ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
(Generate patch)

Comparing jsr166/src/main/java/util/Vector.java (file contents):
Revision 1.13 by jsr166, Sun May 28 23:36:29 2006 UTC vs.
Revision 1.39 by jsr166, Fri Dec 2 06:38:56 2016 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import java.util.function.UnaryOperator;
31 +
32   /**
33 < * The <code>Vector</code> class implements a growable array of
33 > * The {@code Vector} class implements a growable array of
34   * objects. Like an array, it contains components that can be
35   * accessed using an integer index. However, the size of a
36 < * <code>Vector</code> can grow or shrink as needed to accommodate
37 < * adding and removing items after the <code>Vector</code> has been created.
36 > * {@code Vector} can grow or shrink as needed to accommodate
37 > * adding and removing items after the {@code Vector} has been created.
38   *
39   * <p>Each vector tries to optimize storage management by maintaining a
40 < * <code>capacity</code> and a <code>capacityIncrement</code>. The
41 < * <code>capacity</code> is always at least as large as the vector
40 > * {@code capacity} and a {@code capacityIncrement}. The
41 > * {@code capacity} is always at least as large as the vector
42   * size; it is usually larger because as components are added to the
43   * vector, the vector's storage increases in chunks the size of
44 < * <code>capacityIncrement</code>. An application can increase the
44 > * {@code capacityIncrement}. An application can increase the
45   * capacity of a vector before inserting a large number of
46   * components; this reduces the amount of incremental reallocation.
47   *
48 < * <p>The Iterators returned by Vector's iterator and listIterator
49 < * methods are <em>fail-fast</em>: if the Vector is structurally modified
50 < * at any time after the Iterator is created, in any way except through the
51 < * Iterator's own remove or add methods, the Iterator will throw a
52 < * ConcurrentModificationException.  Thus, in the face of concurrent
53 < * modification, the Iterator fails quickly and cleanly, rather than risking
54 < * arbitrary, non-deterministic behavior at an undetermined time in the future.
55 < * The Enumerations returned by Vector's elements method are <em>not</em>
56 < * fail-fast.
48 > * <p id="fail-fast">
49 > * The iterators returned by this class's {@link #iterator() iterator} and
50 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
51 > * if the vector is structurally modified at any time after the iterator is
52 > * created, in any way except through the iterator's own
53 > * {@link ListIterator#remove() remove} or
54 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
55 > * {@link ConcurrentModificationException}.  Thus, in the face of
56 > * concurrent modification, the iterator fails quickly and cleanly, rather
57 > * than risking arbitrary, non-deterministic behavior at an undetermined
58 > * time in the future.  The {@link Enumeration Enumerations} returned by
59 > * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
60 > * Vector is structurally modified at any time after the enumeration is
61 > * created then the results of enumerating are undefined.
62   *
63   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
64   * as it is, generally speaking, impossible to make any hard guarantees in the
65   * presence of unsynchronized concurrent modification.  Fail-fast iterators
66 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
66 > * throw {@code ConcurrentModificationException} on a best-effort basis.
67   * Therefore, it would be wrong to write a program that depended on this
68   * exception for its correctness:  <i>the fail-fast behavior of iterators
69   * should be used only to detect bugs.</i>
70   *
71   * <p>As of the Java 2 platform v1.2, this class was retrofitted to
72   * implement the {@link List} interface, making it a member of the
73 < * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
74 < * Collections Framework</a>.  Unlike the new collection
75 < * implementations, {@code Vector} is synchronized.
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 > * Java Collections Framework</a>.  Unlike the new collection
75 > * implementations, {@code Vector} is synchronized.  If a thread-safe
76 > * implementation is not needed, it is recommended to use {@link
77 > * ArrayList} in place of {@code Vector}.
78 > *
79 > * @param <E> Type of component elements
80   *
81   * @author  Lee Boynton
82   * @author  Jonathan Payne
52 * @version %I%, %G%
83   * @see Collection
54 * @see List
55 * @see ArrayList
84   * @see LinkedList
85 < * @since   JDK1.0
85 > * @since   1.0
86   */
87   public class Vector<E>
88      extends AbstractList<E>
# Line 63 | Line 91 | public class Vector<E>
91      /**
92       * The array buffer into which the components of the vector are
93       * stored. The capacity of the vector is the length of this array buffer,
94 <     * and is at least large enough to contain all the vector's elements.<p>
94 >     * and is at least large enough to contain all the vector's elements.
95       *
96 <     * Any array elements following the last element in the Vector are null.
96 >     * <p>Any array elements following the last element in the Vector are null.
97       *
98       * @serial
99       */
100      protected Object[] elementData;
101  
102      /**
103 <     * The number of valid components in this <tt>Vector</tt> object.
104 <     * Components <tt>elementData[0]</tt> through
105 <     * <tt>elementData[elementCount-1]</tt> are the actual items.
103 >     * The number of valid components in this {@code Vector} object.
104 >     * Components {@code elementData[0]} through
105 >     * {@code elementData[elementCount-1]} are the actual items.
106       *
107       * @serial
108       */
# Line 100 | Line 128 | public class Vector<E>
128       * @param   initialCapacity     the initial capacity of the vector
129       * @param   capacityIncrement   the amount by which the capacity is
130       *                              increased when the vector overflows
131 <     * @exception IllegalArgumentException if the specified initial capacity
132 <     *               is negative
131 >     * @throws IllegalArgumentException if the specified initial capacity
132 >     *         is negative
133       */
134      public Vector(int initialCapacity, int capacityIncrement) {
135 <        super();
135 >        super();
136          if (initialCapacity < 0)
137              throw new IllegalArgumentException("Illegal Capacity: "+
138                                                 initialCapacity);
139 <        this.elementData = new Object[initialCapacity];
140 <        this.capacityIncrement = capacityIncrement;
139 >        this.elementData = new Object[initialCapacity];
140 >        this.capacityIncrement = capacityIncrement;
141      }
142  
143      /**
# Line 117 | Line 145 | public class Vector<E>
145       * with its capacity increment equal to zero.
146       *
147       * @param   initialCapacity   the initial capacity of the vector
148 <     * @exception IllegalArgumentException if the specified initial capacity
149 <     *               is negative
148 >     * @throws IllegalArgumentException if the specified initial capacity
149 >     *         is negative
150       */
151      public Vector(int initialCapacity) {
152 <        this(initialCapacity, 0);
152 >        this(initialCapacity, 0);
153      }
154  
155      /**
156       * Constructs an empty vector so that its internal data array
157 <     * has size <tt>10</tt> and its standard capacity increment is
157 >     * has size {@code 10} and its standard capacity increment is
158       * zero.
159       */
160      public Vector() {
161 <        this(10);
161 >        this(10);
162      }
163  
164      /**
# Line 144 | Line 172 | public class Vector<E>
172       * @since   1.2
173       */
174      public Vector(Collection<? extends E> c) {
175 <        elementData = c.toArray();
176 <        elementCount = elementData.length;
177 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
178 <        if (elementData.getClass() != Object[].class)
179 <            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
175 >        elementData = c.toArray();
176 >        elementCount = elementData.length;
177 >        // defend against c.toArray (incorrectly) not returning Object[]
178 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
179 >        if (elementData.getClass() != Object[].class)
180 >            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
181      }
182  
183      /**
184       * Copies the components of this vector into the specified array.
185 <     * The item at index <tt>k</tt> in this vector is copied into
186 <     * component <tt>k</tt> of <tt>anArray</tt>.
185 >     * The item at index {@code k} in this vector is copied into
186 >     * component {@code k} of {@code anArray}.
187       *
188       * @param  anArray the array into which the components get copied
189       * @throws NullPointerException if the given array is null
# Line 165 | Line 194 | public class Vector<E>
194       * @see #toArray(Object[])
195       */
196      public synchronized void copyInto(Object[] anArray) {
197 <        System.arraycopy(elementData, 0, anArray, 0, elementCount);
197 >        System.arraycopy(elementData, 0, anArray, 0, elementCount);
198      }
199  
200      /**
201       * Trims the capacity of this vector to be the vector's current
202       * size. If the capacity of this vector is larger than its current
203       * size, then the capacity is changed to equal the size by replacing
204 <     * its internal data array, kept in the field <tt>elementData</tt>,
204 >     * its internal data array, kept in the field {@code elementData},
205       * with a smaller one. An application can use this operation to
206       * minimize the storage of a vector.
207       */
208      public synchronized void trimToSize() {
209 <        modCount++;
210 <        int oldCapacity = elementData.length;
211 <        if (elementCount < oldCapacity) {
209 >        modCount++;
210 >        int oldCapacity = elementData.length;
211 >        if (elementCount < oldCapacity) {
212              elementData = Arrays.copyOf(elementData, elementCount);
213 <        }
213 >        }
214      }
215  
216      /**
# Line 190 | Line 219 | public class Vector<E>
219       * the minimum capacity argument.
220       *
221       * <p>If the current capacity of this vector is less than
222 <     * <tt>minCapacity</tt>, then its capacity is increased by replacing its
223 <     * internal data array, kept in the field <tt>elementData</tt>, with a
222 >     * {@code minCapacity}, then its capacity is increased by replacing its
223 >     * internal data array, kept in the field {@code elementData}, with a
224       * larger one.  The size of the new data array will be the old size plus
225 <     * <tt>capacityIncrement</tt>, unless the value of
226 <     * <tt>capacityIncrement</tt> is less than or equal to zero, in which case
225 >     * {@code capacityIncrement}, unless the value of
226 >     * {@code capacityIncrement} is less than or equal to zero, in which case
227       * the new capacity will be twice the old capacity; but if this new size
228 <     * is still smaller than <tt>minCapacity</tt>, then the new capacity will
229 <     * be <tt>minCapacity</tt>.
228 >     * is still smaller than {@code minCapacity}, then the new capacity will
229 >     * be {@code minCapacity}.
230       *
231       * @param minCapacity the desired minimum capacity
232       */
233      public synchronized void ensureCapacity(int minCapacity) {
234 <        modCount++;
235 <        ensureCapacityHelper(minCapacity);
234 >        if (minCapacity > 0) {
235 >            modCount++;
236 >            if (minCapacity > elementData.length)
237 >                grow(minCapacity);
238 >        }
239 >    }
240 >
241 >    /**
242 >     * The maximum size of array to allocate (unless necessary).
243 >     * Some VMs reserve some header words in an array.
244 >     * Attempts to allocate larger arrays may result in
245 >     * OutOfMemoryError: Requested array size exceeds VM limit
246 >     */
247 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
248 >
249 >    /**
250 >     * Increases the capacity to ensure that it can hold at least the
251 >     * number of elements specified by the minimum capacity argument.
252 >     *
253 >     * @param minCapacity the desired minimum capacity
254 >     * @throws OutOfMemoryError if minCapacity is less than zero
255 >     */
256 >    private Object[] grow(int minCapacity) {
257 >        return elementData = Arrays.copyOf(elementData,
258 >                                           newCapacity(minCapacity));
259 >    }
260 >
261 >    private Object[] grow() {
262 >        return grow(elementCount + 1);
263      }
264  
265      /**
266 <     * This implements the unsynchronized semantics of ensureCapacity.
267 <     * Synchronized methods in this class can internally call this
268 <     * method for ensuring capacity without incurring the cost of an
269 <     * extra synchronization.
270 <     *
271 <     * @see java.util.Vector#ensureCapacity(int)
272 <     */
273 <    private void ensureCapacityHelper(int minCapacity) {
274 <        int oldCapacity = elementData.length;
275 <        if (minCapacity > oldCapacity) {
276 <            Object[] oldData = elementData;
277 <            int newCapacity = (capacityIncrement > 0) ?
278 <                (oldCapacity + capacityIncrement) : (oldCapacity * 2);
279 <            if (newCapacity < minCapacity) {
280 <                newCapacity = minCapacity;
281 <            }
282 <            elementData = Arrays.copyOf(elementData, newCapacity);
283 <        }
266 >     * Returns a capacity at least as large as the given minimum capacity.
267 >     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
268 >     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
269 >     *
270 >     * @param minCapacity the desired minimum capacity
271 >     * @throws OutOfMemoryError if minCapacity is less than zero
272 >     */
273 >    private int newCapacity(int minCapacity) {
274 >        // overflow-conscious code
275 >        int oldCapacity = elementData.length;
276 >        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
277 >                                         capacityIncrement : oldCapacity);
278 >        if (newCapacity - minCapacity <= 0) {
279 >            if (minCapacity < 0) // overflow
280 >                throw new OutOfMemoryError();
281 >            return minCapacity;
282 >        }
283 >        return (newCapacity - MAX_ARRAY_SIZE <= 0)
284 >            ? newCapacity
285 >            : hugeCapacity(minCapacity);
286 >    }
287 >
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290 >            throw new OutOfMemoryError();
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294      }
295  
296      /**
297       * Sets the size of this vector. If the new size is greater than the
298 <     * current size, new <code>null</code> items are added to the end of
298 >     * current size, new {@code null} items are added to the end of
299       * the vector. If the new size is less than the current size, all
300 <     * components at index <code>newSize</code> and greater are discarded.
300 >     * components at index {@code newSize} and greater are discarded.
301       *
302 <     * @param   newSize   the new size of this vector
303 <     * @throws  ArrayIndexOutOfBoundsException if new size is negative
302 >     * @param  newSize   the new size of this vector
303 >     * @throws ArrayIndexOutOfBoundsException if the new size is negative
304       */
305      public synchronized void setSize(int newSize) {
306 <        modCount++;
307 <        if (newSize > elementCount) {
308 <            ensureCapacityHelper(newSize);
309 <        } else {
310 <            for (int i = newSize ; i < elementCount ; i++) {
311 <                elementData[i] = null;
246 <            }
247 <        }
248 <        elementCount = newSize;
306 >        modCount++;
307 >        if (newSize > elementData.length)
308 >            grow(newSize);
309 >        for (int i = newSize; i < elementCount; i++)
310 >            elementData[i] = null;
311 >        elementCount = newSize;
312      }
313  
314      /**
315       * Returns the current capacity of this vector.
316       *
317       * @return  the current capacity (the length of its internal
318 <     *          data array, kept in the field <tt>elementData</tt>
318 >     *          data array, kept in the field {@code elementData}
319       *          of this vector)
320       */
321      public synchronized int capacity() {
322 <        return elementData.length;
322 >        return elementData.length;
323      }
324  
325      /**
# Line 265 | Line 328 | public class Vector<E>
328       * @return  the number of components in this vector
329       */
330      public synchronized int size() {
331 <        return elementCount;
331 >        return elementCount;
332      }
333  
334      /**
335       * Tests if this vector has no components.
336       *
337 <     * @return  <code>true</code> if and only if this vector has
337 >     * @return  {@code true} if and only if this vector has
338       *          no components, that is, its size is zero;
339 <     *          <code>false</code> otherwise.
339 >     *          {@code false} otherwise.
340       */
341      public synchronized boolean isEmpty() {
342 <        return elementCount == 0;
342 >        return elementCount == 0;
343      }
344  
345      /**
346       * Returns an enumeration of the components of this vector. The
347 <     * returned <tt>Enumeration</tt> object will generate all items in
348 <     * this vector. The first item generated is the item at index <tt>0</tt>,
349 <     * then the item at index <tt>1</tt>, and so on.
347 >     * returned {@code Enumeration} object will generate all items in
348 >     * this vector. The first item generated is the item at index {@code 0},
349 >     * then the item at index {@code 1}, and so on. If the vector is
350 >     * structurally modified while enumerating over the elements then the
351 >     * results of enumerating are undefined.
352       *
353       * @return  an enumeration of the components of this vector
289     * @see     Enumeration
354       * @see     Iterator
355       */
356      public Enumeration<E> elements() {
357 <        return new Enumeration<E>() {
358 <            int count = 0;
357 >        return new Enumeration<E>() {
358 >            int count = 0;
359  
360 <            public boolean hasMoreElements() {
361 <                return count < elementCount;
362 <            }
363 <
364 <            public E nextElement() {
365 <                synchronized (Vector.this) {
366 <                    if (count < elementCount) {
367 <                        return (E)elementData[count++];
368 <                    }
369 <                }
370 <                throw new NoSuchElementException("Vector Enumeration");
371 <            }
372 <        };
360 >            public boolean hasMoreElements() {
361 >                return count < elementCount;
362 >            }
363 >
364 >            public E nextElement() {
365 >                synchronized (Vector.this) {
366 >                    if (count < elementCount) {
367 >                        return elementData(count++);
368 >                    }
369 >                }
370 >                throw new NoSuchElementException("Vector Enumeration");
371 >            }
372 >        };
373      }
374  
375      /**
376 <     * Returns <tt>true</tt> if this vector contains the specified element.
377 <     * More formally, returns <tt>true</tt> if and only if this vector
378 <     * contains at least one element <tt>e</tt> such that
379 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
376 >     * Returns {@code true} if this vector contains the specified element.
377 >     * More formally, returns {@code true} if and only if this vector
378 >     * contains at least one element {@code e} such that
379 >     * {@code Objects.equals(o, e)}.
380       *
381       * @param o element whose presence in this vector is to be tested
382 <     * @return <tt>true</tt> if this vector contains the specified element
382 >     * @return {@code true} if this vector contains the specified element
383       */
384      public boolean contains(Object o) {
385 <        return indexOf(o, 0) >= 0;
385 >        return indexOf(o, 0) >= 0;
386      }
387  
388      /**
389       * Returns the index of the first occurrence of the specified element
390       * in this vector, or -1 if this vector does not contain the element.
391 <     * More formally, returns the lowest index <tt>i</tt> such that
392 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
391 >     * More formally, returns the lowest index {@code i} such that
392 >     * {@code Objects.equals(o, get(i))},
393       * or -1 if there is no such index.
394       *
395       * @param o element to search for
# Line 333 | Line 397 | public class Vector<E>
397       *         this vector, or -1 if this vector does not contain the element
398       */
399      public int indexOf(Object o) {
400 <        return indexOf(o, 0);
400 >        return indexOf(o, 0);
401      }
402  
403      /**
404       * Returns the index of the first occurrence of the specified element in
405 <     * this vector, searching forwards from <tt>index</tt>, or returns -1 if
405 >     * this vector, searching forwards from {@code index}, or returns -1 if
406       * the element is not found.
407 <     * More formally, returns the lowest index <tt>i</tt> such that
408 <     * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
407 >     * More formally, returns the lowest index {@code i} such that
408 >     * {@code (i >= index && Objects.equals(o, get(i)))},
409       * or -1 if there is no such index.
410       *
411       * @param o element to search for
412       * @param index index to start searching from
413       * @return the index of the first occurrence of the element in
414 <     *         this vector at position <tt>index</tt> or later in the vector;
415 <     *         <tt>-1</tt> if the element is not found.
414 >     *         this vector at position {@code index} or later in the vector;
415 >     *         {@code -1} if the element is not found.
416       * @throws IndexOutOfBoundsException if the specified index is negative
417       * @see     Object#equals(Object)
418       */
419      public synchronized int indexOf(Object o, int index) {
420 <        if (o == null) {
421 <            for (int i = index ; i < elementCount ; i++)
422 <                if (elementData[i]==null)
423 <                    return i;
424 <        } else {
425 <            for (int i = index ; i < elementCount ; i++)
426 <                if (o.equals(elementData[i]))
427 <                    return i;
428 <        }
429 <        return -1;
420 >        if (o == null) {
421 >            for (int i = index ; i < elementCount ; i++)
422 >                if (elementData[i]==null)
423 >                    return i;
424 >        } else {
425 >            for (int i = index ; i < elementCount ; i++)
426 >                if (o.equals(elementData[i]))
427 >                    return i;
428 >        }
429 >        return -1;
430      }
431  
432      /**
433       * Returns the index of the last occurrence of the specified element
434       * in this vector, or -1 if this vector does not contain the element.
435 <     * More formally, returns the highest index <tt>i</tt> such that
436 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
435 >     * More formally, returns the highest index {@code i} such that
436 >     * {@code Objects.equals(o, get(i))},
437       * or -1 if there is no such index.
438       *
439       * @param o element to search for
# Line 377 | Line 441 | public class Vector<E>
441       *         this vector, or -1 if this vector does not contain the element
442       */
443      public synchronized int lastIndexOf(Object o) {
444 <        return lastIndexOf(o, elementCount-1);
444 >        return lastIndexOf(o, elementCount-1);
445      }
446  
447      /**
448       * Returns the index of the last occurrence of the specified element in
449 <     * this vector, searching backwards from <tt>index</tt>, or returns -1 if
449 >     * this vector, searching backwards from {@code index}, or returns -1 if
450       * the element is not found.
451 <     * More formally, returns the highest index <tt>i</tt> such that
452 <     * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
451 >     * More formally, returns the highest index {@code i} such that
452 >     * {@code (i <= index && Objects.equals(o, get(i)))},
453       * or -1 if there is no such index.
454       *
455       * @param o element to search for
456       * @param index index to start searching backwards from
457       * @return the index of the last occurrence of the element at position
458 <     *         less than or equal to <tt>index</tt> in this vector;
458 >     *         less than or equal to {@code index} in this vector;
459       *         -1 if the element is not found.
460       * @throws IndexOutOfBoundsException if the specified index is greater
461       *         than or equal to the current size of this vector
# Line 400 | Line 464 | public class Vector<E>
464          if (index >= elementCount)
465              throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
466  
467 <        if (o == null) {
468 <            for (int i = index; i >= 0; i--)
469 <                if (elementData[i]==null)
470 <                    return i;
471 <        } else {
472 <            for (int i = index; i >= 0; i--)
473 <                if (o.equals(elementData[i]))
474 <                    return i;
475 <        }
476 <        return -1;
467 >        if (o == null) {
468 >            for (int i = index; i >= 0; i--)
469 >                if (elementData[i]==null)
470 >                    return i;
471 >        } else {
472 >            for (int i = index; i >= 0; i--)
473 >                if (o.equals(elementData[i]))
474 >                    return i;
475 >        }
476 >        return -1;
477      }
478  
479      /**
480 <     * Returns the component at the specified index.<p>
480 >     * Returns the component at the specified index.
481       *
482 <     * This method is identical in functionality to the get method
483 <     * (which is part of the List interface).
482 >     * <p>This method is identical in functionality to the {@link #get(int)}
483 >     * method (which is part of the {@link List} interface).
484       *
485       * @param      index   an index into this vector
486       * @return     the component at the specified index
487 <     * @exception  ArrayIndexOutOfBoundsException  if the <tt>index</tt>
488 <     *             is negative or not less than the current size of this
425 <     *             <tt>Vector</tt> object.
426 <     * @see        #get(int)
427 <     * @see        List
487 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
488 >     *         ({@code index < 0 || index >= size()})
489       */
490      public synchronized E elementAt(int index) {
491 <        if (index >= elementCount) {
492 <            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
493 <        }
491 >        if (index >= elementCount) {
492 >            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
493 >        }
494  
495 <        return (E)elementData[index];
495 >        return elementData(index);
496      }
497  
498      /**
499 <     * Returns the first component (the item at index <tt>0</tt>) of
499 >     * Returns the first component (the item at index {@code 0}) of
500       * this vector.
501       *
502       * @return     the first component of this vector
503 <     * @exception  NoSuchElementException  if this vector has no components
503 >     * @throws NoSuchElementException if this vector has no components
504       */
505      public synchronized E firstElement() {
506 <        if (elementCount == 0) {
507 <            throw new NoSuchElementException();
508 <        }
509 <        return (E)elementData[0];
506 >        if (elementCount == 0) {
507 >            throw new NoSuchElementException();
508 >        }
509 >        return elementData(0);
510      }
511  
512      /**
513       * Returns the last component of the vector.
514       *
515       * @return  the last component of the vector, i.e., the component at index
516 <     *          <code>size()&nbsp;-&nbsp;1</code>.
517 <     * @exception  NoSuchElementException  if this vector is empty
516 >     *          {@code size() - 1}
517 >     * @throws NoSuchElementException if this vector is empty
518       */
519      public synchronized E lastElement() {
520 <        if (elementCount == 0) {
521 <            throw new NoSuchElementException();
522 <        }
523 <        return (E)elementData[elementCount - 1];
520 >        if (elementCount == 0) {
521 >            throw new NoSuchElementException();
522 >        }
523 >        return elementData(elementCount - 1);
524      }
525  
526      /**
527 <     * Sets the component at the specified <code>index</code> of this
527 >     * Sets the component at the specified {@code index} of this
528       * vector to be the specified object. The previous component at that
529 <     * position is discarded.<p>
529 >     * position is discarded.
530       *
531 <     * The index must be a value greater than or equal to <code>0</code>
532 <     * and less than the current size of the vector. <p>
531 >     * <p>The index must be a value greater than or equal to {@code 0}
532 >     * and less than the current size of the vector.
533       *
534 <     * This method is identical in functionality to the set method
535 <     * (which is part of the List interface). Note that the set method reverses
536 <     * the order of the parameters, to more closely match array usage.  Note
537 <     * also that the set method returns the old value that was stored at the
538 <     * specified position.
534 >     * <p>This method is identical in functionality to the
535 >     * {@link #set(int, Object) set(int, E)}
536 >     * method (which is part of the {@link List} interface). Note that the
537 >     * {@code set} method reverses the order of the parameters, to more closely
538 >     * match array usage.  Note also that the {@code set} method returns the
539 >     * old value that was stored at the specified position.
540       *
541       * @param      obj     what the component is to be set to
542       * @param      index   the specified index
543 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
544 <     * @see        #size()
483 <     * @see        List
484 <     * @see        #set(int, java.lang.Object)
543 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
544 >     *         ({@code index < 0 || index >= size()})
545       */
546      public synchronized void setElementAt(E obj, int index) {
547 <        if (index >= elementCount) {
548 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
549 <                                                     elementCount);
550 <        }
551 <        elementData[index] = obj;
547 >        if (index >= elementCount) {
548 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
549 >                                                     elementCount);
550 >        }
551 >        elementData[index] = obj;
552      }
553  
554      /**
555       * Deletes the component at the specified index. Each component in
556       * this vector with an index greater or equal to the specified
557 <     * <code>index</code> is shifted downward to have an index one
557 >     * {@code index} is shifted downward to have an index one
558       * smaller than the value it had previously. The size of this vector
559 <     * is decreased by <tt>1</tt>.<p>
559 >     * is decreased by {@code 1}.
560       *
561 <     * The index must be a value greater than or equal to <code>0</code>
562 <     * and less than the current size of the vector. <p>
561 >     * <p>The index must be a value greater than or equal to {@code 0}
562 >     * and less than the current size of the vector.
563       *
564 <     * This method is identical in functionality to the remove method
565 <     * (which is part of the List interface).  Note that the remove method
566 <     * returns the old value that was stored at the specified position.
564 >     * <p>This method is identical in functionality to the {@link #remove(int)}
565 >     * method (which is part of the {@link List} interface).  Note that the
566 >     * {@code remove} method returns the old value that was stored at the
567 >     * specified position.
568       *
569       * @param      index   the index of the object to remove
570 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
571 <     * @see        #size()
511 <     * @see        #remove(int)
512 <     * @see        List
570 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
571 >     *         ({@code index < 0 || index >= size()})
572       */
573      public synchronized void removeElementAt(int index) {
574 <        modCount++;
575 <        if (index >= elementCount) {
576 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
577 <                                                     elementCount);
578 <        }
579 <        else if (index < 0) {
580 <            throw new ArrayIndexOutOfBoundsException(index);
581 <        }
582 <        int j = elementCount - index - 1;
583 <        if (j > 0) {
584 <            System.arraycopy(elementData, index + 1, elementData, index, j);
585 <        }
586 <        elementCount--;
587 <        elementData[elementCount] = null; /* to let gc do its work */
574 >        if (index >= elementCount) {
575 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
576 >                                                     elementCount);
577 >        }
578 >        else if (index < 0) {
579 >            throw new ArrayIndexOutOfBoundsException(index);
580 >        }
581 >        int j = elementCount - index - 1;
582 >        if (j > 0) {
583 >            System.arraycopy(elementData, index + 1, elementData, index, j);
584 >        }
585 >        modCount++;
586 >        elementCount--;
587 >        elementData[elementCount] = null; /* to let gc do its work */
588 >        // checkInvariants();
589      }
590  
591      /**
592       * Inserts the specified object as a component in this vector at the
593 <     * specified <code>index</code>. Each component in this vector with
594 <     * an index greater or equal to the specified <code>index</code> is
593 >     * specified {@code index}. Each component in this vector with
594 >     * an index greater or equal to the specified {@code index} is
595       * shifted upward to have an index one greater than the value it had
596 <     * previously. <p>
596 >     * previously.
597       *
598 <     * The index must be a value greater than or equal to <code>0</code>
598 >     * <p>The index must be a value greater than or equal to {@code 0}
599       * and less than or equal to the current size of the vector. (If the
600       * index is equal to the current size of the vector, the new element
601 <     * is appended to the Vector.)<p>
601 >     * is appended to the Vector.)
602       *
603 <     * This method is identical in functionality to the add(Object, int) method
604 <     * (which is part of the List interface). Note that the add method reverses
605 <     * the order of the parameters, to more closely match array usage.
603 >     * <p>This method is identical in functionality to the
604 >     * {@link #add(int, Object) add(int, E)}
605 >     * method (which is part of the {@link List} interface).  Note that the
606 >     * {@code add} method reverses the order of the parameters, to more closely
607 >     * match array usage.
608       *
609       * @param      obj     the component to insert
610       * @param      index   where to insert the new component
611 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
612 <     * @see        #size()
551 <     * @see        #add(int, Object)
552 <     * @see        List
611 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
612 >     *         ({@code index < 0 || index > size()})
613       */
614      public synchronized void insertElementAt(E obj, int index) {
615 <        modCount++;
616 <        if (index > elementCount) {
617 <            throw new ArrayIndexOutOfBoundsException(index
618 <                                                     + " > " + elementCount);
619 <        }
620 <        ensureCapacityHelper(elementCount + 1);
621 <        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
622 <        elementData[index] = obj;
623 <        elementCount++;
615 >        if (index > elementCount) {
616 >            throw new ArrayIndexOutOfBoundsException(index
617 >                                                     + " > " + elementCount);
618 >        }
619 >        modCount++;
620 >        final int s = elementCount;
621 >        Object[] elementData = this.elementData;
622 >        if (s == elementData.length)
623 >            elementData = grow();
624 >        System.arraycopy(elementData, index,
625 >                         elementData, index + 1,
626 >                         s - index);
627 >        elementData[index] = obj;
628 >        elementCount = s + 1;
629      }
630  
631      /**
632       * Adds the specified component to the end of this vector,
633       * increasing its size by one. The capacity of this vector is
634 <     * increased if its size becomes greater than its capacity. <p>
634 >     * increased if its size becomes greater than its capacity.
635       *
636 <     * This method is identical in functionality to the add(Object) method
637 <     * (which is part of the List interface).
636 >     * <p>This method is identical in functionality to the
637 >     * {@link #add(Object) add(E)}
638 >     * method (which is part of the {@link List} interface).
639       *
640       * @param   obj   the component to be added
575     * @see        #add(Object)
576     * @see        List
641       */
642      public synchronized void addElement(E obj) {
643 <        modCount++;
644 <        ensureCapacityHelper(elementCount + 1);
581 <        elementData[elementCount++] = obj;
643 >        modCount++;
644 >        add(obj, elementData, elementCount);
645      }
646  
647      /**
# Line 586 | Line 649 | public class Vector<E>
649       * from this vector. If the object is found in this vector, each
650       * component in the vector with an index greater or equal to the
651       * object's index is shifted downward to have an index one smaller
652 <     * than the value it had previously.<p>
652 >     * than the value it had previously.
653       *
654 <     * This method is identical in functionality to the remove(Object)
655 <     * method (which is part of the List interface).
654 >     * <p>This method is identical in functionality to the
655 >     * {@link #remove(Object)} method (which is part of the
656 >     * {@link List} interface).
657       *
658       * @param   obj   the component to be removed
659 <     * @return  <code>true</code> if the argument was a component of this
660 <     *          vector; <code>false</code> otherwise.
597 <     * @see     List#remove(Object)
598 <     * @see     List
659 >     * @return  {@code true} if the argument was a component of this
660 >     *          vector; {@code false} otherwise.
661       */
662      public synchronized boolean removeElement(Object obj) {
663 <        modCount++;
664 <        int i = indexOf(obj);
665 <        if (i >= 0) {
666 <            removeElementAt(i);
667 <            return true;
668 <        }
669 <        return false;
663 >        modCount++;
664 >        int i = indexOf(obj);
665 >        if (i >= 0) {
666 >            removeElementAt(i);
667 >            return true;
668 >        }
669 >        return false;
670      }
671  
672      /**
673 <     * Removes all components from this vector and sets its size to zero.<p>
673 >     * Removes all components from this vector and sets its size to zero.
674       *
675 <     * This method is identical in functionality to the clear method
676 <     * (which is part of the List interface).
615 <     *
616 <     * @see     #clear
617 <     * @see     List
675 >     * <p>This method is identical in functionality to the {@link #clear}
676 >     * method (which is part of the {@link List} interface).
677       */
678      public synchronized void removeAllElements() {
679 +        Arrays.fill(elementData, 0, elementCount, null);
680          modCount++;
681 <        // Let gc do its work
622 <        for (int i = 0; i < elementCount; i++)
623 <            elementData[i] = null;
624 <
625 <        elementCount = 0;
681 >        elementCount = 0;
682      }
683  
684      /**
685       * Returns a clone of this vector. The copy will contain a
686       * reference to a clone of the internal data array, not a reference
687 <     * to the original internal data array of this <tt>Vector</tt> object.
687 >     * to the original internal data array of this {@code Vector} object.
688       *
689       * @return  a clone of this vector
690       */
691      public synchronized Object clone() {
692 <        try {
693 <            Vector<E> v = (Vector<E>) super.clone();
694 <            v.elementData = Arrays.copyOf(elementData, elementCount);
695 <            v.modCount = 0;
696 <            return v;
697 <        } catch (CloneNotSupportedException e) {
698 <            // this shouldn't happen, since we are Cloneable
699 <            throw new InternalError();
700 <        }
692 >        try {
693 >            @SuppressWarnings("unchecked")
694 >            Vector<E> v = (Vector<E>) super.clone();
695 >            v.elementData = Arrays.copyOf(elementData, elementCount);
696 >            v.modCount = 0;
697 >            return v;
698 >        } catch (CloneNotSupportedException e) {
699 >            // this shouldn't happen, since we are Cloneable
700 >            throw new InternalError(e);
701 >        }
702      }
703  
704      /**
# Line 659 | Line 716 | public class Vector<E>
716       * correct order; the runtime type of the returned array is that of the
717       * specified array.  If the Vector fits in the specified array, it is
718       * returned therein.  Otherwise, a new array is allocated with the runtime
719 <     * type of the specified array and the size of this Vector.<p>
719 >     * type of the specified array and the size of this Vector.
720       *
721 <     * If the Vector fits in the specified array with room to spare
721 >     * <p>If the Vector fits in the specified array with room to spare
722       * (i.e., the array has more elements than the Vector),
723       * the element in the array immediately following the end of the
724       * Vector is set to null.  (This is useful in determining the length
725       * of the Vector <em>only</em> if the caller knows that the Vector
726       * does not contain any null elements.)
727       *
728 +     * @param <T> type of array elements. The same type as {@code <E>} or a
729 +     * supertype of {@code <E>}.
730       * @param a the array into which the elements of the Vector are to
731 <     *          be stored, if it is big enough; otherwise, a new array of the
732 <     *          same runtime type is allocated for this purpose.
731 >     *          be stored, if it is big enough; otherwise, a new array of the
732 >     *          same runtime type is allocated for this purpose.
733       * @return an array containing the elements of the Vector
734 <     * @exception ArrayStoreException the runtime type of a is not a supertype
735 <     * of the runtime type of every element in this Vector
734 >     * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
735 >     * a supertype of the runtime type, {@code <E>}, of every element in this
736 >     * Vector
737       * @throws NullPointerException if the given array is null
738       * @since 1.2
739       */
740 +    @SuppressWarnings("unchecked")
741      public synchronized <T> T[] toArray(T[] a) {
742          if (a.length < elementCount)
743              return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
744  
745 <        System.arraycopy(elementData, 0, a, 0, elementCount);
745 >        System.arraycopy(elementData, 0, a, 0, elementCount);
746  
747          if (a.length > elementCount)
748              a[elementCount] = null;
# Line 691 | Line 752 | public class Vector<E>
752  
753      // Positional Access Operations
754  
755 +    @SuppressWarnings("unchecked")
756 +    E elementData(int index) {
757 +        return (E) elementData[index];
758 +    }
759 +
760 +    @SuppressWarnings("unchecked")
761 +    static <E> E elementAt(Object[] es, int index) {
762 +        return (E) es[index];
763 +    }
764 +
765      /**
766       * Returns the element at the specified position in this Vector.
767       *
768       * @param index index of the element to return
769       * @return object at the specified index
770 <     * @exception ArrayIndexOutOfBoundsException index is out of range (index
771 <     *            &lt; 0 || index &gt;= size())
770 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
771 >     *            ({@code index < 0 || index >= size()})
772       * @since 1.2
773       */
774      public synchronized E get(int index) {
775 <        if (index >= elementCount)
776 <            throw new ArrayIndexOutOfBoundsException(index);
775 >        if (index >= elementCount)
776 >            throw new ArrayIndexOutOfBoundsException(index);
777  
778 <        return (E)elementData[index];
778 >        return elementData(index);
779      }
780  
781      /**
# Line 714 | Line 785 | public class Vector<E>
785       * @param index index of the element to replace
786       * @param element element to be stored at the specified position
787       * @return the element previously at the specified position
788 <     * @exception ArrayIndexOutOfBoundsException index out of range
789 <     *            (index &lt; 0 || index &gt;= size())
788 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
789 >     *         ({@code index < 0 || index >= size()})
790       * @since 1.2
791       */
792      public synchronized E set(int index, E element) {
793 <        if (index >= elementCount)
794 <            throw new ArrayIndexOutOfBoundsException(index);
793 >        if (index >= elementCount)
794 >            throw new ArrayIndexOutOfBoundsException(index);
795  
796 <        Object oldValue = elementData[index];
797 <        elementData[index] = element;
798 <        return (E)oldValue;
796 >        E oldValue = elementData(index);
797 >        elementData[index] = element;
798 >        return oldValue;
799 >    }
800 >
801 >    /**
802 >     * This helper method split out from add(E) to keep method
803 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
804 >     * which helps when add(E) is called in a C1-compiled loop.
805 >     */
806 >    private void add(E e, Object[] elementData, int s) {
807 >        if (s == elementData.length)
808 >            elementData = grow();
809 >        elementData[s] = e;
810 >        elementCount = s + 1;
811 >        // checkInvariants();
812      }
813  
814      /**
815       * Appends the specified element to the end of this Vector.
816       *
817       * @param e element to be appended to this Vector
818 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
818 >     * @return {@code true} (as specified by {@link Collection#add})
819       * @since 1.2
820       */
821      public synchronized boolean add(E e) {
822 <        modCount++;
823 <        ensureCapacityHelper(elementCount + 1);
740 <        elementData[elementCount++] = e;
822 >        modCount++;
823 >        add(e, elementData, elementCount);
824          return true;
825      }
826  
# Line 745 | Line 828 | public class Vector<E>
828       * Removes the first occurrence of the specified element in this Vector
829       * If the Vector does not contain the element, it is unchanged.  More
830       * formally, removes the element with the lowest index i such that
831 <     * <code>(o==null ? get(i)==null : o.equals(get(i)))</code> (if such
831 >     * {@code Objects.equals(o, get(i))} (if such
832       * an element exists).
833       *
834       * @param o element to be removed from this Vector, if present
# Line 763 | Line 846 | public class Vector<E>
846       *
847       * @param index index at which the specified element is to be inserted
848       * @param element element to be inserted
849 <     * @exception ArrayIndexOutOfBoundsException index is out of range
850 <     *            (index &lt; 0 || index &gt; size())
849 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
850 >     *         ({@code index < 0 || index > size()})
851       * @since 1.2
852       */
853      public void add(int index, E element) {
# Line 776 | Line 859 | public class Vector<E>
859       * Shifts any subsequent elements to the left (subtracts one from their
860       * indices).  Returns the element that was removed from the Vector.
861       *
779     * @exception ArrayIndexOutOfBoundsException index out of range (index
780     *            &lt; 0 || index &gt;= size())
862       * @param index the index of the element to be removed
863       * @return element that was removed
864 +     * @throws ArrayIndexOutOfBoundsException if the index is out of range
865 +     *         ({@code index < 0 || index >= size()})
866       * @since 1.2
867       */
868      public synchronized E remove(int index) {
869 <        modCount++;
870 <        if (index >= elementCount)
871 <            throw new ArrayIndexOutOfBoundsException(index);
872 <        Object oldValue = elementData[index];
873 <
874 <        int numMoved = elementCount - index - 1;
875 <        if (numMoved > 0)
876 <            System.arraycopy(elementData, index+1, elementData, index,
877 <                             numMoved);
878 <        elementData[--elementCount] = null; // Let gc do its work
869 >        modCount++;
870 >        if (index >= elementCount)
871 >            throw new ArrayIndexOutOfBoundsException(index);
872 >        E oldValue = elementData(index);
873 >
874 >        int numMoved = elementCount - index - 1;
875 >        if (numMoved > 0)
876 >            System.arraycopy(elementData, index+1, elementData, index,
877 >                             numMoved);
878 >        elementData[--elementCount] = null; // Let gc do its work
879  
880 <        return (E)oldValue;
880 >        // checkInvariants();
881 >        return oldValue;
882      }
883  
884      /**
# Line 816 | Line 900 | public class Vector<E>
900       * @param   c a collection whose elements will be tested for containment
901       *          in this Vector
902       * @return true if this Vector contains all of the elements in the
903 <     *         specified collection
903 >     *         specified collection
904       * @throws NullPointerException if the specified collection is null
905       */
906      public synchronized boolean containsAll(Collection<?> c) {
# Line 832 | Line 916 | public class Vector<E>
916       * specified Collection is this Vector, and this Vector is nonempty.)
917       *
918       * @param c elements to be inserted into this Vector
919 <     * @return <tt>true</tt> if this Vector changed as a result of the call
919 >     * @return {@code true} if this Vector changed as a result of the call
920       * @throws NullPointerException if the specified collection is null
921       * @since 1.2
922       */
923 <    public synchronized boolean addAll(Collection<? extends E> c) {
840 <        modCount++;
923 >    public boolean addAll(Collection<? extends E> c) {
924          Object[] a = c.toArray();
925 +        modCount++;
926          int numNew = a.length;
927 <        ensureCapacityHelper(elementCount + numNew);
928 <        System.arraycopy(a, 0, elementData, elementCount, numNew);
929 <        elementCount += numNew;
930 <        return numNew != 0;
927 >        if (numNew == 0)
928 >            return false;
929 >        synchronized (this) {
930 >            Object[] elementData = this.elementData;
931 >            final int s = elementCount;
932 >            if (numNew > elementData.length - s)
933 >                elementData = grow(s + numNew);
934 >            System.arraycopy(a, 0, elementData, s, numNew);
935 >            elementCount = s + numNew;
936 >            // checkInvariants();
937 >            return true;
938 >        }
939      }
940  
941      /**
# Line 854 | Line 946 | public class Vector<E>
946       * @return true if this Vector changed as a result of the call
947       * @throws ClassCastException if the types of one or more elements
948       *         in this vector are incompatible with the specified
949 <     *         collection (optional)
949 >     *         collection
950 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
951       * @throws NullPointerException if this vector contains one or more null
952       *         elements and the specified collection does not support null
953 <     *         elements (optional), or if the specified collection is null
953 >     *         elements
954 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
955 >     *         or if the specified collection is null
956       * @since 1.2
957       */
958 <    public synchronized boolean removeAll(Collection<?> c) {
959 <        return super.removeAll(c);
958 >    public boolean removeAll(Collection<?> c) {
959 >        Objects.requireNonNull(c);
960 >        return bulkRemove(e -> c.contains(e));
961      }
962  
963      /**
# Line 874 | Line 970 | public class Vector<E>
970       * @return true if this Vector changed as a result of the call
971       * @throws ClassCastException if the types of one or more elements
972       *         in this vector are incompatible with the specified
973 <     *         collection (optional)
973 >     *         collection
974 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
975       * @throws NullPointerException if this vector contains one or more null
976       *         elements and the specified collection does not support null
977 <     *         elements (optional), or if the specified collection is null
977 >     *         elements
978 >     *         (<a href="Collection.html#optional-restrictions">optional</a>),
979 >     *         or if the specified collection is null
980       * @since 1.2
981       */
982 <    public synchronized boolean retainAll(Collection<?> c)  {
983 <        return super.retainAll(c);
982 >    public boolean retainAll(Collection<?> c) {
983 >        Objects.requireNonNull(c);
984 >        return bulkRemove(e -> !c.contains(e));
985 >    }
986 >
987 >    @Override
988 >    public boolean removeIf(Predicate<? super E> filter) {
989 >        Objects.requireNonNull(filter);
990 >        return bulkRemove(filter);
991 >    }
992 >
993 >    // A tiny bit set implementation
994 >
995 >    private static long[] nBits(int n) {
996 >        return new long[((n - 1) >> 6) + 1];
997 >    }
998 >    private static void setBit(long[] bits, int i) {
999 >        bits[i >> 6] |= 1L << i;
1000 >    }
1001 >    private static boolean isClear(long[] bits, int i) {
1002 >        return (bits[i >> 6] & (1L << i)) == 0;
1003 >    }
1004 >
1005 >    private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1006 >        int expectedModCount = modCount;
1007 >        final Object[] es = elementData;
1008 >        final int end = elementCount;
1009 >        int i;
1010 >        // Optimize for initial run of survivors
1011 >        for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1012 >            ;
1013 >        // Tolerate predicates that reentrantly access the collection for
1014 >        // read (but writers still get CME), so traverse once to find
1015 >        // elements to delete, a second pass to physically expunge.
1016 >        if (i < end) {
1017 >            final int beg = i;
1018 >            final long[] deathRow = nBits(end - beg);
1019 >            deathRow[0] = 1L;   // set bit 0
1020 >            for (i = beg + 1; i < end; i++)
1021 >                if (filter.test(elementAt(es, i)))
1022 >                    setBit(deathRow, i - beg);
1023 >            if (modCount != expectedModCount)
1024 >                throw new ConcurrentModificationException();
1025 >            expectedModCount++;
1026 >            modCount++;
1027 >            int w = beg;
1028 >            for (i = beg; i < end; i++)
1029 >                if (isClear(deathRow, i - beg))
1030 >                    es[w++] = es[i];
1031 >            Arrays.fill(es, elementCount = w, end, null);
1032 >            // checkInvariants();
1033 >            return true;
1034 >        } else {
1035 >            if (modCount != expectedModCount)
1036 >                throw new ConcurrentModificationException();
1037 >            // checkInvariants();
1038 >            return false;
1039 >        }
1040      }
1041  
1042      /**
# Line 895 | Line 1050 | public class Vector<E>
1050       * @param index index at which to insert the first element from the
1051       *              specified collection
1052       * @param c elements to be inserted into this Vector
1053 <     * @return <tt>true</tt> if this Vector changed as a result of the call
1054 <     * @exception ArrayIndexOutOfBoundsException index out of range (index
1055 <     *            &lt; 0 || index &gt; size())
1053 >     * @return {@code true} if this Vector changed as a result of the call
1054 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
1055 >     *         ({@code index < 0 || index > size()})
1056       * @throws NullPointerException if the specified collection is null
1057       * @since 1.2
1058       */
1059      public synchronized boolean addAll(int index, Collection<? extends E> c) {
1060 <        modCount++;
1061 <        if (index < 0 || index > elementCount)
907 <            throw new ArrayIndexOutOfBoundsException(index);
1060 >        if (index < 0 || index > elementCount)
1061 >            throw new ArrayIndexOutOfBoundsException(index);
1062  
1063          Object[] a = c.toArray();
1064 <        int numNew = a.length;
1065 <        ensureCapacityHelper(elementCount + numNew);
1066 <
1067 <        int numMoved = elementCount - index;
1068 <        if (numMoved > 0)
1069 <            System.arraycopy(elementData, index, elementData, index + numNew,
1070 <                             numMoved);
1071 <
1064 >        modCount++;
1065 >        int numNew = a.length;
1066 >        if (numNew == 0)
1067 >            return false;
1068 >        Object[] elementData = this.elementData;
1069 >        final int s = elementCount;
1070 >        if (numNew > elementData.length - s)
1071 >            elementData = grow(s + numNew);
1072 >
1073 >        int numMoved = s - index;
1074 >        if (numMoved > 0)
1075 >            System.arraycopy(elementData, index,
1076 >                             elementData, index + numNew,
1077 >                             numMoved);
1078          System.arraycopy(a, 0, elementData, index, numNew);
1079 <        elementCount += numNew;
1080 <        return numNew != 0;
1079 >        elementCount = s + numNew;
1080 >        // checkInvariants();
1081 >        return true;
1082      }
1083  
1084      /**
1085       * Compares the specified Object with this Vector for equality.  Returns
1086       * true if and only if the specified Object is also a List, both Lists
1087       * have the same size, and all corresponding pairs of elements in the two
1088 <     * Lists are <em>equal</em>.  (Two elements <code>e1</code> and
1089 <     * <code>e2</code> are <em>equal</em> if <code>(e1==null ? e2==null :
1090 <     * e1.equals(e2))</code>.)  In other words, two Lists are defined to be
1088 >     * Lists are <em>equal</em>.  (Two elements {@code e1} and
1089 >     * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1090 >     * In other words, two Lists are defined to be
1091       * equal if they contain the same elements in the same order.
1092       *
1093       * @param o the Object to be compared for equality with this Vector
# Line 952 | Line 1113 | public class Vector<E>
1113      }
1114  
1115      /**
1116 <     * Removes from this List all of the elements whose index is between
1117 <     * fromIndex, inclusive and toIndex, exclusive.  Shifts any succeeding
1118 <     * elements to the left (reduces their index).
1119 <     * This call shortens the Vector by (toIndex - fromIndex) elements.  (If
1120 <     * toIndex==fromIndex, this operation has no effect.)
1116 >     * Returns a view of the portion of this List between fromIndex,
1117 >     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1118 >     * equal, the returned List is empty.)  The returned List is backed by this
1119 >     * List, so changes in the returned List are reflected in this List, and
1120 >     * vice-versa.  The returned List supports all of the optional List
1121 >     * operations supported by this List.
1122 >     *
1123 >     * <p>This method eliminates the need for explicit range operations (of
1124 >     * the sort that commonly exist for arrays).  Any operation that expects
1125 >     * a List can be used as a range operation by operating on a subList view
1126 >     * instead of a whole List.  For example, the following idiom
1127 >     * removes a range of elements from a List:
1128 >     * <pre>
1129 >     *      list.subList(from, to).clear();
1130 >     * </pre>
1131 >     * Similar idioms may be constructed for indexOf and lastIndexOf,
1132 >     * and all of the algorithms in the Collections class can be applied to
1133 >     * a subList.
1134       *
1135 <     * @param fromIndex index of first element to be removed
1136 <     * @param toIndex index after last element to be removed
1135 >     * <p>The semantics of the List returned by this method become undefined if
1136 >     * the backing list (i.e., this List) is <i>structurally modified</i> in
1137 >     * any way other than via the returned List.  (Structural modifications are
1138 >     * those that change the size of the List, or otherwise perturb it in such
1139 >     * a fashion that iterations in progress may yield incorrect results.)
1140 >     *
1141 >     * @param fromIndex low endpoint (inclusive) of the subList
1142 >     * @param toIndex high endpoint (exclusive) of the subList
1143 >     * @return a view of the specified range within this List
1144 >     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1145 >     *         {@code (fromIndex < 0 || toIndex > size)}
1146 >     * @throws IllegalArgumentException if the endpoint indices are out of order
1147 >     *         {@code (fromIndex > toIndex)}
1148 >     */
1149 >    public synchronized List<E> subList(int fromIndex, int toIndex) {
1150 >        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1151 >                                            this);
1152 >    }
1153 >
1154 >    /**
1155 >     * Removes from this list all of the elements whose index is between
1156 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1157 >     * Shifts any succeeding elements to the left (reduces their index).
1158 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1159 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
1160       */
1161      protected synchronized void removeRange(int fromIndex, int toIndex) {
1162 <        modCount++;
1163 <        int numMoved = elementCount - toIndex;
1164 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
968 <                         numMoved);
1162 >        final Object[] es = elementData;
1163 >        final int oldSize = elementCount;
1164 >        System.arraycopy(es, toIndex, es, fromIndex, oldSize - toIndex);
1165  
1166 <        // Let gc do its work
1167 <        int newElementCount = elementCount - (toIndex-fromIndex);
1168 <        while (elementCount != newElementCount)
973 <            elementData[--elementCount] = null;
1166 >        modCount++;
1167 >        Arrays.fill(es, elementCount -= (toIndex - fromIndex), oldSize, null);
1168 >        // checkInvariants();
1169      }
1170  
1171      /**
1172 <     * Save the state of the <tt>Vector</tt> instance to a stream (that
1173 <     * is, serialize it).  This method is present merely for synchronization.
1174 <     * It just calls the default writeObject method.
1172 >     * Saves the state of the {@code Vector} instance to a stream
1173 >     * (that is, serializes it).
1174 >     * This method performs synchronization to ensure the consistency
1175 >     * of the serialized data.
1176 >     *
1177 >     * @param s the stream
1178 >     * @throws java.io.IOException if an I/O error occurs
1179       */
1180 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
1181 <        throws java.io.IOException
1182 <    {
1183 <        s.defaultWriteObject();
1180 >    private void writeObject(java.io.ObjectOutputStream s)
1181 >            throws java.io.IOException {
1182 >        final java.io.ObjectOutputStream.PutField fields = s.putFields();
1183 >        final Object[] data;
1184 >        synchronized (this) {
1185 >            fields.put("capacityIncrement", capacityIncrement);
1186 >            fields.put("elementCount", elementCount);
1187 >            data = elementData.clone();
1188 >        }
1189 >        fields.put("elementData", data);
1190 >        s.writeFields();
1191      }
1192  
1193      /**
1194 <     * Returns a list-iterator of the elements in this list (in proper
1194 >     * Returns a list iterator over the elements in this list (in proper
1195       * sequence), starting at the specified position in the list.
1196 <     * Obeys the general contract of {@link List#listIterator(int)}.
1196 >     * The specified index indicates the first element that would be
1197 >     * returned by an initial call to {@link ListIterator#next next}.
1198 >     * An initial call to {@link ListIterator#previous previous} would
1199 >     * return the element with the specified index minus one.
1200 >     *
1201 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1202       *
992     * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
993     * modified at any time after the Iterator is created, in any way except
994     * through the list-iterator's own {@code remove} or {@code add}
995     * methods, the list-iterator will throw a
996     * {@code ConcurrentModificationException}.  Thus, in the face of
997     * concurrent modification, the iterator fails quickly and cleanly, rather
998     * than risking arbitrary, non-deterministic behavior at an undetermined
999     * time in the future.
1000     *
1001     * @param index index of the first element to be returned from the
1002     *        list-iterator (by a call to {@link ListIterator#next})
1003     * @return a list-iterator of the elements in this list (in proper
1004     *         sequence), starting at the specified position in the list
1203       * @throws IndexOutOfBoundsException {@inheritDoc}
1204       */
1205      public synchronized ListIterator<E> listIterator(int index) {
1206 <        if (index < 0 || index > elementCount)
1206 >        if (index < 0 || index > elementCount)
1207              throw new IndexOutOfBoundsException("Index: "+index);
1208 <        return new VectorIterator(index, elementCount);
1208 >        return new ListItr(index);
1209      }
1210  
1211      /**
1212 <     * {@inheritDoc}
1212 >     * Returns a list iterator over the elements in this list (in proper
1213 >     * sequence).
1214 >     *
1215 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1216 >     *
1217 >     * @see #listIterator(int)
1218       */
1219      public synchronized ListIterator<E> listIterator() {
1220 <        return new VectorIterator(0, elementCount);
1220 >        return new ListItr(0);
1221      }
1222  
1223      /**
1224       * Returns an iterator over the elements in this list in proper sequence.
1225       *
1226 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1227 +     *
1228       * @return an iterator over the elements in this list in proper sequence
1229       */
1230      public synchronized Iterator<E> iterator() {
1231 <        return new VectorIterator(0, elementCount);
1231 >        return new Itr();
1232      }
1233  
1234      /**
1235 <     * Helper method to access array elements under synchronization by
1031 <     * iterators. The caller performs index check with respect to
1032 <     * expected bounds, so errors accessing the element are reported
1033 <     * as ConcurrentModificationExceptions.
1235 >     * An optimized version of AbstractList.Itr
1236       */
1237 <    final synchronized Object iteratorGet(int index, int expectedModCount) {
1238 <        if (modCount == expectedModCount) {
1239 <            try {
1240 <                return elementData[index];
1039 <            } catch(IndexOutOfBoundsException fallThrough) {
1040 <            }
1041 <        }
1042 <        throw new ConcurrentModificationException();
1043 <    }
1237 >    private class Itr implements Iterator<E> {
1238 >        int cursor;       // index of next element to return
1239 >        int lastRet = -1; // index of last element returned; -1 if no such
1240 >        int expectedModCount = modCount;
1241  
1242 <    /**
1243 <     * Streamlined specialization of AbstractList version of iterator.
1244 <     * Locally perfroms bounds checks, but relies on outer Vector
1245 <     * to access elements under synchronization.
1049 <     */
1050 <    private final class VectorIterator implements ListIterator<E> {
1051 <        int cursor;              // Index of next element to return;
1052 <        int fence;               // Upper bound on cursor (cache of size())
1053 <        int lastRet;             // Index of last element, or -1 if no such
1054 <        int expectedModCount;    // To check for CME
1055 <
1056 <        VectorIterator(int index, int fence) {
1057 <            this.cursor = index;
1058 <            this.fence = fence;
1059 <            this.lastRet = -1;
1060 <            this.expectedModCount = Vector.this.modCount;
1061 <        }
1062 <
1063 <        public boolean hasNext() {
1064 <            return cursor < fence;
1065 <        }
1066 <
1067 <        public boolean hasPrevious() {
1068 <            return cursor > 0;
1069 <        }
1070 <
1071 <        public int nextIndex() {
1072 <            return cursor;
1073 <        }
1074 <
1075 <        public int previousIndex() {
1076 <            return cursor - 1;
1077 <        }
1078 <
1079 <        public E next() {
1080 <            int i = cursor;
1081 <            if (i >= fence)
1082 <                throw new NoSuchElementException();
1083 <            Object next = Vector.this.iteratorGet(i, expectedModCount);
1084 <            lastRet = i;
1085 <            cursor = i + 1;
1086 <            return (E)next;
1087 <        }
1088 <
1089 <        public E previous() {
1090 <            int i = cursor - 1;
1091 <            if (i < 0)
1092 <                throw new NoSuchElementException();
1093 <            Object prev = Vector.this.iteratorGet(i, expectedModCount);
1094 <            lastRet = i;
1095 <            cursor = i;
1096 <            return (E)prev;
1242 >        public boolean hasNext() {
1243 >            // Racy but within spec, since modifications are checked
1244 >            // within or after synchronization in next/previous
1245 >            return cursor != elementCount;
1246          }
1247  
1248 <        public void set(E e) {
1249 <            if (lastRet < 0)
1250 <                throw new IllegalStateException();
1102 <            if (Vector.this.modCount != expectedModCount)
1103 <                throw new ConcurrentModificationException();
1104 <            try {
1105 <                Vector.this.set(lastRet, e);
1106 <                expectedModCount = Vector.this.modCount;
1107 <            } catch (IndexOutOfBoundsException ex) {
1108 <                throw new ConcurrentModificationException();
1109 <            }
1110 <        }
1111 <
1112 <        public void remove() {
1113 <            int i = lastRet;
1114 <            if (i < 0)
1115 <                throw new IllegalStateException();
1116 <            if (Vector.this.modCount != expectedModCount)
1117 <                throw new ConcurrentModificationException();
1118 <            try {
1119 <                Vector.this.remove(i);
1120 <                if (i < cursor)
1121 <                    cursor--;
1122 <                lastRet = -1;
1123 <                fence = Vector.this.size();
1124 <                expectedModCount = Vector.this.modCount;
1125 <            } catch (IndexOutOfBoundsException ex) {
1126 <                throw new ConcurrentModificationException();
1127 <            }
1128 <        }
1129 <
1130 <        public void add(E e) {
1131 <            if (Vector.this.modCount != expectedModCount)
1132 <                throw new ConcurrentModificationException();
1133 <            try {
1248 >        public E next() {
1249 >            synchronized (Vector.this) {
1250 >                checkForComodification();
1251                  int i = cursor;
1252 <                Vector.this.add(i, e);
1252 >                if (i >= elementCount)
1253 >                    throw new NoSuchElementException();
1254                  cursor = i + 1;
1255 <                lastRet = -1;
1138 <                fence = Vector.this.size();
1139 <                expectedModCount = Vector.this.modCount;
1140 <            } catch (IndexOutOfBoundsException ex) {
1141 <                throw new ConcurrentModificationException();
1142 <            }
1143 <        }
1144 <    }
1145 <
1146 <    /**
1147 <     * Returns a view of the portion of this List between fromIndex,
1148 <     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1149 <     * equal, the returned List is empty.)  The returned List is backed by this
1150 <     * List, so changes in the returned List are reflected in this List, and
1151 <     * vice-versa.  The returned List supports all of the optional List
1152 <     * operations supported by this List.<p>
1153 <     *
1154 <     * This method eliminates the need for explicit range operations (of
1155 <     * the sort that commonly exist for arrays).   Any operation that expects
1156 <     * a List can be used as a range operation by operating on a subList view
1157 <     * instead of a whole List.  For example, the following idiom
1158 <     * removes a range of elements from a List:
1159 <     * <pre>
1160 <     *      list.subList(from, to).clear();
1161 <     * </pre>
1162 <     * Similar idioms may be constructed for indexOf and lastIndexOf,
1163 <     * and all of the algorithms in the Collections class can be applied to
1164 <     * a subList.<p>
1165 <     *
1166 <     * The semantics of the List returned by this method become undefined if
1167 <     * the backing list (i.e., this List) is <i>structurally modified</i> in
1168 <     * any way other than via the returned List.  (Structural modifications are
1169 <     * those that change the size of the List, or otherwise perturb it in such
1170 <     * a fashion that iterations in progress may yield incorrect results.)
1171 <     *
1172 <     * @param fromIndex low endpoint (inclusive) of the subList
1173 <     * @param toIndex high endpoint (exclusive) of the subList
1174 <     * @return a view of the specified range within this List
1175 <     * @throws IndexOutOfBoundsException endpoint index value out of range
1176 <     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1177 <     * @throws IllegalArgumentException endpoint indices out of order
1178 <     *         <code>(fromIndex &gt; toIndex)</code>
1179 <     */
1180 <    public synchronized List<E> subList(int fromIndex, int toIndex) {
1181 <        return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1182 <    }
1183 <
1184 <    /**
1185 <     * This class specializes the AbstractList version of SubList to
1186 <     * avoid the double-indirection penalty that would arise using a
1187 <     * synchronized wrapper, as well as to avoid some unnecessary
1188 <     * checks in sublist iterators.
1189 <     */
1190 <    private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1191 <        final Vector<E> base;             // base list
1192 <        final AbstractList<E> parent;     // Creating list
1193 <        final int baseOffset;             // index wrt Vector
1194 <        final int parentOffset;           // index wrt parent
1195 <        int length;                       // length of sublist
1196 <
1197 <        VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1198 <                     int fromIndex, int toIndex) {
1199 <            if (fromIndex < 0)
1200 <                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1201 <            if (toIndex > parent.size())
1202 <                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1203 <            if (fromIndex > toIndex)
1204 <                throw new IllegalArgumentException("fromIndex(" + fromIndex +
1205 <                                                   ") > toIndex(" + toIndex + ")");
1206 <
1207 <            this.base = base;
1208 <            this.parent = parent;
1209 <            this.baseOffset = baseOffset;
1210 <            this.parentOffset = fromIndex;
1211 <            this.length = toIndex - fromIndex;
1212 <            modCount = base.modCount;
1213 <        }
1214 <
1215 <        /**
1216 <         * Returns an IndexOutOfBoundsException with nicer message
1217 <         */
1218 <        private IndexOutOfBoundsException indexError(int index) {
1219 <            return new IndexOutOfBoundsException("Index: " + index +
1220 <                                                 ", Size: " + length);
1221 <        }
1222 <
1223 <        public E set(int index, E element) {
1224 <            synchronized(base) {
1225 <                if (index < 0 || index >= length)
1226 <                    throw indexError(index);
1227 <                if (base.modCount != modCount)
1228 <                    throw new ConcurrentModificationException();
1229 <                return base.set(index + baseOffset, element);
1230 <            }
1231 <        }
1232 <
1233 <        public E get(int index) {
1234 <            synchronized(base) {
1235 <                if (index < 0 || index >= length)
1236 <                    throw indexError(index);
1237 <                if (base.modCount != modCount)
1238 <                    throw new ConcurrentModificationException();
1239 <                return base.get(index + baseOffset);
1255 >                return elementData(lastRet = i);
1256              }
1257          }
1258  
1259 <        public int size() {
1260 <            synchronized(base) {
1261 <                if (base.modCount != modCount)
1262 <                    throw new ConcurrentModificationException();
1263 <                return length;
1259 >        public void remove() {
1260 >            if (lastRet == -1)
1261 >                throw new IllegalStateException();
1262 >            synchronized (Vector.this) {
1263 >                checkForComodification();
1264 >                Vector.this.remove(lastRet);
1265 >                expectedModCount = modCount;
1266              }
1267 +            cursor = lastRet;
1268 +            lastRet = -1;
1269          }
1270  
1271 <        public void add(int index, E element) {
1272 <            synchronized(base) {
1273 <                if (index < 0 || index > length)
1274 <                    throw indexError(index);
1275 <                if (base.modCount != modCount)
1276 <                    throw new ConcurrentModificationException();
1277 <                parent.add(index + parentOffset, element);
1278 <                length++;
1279 <                modCount = base.modCount;
1280 <            }
1281 <        }
1262 <
1263 <        public E remove(int index) {
1264 <            synchronized(base) {
1265 <                if (index < 0 || index >= length)
1266 <                    throw indexError(index);
1267 <                if (base.modCount != modCount)
1268 <                    throw new ConcurrentModificationException();
1269 <                E result = parent.remove(index + parentOffset);
1270 <                length--;
1271 <                modCount = base.modCount;
1272 <                return result;
1273 <            }
1274 <        }
1275 <
1276 <        protected void removeRange(int fromIndex, int toIndex) {
1277 <            synchronized(base) {
1278 <                if (base.modCount != modCount)
1279 <                    throw new ConcurrentModificationException();
1280 <                parent.removeRange(fromIndex + parentOffset,
1281 <                                   toIndex + parentOffset);
1282 <                length -= (toIndex-fromIndex);
1283 <                modCount = base.modCount;
1284 <            }
1285 <        }
1286 <
1287 <        public boolean addAll(Collection<? extends E> c) {
1288 <            return addAll(length, c);
1289 <        }
1290 <
1291 <        public boolean addAll(int index, Collection<? extends E> c) {
1292 <            synchronized(base) {
1293 <                if (index < 0 || index > length)
1294 <                    throw indexError(index);
1295 <                int cSize = c.size();
1296 <                if (cSize==0)
1297 <                    return false;
1298 <
1299 <                if (base.modCount != modCount)
1271 >        @Override
1272 >        public void forEachRemaining(Consumer<? super E> action) {
1273 >            Objects.requireNonNull(action);
1274 >            synchronized (Vector.this) {
1275 >                final int size = elementCount;
1276 >                int i = cursor;
1277 >                if (i >= size) {
1278 >                    return;
1279 >                }
1280 >                final Object[] es = elementData;
1281 >                if (i >= es.length)
1282                      throw new ConcurrentModificationException();
1283 <                parent.addAll(parentOffset + index, c);
1284 <                modCount = base.modCount;
1285 <                length += cSize;
1286 <                return true;
1283 >                while (i < size && modCount == expectedModCount)
1284 >                    action.accept(elementAt(es, i++));
1285 >                // update once at end of iteration to reduce heap write traffic
1286 >                cursor = i;
1287 >                lastRet = i - 1;
1288 >                checkForComodification();
1289              }
1290          }
1291  
1292 <        public boolean equals(Object o) {
1293 <            synchronized(base) {return super.equals(o);}
1292 >        final void checkForComodification() {
1293 >            if (modCount != expectedModCount)
1294 >                throw new ConcurrentModificationException();
1295          }
1296 +    }
1297  
1298 <        public int hashCode() {
1299 <            synchronized(base) {return super.hashCode();}
1298 >    /**
1299 >     * An optimized version of AbstractList.ListItr
1300 >     */
1301 >    final class ListItr extends Itr implements ListIterator<E> {
1302 >        ListItr(int index) {
1303 >            super();
1304 >            cursor = index;
1305          }
1306  
1307 <        public int indexOf(Object o) {
1308 <            synchronized(base) {return super.indexOf(o);}
1307 >        public boolean hasPrevious() {
1308 >            return cursor != 0;
1309          }
1310  
1311 <        public int lastIndexOf(Object o) {
1312 <            synchronized(base) {return super.lastIndexOf(o);}
1311 >        public int nextIndex() {
1312 >            return cursor;
1313          }
1314  
1315 <        public List<E> subList(int fromIndex, int toIndex) {
1316 <            return new VectorSubList(base, this, fromIndex + baseOffset,
1326 <                                     fromIndex, toIndex);
1315 >        public int previousIndex() {
1316 >            return cursor - 1;
1317          }
1318  
1319 <        public Iterator<E> iterator() {
1320 <            synchronized(base) {
1321 <                return new VectorSubListIterator(this, 0);
1319 >        public E previous() {
1320 >            synchronized (Vector.this) {
1321 >                checkForComodification();
1322 >                int i = cursor - 1;
1323 >                if (i < 0)
1324 >                    throw new NoSuchElementException();
1325 >                cursor = i;
1326 >                return elementData(lastRet = i);
1327              }
1328          }
1329  
1330 <        public synchronized ListIterator<E> listIterator() {
1331 <            synchronized(base) {
1332 <                return new VectorSubListIterator(this, 0);
1330 >        public void set(E e) {
1331 >            if (lastRet == -1)
1332 >                throw new IllegalStateException();
1333 >            synchronized (Vector.this) {
1334 >                checkForComodification();
1335 >                Vector.this.set(lastRet, e);
1336              }
1337          }
1338  
1339 <        public ListIterator<E> listIterator(int index) {
1340 <            synchronized(base) {
1341 <                if (index < 0 || index > length)
1342 <                    throw indexError(index);
1343 <                return new VectorSubListIterator(this, index);
1339 >        public void add(E e) {
1340 >            int i = cursor;
1341 >            synchronized (Vector.this) {
1342 >                checkForComodification();
1343 >                Vector.this.add(i, e);
1344 >                expectedModCount = modCount;
1345              }
1346 +            cursor = i + 1;
1347 +            lastRet = -1;
1348          }
1349 +    }
1350  
1351 <        /**
1352 <         * Same idea as VectorIterator, except routing structural
1353 <         * change operations through the sublist.
1354 <         */
1355 <        private static final class VectorSubListIterator<E> implements ListIterator<E> {
1356 <            final Vector<E> base;         // base list
1357 <            final VectorSubList<E> outer; // Sublist creating this iteraor
1358 <            final int offset;             // cursor offset wrt base
1359 <            int cursor;                   // Current index
1360 <            int fence;                    // Upper bound on cursor
1361 <            int lastRet;                  // Index of returned element, or -1
1362 <            int expectedModCount;         // Expected modCount of base Vector
1363 <
1364 <            VectorSubListIterator(VectorSubList<E> list, int index) {
1365 <                this.lastRet = -1;
1366 <                this.cursor = index;
1367 <                this.outer = list;
1368 <                this.offset = list.baseOffset;
1369 <                this.fence = list.length;
1370 <                this.base = list.base;
1371 <                this.expectedModCount = base.modCount;
1372 <            }
1373 <
1374 <            public boolean hasNext() {
1375 <                return cursor < fence;
1376 <            }
1351 >    @Override
1352 >    public synchronized void forEach(Consumer<? super E> action) {
1353 >        Objects.requireNonNull(action);
1354 >        final int expectedModCount = modCount;
1355 >        final Object[] es = elementData;
1356 >        final int size = elementCount;
1357 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1358 >            action.accept(elementAt(es, i));
1359 >        if (modCount != expectedModCount)
1360 >            throw new ConcurrentModificationException();
1361 >        // checkInvariants();
1362 >    }
1363 >
1364 >    @Override
1365 >    public synchronized void replaceAll(UnaryOperator<E> operator) {
1366 >        Objects.requireNonNull(operator);
1367 >        final int expectedModCount = modCount;
1368 >        final Object[] es = elementData;
1369 >        final int size = elementCount;
1370 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1371 >            es[i] = operator.apply(elementAt(es, i));
1372 >        if (modCount != expectedModCount)
1373 >            throw new ConcurrentModificationException();
1374 >        modCount++;
1375 >        // checkInvariants();
1376 >    }
1377  
1378 <            public boolean hasPrevious() {
1379 <                return cursor > 0;
1380 <            }
1378 >    @SuppressWarnings("unchecked")
1379 >    @Override
1380 >    public synchronized void sort(Comparator<? super E> c) {
1381 >        final int expectedModCount = modCount;
1382 >        Arrays.sort((E[]) elementData, 0, elementCount, c);
1383 >        if (modCount != expectedModCount)
1384 >            throw new ConcurrentModificationException();
1385 >        modCount++;
1386 >        // checkInvariants();
1387 >    }
1388  
1389 <            public int nextIndex() {
1390 <                return cursor;
1391 <            }
1389 >    /**
1390 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1391 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1392 >     * list.
1393 >     *
1394 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1395 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1396 >     * Overriding implementations should document the reporting of additional
1397 >     * characteristic values.
1398 >     *
1399 >     * @return a {@code Spliterator} over the elements in this list
1400 >     * @since 1.8
1401 >     */
1402 >    @Override
1403 >    public Spliterator<E> spliterator() {
1404 >        return new VectorSpliterator(null, 0, -1, 0);
1405 >    }
1406  
1407 <            public int previousIndex() {
1408 <                return cursor - 1;
1409 <            }
1407 >    /** Similar to ArrayList Spliterator */
1408 >    final class VectorSpliterator implements Spliterator<E> {
1409 >        private Object[] array;
1410 >        private int index; // current index, modified on advance/split
1411 >        private int fence; // -1 until used; then one past last index
1412 >        private int expectedModCount; // initialized when fence set
1413  
1414 <            public E next() {
1415 <                int i = cursor;
1416 <                if (cursor >= fence)
1417 <                    throw new NoSuchElementException();
1418 <                Object next = base.iteratorGet(i + offset, expectedModCount);
1419 <                lastRet = i;
1420 <                cursor = i + 1;
1421 <                return (E)next;
1396 <            }
1397 <
1398 <            public E previous() {
1399 <                int i = cursor - 1;
1400 <                if (i < 0)
1401 <                    throw new NoSuchElementException();
1402 <                Object prev = base.iteratorGet(i + offset, expectedModCount);
1403 <                lastRet = i;
1404 <                cursor = i;
1405 <                return (E)prev;
1406 <            }
1414 >        /** Create new spliterator covering the given range */
1415 >        VectorSpliterator(Object[] array, int origin, int fence,
1416 >                          int expectedModCount) {
1417 >            this.array = array;
1418 >            this.index = origin;
1419 >            this.fence = fence;
1420 >            this.expectedModCount = expectedModCount;
1421 >        }
1422  
1423 <            public void set(E e) {
1424 <                if (lastRet < 0)
1425 <                    throw new IllegalStateException();
1426 <                if (base.modCount != expectedModCount)
1427 <                    throw new ConcurrentModificationException();
1428 <                try {
1429 <                    outer.set(lastRet, e);
1415 <                    expectedModCount = base.modCount;
1416 <                } catch (IndexOutOfBoundsException ex) {
1417 <                    throw new ConcurrentModificationException();
1423 >        private int getFence() { // initialize on first use
1424 >            int hi;
1425 >            if ((hi = fence) < 0) {
1426 >                synchronized (Vector.this) {
1427 >                    array = elementData;
1428 >                    expectedModCount = modCount;
1429 >                    hi = fence = elementCount;
1430                  }
1431              }
1432 +            return hi;
1433 +        }
1434  
1435 <            public void remove() {
1436 <                int i = lastRet;
1437 <                if (i < 0)
1438 <                    throw new IllegalStateException();
1439 <                if (base.modCount != expectedModCount)
1440 <                    throw new ConcurrentModificationException();
1441 <                try {
1442 <                    outer.remove(i);
1443 <                    if (i < cursor)
1444 <                        cursor--;
1445 <                    lastRet = -1;
1446 <                    fence = outer.length;
1447 <                    expectedModCount = base.modCount;
1448 <                } catch (IndexOutOfBoundsException ex) {
1435 >        public Spliterator<E> trySplit() {
1436 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1437 >            return (lo >= mid) ? null :
1438 >                new VectorSpliterator(array, lo, index = mid, expectedModCount);
1439 >        }
1440 >
1441 >        @SuppressWarnings("unchecked")
1442 >        public boolean tryAdvance(Consumer<? super E> action) {
1443 >            int i;
1444 >            if (action == null)
1445 >                throw new NullPointerException();
1446 >            if (getFence() > (i = index)) {
1447 >                index = i + 1;
1448 >                action.accept((E)array[i]);
1449 >                if (modCount != expectedModCount)
1450                      throw new ConcurrentModificationException();
1451 <                }
1451 >                return true;
1452              }
1453 +            return false;
1454 +        }
1455  
1456 <            public void add(E e) {
1457 <                if (base.modCount != expectedModCount)
1458 <                    throw new ConcurrentModificationException();
1459 <                try {
1460 <                    int i = cursor;
1461 <                    outer.add(i, e);
1462 <                    cursor = i + 1;
1463 <                    lastRet = -1;
1464 <                    fence = outer.length;
1465 <                    expectedModCount = base.modCount;
1466 <                } catch (IndexOutOfBoundsException ex) {
1450 <                    throw new ConcurrentModificationException();
1451 <                }
1452 <            }
1456 >        @SuppressWarnings("unchecked")
1457 >        public void forEachRemaining(Consumer<? super E> action) {
1458 >            if (action == null)
1459 >                throw new NullPointerException();
1460 >            final int hi = getFence();
1461 >            final Object[] a = array;
1462 >            int i;
1463 >            for (i = index, index = hi; i < hi; i++)
1464 >                action.accept((E) a[i]);
1465 >            if (modCount != expectedModCount)
1466 >                throw new ConcurrentModificationException();
1467          }
1454    }
1455 }
1468  
1469 +        public long estimateSize() {
1470 +            return getFence() - index;
1471 +        }
1472  
1473 +        public int characteristics() {
1474 +            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1475 +        }
1476 +    }
1477  
1478 +    void checkInvariants() {
1479 +        // assert elementCount >= 0;
1480 +        // assert elementCount == elementData.length || elementData[elementCount] == null;
1481 +    }
1482 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines