ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
(Generate patch)

Comparing jsr166/src/main/java/util/Vector.java (file contents):
Revision 1.2 by jsr166, Sat Nov 26 03:12:10 2005 UTC vs.
Revision 1.55 by jsr166, Wed May 22 17:36:58 2019 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.io.IOException;
29 > import java.io.ObjectInputStream;
30 > import java.io.StreamCorruptedException;
31 > import java.util.function.Consumer;
32 > import java.util.function.Predicate;
33 > import java.util.function.UnaryOperator;
34 >
35 > import jdk.internal.util.ArraysSupport;
36  
37   /**
38 < * The <code>Vector</code> class implements a growable array of
38 > * The {@code Vector} class implements a growable array of
39   * objects. Like an array, it contains components that can be
40   * accessed using an integer index. However, the size of a
41 < * <code>Vector</code> can grow or shrink as needed to accommodate
42 < * adding and removing items after the <code>Vector</code> has been created.<p>
41 > * {@code Vector} can grow or shrink as needed to accommodate
42 > * adding and removing items after the {@code Vector} has been created.
43   *
44 < * Each vector tries to optimize storage management by maintaining a
45 < * <code>capacity</code> and a <code>capacityIncrement</code>. The
46 < * <code>capacity</code> is always at least as large as the vector
44 > * <p>Each vector tries to optimize storage management by maintaining a
45 > * {@code capacity} and a {@code capacityIncrement}. The
46 > * {@code capacity} is always at least as large as the vector
47   * size; it is usually larger because as components are added to the
48   * vector, the vector's storage increases in chunks the size of
49 < * <code>capacityIncrement</code>. An application can increase the
49 > * {@code capacityIncrement}. An application can increase the
50   * capacity of a vector before inserting a large number of
51 < * components; this reduces the amount of incremental reallocation. <p>
26 < *
27 < * As of the Java 2 platform v1.2, this class has been retrofitted to
28 < * implement List, so that it becomes a part of Java's collection framework.
29 < * Unlike the new collection implementations, Vector is synchronized.<p>
51 > * components; this reduces the amount of incremental reallocation.
52   *
53 < * The Iterators returned by Vector's iterator and listIterator
54 < * methods are <em>fail-fast</em>: if the Vector is structurally modified
55 < * at any time after the Iterator is created, in any way except through the
56 < * Iterator's own remove or add methods, the Iterator will throw a
57 < * ConcurrentModificationException.  Thus, in the face of concurrent
58 < * modification, the Iterator fails quickly and cleanly, rather than risking
59 < * arbitrary, non-deterministic behavior at an undetermined time in the future.
60 < * The Enumerations returned by Vector's elements method are <em>not</em>
61 < * fail-fast.
53 > * <p id="fail-fast">
54 > * The iterators returned by this class's {@link #iterator() iterator} and
55 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
56 > * if the vector is structurally modified at any time after the iterator is
57 > * created, in any way except through the iterator's own
58 > * {@link ListIterator#remove() remove} or
59 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
60 > * {@link ConcurrentModificationException}.  Thus, in the face of
61 > * concurrent modification, the iterator fails quickly and cleanly, rather
62 > * than risking arbitrary, non-deterministic behavior at an undetermined
63 > * time in the future.  The {@link Enumeration Enumerations} returned by
64 > * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
65 > * Vector is structurally modified at any time after the enumeration is
66 > * created then the results of enumerating are undefined.
67   *
68   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
69   * as it is, generally speaking, impossible to make any hard guarantees in the
70   * presence of unsynchronized concurrent modification.  Fail-fast iterators
71 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
71 > * throw {@code ConcurrentModificationException} on a best-effort basis.
72   * Therefore, it would be wrong to write a program that depended on this
73   * exception for its correctness:  <i>the fail-fast behavior of iterators
74 < * should be used only to detect bugs.</i><p>
74 > * should be used only to detect bugs.</i>
75   *
76 < * This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
78 < * Java Collections Framework</a>.
76 > * <p>As of the Java 2 platform v1.2, this class was retrofitted to
77 > * implement the {@link List} interface, making it a member of the
78 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
79 > * Java Collections Framework</a>.  Unlike the new collection
80 > * implementations, {@code Vector} is synchronized.  If a thread-safe
81 > * implementation is not needed, it is recommended to use {@link
82 > * ArrayList} in place of {@code Vector}.
83 > *
84 > * @param <E> Type of component elements
85   *
86   * @author  Lee Boynton
87   * @author  Jonathan Payne
55 * @version %I%, %G%
88   * @see Collection
57 * @see List
58 * @see ArrayList
89   * @see LinkedList
90 < * @since   JDK1.0
90 > * @since   1.0
91   */
92   public class Vector<E>
93      extends AbstractList<E>
# Line 66 | Line 96 | public class Vector<E>
96      /**
97       * The array buffer into which the components of the vector are
98       * stored. The capacity of the vector is the length of this array buffer,
99 <     * and is at least large enough to contain all the vector's elements.<p>
99 >     * and is at least large enough to contain all the vector's elements.
100       *
101 <     * Any array elements following the last element in the Vector are null.
101 >     * <p>Any array elements following the last element in the Vector are null.
102       *
103       * @serial
104       */
105      protected Object[] elementData;
106  
107      /**
108 <     * The number of valid components in this <tt>Vector</tt> object.
109 <     * Components <tt>elementData[0]</tt> through
110 <     * <tt>elementData[elementCount-1]</tt> are the actual items.
108 >     * The number of valid components in this {@code Vector} object.
109 >     * Components {@code elementData[0]} through
110 >     * {@code elementData[elementCount-1]} are the actual items.
111       *
112       * @serial
113       */
# Line 103 | Line 133 | public class Vector<E>
133       * @param   initialCapacity     the initial capacity of the vector
134       * @param   capacityIncrement   the amount by which the capacity is
135       *                              increased when the vector overflows
136 <     * @exception IllegalArgumentException if the specified initial capacity
137 <     *               is negative
136 >     * @throws IllegalArgumentException if the specified initial capacity
137 >     *         is negative
138       */
139      public Vector(int initialCapacity, int capacityIncrement) {
140 <        super();
140 >        super();
141          if (initialCapacity < 0)
142              throw new IllegalArgumentException("Illegal Capacity: "+
143                                                 initialCapacity);
144 <        this.elementData = new Object[initialCapacity];
145 <        this.capacityIncrement = capacityIncrement;
144 >        this.elementData = new Object[initialCapacity];
145 >        this.capacityIncrement = capacityIncrement;
146      }
147  
148      /**
# Line 120 | Line 150 | public class Vector<E>
150       * with its capacity increment equal to zero.
151       *
152       * @param   initialCapacity   the initial capacity of the vector
153 <     * @exception IllegalArgumentException if the specified initial capacity
154 <     *               is negative
153 >     * @throws IllegalArgumentException if the specified initial capacity
154 >     *         is negative
155       */
156      public Vector(int initialCapacity) {
157 <        this(initialCapacity, 0);
157 >        this(initialCapacity, 0);
158      }
159  
160      /**
161       * Constructs an empty vector so that its internal data array
162 <     * has size <tt>10</tt> and its standard capacity increment is
162 >     * has size {@code 10} and its standard capacity increment is
163       * zero.
164       */
165      public Vector() {
166 <        this(10);
166 >        this(10);
167      }
168  
169      /**
# Line 147 | Line 177 | public class Vector<E>
177       * @since   1.2
178       */
179      public Vector(Collection<? extends E> c) {
180 <        Object[] a = c.toArray();
181 <        elementCount = a.length;
182 <        // If c.toArray incorrectly doesn't return Object[], copy it.
183 <        if (a.getClass() == Object[].class)
184 <            elementData = a;
185 <        else
156 <            elementData = Arrays.copyOf(a, a.length, Object[].class);
180 >        elementData = c.toArray();
181 >        elementCount = elementData.length;
182 >        // defend against c.toArray (incorrectly) not returning Object[]
183 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
184 >        if (elementData.getClass() != Object[].class)
185 >            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
186      }
187  
188      /**
189       * Copies the components of this vector into the specified array.
190 <     * The item at index <tt>k</tt> in this vector is copied into
191 <     * component <tt>k</tt> of <tt>anArray</tt>.
190 >     * The item at index {@code k} in this vector is copied into
191 >     * component {@code k} of {@code anArray}.
192       *
193       * @param  anArray the array into which the components get copied
194       * @throws NullPointerException if the given array is null
# Line 170 | Line 199 | public class Vector<E>
199       * @see #toArray(Object[])
200       */
201      public synchronized void copyInto(Object[] anArray) {
202 <        System.arraycopy(elementData, 0, anArray, 0, elementCount);
202 >        System.arraycopy(elementData, 0, anArray, 0, elementCount);
203      }
204  
205      /**
206       * Trims the capacity of this vector to be the vector's current
207       * size. If the capacity of this vector is larger than its current
208       * size, then the capacity is changed to equal the size by replacing
209 <     * its internal data array, kept in the field <tt>elementData</tt>,
209 >     * its internal data array, kept in the field {@code elementData},
210       * with a smaller one. An application can use this operation to
211       * minimize the storage of a vector.
212       */
213      public synchronized void trimToSize() {
214 <        modCount++;
215 <        int oldCapacity = elementData.length;
216 <        if (elementCount < oldCapacity) {
214 >        modCount++;
215 >        int oldCapacity = elementData.length;
216 >        if (elementCount < oldCapacity) {
217              elementData = Arrays.copyOf(elementData, elementCount);
218 <        }
218 >        }
219      }
220  
221      /**
# Line 195 | Line 224 | public class Vector<E>
224       * the minimum capacity argument.
225       *
226       * <p>If the current capacity of this vector is less than
227 <     * <tt>minCapacity</tt>, then its capacity is increased by replacing its
228 <     * internal data array, kept in the field <tt>elementData</tt>, with a
227 >     * {@code minCapacity}, then its capacity is increased by replacing its
228 >     * internal data array, kept in the field {@code elementData}, with a
229       * larger one.  The size of the new data array will be the old size plus
230 <     * <tt>capacityIncrement</tt>, unless the value of
231 <     * <tt>capacityIncrement</tt> is less than or equal to zero, in which case
230 >     * {@code capacityIncrement}, unless the value of
231 >     * {@code capacityIncrement} is less than or equal to zero, in which case
232       * the new capacity will be twice the old capacity; but if this new size
233 <     * is still smaller than <tt>minCapacity</tt>, then the new capacity will
234 <     * be <tt>minCapacity</tt>.
233 >     * is still smaller than {@code minCapacity}, then the new capacity will
234 >     * be {@code minCapacity}.
235       *
236       * @param minCapacity the desired minimum capacity
237       */
238      public synchronized void ensureCapacity(int minCapacity) {
239 <        modCount++;
240 <        ensureCapacityHelper(minCapacity);
239 >        if (minCapacity > 0) {
240 >            modCount++;
241 >            if (minCapacity > elementData.length)
242 >                grow(minCapacity);
243 >        }
244      }
245  
246      /**
247 <     * This implements the unsynchronized semantics of ensureCapacity.
248 <     * Synchronized methods in this class can internally call this
249 <     * method for ensuring capacity without incurring the cost of an
250 <     * extra synchronization.
251 <     *
252 <     * @see java.util.Vector#ensureCapacity(int)
253 <     */
254 <    private void ensureCapacityHelper(int minCapacity) {
255 <        int oldCapacity = elementData.length;
256 <        if (minCapacity > oldCapacity) {
257 <            Object[] oldData = elementData;
258 <            int newCapacity = (capacityIncrement > 0) ?
259 <                (oldCapacity + capacityIncrement) : (oldCapacity * 2);
260 <            if (newCapacity < minCapacity) {
261 <                newCapacity = minCapacity;
262 <            }
263 <            elementData = Arrays.copyOf(elementData, newCapacity);
232 <        }
247 >     * Increases the capacity to ensure that it can hold at least the
248 >     * number of elements specified by the minimum capacity argument.
249 >     *
250 >     * @param minCapacity the desired minimum capacity
251 >     * @throws OutOfMemoryError if minCapacity is less than zero
252 >     */
253 >    private Object[] grow(int minCapacity) {
254 >        int oldCapacity = elementData.length;
255 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
256 >                minCapacity - oldCapacity, /* minimum growth */
257 >                capacityIncrement > 0 ? capacityIncrement : oldCapacity
258 >                                           /* preferred growth */);
259 >        return elementData = Arrays.copyOf(elementData, newCapacity);
260 >    }
261 >
262 >    private Object[] grow() {
263 >        return grow(elementCount + 1);
264      }
265  
266      /**
267       * Sets the size of this vector. If the new size is greater than the
268 <     * current size, new <code>null</code> items are added to the end of
268 >     * current size, new {@code null} items are added to the end of
269       * the vector. If the new size is less than the current size, all
270 <     * components at index <code>newSize</code> and greater are discarded.
270 >     * components at index {@code newSize} and greater are discarded.
271       *
272 <     * @param   newSize   the new size of this vector
273 <     * @throws  ArrayIndexOutOfBoundsException if new size is negative
272 >     * @param  newSize   the new size of this vector
273 >     * @throws ArrayIndexOutOfBoundsException if the new size is negative
274       */
275      public synchronized void setSize(int newSize) {
276 <        modCount++;
277 <        if (newSize > elementCount) {
278 <            ensureCapacityHelper(newSize);
279 <        } else {
280 <            for (int i = newSize ; i < elementCount ; i++) {
281 <                elementData[i] = null;
282 <            }
252 <        }
253 <        elementCount = newSize;
276 >        modCount++;
277 >        if (newSize > elementData.length)
278 >            grow(newSize);
279 >        final Object[] es = elementData;
280 >        for (int to = elementCount, i = newSize; i < to; i++)
281 >            es[i] = null;
282 >        elementCount = newSize;
283      }
284  
285      /**
286       * Returns the current capacity of this vector.
287       *
288       * @return  the current capacity (the length of its internal
289 <     *          data array, kept in the field <tt>elementData</tt>
289 >     *          data array, kept in the field {@code elementData}
290       *          of this vector)
291       */
292      public synchronized int capacity() {
293 <        return elementData.length;
293 >        return elementData.length;
294      }
295  
296      /**
# Line 270 | Line 299 | public class Vector<E>
299       * @return  the number of components in this vector
300       */
301      public synchronized int size() {
302 <        return elementCount;
302 >        return elementCount;
303      }
304  
305      /**
306       * Tests if this vector has no components.
307       *
308 <     * @return  <code>true</code> if and only if this vector has
308 >     * @return  {@code true} if and only if this vector has
309       *          no components, that is, its size is zero;
310 <     *          <code>false</code> otherwise.
310 >     *          {@code false} otherwise.
311       */
312      public synchronized boolean isEmpty() {
313 <        return elementCount == 0;
313 >        return elementCount == 0;
314      }
315  
316      /**
317       * Returns an enumeration of the components of this vector. The
318 <     * returned <tt>Enumeration</tt> object will generate all items in
319 <     * this vector. The first item generated is the item at index <tt>0</tt>,
320 <     * then the item at index <tt>1</tt>, and so on.
318 >     * returned {@code Enumeration} object will generate all items in
319 >     * this vector. The first item generated is the item at index {@code 0},
320 >     * then the item at index {@code 1}, and so on. If the vector is
321 >     * structurally modified while enumerating over the elements then the
322 >     * results of enumerating are undefined.
323       *
324       * @return  an enumeration of the components of this vector
294     * @see     Enumeration
325       * @see     Iterator
326       */
327      public Enumeration<E> elements() {
328 <        return new Enumeration<E>() {
329 <            int count = 0;
328 >        return new Enumeration<E>() {
329 >            int count = 0;
330 >
331 >            public boolean hasMoreElements() {
332 >                return count < elementCount;
333 >            }
334  
335 <            public boolean hasMoreElements() {
336 <                return count < elementCount;
337 <            }
338 <
339 <            public E nextElement() {
340 <                synchronized (Vector.this) {
341 <                    if (count < elementCount) {
342 <                        return (E)elementData[count++];
343 <                    }
310 <                }
311 <                throw new NoSuchElementException("Vector Enumeration");
312 <            }
313 <        };
335 >            public E nextElement() {
336 >                synchronized (Vector.this) {
337 >                    if (count < elementCount) {
338 >                        return elementData(count++);
339 >                    }
340 >                }
341 >                throw new NoSuchElementException("Vector Enumeration");
342 >            }
343 >        };
344      }
345  
346      /**
347 <     * Returns <tt>true</tt> if this vector contains the specified element.
348 <     * More formally, returns <tt>true</tt> if and only if this vector
349 <     * contains at least one element <tt>e</tt> such that
350 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
347 >     * Returns {@code true} if this vector contains the specified element.
348 >     * More formally, returns {@code true} if and only if this vector
349 >     * contains at least one element {@code e} such that
350 >     * {@code Objects.equals(o, e)}.
351       *
352       * @param o element whose presence in this vector is to be tested
353 <     * @return <tt>true</tt> if this vector contains the specified element
353 >     * @return {@code true} if this vector contains the specified element
354       */
355      public boolean contains(Object o) {
356 <        return indexOf(o, 0) >= 0;
356 >        return indexOf(o, 0) >= 0;
357      }
358  
359      /**
360       * Returns the index of the first occurrence of the specified element
361       * in this vector, or -1 if this vector does not contain the element.
362 <     * More formally, returns the lowest index <tt>i</tt> such that
363 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
362 >     * More formally, returns the lowest index {@code i} such that
363 >     * {@code Objects.equals(o, get(i))},
364       * or -1 if there is no such index.
365       *
366       * @param o element to search for
# Line 338 | Line 368 | public class Vector<E>
368       *         this vector, or -1 if this vector does not contain the element
369       */
370      public int indexOf(Object o) {
371 <        return indexOf(o, 0);
371 >        return indexOf(o, 0);
372      }
373  
374      /**
375       * Returns the index of the first occurrence of the specified element in
376 <     * this vector, searching forwards from <tt>index</tt>, or returns -1 if
376 >     * this vector, searching forwards from {@code index}, or returns -1 if
377       * the element is not found.
378 <     * More formally, returns the lowest index <tt>i</tt> such that
379 <     * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
378 >     * More formally, returns the lowest index {@code i} such that
379 >     * {@code (i >= index && Objects.equals(o, get(i)))},
380       * or -1 if there is no such index.
381       *
382       * @param o element to search for
383       * @param index index to start searching from
384       * @return the index of the first occurrence of the element in
385 <     *         this vector at position <tt>index</tt> or later in the vector;
386 <     *         <tt>-1</tt> if the element is not found.
385 >     *         this vector at position {@code index} or later in the vector;
386 >     *         {@code -1} if the element is not found.
387       * @throws IndexOutOfBoundsException if the specified index is negative
388       * @see     Object#equals(Object)
389       */
390      public synchronized int indexOf(Object o, int index) {
391 <        if (o == null) {
392 <            for (int i = index ; i < elementCount ; i++)
393 <                if (elementData[i]==null)
394 <                    return i;
395 <        } else {
396 <            for (int i = index ; i < elementCount ; i++)
397 <                if (o.equals(elementData[i]))
398 <                    return i;
399 <        }
400 <        return -1;
391 >        if (o == null) {
392 >            for (int i = index ; i < elementCount ; i++)
393 >                if (elementData[i]==null)
394 >                    return i;
395 >        } else {
396 >            for (int i = index ; i < elementCount ; i++)
397 >                if (o.equals(elementData[i]))
398 >                    return i;
399 >        }
400 >        return -1;
401      }
402  
403      /**
404       * Returns the index of the last occurrence of the specified element
405       * in this vector, or -1 if this vector does not contain the element.
406 <     * More formally, returns the highest index <tt>i</tt> such that
407 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
406 >     * More formally, returns the highest index {@code i} such that
407 >     * {@code Objects.equals(o, get(i))},
408       * or -1 if there is no such index.
409       *
410       * @param o element to search for
# Line 382 | Line 412 | public class Vector<E>
412       *         this vector, or -1 if this vector does not contain the element
413       */
414      public synchronized int lastIndexOf(Object o) {
415 <        return lastIndexOf(o, elementCount-1);
415 >        return lastIndexOf(o, elementCount-1);
416      }
417  
418      /**
419       * Returns the index of the last occurrence of the specified element in
420 <     * this vector, searching backwards from <tt>index</tt>, or returns -1 if
420 >     * this vector, searching backwards from {@code index}, or returns -1 if
421       * the element is not found.
422 <     * More formally, returns the highest index <tt>i</tt> such that
423 <     * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
422 >     * More formally, returns the highest index {@code i} such that
423 >     * {@code (i <= index && Objects.equals(o, get(i)))},
424       * or -1 if there is no such index.
425       *
426       * @param o element to search for
427       * @param index index to start searching backwards from
428       * @return the index of the last occurrence of the element at position
429 <     *         less than or equal to <tt>index</tt> in this vector;
429 >     *         less than or equal to {@code index} in this vector;
430       *         -1 if the element is not found.
431       * @throws IndexOutOfBoundsException if the specified index is greater
432       *         than or equal to the current size of this vector
# Line 405 | Line 435 | public class Vector<E>
435          if (index >= elementCount)
436              throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
437  
438 <        if (o == null) {
439 <            for (int i = index; i >= 0; i--)
440 <                if (elementData[i]==null)
441 <                    return i;
442 <        } else {
443 <            for (int i = index; i >= 0; i--)
444 <                if (o.equals(elementData[i]))
445 <                    return i;
446 <        }
447 <        return -1;
438 >        if (o == null) {
439 >            for (int i = index; i >= 0; i--)
440 >                if (elementData[i]==null)
441 >                    return i;
442 >        } else {
443 >            for (int i = index; i >= 0; i--)
444 >                if (o.equals(elementData[i]))
445 >                    return i;
446 >        }
447 >        return -1;
448      }
449  
450      /**
451 <     * Returns the component at the specified index.<p>
451 >     * Returns the component at the specified index.
452       *
453 <     * This method is identical in functionality to the get method
454 <     * (which is part of the List interface).
453 >     * <p>This method is identical in functionality to the {@link #get(int)}
454 >     * method (which is part of the {@link List} interface).
455       *
456       * @param      index   an index into this vector
457       * @return     the component at the specified index
458 <     * @exception  ArrayIndexOutOfBoundsException  if the <tt>index</tt>
459 <     *             is negative or not less than the current size of this
430 <     *             <tt>Vector</tt> object.
431 <     * @see        #get(int)
432 <     * @see        List
458 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
459 >     *         ({@code index < 0 || index >= size()})
460       */
461      public synchronized E elementAt(int index) {
462 <        if (index >= elementCount) {
463 <            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
464 <        }
462 >        if (index >= elementCount) {
463 >            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
464 >        }
465  
466 <        return (E)elementData[index];
466 >        return elementData(index);
467      }
468  
469      /**
470 <     * Returns the first component (the item at index <tt>0</tt>) of
470 >     * Returns the first component (the item at index {@code 0}) of
471       * this vector.
472       *
473       * @return     the first component of this vector
474 <     * @exception  NoSuchElementException  if this vector has no components
474 >     * @throws NoSuchElementException if this vector has no components
475       */
476      public synchronized E firstElement() {
477 <        if (elementCount == 0) {
478 <            throw new NoSuchElementException();
479 <        }
480 <        return (E)elementData[0];
477 >        if (elementCount == 0) {
478 >            throw new NoSuchElementException();
479 >        }
480 >        return elementData(0);
481      }
482  
483      /**
484       * Returns the last component of the vector.
485       *
486       * @return  the last component of the vector, i.e., the component at index
487 <     *          <code>size()&nbsp;-&nbsp;1</code>.
488 <     * @exception  NoSuchElementException  if this vector is empty
487 >     *          {@code size() - 1}
488 >     * @throws NoSuchElementException if this vector is empty
489       */
490      public synchronized E lastElement() {
491 <        if (elementCount == 0) {
492 <            throw new NoSuchElementException();
493 <        }
494 <        return (E)elementData[elementCount - 1];
491 >        if (elementCount == 0) {
492 >            throw new NoSuchElementException();
493 >        }
494 >        return elementData(elementCount - 1);
495      }
496  
497      /**
498 <     * Sets the component at the specified <code>index</code> of this
498 >     * Sets the component at the specified {@code index} of this
499       * vector to be the specified object. The previous component at that
500 <     * position is discarded.<p>
500 >     * position is discarded.
501       *
502 <     * The index must be a value greater than or equal to <code>0</code>
503 <     * and less than the current size of the vector. <p>
502 >     * <p>The index must be a value greater than or equal to {@code 0}
503 >     * and less than the current size of the vector.
504       *
505 <     * This method is identical in functionality to the set method
506 <     * (which is part of the List interface). Note that the set method reverses
507 <     * the order of the parameters, to more closely match array usage.  Note
508 <     * also that the set method returns the old value that was stored at the
509 <     * specified position.
505 >     * <p>This method is identical in functionality to the
506 >     * {@link #set(int, Object) set(int, E)}
507 >     * method (which is part of the {@link List} interface). Note that the
508 >     * {@code set} method reverses the order of the parameters, to more closely
509 >     * match array usage.  Note also that the {@code set} method returns the
510 >     * old value that was stored at the specified position.
511       *
512       * @param      obj     what the component is to be set to
513       * @param      index   the specified index
514 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
515 <     * @see        #size()
488 <     * @see        List
489 <     * @see        #set(int, java.lang.Object)
514 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
515 >     *         ({@code index < 0 || index >= size()})
516       */
517      public synchronized void setElementAt(E obj, int index) {
518 <        if (index >= elementCount) {
519 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
520 <                                                     elementCount);
521 <        }
522 <        elementData[index] = obj;
518 >        if (index >= elementCount) {
519 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
520 >                                                     elementCount);
521 >        }
522 >        elementData[index] = obj;
523      }
524  
525      /**
526       * Deletes the component at the specified index. Each component in
527       * this vector with an index greater or equal to the specified
528 <     * <code>index</code> is shifted downward to have an index one
528 >     * {@code index} is shifted downward to have an index one
529       * smaller than the value it had previously. The size of this vector
530 <     * is decreased by <tt>1</tt>.<p>
530 >     * is decreased by {@code 1}.
531       *
532 <     * The index must be a value greater than or equal to <code>0</code>
533 <     * and less than the current size of the vector. <p>
532 >     * <p>The index must be a value greater than or equal to {@code 0}
533 >     * and less than the current size of the vector.
534       *
535 <     * This method is identical in functionality to the remove method
536 <     * (which is part of the List interface).  Note that the remove method
537 <     * returns the old value that was stored at the specified position.
535 >     * <p>This method is identical in functionality to the {@link #remove(int)}
536 >     * method (which is part of the {@link List} interface).  Note that the
537 >     * {@code remove} method returns the old value that was stored at the
538 >     * specified position.
539       *
540       * @param      index   the index of the object to remove
541 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
542 <     * @see        #size()
516 <     * @see        #remove(int)
517 <     * @see        List
541 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
542 >     *         ({@code index < 0 || index >= size()})
543       */
544      public synchronized void removeElementAt(int index) {
545 <        modCount++;
546 <        if (index >= elementCount) {
547 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
548 <                                                     elementCount);
549 <        }
550 <        else if (index < 0) {
551 <            throw new ArrayIndexOutOfBoundsException(index);
552 <        }
553 <        int j = elementCount - index - 1;
554 <        if (j > 0) {
555 <            System.arraycopy(elementData, index + 1, elementData, index, j);
556 <        }
557 <        elementCount--;
558 <        elementData[elementCount] = null; /* to let gc do its work */
545 >        if (index >= elementCount) {
546 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
547 >                                                     elementCount);
548 >        }
549 >        else if (index < 0) {
550 >            throw new ArrayIndexOutOfBoundsException(index);
551 >        }
552 >        int j = elementCount - index - 1;
553 >        if (j > 0) {
554 >            System.arraycopy(elementData, index + 1, elementData, index, j);
555 >        }
556 >        modCount++;
557 >        elementCount--;
558 >        elementData[elementCount] = null; /* to let gc do its work */
559 >        // checkInvariants();
560      }
561  
562      /**
563       * Inserts the specified object as a component in this vector at the
564 <     * specified <code>index</code>. Each component in this vector with
565 <     * an index greater or equal to the specified <code>index</code> is
564 >     * specified {@code index}. Each component in this vector with
565 >     * an index greater or equal to the specified {@code index} is
566       * shifted upward to have an index one greater than the value it had
567 <     * previously. <p>
567 >     * previously.
568       *
569 <     * The index must be a value greater than or equal to <code>0</code>
569 >     * <p>The index must be a value greater than or equal to {@code 0}
570       * and less than or equal to the current size of the vector. (If the
571       * index is equal to the current size of the vector, the new element
572 <     * is appended to the Vector.)<p>
572 >     * is appended to the Vector.)
573       *
574 <     * This method is identical in functionality to the add(Object, int) method
575 <     * (which is part of the List interface). Note that the add method reverses
576 <     * the order of the parameters, to more closely match array usage.
574 >     * <p>This method is identical in functionality to the
575 >     * {@link #add(int, Object) add(int, E)}
576 >     * method (which is part of the {@link List} interface).  Note that the
577 >     * {@code add} method reverses the order of the parameters, to more closely
578 >     * match array usage.
579       *
580       * @param      obj     the component to insert
581       * @param      index   where to insert the new component
582 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
583 <     * @see        #size()
556 <     * @see        #add(int, Object)
557 <     * @see        List
582 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
583 >     *         ({@code index < 0 || index > size()})
584       */
585      public synchronized void insertElementAt(E obj, int index) {
586 <        modCount++;
587 <        if (index > elementCount) {
588 <            throw new ArrayIndexOutOfBoundsException(index
589 <                                                     + " > " + elementCount);
590 <        }
591 <        ensureCapacityHelper(elementCount + 1);
592 <        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
593 <        elementData[index] = obj;
594 <        elementCount++;
586 >        if (index > elementCount) {
587 >            throw new ArrayIndexOutOfBoundsException(index
588 >                                                     + " > " + elementCount);
589 >        }
590 >        modCount++;
591 >        final int s = elementCount;
592 >        Object[] elementData = this.elementData;
593 >        if (s == elementData.length)
594 >            elementData = grow();
595 >        System.arraycopy(elementData, index,
596 >                         elementData, index + 1,
597 >                         s - index);
598 >        elementData[index] = obj;
599 >        elementCount = s + 1;
600      }
601  
602      /**
603       * Adds the specified component to the end of this vector,
604       * increasing its size by one. The capacity of this vector is
605 <     * increased if its size becomes greater than its capacity. <p>
605 >     * increased if its size becomes greater than its capacity.
606       *
607 <     * This method is identical in functionality to the add(Object) method
608 <     * (which is part of the List interface).
607 >     * <p>This method is identical in functionality to the
608 >     * {@link #add(Object) add(E)}
609 >     * method (which is part of the {@link List} interface).
610       *
611       * @param   obj   the component to be added
580     * @see        #add(Object)
581     * @see        List
612       */
613      public synchronized void addElement(E obj) {
614 <        modCount++;
615 <        ensureCapacityHelper(elementCount + 1);
586 <        elementData[elementCount++] = obj;
614 >        modCount++;
615 >        add(obj, elementData, elementCount);
616      }
617  
618      /**
# Line 591 | Line 620 | public class Vector<E>
620       * from this vector. If the object is found in this vector, each
621       * component in the vector with an index greater or equal to the
622       * object's index is shifted downward to have an index one smaller
623 <     * than the value it had previously.<p>
623 >     * than the value it had previously.
624       *
625 <     * This method is identical in functionality to the remove(Object)
626 <     * method (which is part of the List interface).
625 >     * <p>This method is identical in functionality to the
626 >     * {@link #remove(Object)} method (which is part of the
627 >     * {@link List} interface).
628       *
629       * @param   obj   the component to be removed
630 <     * @return  <code>true</code> if the argument was a component of this
631 <     *          vector; <code>false</code> otherwise.
602 <     * @see     List#remove(Object)
603 <     * @see     List
630 >     * @return  {@code true} if the argument was a component of this
631 >     *          vector; {@code false} otherwise.
632       */
633      public synchronized boolean removeElement(Object obj) {
634 <        modCount++;
635 <        int i = indexOf(obj);
636 <        if (i >= 0) {
637 <            removeElementAt(i);
638 <            return true;
639 <        }
640 <        return false;
634 >        modCount++;
635 >        int i = indexOf(obj);
636 >        if (i >= 0) {
637 >            removeElementAt(i);
638 >            return true;
639 >        }
640 >        return false;
641      }
642  
643      /**
644 <     * Removes all components from this vector and sets its size to zero.<p>
617 <     *
618 <     * This method is identical in functionality to the clear method
619 <     * (which is part of the List interface).
644 >     * Removes all components from this vector and sets its size to zero.
645       *
646 <     * @see     #clear
647 <     * @see     List
646 >     * <p>This method is identical in functionality to the {@link #clear}
647 >     * method (which is part of the {@link List} interface).
648       */
649      public synchronized void removeAllElements() {
650 +        final Object[] es = elementData;
651 +        for (int to = elementCount, i = elementCount = 0; i < to; i++)
652 +            es[i] = null;
653          modCount++;
626        // Let gc do its work
627        for (int i = 0; i < elementCount; i++)
628            elementData[i] = null;
629
630        elementCount = 0;
654      }
655  
656      /**
657       * Returns a clone of this vector. The copy will contain a
658       * reference to a clone of the internal data array, not a reference
659 <     * to the original internal data array of this <tt>Vector</tt> object.
659 >     * to the original internal data array of this {@code Vector} object.
660       *
661       * @return  a clone of this vector
662       */
663      public synchronized Object clone() {
664 <        try {
665 <            Vector<E> v = (Vector<E>) super.clone();
666 <            v.elementData = Arrays.copyOf(elementData, elementCount);
667 <            v.modCount = 0;
668 <            return v;
669 <        } catch (CloneNotSupportedException e) {
670 <            // this shouldn't happen, since we are Cloneable
671 <            throw new InternalError();
672 <        }
664 >        try {
665 >            @SuppressWarnings("unchecked")
666 >            Vector<E> v = (Vector<E>) super.clone();
667 >            v.elementData = Arrays.copyOf(elementData, elementCount);
668 >            v.modCount = 0;
669 >            return v;
670 >        } catch (CloneNotSupportedException e) {
671 >            // this shouldn't happen, since we are Cloneable
672 >            throw new InternalError(e);
673 >        }
674      }
675  
676      /**
# Line 664 | Line 688 | public class Vector<E>
688       * correct order; the runtime type of the returned array is that of the
689       * specified array.  If the Vector fits in the specified array, it is
690       * returned therein.  Otherwise, a new array is allocated with the runtime
691 <     * type of the specified array and the size of this Vector.<p>
691 >     * type of the specified array and the size of this Vector.
692       *
693 <     * If the Vector fits in the specified array with room to spare
693 >     * <p>If the Vector fits in the specified array with room to spare
694       * (i.e., the array has more elements than the Vector),
695       * the element in the array immediately following the end of the
696       * Vector is set to null.  (This is useful in determining the length
697       * of the Vector <em>only</em> if the caller knows that the Vector
698       * does not contain any null elements.)
699       *
700 +     * @param <T> type of array elements. The same type as {@code <E>} or a
701 +     * supertype of {@code <E>}.
702       * @param a the array into which the elements of the Vector are to
703 <     *          be stored, if it is big enough; otherwise, a new array of the
704 <     *          same runtime type is allocated for this purpose.
703 >     *          be stored, if it is big enough; otherwise, a new array of the
704 >     *          same runtime type is allocated for this purpose.
705       * @return an array containing the elements of the Vector
706 <     * @exception ArrayStoreException the runtime type of a is not a supertype
707 <     * of the runtime type of every element in this Vector
706 >     * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
707 >     * a supertype of the runtime type, {@code <E>}, of every element in this
708 >     * Vector
709       * @throws NullPointerException if the given array is null
710       * @since 1.2
711       */
712 +    @SuppressWarnings("unchecked")
713      public synchronized <T> T[] toArray(T[] a) {
714          if (a.length < elementCount)
715              return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
716  
717 <        System.arraycopy(elementData, 0, a, 0, elementCount);
717 >        System.arraycopy(elementData, 0, a, 0, elementCount);
718  
719          if (a.length > elementCount)
720              a[elementCount] = null;
# Line 696 | Line 724 | public class Vector<E>
724  
725      // Positional Access Operations
726  
727 +    @SuppressWarnings("unchecked")
728 +    E elementData(int index) {
729 +        return (E) elementData[index];
730 +    }
731 +
732 +    @SuppressWarnings("unchecked")
733 +    static <E> E elementAt(Object[] es, int index) {
734 +        return (E) es[index];
735 +    }
736 +
737      /**
738       * Returns the element at the specified position in this Vector.
739       *
740       * @param index index of the element to return
741       * @return object at the specified index
742 <     * @exception ArrayIndexOutOfBoundsException index is out of range (index
743 <     *            &lt; 0 || index &gt;= size())
742 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
743 >     *            ({@code index < 0 || index >= size()})
744       * @since 1.2
745       */
746      public synchronized E get(int index) {
747 <        if (index >= elementCount)
748 <            throw new ArrayIndexOutOfBoundsException(index);
747 >        if (index >= elementCount)
748 >            throw new ArrayIndexOutOfBoundsException(index);
749  
750 <        return (E)elementData[index];
750 >        return elementData(index);
751      }
752  
753      /**
# Line 719 | Line 757 | public class Vector<E>
757       * @param index index of the element to replace
758       * @param element element to be stored at the specified position
759       * @return the element previously at the specified position
760 <     * @exception ArrayIndexOutOfBoundsException index out of range
761 <     *            (index &lt; 0 || index &gt;= size())
760 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
761 >     *         ({@code index < 0 || index >= size()})
762       * @since 1.2
763       */
764      public synchronized E set(int index, E element) {
765 <        if (index >= elementCount)
766 <            throw new ArrayIndexOutOfBoundsException(index);
765 >        if (index >= elementCount)
766 >            throw new ArrayIndexOutOfBoundsException(index);
767  
768 <        Object oldValue = elementData[index];
769 <        elementData[index] = element;
770 <        return (E)oldValue;
768 >        E oldValue = elementData(index);
769 >        elementData[index] = element;
770 >        return oldValue;
771 >    }
772 >
773 >    /**
774 >     * This helper method split out from add(E) to keep method
775 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
776 >     * which helps when add(E) is called in a C1-compiled loop.
777 >     */
778 >    private void add(E e, Object[] elementData, int s) {
779 >        if (s == elementData.length)
780 >            elementData = grow();
781 >        elementData[s] = e;
782 >        elementCount = s + 1;
783 >        // checkInvariants();
784      }
785  
786      /**
787       * Appends the specified element to the end of this Vector.
788       *
789       * @param e element to be appended to this Vector
790 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
790 >     * @return {@code true} (as specified by {@link Collection#add})
791       * @since 1.2
792       */
793      public synchronized boolean add(E e) {
794 <        modCount++;
795 <        ensureCapacityHelper(elementCount + 1);
745 <        elementData[elementCount++] = e;
794 >        modCount++;
795 >        add(e, elementData, elementCount);
796          return true;
797      }
798  
# Line 750 | Line 800 | public class Vector<E>
800       * Removes the first occurrence of the specified element in this Vector
801       * If the Vector does not contain the element, it is unchanged.  More
802       * formally, removes the element with the lowest index i such that
803 <     * <code>(o==null ? get(i)==null : o.equals(get(i)))</code> (if such
803 >     * {@code Objects.equals(o, get(i))} (if such
804       * an element exists).
805       *
806       * @param o element to be removed from this Vector, if present
# Line 768 | Line 818 | public class Vector<E>
818       *
819       * @param index index at which the specified element is to be inserted
820       * @param element element to be inserted
821 <     * @exception ArrayIndexOutOfBoundsException index is out of range
822 <     *            (index &lt; 0 || index &gt; size())
821 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
822 >     *         ({@code index < 0 || index > size()})
823       * @since 1.2
824       */
825      public void add(int index, E element) {
# Line 781 | Line 831 | public class Vector<E>
831       * Shifts any subsequent elements to the left (subtracts one from their
832       * indices).  Returns the element that was removed from the Vector.
833       *
784     * @exception ArrayIndexOutOfBoundsException index out of range (index
785     *            &lt; 0 || index &gt;= size())
834       * @param index the index of the element to be removed
835       * @return element that was removed
836 +     * @throws ArrayIndexOutOfBoundsException if the index is out of range
837 +     *         ({@code index < 0 || index >= size()})
838       * @since 1.2
839       */
840      public synchronized E remove(int index) {
841 <        modCount++;
842 <        if (index >= elementCount)
843 <            throw new ArrayIndexOutOfBoundsException(index);
844 <        Object oldValue = elementData[index];
845 <
846 <        int numMoved = elementCount - index - 1;
847 <        if (numMoved > 0)
848 <            System.arraycopy(elementData, index+1, elementData, index,
849 <                             numMoved);
850 <        elementData[--elementCount] = null; // Let gc do its work
841 >        modCount++;
842 >        if (index >= elementCount)
843 >            throw new ArrayIndexOutOfBoundsException(index);
844 >        E oldValue = elementData(index);
845 >
846 >        int numMoved = elementCount - index - 1;
847 >        if (numMoved > 0)
848 >            System.arraycopy(elementData, index+1, elementData, index,
849 >                             numMoved);
850 >        elementData[--elementCount] = null; // Let gc do its work
851  
852 <        return (E)oldValue;
852 >        // checkInvariants();
853 >        return oldValue;
854      }
855  
856      /**
# Line 821 | Line 872 | public class Vector<E>
872       * @param   c a collection whose elements will be tested for containment
873       *          in this Vector
874       * @return true if this Vector contains all of the elements in the
875 <     *         specified collection
875 >     *         specified collection
876       * @throws NullPointerException if the specified collection is null
877       */
878      public synchronized boolean containsAll(Collection<?> c) {
# Line 837 | Line 888 | public class Vector<E>
888       * specified Collection is this Vector, and this Vector is nonempty.)
889       *
890       * @param c elements to be inserted into this Vector
891 <     * @return <tt>true</tt> if this Vector changed as a result of the call
891 >     * @return {@code true} if this Vector changed as a result of the call
892       * @throws NullPointerException if the specified collection is null
893       * @since 1.2
894       */
895 <    public synchronized boolean addAll(Collection<? extends E> c) {
845 <        modCount++;
895 >    public boolean addAll(Collection<? extends E> c) {
896          Object[] a = c.toArray();
897 +        modCount++;
898          int numNew = a.length;
899 <        ensureCapacityHelper(elementCount + numNew);
900 <        System.arraycopy(a, 0, elementData, elementCount, numNew);
901 <        elementCount += numNew;
902 <        return numNew != 0;
899 >        if (numNew == 0)
900 >            return false;
901 >        synchronized (this) {
902 >            Object[] elementData = this.elementData;
903 >            final int s = elementCount;
904 >            if (numNew > elementData.length - s)
905 >                elementData = grow(s + numNew);
906 >            System.arraycopy(a, 0, elementData, s, numNew);
907 >            elementCount = s + numNew;
908 >            // checkInvariants();
909 >            return true;
910 >        }
911      }
912  
913      /**
# Line 859 | Line 918 | public class Vector<E>
918       * @return true if this Vector changed as a result of the call
919       * @throws ClassCastException if the types of one or more elements
920       *         in this vector are incompatible with the specified
921 <     *         collection (optional)
921 >     *         collection
922 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
923       * @throws NullPointerException if this vector contains one or more null
924       *         elements and the specified collection does not support null
925 <     *         elements (optional), or if the specified collection is null
925 >     *         elements
926 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
927 >     *         or if the specified collection is null
928       * @since 1.2
929       */
930 <    public synchronized boolean removeAll(Collection<?> c) {
931 <        return super.removeAll(c);
930 >    public boolean removeAll(Collection<?> c) {
931 >        Objects.requireNonNull(c);
932 >        return bulkRemove(e -> c.contains(e));
933      }
934  
935      /**
# Line 879 | Line 942 | public class Vector<E>
942       * @return true if this Vector changed as a result of the call
943       * @throws ClassCastException if the types of one or more elements
944       *         in this vector are incompatible with the specified
945 <     *         collection (optional)
945 >     *         collection
946 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
947       * @throws NullPointerException if this vector contains one or more null
948       *         elements and the specified collection does not support null
949 <     *         elements (optional), or if the specified collection is null
949 >     *         elements
950 >     *         (<a href="Collection.html#optional-restrictions">optional</a>),
951 >     *         or if the specified collection is null
952       * @since 1.2
953       */
954 <    public synchronized boolean retainAll(Collection<?> c)  {
955 <        return super.retainAll(c);
954 >    public boolean retainAll(Collection<?> c) {
955 >        Objects.requireNonNull(c);
956 >        return bulkRemove(e -> !c.contains(e));
957 >    }
958 >
959 >    /**
960 >     * @throws NullPointerException {@inheritDoc}
961 >     */
962 >    @Override
963 >    public boolean removeIf(Predicate<? super E> filter) {
964 >        Objects.requireNonNull(filter);
965 >        return bulkRemove(filter);
966 >    }
967 >
968 >    // A tiny bit set implementation
969 >
970 >    private static long[] nBits(int n) {
971 >        return new long[((n - 1) >> 6) + 1];
972 >    }
973 >    private static void setBit(long[] bits, int i) {
974 >        bits[i >> 6] |= 1L << i;
975 >    }
976 >    private static boolean isClear(long[] bits, int i) {
977 >        return (bits[i >> 6] & (1L << i)) == 0;
978 >    }
979 >
980 >    private synchronized boolean bulkRemove(Predicate<? super E> filter) {
981 >        int expectedModCount = modCount;
982 >        final Object[] es = elementData;
983 >        final int end = elementCount;
984 >        int i;
985 >        // Optimize for initial run of survivors
986 >        for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
987 >            ;
988 >        // Tolerate predicates that reentrantly access the collection for
989 >        // read (but writers still get CME), so traverse once to find
990 >        // elements to delete, a second pass to physically expunge.
991 >        if (i < end) {
992 >            final int beg = i;
993 >            final long[] deathRow = nBits(end - beg);
994 >            deathRow[0] = 1L;   // set bit 0
995 >            for (i = beg + 1; i < end; i++)
996 >                if (filter.test(elementAt(es, i)))
997 >                    setBit(deathRow, i - beg);
998 >            if (modCount != expectedModCount)
999 >                throw new ConcurrentModificationException();
1000 >            modCount++;
1001 >            int w = beg;
1002 >            for (i = beg; i < end; i++)
1003 >                if (isClear(deathRow, i - beg))
1004 >                    es[w++] = es[i];
1005 >            for (i = elementCount = w; i < end; i++)
1006 >                es[i] = null;
1007 >            // checkInvariants();
1008 >            return true;
1009 >        } else {
1010 >            if (modCount != expectedModCount)
1011 >                throw new ConcurrentModificationException();
1012 >            // checkInvariants();
1013 >            return false;
1014 >        }
1015      }
1016  
1017      /**
# Line 900 | Line 1025 | public class Vector<E>
1025       * @param index index at which to insert the first element from the
1026       *              specified collection
1027       * @param c elements to be inserted into this Vector
1028 <     * @return <tt>true</tt> if this Vector changed as a result of the call
1029 <     * @exception ArrayIndexOutOfBoundsException index out of range (index
1030 <     *            &lt; 0 || index &gt; size())
1028 >     * @return {@code true} if this Vector changed as a result of the call
1029 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
1030 >     *         ({@code index < 0 || index > size()})
1031       * @throws NullPointerException if the specified collection is null
1032       * @since 1.2
1033       */
1034      public synchronized boolean addAll(int index, Collection<? extends E> c) {
1035 <        modCount++;
1036 <        if (index < 0 || index > elementCount)
912 <            throw new ArrayIndexOutOfBoundsException(index);
1035 >        if (index < 0 || index > elementCount)
1036 >            throw new ArrayIndexOutOfBoundsException(index);
1037  
1038          Object[] a = c.toArray();
1039 <        int numNew = a.length;
1040 <        ensureCapacityHelper(elementCount + numNew);
1041 <
1042 <        int numMoved = elementCount - index;
1043 <        if (numMoved > 0)
1044 <            System.arraycopy(elementData, index, elementData, index + numNew,
1045 <                             numMoved);
1046 <
1039 >        modCount++;
1040 >        int numNew = a.length;
1041 >        if (numNew == 0)
1042 >            return false;
1043 >        Object[] elementData = this.elementData;
1044 >        final int s = elementCount;
1045 >        if (numNew > elementData.length - s)
1046 >            elementData = grow(s + numNew);
1047 >
1048 >        int numMoved = s - index;
1049 >        if (numMoved > 0)
1050 >            System.arraycopy(elementData, index,
1051 >                             elementData, index + numNew,
1052 >                             numMoved);
1053          System.arraycopy(a, 0, elementData, index, numNew);
1054 <        elementCount += numNew;
1055 <        return numNew != 0;
1054 >        elementCount = s + numNew;
1055 >        // checkInvariants();
1056 >        return true;
1057      }
1058  
1059      /**
1060       * Compares the specified Object with this Vector for equality.  Returns
1061       * true if and only if the specified Object is also a List, both Lists
1062       * have the same size, and all corresponding pairs of elements in the two
1063 <     * Lists are <em>equal</em>.  (Two elements <code>e1</code> and
1064 <     * <code>e2</code> are <em>equal</em> if <code>(e1==null ? e2==null :
1065 <     * e1.equals(e2))</code>.)  In other words, two Lists are defined to be
1063 >     * Lists are <em>equal</em>.  (Two elements {@code e1} and
1064 >     * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1065 >     * In other words, two Lists are defined to be
1066       * equal if they contain the same elements in the same order.
1067       *
1068       * @param o the Object to be compared for equality with this Vector
# Line 962 | Line 1093 | public class Vector<E>
1093       * equal, the returned List is empty.)  The returned List is backed by this
1094       * List, so changes in the returned List are reflected in this List, and
1095       * vice-versa.  The returned List supports all of the optional List
1096 <     * operations supported by this List.<p>
1096 >     * operations supported by this List.
1097       *
1098 <     * This method eliminates the need for explicit range operations (of
1099 <     * the sort that commonly exist for arrays).   Any operation that expects
1098 >     * <p>This method eliminates the need for explicit range operations (of
1099 >     * the sort that commonly exist for arrays).  Any operation that expects
1100       * a List can be used as a range operation by operating on a subList view
1101       * instead of a whole List.  For example, the following idiom
1102       * removes a range of elements from a List:
1103       * <pre>
1104 <     *      list.subList(from, to).clear();
1104 >     *      list.subList(from, to).clear();
1105       * </pre>
1106       * Similar idioms may be constructed for indexOf and lastIndexOf,
1107       * and all of the algorithms in the Collections class can be applied to
1108 <     * a subList.<p>
1108 >     * a subList.
1109       *
1110 <     * The semantics of the List returned by this method become undefined if
1110 >     * <p>The semantics of the List returned by this method become undefined if
1111       * the backing list (i.e., this List) is <i>structurally modified</i> in
1112       * any way other than via the returned List.  (Structural modifications are
1113       * those that change the size of the List, or otherwise perturb it in such
# Line 985 | Line 1116 | public class Vector<E>
1116       * @param fromIndex low endpoint (inclusive) of the subList
1117       * @param toIndex high endpoint (exclusive) of the subList
1118       * @return a view of the specified range within this List
1119 <     * @throws IndexOutOfBoundsException endpoint index value out of range
1120 <     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1121 <     * @throws IllegalArgumentException endpoint indices out of order
1122 <     *         <code>(fromIndex &gt; toIndex)</code>
1119 >     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1120 >     *         {@code (fromIndex < 0 || toIndex > size)}
1121 >     * @throws IllegalArgumentException if the endpoint indices are out of order
1122 >     *         {@code (fromIndex > toIndex)}
1123       */
1124      public synchronized List<E> subList(int fromIndex, int toIndex) {
1125          return Collections.synchronizedList(super.subList(fromIndex, toIndex),
# Line 996 | Line 1127 | public class Vector<E>
1127      }
1128  
1129      /**
1130 <     * Removes from this List all of the elements whose index is between
1131 <     * fromIndex, inclusive and toIndex, exclusive.  Shifts any succeeding
1132 <     * elements to the left (reduces their index).
1133 <     * This call shortens the ArrayList by (toIndex - fromIndex) elements.  (If
1134 <     * toIndex==fromIndex, this operation has no effect.)
1004 <     *
1005 <     * @param fromIndex index of first element to be removed
1006 <     * @param toIndex index after last element to be removed
1130 >     * Removes from this list all of the elements whose index is between
1131 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1132 >     * Shifts any succeeding elements to the left (reduces their index).
1133 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1134 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
1135       */
1136      protected synchronized void removeRange(int fromIndex, int toIndex) {
1137 <        modCount++;
1138 <        int numMoved = elementCount - toIndex;
1139 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
1140 <                         numMoved);
1137 >        modCount++;
1138 >        shiftTailOverGap(elementData, fromIndex, toIndex);
1139 >        // checkInvariants();
1140 >    }
1141  
1142 <        // Let gc do its work
1143 <        int newElementCount = elementCount - (toIndex-fromIndex);
1144 <        while (elementCount != newElementCount)
1145 <            elementData[--elementCount] = null;
1142 >    /** Erases the gap from lo to hi, by sliding down following elements. */
1143 >    private void shiftTailOverGap(Object[] es, int lo, int hi) {
1144 >        System.arraycopy(es, hi, es, lo, elementCount - hi);
1145 >        for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1146 >            es[i] = null;
1147      }
1148  
1149      /**
1150 <     * Save the state of the <tt>Vector</tt> instance to a stream (that
1151 <     * is, serialize it).  This method is present merely for synchronization.
1152 <     * It just calls the default writeObject method.
1153 <     */
1154 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
1155 <        throws java.io.IOException
1156 <    {
1157 <        s.defaultWriteObject();
1150 >     * Loads a {@code Vector} instance from a stream
1151 >     * (that is, deserializes it).
1152 >     * This method performs checks to ensure the consistency
1153 >     * of the fields.
1154 >     *
1155 >     * @param in the stream
1156 >     * @throws java.io.IOException if an I/O error occurs
1157 >     * @throws ClassNotFoundException if the stream contains data
1158 >     *         of a non-existing class
1159 >     */
1160 >    private void readObject(ObjectInputStream in)
1161 >            throws IOException, ClassNotFoundException {
1162 >        ObjectInputStream.GetField gfields = in.readFields();
1163 >        int count = gfields.get("elementCount", 0);
1164 >        Object[] data = (Object[])gfields.get("elementData", null);
1165 >        if (count < 0 || data == null || count > data.length) {
1166 >            throw new StreamCorruptedException("Inconsistent vector internals");
1167 >        }
1168 >        elementCount = count;
1169 >        elementData = data.clone();
1170 >    }
1171 >
1172 >    /**
1173 >     * Saves the state of the {@code Vector} instance to a stream
1174 >     * (that is, serializes it).
1175 >     * This method performs synchronization to ensure the consistency
1176 >     * of the serialized data.
1177 >     *
1178 >     * @param s the stream
1179 >     * @throws java.io.IOException if an I/O error occurs
1180 >     */
1181 >    private void writeObject(java.io.ObjectOutputStream s)
1182 >            throws java.io.IOException {
1183 >        final java.io.ObjectOutputStream.PutField fields = s.putFields();
1184 >        final Object[] data;
1185 >        synchronized (this) {
1186 >            fields.put("capacityIncrement", capacityIncrement);
1187 >            fields.put("elementCount", elementCount);
1188 >            data = elementData.clone();
1189 >        }
1190 >        fields.put("elementData", data);
1191 >        s.writeFields();
1192      }
1193  
1194      /**
1195 <     * Returns a list-iterator of the elements in this list (in proper
1195 >     * Returns a list iterator over the elements in this list (in proper
1196       * sequence), starting at the specified position in the list.
1197 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
1197 >     * The specified index indicates the first element that would be
1198 >     * returned by an initial call to {@link ListIterator#next next}.
1199 >     * An initial call to {@link ListIterator#previous previous} would
1200 >     * return the element with the specified index minus one.
1201 >     *
1202 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1203       *
1036     * The list-iterator is <i>fail-fast</i>: if the list is structurally
1037     * modified at any time after the Iterator is created, in any way except
1038     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
1039     * methods, the list-iterator will throw a
1040     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
1041     * concurrent modification, the iterator fails quickly and cleanly, rather
1042     * than risking arbitrary, non-deterministic behavior at an undetermined
1043     * time in the future.
1044     *
1045     * @param index index of the first element to be returned from the
1046     *              list-iterator (by a call to <tt>next</tt>)
1047     * @return a ListIterator of the elements in this list (in proper
1048     *         sequence), starting at the specified position in the list
1204       * @throws IndexOutOfBoundsException {@inheritDoc}
1050     * @see List#listIterator(int)
1205       */
1206      public synchronized ListIterator<E> listIterator(int index) {
1207 <        if (index < 0 || index > elementCount)
1207 >        if (index < 0 || index > elementCount)
1208              throw new IndexOutOfBoundsException("Index: "+index);
1209 <        return new VectorIterator(index);
1209 >        return new ListItr(index);
1210 >    }
1211 >
1212 >    /**
1213 >     * Returns a list iterator over the elements in this list (in proper
1214 >     * sequence).
1215 >     *
1216 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1217 >     *
1218 >     * @see #listIterator(int)
1219 >     */
1220 >    public synchronized ListIterator<E> listIterator() {
1221 >        return new ListItr(0);
1222      }
1223  
1224      /**
1225       * Returns an iterator over the elements in this list in proper sequence.
1226       *
1227 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1228 +     *
1229       * @return an iterator over the elements in this list in proper sequence
1230       */
1231      public synchronized Iterator<E> iterator() {
1232 <        return new VectorIterator(0);
1232 >        return new Itr();
1233      }
1234  
1235      /**
1236 <     * A streamlined version of AbstractList.Itr.
1236 >     * An optimized version of AbstractList.Itr
1237       */
1238 <    final class VectorIterator implements ListIterator<E> {
1239 <        int cursor;           // index of next element to return;
1240 <        int lastRet;          // index of last element, or -1 if no such
1241 <        int expectedModCount; // to check for CME
1238 >    private class Itr implements Iterator<E> {
1239 >        int cursor;       // index of next element to return
1240 >        int lastRet = -1; // index of last element returned; -1 if no such
1241 >        int expectedModCount = modCount;
1242  
1243 <        VectorIterator(int index) {
1244 <            cursor = index;
1243 >        public boolean hasNext() {
1244 >            // Racy but within spec, since modifications are checked
1245 >            // within or after synchronization in next/previous
1246 >            return cursor != elementCount;
1247 >        }
1248 >
1249 >        public E next() {
1250 >            synchronized (Vector.this) {
1251 >                checkForComodification();
1252 >                int i = cursor;
1253 >                if (i >= elementCount)
1254 >                    throw new NoSuchElementException();
1255 >                cursor = i + 1;
1256 >                return elementData(lastRet = i);
1257 >            }
1258 >        }
1259 >
1260 >        public void remove() {
1261 >            if (lastRet == -1)
1262 >                throw new IllegalStateException();
1263 >            synchronized (Vector.this) {
1264 >                checkForComodification();
1265 >                Vector.this.remove(lastRet);
1266 >                expectedModCount = modCount;
1267 >            }
1268 >            cursor = lastRet;
1269              lastRet = -1;
1270 <            expectedModCount = modCount;
1079 <        }
1270 >        }
1271  
1272 <        public boolean hasNext() {
1273 <            // Racy but within spec and backwards-compatible
1274 <            return cursor < elementCount;
1275 <        }
1276 <
1277 <        public boolean hasPrevious() {
1278 <            return cursor > 0;
1279 <        }
1089 <
1090 <        public int nextIndex() {
1091 <            return cursor;
1092 <        }
1093 <
1094 <        public int previousIndex() {
1095 <            return cursor - 1;
1096 <        }
1097 <
1098 <        public E next() {
1099 <            synchronized(Vector.this) {
1100 <                if (expectedModCount == modCount) {
1101 <                    int i = cursor;
1102 <                    if (i < elementCount) {
1103 <                        try {
1104 <                            E e = (E)elementData[i];
1105 <                            lastRet = i;
1106 <                            cursor = i + 1;
1107 <                            return e;
1108 <                        } catch (IndexOutOfBoundsException fallthrough) {
1109 <                        }
1110 <                    }
1272 >        @Override
1273 >        public void forEachRemaining(Consumer<? super E> action) {
1274 >            Objects.requireNonNull(action);
1275 >            synchronized (Vector.this) {
1276 >                final int size = elementCount;
1277 >                int i = cursor;
1278 >                if (i >= size) {
1279 >                    return;
1280                  }
1281 <                // Prefer reporting CME if applicable on failures
1282 <                if (expectedModCount == modCount)
1283 <                    throw new NoSuchElementException();
1284 <                throw new ConcurrentModificationException();
1281 >                final Object[] es = elementData;
1282 >                if (i >= es.length)
1283 >                    throw new ConcurrentModificationException();
1284 >                while (i < size && modCount == expectedModCount)
1285 >                    action.accept(elementAt(es, i++));
1286 >                // update once at end of iteration to reduce heap write traffic
1287 >                cursor = i;
1288 >                lastRet = i - 1;
1289 >                checkForComodification();
1290              }
1291 <        }
1291 >        }
1292 >
1293 >        final void checkForComodification() {
1294 >            if (modCount != expectedModCount)
1295 >                throw new ConcurrentModificationException();
1296 >        }
1297 >    }
1298 >
1299 >    /**
1300 >     * An optimized version of AbstractList.ListItr
1301 >     */
1302 >    final class ListItr extends Itr implements ListIterator<E> {
1303 >        ListItr(int index) {
1304 >            super();
1305 >            cursor = index;
1306 >        }
1307 >
1308 >        public boolean hasPrevious() {
1309 >            return cursor != 0;
1310 >        }
1311 >
1312 >        public int nextIndex() {
1313 >            return cursor;
1314 >        }
1315 >
1316 >        public int previousIndex() {
1317 >            return cursor - 1;
1318 >        }
1319  
1320          public E previous() {
1321 <            synchronized(Vector.this) {
1322 <                if (expectedModCount == modCount) {
1323 <                    int i = cursor - 1;
1324 <                    if (i < elementCount) {
1124 <                        try {
1125 <                            E e = (E)elementData[i];
1126 <                            lastRet = i;
1127 <                            cursor = i;
1128 <                            return e;
1129 <                        } catch (IndexOutOfBoundsException fallthrough) {
1130 <                        }
1131 <                    }
1132 <                }
1133 <                if (expectedModCount == modCount)
1321 >            synchronized (Vector.this) {
1322 >                checkForComodification();
1323 >                int i = cursor - 1;
1324 >                if (i < 0)
1325                      throw new NoSuchElementException();
1326 <                throw new ConcurrentModificationException();
1326 >                cursor = i;
1327 >                return elementData(lastRet = i);
1328              }
1329          }
1330  
1331 <        public void remove() {
1332 <            if (lastRet < 0)
1333 <                throw new IllegalStateException();
1334 <            synchronized(Vector.this) {
1335 <                if (modCount != expectedModCount)
1336 <                    throw new ConcurrentModificationException();
1145 <                Vector.this.remove(lastRet);
1146 <                if (lastRet < cursor)
1147 <                    cursor--;
1148 <                lastRet = -1;
1149 <                expectedModCount = modCount;
1331 >        public void set(E e) {
1332 >            if (lastRet == -1)
1333 >                throw new IllegalStateException();
1334 >            synchronized (Vector.this) {
1335 >                checkForComodification();
1336 >                Vector.this.set(lastRet, e);
1337              }
1338 <        }
1338 >        }
1339  
1340 <        public void set(E e) {
1341 <            if (lastRet < 0)
1342 <                throw new IllegalStateException();
1343 <            synchronized(Vector.this) {
1344 <                if (modCount != expectedModCount)
1158 <                    throw new ConcurrentModificationException();
1159 <                Vector.this.set(lastRet, e);
1340 >        public void add(E e) {
1341 >            int i = cursor;
1342 >            synchronized (Vector.this) {
1343 >                checkForComodification();
1344 >                Vector.this.add(i, e);
1345                  expectedModCount = modCount;
1346              }
1347 <        }
1347 >            cursor = i + 1;
1348 >            lastRet = -1;
1349 >        }
1350 >    }
1351  
1352 <        public void add(E e) {
1353 <            synchronized(Vector.this) {
1352 >    /**
1353 >     * @throws NullPointerException {@inheritDoc}
1354 >     */
1355 >    @Override
1356 >    public synchronized void forEach(Consumer<? super E> action) {
1357 >        Objects.requireNonNull(action);
1358 >        final int expectedModCount = modCount;
1359 >        final Object[] es = elementData;
1360 >        final int size = elementCount;
1361 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1362 >            action.accept(elementAt(es, i));
1363 >        if (modCount != expectedModCount)
1364 >            throw new ConcurrentModificationException();
1365 >        // checkInvariants();
1366 >    }
1367 >
1368 >    /**
1369 >     * @throws NullPointerException {@inheritDoc}
1370 >     */
1371 >    @Override
1372 >    public synchronized void replaceAll(UnaryOperator<E> operator) {
1373 >        Objects.requireNonNull(operator);
1374 >        final int expectedModCount = modCount;
1375 >        final Object[] es = elementData;
1376 >        final int size = elementCount;
1377 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1378 >            es[i] = operator.apply(elementAt(es, i));
1379 >        if (modCount != expectedModCount)
1380 >            throw new ConcurrentModificationException();
1381 >        // TODO(8203662): remove increment of modCount from ...
1382 >        modCount++;
1383 >        // checkInvariants();
1384 >    }
1385 >
1386 >    @SuppressWarnings("unchecked")
1387 >    @Override
1388 >    public synchronized void sort(Comparator<? super E> c) {
1389 >        final int expectedModCount = modCount;
1390 >        Arrays.sort((E[]) elementData, 0, elementCount, c);
1391 >        if (modCount != expectedModCount)
1392 >            throw new ConcurrentModificationException();
1393 >        modCount++;
1394 >        // checkInvariants();
1395 >    }
1396 >
1397 >    /**
1398 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1399 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1400 >     * list.
1401 >     *
1402 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1403 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1404 >     * Overriding implementations should document the reporting of additional
1405 >     * characteristic values.
1406 >     *
1407 >     * @return a {@code Spliterator} over the elements in this list
1408 >     * @since 1.8
1409 >     */
1410 >    @Override
1411 >    public Spliterator<E> spliterator() {
1412 >        return new VectorSpliterator(null, 0, -1, 0);
1413 >    }
1414 >
1415 >    /** Similar to ArrayList Spliterator */
1416 >    final class VectorSpliterator implements Spliterator<E> {
1417 >        private Object[] array;
1418 >        private int index; // current index, modified on advance/split
1419 >        private int fence; // -1 until used; then one past last index
1420 >        private int expectedModCount; // initialized when fence set
1421 >
1422 >        /** Creates new spliterator covering the given range. */
1423 >        VectorSpliterator(Object[] array, int origin, int fence,
1424 >                          int expectedModCount) {
1425 >            this.array = array;
1426 >            this.index = origin;
1427 >            this.fence = fence;
1428 >            this.expectedModCount = expectedModCount;
1429 >        }
1430 >
1431 >        private int getFence() { // initialize on first use
1432 >            int hi;
1433 >            if ((hi = fence) < 0) {
1434 >                synchronized (Vector.this) {
1435 >                    array = elementData;
1436 >                    expectedModCount = modCount;
1437 >                    hi = fence = elementCount;
1438 >                }
1439 >            }
1440 >            return hi;
1441 >        }
1442 >
1443 >        public Spliterator<E> trySplit() {
1444 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1445 >            return (lo >= mid) ? null :
1446 >                new VectorSpliterator(array, lo, index = mid, expectedModCount);
1447 >        }
1448 >
1449 >        @SuppressWarnings("unchecked")
1450 >        public boolean tryAdvance(Consumer<? super E> action) {
1451 >            Objects.requireNonNull(action);
1452 >            int i;
1453 >            if (getFence() > (i = index)) {
1454 >                index = i + 1;
1455 >                action.accept((E)array[i]);
1456                  if (modCount != expectedModCount)
1457                      throw new ConcurrentModificationException();
1458 <                Vector.this.add(cursor++, e);
1169 <                lastRet = -1;
1170 <                expectedModCount = modCount;
1458 >                return true;
1459              }
1460 <        }
1460 >            return false;
1461 >        }
1462 >
1463 >        @SuppressWarnings("unchecked")
1464 >        public void forEachRemaining(Consumer<? super E> action) {
1465 >            Objects.requireNonNull(action);
1466 >            final int hi = getFence();
1467 >            final Object[] a = array;
1468 >            int i;
1469 >            for (i = index, index = hi; i < hi; i++)
1470 >                action.accept((E) a[i]);
1471 >            if (modCount != expectedModCount)
1472 >                throw new ConcurrentModificationException();
1473 >        }
1474 >
1475 >        public long estimateSize() {
1476 >            return getFence() - index;
1477 >        }
1478 >
1479 >        public int characteristics() {
1480 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1481 >        }
1482      }
1483  
1484 +    void checkInvariants() {
1485 +        // assert elementCount >= 0;
1486 +        // assert elementCount == elementData.length || elementData[elementCount] == null;
1487 +    }
1488   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines