ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.14
Committed: Sun Jun 25 19:41:52 2006 UTC (17 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.13: +63 -63 lines
Log Message:
@code-ify

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * The {@code Vector} class implements a growable array of
12 * objects. Like an array, it contains components that can be
13 * accessed using an integer index. However, the size of a
14 * {@code Vector} can grow or shrink as needed to accommodate
15 * adding and removing items after the {@code Vector} has been created.
16 *
17 * <p>Each vector tries to optimize storage management by maintaining a
18 * {@code capacity} and a {@code capacityIncrement}. The
19 * {@code capacity} is always at least as large as the vector
20 * size; it is usually larger because as components are added to the
21 * vector, the vector's storage increases in chunks the size of
22 * {@code capacityIncrement}. An application can increase the
23 * capacity of a vector before inserting a large number of
24 * components; this reduces the amount of incremental reallocation.
25 *
26 * <p>The Iterators returned by Vector's iterator and listIterator
27 * methods are <em>fail-fast</em>: if the Vector is structurally modified
28 * at any time after the Iterator is created, in any way except through the
29 * Iterator's own remove or add methods, the Iterator will throw a
30 * ConcurrentModificationException. Thus, in the face of concurrent
31 * modification, the Iterator fails quickly and cleanly, rather than risking
32 * arbitrary, non-deterministic behavior at an undetermined time in the future.
33 * The Enumerations returned by Vector's elements method are <em>not</em>
34 * fail-fast.
35 *
36 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
37 * as it is, generally speaking, impossible to make any hard guarantees in the
38 * presence of unsynchronized concurrent modification. Fail-fast iterators
39 * throw {@code ConcurrentModificationException} on a best-effort basis.
40 * Therefore, it would be wrong to write a program that depended on this
41 * exception for its correctness: <i>the fail-fast behavior of iterators
42 * should be used only to detect bugs.</i>
43 *
44 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
45 * implement the {@link List} interface, making it a member of the
46 * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
47 * Collections Framework</a>. Unlike the new collection
48 * implementations, {@code Vector} is synchronized.
49 *
50 * @author Lee Boynton
51 * @author Jonathan Payne
52 * @version %I%, %G%
53 * @see Collection
54 * @see List
55 * @see ArrayList
56 * @see LinkedList
57 * @since JDK1.0
58 */
59 public class Vector<E>
60 extends AbstractList<E>
61 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
62 {
63 /**
64 * The array buffer into which the components of the vector are
65 * stored. The capacity of the vector is the length of this array buffer,
66 * and is at least large enough to contain all the vector's elements.<p>
67 *
68 * Any array elements following the last element in the Vector are null.
69 *
70 * @serial
71 */
72 protected Object[] elementData;
73
74 /**
75 * The number of valid components in this {@code Vector} object.
76 * Components {@code elementData[0]} through
77 * {@code elementData[elementCount-1]} are the actual items.
78 *
79 * @serial
80 */
81 protected int elementCount;
82
83 /**
84 * The amount by which the capacity of the vector is automatically
85 * incremented when its size becomes greater than its capacity. If
86 * the capacity increment is less than or equal to zero, the capacity
87 * of the vector is doubled each time it needs to grow.
88 *
89 * @serial
90 */
91 protected int capacityIncrement;
92
93 /** use serialVersionUID from JDK 1.0.2 for interoperability */
94 private static final long serialVersionUID = -2767605614048989439L;
95
96 /**
97 * Constructs an empty vector with the specified initial capacity and
98 * capacity increment.
99 *
100 * @param initialCapacity the initial capacity of the vector
101 * @param capacityIncrement the amount by which the capacity is
102 * increased when the vector overflows
103 * @exception IllegalArgumentException if the specified initial capacity
104 * is negative
105 */
106 public Vector(int initialCapacity, int capacityIncrement) {
107 super();
108 if (initialCapacity < 0)
109 throw new IllegalArgumentException("Illegal Capacity: "+
110 initialCapacity);
111 this.elementData = new Object[initialCapacity];
112 this.capacityIncrement = capacityIncrement;
113 }
114
115 /**
116 * Constructs an empty vector with the specified initial capacity and
117 * with its capacity increment equal to zero.
118 *
119 * @param initialCapacity the initial capacity of the vector
120 * @exception IllegalArgumentException if the specified initial capacity
121 * is negative
122 */
123 public Vector(int initialCapacity) {
124 this(initialCapacity, 0);
125 }
126
127 /**
128 * Constructs an empty vector so that its internal data array
129 * has size {@code 10} and its standard capacity increment is
130 * zero.
131 */
132 public Vector() {
133 this(10);
134 }
135
136 /**
137 * Constructs a vector containing the elements of the specified
138 * collection, in the order they are returned by the collection's
139 * iterator.
140 *
141 * @param c the collection whose elements are to be placed into this
142 * vector
143 * @throws NullPointerException if the specified collection is null
144 * @since 1.2
145 */
146 public Vector(Collection<? extends E> c) {
147 elementData = c.toArray();
148 elementCount = elementData.length;
149 // c.toArray might (incorrectly) not return Object[] (see 6260652)
150 if (elementData.getClass() != Object[].class)
151 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
152 }
153
154 /**
155 * Copies the components of this vector into the specified array.
156 * The item at index {@code k} in this vector is copied into
157 * component {@code k} of {@code anArray}.
158 *
159 * @param anArray the array into which the components get copied
160 * @throws NullPointerException if the given array is null
161 * @throws IndexOutOfBoundsException if the specified array is not
162 * large enough to hold all the components of this vector
163 * @throws ArrayStoreException if a component of this vector is not of
164 * a runtime type that can be stored in the specified array
165 * @see #toArray(Object[])
166 */
167 public synchronized void copyInto(Object[] anArray) {
168 System.arraycopy(elementData, 0, anArray, 0, elementCount);
169 }
170
171 /**
172 * Trims the capacity of this vector to be the vector's current
173 * size. If the capacity of this vector is larger than its current
174 * size, then the capacity is changed to equal the size by replacing
175 * its internal data array, kept in the field {@code elementData},
176 * with a smaller one. An application can use this operation to
177 * minimize the storage of a vector.
178 */
179 public synchronized void trimToSize() {
180 modCount++;
181 int oldCapacity = elementData.length;
182 if (elementCount < oldCapacity) {
183 elementData = Arrays.copyOf(elementData, elementCount);
184 }
185 }
186
187 /**
188 * Increases the capacity of this vector, if necessary, to ensure
189 * that it can hold at least the number of components specified by
190 * the minimum capacity argument.
191 *
192 * <p>If the current capacity of this vector is less than
193 * {@code minCapacity}, then its capacity is increased by replacing its
194 * internal data array, kept in the field {@code elementData}, with a
195 * larger one. The size of the new data array will be the old size plus
196 * {@code capacityIncrement}, unless the value of
197 * {@code capacityIncrement} is less than or equal to zero, in which case
198 * the new capacity will be twice the old capacity; but if this new size
199 * is still smaller than {@code minCapacity}, then the new capacity will
200 * be {@code minCapacity}.
201 *
202 * @param minCapacity the desired minimum capacity
203 */
204 public synchronized void ensureCapacity(int minCapacity) {
205 modCount++;
206 ensureCapacityHelper(minCapacity);
207 }
208
209 /**
210 * This implements the unsynchronized semantics of ensureCapacity.
211 * Synchronized methods in this class can internally call this
212 * method for ensuring capacity without incurring the cost of an
213 * extra synchronization.
214 *
215 * @see java.util.Vector#ensureCapacity(int)
216 */
217 private void ensureCapacityHelper(int minCapacity) {
218 int oldCapacity = elementData.length;
219 if (minCapacity > oldCapacity) {
220 Object[] oldData = elementData;
221 int newCapacity = (capacityIncrement > 0) ?
222 (oldCapacity + capacityIncrement) : (oldCapacity * 2);
223 if (newCapacity < minCapacity) {
224 newCapacity = minCapacity;
225 }
226 elementData = Arrays.copyOf(elementData, newCapacity);
227 }
228 }
229
230 /**
231 * Sets the size of this vector. If the new size is greater than the
232 * current size, new {@code null} items are added to the end of
233 * the vector. If the new size is less than the current size, all
234 * components at index {@code newSize} and greater are discarded.
235 *
236 * @param newSize the new size of this vector
237 * @throws ArrayIndexOutOfBoundsException if new size is negative
238 */
239 public synchronized void setSize(int newSize) {
240 modCount++;
241 if (newSize > elementCount) {
242 ensureCapacityHelper(newSize);
243 } else {
244 for (int i = newSize ; i < elementCount ; i++) {
245 elementData[i] = null;
246 }
247 }
248 elementCount = newSize;
249 }
250
251 /**
252 * Returns the current capacity of this vector.
253 *
254 * @return the current capacity (the length of its internal
255 * data array, kept in the field {@code elementData}
256 * of this vector)
257 */
258 public synchronized int capacity() {
259 return elementData.length;
260 }
261
262 /**
263 * Returns the number of components in this vector.
264 *
265 * @return the number of components in this vector
266 */
267 public synchronized int size() {
268 return elementCount;
269 }
270
271 /**
272 * Tests if this vector has no components.
273 *
274 * @return {@code true} if and only if this vector has
275 * no components, that is, its size is zero;
276 * {@code false} otherwise.
277 */
278 public synchronized boolean isEmpty() {
279 return elementCount == 0;
280 }
281
282 /**
283 * Returns an enumeration of the components of this vector. The
284 * returned {@code Enumeration} object will generate all items in
285 * this vector. The first item generated is the item at index {@code 0},
286 * then the item at index {@code 1}, and so on.
287 *
288 * @return an enumeration of the components of this vector
289 * @see Enumeration
290 * @see Iterator
291 */
292 public Enumeration<E> elements() {
293 return new Enumeration<E>() {
294 int count = 0;
295
296 public boolean hasMoreElements() {
297 return count < elementCount;
298 }
299
300 public E nextElement() {
301 synchronized (Vector.this) {
302 if (count < elementCount) {
303 return (E)elementData[count++];
304 }
305 }
306 throw new NoSuchElementException("Vector Enumeration");
307 }
308 };
309 }
310
311 /**
312 * Returns {@code true} if this vector contains the specified element.
313 * More formally, returns {@code true} if and only if this vector
314 * contains at least one element {@code e} such that
315 * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
316 *
317 * @param o element whose presence in this vector is to be tested
318 * @return {@code true} if this vector contains the specified element
319 */
320 public boolean contains(Object o) {
321 return indexOf(o, 0) >= 0;
322 }
323
324 /**
325 * Returns the index of the first occurrence of the specified element
326 * in this vector, or -1 if this vector does not contain the element.
327 * More formally, returns the lowest index {@code i} such that
328 * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
329 * or -1 if there is no such index.
330 *
331 * @param o element to search for
332 * @return the index of the first occurrence of the specified element in
333 * this vector, or -1 if this vector does not contain the element
334 */
335 public int indexOf(Object o) {
336 return indexOf(o, 0);
337 }
338
339 /**
340 * Returns the index of the first occurrence of the specified element in
341 * this vector, searching forwards from {@code index}, or returns -1 if
342 * the element is not found.
343 * More formally, returns the lowest index {@code i} such that
344 * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
345 * or -1 if there is no such index.
346 *
347 * @param o element to search for
348 * @param index index to start searching from
349 * @return the index of the first occurrence of the element in
350 * this vector at position {@code index} or later in the vector;
351 * {@code -1} if the element is not found.
352 * @throws IndexOutOfBoundsException if the specified index is negative
353 * @see Object#equals(Object)
354 */
355 public synchronized int indexOf(Object o, int index) {
356 if (o == null) {
357 for (int i = index ; i < elementCount ; i++)
358 if (elementData[i]==null)
359 return i;
360 } else {
361 for (int i = index ; i < elementCount ; i++)
362 if (o.equals(elementData[i]))
363 return i;
364 }
365 return -1;
366 }
367
368 /**
369 * Returns the index of the last occurrence of the specified element
370 * in this vector, or -1 if this vector does not contain the element.
371 * More formally, returns the highest index {@code i} such that
372 * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
373 * or -1 if there is no such index.
374 *
375 * @param o element to search for
376 * @return the index of the last occurrence of the specified element in
377 * this vector, or -1 if this vector does not contain the element
378 */
379 public synchronized int lastIndexOf(Object o) {
380 return lastIndexOf(o, elementCount-1);
381 }
382
383 /**
384 * Returns the index of the last occurrence of the specified element in
385 * this vector, searching backwards from {@code index}, or returns -1 if
386 * the element is not found.
387 * More formally, returns the highest index {@code i} such that
388 * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
389 * or -1 if there is no such index.
390 *
391 * @param o element to search for
392 * @param index index to start searching backwards from
393 * @return the index of the last occurrence of the element at position
394 * less than or equal to {@code index} in this vector;
395 * -1 if the element is not found.
396 * @throws IndexOutOfBoundsException if the specified index is greater
397 * than or equal to the current size of this vector
398 */
399 public synchronized int lastIndexOf(Object o, int index) {
400 if (index >= elementCount)
401 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
402
403 if (o == null) {
404 for (int i = index; i >= 0; i--)
405 if (elementData[i]==null)
406 return i;
407 } else {
408 for (int i = index; i >= 0; i--)
409 if (o.equals(elementData[i]))
410 return i;
411 }
412 return -1;
413 }
414
415 /**
416 * Returns the component at the specified index.<p>
417 *
418 * This method is identical in functionality to the get method
419 * (which is part of the List interface).
420 *
421 * @param index an index into this vector
422 * @return the component at the specified index
423 * @exception ArrayIndexOutOfBoundsException if the {@code index}
424 * is negative or not less than the current size of this
425 * {@code Vector} object.
426 * @see #get(int)
427 * @see List
428 */
429 public synchronized E elementAt(int index) {
430 if (index >= elementCount) {
431 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
432 }
433
434 return (E)elementData[index];
435 }
436
437 /**
438 * Returns the first component (the item at index {@code 0}) of
439 * this vector.
440 *
441 * @return the first component of this vector
442 * @exception NoSuchElementException if this vector has no components
443 */
444 public synchronized E firstElement() {
445 if (elementCount == 0) {
446 throw new NoSuchElementException();
447 }
448 return (E)elementData[0];
449 }
450
451 /**
452 * Returns the last component of the vector.
453 *
454 * @return the last component of the vector, i.e., the component at index
455 * <code>size()&nbsp;-&nbsp;1</code>.
456 * @exception NoSuchElementException if this vector is empty
457 */
458 public synchronized E lastElement() {
459 if (elementCount == 0) {
460 throw new NoSuchElementException();
461 }
462 return (E)elementData[elementCount - 1];
463 }
464
465 /**
466 * Sets the component at the specified {@code index} of this
467 * vector to be the specified object. The previous component at that
468 * position is discarded.<p>
469 *
470 * The index must be a value greater than or equal to {@code 0}
471 * and less than the current size of the vector. <p>
472 *
473 * This method is identical in functionality to the set method
474 * (which is part of the List interface). Note that the set method reverses
475 * the order of the parameters, to more closely match array usage. Note
476 * also that the set method returns the old value that was stored at the
477 * specified position.
478 *
479 * @param obj what the component is to be set to
480 * @param index the specified index
481 * @exception ArrayIndexOutOfBoundsException if the index was invalid
482 * @see #size()
483 * @see List
484 * @see #set(int, java.lang.Object)
485 */
486 public synchronized void setElementAt(E obj, int index) {
487 if (index >= elementCount) {
488 throw new ArrayIndexOutOfBoundsException(index + " >= " +
489 elementCount);
490 }
491 elementData[index] = obj;
492 }
493
494 /**
495 * Deletes the component at the specified index. Each component in
496 * this vector with an index greater or equal to the specified
497 * {@code index} is shifted downward to have an index one
498 * smaller than the value it had previously. The size of this vector
499 * is decreased by {@code 1}.<p>
500 *
501 * The index must be a value greater than or equal to {@code 0}
502 * and less than the current size of the vector. <p>
503 *
504 * This method is identical in functionality to the remove method
505 * (which is part of the List interface). Note that the remove method
506 * returns the old value that was stored at the specified position.
507 *
508 * @param index the index of the object to remove
509 * @exception ArrayIndexOutOfBoundsException if the index was invalid
510 * @see #size()
511 * @see #remove(int)
512 * @see List
513 */
514 public synchronized void removeElementAt(int index) {
515 modCount++;
516 if (index >= elementCount) {
517 throw new ArrayIndexOutOfBoundsException(index + " >= " +
518 elementCount);
519 }
520 else if (index < 0) {
521 throw new ArrayIndexOutOfBoundsException(index);
522 }
523 int j = elementCount - index - 1;
524 if (j > 0) {
525 System.arraycopy(elementData, index + 1, elementData, index, j);
526 }
527 elementCount--;
528 elementData[elementCount] = null; /* to let gc do its work */
529 }
530
531 /**
532 * Inserts the specified object as a component in this vector at the
533 * specified {@code index}. Each component in this vector with
534 * an index greater or equal to the specified {@code index} is
535 * shifted upward to have an index one greater than the value it had
536 * previously. <p>
537 *
538 * The index must be a value greater than or equal to {@code 0}
539 * and less than or equal to the current size of the vector. (If the
540 * index is equal to the current size of the vector, the new element
541 * is appended to the Vector.)<p>
542 *
543 * This method is identical in functionality to the add(Object, int) method
544 * (which is part of the List interface). Note that the add method reverses
545 * the order of the parameters, to more closely match array usage.
546 *
547 * @param obj the component to insert
548 * @param index where to insert the new component
549 * @exception ArrayIndexOutOfBoundsException if the index was invalid
550 * @see #size()
551 * @see #add(int, Object)
552 * @see List
553 */
554 public synchronized void insertElementAt(E obj, int index) {
555 modCount++;
556 if (index > elementCount) {
557 throw new ArrayIndexOutOfBoundsException(index
558 + " > " + elementCount);
559 }
560 ensureCapacityHelper(elementCount + 1);
561 System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
562 elementData[index] = obj;
563 elementCount++;
564 }
565
566 /**
567 * Adds the specified component to the end of this vector,
568 * increasing its size by one. The capacity of this vector is
569 * increased if its size becomes greater than its capacity. <p>
570 *
571 * This method is identical in functionality to the add(Object) method
572 * (which is part of the List interface).
573 *
574 * @param obj the component to be added
575 * @see #add(Object)
576 * @see List
577 */
578 public synchronized void addElement(E obj) {
579 modCount++;
580 ensureCapacityHelper(elementCount + 1);
581 elementData[elementCount++] = obj;
582 }
583
584 /**
585 * Removes the first (lowest-indexed) occurrence of the argument
586 * from this vector. If the object is found in this vector, each
587 * component in the vector with an index greater or equal to the
588 * object's index is shifted downward to have an index one smaller
589 * than the value it had previously.<p>
590 *
591 * This method is identical in functionality to the remove(Object)
592 * method (which is part of the List interface).
593 *
594 * @param obj the component to be removed
595 * @return {@code true} if the argument was a component of this
596 * vector; {@code false} otherwise.
597 * @see List#remove(Object)
598 * @see List
599 */
600 public synchronized boolean removeElement(Object obj) {
601 modCount++;
602 int i = indexOf(obj);
603 if (i >= 0) {
604 removeElementAt(i);
605 return true;
606 }
607 return false;
608 }
609
610 /**
611 * Removes all components from this vector and sets its size to zero.<p>
612 *
613 * This method is identical in functionality to the clear method
614 * (which is part of the List interface).
615 *
616 * @see #clear
617 * @see List
618 */
619 public synchronized void removeAllElements() {
620 modCount++;
621 // Let gc do its work
622 for (int i = 0; i < elementCount; i++)
623 elementData[i] = null;
624
625 elementCount = 0;
626 }
627
628 /**
629 * Returns a clone of this vector. The copy will contain a
630 * reference to a clone of the internal data array, not a reference
631 * to the original internal data array of this {@code Vector} object.
632 *
633 * @return a clone of this vector
634 */
635 public synchronized Object clone() {
636 try {
637 Vector<E> v = (Vector<E>) super.clone();
638 v.elementData = Arrays.copyOf(elementData, elementCount);
639 v.modCount = 0;
640 return v;
641 } catch (CloneNotSupportedException e) {
642 // this shouldn't happen, since we are Cloneable
643 throw new InternalError();
644 }
645 }
646
647 /**
648 * Returns an array containing all of the elements in this Vector
649 * in the correct order.
650 *
651 * @since 1.2
652 */
653 public synchronized Object[] toArray() {
654 return Arrays.copyOf(elementData, elementCount);
655 }
656
657 /**
658 * Returns an array containing all of the elements in this Vector in the
659 * correct order; the runtime type of the returned array is that of the
660 * specified array. If the Vector fits in the specified array, it is
661 * returned therein. Otherwise, a new array is allocated with the runtime
662 * type of the specified array and the size of this Vector.<p>
663 *
664 * If the Vector fits in the specified array with room to spare
665 * (i.e., the array has more elements than the Vector),
666 * the element in the array immediately following the end of the
667 * Vector is set to null. (This is useful in determining the length
668 * of the Vector <em>only</em> if the caller knows that the Vector
669 * does not contain any null elements.)
670 *
671 * @param a the array into which the elements of the Vector are to
672 * be stored, if it is big enough; otherwise, a new array of the
673 * same runtime type is allocated for this purpose.
674 * @return an array containing the elements of the Vector
675 * @exception ArrayStoreException the runtime type of a is not a supertype
676 * of the runtime type of every element in this Vector
677 * @throws NullPointerException if the given array is null
678 * @since 1.2
679 */
680 public synchronized <T> T[] toArray(T[] a) {
681 if (a.length < elementCount)
682 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
683
684 System.arraycopy(elementData, 0, a, 0, elementCount);
685
686 if (a.length > elementCount)
687 a[elementCount] = null;
688
689 return a;
690 }
691
692 // Positional Access Operations
693
694 /**
695 * Returns the element at the specified position in this Vector.
696 *
697 * @param index index of the element to return
698 * @return object at the specified index
699 * @exception ArrayIndexOutOfBoundsException index is out of range (index
700 * &lt; 0 || index &gt;= size())
701 * @since 1.2
702 */
703 public synchronized E get(int index) {
704 if (index >= elementCount)
705 throw new ArrayIndexOutOfBoundsException(index);
706
707 return (E)elementData[index];
708 }
709
710 /**
711 * Replaces the element at the specified position in this Vector with the
712 * specified element.
713 *
714 * @param index index of the element to replace
715 * @param element element to be stored at the specified position
716 * @return the element previously at the specified position
717 * @exception ArrayIndexOutOfBoundsException index out of range
718 * (index &lt; 0 || index &gt;= size())
719 * @since 1.2
720 */
721 public synchronized E set(int index, E element) {
722 if (index >= elementCount)
723 throw new ArrayIndexOutOfBoundsException(index);
724
725 Object oldValue = elementData[index];
726 elementData[index] = element;
727 return (E)oldValue;
728 }
729
730 /**
731 * Appends the specified element to the end of this Vector.
732 *
733 * @param e element to be appended to this Vector
734 * @return {@code true} (as specified by {@link Collection#add})
735 * @since 1.2
736 */
737 public synchronized boolean add(E e) {
738 modCount++;
739 ensureCapacityHelper(elementCount + 1);
740 elementData[elementCount++] = e;
741 return true;
742 }
743
744 /**
745 * Removes the first occurrence of the specified element in this Vector
746 * If the Vector does not contain the element, it is unchanged. More
747 * formally, removes the element with the lowest index i such that
748 * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
749 * an element exists).
750 *
751 * @param o element to be removed from this Vector, if present
752 * @return true if the Vector contained the specified element
753 * @since 1.2
754 */
755 public boolean remove(Object o) {
756 return removeElement(o);
757 }
758
759 /**
760 * Inserts the specified element at the specified position in this Vector.
761 * Shifts the element currently at that position (if any) and any
762 * subsequent elements to the right (adds one to their indices).
763 *
764 * @param index index at which the specified element is to be inserted
765 * @param element element to be inserted
766 * @exception ArrayIndexOutOfBoundsException index is out of range
767 * (index &lt; 0 || index &gt; size())
768 * @since 1.2
769 */
770 public void add(int index, E element) {
771 insertElementAt(element, index);
772 }
773
774 /**
775 * Removes the element at the specified position in this Vector.
776 * Shifts any subsequent elements to the left (subtracts one from their
777 * indices). Returns the element that was removed from the Vector.
778 *
779 * @exception ArrayIndexOutOfBoundsException index out of range (index
780 * &lt; 0 || index &gt;= size())
781 * @param index the index of the element to be removed
782 * @return element that was removed
783 * @since 1.2
784 */
785 public synchronized E remove(int index) {
786 modCount++;
787 if (index >= elementCount)
788 throw new ArrayIndexOutOfBoundsException(index);
789 Object oldValue = elementData[index];
790
791 int numMoved = elementCount - index - 1;
792 if (numMoved > 0)
793 System.arraycopy(elementData, index+1, elementData, index,
794 numMoved);
795 elementData[--elementCount] = null; // Let gc do its work
796
797 return (E)oldValue;
798 }
799
800 /**
801 * Removes all of the elements from this Vector. The Vector will
802 * be empty after this call returns (unless it throws an exception).
803 *
804 * @since 1.2
805 */
806 public void clear() {
807 removeAllElements();
808 }
809
810 // Bulk Operations
811
812 /**
813 * Returns true if this Vector contains all of the elements in the
814 * specified Collection.
815 *
816 * @param c a collection whose elements will be tested for containment
817 * in this Vector
818 * @return true if this Vector contains all of the elements in the
819 * specified collection
820 * @throws NullPointerException if the specified collection is null
821 */
822 public synchronized boolean containsAll(Collection<?> c) {
823 return super.containsAll(c);
824 }
825
826 /**
827 * Appends all of the elements in the specified Collection to the end of
828 * this Vector, in the order that they are returned by the specified
829 * Collection's Iterator. The behavior of this operation is undefined if
830 * the specified Collection is modified while the operation is in progress.
831 * (This implies that the behavior of this call is undefined if the
832 * specified Collection is this Vector, and this Vector is nonempty.)
833 *
834 * @param c elements to be inserted into this Vector
835 * @return {@code true} if this Vector changed as a result of the call
836 * @throws NullPointerException if the specified collection is null
837 * @since 1.2
838 */
839 public synchronized boolean addAll(Collection<? extends E> c) {
840 modCount++;
841 Object[] a = c.toArray();
842 int numNew = a.length;
843 ensureCapacityHelper(elementCount + numNew);
844 System.arraycopy(a, 0, elementData, elementCount, numNew);
845 elementCount += numNew;
846 return numNew != 0;
847 }
848
849 /**
850 * Removes from this Vector all of its elements that are contained in the
851 * specified Collection.
852 *
853 * @param c a collection of elements to be removed from the Vector
854 * @return true if this Vector changed as a result of the call
855 * @throws ClassCastException if the types of one or more elements
856 * in this vector are incompatible with the specified
857 * collection (optional)
858 * @throws NullPointerException if this vector contains one or more null
859 * elements and the specified collection does not support null
860 * elements (optional), or if the specified collection is null
861 * @since 1.2
862 */
863 public synchronized boolean removeAll(Collection<?> c) {
864 return super.removeAll(c);
865 }
866
867 /**
868 * Retains only the elements in this Vector that are contained in the
869 * specified Collection. In other words, removes from this Vector all
870 * of its elements that are not contained in the specified Collection.
871 *
872 * @param c a collection of elements to be retained in this Vector
873 * (all other elements are removed)
874 * @return true if this Vector changed as a result of the call
875 * @throws ClassCastException if the types of one or more elements
876 * in this vector are incompatible with the specified
877 * collection (optional)
878 * @throws NullPointerException if this vector contains one or more null
879 * elements and the specified collection does not support null
880 * elements (optional), or if the specified collection is null
881 * @since 1.2
882 */
883 public synchronized boolean retainAll(Collection<?> c) {
884 return super.retainAll(c);
885 }
886
887 /**
888 * Inserts all of the elements in the specified Collection into this
889 * Vector at the specified position. Shifts the element currently at
890 * that position (if any) and any subsequent elements to the right
891 * (increases their indices). The new elements will appear in the Vector
892 * in the order that they are returned by the specified Collection's
893 * iterator.
894 *
895 * @param index index at which to insert the first element from the
896 * specified collection
897 * @param c elements to be inserted into this Vector
898 * @return {@code true} if this Vector changed as a result of the call
899 * @exception ArrayIndexOutOfBoundsException index out of range (index
900 * &lt; 0 || index &gt; size())
901 * @throws NullPointerException if the specified collection is null
902 * @since 1.2
903 */
904 public synchronized boolean addAll(int index, Collection<? extends E> c) {
905 modCount++;
906 if (index < 0 || index > elementCount)
907 throw new ArrayIndexOutOfBoundsException(index);
908
909 Object[] a = c.toArray();
910 int numNew = a.length;
911 ensureCapacityHelper(elementCount + numNew);
912
913 int numMoved = elementCount - index;
914 if (numMoved > 0)
915 System.arraycopy(elementData, index, elementData, index + numNew,
916 numMoved);
917
918 System.arraycopy(a, 0, elementData, index, numNew);
919 elementCount += numNew;
920 return numNew != 0;
921 }
922
923 /**
924 * Compares the specified Object with this Vector for equality. Returns
925 * true if and only if the specified Object is also a List, both Lists
926 * have the same size, and all corresponding pairs of elements in the two
927 * Lists are <em>equal</em>. (Two elements {@code e1} and
928 * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
929 * e1.equals(e2))}.) In other words, two Lists are defined to be
930 * equal if they contain the same elements in the same order.
931 *
932 * @param o the Object to be compared for equality with this Vector
933 * @return true if the specified Object is equal to this Vector
934 */
935 public synchronized boolean equals(Object o) {
936 return super.equals(o);
937 }
938
939 /**
940 * Returns the hash code value for this Vector.
941 */
942 public synchronized int hashCode() {
943 return super.hashCode();
944 }
945
946 /**
947 * Returns a string representation of this Vector, containing
948 * the String representation of each element.
949 */
950 public synchronized String toString() {
951 return super.toString();
952 }
953
954 /**
955 * Removes from this List all of the elements whose index is between
956 * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding
957 * elements to the left (reduces their index).
958 * This call shortens the Vector by (toIndex - fromIndex) elements. (If
959 * toIndex==fromIndex, this operation has no effect.)
960 *
961 * @param fromIndex index of first element to be removed
962 * @param toIndex index after last element to be removed
963 */
964 protected synchronized void removeRange(int fromIndex, int toIndex) {
965 modCount++;
966 int numMoved = elementCount - toIndex;
967 System.arraycopy(elementData, toIndex, elementData, fromIndex,
968 numMoved);
969
970 // Let gc do its work
971 int newElementCount = elementCount - (toIndex-fromIndex);
972 while (elementCount != newElementCount)
973 elementData[--elementCount] = null;
974 }
975
976 /**
977 * Save the state of the {@code Vector} instance to a stream (that
978 * is, serialize it). This method is present merely for synchronization.
979 * It just calls the default writeObject method.
980 */
981 private synchronized void writeObject(java.io.ObjectOutputStream s)
982 throws java.io.IOException
983 {
984 s.defaultWriteObject();
985 }
986
987 /**
988 * Returns a list-iterator of the elements in this list (in proper
989 * sequence), starting at the specified position in the list.
990 * Obeys the general contract of {@link List#listIterator(int)}.
991 *
992 * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
993 * modified at any time after the Iterator is created, in any way except
994 * through the list-iterator's own {@code remove} or {@code add}
995 * methods, the list-iterator will throw a
996 * {@code ConcurrentModificationException}. Thus, in the face of
997 * concurrent modification, the iterator fails quickly and cleanly, rather
998 * than risking arbitrary, non-deterministic behavior at an undetermined
999 * time in the future.
1000 *
1001 * @param index index of the first element to be returned from the
1002 * list-iterator (by a call to {@link ListIterator#next})
1003 * @return a list-iterator of the elements in this list (in proper
1004 * sequence), starting at the specified position in the list
1005 * @throws IndexOutOfBoundsException {@inheritDoc}
1006 */
1007 public synchronized ListIterator<E> listIterator(int index) {
1008 if (index < 0 || index > elementCount)
1009 throw new IndexOutOfBoundsException("Index: "+index);
1010 return new VectorIterator(index, elementCount);
1011 }
1012
1013 /**
1014 * {@inheritDoc}
1015 */
1016 public synchronized ListIterator<E> listIterator() {
1017 return new VectorIterator(0, elementCount);
1018 }
1019
1020 /**
1021 * Returns an iterator over the elements in this list in proper sequence.
1022 *
1023 * @return an iterator over the elements in this list in proper sequence
1024 */
1025 public synchronized Iterator<E> iterator() {
1026 return new VectorIterator(0, elementCount);
1027 }
1028
1029 /**
1030 * Helper method to access array elements under synchronization by
1031 * iterators. The caller performs index check with respect to
1032 * expected bounds, so errors accessing the element are reported
1033 * as ConcurrentModificationExceptions.
1034 */
1035 final synchronized Object iteratorGet(int index, int expectedModCount) {
1036 if (modCount == expectedModCount) {
1037 try {
1038 return elementData[index];
1039 } catch(IndexOutOfBoundsException fallThrough) {
1040 }
1041 }
1042 throw new ConcurrentModificationException();
1043 }
1044
1045 /**
1046 * Streamlined specialization of AbstractList version of iterator.
1047 * Locally perfroms bounds checks, but relies on outer Vector
1048 * to access elements under synchronization.
1049 */
1050 private final class VectorIterator implements ListIterator<E> {
1051 int cursor; // Index of next element to return;
1052 int fence; // Upper bound on cursor (cache of size())
1053 int lastRet; // Index of last element, or -1 if no such
1054 int expectedModCount; // To check for CME
1055
1056 VectorIterator(int index, int fence) {
1057 this.cursor = index;
1058 this.fence = fence;
1059 this.lastRet = -1;
1060 this.expectedModCount = Vector.this.modCount;
1061 }
1062
1063 public boolean hasNext() {
1064 return cursor < fence;
1065 }
1066
1067 public boolean hasPrevious() {
1068 return cursor > 0;
1069 }
1070
1071 public int nextIndex() {
1072 return cursor;
1073 }
1074
1075 public int previousIndex() {
1076 return cursor - 1;
1077 }
1078
1079 public E next() {
1080 int i = cursor;
1081 if (i >= fence)
1082 throw new NoSuchElementException();
1083 Object next = Vector.this.iteratorGet(i, expectedModCount);
1084 lastRet = i;
1085 cursor = i + 1;
1086 return (E)next;
1087 }
1088
1089 public E previous() {
1090 int i = cursor - 1;
1091 if (i < 0)
1092 throw new NoSuchElementException();
1093 Object prev = Vector.this.iteratorGet(i, expectedModCount);
1094 lastRet = i;
1095 cursor = i;
1096 return (E)prev;
1097 }
1098
1099 public void set(E e) {
1100 if (lastRet < 0)
1101 throw new IllegalStateException();
1102 if (Vector.this.modCount != expectedModCount)
1103 throw new ConcurrentModificationException();
1104 try {
1105 Vector.this.set(lastRet, e);
1106 expectedModCount = Vector.this.modCount;
1107 } catch (IndexOutOfBoundsException ex) {
1108 throw new ConcurrentModificationException();
1109 }
1110 }
1111
1112 public void remove() {
1113 int i = lastRet;
1114 if (i < 0)
1115 throw new IllegalStateException();
1116 if (Vector.this.modCount != expectedModCount)
1117 throw new ConcurrentModificationException();
1118 try {
1119 Vector.this.remove(i);
1120 if (i < cursor)
1121 cursor--;
1122 lastRet = -1;
1123 fence = Vector.this.size();
1124 expectedModCount = Vector.this.modCount;
1125 } catch (IndexOutOfBoundsException ex) {
1126 throw new ConcurrentModificationException();
1127 }
1128 }
1129
1130 public void add(E e) {
1131 if (Vector.this.modCount != expectedModCount)
1132 throw new ConcurrentModificationException();
1133 try {
1134 int i = cursor;
1135 Vector.this.add(i, e);
1136 cursor = i + 1;
1137 lastRet = -1;
1138 fence = Vector.this.size();
1139 expectedModCount = Vector.this.modCount;
1140 } catch (IndexOutOfBoundsException ex) {
1141 throw new ConcurrentModificationException();
1142 }
1143 }
1144 }
1145
1146 /**
1147 * Returns a view of the portion of this List between fromIndex,
1148 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1149 * equal, the returned List is empty.) The returned List is backed by this
1150 * List, so changes in the returned List are reflected in this List, and
1151 * vice-versa. The returned List supports all of the optional List
1152 * operations supported by this List.<p>
1153 *
1154 * This method eliminates the need for explicit range operations (of
1155 * the sort that commonly exist for arrays). Any operation that expects
1156 * a List can be used as a range operation by operating on a subList view
1157 * instead of a whole List. For example, the following idiom
1158 * removes a range of elements from a List:
1159 * <pre>
1160 * list.subList(from, to).clear();
1161 * </pre>
1162 * Similar idioms may be constructed for indexOf and lastIndexOf,
1163 * and all of the algorithms in the Collections class can be applied to
1164 * a subList.<p>
1165 *
1166 * The semantics of the List returned by this method become undefined if
1167 * the backing list (i.e., this List) is <i>structurally modified</i> in
1168 * any way other than via the returned List. (Structural modifications are
1169 * those that change the size of the List, or otherwise perturb it in such
1170 * a fashion that iterations in progress may yield incorrect results.)
1171 *
1172 * @param fromIndex low endpoint (inclusive) of the subList
1173 * @param toIndex high endpoint (exclusive) of the subList
1174 * @return a view of the specified range within this List
1175 * @throws IndexOutOfBoundsException endpoint index value out of range
1176 * <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1177 * @throws IllegalArgumentException endpoint indices out of order
1178 * <code>(fromIndex &gt; toIndex)</code>
1179 */
1180 public synchronized List<E> subList(int fromIndex, int toIndex) {
1181 return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1182 }
1183
1184 /**
1185 * This class specializes the AbstractList version of SubList to
1186 * avoid the double-indirection penalty that would arise using a
1187 * synchronized wrapper, as well as to avoid some unnecessary
1188 * checks in sublist iterators.
1189 */
1190 private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1191 final Vector<E> base; // base list
1192 final AbstractList<E> parent; // Creating list
1193 final int baseOffset; // index wrt Vector
1194 final int parentOffset; // index wrt parent
1195 int length; // length of sublist
1196
1197 VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1198 int fromIndex, int toIndex) {
1199 if (fromIndex < 0)
1200 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1201 if (toIndex > parent.size())
1202 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1203 if (fromIndex > toIndex)
1204 throw new IllegalArgumentException("fromIndex(" + fromIndex +
1205 ") > toIndex(" + toIndex + ")");
1206
1207 this.base = base;
1208 this.parent = parent;
1209 this.baseOffset = baseOffset;
1210 this.parentOffset = fromIndex;
1211 this.length = toIndex - fromIndex;
1212 modCount = base.modCount;
1213 }
1214
1215 /**
1216 * Returns an IndexOutOfBoundsException with nicer message
1217 */
1218 private IndexOutOfBoundsException indexError(int index) {
1219 return new IndexOutOfBoundsException("Index: " + index +
1220 ", Size: " + length);
1221 }
1222
1223 public E set(int index, E element) {
1224 synchronized(base) {
1225 if (index < 0 || index >= length)
1226 throw indexError(index);
1227 if (base.modCount != modCount)
1228 throw new ConcurrentModificationException();
1229 return base.set(index + baseOffset, element);
1230 }
1231 }
1232
1233 public E get(int index) {
1234 synchronized(base) {
1235 if (index < 0 || index >= length)
1236 throw indexError(index);
1237 if (base.modCount != modCount)
1238 throw new ConcurrentModificationException();
1239 return base.get(index + baseOffset);
1240 }
1241 }
1242
1243 public int size() {
1244 synchronized(base) {
1245 if (base.modCount != modCount)
1246 throw new ConcurrentModificationException();
1247 return length;
1248 }
1249 }
1250
1251 public void add(int index, E element) {
1252 synchronized(base) {
1253 if (index < 0 || index > length)
1254 throw indexError(index);
1255 if (base.modCount != modCount)
1256 throw new ConcurrentModificationException();
1257 parent.add(index + parentOffset, element);
1258 length++;
1259 modCount = base.modCount;
1260 }
1261 }
1262
1263 public E remove(int index) {
1264 synchronized(base) {
1265 if (index < 0 || index >= length)
1266 throw indexError(index);
1267 if (base.modCount != modCount)
1268 throw new ConcurrentModificationException();
1269 E result = parent.remove(index + parentOffset);
1270 length--;
1271 modCount = base.modCount;
1272 return result;
1273 }
1274 }
1275
1276 protected void removeRange(int fromIndex, int toIndex) {
1277 synchronized(base) {
1278 if (base.modCount != modCount)
1279 throw new ConcurrentModificationException();
1280 parent.removeRange(fromIndex + parentOffset,
1281 toIndex + parentOffset);
1282 length -= (toIndex-fromIndex);
1283 modCount = base.modCount;
1284 }
1285 }
1286
1287 public boolean addAll(Collection<? extends E> c) {
1288 return addAll(length, c);
1289 }
1290
1291 public boolean addAll(int index, Collection<? extends E> c) {
1292 synchronized(base) {
1293 if (index < 0 || index > length)
1294 throw indexError(index);
1295 int cSize = c.size();
1296 if (cSize==0)
1297 return false;
1298
1299 if (base.modCount != modCount)
1300 throw new ConcurrentModificationException();
1301 parent.addAll(parentOffset + index, c);
1302 modCount = base.modCount;
1303 length += cSize;
1304 return true;
1305 }
1306 }
1307
1308 public boolean equals(Object o) {
1309 synchronized(base) {return super.equals(o);}
1310 }
1311
1312 public int hashCode() {
1313 synchronized(base) {return super.hashCode();}
1314 }
1315
1316 public int indexOf(Object o) {
1317 synchronized(base) {return super.indexOf(o);}
1318 }
1319
1320 public int lastIndexOf(Object o) {
1321 synchronized(base) {return super.lastIndexOf(o);}
1322 }
1323
1324 public List<E> subList(int fromIndex, int toIndex) {
1325 return new VectorSubList(base, this, fromIndex + baseOffset,
1326 fromIndex, toIndex);
1327 }
1328
1329 public Iterator<E> iterator() {
1330 synchronized(base) {
1331 return new VectorSubListIterator(this, 0);
1332 }
1333 }
1334
1335 public synchronized ListIterator<E> listIterator() {
1336 synchronized(base) {
1337 return new VectorSubListIterator(this, 0);
1338 }
1339 }
1340
1341 public ListIterator<E> listIterator(int index) {
1342 synchronized(base) {
1343 if (index < 0 || index > length)
1344 throw indexError(index);
1345 return new VectorSubListIterator(this, index);
1346 }
1347 }
1348
1349 /**
1350 * Same idea as VectorIterator, except routing structural
1351 * change operations through the sublist.
1352 */
1353 private static final class VectorSubListIterator<E> implements ListIterator<E> {
1354 final Vector<E> base; // base list
1355 final VectorSubList<E> outer; // Sublist creating this iteraor
1356 final int offset; // cursor offset wrt base
1357 int cursor; // Current index
1358 int fence; // Upper bound on cursor
1359 int lastRet; // Index of returned element, or -1
1360 int expectedModCount; // Expected modCount of base Vector
1361
1362 VectorSubListIterator(VectorSubList<E> list, int index) {
1363 this.lastRet = -1;
1364 this.cursor = index;
1365 this.outer = list;
1366 this.offset = list.baseOffset;
1367 this.fence = list.length;
1368 this.base = list.base;
1369 this.expectedModCount = base.modCount;
1370 }
1371
1372 public boolean hasNext() {
1373 return cursor < fence;
1374 }
1375
1376 public boolean hasPrevious() {
1377 return cursor > 0;
1378 }
1379
1380 public int nextIndex() {
1381 return cursor;
1382 }
1383
1384 public int previousIndex() {
1385 return cursor - 1;
1386 }
1387
1388 public E next() {
1389 int i = cursor;
1390 if (cursor >= fence)
1391 throw new NoSuchElementException();
1392 Object next = base.iteratorGet(i + offset, expectedModCount);
1393 lastRet = i;
1394 cursor = i + 1;
1395 return (E)next;
1396 }
1397
1398 public E previous() {
1399 int i = cursor - 1;
1400 if (i < 0)
1401 throw new NoSuchElementException();
1402 Object prev = base.iteratorGet(i + offset, expectedModCount);
1403 lastRet = i;
1404 cursor = i;
1405 return (E)prev;
1406 }
1407
1408 public void set(E e) {
1409 if (lastRet < 0)
1410 throw new IllegalStateException();
1411 if (base.modCount != expectedModCount)
1412 throw new ConcurrentModificationException();
1413 try {
1414 outer.set(lastRet, e);
1415 expectedModCount = base.modCount;
1416 } catch (IndexOutOfBoundsException ex) {
1417 throw new ConcurrentModificationException();
1418 }
1419 }
1420
1421 public void remove() {
1422 int i = lastRet;
1423 if (i < 0)
1424 throw new IllegalStateException();
1425 if (base.modCount != expectedModCount)
1426 throw new ConcurrentModificationException();
1427 try {
1428 outer.remove(i);
1429 if (i < cursor)
1430 cursor--;
1431 lastRet = -1;
1432 fence = outer.length;
1433 expectedModCount = base.modCount;
1434 } catch (IndexOutOfBoundsException ex) {
1435 throw new ConcurrentModificationException();
1436 }
1437 }
1438
1439 public void add(E e) {
1440 if (base.modCount != expectedModCount)
1441 throw new ConcurrentModificationException();
1442 try {
1443 int i = cursor;
1444 outer.add(i, e);
1445 cursor = i + 1;
1446 lastRet = -1;
1447 fence = outer.length;
1448 expectedModCount = base.modCount;
1449 } catch (IndexOutOfBoundsException ex) {
1450 throw new ConcurrentModificationException();
1451 }
1452 }
1453 }
1454 }
1455 }
1456
1457
1458