ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
(Generate patch)

Comparing jsr166/src/main/java/util/Vector.java (file contents):
Revision 1.7 by jsr166, Mon Dec 5 02:56:59 2005 UTC vs.
Revision 1.15 by jsr166, Sun Jun 25 19:58:14 2006 UTC

# Line 6 | Line 6
6   */
7  
8   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
9  
10   /**
11 < * The <code>Vector</code> class implements a growable array of
11 > * The {@code Vector} class implements a growable array of
12   * objects. Like an array, it contains components that can be
13   * accessed using an integer index. However, the size of a
14 < * <code>Vector</code> can grow or shrink as needed to accommodate
15 < * adding and removing items after the <code>Vector</code> has been created.<p>
14 > * {@code Vector} can grow or shrink as needed to accommodate
15 > * adding and removing items after the {@code Vector} has been created.
16   *
17 < * Each vector tries to optimize storage management by maintaining a
18 < * <code>capacity</code> and a <code>capacityIncrement</code>. The
19 < * <code>capacity</code> is always at least as large as the vector
17 > * <p>Each vector tries to optimize storage management by maintaining a
18 > * {@code capacity} and a {@code capacityIncrement}. The
19 > * {@code capacity} is always at least as large as the vector
20   * size; it is usually larger because as components are added to the
21   * vector, the vector's storage increases in chunks the size of
22 < * <code>capacityIncrement</code>. An application can increase the
22 > * {@code capacityIncrement}. An application can increase the
23   * capacity of a vector before inserting a large number of
24 < * components; this reduces the amount of incremental reallocation. <p>
24 > * components; this reduces the amount of incremental reallocation.
25   *
26 < * As of the Java 2 platform v1.2, this class has been retrofitted to
28 < * implement List, so that it becomes a part of Java's collection framework.
29 < * Unlike the new collection implementations, Vector is synchronized.<p>
30 < *
31 < * The Iterators returned by Vector's iterator and listIterator
26 > * <p>The Iterators returned by Vector's iterator and listIterator
27   * methods are <em>fail-fast</em>: if the Vector is structurally modified
28   * at any time after the Iterator is created, in any way except through the
29   * Iterator's own remove or add methods, the Iterator will throw a
# Line 41 | Line 36 | import java.util.*; // for javadoc (till
36   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
37   * as it is, generally speaking, impossible to make any hard guarantees in the
38   * presence of unsynchronized concurrent modification.  Fail-fast iterators
39 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
39 > * throw {@code ConcurrentModificationException} on a best-effort basis.
40   * Therefore, it would be wrong to write a program that depended on this
41   * exception for its correctness:  <i>the fail-fast behavior of iterators
42 < * should be used only to detect bugs.</i><p>
42 > * should be used only to detect bugs.</i>
43   *
44 < * This class is a member of the
45 < * <a href="{@docRoot}/../guide/collections/index.html">
46 < * Java Collections Framework</a>.
44 > * <p>As of the Java 2 platform v1.2, this class was retrofitted to
45 > * implement the {@link List} interface, making it a member of the
46 > * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
47 > * Collections Framework</a>.  Unlike the new collection
48 > * implementations, {@code Vector} is synchronized.
49   *
50   * @author  Lee Boynton
51   * @author  Jonathan Payne
# Line 66 | Line 63 | public class Vector<E>
63      /**
64       * The array buffer into which the components of the vector are
65       * stored. The capacity of the vector is the length of this array buffer,
66 <     * and is at least large enough to contain all the vector's elements.<p>
66 >     * and is at least large enough to contain all the vector's elements.
67       *
68 <     * Any array elements following the last element in the Vector are null.
68 >     * <p>Any array elements following the last element in the Vector are null.
69       *
70       * @serial
71       */
72      protected Object[] elementData;
73  
74      /**
75 <     * The number of valid components in this <tt>Vector</tt> object.
76 <     * Components <tt>elementData[0]</tt> through
77 <     * <tt>elementData[elementCount-1]</tt> are the actual items.
75 >     * The number of valid components in this {@code Vector} object.
76 >     * Components {@code elementData[0]} through
77 >     * {@code elementData[elementCount-1]} are the actual items.
78       *
79       * @serial
80       */
# Line 103 | Line 100 | public class Vector<E>
100       * @param   initialCapacity     the initial capacity of the vector
101       * @param   capacityIncrement   the amount by which the capacity is
102       *                              increased when the vector overflows
103 <     * @exception IllegalArgumentException if the specified initial capacity
104 <     *               is negative
103 >     * @throws IllegalArgumentException if the specified initial capacity
104 >     *         is negative
105       */
106      public Vector(int initialCapacity, int capacityIncrement) {
107          super();
# Line 120 | Line 117 | public class Vector<E>
117       * with its capacity increment equal to zero.
118       *
119       * @param   initialCapacity   the initial capacity of the vector
120 <     * @exception IllegalArgumentException if the specified initial capacity
121 <     *               is negative
120 >     * @throws IllegalArgumentException if the specified initial capacity
121 >     *         is negative
122       */
123      public Vector(int initialCapacity) {
124          this(initialCapacity, 0);
# Line 129 | Line 126 | public class Vector<E>
126  
127      /**
128       * Constructs an empty vector so that its internal data array
129 <     * has size <tt>10</tt> and its standard capacity increment is
129 >     * has size {@code 10} and its standard capacity increment is
130       * zero.
131       */
132      public Vector() {
# Line 156 | Line 153 | public class Vector<E>
153  
154      /**
155       * Copies the components of this vector into the specified array.
156 <     * The item at index <tt>k</tt> in this vector is copied into
157 <     * component <tt>k</tt> of <tt>anArray</tt>.
156 >     * The item at index {@code k} in this vector is copied into
157 >     * component {@code k} of {@code anArray}.
158       *
159       * @param  anArray the array into which the components get copied
160       * @throws NullPointerException if the given array is null
# Line 175 | Line 172 | public class Vector<E>
172       * Trims the capacity of this vector to be the vector's current
173       * size. If the capacity of this vector is larger than its current
174       * size, then the capacity is changed to equal the size by replacing
175 <     * its internal data array, kept in the field <tt>elementData</tt>,
175 >     * its internal data array, kept in the field {@code elementData},
176       * with a smaller one. An application can use this operation to
177       * minimize the storage of a vector.
178       */
# Line 193 | Line 190 | public class Vector<E>
190       * the minimum capacity argument.
191       *
192       * <p>If the current capacity of this vector is less than
193 <     * <tt>minCapacity</tt>, then its capacity is increased by replacing its
194 <     * internal data array, kept in the field <tt>elementData</tt>, with a
193 >     * {@code minCapacity}, then its capacity is increased by replacing its
194 >     * internal data array, kept in the field {@code elementData}, with a
195       * larger one.  The size of the new data array will be the old size plus
196 <     * <tt>capacityIncrement</tt>, unless the value of
197 <     * <tt>capacityIncrement</tt> is less than or equal to zero, in which case
196 >     * {@code capacityIncrement}, unless the value of
197 >     * {@code capacityIncrement} is less than or equal to zero, in which case
198       * the new capacity will be twice the old capacity; but if this new size
199 <     * is still smaller than <tt>minCapacity</tt>, then the new capacity will
200 <     * be <tt>minCapacity</tt>.
199 >     * is still smaller than {@code minCapacity}, then the new capacity will
200 >     * be {@code minCapacity}.
201       *
202       * @param minCapacity the desired minimum capacity
203       */
# Line 215 | Line 212 | public class Vector<E>
212       * method for ensuring capacity without incurring the cost of an
213       * extra synchronization.
214       *
215 <     * @see java.util.Vector#ensureCapacity(int)
215 >     * @see #ensureCapacity(int)
216       */
217      private void ensureCapacityHelper(int minCapacity) {
218          int oldCapacity = elementData.length;
# Line 232 | Line 229 | public class Vector<E>
229  
230      /**
231       * Sets the size of this vector. If the new size is greater than the
232 <     * current size, new <code>null</code> items are added to the end of
232 >     * current size, new {@code null} items are added to the end of
233       * the vector. If the new size is less than the current size, all
234 <     * components at index <code>newSize</code> and greater are discarded.
234 >     * components at index {@code newSize} and greater are discarded.
235       *
236       * @param   newSize   the new size of this vector
237       * @throws  ArrayIndexOutOfBoundsException if new size is negative
# Line 255 | Line 252 | public class Vector<E>
252       * Returns the current capacity of this vector.
253       *
254       * @return  the current capacity (the length of its internal
255 <     *          data array, kept in the field <tt>elementData</tt>
255 >     *          data array, kept in the field {@code elementData}
256       *          of this vector)
257       */
258      public synchronized int capacity() {
# Line 274 | Line 271 | public class Vector<E>
271      /**
272       * Tests if this vector has no components.
273       *
274 <     * @return  <code>true</code> if and only if this vector has
274 >     * @return  {@code true} if and only if this vector has
275       *          no components, that is, its size is zero;
276 <     *          <code>false</code> otherwise.
276 >     *          {@code false} otherwise.
277       */
278      public synchronized boolean isEmpty() {
279          return elementCount == 0;
# Line 284 | Line 281 | public class Vector<E>
281  
282      /**
283       * Returns an enumeration of the components of this vector. The
284 <     * returned <tt>Enumeration</tt> object will generate all items in
285 <     * this vector. The first item generated is the item at index <tt>0</tt>,
286 <     * then the item at index <tt>1</tt>, and so on.
284 >     * returned {@code Enumeration} object will generate all items in
285 >     * this vector. The first item generated is the item at index {@code 0},
286 >     * then the item at index {@code 1}, and so on.
287       *
288       * @return  an enumeration of the components of this vector
292     * @see     Enumeration
289       * @see     Iterator
290       */
291      public Enumeration<E> elements() {
# Line 312 | Line 308 | public class Vector<E>
308      }
309  
310      /**
311 <     * Returns <tt>true</tt> if this vector contains the specified element.
312 <     * More formally, returns <tt>true</tt> if and only if this vector
313 <     * contains at least one element <tt>e</tt> such that
311 >     * Returns {@code true} if this vector contains the specified element.
312 >     * More formally, returns {@code true} if and only if this vector
313 >     * contains at least one element {@code e} such that
314       * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
315       *
316       * @param o element whose presence in this vector is to be tested
317 <     * @return <tt>true</tt> if this vector contains the specified element
317 >     * @return {@code true} if this vector contains the specified element
318       */
319      public boolean contains(Object o) {
320          return indexOf(o, 0) >= 0;
# Line 327 | Line 323 | public class Vector<E>
323      /**
324       * Returns the index of the first occurrence of the specified element
325       * in this vector, or -1 if this vector does not contain the element.
326 <     * More formally, returns the lowest index <tt>i</tt> such that
326 >     * More formally, returns the lowest index {@code i} such that
327       * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
328       * or -1 if there is no such index.
329       *
# Line 341 | Line 337 | public class Vector<E>
337  
338      /**
339       * Returns the index of the first occurrence of the specified element in
340 <     * this vector, searching forwards from <tt>index</tt>, or returns -1 if
340 >     * this vector, searching forwards from {@code index}, or returns -1 if
341       * the element is not found.
342 <     * More formally, returns the lowest index <tt>i</tt> such that
342 >     * More formally, returns the lowest index {@code i} such that
343       * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
344       * or -1 if there is no such index.
345       *
346       * @param o element to search for
347       * @param index index to start searching from
348       * @return the index of the first occurrence of the element in
349 <     *         this vector at position <tt>index</tt> or later in the vector;
350 <     *         <tt>-1</tt> if the element is not found.
349 >     *         this vector at position {@code index} or later in the vector;
350 >     *         {@code -1} if the element is not found.
351       * @throws IndexOutOfBoundsException if the specified index is negative
352       * @see     Object#equals(Object)
353       */
# Line 371 | Line 367 | public class Vector<E>
367      /**
368       * Returns the index of the last occurrence of the specified element
369       * in this vector, or -1 if this vector does not contain the element.
370 <     * More formally, returns the highest index <tt>i</tt> such that
370 >     * More formally, returns the highest index {@code i} such that
371       * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
372       * or -1 if there is no such index.
373       *
# Line 385 | Line 381 | public class Vector<E>
381  
382      /**
383       * Returns the index of the last occurrence of the specified element in
384 <     * this vector, searching backwards from <tt>index</tt>, or returns -1 if
384 >     * this vector, searching backwards from {@code index}, or returns -1 if
385       * the element is not found.
386 <     * More formally, returns the highest index <tt>i</tt> such that
386 >     * More formally, returns the highest index {@code i} such that
387       * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
388       * or -1 if there is no such index.
389       *
390       * @param o element to search for
391       * @param index index to start searching backwards from
392       * @return the index of the last occurrence of the element at position
393 <     *         less than or equal to <tt>index</tt> in this vector;
393 >     *         less than or equal to {@code index} in this vector;
394       *         -1 if the element is not found.
395       * @throws IndexOutOfBoundsException if the specified index is greater
396       *         than or equal to the current size of this vector
# Line 416 | Line 412 | public class Vector<E>
412      }
413  
414      /**
415 <     * Returns the component at the specified index.<p>
415 >     * Returns the component at the specified index.
416       *
417 <     * This method is identical in functionality to the get method
418 <     * (which is part of the List interface).
417 >     * <p>This method is identical in functionality to the {@link #get(int)}
418 >     * method (which is part of the {@link List} interface).
419       *
420       * @param      index   an index into this vector
421       * @return     the component at the specified index
422 <     * @exception  ArrayIndexOutOfBoundsException  if the <tt>index</tt>
423 <     *             is negative or not less than the current size of this
428 <     *             <tt>Vector</tt> object.
429 <     * @see        #get(int)
430 <     * @see        List
422 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
423 >     *         ({@code index < 0 || index >= size()})
424       */
425      public synchronized E elementAt(int index) {
426          if (index >= elementCount) {
# Line 438 | Line 431 | public class Vector<E>
431      }
432  
433      /**
434 <     * Returns the first component (the item at index <tt>0</tt>) of
434 >     * Returns the first component (the item at index {@code 0}) of
435       * this vector.
436       *
437       * @return     the first component of this vector
438 <     * @exception  NoSuchElementException  if this vector has no components
438 >     * @throws NoSuchElementException if this vector has no components
439       */
440      public synchronized E firstElement() {
441          if (elementCount == 0) {
# Line 456 | Line 449 | public class Vector<E>
449       *
450       * @return  the last component of the vector, i.e., the component at index
451       *          <code>size()&nbsp;-&nbsp;1</code>.
452 <     * @exception  NoSuchElementException  if this vector is empty
452 >     * @throws NoSuchElementException if this vector is empty
453       */
454      public synchronized E lastElement() {
455          if (elementCount == 0) {
# Line 466 | Line 459 | public class Vector<E>
459      }
460  
461      /**
462 <     * Sets the component at the specified <code>index</code> of this
462 >     * Sets the component at the specified {@code index} of this
463       * vector to be the specified object. The previous component at that
464       * position is discarded.<p>
465       *
466 <     * The index must be a value greater than or equal to <code>0</code>
466 >     * The index must be a value greater than or equal to {@code 0}
467       * and less than the current size of the vector. <p>
468       *
469       * This method is identical in functionality to the set method
# Line 481 | Line 474 | public class Vector<E>
474       *
475       * @param      obj     what the component is to be set to
476       * @param      index   the specified index
477 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
477 >     * @throws  ArrayIndexOutOfBoundsException  if the index was invalid
478       * @see        #size()
479       * @see        List
480       * @see        #set(int, java.lang.Object)
# Line 497 | Line 490 | public class Vector<E>
490      /**
491       * Deletes the component at the specified index. Each component in
492       * this vector with an index greater or equal to the specified
493 <     * <code>index</code> is shifted downward to have an index one
493 >     * {@code index} is shifted downward to have an index one
494       * smaller than the value it had previously. The size of this vector
495 <     * is decreased by <tt>1</tt>.<p>
495 >     * is decreased by {@code 1}.
496       *
497 <     * The index must be a value greater than or equal to <code>0</code>
498 <     * and less than the current size of the vector. <p>
497 >     * <p>The index must be a value greater than or equal to {@code 0}
498 >     * and less than the current size of the vector.
499       *
500 <     * This method is identical in functionality to the remove method
500 >     * <p>This method is identical in functionality to the remove method
501       * (which is part of the List interface).  Note that the remove method
502       * returns the old value that was stored at the specified position.
503       *
# Line 533 | Line 526 | public class Vector<E>
526  
527      /**
528       * Inserts the specified object as a component in this vector at the
529 <     * specified <code>index</code>. Each component in this vector with
530 <     * an index greater or equal to the specified <code>index</code> is
529 >     * specified {@code index}. Each component in this vector with
530 >     * an index greater or equal to the specified {@code index} is
531       * shifted upward to have an index one greater than the value it had
532 <     * previously. <p>
532 >     * previously.
533       *
534 <     * The index must be a value greater than or equal to <code>0</code>
534 >     * <p>The index must be a value greater than or equal to {@code 0}
535       * and less than or equal to the current size of the vector. (If the
536       * index is equal to the current size of the vector, the new element
537 <     * is appended to the Vector.)<p>
537 >     * is appended to the Vector.)
538       *
539 <     * This method is identical in functionality to the add(Object, int) method
539 >     * <p>This method is identical in functionality to the add(Object, int) method
540       * (which is part of the List interface). Note that the add method reverses
541       * the order of the parameters, to more closely match array usage.
542       *
# Line 595 | Line 588 | public class Vector<E>
588       * method (which is part of the List interface).
589       *
590       * @param   obj   the component to be removed
591 <     * @return  <code>true</code> if the argument was a component of this
592 <     *          vector; <code>false</code> otherwise.
591 >     * @return  {@code true} if the argument was a component of this
592 >     *          vector; {@code false} otherwise.
593       * @see     List#remove(Object)
594       * @see     List
595       */
# Line 631 | Line 624 | public class Vector<E>
624      /**
625       * Returns a clone of this vector. The copy will contain a
626       * reference to a clone of the internal data array, not a reference
627 <     * to the original internal data array of this <tt>Vector</tt> object.
627 >     * to the original internal data array of this {@code Vector} object.
628       *
629       * @return  a clone of this vector
630       */
# Line 734 | Line 727 | public class Vector<E>
727       * Appends the specified element to the end of this Vector.
728       *
729       * @param e element to be appended to this Vector
730 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
730 >     * @return {@code true} (as specified by {@link Collection#add})
731       * @since 1.2
732       */
733      public synchronized boolean add(E e) {
# Line 748 | Line 741 | public class Vector<E>
741       * Removes the first occurrence of the specified element in this Vector
742       * If the Vector does not contain the element, it is unchanged.  More
743       * formally, removes the element with the lowest index i such that
744 <     * <code>(o==null ? get(i)==null : o.equals(get(i)))</code> (if such
744 >     * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
745       * an element exists).
746       *
747       * @param o element to be removed from this Vector, if present
# Line 835 | Line 828 | public class Vector<E>
828       * specified Collection is this Vector, and this Vector is nonempty.)
829       *
830       * @param c elements to be inserted into this Vector
831 <     * @return <tt>true</tt> if this Vector changed as a result of the call
831 >     * @return {@code true} if this Vector changed as a result of the call
832       * @throws NullPointerException if the specified collection is null
833       * @since 1.2
834       */
# Line 898 | Line 891 | public class Vector<E>
891       * @param index index at which to insert the first element from the
892       *              specified collection
893       * @param c elements to be inserted into this Vector
894 <     * @return <tt>true</tt> if this Vector changed as a result of the call
894 >     * @return {@code true} if this Vector changed as a result of the call
895       * @exception ArrayIndexOutOfBoundsException index out of range (index
896       *            &lt; 0 || index &gt; size())
897       * @throws NullPointerException if the specified collection is null
# Line 927 | Line 920 | public class Vector<E>
920       * Compares the specified Object with this Vector for equality.  Returns
921       * true if and only if the specified Object is also a List, both Lists
922       * have the same size, and all corresponding pairs of elements in the two
923 <     * Lists are <em>equal</em>.  (Two elements <code>e1</code> and
924 <     * <code>e2</code> are <em>equal</em> if <code>(e1==null ? e2==null :
925 <     * e1.equals(e2))</code>.)  In other words, two Lists are defined to be
923 >     * Lists are <em>equal</em>.  (Two elements {@code e1} and
924 >     * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
925 >     * e1.equals(e2))}.)  In other words, two Lists are defined to be
926       * equal if they contain the same elements in the same order.
927       *
928       * @param o the Object to be compared for equality with this Vector
# Line 955 | Line 948 | public class Vector<E>
948      }
949  
950      /**
958     * Returns a view of the portion of this List between fromIndex,
959     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
960     * equal, the returned List is empty.)  The returned List is backed by this
961     * List, so changes in the returned List are reflected in this List, and
962     * vice-versa.  The returned List supports all of the optional List
963     * operations supported by this List.<p>
964     *
965     * This method eliminates the need for explicit range operations (of
966     * the sort that commonly exist for arrays).   Any operation that expects
967     * a List can be used as a range operation by operating on a subList view
968     * instead of a whole List.  For example, the following idiom
969     * removes a range of elements from a List:
970     * <pre>
971     *      list.subList(from, to).clear();
972     * </pre>
973     * Similar idioms may be constructed for indexOf and lastIndexOf,
974     * and all of the algorithms in the Collections class can be applied to
975     * a subList.<p>
976     *
977     * The semantics of the List returned by this method become undefined if
978     * the backing list (i.e., this List) is <i>structurally modified</i> in
979     * any way other than via the returned List.  (Structural modifications are
980     * those that change the size of the List, or otherwise perturb it in such
981     * a fashion that iterations in progress may yield incorrect results.)
982     *
983     * @param fromIndex low endpoint (inclusive) of the subList
984     * @param toIndex high endpoint (exclusive) of the subList
985     * @return a view of the specified range within this List
986     * @throws IndexOutOfBoundsException endpoint index value out of range
987     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
988     * @throws IllegalArgumentException endpoint indices out of order
989     *         <code>(fromIndex &gt; toIndex)</code>
990     */
991    public synchronized List<E> subList(int fromIndex, int toIndex) {
992        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
993                                            this);
994    }
995
996    /**
951       * Removes from this List all of the elements whose index is between
952       * fromIndex, inclusive and toIndex, exclusive.  Shifts any succeeding
953       * elements to the left (reduces their index).
954 <     * This call shortens the ArrayList by (toIndex - fromIndex) elements.  (If
954 >     * This call shortens the Vector by (toIndex - fromIndex) elements.  (If
955       * toIndex==fromIndex, this operation has no effect.)
956       *
957       * @param fromIndex index of first element to be removed
# Line 1016 | Line 970 | public class Vector<E>
970      }
971  
972      /**
973 <     * Save the state of the <tt>Vector</tt> instance to a stream (that
973 >     * Save the state of the {@code Vector} instance to a stream (that
974       * is, serialize it).  This method is present merely for synchronization.
975       * It just calls the default writeObject method.
976       */
# Line 1029 | Line 983 | public class Vector<E>
983      /**
984       * Returns a list-iterator of the elements in this list (in proper
985       * sequence), starting at the specified position in the list.
986 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
986 >     * Obeys the general contract of {@link List#listIterator(int)}.
987       *
988 <     * The list-iterator is <i>fail-fast</i>: if the list is structurally
988 >     * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
989       * modified at any time after the Iterator is created, in any way except
990 <     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
990 >     * through the list-iterator's own {@code remove} or {@code add}
991       * methods, the list-iterator will throw a
992 <     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
992 >     * {@code ConcurrentModificationException}.  Thus, in the face of
993       * concurrent modification, the iterator fails quickly and cleanly, rather
994       * than risking arbitrary, non-deterministic behavior at an undetermined
995       * time in the future.
996       *
997       * @param index index of the first element to be returned from the
998 <     *              list-iterator (by a call to <tt>next</tt>)
999 <     * @return a ListIterator of the elements in this list (in proper
998 >     *        list-iterator (by a call to {@link ListIterator#next})
999 >     * @return a list-iterator of the elements in this list (in proper
1000       *         sequence), starting at the specified position in the list
1001       * @throws IndexOutOfBoundsException {@inheritDoc}
1048     * @see List#listIterator(int)
1002       */
1003      public synchronized ListIterator<E> listIterator(int index) {
1004          if (index < 0 || index > elementCount)
1005              throw new IndexOutOfBoundsException("Index: "+index);
1006 <        return new VectorIterator(index);
1006 >        return new VectorIterator(index, elementCount);
1007      }
1008  
1009      /**
1010       * {@inheritDoc}
1011       */
1012      public synchronized ListIterator<E> listIterator() {
1013 <        return new VectorIterator(0);
1013 >        return new VectorIterator(0, elementCount);
1014      }
1015  
1016      /**
# Line 1066 | Line 1019 | public class Vector<E>
1019       * @return an iterator over the elements in this list in proper sequence
1020       */
1021      public synchronized Iterator<E> iterator() {
1022 <        return new VectorIterator(0);
1022 >        return new VectorIterator(0, elementCount);
1023 >    }
1024 >
1025 >    /**
1026 >     * Helper method to access array elements under synchronization by
1027 >     * iterators. The caller performs index check with respect to
1028 >     * expected bounds, so errors accessing the element are reported
1029 >     * as ConcurrentModificationExceptions.
1030 >     */
1031 >    final synchronized Object iteratorGet(int index, int expectedModCount) {
1032 >        if (modCount == expectedModCount) {
1033 >            try {
1034 >                return elementData[index];
1035 >            } catch(IndexOutOfBoundsException fallThrough) {
1036 >            }
1037 >        }
1038 >        throw new ConcurrentModificationException();
1039      }
1040  
1041      /**
1042 <     * A streamlined version of AbstractList.ListItr.
1042 >     * Streamlined specialization of AbstractList version of iterator.
1043 >     * Locally perfroms bounds checks, but relies on outer Vector
1044 >     * to access elements under synchronization.
1045       */
1046      private final class VectorIterator implements ListIterator<E> {
1047 <        int cursor;                // current position
1048 <        int lastRet;               // index of last returned element
1049 <        int expectedModCount;      // to check for CME
1050 <
1051 <        VectorIterator(int index) {
1052 <            cursor = index;
1053 <            expectedModCount = modCount;
1054 <            lastRet = -1;
1047 >        int cursor;              // Index of next element to return;
1048 >        int fence;               // Upper bound on cursor (cache of size())
1049 >        int lastRet;             // Index of last element, or -1 if no such
1050 >        int expectedModCount;    // To check for CME
1051 >
1052 >        VectorIterator(int index, int fence) {
1053 >            this.cursor = index;
1054 >            this.fence = fence;
1055 >            this.lastRet = -1;
1056 >            this.expectedModCount = Vector.this.modCount;
1057          }
1058  
1059          public boolean hasNext() {
1060 <            // Racy but within spec, since modifications are checked
1088 <            // within or after synchronization in next/previous
1089 <            return cursor != elementCount;
1060 >            return cursor < fence;
1061          }
1062  
1063          public boolean hasPrevious() {
1064 <            return cursor != 0;
1064 >            return cursor > 0;
1065          }
1066  
1067          public int nextIndex() {
# Line 1102 | Line 1073 | public class Vector<E>
1073          }
1074  
1075          public E next() {
1076 <            try {
1077 <                int i = cursor;
1107 <                E next = get(i);
1108 <                lastRet = i;
1109 <                cursor = i + 1;
1110 <                return next;
1111 <            } catch (IndexOutOfBoundsException ex) {
1076 >            int i = cursor;
1077 >            if (i >= fence)
1078                  throw new NoSuchElementException();
1079 <            } finally {
1080 <                if (expectedModCount != modCount)
1081 <                    throw new ConcurrentModificationException();
1082 <            }
1079 >            Object next = Vector.this.iteratorGet(i, expectedModCount);
1080 >            lastRet = i;
1081 >            cursor = i + 1;
1082 >            return (E)next;
1083          }
1084  
1085 <        public E previous() {
1086 <            try {
1087 <                int i = cursor - 1;
1122 <                E prev = get(i);
1123 <                lastRet = i;
1124 <                cursor = i;
1125 <                return prev;
1126 <            } catch (IndexOutOfBoundsException ex) {
1085 >        public E previous() {
1086 >            int i = cursor - 1;
1087 >            if (i < 0)
1088                  throw new NoSuchElementException();
1089 <            } finally {
1090 <                if (expectedModCount != modCount)
1091 <                    throw new ConcurrentModificationException();
1092 <            }
1089 >            Object prev = Vector.this.iteratorGet(i, expectedModCount);
1090 >            lastRet = i;
1091 >            cursor = i;
1092 >            return (E)prev;
1093          }
1094  
1095 <        public void remove() {
1096 <            if (lastRet == -1)
1095 >        public void set(E e) {
1096 >            if (lastRet < 0)
1097                  throw new IllegalStateException();
1098 <            if (expectedModCount != modCount)
1099 <                throw new ConcurrentModificationException();
1100 <            try {
1101 <                Vector.this.remove(lastRet);
1102 <                if (lastRet < cursor)
1142 <                    cursor--;
1143 <                lastRet = -1;
1144 <                expectedModCount = modCount;
1098 >            if (Vector.this.modCount != expectedModCount)
1099 >                throw new ConcurrentModificationException();
1100 >            try {
1101 >                Vector.this.set(lastRet, e);
1102 >                expectedModCount = Vector.this.modCount;
1103              } catch (IndexOutOfBoundsException ex) {
1104                  throw new ConcurrentModificationException();
1105              }
1106          }
1107  
1108 <        public void set(E e) {
1109 <            if (lastRet == -1)
1108 >        public void remove() {
1109 >            int i = lastRet;
1110 >            if (i < 0)
1111                  throw new IllegalStateException();
1112 <            if (expectedModCount != modCount)
1112 >            if (Vector.this.modCount != expectedModCount)
1113                  throw new ConcurrentModificationException();
1114 <            try {
1115 <                Vector.this.set(lastRet, e);
1116 <                expectedModCount = modCount;
1114 >            try {
1115 >                Vector.this.remove(i);
1116 >                if (i < cursor)
1117 >                    cursor--;
1118 >                lastRet = -1;
1119 >                fence = Vector.this.size();
1120 >                expectedModCount = Vector.this.modCount;
1121              } catch (IndexOutOfBoundsException ex) {
1122                  throw new ConcurrentModificationException();
1123              }
1124          }
1125  
1126          public void add(E e) {
1127 <            if (expectedModCount != modCount)
1127 >            if (Vector.this.modCount != expectedModCount)
1128                  throw new ConcurrentModificationException();
1129              try {
1130                  int i = cursor;
1131 <                Vector.this.add(i, e);
1131 >                Vector.this.add(i, e);
1132                  cursor = i + 1;
1133 <                lastRet = -1;
1134 <                expectedModCount = modCount;
1133 >                lastRet = -1;
1134 >                fence = Vector.this.size();
1135 >                expectedModCount = Vector.this.modCount;
1136              } catch (IndexOutOfBoundsException ex) {
1137                  throw new ConcurrentModificationException();
1138              }
1139          }
1140      }
1141 +
1142 +    /**
1143 +     * Returns a view of the portion of this List between fromIndex,
1144 +     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1145 +     * equal, the returned List is empty.)  The returned List is backed by this
1146 +     * List, so changes in the returned List are reflected in this List, and
1147 +     * vice-versa.  The returned List supports all of the optional List
1148 +     * operations supported by this List.<p>
1149 +     *
1150 +     * This method eliminates the need for explicit range operations (of
1151 +     * the sort that commonly exist for arrays).   Any operation that expects
1152 +     * a List can be used as a range operation by operating on a subList view
1153 +     * instead of a whole List.  For example, the following idiom
1154 +     * removes a range of elements from a List:
1155 +     * <pre>
1156 +     *      list.subList(from, to).clear();
1157 +     * </pre>
1158 +     * Similar idioms may be constructed for indexOf and lastIndexOf,
1159 +     * and all of the algorithms in the Collections class can be applied to
1160 +     * a subList.<p>
1161 +     *
1162 +     * The semantics of the List returned by this method become undefined if
1163 +     * the backing list (i.e., this List) is <i>structurally modified</i> in
1164 +     * any way other than via the returned List.  (Structural modifications are
1165 +     * those that change the size of the List, or otherwise perturb it in such
1166 +     * a fashion that iterations in progress may yield incorrect results.)
1167 +     *
1168 +     * @param fromIndex low endpoint (inclusive) of the subList
1169 +     * @param toIndex high endpoint (exclusive) of the subList
1170 +     * @return a view of the specified range within this List
1171 +     * @throws IndexOutOfBoundsException endpoint index value out of range
1172 +     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1173 +     * @throws IllegalArgumentException endpoint indices out of order
1174 +     *         <code>(fromIndex &gt; toIndex)</code>
1175 +     */
1176 +    public synchronized List<E> subList(int fromIndex, int toIndex) {
1177 +        return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1178 +    }
1179 +
1180 +    /**
1181 +     * This class specializes the AbstractList version of SubList to
1182 +     * avoid the double-indirection penalty that would arise using a
1183 +     * synchronized wrapper, as well as to avoid some unnecessary
1184 +     * checks in sublist iterators.
1185 +     */
1186 +    private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1187 +        final Vector<E> base;             // base list
1188 +        final AbstractList<E> parent;     // Creating list
1189 +        final int baseOffset;             // index wrt Vector
1190 +        final int parentOffset;           // index wrt parent
1191 +        int length;                       // length of sublist
1192 +
1193 +        VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1194 +                     int fromIndex, int toIndex) {
1195 +            if (fromIndex < 0)
1196 +                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1197 +            if (toIndex > parent.size())
1198 +                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1199 +            if (fromIndex > toIndex)
1200 +                throw new IllegalArgumentException("fromIndex(" + fromIndex +
1201 +                                                   ") > toIndex(" + toIndex + ")");
1202 +
1203 +            this.base = base;
1204 +            this.parent = parent;
1205 +            this.baseOffset = baseOffset;
1206 +            this.parentOffset = fromIndex;
1207 +            this.length = toIndex - fromIndex;
1208 +            modCount = base.modCount;
1209 +        }
1210 +
1211 +        /**
1212 +         * Returns an IndexOutOfBoundsException with nicer message
1213 +         */
1214 +        private IndexOutOfBoundsException indexError(int index) {
1215 +            return new IndexOutOfBoundsException("Index: " + index +
1216 +                                                 ", Size: " + length);
1217 +        }
1218 +
1219 +        public E set(int index, E element) {
1220 +            synchronized(base) {
1221 +                if (index < 0 || index >= length)
1222 +                    throw indexError(index);
1223 +                if (base.modCount != modCount)
1224 +                    throw new ConcurrentModificationException();
1225 +                return base.set(index + baseOffset, element);
1226 +            }
1227 +        }
1228 +
1229 +        public E get(int index) {
1230 +            synchronized(base) {
1231 +                if (index < 0 || index >= length)
1232 +                    throw indexError(index);
1233 +                if (base.modCount != modCount)
1234 +                    throw new ConcurrentModificationException();
1235 +                return base.get(index + baseOffset);
1236 +            }
1237 +        }
1238 +
1239 +        public int size() {
1240 +            synchronized(base) {
1241 +                if (base.modCount != modCount)
1242 +                    throw new ConcurrentModificationException();
1243 +                return length;
1244 +            }
1245 +        }
1246 +
1247 +        public void add(int index, E element) {
1248 +            synchronized(base) {
1249 +                if (index < 0 || index > length)
1250 +                    throw indexError(index);
1251 +                if (base.modCount != modCount)
1252 +                    throw new ConcurrentModificationException();
1253 +                parent.add(index + parentOffset, element);
1254 +                length++;
1255 +                modCount = base.modCount;
1256 +            }
1257 +        }
1258 +
1259 +        public E remove(int index) {
1260 +            synchronized(base) {
1261 +                if (index < 0 || index >= length)
1262 +                    throw indexError(index);
1263 +                if (base.modCount != modCount)
1264 +                    throw new ConcurrentModificationException();
1265 +                E result = parent.remove(index + parentOffset);
1266 +                length--;
1267 +                modCount = base.modCount;
1268 +                return result;
1269 +            }
1270 +        }
1271 +
1272 +        protected void removeRange(int fromIndex, int toIndex) {
1273 +            synchronized(base) {
1274 +                if (base.modCount != modCount)
1275 +                    throw new ConcurrentModificationException();
1276 +                parent.removeRange(fromIndex + parentOffset,
1277 +                                   toIndex + parentOffset);
1278 +                length -= (toIndex-fromIndex);
1279 +                modCount = base.modCount;
1280 +            }
1281 +        }
1282 +
1283 +        public boolean addAll(Collection<? extends E> c) {
1284 +            return addAll(length, c);
1285 +        }
1286 +
1287 +        public boolean addAll(int index, Collection<? extends E> c) {
1288 +            synchronized(base) {
1289 +                if (index < 0 || index > length)
1290 +                    throw indexError(index);
1291 +                int cSize = c.size();
1292 +                if (cSize==0)
1293 +                    return false;
1294 +
1295 +                if (base.modCount != modCount)
1296 +                    throw new ConcurrentModificationException();
1297 +                parent.addAll(parentOffset + index, c);
1298 +                modCount = base.modCount;
1299 +                length += cSize;
1300 +                return true;
1301 +            }
1302 +        }
1303 +
1304 +        public boolean equals(Object o) {
1305 +            synchronized(base) {return super.equals(o);}
1306 +        }
1307 +
1308 +        public int hashCode() {
1309 +            synchronized(base) {return super.hashCode();}
1310 +        }
1311 +
1312 +        public int indexOf(Object o) {
1313 +            synchronized(base) {return super.indexOf(o);}
1314 +        }
1315 +
1316 +        public int lastIndexOf(Object o) {
1317 +            synchronized(base) {return super.lastIndexOf(o);}
1318 +        }
1319 +
1320 +        public List<E> subList(int fromIndex, int toIndex) {
1321 +            return new VectorSubList(base, this, fromIndex + baseOffset,
1322 +                                     fromIndex, toIndex);
1323 +        }
1324 +
1325 +        public Iterator<E> iterator() {
1326 +            synchronized(base) {
1327 +                return new VectorSubListIterator(this, 0);
1328 +            }
1329 +        }
1330 +
1331 +        public synchronized ListIterator<E> listIterator() {
1332 +            synchronized(base) {
1333 +                return new VectorSubListIterator(this, 0);
1334 +            }
1335 +        }
1336 +
1337 +        public ListIterator<E> listIterator(int index) {
1338 +            synchronized(base) {
1339 +                if (index < 0 || index > length)
1340 +                    throw indexError(index);
1341 +                return new VectorSubListIterator(this, index);
1342 +            }
1343 +        }
1344 +
1345 +        /**
1346 +         * Same idea as VectorIterator, except routing structural
1347 +         * change operations through the sublist.
1348 +         */
1349 +        private static final class VectorSubListIterator<E> implements ListIterator<E> {
1350 +            final Vector<E> base;         // base list
1351 +            final VectorSubList<E> outer; // Sublist creating this iteraor
1352 +            final int offset;             // cursor offset wrt base
1353 +            int cursor;                   // Current index
1354 +            int fence;                    // Upper bound on cursor
1355 +            int lastRet;                  // Index of returned element, or -1
1356 +            int expectedModCount;         // Expected modCount of base Vector
1357 +
1358 +            VectorSubListIterator(VectorSubList<E> list, int index) {
1359 +                this.lastRet = -1;
1360 +                this.cursor = index;
1361 +                this.outer = list;
1362 +                this.offset = list.baseOffset;
1363 +                this.fence = list.length;
1364 +                this.base = list.base;
1365 +                this.expectedModCount = base.modCount;
1366 +            }
1367 +
1368 +            public boolean hasNext() {
1369 +                return cursor < fence;
1370 +            }
1371 +
1372 +            public boolean hasPrevious() {
1373 +                return cursor > 0;
1374 +            }
1375 +
1376 +            public int nextIndex() {
1377 +                return cursor;
1378 +            }
1379 +
1380 +            public int previousIndex() {
1381 +                return cursor - 1;
1382 +            }
1383 +
1384 +            public E next() {
1385 +                int i = cursor;
1386 +                if (cursor >= fence)
1387 +                    throw new NoSuchElementException();
1388 +                Object next = base.iteratorGet(i + offset, expectedModCount);
1389 +                lastRet = i;
1390 +                cursor = i + 1;
1391 +                return (E)next;
1392 +            }
1393 +
1394 +            public E previous() {
1395 +                int i = cursor - 1;
1396 +                if (i < 0)
1397 +                    throw new NoSuchElementException();
1398 +                Object prev = base.iteratorGet(i + offset, expectedModCount);
1399 +                lastRet = i;
1400 +                cursor = i;
1401 +                return (E)prev;
1402 +            }
1403 +
1404 +            public void set(E e) {
1405 +                if (lastRet < 0)
1406 +                    throw new IllegalStateException();
1407 +                if (base.modCount != expectedModCount)
1408 +                    throw new ConcurrentModificationException();
1409 +                try {
1410 +                    outer.set(lastRet, e);
1411 +                    expectedModCount = base.modCount;
1412 +                } catch (IndexOutOfBoundsException ex) {
1413 +                    throw new ConcurrentModificationException();
1414 +                }
1415 +            }
1416 +
1417 +            public void remove() {
1418 +                int i = lastRet;
1419 +                if (i < 0)
1420 +                    throw new IllegalStateException();
1421 +                if (base.modCount != expectedModCount)
1422 +                    throw new ConcurrentModificationException();
1423 +                try {
1424 +                    outer.remove(i);
1425 +                    if (i < cursor)
1426 +                        cursor--;
1427 +                    lastRet = -1;
1428 +                    fence = outer.length;
1429 +                    expectedModCount = base.modCount;
1430 +                } catch (IndexOutOfBoundsException ex) {
1431 +                    throw new ConcurrentModificationException();
1432 +                }
1433 +            }
1434 +
1435 +            public void add(E e) {
1436 +                if (base.modCount != expectedModCount)
1437 +                    throw new ConcurrentModificationException();
1438 +                try {
1439 +                    int i = cursor;
1440 +                    outer.add(i, e);
1441 +                    cursor = i + 1;
1442 +                    lastRet = -1;
1443 +                    fence = outer.length;
1444 +                    expectedModCount = base.modCount;
1445 +                } catch (IndexOutOfBoundsException ex) {
1446 +                    throw new ConcurrentModificationException();
1447 +                }
1448 +            }
1449 +        }
1450 +    }
1451   }
1452 +
1453 +
1454 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines