ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
(Generate patch)

Comparing jsr166/src/main/java/util/Vector.java (file contents):
Revision 1.16 by jsr166, Sun Jun 25 20:05:33 2006 UTC vs.
Revision 1.36 by jsr166, Mon Nov 14 22:46:22 2016 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import java.util.function.UnaryOperator;
31 +
32   /**
33   * The {@code Vector} class implements a growable array of
34   * objects. Like an array, it contains components that can be
# Line 23 | Line 45 | package java.util;
45   * capacity of a vector before inserting a large number of
46   * components; this reduces the amount of incremental reallocation.
47   *
48 < * <p>The Iterators returned by Vector's iterator and listIterator
49 < * methods are <em>fail-fast</em>: if the Vector is structurally modified
50 < * at any time after the Iterator is created, in any way except through the
51 < * Iterator's own remove or add methods, the Iterator will throw a
52 < * ConcurrentModificationException.  Thus, in the face of concurrent
53 < * modification, the Iterator fails quickly and cleanly, rather than risking
54 < * arbitrary, non-deterministic behavior at an undetermined time in the future.
55 < * The Enumerations returned by Vector's elements method are <em>not</em>
56 < * fail-fast.
48 > * <p id="fail-fast">
49 > * The iterators returned by this class's {@link #iterator() iterator} and
50 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
51 > * if the vector is structurally modified at any time after the iterator is
52 > * created, in any way except through the iterator's own
53 > * {@link ListIterator#remove() remove} or
54 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
55 > * {@link ConcurrentModificationException}.  Thus, in the face of
56 > * concurrent modification, the iterator fails quickly and cleanly, rather
57 > * than risking arbitrary, non-deterministic behavior at an undetermined
58 > * time in the future.  The {@link Enumeration Enumerations} returned by
59 > * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
60 > * Vector is structurally modified at any time after the enumeration is
61 > * created then the results of enumerating are undefined.
62   *
63   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
64   * as it is, generally speaking, impossible to make any hard guarantees in the
# Line 43 | Line 70 | package java.util;
70   *
71   * <p>As of the Java 2 platform v1.2, this class was retrofitted to
72   * implement the {@link List} interface, making it a member of the
73 < * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
74 < * Collections Framework</a>.  Unlike the new collection
75 < * implementations, {@code Vector} is synchronized.
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 > * Java Collections Framework</a>.  Unlike the new collection
75 > * implementations, {@code Vector} is synchronized.  If a thread-safe
76 > * implementation is not needed, it is recommended to use {@link
77 > * ArrayList} in place of {@code Vector}.
78 > *
79 > * @param <E> Type of component elements
80   *
81   * @author  Lee Boynton
82   * @author  Jonathan Payne
52 * @version %I%, %G%
83   * @see Collection
54 * @see List
55 * @see ArrayList
84   * @see LinkedList
85 < * @since   JDK1.0
85 > * @since   1.0
86   */
87   public class Vector<E>
88      extends AbstractList<E>
# Line 104 | Line 132 | public class Vector<E>
132       *         is negative
133       */
134      public Vector(int initialCapacity, int capacityIncrement) {
135 <        super();
135 >        super();
136          if (initialCapacity < 0)
137              throw new IllegalArgumentException("Illegal Capacity: "+
138                                                 initialCapacity);
139 <        this.elementData = new Object[initialCapacity];
140 <        this.capacityIncrement = capacityIncrement;
139 >        this.elementData = new Object[initialCapacity];
140 >        this.capacityIncrement = capacityIncrement;
141      }
142  
143      /**
# Line 121 | Line 149 | public class Vector<E>
149       *         is negative
150       */
151      public Vector(int initialCapacity) {
152 <        this(initialCapacity, 0);
152 >        this(initialCapacity, 0);
153      }
154  
155      /**
# Line 130 | Line 158 | public class Vector<E>
158       * zero.
159       */
160      public Vector() {
161 <        this(10);
161 >        this(10);
162      }
163  
164      /**
# Line 144 | Line 172 | public class Vector<E>
172       * @since   1.2
173       */
174      public Vector(Collection<? extends E> c) {
175 <        elementData = c.toArray();
176 <        elementCount = elementData.length;
177 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
178 <        if (elementData.getClass() != Object[].class)
179 <            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
175 >        elementData = c.toArray();
176 >        elementCount = elementData.length;
177 >        // defend against c.toArray (incorrectly) not returning Object[]
178 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
179 >        if (elementData.getClass() != Object[].class)
180 >            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
181      }
182  
183      /**
# Line 165 | Line 194 | public class Vector<E>
194       * @see #toArray(Object[])
195       */
196      public synchronized void copyInto(Object[] anArray) {
197 <        System.arraycopy(elementData, 0, anArray, 0, elementCount);
197 >        System.arraycopy(elementData, 0, anArray, 0, elementCount);
198      }
199  
200      /**
# Line 177 | Line 206 | public class Vector<E>
206       * minimize the storage of a vector.
207       */
208      public synchronized void trimToSize() {
209 <        modCount++;
210 <        int oldCapacity = elementData.length;
211 <        if (elementCount < oldCapacity) {
209 >        modCount++;
210 >        int oldCapacity = elementData.length;
211 >        if (elementCount < oldCapacity) {
212              elementData = Arrays.copyOf(elementData, elementCount);
213 <        }
213 >        }
214      }
215  
216      /**
# Line 202 | Line 231 | public class Vector<E>
231       * @param minCapacity the desired minimum capacity
232       */
233      public synchronized void ensureCapacity(int minCapacity) {
234 <        modCount++;
235 <        ensureCapacityHelper(minCapacity);
234 >        if (minCapacity > 0) {
235 >            modCount++;
236 >            if (minCapacity > elementData.length)
237 >                grow(minCapacity);
238 >        }
239 >    }
240 >
241 >    /**
242 >     * The maximum size of array to allocate (unless necessary).
243 >     * Some VMs reserve some header words in an array.
244 >     * Attempts to allocate larger arrays may result in
245 >     * OutOfMemoryError: Requested array size exceeds VM limit
246 >     */
247 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
248 >
249 >    /**
250 >     * Increases the capacity to ensure that it can hold at least the
251 >     * number of elements specified by the minimum capacity argument.
252 >     *
253 >     * @param minCapacity the desired minimum capacity
254 >     * @throws OutOfMemoryError if minCapacity is less than zero
255 >     */
256 >    private Object[] grow(int minCapacity) {
257 >        return elementData = Arrays.copyOf(elementData,
258 >                                           newCapacity(minCapacity));
259 >    }
260 >
261 >    private Object[] grow() {
262 >        return grow(elementCount + 1);
263      }
264  
265      /**
266 <     * This implements the unsynchronized semantics of ensureCapacity.
267 <     * Synchronized methods in this class can internally call this
268 <     * method for ensuring capacity without incurring the cost of an
269 <     * extra synchronization.
270 <     *
271 <     * @see #ensureCapacity(int)
272 <     */
273 <    private void ensureCapacityHelper(int minCapacity) {
274 <        int oldCapacity = elementData.length;
275 <        if (minCapacity > oldCapacity) {
276 <            Object[] oldData = elementData;
277 <            int newCapacity = (capacityIncrement > 0) ?
278 <                (oldCapacity + capacityIncrement) : (oldCapacity * 2);
279 <            if (newCapacity < minCapacity) {
280 <                newCapacity = minCapacity;
281 <            }
282 <            elementData = Arrays.copyOf(elementData, newCapacity);
283 <        }
266 >     * Returns a capacity at least as large as the given minimum capacity.
267 >     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
268 >     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
269 >     *
270 >     * @param minCapacity the desired minimum capacity
271 >     * @throws OutOfMemoryError if minCapacity is less than zero
272 >     */
273 >    private int newCapacity(int minCapacity) {
274 >        // overflow-conscious code
275 >        int oldCapacity = elementData.length;
276 >        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
277 >                                         capacityIncrement : oldCapacity);
278 >        if (newCapacity - minCapacity <= 0) {
279 >            if (minCapacity < 0) // overflow
280 >                throw new OutOfMemoryError();
281 >            return minCapacity;
282 >        }
283 >        return (newCapacity - MAX_ARRAY_SIZE <= 0)
284 >            ? newCapacity
285 >            : hugeCapacity(minCapacity);
286 >    }
287 >
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290 >            throw new OutOfMemoryError();
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294      }
295  
296      /**
# Line 237 | Line 303 | public class Vector<E>
303       * @throws ArrayIndexOutOfBoundsException if the new size is negative
304       */
305      public synchronized void setSize(int newSize) {
306 <        modCount++;
307 <        if (newSize > elementCount) {
308 <            ensureCapacityHelper(newSize);
309 <        } else {
310 <            for (int i = newSize ; i < elementCount ; i++) {
311 <                elementData[i] = null;
246 <            }
247 <        }
248 <        elementCount = newSize;
306 >        modCount++;
307 >        if (newSize > elementData.length)
308 >            grow(newSize);
309 >        for (int i = newSize; i < elementCount; i++)
310 >            elementData[i] = null;
311 >        elementCount = newSize;
312      }
313  
314      /**
# Line 256 | Line 319 | public class Vector<E>
319       *          of this vector)
320       */
321      public synchronized int capacity() {
322 <        return elementData.length;
322 >        return elementData.length;
323      }
324  
325      /**
# Line 265 | Line 328 | public class Vector<E>
328       * @return  the number of components in this vector
329       */
330      public synchronized int size() {
331 <        return elementCount;
331 >        return elementCount;
332      }
333  
334      /**
# Line 276 | Line 339 | public class Vector<E>
339       *          {@code false} otherwise.
340       */
341      public synchronized boolean isEmpty() {
342 <        return elementCount == 0;
342 >        return elementCount == 0;
343      }
344  
345      /**
346       * Returns an enumeration of the components of this vector. The
347       * returned {@code Enumeration} object will generate all items in
348       * this vector. The first item generated is the item at index {@code 0},
349 <     * then the item at index {@code 1}, and so on.
349 >     * then the item at index {@code 1}, and so on. If the vector is
350 >     * structurally modified while enumerating over the elements then the
351 >     * results of enumerating are undefined.
352       *
353       * @return  an enumeration of the components of this vector
354       * @see     Iterator
355       */
356      public Enumeration<E> elements() {
357 <        return new Enumeration<E>() {
358 <            int count = 0;
357 >        return new Enumeration<E>() {
358 >            int count = 0;
359 >
360 >            public boolean hasMoreElements() {
361 >                return count < elementCount;
362 >            }
363  
364 <            public boolean hasMoreElements() {
365 <                return count < elementCount;
366 <            }
367 <
368 <            public E nextElement() {
369 <                synchronized (Vector.this) {
370 <                    if (count < elementCount) {
371 <                        return (E)elementData[count++];
372 <                    }
304 <                }
305 <                throw new NoSuchElementException("Vector Enumeration");
306 <            }
307 <        };
364 >            public E nextElement() {
365 >                synchronized (Vector.this) {
366 >                    if (count < elementCount) {
367 >                        return elementData(count++);
368 >                    }
369 >                }
370 >                throw new NoSuchElementException("Vector Enumeration");
371 >            }
372 >        };
373      }
374  
375      /**
376       * Returns {@code true} if this vector contains the specified element.
377       * More formally, returns {@code true} if and only if this vector
378       * contains at least one element {@code e} such that
379 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
379 >     * {@code Objects.equals(o, e)}.
380       *
381       * @param o element whose presence in this vector is to be tested
382       * @return {@code true} if this vector contains the specified element
383       */
384      public boolean contains(Object o) {
385 <        return indexOf(o, 0) >= 0;
385 >        return indexOf(o, 0) >= 0;
386      }
387  
388      /**
389       * Returns the index of the first occurrence of the specified element
390       * in this vector, or -1 if this vector does not contain the element.
391       * More formally, returns the lowest index {@code i} such that
392 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
392 >     * {@code Objects.equals(o, get(i))},
393       * or -1 if there is no such index.
394       *
395       * @param o element to search for
# Line 332 | Line 397 | public class Vector<E>
397       *         this vector, or -1 if this vector does not contain the element
398       */
399      public int indexOf(Object o) {
400 <        return indexOf(o, 0);
400 >        return indexOf(o, 0);
401      }
402  
403      /**
# Line 340 | Line 405 | public class Vector<E>
405       * this vector, searching forwards from {@code index}, or returns -1 if
406       * the element is not found.
407       * More formally, returns the lowest index {@code i} such that
408 <     * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
408 >     * {@code (i >= index && Objects.equals(o, get(i)))},
409       * or -1 if there is no such index.
410       *
411       * @param o element to search for
# Line 352 | Line 417 | public class Vector<E>
417       * @see     Object#equals(Object)
418       */
419      public synchronized int indexOf(Object o, int index) {
420 <        if (o == null) {
421 <            for (int i = index ; i < elementCount ; i++)
422 <                if (elementData[i]==null)
423 <                    return i;
424 <        } else {
425 <            for (int i = index ; i < elementCount ; i++)
426 <                if (o.equals(elementData[i]))
427 <                    return i;
428 <        }
429 <        return -1;
420 >        if (o == null) {
421 >            for (int i = index ; i < elementCount ; i++)
422 >                if (elementData[i]==null)
423 >                    return i;
424 >        } else {
425 >            for (int i = index ; i < elementCount ; i++)
426 >                if (o.equals(elementData[i]))
427 >                    return i;
428 >        }
429 >        return -1;
430      }
431  
432      /**
433       * Returns the index of the last occurrence of the specified element
434       * in this vector, or -1 if this vector does not contain the element.
435       * More formally, returns the highest index {@code i} such that
436 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
436 >     * {@code Objects.equals(o, get(i))},
437       * or -1 if there is no such index.
438       *
439       * @param o element to search for
# Line 376 | Line 441 | public class Vector<E>
441       *         this vector, or -1 if this vector does not contain the element
442       */
443      public synchronized int lastIndexOf(Object o) {
444 <        return lastIndexOf(o, elementCount-1);
444 >        return lastIndexOf(o, elementCount-1);
445      }
446  
447      /**
# Line 384 | Line 449 | public class Vector<E>
449       * this vector, searching backwards from {@code index}, or returns -1 if
450       * the element is not found.
451       * More formally, returns the highest index {@code i} such that
452 <     * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
452 >     * {@code (i <= index && Objects.equals(o, get(i)))},
453       * or -1 if there is no such index.
454       *
455       * @param o element to search for
# Line 399 | Line 464 | public class Vector<E>
464          if (index >= elementCount)
465              throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
466  
467 <        if (o == null) {
468 <            for (int i = index; i >= 0; i--)
469 <                if (elementData[i]==null)
470 <                    return i;
471 <        } else {
472 <            for (int i = index; i >= 0; i--)
473 <                if (o.equals(elementData[i]))
474 <                    return i;
475 <        }
476 <        return -1;
467 >        if (o == null) {
468 >            for (int i = index; i >= 0; i--)
469 >                if (elementData[i]==null)
470 >                    return i;
471 >        } else {
472 >            for (int i = index; i >= 0; i--)
473 >                if (o.equals(elementData[i]))
474 >                    return i;
475 >        }
476 >        return -1;
477      }
478  
479      /**
# Line 420 | Line 485 | public class Vector<E>
485       * @param      index   an index into this vector
486       * @return     the component at the specified index
487       * @throws ArrayIndexOutOfBoundsException if the index is out of range
488 <     *         ({@code index < 0 || index >= size()})
488 >     *         ({@code index < 0 || index >= size()})
489       */
490      public synchronized E elementAt(int index) {
491 <        if (index >= elementCount) {
492 <            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
493 <        }
491 >        if (index >= elementCount) {
492 >            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
493 >        }
494  
495 <        return (E)elementData[index];
495 >        return elementData(index);
496      }
497  
498      /**
# Line 438 | Line 503 | public class Vector<E>
503       * @throws NoSuchElementException if this vector has no components
504       */
505      public synchronized E firstElement() {
506 <        if (elementCount == 0) {
507 <            throw new NoSuchElementException();
508 <        }
509 <        return (E)elementData[0];
506 >        if (elementCount == 0) {
507 >            throw new NoSuchElementException();
508 >        }
509 >        return elementData(0);
510      }
511  
512      /**
513       * Returns the last component of the vector.
514       *
515       * @return  the last component of the vector, i.e., the component at index
516 <     *          <code>size()&nbsp;-&nbsp;1</code>.
516 >     *          {@code size() - 1}
517       * @throws NoSuchElementException if this vector is empty
518       */
519      public synchronized E lastElement() {
520 <        if (elementCount == 0) {
521 <            throw new NoSuchElementException();
522 <        }
523 <        return (E)elementData[elementCount - 1];
520 >        if (elementCount == 0) {
521 >            throw new NoSuchElementException();
522 >        }
523 >        return elementData(elementCount - 1);
524      }
525  
526      /**
# Line 466 | Line 531 | public class Vector<E>
531       * <p>The index must be a value greater than or equal to {@code 0}
532       * and less than the current size of the vector.
533       *
534 <     * <p>This method is identical in functionality to the set method
535 <     * (which is part of the List interface). Note that the set method reverses
536 <     * the order of the parameters, to more closely match array usage.  Note
537 <     * also that the set method returns the old value that was stored at the
538 <     * specified position.
534 >     * <p>This method is identical in functionality to the
535 >     * {@link #set(int, Object) set(int, E)}
536 >     * method (which is part of the {@link List} interface). Note that the
537 >     * {@code set} method reverses the order of the parameters, to more closely
538 >     * match array usage.  Note also that the {@code set} method returns the
539 >     * old value that was stored at the specified position.
540       *
541       * @param      obj     what the component is to be set to
542       * @param      index   the specified index
543 <     * @throws  ArrayIndexOutOfBoundsException  if the index was invalid
544 <     * @see        #size()
479 <     * @see        List
480 <     * @see        #set(int, java.lang.Object)
543 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
544 >     *         ({@code index < 0 || index >= size()})
545       */
546      public synchronized void setElementAt(E obj, int index) {
547 <        if (index >= elementCount) {
548 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
549 <                                                     elementCount);
550 <        }
551 <        elementData[index] = obj;
547 >        if (index >= elementCount) {
548 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
549 >                                                     elementCount);
550 >        }
551 >        elementData[index] = obj;
552      }
553  
554      /**
# Line 497 | Line 561 | public class Vector<E>
561       * <p>The index must be a value greater than or equal to {@code 0}
562       * and less than the current size of the vector.
563       *
564 <     * <p>This method is identical in functionality to the remove method
565 <     * (which is part of the List interface).  Note that the remove method
566 <     * returns the old value that was stored at the specified position.
564 >     * <p>This method is identical in functionality to the {@link #remove(int)}
565 >     * method (which is part of the {@link List} interface).  Note that the
566 >     * {@code remove} method returns the old value that was stored at the
567 >     * specified position.
568       *
569       * @param      index   the index of the object to remove
570 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
571 <     * @see        #size()
507 <     * @see        #remove(int)
508 <     * @see        List
570 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
571 >     *         ({@code index < 0 || index >= size()})
572       */
573      public synchronized void removeElementAt(int index) {
574 <        modCount++;
575 <        if (index >= elementCount) {
576 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
577 <                                                     elementCount);
578 <        }
579 <        else if (index < 0) {
580 <            throw new ArrayIndexOutOfBoundsException(index);
581 <        }
582 <        int j = elementCount - index - 1;
583 <        if (j > 0) {
584 <            System.arraycopy(elementData, index + 1, elementData, index, j);
585 <        }
586 <        elementCount--;
587 <        elementData[elementCount] = null; /* to let gc do its work */
574 >        if (index >= elementCount) {
575 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
576 >                                                     elementCount);
577 >        }
578 >        else if (index < 0) {
579 >            throw new ArrayIndexOutOfBoundsException(index);
580 >        }
581 >        int j = elementCount - index - 1;
582 >        if (j > 0) {
583 >            System.arraycopy(elementData, index + 1, elementData, index, j);
584 >        }
585 >        modCount++;
586 >        elementCount--;
587 >        elementData[elementCount] = null; /* to let gc do its work */
588 >        // checkInvariants();
589      }
590  
591      /**
# Line 536 | Line 600 | public class Vector<E>
600       * index is equal to the current size of the vector, the new element
601       * is appended to the Vector.)
602       *
603 <     * <p>This method is identical in functionality to the add(Object, int) method
604 <     * (which is part of the List interface). Note that the add method reverses
605 <     * the order of the parameters, to more closely match array usage.
603 >     * <p>This method is identical in functionality to the
604 >     * {@link #add(int, Object) add(int, E)}
605 >     * method (which is part of the {@link List} interface).  Note that the
606 >     * {@code add} method reverses the order of the parameters, to more closely
607 >     * match array usage.
608       *
609       * @param      obj     the component to insert
610       * @param      index   where to insert the new component
611 <     * @exception  ArrayIndexOutOfBoundsException  if the index was invalid
612 <     * @see        #size()
547 <     * @see        #add(int, Object)
548 <     * @see        List
611 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
612 >     *         ({@code index < 0 || index > size()})
613       */
614      public synchronized void insertElementAt(E obj, int index) {
615 <        modCount++;
616 <        if (index > elementCount) {
617 <            throw new ArrayIndexOutOfBoundsException(index
618 <                                                     + " > " + elementCount);
619 <        }
620 <        ensureCapacityHelper(elementCount + 1);
621 <        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
622 <        elementData[index] = obj;
623 <        elementCount++;
615 >        if (index > elementCount) {
616 >            throw new ArrayIndexOutOfBoundsException(index
617 >                                                     + " > " + elementCount);
618 >        }
619 >        modCount++;
620 >        final int s = elementCount;
621 >        Object[] elementData = this.elementData;
622 >        if (s == elementData.length)
623 >            elementData = grow();
624 >        System.arraycopy(elementData, index,
625 >                         elementData, index + 1,
626 >                         s - index);
627 >        elementData[index] = obj;
628 >        elementCount = s + 1;
629      }
630  
631      /**
# Line 564 | Line 633 | public class Vector<E>
633       * increasing its size by one. The capacity of this vector is
634       * increased if its size becomes greater than its capacity.
635       *
636 <     * <p>This method is identical in functionality to the add(Object) method
637 <     * (which is part of the List interface).
636 >     * <p>This method is identical in functionality to the
637 >     * {@link #add(Object) add(E)}
638 >     * method (which is part of the {@link List} interface).
639       *
640       * @param   obj   the component to be added
571     * @see        #add(Object)
572     * @see        List
641       */
642      public synchronized void addElement(E obj) {
643 <        modCount++;
644 <        ensureCapacityHelper(elementCount + 1);
577 <        elementData[elementCount++] = obj;
643 >        modCount++;
644 >        add(obj, elementData, elementCount);
645      }
646  
647      /**
# Line 584 | Line 651 | public class Vector<E>
651       * object's index is shifted downward to have an index one smaller
652       * than the value it had previously.
653       *
654 <     * <p>This method is identical in functionality to the remove(Object)
655 <     * method (which is part of the List interface).
654 >     * <p>This method is identical in functionality to the
655 >     * {@link #remove(Object)} method (which is part of the
656 >     * {@link List} interface).
657       *
658       * @param   obj   the component to be removed
659       * @return  {@code true} if the argument was a component of this
660       *          vector; {@code false} otherwise.
593     * @see     List#remove(Object)
594     * @see     List
661       */
662      public synchronized boolean removeElement(Object obj) {
663 <        modCount++;
664 <        int i = indexOf(obj);
665 <        if (i >= 0) {
666 <            removeElementAt(i);
667 <            return true;
668 <        }
669 <        return false;
663 >        modCount++;
664 >        int i = indexOf(obj);
665 >        if (i >= 0) {
666 >            removeElementAt(i);
667 >            return true;
668 >        }
669 >        return false;
670      }
671  
672      /**
673 <     * Removes all components from this vector and sets its size to zero.<p>
673 >     * Removes all components from this vector and sets its size to zero.
674       *
675 <     * This method is identical in functionality to the clear method
676 <     * (which is part of the List interface).
611 <     *
612 <     * @see     #clear
613 <     * @see     List
675 >     * <p>This method is identical in functionality to the {@link #clear}
676 >     * method (which is part of the {@link List} interface).
677       */
678      public synchronized void removeAllElements() {
679 +        Arrays.fill(elementData, 0, elementCount, null);
680          modCount++;
681 <        // Let gc do its work
618 <        for (int i = 0; i < elementCount; i++)
619 <            elementData[i] = null;
620 <
621 <        elementCount = 0;
681 >        elementCount = 0;
682      }
683  
684      /**
# Line 629 | Line 689 | public class Vector<E>
689       * @return  a clone of this vector
690       */
691      public synchronized Object clone() {
692 <        try {
693 <            Vector<E> v = (Vector<E>) super.clone();
694 <            v.elementData = Arrays.copyOf(elementData, elementCount);
695 <            v.modCount = 0;
696 <            return v;
697 <        } catch (CloneNotSupportedException e) {
698 <            // this shouldn't happen, since we are Cloneable
699 <            throw new InternalError();
700 <        }
692 >        try {
693 >            @SuppressWarnings("unchecked")
694 >            Vector<E> v = (Vector<E>) super.clone();
695 >            v.elementData = Arrays.copyOf(elementData, elementCount);
696 >            v.modCount = 0;
697 >            return v;
698 >        } catch (CloneNotSupportedException e) {
699 >            // this shouldn't happen, since we are Cloneable
700 >            throw new InternalError(e);
701 >        }
702      }
703  
704      /**
# Line 664 | Line 725 | public class Vector<E>
725       * of the Vector <em>only</em> if the caller knows that the Vector
726       * does not contain any null elements.)
727       *
728 +     * @param <T> type of array elements. The same type as {@code <E>} or a
729 +     * supertype of {@code <E>}.
730       * @param a the array into which the elements of the Vector are to
731 <     *          be stored, if it is big enough; otherwise, a new array of the
732 <     *          same runtime type is allocated for this purpose.
731 >     *          be stored, if it is big enough; otherwise, a new array of the
732 >     *          same runtime type is allocated for this purpose.
733       * @return an array containing the elements of the Vector
734 <     * @throws ArrayStoreException the runtime type of a is not a supertype
735 <     * of the runtime type of every element in this Vector
734 >     * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
735 >     * a supertype of the runtime type, {@code <E>}, of every element in this
736 >     * Vector
737       * @throws NullPointerException if the given array is null
738       * @since 1.2
739       */
740 +    @SuppressWarnings("unchecked")
741      public synchronized <T> T[] toArray(T[] a) {
742          if (a.length < elementCount)
743              return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
744  
745 <        System.arraycopy(elementData, 0, a, 0, elementCount);
745 >        System.arraycopy(elementData, 0, a, 0, elementCount);
746  
747          if (a.length > elementCount)
748              a[elementCount] = null;
# Line 687 | Line 752 | public class Vector<E>
752  
753      // Positional Access Operations
754  
755 +    @SuppressWarnings("unchecked")
756 +    E elementData(int index) {
757 +        return (E) elementData[index];
758 +    }
759 +
760 +    @SuppressWarnings("unchecked")
761 +    static <E> E elementAt(Object[] es, int index) {
762 +        return (E) es[index];
763 +    }
764 +
765      /**
766       * Returns the element at the specified position in this Vector.
767       *
768       * @param index index of the element to return
769       * @return object at the specified index
770 <     * @exception ArrayIndexOutOfBoundsException index is out of range (index
771 <     *            &lt; 0 || index &gt;= size())
770 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
771 >     *            ({@code index < 0 || index >= size()})
772       * @since 1.2
773       */
774      public synchronized E get(int index) {
775 <        if (index >= elementCount)
776 <            throw new ArrayIndexOutOfBoundsException(index);
775 >        if (index >= elementCount)
776 >            throw new ArrayIndexOutOfBoundsException(index);
777  
778 <        return (E)elementData[index];
778 >        return elementData(index);
779      }
780  
781      /**
# Line 710 | Line 785 | public class Vector<E>
785       * @param index index of the element to replace
786       * @param element element to be stored at the specified position
787       * @return the element previously at the specified position
788 <     * @exception ArrayIndexOutOfBoundsException index out of range
789 <     *            (index &lt; 0 || index &gt;= size())
788 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
789 >     *         ({@code index < 0 || index >= size()})
790       * @since 1.2
791       */
792      public synchronized E set(int index, E element) {
793 <        if (index >= elementCount)
794 <            throw new ArrayIndexOutOfBoundsException(index);
793 >        if (index >= elementCount)
794 >            throw new ArrayIndexOutOfBoundsException(index);
795 >
796 >        E oldValue = elementData(index);
797 >        elementData[index] = element;
798 >        return oldValue;
799 >    }
800  
801 <        Object oldValue = elementData[index];
802 <        elementData[index] = element;
803 <        return (E)oldValue;
801 >    /**
802 >     * This helper method split out from add(E) to keep method
803 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
804 >     * which helps when add(E) is called in a C1-compiled loop.
805 >     */
806 >    private void add(E e, Object[] elementData, int s) {
807 >        if (s == elementData.length)
808 >            elementData = grow();
809 >        elementData[s] = e;
810 >        elementCount = s + 1;
811 >        // checkInvariants();
812      }
813  
814      /**
# Line 731 | Line 819 | public class Vector<E>
819       * @since 1.2
820       */
821      public synchronized boolean add(E e) {
822 <        modCount++;
823 <        ensureCapacityHelper(elementCount + 1);
736 <        elementData[elementCount++] = e;
822 >        modCount++;
823 >        add(e, elementData, elementCount);
824          return true;
825      }
826  
# Line 741 | Line 828 | public class Vector<E>
828       * Removes the first occurrence of the specified element in this Vector
829       * If the Vector does not contain the element, it is unchanged.  More
830       * formally, removes the element with the lowest index i such that
831 <     * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
831 >     * {@code Objects.equals(o, get(i))} (if such
832       * an element exists).
833       *
834       * @param o element to be removed from this Vector, if present
# Line 759 | Line 846 | public class Vector<E>
846       *
847       * @param index index at which the specified element is to be inserted
848       * @param element element to be inserted
849 <     * @exception ArrayIndexOutOfBoundsException index is out of range
850 <     *            (index &lt; 0 || index &gt; size())
849 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
850 >     *         ({@code index < 0 || index > size()})
851       * @since 1.2
852       */
853      public void add(int index, E element) {
# Line 772 | Line 859 | public class Vector<E>
859       * Shifts any subsequent elements to the left (subtracts one from their
860       * indices).  Returns the element that was removed from the Vector.
861       *
775     * @exception ArrayIndexOutOfBoundsException index out of range (index
776     *            &lt; 0 || index &gt;= size())
862       * @param index the index of the element to be removed
863       * @return element that was removed
864 +     * @throws ArrayIndexOutOfBoundsException if the index is out of range
865 +     *         ({@code index < 0 || index >= size()})
866       * @since 1.2
867       */
868      public synchronized E remove(int index) {
869 <        modCount++;
870 <        if (index >= elementCount)
871 <            throw new ArrayIndexOutOfBoundsException(index);
872 <        Object oldValue = elementData[index];
873 <
874 <        int numMoved = elementCount - index - 1;
875 <        if (numMoved > 0)
876 <            System.arraycopy(elementData, index+1, elementData, index,
877 <                             numMoved);
878 <        elementData[--elementCount] = null; // Let gc do its work
869 >        modCount++;
870 >        if (index >= elementCount)
871 >            throw new ArrayIndexOutOfBoundsException(index);
872 >        E oldValue = elementData(index);
873 >
874 >        int numMoved = elementCount - index - 1;
875 >        if (numMoved > 0)
876 >            System.arraycopy(elementData, index+1, elementData, index,
877 >                             numMoved);
878 >        elementData[--elementCount] = null; // Let gc do its work
879  
880 <        return (E)oldValue;
880 >        // checkInvariants();
881 >        return oldValue;
882      }
883  
884      /**
# Line 812 | Line 900 | public class Vector<E>
900       * @param   c a collection whose elements will be tested for containment
901       *          in this Vector
902       * @return true if this Vector contains all of the elements in the
903 <     *         specified collection
903 >     *         specified collection
904       * @throws NullPointerException if the specified collection is null
905       */
906      public synchronized boolean containsAll(Collection<?> c) {
# Line 832 | Line 920 | public class Vector<E>
920       * @throws NullPointerException if the specified collection is null
921       * @since 1.2
922       */
923 <    public synchronized boolean addAll(Collection<? extends E> c) {
836 <        modCount++;
923 >    public boolean addAll(Collection<? extends E> c) {
924          Object[] a = c.toArray();
925 +        modCount++;
926          int numNew = a.length;
927 <        ensureCapacityHelper(elementCount + numNew);
928 <        System.arraycopy(a, 0, elementData, elementCount, numNew);
929 <        elementCount += numNew;
930 <        return numNew != 0;
927 >        if (numNew == 0)
928 >            return false;
929 >        synchronized (this) {
930 >            Object[] elementData = this.elementData;
931 >            final int s = elementCount;
932 >            if (numNew > elementData.length - s)
933 >                elementData = grow(s + numNew);
934 >            System.arraycopy(a, 0, elementData, s, numNew);
935 >            elementCount = s + numNew;
936 >            // checkInvariants();
937 >            return true;
938 >        }
939      }
940  
941      /**
# Line 850 | Line 946 | public class Vector<E>
946       * @return true if this Vector changed as a result of the call
947       * @throws ClassCastException if the types of one or more elements
948       *         in this vector are incompatible with the specified
949 <     *         collection (optional)
949 >     *         collection
950 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
951       * @throws NullPointerException if this vector contains one or more null
952       *         elements and the specified collection does not support null
953 <     *         elements (optional), or if the specified collection is null
953 >     *         elements
954 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
955 >     *         or if the specified collection is null
956       * @since 1.2
957       */
958 <    public synchronized boolean removeAll(Collection<?> c) {
959 <        return super.removeAll(c);
958 >    public boolean removeAll(Collection<?> c) {
959 >        Objects.requireNonNull(c);
960 >        return bulkRemove(e -> c.contains(e));
961      }
962  
963      /**
# Line 870 | Line 970 | public class Vector<E>
970       * @return true if this Vector changed as a result of the call
971       * @throws ClassCastException if the types of one or more elements
972       *         in this vector are incompatible with the specified
973 <     *         collection (optional)
973 >     *         collection
974 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
975       * @throws NullPointerException if this vector contains one or more null
976       *         elements and the specified collection does not support null
977 <     *         elements (optional), or if the specified collection is null
977 >     *         elements
978 >     *         (<a href="Collection.html#optional-restrictions">optional</a>),
979 >     *         or if the specified collection is null
980       * @since 1.2
981       */
982 <    public synchronized boolean retainAll(Collection<?> c)  {
983 <        return super.retainAll(c);
982 >    public boolean retainAll(Collection<?> c) {
983 >        Objects.requireNonNull(c);
984 >        return bulkRemove(e -> !c.contains(e));
985 >    }
986 >
987 >    @Override
988 >    public boolean removeIf(Predicate<? super E> filter) {
989 >        Objects.requireNonNull(filter);
990 >        return bulkRemove(filter);
991 >    }
992 >
993 >    // A tiny bit set implementation
994 >
995 >    private static long[] nBits(int n) {
996 >        return new long[((n - 1) >> 6) + 1];
997 >    }
998 >    private static void setBit(long[] bits, int i) {
999 >        bits[i >> 6] |= 1L << i;
1000 >    }
1001 >    private static boolean isClear(long[] bits, int i) {
1002 >        return (bits[i >> 6] & (1L << i)) == 0;
1003 >    }
1004 >
1005 >    private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1006 >        int expectedModCount = modCount;
1007 >        final Object[] es = elementData;
1008 >        final int end = elementCount;
1009 >        int i;
1010 >        // Optimize for initial run of survivors
1011 >        for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1012 >            ;
1013 >        // Tolerate predicates that reentrantly access the collection for
1014 >        // read (but writers still get CME), so traverse once to find
1015 >        // elements to delete, a second pass to physically expunge.
1016 >        if (i < end) {
1017 >            final int beg = i;
1018 >            final long[] deathRow = nBits(end - beg);
1019 >            deathRow[0] = 1L;   // set bit 0
1020 >            for (i = beg + 1; i < end; i++)
1021 >                if (filter.test(elementAt(es, i)))
1022 >                    setBit(deathRow, i - beg);
1023 >            if (modCount != expectedModCount)
1024 >                throw new ConcurrentModificationException();
1025 >            expectedModCount++;
1026 >            modCount++;
1027 >            int w = beg;
1028 >            for (i = beg; i < end; i++)
1029 >                if (isClear(deathRow, i - beg))
1030 >                    es[w++] = es[i];
1031 >            Arrays.fill(es, elementCount = w, end, null);
1032 >            // checkInvariants();
1033 >            return true;
1034 >        } else {
1035 >            if (modCount != expectedModCount)
1036 >                throw new ConcurrentModificationException();
1037 >            // checkInvariants();
1038 >            return false;
1039 >        }
1040      }
1041  
1042      /**
# Line 892 | Line 1051 | public class Vector<E>
1051       *              specified collection
1052       * @param c elements to be inserted into this Vector
1053       * @return {@code true} if this Vector changed as a result of the call
1054 <     * @exception ArrayIndexOutOfBoundsException index out of range (index
1055 <     *            &lt; 0 || index &gt; size())
1054 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
1055 >     *         ({@code index < 0 || index > size()})
1056       * @throws NullPointerException if the specified collection is null
1057       * @since 1.2
1058       */
1059      public synchronized boolean addAll(int index, Collection<? extends E> c) {
1060 <        modCount++;
1061 <        if (index < 0 || index > elementCount)
903 <            throw new ArrayIndexOutOfBoundsException(index);
1060 >        if (index < 0 || index > elementCount)
1061 >            throw new ArrayIndexOutOfBoundsException(index);
1062  
1063          Object[] a = c.toArray();
1064 <        int numNew = a.length;
1065 <        ensureCapacityHelper(elementCount + numNew);
1066 <
1067 <        int numMoved = elementCount - index;
1068 <        if (numMoved > 0)
1069 <            System.arraycopy(elementData, index, elementData, index + numNew,
1070 <                             numMoved);
1071 <
1064 >        modCount++;
1065 >        int numNew = a.length;
1066 >        if (numNew == 0)
1067 >            return false;
1068 >        Object[] elementData = this.elementData;
1069 >        final int s = elementCount;
1070 >        if (numNew > elementData.length - s)
1071 >            elementData = grow(s + numNew);
1072 >
1073 >        int numMoved = s - index;
1074 >        if (numMoved > 0)
1075 >            System.arraycopy(elementData, index,
1076 >                             elementData, index + numNew,
1077 >                             numMoved);
1078          System.arraycopy(a, 0, elementData, index, numNew);
1079 <        elementCount += numNew;
1080 <        return numNew != 0;
1079 >        elementCount = s + numNew;
1080 >        // checkInvariants();
1081 >        return true;
1082      }
1083  
1084      /**
# Line 921 | Line 1086 | public class Vector<E>
1086       * true if and only if the specified Object is also a List, both Lists
1087       * have the same size, and all corresponding pairs of elements in the two
1088       * Lists are <em>equal</em>.  (Two elements {@code e1} and
1089 <     * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
1090 <     * e1.equals(e2))}.)  In other words, two Lists are defined to be
1089 >     * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1090 >     * In other words, two Lists are defined to be
1091       * equal if they contain the same elements in the same order.
1092       *
1093       * @param o the Object to be compared for equality with this Vector
# Line 948 | Line 1113 | public class Vector<E>
1113      }
1114  
1115      /**
1116 <     * Removes from this List all of the elements whose index is between
1117 <     * fromIndex, inclusive and toIndex, exclusive.  Shifts any succeeding
1118 <     * elements to the left (reduces their index).
1119 <     * This call shortens the Vector by (toIndex - fromIndex) elements.  (If
1120 <     * toIndex==fromIndex, this operation has no effect.)
1116 >     * Returns a view of the portion of this List between fromIndex,
1117 >     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1118 >     * equal, the returned List is empty.)  The returned List is backed by this
1119 >     * List, so changes in the returned List are reflected in this List, and
1120 >     * vice-versa.  The returned List supports all of the optional List
1121 >     * operations supported by this List.
1122 >     *
1123 >     * <p>This method eliminates the need for explicit range operations (of
1124 >     * the sort that commonly exist for arrays).  Any operation that expects
1125 >     * a List can be used as a range operation by operating on a subList view
1126 >     * instead of a whole List.  For example, the following idiom
1127 >     * removes a range of elements from a List:
1128 >     * <pre>
1129 >     *      list.subList(from, to).clear();
1130 >     * </pre>
1131 >     * Similar idioms may be constructed for indexOf and lastIndexOf,
1132 >     * and all of the algorithms in the Collections class can be applied to
1133 >     * a subList.
1134       *
1135 <     * @param fromIndex index of first element to be removed
1136 <     * @param toIndex index after last element to be removed
1135 >     * <p>The semantics of the List returned by this method become undefined if
1136 >     * the backing list (i.e., this List) is <i>structurally modified</i> in
1137 >     * any way other than via the returned List.  (Structural modifications are
1138 >     * those that change the size of the List, or otherwise perturb it in such
1139 >     * a fashion that iterations in progress may yield incorrect results.)
1140 >     *
1141 >     * @param fromIndex low endpoint (inclusive) of the subList
1142 >     * @param toIndex high endpoint (exclusive) of the subList
1143 >     * @return a view of the specified range within this List
1144 >     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1145 >     *         {@code (fromIndex < 0 || toIndex > size)}
1146 >     * @throws IllegalArgumentException if the endpoint indices are out of order
1147 >     *         {@code (fromIndex > toIndex)}
1148 >     */
1149 >    public synchronized List<E> subList(int fromIndex, int toIndex) {
1150 >        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1151 >                                            this);
1152 >    }
1153 >
1154 >    /**
1155 >     * Removes from this list all of the elements whose index is between
1156 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1157 >     * Shifts any succeeding elements to the left (reduces their index).
1158 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1159 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
1160       */
1161      protected synchronized void removeRange(int fromIndex, int toIndex) {
1162 <        modCount++;
1163 <        int numMoved = elementCount - toIndex;
1164 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
1165 <                         numMoved);
1166 <
1167 <        // Let gc do its work
1168 <        int newElementCount = elementCount - (toIndex-fromIndex);
968 <        while (elementCount != newElementCount)
969 <            elementData[--elementCount] = null;
1162 >        final Object[] es = elementData;
1163 >        final int oldSize = elementCount;
1164 >        System.arraycopy(es, toIndex, es, fromIndex, oldSize - toIndex);
1165 >
1166 >        modCount++;
1167 >        Arrays.fill(es, elementCount -= (toIndex - fromIndex), oldSize, null);
1168 >        // checkInvariants();
1169      }
1170  
1171      /**
1172       * Save the state of the {@code Vector} instance to a stream (that
1173 <     * is, serialize it).  This method is present merely for synchronization.
1174 <     * It just calls the default writeObject method.
1173 >     * is, serialize it).
1174 >     * This method performs synchronization to ensure the consistency
1175 >     * of the serialized data.
1176       */
1177 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
1178 <        throws java.io.IOException
1179 <    {
1180 <        s.defaultWriteObject();
1177 >    private void writeObject(java.io.ObjectOutputStream s)
1178 >            throws java.io.IOException {
1179 >        final java.io.ObjectOutputStream.PutField fields = s.putFields();
1180 >        final Object[] data;
1181 >        synchronized (this) {
1182 >            fields.put("capacityIncrement", capacityIncrement);
1183 >            fields.put("elementCount", elementCount);
1184 >            data = elementData.clone();
1185 >        }
1186 >        fields.put("elementData", data);
1187 >        s.writeFields();
1188      }
1189  
1190      /**
1191 <     * Returns a list-iterator of the elements in this list (in proper
1191 >     * Returns a list iterator over the elements in this list (in proper
1192       * sequence), starting at the specified position in the list.
1193 <     * Obeys the general contract of {@link List#listIterator(int)}.
1193 >     * The specified index indicates the first element that would be
1194 >     * returned by an initial call to {@link ListIterator#next next}.
1195 >     * An initial call to {@link ListIterator#previous previous} would
1196 >     * return the element with the specified index minus one.
1197 >     *
1198 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1199       *
988     * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
989     * modified at any time after the Iterator is created, in any way except
990     * through the list-iterator's own {@code remove} or {@code add}
991     * methods, the list-iterator will throw a
992     * {@code ConcurrentModificationException}.  Thus, in the face of
993     * concurrent modification, the iterator fails quickly and cleanly, rather
994     * than risking arbitrary, non-deterministic behavior at an undetermined
995     * time in the future.
996     *
997     * @param index index of the first element to be returned from the
998     *        list-iterator (by a call to {@link ListIterator#next})
999     * @return a list-iterator of the elements in this list (in proper
1000     *         sequence), starting at the specified position in the list
1200       * @throws IndexOutOfBoundsException {@inheritDoc}
1201       */
1202      public synchronized ListIterator<E> listIterator(int index) {
1203 <        if (index < 0 || index > elementCount)
1203 >        if (index < 0 || index > elementCount)
1204              throw new IndexOutOfBoundsException("Index: "+index);
1205 <        return new VectorIterator(index, elementCount);
1205 >        return new ListItr(index);
1206      }
1207  
1208      /**
1209 <     * {@inheritDoc}
1209 >     * Returns a list iterator over the elements in this list (in proper
1210 >     * sequence).
1211 >     *
1212 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1213 >     *
1214 >     * @see #listIterator(int)
1215       */
1216      public synchronized ListIterator<E> listIterator() {
1217 <        return new VectorIterator(0, elementCount);
1217 >        return new ListItr(0);
1218      }
1219  
1220      /**
1221       * Returns an iterator over the elements in this list in proper sequence.
1222       *
1223 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1224 +     *
1225       * @return an iterator over the elements in this list in proper sequence
1226       */
1227      public synchronized Iterator<E> iterator() {
1228 <        return new VectorIterator(0, elementCount);
1228 >        return new Itr();
1229      }
1230  
1231      /**
1232 <     * Helper method to access array elements under synchronization by
1027 <     * iterators. The caller performs index check with respect to
1028 <     * expected bounds, so errors accessing the element are reported
1029 <     * as ConcurrentModificationExceptions.
1232 >     * An optimized version of AbstractList.Itr
1233       */
1234 <    final synchronized Object iteratorGet(int index, int expectedModCount) {
1235 <        if (modCount == expectedModCount) {
1236 <            try {
1237 <                return elementData[index];
1035 <            } catch(IndexOutOfBoundsException fallThrough) {
1036 <            }
1037 <        }
1038 <        throw new ConcurrentModificationException();
1039 <    }
1040 <
1041 <    /**
1042 <     * Streamlined specialization of AbstractList version of iterator.
1043 <     * Locally perfroms bounds checks, but relies on outer Vector
1044 <     * to access elements under synchronization.
1045 <     */
1046 <    private final class VectorIterator implements ListIterator<E> {
1047 <        int cursor;              // Index of next element to return;
1048 <        int fence;               // Upper bound on cursor (cache of size())
1049 <        int lastRet;             // Index of last element, or -1 if no such
1050 <        int expectedModCount;    // To check for CME
1051 <
1052 <        VectorIterator(int index, int fence) {
1053 <            this.cursor = index;
1054 <            this.fence = fence;
1055 <            this.lastRet = -1;
1056 <            this.expectedModCount = Vector.this.modCount;
1057 <        }
1058 <
1059 <        public boolean hasNext() {
1060 <            return cursor < fence;
1061 <        }
1062 <
1063 <        public boolean hasPrevious() {
1064 <            return cursor > 0;
1065 <        }
1066 <
1067 <        public int nextIndex() {
1068 <            return cursor;
1069 <        }
1070 <
1071 <        public int previousIndex() {
1072 <            return cursor - 1;
1073 <        }
1074 <
1075 <        public E next() {
1076 <            int i = cursor;
1077 <            if (i >= fence)
1078 <                throw new NoSuchElementException();
1079 <            Object next = Vector.this.iteratorGet(i, expectedModCount);
1080 <            lastRet = i;
1081 <            cursor = i + 1;
1082 <            return (E)next;
1083 <        }
1234 >    private class Itr implements Iterator<E> {
1235 >        int cursor;       // index of next element to return
1236 >        int lastRet = -1; // index of last element returned; -1 if no such
1237 >        int expectedModCount = modCount;
1238  
1239 <        public E previous() {
1240 <            int i = cursor - 1;
1241 <            if (i < 0)
1242 <                throw new NoSuchElementException();
1089 <            Object prev = Vector.this.iteratorGet(i, expectedModCount);
1090 <            lastRet = i;
1091 <            cursor = i;
1092 <            return (E)prev;
1239 >        public boolean hasNext() {
1240 >            // Racy but within spec, since modifications are checked
1241 >            // within or after synchronization in next/previous
1242 >            return cursor != elementCount;
1243          }
1244  
1245 <        public void set(E e) {
1246 <            if (lastRet < 0)
1247 <                throw new IllegalStateException();
1098 <            if (Vector.this.modCount != expectedModCount)
1099 <                throw new ConcurrentModificationException();
1100 <            try {
1101 <                Vector.this.set(lastRet, e);
1102 <                expectedModCount = Vector.this.modCount;
1103 <            } catch (IndexOutOfBoundsException ex) {
1104 <                throw new ConcurrentModificationException();
1105 <            }
1106 <        }
1107 <
1108 <        public void remove() {
1109 <            int i = lastRet;
1110 <            if (i < 0)
1111 <                throw new IllegalStateException();
1112 <            if (Vector.this.modCount != expectedModCount)
1113 <                throw new ConcurrentModificationException();
1114 <            try {
1115 <                Vector.this.remove(i);
1116 <                if (i < cursor)
1117 <                    cursor--;
1118 <                lastRet = -1;
1119 <                fence = Vector.this.size();
1120 <                expectedModCount = Vector.this.modCount;
1121 <            } catch (IndexOutOfBoundsException ex) {
1122 <                throw new ConcurrentModificationException();
1123 <            }
1124 <        }
1125 <
1126 <        public void add(E e) {
1127 <            if (Vector.this.modCount != expectedModCount)
1128 <                throw new ConcurrentModificationException();
1129 <            try {
1245 >        public E next() {
1246 >            synchronized (Vector.this) {
1247 >                checkForComodification();
1248                  int i = cursor;
1249 <                Vector.this.add(i, e);
1249 >                if (i >= elementCount)
1250 >                    throw new NoSuchElementException();
1251                  cursor = i + 1;
1252 <                lastRet = -1;
1134 <                fence = Vector.this.size();
1135 <                expectedModCount = Vector.this.modCount;
1136 <            } catch (IndexOutOfBoundsException ex) {
1137 <                throw new ConcurrentModificationException();
1138 <            }
1139 <        }
1140 <    }
1141 <
1142 <    /**
1143 <     * Returns a view of the portion of this List between fromIndex,
1144 <     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1145 <     * equal, the returned List is empty.)  The returned List is backed by this
1146 <     * List, so changes in the returned List are reflected in this List, and
1147 <     * vice-versa.  The returned List supports all of the optional List
1148 <     * operations supported by this List.
1149 <     *
1150 <     * <p>This method eliminates the need for explicit range operations (of
1151 <     * the sort that commonly exist for arrays).   Any operation that expects
1152 <     * a List can be used as a range operation by operating on a subList view
1153 <     * instead of a whole List.  For example, the following idiom
1154 <     * removes a range of elements from a List:
1155 <     * <pre>
1156 <     *      list.subList(from, to).clear();
1157 <     * </pre>
1158 <     * Similar idioms may be constructed for indexOf and lastIndexOf,
1159 <     * and all of the algorithms in the Collections class can be applied to
1160 <     * a subList.
1161 <     *
1162 <     * <p>The semantics of the List returned by this method become undefined if
1163 <     * the backing list (i.e., this List) is <i>structurally modified</i> in
1164 <     * any way other than via the returned List.  (Structural modifications are
1165 <     * those that change the size of the List, or otherwise perturb it in such
1166 <     * a fashion that iterations in progress may yield incorrect results.)
1167 <     *
1168 <     * @param fromIndex low endpoint (inclusive) of the subList
1169 <     * @param toIndex high endpoint (exclusive) of the subList
1170 <     * @return a view of the specified range within this List
1171 <     * @throws IndexOutOfBoundsException endpoint index value out of range
1172 <     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1173 <     * @throws IllegalArgumentException endpoint indices out of order
1174 <     *         <code>(fromIndex &gt; toIndex)</code>
1175 <     */
1176 <    public synchronized List<E> subList(int fromIndex, int toIndex) {
1177 <        return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1178 <    }
1179 <
1180 <    /**
1181 <     * This class specializes the AbstractList version of SubList to
1182 <     * avoid the double-indirection penalty that would arise using a
1183 <     * synchronized wrapper, as well as to avoid some unnecessary
1184 <     * checks in sublist iterators.
1185 <     */
1186 <    private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1187 <        final Vector<E> base;             // base list
1188 <        final AbstractList<E> parent;     // Creating list
1189 <        final int baseOffset;             // index wrt Vector
1190 <        final int parentOffset;           // index wrt parent
1191 <        int length;                       // length of sublist
1192 <
1193 <        VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1194 <                     int fromIndex, int toIndex) {
1195 <            if (fromIndex < 0)
1196 <                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1197 <            if (toIndex > parent.size())
1198 <                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1199 <            if (fromIndex > toIndex)
1200 <                throw new IllegalArgumentException("fromIndex(" + fromIndex +
1201 <                                                   ") > toIndex(" + toIndex + ")");
1202 <
1203 <            this.base = base;
1204 <            this.parent = parent;
1205 <            this.baseOffset = baseOffset;
1206 <            this.parentOffset = fromIndex;
1207 <            this.length = toIndex - fromIndex;
1208 <            modCount = base.modCount;
1209 <        }
1210 <
1211 <        /**
1212 <         * Returns an IndexOutOfBoundsException with nicer message
1213 <         */
1214 <        private IndexOutOfBoundsException indexError(int index) {
1215 <            return new IndexOutOfBoundsException("Index: " + index +
1216 <                                                 ", Size: " + length);
1217 <        }
1218 <
1219 <        public E set(int index, E element) {
1220 <            synchronized(base) {
1221 <                if (index < 0 || index >= length)
1222 <                    throw indexError(index);
1223 <                if (base.modCount != modCount)
1224 <                    throw new ConcurrentModificationException();
1225 <                return base.set(index + baseOffset, element);
1226 <            }
1227 <        }
1228 <
1229 <        public E get(int index) {
1230 <            synchronized(base) {
1231 <                if (index < 0 || index >= length)
1232 <                    throw indexError(index);
1233 <                if (base.modCount != modCount)
1234 <                    throw new ConcurrentModificationException();
1235 <                return base.get(index + baseOffset);
1252 >                return elementData(lastRet = i);
1253              }
1254          }
1255  
1256 <        public int size() {
1257 <            synchronized(base) {
1258 <                if (base.modCount != modCount)
1259 <                    throw new ConcurrentModificationException();
1260 <                return length;
1256 >        public void remove() {
1257 >            if (lastRet == -1)
1258 >                throw new IllegalStateException();
1259 >            synchronized (Vector.this) {
1260 >                checkForComodification();
1261 >                Vector.this.remove(lastRet);
1262 >                expectedModCount = modCount;
1263              }
1264 +            cursor = lastRet;
1265 +            lastRet = -1;
1266          }
1267  
1268 <        public void add(int index, E element) {
1269 <            synchronized(base) {
1270 <                if (index < 0 || index > length)
1271 <                    throw indexError(index);
1272 <                if (base.modCount != modCount)
1273 <                    throw new ConcurrentModificationException();
1274 <                parent.add(index + parentOffset, element);
1275 <                length++;
1276 <                modCount = base.modCount;
1277 <            }
1278 <        }
1258 <
1259 <        public E remove(int index) {
1260 <            synchronized(base) {
1261 <                if (index < 0 || index >= length)
1262 <                    throw indexError(index);
1263 <                if (base.modCount != modCount)
1264 <                    throw new ConcurrentModificationException();
1265 <                E result = parent.remove(index + parentOffset);
1266 <                length--;
1267 <                modCount = base.modCount;
1268 <                return result;
1269 <            }
1270 <        }
1271 <
1272 <        protected void removeRange(int fromIndex, int toIndex) {
1273 <            synchronized(base) {
1274 <                if (base.modCount != modCount)
1275 <                    throw new ConcurrentModificationException();
1276 <                parent.removeRange(fromIndex + parentOffset,
1277 <                                   toIndex + parentOffset);
1278 <                length -= (toIndex-fromIndex);
1279 <                modCount = base.modCount;
1280 <            }
1281 <        }
1282 <
1283 <        public boolean addAll(Collection<? extends E> c) {
1284 <            return addAll(length, c);
1285 <        }
1286 <
1287 <        public boolean addAll(int index, Collection<? extends E> c) {
1288 <            synchronized(base) {
1289 <                if (index < 0 || index > length)
1290 <                    throw indexError(index);
1291 <                int cSize = c.size();
1292 <                if (cSize==0)
1293 <                    return false;
1294 <
1295 <                if (base.modCount != modCount)
1268 >        @Override
1269 >        public void forEachRemaining(Consumer<? super E> action) {
1270 >            Objects.requireNonNull(action);
1271 >            synchronized (Vector.this) {
1272 >                final int size = elementCount;
1273 >                int i = cursor;
1274 >                if (i >= size) {
1275 >                    return;
1276 >                }
1277 >                final Object[] es = elementData;
1278 >                if (i >= es.length)
1279                      throw new ConcurrentModificationException();
1280 <                parent.addAll(parentOffset + index, c);
1281 <                modCount = base.modCount;
1282 <                length += cSize;
1283 <                return true;
1280 >                while (i < size && modCount == expectedModCount)
1281 >                    action.accept(elementAt(es, i++));
1282 >                // update once at end of iteration to reduce heap write traffic
1283 >                cursor = i;
1284 >                lastRet = i - 1;
1285 >                checkForComodification();
1286              }
1287          }
1288  
1289 <        public boolean equals(Object o) {
1290 <            synchronized(base) {return super.equals(o);}
1289 >        final void checkForComodification() {
1290 >            if (modCount != expectedModCount)
1291 >                throw new ConcurrentModificationException();
1292          }
1293 +    }
1294  
1295 <        public int hashCode() {
1296 <            synchronized(base) {return super.hashCode();}
1295 >    /**
1296 >     * An optimized version of AbstractList.ListItr
1297 >     */
1298 >    final class ListItr extends Itr implements ListIterator<E> {
1299 >        ListItr(int index) {
1300 >            super();
1301 >            cursor = index;
1302          }
1303  
1304 <        public int indexOf(Object o) {
1305 <            synchronized(base) {return super.indexOf(o);}
1304 >        public boolean hasPrevious() {
1305 >            return cursor != 0;
1306          }
1307  
1308 <        public int lastIndexOf(Object o) {
1309 <            synchronized(base) {return super.lastIndexOf(o);}
1308 >        public int nextIndex() {
1309 >            return cursor;
1310          }
1311  
1312 <        public List<E> subList(int fromIndex, int toIndex) {
1313 <            return new VectorSubList(base, this, fromIndex + baseOffset,
1322 <                                     fromIndex, toIndex);
1312 >        public int previousIndex() {
1313 >            return cursor - 1;
1314          }
1315  
1316 <        public Iterator<E> iterator() {
1317 <            synchronized(base) {
1318 <                return new VectorSubListIterator(this, 0);
1316 >        public E previous() {
1317 >            synchronized (Vector.this) {
1318 >                checkForComodification();
1319 >                int i = cursor - 1;
1320 >                if (i < 0)
1321 >                    throw new NoSuchElementException();
1322 >                cursor = i;
1323 >                return elementData(lastRet = i);
1324              }
1325          }
1326  
1327 <        public synchronized ListIterator<E> listIterator() {
1328 <            synchronized(base) {
1329 <                return new VectorSubListIterator(this, 0);
1327 >        public void set(E e) {
1328 >            if (lastRet == -1)
1329 >                throw new IllegalStateException();
1330 >            synchronized (Vector.this) {
1331 >                checkForComodification();
1332 >                Vector.this.set(lastRet, e);
1333              }
1334          }
1335  
1336 <        public ListIterator<E> listIterator(int index) {
1337 <            synchronized(base) {
1338 <                if (index < 0 || index > length)
1339 <                    throw indexError(index);
1340 <                return new VectorSubListIterator(this, index);
1336 >        public void add(E e) {
1337 >            int i = cursor;
1338 >            synchronized (Vector.this) {
1339 >                checkForComodification();
1340 >                Vector.this.add(i, e);
1341 >                expectedModCount = modCount;
1342              }
1343 +            cursor = i + 1;
1344 +            lastRet = -1;
1345          }
1346 +    }
1347  
1348 <        /**
1349 <         * Same idea as VectorIterator, except routing structural
1350 <         * change operations through the sublist.
1351 <         */
1352 <        private static final class VectorSubListIterator<E> implements ListIterator<E> {
1353 <            final Vector<E> base;         // base list
1354 <            final VectorSubList<E> outer; // Sublist creating this iteraor
1355 <            final int offset;             // cursor offset wrt base
1356 <            int cursor;                   // Current index
1357 <            int fence;                    // Upper bound on cursor
1358 <            int lastRet;                  // Index of returned element, or -1
1359 <            int expectedModCount;         // Expected modCount of base Vector
1360 <
1361 <            VectorSubListIterator(VectorSubList<E> list, int index) {
1362 <                this.lastRet = -1;
1363 <                this.cursor = index;
1364 <                this.outer = list;
1365 <                this.offset = list.baseOffset;
1366 <                this.fence = list.length;
1367 <                this.base = list.base;
1368 <                this.expectedModCount = base.modCount;
1369 <            }
1370 <
1371 <            public boolean hasNext() {
1372 <                return cursor < fence;
1373 <            }
1371 <
1372 <            public boolean hasPrevious() {
1373 <                return cursor > 0;
1374 <            }
1348 >    @Override
1349 >    public synchronized void forEach(Consumer<? super E> action) {
1350 >        Objects.requireNonNull(action);
1351 >        final int expectedModCount = modCount;
1352 >        final Object[] es = elementData;
1353 >        final int size = elementCount;
1354 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1355 >            action.accept(elementAt(es, i));
1356 >        if (modCount != expectedModCount)
1357 >            throw new ConcurrentModificationException();
1358 >        // checkInvariants();
1359 >    }
1360 >
1361 >    @Override
1362 >    public synchronized void replaceAll(UnaryOperator<E> operator) {
1363 >        Objects.requireNonNull(operator);
1364 >        final int expectedModCount = modCount;
1365 >        final Object[] es = elementData;
1366 >        final int size = elementCount;
1367 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1368 >            es[i] = operator.apply(elementAt(es, i));
1369 >        if (modCount != expectedModCount)
1370 >            throw new ConcurrentModificationException();
1371 >        modCount++;
1372 >        // checkInvariants();
1373 >    }
1374  
1375 <            public int nextIndex() {
1376 <                return cursor;
1377 <            }
1375 >    @SuppressWarnings("unchecked")
1376 >    @Override
1377 >    public synchronized void sort(Comparator<? super E> c) {
1378 >        final int expectedModCount = modCount;
1379 >        Arrays.sort((E[]) elementData, 0, elementCount, c);
1380 >        if (modCount != expectedModCount)
1381 >            throw new ConcurrentModificationException();
1382 >        modCount++;
1383 >        // checkInvariants();
1384 >    }
1385  
1386 <            public int previousIndex() {
1387 <                return cursor - 1;
1388 <            }
1386 >    /**
1387 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1388 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1389 >     * list.
1390 >     *
1391 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1392 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1393 >     * Overriding implementations should document the reporting of additional
1394 >     * characteristic values.
1395 >     *
1396 >     * @return a {@code Spliterator} over the elements in this list
1397 >     * @since 1.8
1398 >     */
1399 >    @Override
1400 >    public Spliterator<E> spliterator() {
1401 >        return new VectorSpliterator<>(this, null, 0, -1, 0);
1402 >    }
1403  
1404 <            public E next() {
1405 <                int i = cursor;
1406 <                if (cursor >= fence)
1407 <                    throw new NoSuchElementException();
1408 <                Object next = base.iteratorGet(i + offset, expectedModCount);
1409 <                lastRet = i;
1410 <                cursor = i + 1;
1391 <                return (E)next;
1392 <            }
1404 >    /** Similar to ArrayList Spliterator */
1405 >    static final class VectorSpliterator<E> implements Spliterator<E> {
1406 >        private final Vector<E> list;
1407 >        private Object[] array;
1408 >        private int index; // current index, modified on advance/split
1409 >        private int fence; // -1 until used; then one past last index
1410 >        private int expectedModCount; // initialized when fence set
1411  
1412 <            public E previous() {
1413 <                int i = cursor - 1;
1414 <                if (i < 0)
1415 <                    throw new NoSuchElementException();
1416 <                Object prev = base.iteratorGet(i + offset, expectedModCount);
1417 <                lastRet = i;
1418 <                cursor = i;
1419 <                return (E)prev;
1420 <            }
1412 >        /** Create new spliterator covering the given range */
1413 >        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
1414 >                          int expectedModCount) {
1415 >            this.list = list;
1416 >            this.array = array;
1417 >            this.index = origin;
1418 >            this.fence = fence;
1419 >            this.expectedModCount = expectedModCount;
1420 >        }
1421  
1422 <            public void set(E e) {
1423 <                if (lastRet < 0)
1424 <                    throw new IllegalStateException();
1425 <                if (base.modCount != expectedModCount)
1426 <                    throw new ConcurrentModificationException();
1427 <                try {
1428 <                    outer.set(lastRet, e);
1411 <                    expectedModCount = base.modCount;
1412 <                } catch (IndexOutOfBoundsException ex) {
1413 <                    throw new ConcurrentModificationException();
1422 >        private int getFence() { // initialize on first use
1423 >            int hi;
1424 >            if ((hi = fence) < 0) {
1425 >                synchronized (list) {
1426 >                    array = list.elementData;
1427 >                    expectedModCount = list.modCount;
1428 >                    hi = fence = list.elementCount;
1429                  }
1430              }
1431 +            return hi;
1432 +        }
1433  
1434 <            public void remove() {
1435 <                int i = lastRet;
1436 <                if (i < 0)
1437 <                    throw new IllegalStateException();
1438 <                if (base.modCount != expectedModCount)
1439 <                    throw new ConcurrentModificationException();
1440 <                try {
1441 <                    outer.remove(i);
1442 <                    if (i < cursor)
1443 <                        cursor--;
1444 <                    lastRet = -1;
1445 <                    fence = outer.length;
1446 <                    expectedModCount = base.modCount;
1447 <                } catch (IndexOutOfBoundsException ex) {
1434 >        public Spliterator<E> trySplit() {
1435 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1436 >            return (lo >= mid) ? null :
1437 >                new VectorSpliterator<>(list, array, lo, index = mid,
1438 >                                        expectedModCount);
1439 >        }
1440 >
1441 >        @SuppressWarnings("unchecked")
1442 >        public boolean tryAdvance(Consumer<? super E> action) {
1443 >            int i;
1444 >            if (action == null)
1445 >                throw new NullPointerException();
1446 >            if (getFence() > (i = index)) {
1447 >                index = i + 1;
1448 >                action.accept((E)array[i]);
1449 >                if (list.modCount != expectedModCount)
1450                      throw new ConcurrentModificationException();
1451 <                }
1451 >                return true;
1452              }
1453 +            return false;
1454 +        }
1455  
1456 <            public void add(E e) {
1457 <                if (base.modCount != expectedModCount)
1458 <                    throw new ConcurrentModificationException();
1459 <                try {
1460 <                    int i = cursor;
1461 <                    outer.add(i, e);
1462 <                    cursor = i + 1;
1463 <                    lastRet = -1;
1464 <                    fence = outer.length;
1465 <                    expectedModCount = base.modCount;
1466 <                } catch (IndexOutOfBoundsException ex) {
1467 <                    throw new ConcurrentModificationException();
1456 >        @SuppressWarnings("unchecked")
1457 >        public void forEachRemaining(Consumer<? super E> action) {
1458 >            int i, hi; // hoist accesses and checks from loop
1459 >            Vector<E> lst; Object[] a;
1460 >            if (action == null)
1461 >                throw new NullPointerException();
1462 >            if ((lst = list) != null) {
1463 >                if ((hi = fence) < 0) {
1464 >                    synchronized (lst) {
1465 >                        expectedModCount = lst.modCount;
1466 >                        a = array = lst.elementData;
1467 >                        hi = fence = lst.elementCount;
1468 >                    }
1469 >                }
1470 >                else
1471 >                    a = array;
1472 >                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
1473 >                    while (i < hi)
1474 >                        action.accept((E) a[i++]);
1475 >                    if (lst.modCount == expectedModCount)
1476 >                        return;
1477                  }
1478              }
1479 +            throw new ConcurrentModificationException();
1480          }
1450    }
1451 }
1481  
1482 +        public long estimateSize() {
1483 +            return getFence() - index;
1484 +        }
1485  
1486 +        public int characteristics() {
1487 +            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1488 +        }
1489 +    }
1490  
1491 +    void checkInvariants() {
1492 +        // assert elementCount >= 0;
1493 +        // assert elementCount == elementData.length || elementData[elementCount] == null;
1494 +    }
1495 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines