 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
707 >     *            ({@code index < 0 || index >= size()})
708       * @since 1.2
709       */
710      public synchronized E get(int index) {
# Line 719 | Line 721 | public class Vector<E>
721       * @param index index of the element to replace
722       * @param element element to be stored at the specified position
723       * @return the element previously at the specified position
724 <     * @exception ArrayIndexOutOfBoundsException index out of range
725 <     *            (index &lt; 0 || index &gt;= size())
724 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
725 >     *         ({@code index < 0 || index >= size()})
726       * @since 1.2
727       */
728      public synchronized E set(int index, E element) {
# Line 736 | Line 738 | public class Vector<E>
738       * Appends the specified element to the end of this Vector.
739       *
740       * @param e element to be appended to this Vector
741 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
741 >     * @return {@code true} (as specified by {@link Collection#add})
742       * @since 1.2
743       */
744      public synchronized boolean add(E e) {
# Line 750 | Line 752 | public class Vector<E>
752       * Removes the first occurrence of the specified element in this Vector
753       * If the Vector does not contain the element, it is unchanged.  More
754       * formally, removes the element with the lowest index i such that
755 <     * <code>(o==null ? get(i)==null : o.equals(get(i)))</code> (if such
755 >     * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
756       * an element exists).
757       *
758       * @param o element to be removed from this Vector, if present
# Line 768 | Line 770 | public class Vector<E>
770       *
771       * @param index index at which the specified element is to be inserted
772       * @param element element to be inserted
773 <     * @exception ArrayIndexOutOfBoundsException index is out of range
774 <     *            (index &lt; 0 || index &gt; size())
773 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
774 >     *         ({@code index < 0 || index > size()})
775       * @since 1.2
776       */
777      public void add(int index, E element) {
# Line 781 | Line 783 | public class Vector<E>
783       * Shifts any subsequent elements to the left (subtracts one from their
784       * indices).  Returns the element that was removed from the Vector.
785       *
786 <     * @exception ArrayIndexOutOfBoundsException index out of range (index
787 <     *            &lt; 0 || index &gt;= size())
786 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
787 >     *         ({@code index < 0 || index >= size()})
788       * @param index the index of the element to be removed
789       * @return element that was removed
790       * @since 1.2
# Line 837 | Line 839 | public class Vector<E>
839       * specified Collection is this Vector, and this Vector is nonempty.)
840       *
841       * @param c elements to be inserted into this Vector
842 <     * @return <tt>true</tt> if this Vector changed as a result of the call
842 >     * @return {@code true} if this Vector changed as a result of the call
843       * @throws NullPointerException if the specified collection is null
844       * @since 1.2
845       */
# Line 900 | Line 902 | public class Vector<E>
902       * @param index index at which to insert the first element from the
903       *              specified collection
904       * @param c elements to be inserted into this Vector
905 <     * @return <tt>true</tt> if this Vector changed as a result of the call
906 <     * @exception ArrayIndexOutOfBoundsException index out of range (index
907 <     *            &lt; 0 || index &gt; size())
905 >     * @return {@code true} if this Vector changed as a result of the call
906 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
907 >     *         ({@code index < 0 || index > size()})
908       * @throws NullPointerException if the specified collection is null
909       * @since 1.2
910       */
# Line 929 | Line 931 | public class Vector<E>
931       * Compares the specified Object with this Vector for equality.  Returns
932       * true if and only if the specified Object is also a List, both Lists
933       * have the same size, and all corresponding pairs of elements in the two
934 <     * Lists are <em>equal</em>.  (Two elements <code>e1</code> and
935 <     * <code>e2</code> are <em>equal</em> if <code>(e1==null ? e2==null :
936 <     * e1.equals(e2))</code>.)  In other words, two Lists are defined to be
934 >     * Lists are <em>equal</em>.  (Two elements {@code e1} and
935 >     * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
936 >     * e1.equals(e2))}.)  In other words, two Lists are defined to be
937       * equal if they contain the same elements in the same order.
938       *
939       * @param o the Object to be compared for equality with this Vector
# Line 957 | Line 959 | public class Vector<E>
959      }
960  
961      /**
960     * Returns a view of the portion of this List between fromIndex,
961     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
962     * equal, the returned List is empty.)  The returned List is backed by this
963     * List, so changes in the returned List are reflected in this List, and
964     * vice-versa.  The returned List supports all of the optional List
965     * operations supported by this List.<p>
966     *
967     * This method eliminates the need for explicit range operations (of
968     * the sort that commonly exist for arrays).   Any operation that expects
969     * a List can be used as a range operation by operating on a subList view
970     * instead of a whole List.  For example, the following idiom
971     * removes a range of elements from a List:
972     * <pre>
973     *      list.subList(from, to).clear();
974     * </pre>
975     * Similar idioms may be constructed for indexOf and lastIndexOf,
976     * and all of the algorithms in the Collections class can be applied to
977     * a subList.<p>
978     *
979     * The semantics of the List returned by this method become undefined if
980     * the backing list (i.e., this List) is <i>structurally modified</i> in
981     * any way other than via the returned List.  (Structural modifications are
982     * those that change the size of the List, or otherwise perturb it in such
983     * a fashion that iterations in progress may yield incorrect results.)
984     *
985     * @param fromIndex low endpoint (inclusive) of the subList
986     * @param toIndex high endpoint (exclusive) of the subList
987     * @return a view of the specified range within this List
988     * @throws IndexOutOfBoundsException endpoint index value out of range
989     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
990     * @throws IllegalArgumentException endpoint indices out of order
991     *         <code>(fromIndex &gt; toIndex)</code>
992     */
993    public synchronized List<E> subList(int fromIndex, int toIndex) {
994        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
995                                            this);
996    }
997
998    /**
962       * Removes from this List all of the elements whose index is between
963       * fromIndex, inclusive and toIndex, exclusive.  Shifts any succeeding
964       * elements to the left (reduces their index).
965 <     * This call shortens the ArrayList by (toIndex - fromIndex) elements.  (If
965 >     * This call shortens the Vector by (toIndex - fromIndex) elements.  (If
966       * toIndex==fromIndex, this operation has no effect.)
967       *
968       * @param fromIndex index of first element to be removed
# Line 1018 | Line 981 | public class Vector<E>
981      }
982  
983      /**
984 <     * Save the state of the <tt>Vector</tt> instance to a stream (that
984 >     * Save the state of the {@code Vector} instance to a stream (that
985       * is, serialize it).  This method is present merely for synchronization.
986       * It just calls the default writeObject method.
987       */
# Line 1031 | Line 994 | public class Vector<E>
994      /**
995       * Returns a list-iterator of the elements in this list (in proper
996       * sequence), starting at the specified position in the list.
997 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
997 >     * Obeys the general contract of {@link List#listIterator(int)}.
998       *
999 <     * The list-iterator is <i>fail-fast</i>: if the list is structurally
999 >     * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
1000       * modified at any time after the Iterator is created, in any way except
1001 <     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
1001 >     * through the list-iterator's own {@code remove} or {@code add}
1002       * methods, the list-iterator will throw a
1003 <     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
1003 >     * {@code ConcurrentModificationException}.  Thus, in the face of
1004       * concurrent modification, the iterator fails quickly and cleanly, rather
1005       * than risking arbitrary, non-deterministic behavior at an undetermined
1006       * time in the future.
1007       *
1008       * @param index index of the first element to be returned from the
1009 <     *              list-iterator (by a call to <tt>next</tt>)
1010 <     * @return a ListIterator of the elements in this list (in proper
1009 >     *        list-iterator (by a call to {@link ListIterator#next})
1010 >     * @return a list-iterator of the elements in this list (in proper
1011       *         sequence), starting at the specified position in the list
1012       * @throws IndexOutOfBoundsException {@inheritDoc}
1050     * @see List#listIterator(int)
1013       */
1014      public synchronized ListIterator<E> listIterator(int index) {
1015          if (index < 0 || index > elementCount)
1016              throw new IndexOutOfBoundsException("Index: "+index);
1017 <        return new VectorIterator(index);
1017 >        return new VectorIterator(index, elementCount);
1018      }
1019 <
1019 >
1020 >    /**
1021 >     * {@inheritDoc}
1022 >     */
1023 >    public synchronized ListIterator<E> listIterator() {
1024 >        return new VectorIterator(0, elementCount);
1025 >    }
1026 >
1027      /**
1028       * Returns an iterator over the elements in this list in proper sequence.
1029       *
1030       * @return an iterator over the elements in this list in proper sequence
1031       */
1032      public synchronized Iterator<E> iterator() {
1033 <        return new VectorIterator(0);
1033 >        return new VectorIterator(0, elementCount);
1034 >    }
1035 >
1036 >    /**
1037 >     * Helper method to access array elements under synchronization by
1038 >     * iterators. The caller performs index check with respect to
1039 >     * expected bounds, so errors accessing the element are reported
1040 >     * as ConcurrentModificationExceptions.
1041 >     */
1042 >    final synchronized Object iteratorGet(int index, int expectedModCount) {
1043 >        if (modCount == expectedModCount) {
1044 >            try {
1045 >                return elementData[index];
1046 >            } catch(IndexOutOfBoundsException fallThrough) {
1047 >            }
1048 >        }
1049 >        throw new ConcurrentModificationException();
1050      }
1051  
1052      /**
1053 <     * A streamlined version of AbstractList.Itr.
1053 >     * Streamlined specialization of AbstractList version of iterator.
1054 >     * Locally performs bounds checks, but relies on outer Vector
1055 >     * to access elements under synchronization.
1056       */
1057 <    final class VectorIterator implements ListIterator<E> {
1058 <        int cursor;           // index of next element to return;
1059 <        int lastRet;          // index of last element, or -1 if no such
1060 <        int expectedModCount; // to check for CME
1057 >    private final class VectorIterator implements ListIterator<E> {
1058 >        int cursor;              // Index of next element to return;
1059 >        int fence;               // Upper bound on cursor (cache of size())
1060 >        int lastRet;             // Index of last element, or -1 if no such
1061 >        int expectedModCount;    // To check for CME
1062  
1063 <        VectorIterator(int index) {
1064 <            cursor = index;
1065 <            lastRet = -1;
1066 <            expectedModCount = modCount;
1063 >        VectorIterator(int index, int fence) {
1064 >            this.cursor = index;
1065 >            this.fence = fence;
1066 >            this.lastRet = -1;
1067 >            this.expectedModCount = Vector.this.modCount;
1068          }
1069  
1070          public boolean hasNext() {
1071 <            // Racy but within spec and backwards-compatible
1083 <            return cursor < elementCount;
1071 >            return cursor < fence;
1072          }
1073  
1074          public boolean hasPrevious() {
# Line 1096 | Line 1084 | public class Vector<E>
1084          }
1085  
1086          public E next() {
1087 <            synchronized(Vector.this) {
1088 <                if (expectedModCount == modCount) {
1089 <                    int i = cursor;
1090 <                    if (i < elementCount) {
1091 <                        try {
1092 <                            E e = (E)elementData[i];
1093 <                            lastRet = i;
1106 <                            cursor = i + 1;
1107 <                            return e;
1108 <                        } catch (IndexOutOfBoundsException fallthrough) {
1109 <                        }
1110 <                    }
1111 <                }
1112 <                // Prefer reporting CME if applicable on failures
1113 <                if (expectedModCount == modCount)
1114 <                    throw new NoSuchElementException();
1115 <                throw new ConcurrentModificationException();
1116 <            }
1087 >            int i = cursor;
1088 >            if (i >= fence)
1089 >                throw new NoSuchElementException();
1090 >            Object next = Vector.this.iteratorGet(i, expectedModCount);
1091 >            lastRet = i;
1092 >            cursor = i + 1;
1093 >            return (E)next;
1094          }
1095  
1096          public E previous() {
1097 <            synchronized(Vector.this) {
1098 <                if (expectedModCount == modCount) {
1099 <                    int i = cursor - 1;
1100 <                    if (i < elementCount) {
1101 <                        try {
1102 <                            E e = (E)elementData[i];
1103 <                            lastRet = i;
1127 <                            cursor = i;
1128 <                            return e;
1129 <                        } catch (IndexOutOfBoundsException fallthrough) {
1130 <                        }
1131 <                    }
1132 <                }
1133 <                if (expectedModCount == modCount)
1134 <                    throw new NoSuchElementException();
1135 <                throw new ConcurrentModificationException();
1136 <            }
1097 >            int i = cursor - 1;
1098 >            if (i < 0)
1099 >                throw new NoSuchElementException();
1100 >            Object prev = Vector.this.iteratorGet(i, expectedModCount);
1101 >            lastRet = i;
1102 >            cursor = i;
1103 >            return (E)prev;
1104          }
1105  
1106 <        public void remove() {
1106 >        public void set(E e) {
1107              if (lastRet < 0)
1108                  throw new IllegalStateException();
1109 <            synchronized(Vector.this) {
1110 <                if (modCount != expectedModCount)
1111 <                    throw new ConcurrentModificationException();
1112 <                Vector.this.remove(lastRet);
1113 <                if (lastRet < cursor)
1114 <                    cursor--;
1115 <                lastRet = -1;
1116 <                expectedModCount = modCount;
1150 <            }
1109 >            if (Vector.this.modCount != expectedModCount)
1110 >                throw new ConcurrentModificationException();
1111 >            try {
1112 >                Vector.this.set(lastRet, e);
1113 >                expectedModCount = Vector.this.modCount;
1114 >            } catch (IndexOutOfBoundsException ex) {
1115 >                throw new ConcurrentModificationException();
1116 >            }
1117          }
1118  
1119 <        public void set(E e) {
1120 <            if (lastRet < 0)
1119 >        public void remove() {
1120 >            int i = lastRet;
1121 >            if (i < 0)
1122                  throw new IllegalStateException();
1123 <            synchronized(Vector.this) {
1124 <                if (modCount != expectedModCount)
1125 <                    throw new ConcurrentModificationException();
1126 <                Vector.this.set(lastRet, e);
1127 <                expectedModCount = modCount;
1128 <            }
1123 >            if (Vector.this.modCount != expectedModCount)
1124 >                throw new ConcurrentModificationException();
1125 >            try {
1126 >                Vector.this.remove(i);
1127 >                if (i < cursor)
1128 >                    cursor--;
1129 >                lastRet = -1;
1130 >                fence = Vector.this.size();
1131 >                expectedModCount = Vector.this.modCount;
1132 >            } catch (IndexOutOfBoundsException ex) {
1133 >                throw new ConcurrentModificationException();
1134 >            }
1135          }
1136  
1137          public void add(E e) {
1138 <            synchronized(Vector.this) {
1139 <                if (modCount != expectedModCount)
1140 <                    throw new ConcurrentModificationException();
1141 <                Vector.this.add(cursor++, e);
1138 >            if (Vector.this.modCount != expectedModCount)
1139 >                throw new ConcurrentModificationException();
1140 >            try {
1141 >                int i = cursor;
1142 >                Vector.this.add(i, e);
1143 >                cursor = i + 1;
1144                  lastRet = -1;
1145 <                expectedModCount = modCount;
1146 <            }
1145 >                fence = Vector.this.size();
1146 >                expectedModCount = Vector.this.modCount;
1147 >            } catch (IndexOutOfBoundsException ex) {
1148 >                throw new ConcurrentModificationException();
1149 >            }
1150          }
1151      }
1152  
1153 +    /**
1154 +     * Returns a view of the portion of this List between fromIndex,
1155 +     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1156 +     * equal, the returned List is empty.)  The returned List is backed by this
1157 +     * List, so changes in the returned List are reflected in this List, and
1158 +     * vice-versa.  The returned List supports all of the optional List
1159 +     * operations supported by this List.
1160 +     *
1161 +     * <p>This method eliminates the need for explicit range operations (of
1162 +     * the sort that commonly exist for arrays).   Any operation that expects
1163 +     * a List can be used as a range operation by operating on a subList view
1164 +     * instead of a whole List.  For example, the following idiom
1165 +     * removes a range of elements from a List:
1166 +     * <pre>
1167 +     *      list.subList(from, to).clear();
1168 +     * </pre>
1169 +     * Similar idioms may be constructed for indexOf and lastIndexOf,
1170 +     * and all of the algorithms in the Collections class can be applied to
1171 +     * a subList.
1172 +     *
1173 +     * <p>The semantics of the List returned by this method become undefined if
1174 +     * the backing list (i.e., this List) is <i>structurally modified</i> in
1175 +     * any way other than via the returned List.  (Structural modifications are
1176 +     * those that change the size of the List, or otherwise perturb it in such
1177 +     * a fashion that iterations in progress may yield incorrect results.)
1178 +     *
1179 +     * @param fromIndex low endpoint (inclusive) of the subList
1180 +     * @param toIndex high endpoint (exclusive) of the subList
1181 +     * @return a view of the specified range within this List
1182 +     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1183 +     *         {@code (fromIndex < 0 || toIndex > size)}
1184 +     * @throws IllegalArgumentException if the endpoint indices are out of order
1185 +     *         {@code (fromIndex > toIndex)}
1186 +     */
1187 +    public synchronized List<E> subList(int fromIndex, int toIndex) {
1188 +        return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1189 +    }
1190 +
1191 +    /**
1192 +     * This class specializes the AbstractList version of SubList to
1193 +     * avoid the double-indirection penalty that would arise using a
1194 +     * synchronized wrapper, as well as to avoid some unnecessary
1195 +     * checks in sublist iterators.
1196 +     */
1197 +    private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1198 +        final Vector<E> base;             // base list
1199 +        final AbstractList<E> parent;     // Creating list
1200 +        final int baseOffset;             // index wrt Vector
1201 +        final int parentOffset;           // index wrt parent
1202 +        int length;                       // length of sublist
1203 +
1204 +        VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1205 +                     int fromIndex, int toIndex) {
1206 +            if (fromIndex < 0)
1207 +                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1208 +            if (toIndex > parent.size())
1209 +                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1210 +            if (fromIndex > toIndex)
1211 +                throw new IllegalArgumentException("fromIndex(" + fromIndex +
1212 +                                                   ") > toIndex(" + toIndex + ")");
1213 +
1214 +            this.base = base;
1215 +            this.parent = parent;
1216 +            this.baseOffset = baseOffset;
1217 +            this.parentOffset = fromIndex;
1218 +            this.length = toIndex - fromIndex;
1219 +            modCount = base.modCount;
1220 +        }
1221 +
1222 +        /**
1223 +         * Returns an IndexOutOfBoundsException with nicer message
1224 +         */
1225 +        private IndexOutOfBoundsException indexError(int index) {
1226 +            return new IndexOutOfBoundsException("Index: " + index +
1227 +                                                 ", Size: " + length);
1228 +        }
1229 +
1230 +        public E set(int index, E element) {
1231 +            synchronized(base) {
1232 +                if (index < 0 || index >= length)
1233 +                    throw indexError(index);
1234 +                if (base.modCount != modCount)
1235 +                    throw new ConcurrentModificationException();
1236 +                return base.set(index + baseOffset, element);
1237 +            }
1238 +        }
1239 +
1240 +        public E get(int index) {
1241 +            synchronized(base) {
1242 +                if (index < 0 || index >= length)
1243 +                    throw indexError(index);
1244 +                if (base.modCount != modCount)
1245 +                    throw new ConcurrentModificationException();
1246 +                return base.get(index + baseOffset);
1247 +            }
1248 +        }
1249 +
1250 +        public int size() {
1251 +            synchronized(base) {
1252 +                if (base.modCount != modCount)
1253 +                    throw new ConcurrentModificationException();
1254 +                return length;
1255 +            }
1256 +        }
1257 +
1258 +        public void add(int index, E element) {
1259 +            synchronized(base) {
1260 +                if (index < 0 || index > length)
1261 +                    throw indexError(index);
1262 +                if (base.modCount != modCount)
1263 +                    throw new ConcurrentModificationException();
1264 +                parent.add(index + parentOffset, element);
1265 +                length++;
1266 +                modCount = base.modCount;
1267 +            }
1268 +        }
1269 +
1270 +        public E remove(int index) {
1271 +            synchronized(base) {
1272 +                if (index < 0 || index >= length)
1273 +                    throw indexError(index);
1274 +                if (base.modCount != modCount)
1275 +                    throw new ConcurrentModificationException();
1276 +                E result = parent.remove(index + parentOffset);
1277 +                length--;
1278 +                modCount = base.modCount;
1279 +                return result;
1280 +            }
1281 +        }
1282 +
1283 +        protected void removeRange(int fromIndex, int toIndex) {
1284 +            synchronized(base) {
1285 +                if (base.modCount != modCount)
1286 +                    throw new ConcurrentModificationException();
1287 +                parent.removeRange(fromIndex + parentOffset,
1288 +                                   toIndex + parentOffset);
1289 +                length -= (toIndex-fromIndex);
1290 +                modCount = base.modCount;
1291 +            }
1292 +        }
1293 +
1294 +        public boolean addAll(Collection<? extends E> c) {
1295 +            return addAll(length, c);
1296 +        }
1297 +
1298 +        public boolean addAll(int index, Collection<? extends E> c) {
1299 +            synchronized(base) {
1300 +                if (index < 0 || index > length)
1301 +                    throw indexError(index);
1302 +                int cSize = c.size();
1303 +                if (cSize==0)
1304 +                    return false;
1305 +
1306 +                if (base.modCount != modCount)
1307 +                    throw new ConcurrentModificationException();
1308 +                parent.addAll(parentOffset + index, c);
1309 +                modCount = base.modCount;
1310 +                length += cSize;
1311 +                return true;
1312 +            }
1313 +        }
1314 +
1315 +        public boolean equals(Object o) {
1316 +            synchronized(base) {return super.equals(o);}
1317 +        }
1318 +
1319 +        public int hashCode() {
1320 +            synchronized(base) {return super.hashCode();}
1321 +        }
1322 +
1323 +        public int indexOf(Object o) {
1324 +            synchronized(base) {return super.indexOf(o);}
1325 +        }
1326 +
1327 +        public int lastIndexOf(Object o) {
1328 +            synchronized(base) {return super.lastIndexOf(o);}
1329 +        }
1330 +
1331 +        public List<E> subList(int fromIndex, int toIndex) {
1332 +            return new VectorSubList(base, this, fromIndex + baseOffset,
1333 +                                     fromIndex, toIndex);
1334 +        }
1335 +
1336 +        public Iterator<E> iterator() {
1337 +            synchronized(base) {
1338 +                return new VectorSubListIterator(this, 0);
1339 +            }
1340 +        }
1341 +
1342 +        public synchronized ListIterator<E> listIterator() {
1343 +            synchronized(base) {
1344 +                return new VectorSubListIterator(this, 0);
1345 +            }
1346 +        }
1347 +
1348 +        public ListIterator<E> listIterator(int index) {
1349 +            synchronized(base) {
1350 +                if (index < 0 || index > length)
1351 +                    throw indexError(index);
1352 +                return new VectorSubListIterator(this, index);
1353 +            }
1354 +        }
1355 +
1356 +        /**
1357 +         * Same idea as VectorIterator, except routing structural
1358 +         * change operations through the sublist.
1359 +         */
1360 +        private static final class VectorSubListIterator<E> implements ListIterator<E> {
1361 +            final Vector<E> base;         // base list
1362 +            final VectorSubList<E> outer; // Sublist creating this iteraor
1363 +            final int offset;             // cursor offset wrt base
1364 +            int cursor;                   // Current index
1365 +            int fence;                    // Upper bound on cursor
1366 +            int lastRet;                  // Index of returned element, or -1
1367 +            int expectedModCount;         // Expected modCount of base Vector
1368 +
1369 +            VectorSubListIterator(VectorSubList<E> list, int index) {
1370 +                this.lastRet = -1;
1371 +                this.cursor = index;
1372 +                this.outer = list;
1373 +                this.offset = list.baseOffset;
1374 +                this.fence = list.length;
1375 +                this.base = list.base;
1376 +                this.expectedModCount = base.modCount;
1377 +            }
1378 +
1379 +            public boolean hasNext() {
1380 +                return cursor < fence;
1381 +            }
1382 +
1383 +            public boolean hasPrevious() {
1384 +                return cursor > 0;
1385 +            }
1386 +
1387 +            public int nextIndex() {
1388 +                return cursor;
1389 +            }
1390 +
1391 +            public int previousIndex() {
1392 +                return cursor - 1;
1393 +            }
1394 +
1395 +            public E next() {
1396 +                int i = cursor;
1397 +                if (cursor >= fence)
1398 +                    throw new NoSuchElementException();
1399 +                Object next = base.iteratorGet(i + offset, expectedModCount);
1400 +                lastRet = i;
1401 +                cursor = i + 1;
1402 +                return (E)next;
1403 +            }
1404 +
1405 +            public E previous() {
1406 +                int i = cursor - 1;
1407 +                if (i < 0)
1408 +                    throw new NoSuchElementException();
1409 +                Object prev = base.iteratorGet(i + offset, expectedModCount);
1410 +                lastRet = i;
1411 +                cursor = i;
1412 +                return (E)prev;
1413 +            }
1414 +
1415 +            public void set(E e) {
1416 +                if (lastRet < 0)
1417 +                    throw new IllegalStateException();
1418 +                if (base.modCount != expectedModCount)
1419 +                    throw new ConcurrentModificationException();
1420 +                try {
1421 +                    outer.set(lastRet, e);
1422 +                    expectedModCount = base.modCount;
1423 +                } catch (IndexOutOfBoundsException ex) {
1424 +                    throw new ConcurrentModificationException();
1425 +                }
1426 +            }
1427 +
1428 +            public void remove() {
1429 +                int i = lastRet;
1430 +                if (i < 0)
1431 +                    throw new IllegalStateException();
1432 +                if (base.modCount != expectedModCount)
1433 +                    throw new ConcurrentModificationException();
1434 +                try {
1435 +                    outer.remove(i);
1436 +                    if (i < cursor)
1437 +                        cursor--;
1438 +                    lastRet = -1;
1439 +                    fence = outer.length;
1440 +                    expectedModCount = base.modCount;
1441 +                } catch (IndexOutOfBoundsException ex) {
1442 +                    throw new ConcurrentModificationException();
1443 +                }
1444 +            }
1445 +
1446 +            public void add(E e) {
1447 +                if (base.modCount != expectedModCount)
1448 +                    throw new ConcurrentModificationException();
1449 +                try {
1450 +                    int i = cursor;
1451 +                    outer.add(i, e);
1452 +                    cursor = i + 1;
1453 +                    lastRet = -1;
1454 +                    fence = outer.length;
1455 +                    expectedModCount = base.modCount;
1456 +                } catch (IndexOutOfBoundsException ex) {
1457 +                    throw new ConcurrentModificationException();
1458 +                }
1459 +            }
1460 +        }
1461 +    }
1462   }
1463 +
1464 +
1465 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines