ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
(Generate patch)

Comparing jsr166/src/main/java/util/Vector.java (file contents):
Revision 1.17 by jsr166, Mon Jun 26 00:17:48 2006 UTC vs.
Revision 1.58 by jsr166, Fri Jul 24 20:57:26 2020 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.io.IOException;
29 + import java.io.ObjectInputStream;
30 + import java.io.StreamCorruptedException;
31 + import java.util.function.Consumer;
32 + import java.util.function.Predicate;
33 + import java.util.function.UnaryOperator;
34 +
35 + import jdk.internal.util.ArraysSupport;
36 +
37   /**
38   * The {@code Vector} class implements a growable array of
39   * objects. Like an array, it contains components that can be
# Line 23 | Line 50 | package java.util;
50   * capacity of a vector before inserting a large number of
51   * components; this reduces the amount of incremental reallocation.
52   *
53 < * <p>The Iterators returned by Vector's iterator and listIterator
54 < * methods are <em>fail-fast</em>: if the Vector is structurally modified
55 < * at any time after the Iterator is created, in any way except through the
56 < * Iterator's own remove or add methods, the Iterator will throw a
57 < * ConcurrentModificationException.  Thus, in the face of concurrent
58 < * modification, the Iterator fails quickly and cleanly, rather than risking
59 < * arbitrary, non-deterministic behavior at an undetermined time in the future.
60 < * The Enumerations returned by Vector's elements method are <em>not</em>
61 < * fail-fast.
53 > * <p id="fail-fast">
54 > * The iterators returned by this class's {@link #iterator() iterator} and
55 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
56 > * if the vector is structurally modified at any time after the iterator is
57 > * created, in any way except through the iterator's own
58 > * {@link ListIterator#remove() remove} or
59 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
60 > * {@link ConcurrentModificationException}.  Thus, in the face of
61 > * concurrent modification, the iterator fails quickly and cleanly, rather
62 > * than risking arbitrary, non-deterministic behavior at an undetermined
63 > * time in the future.  The {@link Enumeration Enumerations} returned by
64 > * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
65 > * Vector is structurally modified at any time after the enumeration is
66 > * created then the results of enumerating are undefined.
67   *
68   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
69   * as it is, generally speaking, impossible to make any hard guarantees in the
# Line 43 | Line 75 | package java.util;
75   *
76   * <p>As of the Java 2 platform v1.2, this class was retrofitted to
77   * implement the {@link List} interface, making it a member of the
78 < * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
79 < * Collections Framework</a>.  Unlike the new collection
80 < * implementations, {@code Vector} is synchronized.
78 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
79 > * Java Collections Framework</a>.  Unlike the new collection
80 > * implementations, {@code Vector} is synchronized.  If a thread-safe
81 > * implementation is not needed, it is recommended to use {@link
82 > * ArrayList} in place of {@code Vector}.
83 > *
84 > * @param <E> Type of component elements
85   *
86   * @author  Lee Boynton
87   * @author  Jonathan Payne
52 * @version %I%, %G%
88   * @see Collection
54 * @see List
55 * @see ArrayList
89   * @see LinkedList
90 < * @since   JDK1.0
90 > * @since   1.0
91   */
92   public class Vector<E>
93      extends AbstractList<E>
# Line 69 | Line 102 | public class Vector<E>
102       *
103       * @serial
104       */
105 +    @SuppressWarnings("serial") // Conditionally serializable
106      protected Object[] elementData;
107  
108      /**
# Line 91 | Line 125 | public class Vector<E>
125      protected int capacityIncrement;
126  
127      /** use serialVersionUID from JDK 1.0.2 for interoperability */
128 +    // OPENJDK @java.io.Serial
129      private static final long serialVersionUID = -2767605614048989439L;
130  
131      /**
# Line 104 | Line 139 | public class Vector<E>
139       *         is negative
140       */
141      public Vector(int initialCapacity, int capacityIncrement) {
142 <        super();
142 >        super();
143          if (initialCapacity < 0)
144              throw new IllegalArgumentException("Illegal Capacity: "+
145                                                 initialCapacity);
146 <        this.elementData = new Object[initialCapacity];
147 <        this.capacityIncrement = capacityIncrement;
146 >        this.elementData = new Object[initialCapacity];
147 >        this.capacityIncrement = capacityIncrement;
148      }
149  
150      /**
# Line 121 | Line 156 | public class Vector<E>
156       *         is negative
157       */
158      public Vector(int initialCapacity) {
159 <        this(initialCapacity, 0);
159 >        this(initialCapacity, 0);
160      }
161  
162      /**
# Line 130 | Line 165 | public class Vector<E>
165       * zero.
166       */
167      public Vector() {
168 <        this(10);
168 >        this(10);
169      }
170  
171      /**
# Line 144 | Line 179 | public class Vector<E>
179       * @since   1.2
180       */
181      public Vector(Collection<? extends E> c) {
182 <        elementData = c.toArray();
183 <        elementCount = elementData.length;
184 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
185 <        if (elementData.getClass() != Object[].class)
186 <            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
182 >        Object[] a = c.toArray();
183 >        elementCount = a.length;
184 >        if (c.getClass() == ArrayList.class) {
185 >            elementData = a;
186 >        } else {
187 >            elementData = Arrays.copyOf(a, elementCount, Object[].class);
188 >        }
189      }
190  
191      /**
# Line 165 | Line 202 | public class Vector<E>
202       * @see #toArray(Object[])
203       */
204      public synchronized void copyInto(Object[] anArray) {
205 <        System.arraycopy(elementData, 0, anArray, 0, elementCount);
205 >        System.arraycopy(elementData, 0, anArray, 0, elementCount);
206      }
207  
208      /**
# Line 177 | Line 214 | public class Vector<E>
214       * minimize the storage of a vector.
215       */
216      public synchronized void trimToSize() {
217 <        modCount++;
218 <        int oldCapacity = elementData.length;
219 <        if (elementCount < oldCapacity) {
217 >        modCount++;
218 >        int oldCapacity = elementData.length;
219 >        if (elementCount < oldCapacity) {
220              elementData = Arrays.copyOf(elementData, elementCount);
221 <        }
221 >        }
222      }
223  
224      /**
# Line 202 | Line 239 | public class Vector<E>
239       * @param minCapacity the desired minimum capacity
240       */
241      public synchronized void ensureCapacity(int minCapacity) {
242 <        modCount++;
243 <        ensureCapacityHelper(minCapacity);
242 >        if (minCapacity > 0) {
243 >            modCount++;
244 >            if (minCapacity > elementData.length)
245 >                grow(minCapacity);
246 >        }
247      }
248  
249      /**
250 <     * This implements the unsynchronized semantics of ensureCapacity.
251 <     * Synchronized methods in this class can internally call this
252 <     * method for ensuring capacity without incurring the cost of an
253 <     * extra synchronization.
254 <     *
255 <     * @see #ensureCapacity(int)
256 <     */
257 <    private void ensureCapacityHelper(int minCapacity) {
258 <        int oldCapacity = elementData.length;
259 <        if (minCapacity > oldCapacity) {
260 <            Object[] oldData = elementData;
261 <            int newCapacity = (capacityIncrement > 0) ?
262 <                (oldCapacity + capacityIncrement) : (oldCapacity * 2);
263 <            if (newCapacity < minCapacity) {
264 <                newCapacity = minCapacity;
265 <            }
266 <            elementData = Arrays.copyOf(elementData, newCapacity);
227 <        }
250 >     * Increases the capacity to ensure that it can hold at least the
251 >     * number of elements specified by the minimum capacity argument.
252 >     *
253 >     * @param minCapacity the desired minimum capacity
254 >     * @throws OutOfMemoryError if minCapacity is less than zero
255 >     */
256 >    private Object[] grow(int minCapacity) {
257 >        int oldCapacity = elementData.length;
258 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
259 >                minCapacity - oldCapacity, /* minimum growth */
260 >                capacityIncrement > 0 ? capacityIncrement : oldCapacity
261 >                                           /* preferred growth */);
262 >        return elementData = Arrays.copyOf(elementData, newCapacity);
263 >    }
264 >
265 >    private Object[] grow() {
266 >        return grow(elementCount + 1);
267      }
268  
269      /**
# Line 237 | Line 276 | public class Vector<E>
276       * @throws ArrayIndexOutOfBoundsException if the new size is negative
277       */
278      public synchronized void setSize(int newSize) {
279 <        modCount++;
280 <        if (newSize > elementCount) {
281 <            ensureCapacityHelper(newSize);
282 <        } else {
283 <            for (int i = newSize ; i < elementCount ; i++) {
284 <                elementData[i] = null;
285 <            }
247 <        }
248 <        elementCount = newSize;
279 >        modCount++;
280 >        if (newSize > elementData.length)
281 >            grow(newSize);
282 >        final Object[] es = elementData;
283 >        for (int to = elementCount, i = newSize; i < to; i++)
284 >            es[i] = null;
285 >        elementCount = newSize;
286      }
287  
288      /**
# Line 256 | Line 293 | public class Vector<E>
293       *          of this vector)
294       */
295      public synchronized int capacity() {
296 <        return elementData.length;
296 >        return elementData.length;
297      }
298  
299      /**
# Line 265 | Line 302 | public class Vector<E>
302       * @return  the number of components in this vector
303       */
304      public synchronized int size() {
305 <        return elementCount;
305 >        return elementCount;
306      }
307  
308      /**
# Line 276 | Line 313 | public class Vector<E>
313       *          {@code false} otherwise.
314       */
315      public synchronized boolean isEmpty() {
316 <        return elementCount == 0;
316 >        return elementCount == 0;
317      }
318  
319      /**
320       * Returns an enumeration of the components of this vector. The
321       * returned {@code Enumeration} object will generate all items in
322       * this vector. The first item generated is the item at index {@code 0},
323 <     * then the item at index {@code 1}, and so on.
323 >     * then the item at index {@code 1}, and so on. If the vector is
324 >     * structurally modified while enumerating over the elements then the
325 >     * results of enumerating are undefined.
326       *
327       * @return  an enumeration of the components of this vector
328       * @see     Iterator
329       */
330      public Enumeration<E> elements() {
331 <        return new Enumeration<E>() {
332 <            int count = 0;
331 >        return new Enumeration<E>() {
332 >            int count = 0;
333  
334 <            public boolean hasMoreElements() {
335 <                return count < elementCount;
336 <            }
337 <
338 <            public E nextElement() {
339 <                synchronized (Vector.this) {
340 <                    if (count < elementCount) {
341 <                        return (E)elementData[count++];
342 <                    }
343 <                }
344 <                throw new NoSuchElementException("Vector Enumeration");
345 <            }
346 <        };
334 >            public boolean hasMoreElements() {
335 >                return count < elementCount;
336 >            }
337 >
338 >            public E nextElement() {
339 >                synchronized (Vector.this) {
340 >                    if (count < elementCount) {
341 >                        return elementData(count++);
342 >                    }
343 >                }
344 >                throw new NoSuchElementException("Vector Enumeration");
345 >            }
346 >        };
347      }
348  
349      /**
350       * Returns {@code true} if this vector contains the specified element.
351       * More formally, returns {@code true} if and only if this vector
352       * contains at least one element {@code e} such that
353 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
353 >     * {@code Objects.equals(o, e)}.
354       *
355       * @param o element whose presence in this vector is to be tested
356       * @return {@code true} if this vector contains the specified element
357       */
358      public boolean contains(Object o) {
359 <        return indexOf(o, 0) >= 0;
359 >        return indexOf(o, 0) >= 0;
360      }
361  
362      /**
363       * Returns the index of the first occurrence of the specified element
364       * in this vector, or -1 if this vector does not contain the element.
365       * More formally, returns the lowest index {@code i} such that
366 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
366 >     * {@code Objects.equals(o, get(i))},
367       * or -1 if there is no such index.
368       *
369       * @param o element to search for
# Line 332 | Line 371 | public class Vector<E>
371       *         this vector, or -1 if this vector does not contain the element
372       */
373      public int indexOf(Object o) {
374 <        return indexOf(o, 0);
374 >        return indexOf(o, 0);
375      }
376  
377      /**
# Line 340 | Line 379 | public class Vector<E>
379       * this vector, searching forwards from {@code index}, or returns -1 if
380       * the element is not found.
381       * More formally, returns the lowest index {@code i} such that
382 <     * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
382 >     * {@code (i >= index && Objects.equals(o, get(i)))},
383       * or -1 if there is no such index.
384       *
385       * @param o element to search for
# Line 352 | Line 391 | public class Vector<E>
391       * @see     Object#equals(Object)
392       */
393      public synchronized int indexOf(Object o, int index) {
394 <        if (o == null) {
395 <            for (int i = index ; i < elementCount ; i++)
396 <                if (elementData[i]==null)
397 <                    return i;
398 <        } else {
399 <            for (int i = index ; i < elementCount ; i++)
400 <                if (o.equals(elementData[i]))
401 <                    return i;
402 <        }
403 <        return -1;
394 >        if (o == null) {
395 >            for (int i = index ; i < elementCount ; i++)
396 >                if (elementData[i]==null)
397 >                    return i;
398 >        } else {
399 >            for (int i = index ; i < elementCount ; i++)
400 >                if (o.equals(elementData[i]))
401 >                    return i;
402 >        }
403 >        return -1;
404      }
405  
406      /**
407       * Returns the index of the last occurrence of the specified element
408       * in this vector, or -1 if this vector does not contain the element.
409       * More formally, returns the highest index {@code i} such that
410 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
410 >     * {@code Objects.equals(o, get(i))},
411       * or -1 if there is no such index.
412       *
413       * @param o element to search for
# Line 376 | Line 415 | public class Vector<E>
415       *         this vector, or -1 if this vector does not contain the element
416       */
417      public synchronized int lastIndexOf(Object o) {
418 <        return lastIndexOf(o, elementCount-1);
418 >        return lastIndexOf(o, elementCount-1);
419      }
420  
421      /**
# Line 384 | Line 423 | public class Vector<E>
423       * this vector, searching backwards from {@code index}, or returns -1 if
424       * the element is not found.
425       * More formally, returns the highest index {@code i} such that
426 <     * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
426 >     * {@code (i <= index && Objects.equals(o, get(i)))},
427       * or -1 if there is no such index.
428       *
429       * @param o element to search for
# Line 399 | Line 438 | public class Vector<E>
438          if (index >= elementCount)
439              throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
440  
441 <        if (o == null) {
442 <            for (int i = index; i >= 0; i--)
443 <                if (elementData[i]==null)
444 <                    return i;
445 <        } else {
446 <            for (int i = index; i >= 0; i--)
447 <                if (o.equals(elementData[i]))
448 <                    return i;
449 <        }
450 <        return -1;
441 >        if (o == null) {
442 >            for (int i = index; i >= 0; i--)
443 >                if (elementData[i]==null)
444 >                    return i;
445 >        } else {
446 >            for (int i = index; i >= 0; i--)
447 >                if (o.equals(elementData[i]))
448 >                    return i;
449 >        }
450 >        return -1;
451      }
452  
453      /**
# Line 420 | Line 459 | public class Vector<E>
459       * @param      index   an index into this vector
460       * @return     the component at the specified index
461       * @throws ArrayIndexOutOfBoundsException if the index is out of range
462 <     *         ({@code index < 0 || index >= size()})
462 >     *         ({@code index < 0 || index >= size()})
463       */
464      public synchronized E elementAt(int index) {
465 <        if (index >= elementCount) {
466 <            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
467 <        }
465 >        if (index >= elementCount) {
466 >            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
467 >        }
468  
469 <        return (E)elementData[index];
469 >        return elementData(index);
470      }
471  
472      /**
# Line 438 | Line 477 | public class Vector<E>
477       * @throws NoSuchElementException if this vector has no components
478       */
479      public synchronized E firstElement() {
480 <        if (elementCount == 0) {
481 <            throw new NoSuchElementException();
482 <        }
483 <        return (E)elementData[0];
480 >        if (elementCount == 0) {
481 >            throw new NoSuchElementException();
482 >        }
483 >        return elementData(0);
484      }
485  
486      /**
487       * Returns the last component of the vector.
488       *
489       * @return  the last component of the vector, i.e., the component at index
490 <     *          <code>size()&nbsp;-&nbsp;1</code>.
490 >     *          {@code size() - 1}
491       * @throws NoSuchElementException if this vector is empty
492       */
493      public synchronized E lastElement() {
494 <        if (elementCount == 0) {
495 <            throw new NoSuchElementException();
496 <        }
497 <        return (E)elementData[elementCount - 1];
494 >        if (elementCount == 0) {
495 >            throw new NoSuchElementException();
496 >        }
497 >        return elementData(elementCount - 1);
498      }
499  
500      /**
# Line 476 | Line 515 | public class Vector<E>
515       * @param      obj     what the component is to be set to
516       * @param      index   the specified index
517       * @throws ArrayIndexOutOfBoundsException if the index is out of range
518 <     *         ({@code index < 0 || index >= size()})
518 >     *         ({@code index < 0 || index >= size()})
519       */
520      public synchronized void setElementAt(E obj, int index) {
521 <        if (index >= elementCount) {
522 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
523 <                                                     elementCount);
524 <        }
525 <        elementData[index] = obj;
521 >        if (index >= elementCount) {
522 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
523 >                                                     elementCount);
524 >        }
525 >        elementData[index] = obj;
526      }
527  
528      /**
# Line 503 | Line 542 | public class Vector<E>
542       *
543       * @param      index   the index of the object to remove
544       * @throws ArrayIndexOutOfBoundsException if the index is out of range
545 <     *         ({@code index < 0 || index >= size()})
545 >     *         ({@code index < 0 || index >= size()})
546       */
547      public synchronized void removeElementAt(int index) {
548 <        modCount++;
549 <        if (index >= elementCount) {
550 <            throw new ArrayIndexOutOfBoundsException(index + " >= " +
551 <                                                     elementCount);
552 <        }
553 <        else if (index < 0) {
554 <            throw new ArrayIndexOutOfBoundsException(index);
555 <        }
556 <        int j = elementCount - index - 1;
557 <        if (j > 0) {
558 <            System.arraycopy(elementData, index + 1, elementData, index, j);
559 <        }
560 <        elementCount--;
561 <        elementData[elementCount] = null; /* to let gc do its work */
548 >        if (index >= elementCount) {
549 >            throw new ArrayIndexOutOfBoundsException(index + " >= " +
550 >                                                     elementCount);
551 >        }
552 >        else if (index < 0) {
553 >            throw new ArrayIndexOutOfBoundsException(index);
554 >        }
555 >        int j = elementCount - index - 1;
556 >        if (j > 0) {
557 >            System.arraycopy(elementData, index + 1, elementData, index, j);
558 >        }
559 >        modCount++;
560 >        elementCount--;
561 >        elementData[elementCount] = null; /* to let gc do its work */
562 >        // checkInvariants();
563      }
564  
565      /**
# Line 543 | Line 583 | public class Vector<E>
583       * @param      obj     the component to insert
584       * @param      index   where to insert the new component
585       * @throws ArrayIndexOutOfBoundsException if the index is out of range
586 <     *         ({@code index < 0 || index > size()})
586 >     *         ({@code index < 0 || index > size()})
587       */
588      public synchronized void insertElementAt(E obj, int index) {
589 <        modCount++;
590 <        if (index > elementCount) {
591 <            throw new ArrayIndexOutOfBoundsException(index
592 <                                                     + " > " + elementCount);
593 <        }
594 <        ensureCapacityHelper(elementCount + 1);
595 <        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
596 <        elementData[index] = obj;
597 <        elementCount++;
589 >        if (index > elementCount) {
590 >            throw new ArrayIndexOutOfBoundsException(index
591 >                                                     + " > " + elementCount);
592 >        }
593 >        modCount++;
594 >        final int s = elementCount;
595 >        Object[] elementData = this.elementData;
596 >        if (s == elementData.length)
597 >            elementData = grow();
598 >        System.arraycopy(elementData, index,
599 >                         elementData, index + 1,
600 >                         s - index);
601 >        elementData[index] = obj;
602 >        elementCount = s + 1;
603      }
604  
605      /**
# Line 563 | Line 608 | public class Vector<E>
608       * increased if its size becomes greater than its capacity.
609       *
610       * <p>This method is identical in functionality to the
611 <     * {@link #remove(Object)} method (which is part of the
612 <     * {@link List} interface).
611 >     * {@link #add(Object) add(E)}
612 >     * method (which is part of the {@link List} interface).
613       *
614       * @param   obj   the component to be added
615       */
616      public synchronized void addElement(E obj) {
617 <        modCount++;
618 <        ensureCapacityHelper(elementCount + 1);
574 <        elementData[elementCount++] = obj;
617 >        modCount++;
618 >        add(obj, elementData, elementCount);
619      }
620  
621      /**
# Line 581 | Line 625 | public class Vector<E>
625       * object's index is shifted downward to have an index one smaller
626       * than the value it had previously.
627       *
628 <     * <p>This method is identical in functionality to the remove(Object)
629 <     * method (which is part of the List interface).
628 >     * <p>This method is identical in functionality to the
629 >     * {@link #remove(Object)} method (which is part of the
630 >     * {@link List} interface).
631       *
632       * @param   obj   the component to be removed
633       * @return  {@code true} if the argument was a component of this
634       *          vector; {@code false} otherwise.
590     * @see     List#remove(Object)
591     * @see     List
635       */
636      public synchronized boolean removeElement(Object obj) {
637 <        modCount++;
638 <        int i = indexOf(obj);
639 <        if (i >= 0) {
640 <            removeElementAt(i);
641 <            return true;
642 <        }
643 <        return false;
637 >        modCount++;
638 >        int i = indexOf(obj);
639 >        if (i >= 0) {
640 >            removeElementAt(i);
641 >            return true;
642 >        }
643 >        return false;
644      }
645  
646      /**
# Line 607 | Line 650 | public class Vector<E>
650       * method (which is part of the {@link List} interface).
651       */
652      public synchronized void removeAllElements() {
653 +        final Object[] es = elementData;
654 +        for (int to = elementCount, i = elementCount = 0; i < to; i++)
655 +            es[i] = null;
656          modCount++;
611        // Let gc do its work
612        for (int i = 0; i < elementCount; i++)
613            elementData[i] = null;
614
615        elementCount = 0;
657      }
658  
659      /**
# Line 623 | Line 664 | public class Vector<E>
664       * @return  a clone of this vector
665       */
666      public synchronized Object clone() {
667 <        try {
668 <            Vector<E> v = (Vector<E>) super.clone();
669 <            v.elementData = Arrays.copyOf(elementData, elementCount);
670 <            v.modCount = 0;
671 <            return v;
672 <        } catch (CloneNotSupportedException e) {
673 <            // this shouldn't happen, since we are Cloneable
674 <            throw new InternalError();
675 <        }
667 >        try {
668 >            @SuppressWarnings("unchecked")
669 >            Vector<E> v = (Vector<E>) super.clone();
670 >            v.elementData = Arrays.copyOf(elementData, elementCount);
671 >            v.modCount = 0;
672 >            return v;
673 >        } catch (CloneNotSupportedException e) {
674 >            // this shouldn't happen, since we are Cloneable
675 >            throw new InternalError(e);
676 >        }
677      }
678  
679      /**
# Line 658 | Line 700 | public class Vector<E>
700       * of the Vector <em>only</em> if the caller knows that the Vector
701       * does not contain any null elements.)
702       *
703 +     * @param <T> type of array elements. The same type as {@code <E>} or a
704 +     * supertype of {@code <E>}.
705       * @param a the array into which the elements of the Vector are to
706 <     *          be stored, if it is big enough; otherwise, a new array of the
707 <     *          same runtime type is allocated for this purpose.
706 >     *          be stored, if it is big enough; otherwise, a new array of the
707 >     *          same runtime type is allocated for this purpose.
708       * @return an array containing the elements of the Vector
709 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
710 <     * of the runtime type of every element in this Vector
709 >     * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
710 >     * a supertype of the runtime type, {@code <E>}, of every element in this
711 >     * Vector
712       * @throws NullPointerException if the given array is null
713       * @since 1.2
714       */
715 +    @SuppressWarnings("unchecked")
716      public synchronized <T> T[] toArray(T[] a) {
717          if (a.length < elementCount)
718              return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
719  
720 <        System.arraycopy(elementData, 0, a, 0, elementCount);
720 >        System.arraycopy(elementData, 0, a, 0, elementCount);
721  
722          if (a.length > elementCount)
723              a[elementCount] = null;
# Line 681 | Line 727 | public class Vector<E>
727  
728      // Positional Access Operations
729  
730 +    @SuppressWarnings("unchecked")
731 +    E elementData(int index) {
732 +        return (E) elementData[index];
733 +    }
734 +
735 +    @SuppressWarnings("unchecked")
736 +    static <E> E elementAt(Object[] es, int index) {
737 +        return (E) es[index];
738 +    }
739 +
740      /**
741       * Returns the element at the specified position in this Vector.
742       *
# Line 691 | Line 747 | public class Vector<E>
747       * @since 1.2
748       */
749      public synchronized E get(int index) {
750 <        if (index >= elementCount)
751 <            throw new ArrayIndexOutOfBoundsException(index);
750 >        if (index >= elementCount)
751 >            throw new ArrayIndexOutOfBoundsException(index);
752  
753 <        return (E)elementData[index];
753 >        return elementData(index);
754      }
755  
756      /**
# Line 705 | Line 761 | public class Vector<E>
761       * @param element element to be stored at the specified position
762       * @return the element previously at the specified position
763       * @throws ArrayIndexOutOfBoundsException if the index is out of range
764 <     *         ({@code index < 0 || index >= size()})
764 >     *         ({@code index < 0 || index >= size()})
765       * @since 1.2
766       */
767      public synchronized E set(int index, E element) {
768 <        if (index >= elementCount)
769 <            throw new ArrayIndexOutOfBoundsException(index);
768 >        if (index >= elementCount)
769 >            throw new ArrayIndexOutOfBoundsException(index);
770  
771 <        Object oldValue = elementData[index];
772 <        elementData[index] = element;
773 <        return (E)oldValue;
771 >        E oldValue = elementData(index);
772 >        elementData[index] = element;
773 >        return oldValue;
774 >    }
775 >
776 >    /**
777 >     * This helper method split out from add(E) to keep method
778 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
779 >     * which helps when add(E) is called in a C1-compiled loop.
780 >     */
781 >    private void add(E e, Object[] elementData, int s) {
782 >        if (s == elementData.length)
783 >            elementData = grow();
784 >        elementData[s] = e;
785 >        elementCount = s + 1;
786 >        // checkInvariants();
787      }
788  
789      /**
# Line 725 | Line 794 | public class Vector<E>
794       * @since 1.2
795       */
796      public synchronized boolean add(E e) {
797 <        modCount++;
798 <        ensureCapacityHelper(elementCount + 1);
730 <        elementData[elementCount++] = e;
797 >        modCount++;
798 >        add(e, elementData, elementCount);
799          return true;
800      }
801  
# Line 735 | Line 803 | public class Vector<E>
803       * Removes the first occurrence of the specified element in this Vector
804       * If the Vector does not contain the element, it is unchanged.  More
805       * formally, removes the element with the lowest index i such that
806 <     * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
806 >     * {@code Objects.equals(o, get(i))} (if such
807       * an element exists).
808       *
809       * @param o element to be removed from this Vector, if present
# Line 766 | Line 834 | public class Vector<E>
834       * Shifts any subsequent elements to the left (subtracts one from their
835       * indices).  Returns the element that was removed from the Vector.
836       *
769     * @exception ArrayIndexOutOfBoundsException index out of range (index
770     *            &lt; 0 || index &gt;= size())
837       * @param index the index of the element to be removed
838       * @return element that was removed
839 +     * @throws ArrayIndexOutOfBoundsException if the index is out of range
840 +     *         ({@code index < 0 || index >= size()})
841       * @since 1.2
842       */
843      public synchronized E remove(int index) {
844 <        modCount++;
845 <        if (index >= elementCount)
846 <            throw new ArrayIndexOutOfBoundsException(index);
847 <        Object oldValue = elementData[index];
780 <
781 <        int numMoved = elementCount - index - 1;
782 <        if (numMoved > 0)
783 <            System.arraycopy(elementData, index+1, elementData, index,
784 <                             numMoved);
785 <        elementData[--elementCount] = null; // Let gc do its work
844 >        modCount++;
845 >        if (index >= elementCount)
846 >            throw new ArrayIndexOutOfBoundsException(index);
847 >        E oldValue = elementData(index);
848  
849 <        return (E)oldValue;
849 >        int numMoved = elementCount - index - 1;
850 >        if (numMoved > 0)
851 >            System.arraycopy(elementData, index+1, elementData, index,
852 >                             numMoved);
853 >        elementData[--elementCount] = null; // Let gc do its work
854 >
855 >        // checkInvariants();
856 >        return oldValue;
857      }
858  
859      /**
# Line 806 | Line 875 | public class Vector<E>
875       * @param   c a collection whose elements will be tested for containment
876       *          in this Vector
877       * @return true if this Vector contains all of the elements in the
878 <     *         specified collection
878 >     *         specified collection
879       * @throws NullPointerException if the specified collection is null
880       */
881      public synchronized boolean containsAll(Collection<?> c) {
# Line 826 | Line 895 | public class Vector<E>
895       * @throws NullPointerException if the specified collection is null
896       * @since 1.2
897       */
898 <    public synchronized boolean addAll(Collection<? extends E> c) {
830 <        modCount++;
898 >    public boolean addAll(Collection<? extends E> c) {
899          Object[] a = c.toArray();
900 +        modCount++;
901          int numNew = a.length;
902 <        ensureCapacityHelper(elementCount + numNew);
903 <        System.arraycopy(a, 0, elementData, elementCount, numNew);
904 <        elementCount += numNew;
905 <        return numNew != 0;
902 >        if (numNew == 0)
903 >            return false;
904 >        synchronized (this) {
905 >            Object[] elementData = this.elementData;
906 >            final int s = elementCount;
907 >            if (numNew > elementData.length - s)
908 >                elementData = grow(s + numNew);
909 >            System.arraycopy(a, 0, elementData, s, numNew);
910 >            elementCount = s + numNew;
911 >            // checkInvariants();
912 >            return true;
913 >        }
914      }
915  
916      /**
# Line 844 | Line 921 | public class Vector<E>
921       * @return true if this Vector changed as a result of the call
922       * @throws ClassCastException if the types of one or more elements
923       *         in this vector are incompatible with the specified
924 <     *         collection (optional)
924 >     *         collection
925 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
926       * @throws NullPointerException if this vector contains one or more null
927       *         elements and the specified collection does not support null
928 <     *         elements (optional), or if the specified collection is null
928 >     *         elements
929 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
930 >     *         or if the specified collection is null
931       * @since 1.2
932       */
933 <    public synchronized boolean removeAll(Collection<?> c) {
934 <        return super.removeAll(c);
933 >    public boolean removeAll(Collection<?> c) {
934 >        Objects.requireNonNull(c);
935 >        return bulkRemove(e -> c.contains(e));
936      }
937  
938      /**
# Line 864 | Line 945 | public class Vector<E>
945       * @return true if this Vector changed as a result of the call
946       * @throws ClassCastException if the types of one or more elements
947       *         in this vector are incompatible with the specified
948 <     *         collection (optional)
948 >     *         collection
949 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
950       * @throws NullPointerException if this vector contains one or more null
951       *         elements and the specified collection does not support null
952 <     *         elements (optional), or if the specified collection is null
952 >     *         elements
953 >     *         (<a href="Collection.html#optional-restrictions">optional</a>),
954 >     *         or if the specified collection is null
955       * @since 1.2
956       */
957 <    public synchronized boolean retainAll(Collection<?> c)  {
958 <        return super.retainAll(c);
957 >    public boolean retainAll(Collection<?> c) {
958 >        Objects.requireNonNull(c);
959 >        return bulkRemove(e -> !c.contains(e));
960 >    }
961 >
962 >    /**
963 >     * @throws NullPointerException {@inheritDoc}
964 >     */
965 >    @Override
966 >    public boolean removeIf(Predicate<? super E> filter) {
967 >        Objects.requireNonNull(filter);
968 >        return bulkRemove(filter);
969 >    }
970 >
971 >    // A tiny bit set implementation
972 >
973 >    private static long[] nBits(int n) {
974 >        return new long[((n - 1) >> 6) + 1];
975 >    }
976 >    private static void setBit(long[] bits, int i) {
977 >        bits[i >> 6] |= 1L << i;
978 >    }
979 >    private static boolean isClear(long[] bits, int i) {
980 >        return (bits[i >> 6] & (1L << i)) == 0;
981 >    }
982 >
983 >    private synchronized boolean bulkRemove(Predicate<? super E> filter) {
984 >        int expectedModCount = modCount;
985 >        final Object[] es = elementData;
986 >        final int end = elementCount;
987 >        int i;
988 >        // Optimize for initial run of survivors
989 >        for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
990 >            ;
991 >        // Tolerate predicates that reentrantly access the collection for
992 >        // read (but writers still get CME), so traverse once to find
993 >        // elements to delete, a second pass to physically expunge.
994 >        if (i < end) {
995 >            final int beg = i;
996 >            final long[] deathRow = nBits(end - beg);
997 >            deathRow[0] = 1L;   // set bit 0
998 >            for (i = beg + 1; i < end; i++)
999 >                if (filter.test(elementAt(es, i)))
1000 >                    setBit(deathRow, i - beg);
1001 >            if (modCount != expectedModCount)
1002 >                throw new ConcurrentModificationException();
1003 >            modCount++;
1004 >            int w = beg;
1005 >            for (i = beg; i < end; i++)
1006 >                if (isClear(deathRow, i - beg))
1007 >                    es[w++] = es[i];
1008 >            for (i = elementCount = w; i < end; i++)
1009 >                es[i] = null;
1010 >            // checkInvariants();
1011 >            return true;
1012 >        } else {
1013 >            if (modCount != expectedModCount)
1014 >                throw new ConcurrentModificationException();
1015 >            // checkInvariants();
1016 >            return false;
1017 >        }
1018      }
1019  
1020      /**
# Line 886 | Line 1029 | public class Vector<E>
1029       *              specified collection
1030       * @param c elements to be inserted into this Vector
1031       * @return {@code true} if this Vector changed as a result of the call
1032 <     * @exception ArrayIndexOutOfBoundsException index out of range (index
1033 <     *            &lt; 0 || index &gt; size())
1032 >     * @throws ArrayIndexOutOfBoundsException if the index is out of range
1033 >     *         ({@code index < 0 || index > size()})
1034       * @throws NullPointerException if the specified collection is null
1035       * @since 1.2
1036       */
1037      public synchronized boolean addAll(int index, Collection<? extends E> c) {
1038 <        modCount++;
1039 <        if (index < 0 || index > elementCount)
897 <            throw new ArrayIndexOutOfBoundsException(index);
1038 >        if (index < 0 || index > elementCount)
1039 >            throw new ArrayIndexOutOfBoundsException(index);
1040  
1041          Object[] a = c.toArray();
1042 <        int numNew = a.length;
1043 <        ensureCapacityHelper(elementCount + numNew);
1044 <
1045 <        int numMoved = elementCount - index;
1046 <        if (numMoved > 0)
1047 <            System.arraycopy(elementData, index, elementData, index + numNew,
1048 <                             numMoved);
1049 <
1042 >        modCount++;
1043 >        int numNew = a.length;
1044 >        if (numNew == 0)
1045 >            return false;
1046 >        Object[] elementData = this.elementData;
1047 >        final int s = elementCount;
1048 >        if (numNew > elementData.length - s)
1049 >            elementData = grow(s + numNew);
1050 >
1051 >        int numMoved = s - index;
1052 >        if (numMoved > 0)
1053 >            System.arraycopy(elementData, index,
1054 >                             elementData, index + numNew,
1055 >                             numMoved);
1056          System.arraycopy(a, 0, elementData, index, numNew);
1057 <        elementCount += numNew;
1058 <        return numNew != 0;
1057 >        elementCount = s + numNew;
1058 >        // checkInvariants();
1059 >        return true;
1060      }
1061  
1062      /**
# Line 915 | Line 1064 | public class Vector<E>
1064       * true if and only if the specified Object is also a List, both Lists
1065       * have the same size, and all corresponding pairs of elements in the two
1066       * Lists are <em>equal</em>.  (Two elements {@code e1} and
1067 <     * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
1068 <     * e1.equals(e2))}.)  In other words, two Lists are defined to be
1067 >     * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1068 >     * In other words, two Lists are defined to be
1069       * equal if they contain the same elements in the same order.
1070       *
1071       * @param o the Object to be compared for equality with this Vector
# Line 942 | Line 1091 | public class Vector<E>
1091      }
1092  
1093      /**
1094 <     * Removes from this List all of the elements whose index is between
1095 <     * fromIndex, inclusive and toIndex, exclusive.  Shifts any succeeding
1096 <     * elements to the left (reduces their index).
1097 <     * This call shortens the Vector by (toIndex - fromIndex) elements.  (If
1098 <     * toIndex==fromIndex, this operation has no effect.)
1094 >     * Returns a view of the portion of this List between fromIndex,
1095 >     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1096 >     * equal, the returned List is empty.)  The returned List is backed by this
1097 >     * List, so changes in the returned List are reflected in this List, and
1098 >     * vice-versa.  The returned List supports all of the optional List
1099 >     * operations supported by this List.
1100       *
1101 <     * @param fromIndex index of first element to be removed
1102 <     * @param toIndex index after last element to be removed
1101 >     * <p>This method eliminates the need for explicit range operations (of
1102 >     * the sort that commonly exist for arrays).  Any operation that expects
1103 >     * a List can be used as a range operation by operating on a subList view
1104 >     * instead of a whole List.  For example, the following idiom
1105 >     * removes a range of elements from a List:
1106 >     * <pre>
1107 >     *      list.subList(from, to).clear();
1108 >     * </pre>
1109 >     * Similar idioms may be constructed for indexOf and lastIndexOf,
1110 >     * and all of the algorithms in the Collections class can be applied to
1111 >     * a subList.
1112 >     *
1113 >     * <p>The semantics of the List returned by this method become undefined if
1114 >     * the backing list (i.e., this List) is <i>structurally modified</i> in
1115 >     * any way other than via the returned List.  (Structural modifications are
1116 >     * those that change the size of the List, or otherwise perturb it in such
1117 >     * a fashion that iterations in progress may yield incorrect results.)
1118 >     *
1119 >     * @param fromIndex low endpoint (inclusive) of the subList
1120 >     * @param toIndex high endpoint (exclusive) of the subList
1121 >     * @return a view of the specified range within this List
1122 >     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1123 >     *         {@code (fromIndex < 0 || toIndex > size)}
1124 >     * @throws IllegalArgumentException if the endpoint indices are out of order
1125 >     *         {@code (fromIndex > toIndex)}
1126 >     */
1127 >    public synchronized List<E> subList(int fromIndex, int toIndex) {
1128 >        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1129 >                                            this);
1130 >    }
1131 >
1132 >    /**
1133 >     * Removes from this list all of the elements whose index is between
1134 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1135 >     * Shifts any succeeding elements to the left (reduces their index).
1136 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1137 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
1138       */
1139      protected synchronized void removeRange(int fromIndex, int toIndex) {
1140 <        modCount++;
1141 <        int numMoved = elementCount - toIndex;
1142 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
1143 <                         numMoved);
1140 >        modCount++;
1141 >        shiftTailOverGap(elementData, fromIndex, toIndex);
1142 >        // checkInvariants();
1143 >    }
1144 >
1145 >    /** Erases the gap from lo to hi, by sliding down following elements. */
1146 >    private void shiftTailOverGap(Object[] es, int lo, int hi) {
1147 >        System.arraycopy(es, hi, es, lo, elementCount - hi);
1148 >        for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1149 >            es[i] = null;
1150 >    }
1151  
1152 <        // Let gc do its work
1153 <        int newElementCount = elementCount - (toIndex-fromIndex);
1154 <        while (elementCount != newElementCount)
1155 <            elementData[--elementCount] = null;
1152 >    /**
1153 >     * Loads a {@code Vector} instance from a stream
1154 >     * (that is, deserializes it).
1155 >     * This method performs checks to ensure the consistency
1156 >     * of the fields.
1157 >     *
1158 >     * @param in the stream
1159 >     * @throws java.io.IOException if an I/O error occurs
1160 >     * @throws ClassNotFoundException if the stream contains data
1161 >     *         of a non-existing class
1162 >     */
1163 >    // OPENJDK @java.io.Serial
1164 >    private void readObject(ObjectInputStream in)
1165 >            throws IOException, ClassNotFoundException {
1166 >        ObjectInputStream.GetField gfields = in.readFields();
1167 >        int count = gfields.get("elementCount", 0);
1168 >        Object[] data = (Object[])gfields.get("elementData", null);
1169 >        if (count < 0 || data == null || count > data.length) {
1170 >            throw new StreamCorruptedException("Inconsistent vector internals");
1171 >        }
1172 >        elementCount = count;
1173 >        elementData = data.clone();
1174      }
1175  
1176      /**
1177 <     * Save the state of the {@code Vector} instance to a stream (that
1178 <     * is, serialize it).  This method is present merely for synchronization.
1179 <     * It just calls the default writeObject method.
1177 >     * Saves the state of the {@code Vector} instance to a stream
1178 >     * (that is, serializes it).
1179 >     * This method performs synchronization to ensure the consistency
1180 >     * of the serialized data.
1181 >     *
1182 >     * @param s the stream
1183 >     * @throws java.io.IOException if an I/O error occurs
1184       */
1185 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
1186 <        throws java.io.IOException
1187 <    {
1188 <        s.defaultWriteObject();
1185 >    // OPENJDK @java.io.Serial
1186 >    private void writeObject(java.io.ObjectOutputStream s)
1187 >            throws java.io.IOException {
1188 >        final java.io.ObjectOutputStream.PutField fields = s.putFields();
1189 >        final Object[] data;
1190 >        synchronized (this) {
1191 >            fields.put("capacityIncrement", capacityIncrement);
1192 >            fields.put("elementCount", elementCount);
1193 >            data = elementData.clone();
1194 >        }
1195 >        fields.put("elementData", data);
1196 >        s.writeFields();
1197      }
1198  
1199      /**
1200 <     * Returns a list-iterator of the elements in this list (in proper
1200 >     * Returns a list iterator over the elements in this list (in proper
1201       * sequence), starting at the specified position in the list.
1202 <     * Obeys the general contract of {@link List#listIterator(int)}.
1202 >     * The specified index indicates the first element that would be
1203 >     * returned by an initial call to {@link ListIterator#next next}.
1204 >     * An initial call to {@link ListIterator#previous previous} would
1205 >     * return the element with the specified index minus one.
1206 >     *
1207 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1208       *
982     * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
983     * modified at any time after the Iterator is created, in any way except
984     * through the list-iterator's own {@code remove} or {@code add}
985     * methods, the list-iterator will throw a
986     * {@code ConcurrentModificationException}.  Thus, in the face of
987     * concurrent modification, the iterator fails quickly and cleanly, rather
988     * than risking arbitrary, non-deterministic behavior at an undetermined
989     * time in the future.
990     *
991     * @param index index of the first element to be returned from the
992     *        list-iterator (by a call to {@link ListIterator#next})
993     * @return a list-iterator of the elements in this list (in proper
994     *         sequence), starting at the specified position in the list
1209       * @throws IndexOutOfBoundsException {@inheritDoc}
1210       */
1211      public synchronized ListIterator<E> listIterator(int index) {
1212 <        if (index < 0 || index > elementCount)
1212 >        if (index < 0 || index > elementCount)
1213              throw new IndexOutOfBoundsException("Index: "+index);
1214 <        return new VectorIterator(index, elementCount);
1214 >        return new ListItr(index);
1215      }
1216  
1217      /**
1218 <     * {@inheritDoc}
1218 >     * Returns a list iterator over the elements in this list (in proper
1219 >     * sequence).
1220 >     *
1221 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1222 >     *
1223 >     * @see #listIterator(int)
1224       */
1225      public synchronized ListIterator<E> listIterator() {
1226 <        return new VectorIterator(0, elementCount);
1226 >        return new ListItr(0);
1227      }
1228  
1229      /**
1230       * Returns an iterator over the elements in this list in proper sequence.
1231       *
1232 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1233 +     *
1234       * @return an iterator over the elements in this list in proper sequence
1235       */
1236      public synchronized Iterator<E> iterator() {
1237 <        return new VectorIterator(0, elementCount);
1017 <    }
1018 <
1019 <    /**
1020 <     * Helper method to access array elements under synchronization by
1021 <     * iterators. The caller performs index check with respect to
1022 <     * expected bounds, so errors accessing the element are reported
1023 <     * as ConcurrentModificationExceptions.
1024 <     */
1025 <    final synchronized Object iteratorGet(int index, int expectedModCount) {
1026 <        if (modCount == expectedModCount) {
1027 <            try {
1028 <                return elementData[index];
1029 <            } catch(IndexOutOfBoundsException fallThrough) {
1030 <            }
1031 <        }
1032 <        throw new ConcurrentModificationException();
1237 >        return new Itr();
1238      }
1239  
1240      /**
1241 <     * Streamlined specialization of AbstractList version of iterator.
1037 <     * Locally perfroms bounds checks, but relies on outer Vector
1038 <     * to access elements under synchronization.
1241 >     * An optimized version of AbstractList.Itr
1242       */
1243 <    private final class VectorIterator implements ListIterator<E> {
1244 <        int cursor;              // Index of next element to return;
1245 <        int fence;               // Upper bound on cursor (cache of size())
1246 <        int lastRet;             // Index of last element, or -1 if no such
1044 <        int expectedModCount;    // To check for CME
1045 <
1046 <        VectorIterator(int index, int fence) {
1047 <            this.cursor = index;
1048 <            this.fence = fence;
1049 <            this.lastRet = -1;
1050 <            this.expectedModCount = Vector.this.modCount;
1051 <        }
1052 <
1053 <        public boolean hasNext() {
1054 <            return cursor < fence;
1055 <        }
1056 <
1057 <        public boolean hasPrevious() {
1058 <            return cursor > 0;
1059 <        }
1060 <
1061 <        public int nextIndex() {
1062 <            return cursor;
1063 <        }
1064 <
1065 <        public int previousIndex() {
1066 <            return cursor - 1;
1067 <        }
1068 <
1069 <        public E next() {
1070 <            int i = cursor;
1071 <            if (i >= fence)
1072 <                throw new NoSuchElementException();
1073 <            Object next = Vector.this.iteratorGet(i, expectedModCount);
1074 <            lastRet = i;
1075 <            cursor = i + 1;
1076 <            return (E)next;
1077 <        }
1243 >    private class Itr implements Iterator<E> {
1244 >        int cursor;       // index of next element to return
1245 >        int lastRet = -1; // index of last element returned; -1 if no such
1246 >        int expectedModCount = modCount;
1247  
1248 <        public E previous() {
1249 <            int i = cursor - 1;
1250 <            if (i < 0)
1251 <                throw new NoSuchElementException();
1083 <            Object prev = Vector.this.iteratorGet(i, expectedModCount);
1084 <            lastRet = i;
1085 <            cursor = i;
1086 <            return (E)prev;
1248 >        public boolean hasNext() {
1249 >            // Racy but within spec, since modifications are checked
1250 >            // within or after synchronization in next/previous
1251 >            return cursor != elementCount;
1252          }
1253  
1254 <        public void set(E e) {
1255 <            if (lastRet < 0)
1256 <                throw new IllegalStateException();
1092 <            if (Vector.this.modCount != expectedModCount)
1093 <                throw new ConcurrentModificationException();
1094 <            try {
1095 <                Vector.this.set(lastRet, e);
1096 <                expectedModCount = Vector.this.modCount;
1097 <            } catch (IndexOutOfBoundsException ex) {
1098 <                throw new ConcurrentModificationException();
1099 <            }
1100 <        }
1101 <
1102 <        public void remove() {
1103 <            int i = lastRet;
1104 <            if (i < 0)
1105 <                throw new IllegalStateException();
1106 <            if (Vector.this.modCount != expectedModCount)
1107 <                throw new ConcurrentModificationException();
1108 <            try {
1109 <                Vector.this.remove(i);
1110 <                if (i < cursor)
1111 <                    cursor--;
1112 <                lastRet = -1;
1113 <                fence = Vector.this.size();
1114 <                expectedModCount = Vector.this.modCount;
1115 <            } catch (IndexOutOfBoundsException ex) {
1116 <                throw new ConcurrentModificationException();
1117 <            }
1118 <        }
1119 <
1120 <        public void add(E e) {
1121 <            if (Vector.this.modCount != expectedModCount)
1122 <                throw new ConcurrentModificationException();
1123 <            try {
1254 >        public E next() {
1255 >            synchronized (Vector.this) {
1256 >                checkForComodification();
1257                  int i = cursor;
1258 <                Vector.this.add(i, e);
1258 >                if (i >= elementCount)
1259 >                    throw new NoSuchElementException();
1260                  cursor = i + 1;
1261 <                lastRet = -1;
1128 <                fence = Vector.this.size();
1129 <                expectedModCount = Vector.this.modCount;
1130 <            } catch (IndexOutOfBoundsException ex) {
1131 <                throw new ConcurrentModificationException();
1132 <            }
1133 <        }
1134 <    }
1135 <
1136 <    /**
1137 <     * Returns a view of the portion of this List between fromIndex,
1138 <     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1139 <     * equal, the returned List is empty.)  The returned List is backed by this
1140 <     * List, so changes in the returned List are reflected in this List, and
1141 <     * vice-versa.  The returned List supports all of the optional List
1142 <     * operations supported by this List.
1143 <     *
1144 <     * <p>This method eliminates the need for explicit range operations (of
1145 <     * the sort that commonly exist for arrays).   Any operation that expects
1146 <     * a List can be used as a range operation by operating on a subList view
1147 <     * instead of a whole List.  For example, the following idiom
1148 <     * removes a range of elements from a List:
1149 <     * <pre>
1150 <     *      list.subList(from, to).clear();
1151 <     * </pre>
1152 <     * Similar idioms may be constructed for indexOf and lastIndexOf,
1153 <     * and all of the algorithms in the Collections class can be applied to
1154 <     * a subList.
1155 <     *
1156 <     * <p>The semantics of the List returned by this method become undefined if
1157 <     * the backing list (i.e., this List) is <i>structurally modified</i> in
1158 <     * any way other than via the returned List.  (Structural modifications are
1159 <     * those that change the size of the List, or otherwise perturb it in such
1160 <     * a fashion that iterations in progress may yield incorrect results.)
1161 <     *
1162 <     * @param fromIndex low endpoint (inclusive) of the subList
1163 <     * @param toIndex high endpoint (exclusive) of the subList
1164 <     * @return a view of the specified range within this List
1165 <     * @throws IndexOutOfBoundsException endpoint index value out of range
1166 <     *         <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1167 <     * @throws IllegalArgumentException endpoint indices out of order
1168 <     *         <code>(fromIndex &gt; toIndex)</code>
1169 <     */
1170 <    public synchronized List<E> subList(int fromIndex, int toIndex) {
1171 <        return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1172 <    }
1173 <
1174 <    /**
1175 <     * This class specializes the AbstractList version of SubList to
1176 <     * avoid the double-indirection penalty that would arise using a
1177 <     * synchronized wrapper, as well as to avoid some unnecessary
1178 <     * checks in sublist iterators.
1179 <     */
1180 <    private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1181 <        final Vector<E> base;             // base list
1182 <        final AbstractList<E> parent;     // Creating list
1183 <        final int baseOffset;             // index wrt Vector
1184 <        final int parentOffset;           // index wrt parent
1185 <        int length;                       // length of sublist
1186 <
1187 <        VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1188 <                     int fromIndex, int toIndex) {
1189 <            if (fromIndex < 0)
1190 <                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1191 <            if (toIndex > parent.size())
1192 <                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1193 <            if (fromIndex > toIndex)
1194 <                throw new IllegalArgumentException("fromIndex(" + fromIndex +
1195 <                                                   ") > toIndex(" + toIndex + ")");
1196 <
1197 <            this.base = base;
1198 <            this.parent = parent;
1199 <            this.baseOffset = baseOffset;
1200 <            this.parentOffset = fromIndex;
1201 <            this.length = toIndex - fromIndex;
1202 <            modCount = base.modCount;
1203 <        }
1204 <
1205 <        /**
1206 <         * Returns an IndexOutOfBoundsException with nicer message
1207 <         */
1208 <        private IndexOutOfBoundsException indexError(int index) {
1209 <            return new IndexOutOfBoundsException("Index: " + index +
1210 <                                                 ", Size: " + length);
1211 <        }
1212 <
1213 <        public E set(int index, E element) {
1214 <            synchronized(base) {
1215 <                if (index < 0 || index >= length)
1216 <                    throw indexError(index);
1217 <                if (base.modCount != modCount)
1218 <                    throw new ConcurrentModificationException();
1219 <                return base.set(index + baseOffset, element);
1220 <            }
1221 <        }
1222 <
1223 <        public E get(int index) {
1224 <            synchronized(base) {
1225 <                if (index < 0 || index >= length)
1226 <                    throw indexError(index);
1227 <                if (base.modCount != modCount)
1228 <                    throw new ConcurrentModificationException();
1229 <                return base.get(index + baseOffset);
1230 <            }
1231 <        }
1232 <
1233 <        public int size() {
1234 <            synchronized(base) {
1235 <                if (base.modCount != modCount)
1236 <                    throw new ConcurrentModificationException();
1237 <                return length;
1261 >                return elementData(lastRet = i);
1262              }
1263          }
1264  
1265 <        public void add(int index, E element) {
1266 <            synchronized(base) {
1267 <                if (index < 0 || index > length)
1268 <                    throw indexError(index);
1269 <                if (base.modCount != modCount)
1270 <                    throw new ConcurrentModificationException();
1271 <                parent.add(index + parentOffset, element);
1248 <                length++;
1249 <                modCount = base.modCount;
1250 <            }
1251 <        }
1252 <
1253 <        public E remove(int index) {
1254 <            synchronized(base) {
1255 <                if (index < 0 || index >= length)
1256 <                    throw indexError(index);
1257 <                if (base.modCount != modCount)
1258 <                    throw new ConcurrentModificationException();
1259 <                E result = parent.remove(index + parentOffset);
1260 <                length--;
1261 <                modCount = base.modCount;
1262 <                return result;
1263 <            }
1264 <        }
1265 <
1266 <        protected void removeRange(int fromIndex, int toIndex) {
1267 <            synchronized(base) {
1268 <                if (base.modCount != modCount)
1269 <                    throw new ConcurrentModificationException();
1270 <                parent.removeRange(fromIndex + parentOffset,
1271 <                                   toIndex + parentOffset);
1272 <                length -= (toIndex-fromIndex);
1273 <                modCount = base.modCount;
1265 >        public void remove() {
1266 >            if (lastRet == -1)
1267 >                throw new IllegalStateException();
1268 >            synchronized (Vector.this) {
1269 >                checkForComodification();
1270 >                Vector.this.remove(lastRet);
1271 >                expectedModCount = modCount;
1272              }
1273 +            cursor = lastRet;
1274 +            lastRet = -1;
1275          }
1276  
1277 <        public boolean addAll(Collection<? extends E> c) {
1278 <            return addAll(length, c);
1279 <        }
1280 <
1281 <        public boolean addAll(int index, Collection<? extends E> c) {
1282 <            synchronized(base) {
1283 <                if (index < 0 || index > length)
1284 <                    throw indexError(index);
1285 <                int cSize = c.size();
1286 <                if (cSize==0)
1287 <                    return false;
1288 <
1289 <                if (base.modCount != modCount)
1277 >        @Override
1278 >        public void forEachRemaining(Consumer<? super E> action) {
1279 >            Objects.requireNonNull(action);
1280 >            synchronized (Vector.this) {
1281 >                final int size = elementCount;
1282 >                int i = cursor;
1283 >                if (i >= size) {
1284 >                    return;
1285 >                }
1286 >                final Object[] es = elementData;
1287 >                if (i >= es.length)
1288                      throw new ConcurrentModificationException();
1289 <                parent.addAll(parentOffset + index, c);
1290 <                modCount = base.modCount;
1291 <                length += cSize;
1292 <                return true;
1289 >                while (i < size && modCount == expectedModCount)
1290 >                    action.accept(elementAt(es, i++));
1291 >                // update once at end of iteration to reduce heap write traffic
1292 >                cursor = i;
1293 >                lastRet = i - 1;
1294 >                checkForComodification();
1295              }
1296          }
1297  
1298 <        public boolean equals(Object o) {
1299 <            synchronized(base) {return super.equals(o);}
1298 >        final void checkForComodification() {
1299 >            if (modCount != expectedModCount)
1300 >                throw new ConcurrentModificationException();
1301          }
1302 +    }
1303  
1304 <        public int hashCode() {
1305 <            synchronized(base) {return super.hashCode();}
1304 >    /**
1305 >     * An optimized version of AbstractList.ListItr
1306 >     */
1307 >    final class ListItr extends Itr implements ListIterator<E> {
1308 >        ListItr(int index) {
1309 >            super();
1310 >            cursor = index;
1311          }
1312  
1313 <        public int indexOf(Object o) {
1314 <            synchronized(base) {return super.indexOf(o);}
1313 >        public boolean hasPrevious() {
1314 >            return cursor != 0;
1315          }
1316  
1317 <        public int lastIndexOf(Object o) {
1318 <            synchronized(base) {return super.lastIndexOf(o);}
1317 >        public int nextIndex() {
1318 >            return cursor;
1319          }
1320  
1321 <        public List<E> subList(int fromIndex, int toIndex) {
1322 <            return new VectorSubList(base, this, fromIndex + baseOffset,
1316 <                                     fromIndex, toIndex);
1321 >        public int previousIndex() {
1322 >            return cursor - 1;
1323          }
1324  
1325 <        public Iterator<E> iterator() {
1326 <            synchronized(base) {
1327 <                return new VectorSubListIterator(this, 0);
1325 >        public E previous() {
1326 >            synchronized (Vector.this) {
1327 >                checkForComodification();
1328 >                int i = cursor - 1;
1329 >                if (i < 0)
1330 >                    throw new NoSuchElementException();
1331 >                cursor = i;
1332 >                return elementData(lastRet = i);
1333              }
1334          }
1335  
1336 <        public synchronized ListIterator<E> listIterator() {
1337 <            synchronized(base) {
1338 <                return new VectorSubListIterator(this, 0);
1336 >        public void set(E e) {
1337 >            if (lastRet == -1)
1338 >                throw new IllegalStateException();
1339 >            synchronized (Vector.this) {
1340 >                checkForComodification();
1341 >                Vector.this.set(lastRet, e);
1342              }
1343          }
1344  
1345 <        public ListIterator<E> listIterator(int index) {
1346 <            synchronized(base) {
1347 <                if (index < 0 || index > length)
1348 <                    throw indexError(index);
1349 <                return new VectorSubListIterator(this, index);
1345 >        public void add(E e) {
1346 >            int i = cursor;
1347 >            synchronized (Vector.this) {
1348 >                checkForComodification();
1349 >                Vector.this.add(i, e);
1350 >                expectedModCount = modCount;
1351              }
1352 +            cursor = i + 1;
1353 +            lastRet = -1;
1354          }
1355 +    }
1356  
1357 <        /**
1358 <         * Same idea as VectorIterator, except routing structural
1359 <         * change operations through the sublist.
1360 <         */
1361 <        private static final class VectorSubListIterator<E> implements ListIterator<E> {
1362 <            final Vector<E> base;         // base list
1363 <            final VectorSubList<E> outer; // Sublist creating this iteraor
1364 <            final int offset;             // cursor offset wrt base
1365 <            int cursor;                   // Current index
1366 <            int fence;                    // Upper bound on cursor
1367 <            int lastRet;                  // Index of returned element, or -1
1368 <            int expectedModCount;         // Expected modCount of base Vector
1369 <
1370 <            VectorSubListIterator(VectorSubList<E> list, int index) {
1371 <                this.lastRet = -1;
1354 <                this.cursor = index;
1355 <                this.outer = list;
1356 <                this.offset = list.baseOffset;
1357 <                this.fence = list.length;
1358 <                this.base = list.base;
1359 <                this.expectedModCount = base.modCount;
1360 <            }
1361 <
1362 <            public boolean hasNext() {
1363 <                return cursor < fence;
1364 <            }
1357 >    /**
1358 >     * @throws NullPointerException {@inheritDoc}
1359 >     */
1360 >    @Override
1361 >    public synchronized void forEach(Consumer<? super E> action) {
1362 >        Objects.requireNonNull(action);
1363 >        final int expectedModCount = modCount;
1364 >        final Object[] es = elementData;
1365 >        final int size = elementCount;
1366 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1367 >            action.accept(elementAt(es, i));
1368 >        if (modCount != expectedModCount)
1369 >            throw new ConcurrentModificationException();
1370 >        // checkInvariants();
1371 >    }
1372  
1373 <            public boolean hasPrevious() {
1374 <                return cursor > 0;
1375 <            }
1373 >    /**
1374 >     * @throws NullPointerException {@inheritDoc}
1375 >     */
1376 >    @Override
1377 >    public synchronized void replaceAll(UnaryOperator<E> operator) {
1378 >        Objects.requireNonNull(operator);
1379 >        final int expectedModCount = modCount;
1380 >        final Object[] es = elementData;
1381 >        final int size = elementCount;
1382 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1383 >            es[i] = operator.apply(elementAt(es, i));
1384 >        if (modCount != expectedModCount)
1385 >            throw new ConcurrentModificationException();
1386 >        // TODO(8203662): remove increment of modCount from ...
1387 >        modCount++;
1388 >        // checkInvariants();
1389 >    }
1390  
1391 <            public int nextIndex() {
1392 <                return cursor;
1393 <            }
1391 >    @SuppressWarnings("unchecked")
1392 >    @Override
1393 >    public synchronized void sort(Comparator<? super E> c) {
1394 >        final int expectedModCount = modCount;
1395 >        Arrays.sort((E[]) elementData, 0, elementCount, c);
1396 >        if (modCount != expectedModCount)
1397 >            throw new ConcurrentModificationException();
1398 >        modCount++;
1399 >        // checkInvariants();
1400 >    }
1401  
1402 <            public int previousIndex() {
1403 <                return cursor - 1;
1404 <            }
1402 >    /**
1403 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1404 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1405 >     * list.
1406 >     *
1407 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1408 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1409 >     * Overriding implementations should document the reporting of additional
1410 >     * characteristic values.
1411 >     *
1412 >     * @return a {@code Spliterator} over the elements in this list
1413 >     * @since 1.8
1414 >     */
1415 >    @Override
1416 >    public Spliterator<E> spliterator() {
1417 >        return new VectorSpliterator(null, 0, -1, 0);
1418 >    }
1419  
1420 <            public E next() {
1421 <                int i = cursor;
1422 <                if (cursor >= fence)
1423 <                    throw new NoSuchElementException();
1424 <                Object next = base.iteratorGet(i + offset, expectedModCount);
1425 <                lastRet = i;
1384 <                cursor = i + 1;
1385 <                return (E)next;
1386 <            }
1420 >    /** Similar to ArrayList Spliterator */
1421 >    final class VectorSpliterator implements Spliterator<E> {
1422 >        private Object[] array;
1423 >        private int index; // current index, modified on advance/split
1424 >        private int fence; // -1 until used; then one past last index
1425 >        private int expectedModCount; // initialized when fence set
1426  
1427 <            public E previous() {
1428 <                int i = cursor - 1;
1429 <                if (i < 0)
1430 <                    throw new NoSuchElementException();
1431 <                Object prev = base.iteratorGet(i + offset, expectedModCount);
1432 <                lastRet = i;
1433 <                cursor = i;
1434 <                return (E)prev;
1396 <            }
1427 >        /** Creates new spliterator covering the given range. */
1428 >        VectorSpliterator(Object[] array, int origin, int fence,
1429 >                          int expectedModCount) {
1430 >            this.array = array;
1431 >            this.index = origin;
1432 >            this.fence = fence;
1433 >            this.expectedModCount = expectedModCount;
1434 >        }
1435  
1436 <            public void set(E e) {
1437 <                if (lastRet < 0)
1438 <                    throw new IllegalStateException();
1439 <                if (base.modCount != expectedModCount)
1440 <                    throw new ConcurrentModificationException();
1441 <                try {
1442 <                    outer.set(lastRet, e);
1405 <                    expectedModCount = base.modCount;
1406 <                } catch (IndexOutOfBoundsException ex) {
1407 <                    throw new ConcurrentModificationException();
1436 >        private int getFence() { // initialize on first use
1437 >            int hi;
1438 >            if ((hi = fence) < 0) {
1439 >                synchronized (Vector.this) {
1440 >                    array = elementData;
1441 >                    expectedModCount = modCount;
1442 >                    hi = fence = elementCount;
1443                  }
1444              }
1445 +            return hi;
1446 +        }
1447  
1448 <            public void remove() {
1449 <                int i = lastRet;
1450 <                if (i < 0)
1451 <                    throw new IllegalStateException();
1452 <                if (base.modCount != expectedModCount)
1448 >        public Spliterator<E> trySplit() {
1449 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1450 >            return (lo >= mid) ? null :
1451 >                new VectorSpliterator(array, lo, index = mid, expectedModCount);
1452 >        }
1453 >
1454 >        @SuppressWarnings("unchecked")
1455 >        public boolean tryAdvance(Consumer<? super E> action) {
1456 >            Objects.requireNonNull(action);
1457 >            int i;
1458 >            if (getFence() > (i = index)) {
1459 >                index = i + 1;
1460 >                action.accept((E)array[i]);
1461 >                if (modCount != expectedModCount)
1462                      throw new ConcurrentModificationException();
1463 <                try {
1418 <                    outer.remove(i);
1419 <                    if (i < cursor)
1420 <                        cursor--;
1421 <                    lastRet = -1;
1422 <                    fence = outer.length;
1423 <                    expectedModCount = base.modCount;
1424 <                } catch (IndexOutOfBoundsException ex) {
1425 <                    throw new ConcurrentModificationException();
1426 <                }
1463 >                return true;
1464              }
1465 +            return false;
1466 +        }
1467  
1468 <            public void add(E e) {
1469 <                if (base.modCount != expectedModCount)
1470 <                    throw new ConcurrentModificationException();
1471 <                try {
1472 <                    int i = cursor;
1473 <                    outer.add(i, e);
1474 <                    cursor = i + 1;
1475 <                    lastRet = -1;
1476 <                    fence = outer.length;
1477 <                    expectedModCount = base.modCount;
1439 <                } catch (IndexOutOfBoundsException ex) {
1440 <                    throw new ConcurrentModificationException();
1441 <                }
1442 <            }
1468 >        @SuppressWarnings("unchecked")
1469 >        public void forEachRemaining(Consumer<? super E> action) {
1470 >            Objects.requireNonNull(action);
1471 >            final int hi = getFence();
1472 >            final Object[] a = array;
1473 >            int i;
1474 >            for (i = index, index = hi; i < hi; i++)
1475 >                action.accept((E) a[i]);
1476 >            if (modCount != expectedModCount)
1477 >                throw new ConcurrentModificationException();
1478          }
1444    }
1445 }
1479  
1480 +        public long estimateSize() {
1481 +            return getFence() - index;
1482 +        }
1483  
1484 +        public int characteristics() {
1485 +            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1486 +        }
1487 +    }
1488  
1489 +    void checkInvariants() {
1490 +        // assert elementCount >= 0;
1491 +        // assert elementCount == elementData.length || elementData[elementCount] == null;
1492 +    }
1493 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines