ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.17
Committed: Mon Jun 26 00:17:48 2006 UTC (17 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.16: +34 -40 lines
Log Message:
doc sync with mustang

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * The {@code Vector} class implements a growable array of
12 * objects. Like an array, it contains components that can be
13 * accessed using an integer index. However, the size of a
14 * {@code Vector} can grow or shrink as needed to accommodate
15 * adding and removing items after the {@code Vector} has been created.
16 *
17 * <p>Each vector tries to optimize storage management by maintaining a
18 * {@code capacity} and a {@code capacityIncrement}. The
19 * {@code capacity} is always at least as large as the vector
20 * size; it is usually larger because as components are added to the
21 * vector, the vector's storage increases in chunks the size of
22 * {@code capacityIncrement}. An application can increase the
23 * capacity of a vector before inserting a large number of
24 * components; this reduces the amount of incremental reallocation.
25 *
26 * <p>The Iterators returned by Vector's iterator and listIterator
27 * methods are <em>fail-fast</em>: if the Vector is structurally modified
28 * at any time after the Iterator is created, in any way except through the
29 * Iterator's own remove or add methods, the Iterator will throw a
30 * ConcurrentModificationException. Thus, in the face of concurrent
31 * modification, the Iterator fails quickly and cleanly, rather than risking
32 * arbitrary, non-deterministic behavior at an undetermined time in the future.
33 * The Enumerations returned by Vector's elements method are <em>not</em>
34 * fail-fast.
35 *
36 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
37 * as it is, generally speaking, impossible to make any hard guarantees in the
38 * presence of unsynchronized concurrent modification. Fail-fast iterators
39 * throw {@code ConcurrentModificationException} on a best-effort basis.
40 * Therefore, it would be wrong to write a program that depended on this
41 * exception for its correctness: <i>the fail-fast behavior of iterators
42 * should be used only to detect bugs.</i>
43 *
44 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
45 * implement the {@link List} interface, making it a member of the
46 * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
47 * Collections Framework</a>. Unlike the new collection
48 * implementations, {@code Vector} is synchronized.
49 *
50 * @author Lee Boynton
51 * @author Jonathan Payne
52 * @version %I%, %G%
53 * @see Collection
54 * @see List
55 * @see ArrayList
56 * @see LinkedList
57 * @since JDK1.0
58 */
59 public class Vector<E>
60 extends AbstractList<E>
61 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
62 {
63 /**
64 * The array buffer into which the components of the vector are
65 * stored. The capacity of the vector is the length of this array buffer,
66 * and is at least large enough to contain all the vector's elements.
67 *
68 * <p>Any array elements following the last element in the Vector are null.
69 *
70 * @serial
71 */
72 protected Object[] elementData;
73
74 /**
75 * The number of valid components in this {@code Vector} object.
76 * Components {@code elementData[0]} through
77 * {@code elementData[elementCount-1]} are the actual items.
78 *
79 * @serial
80 */
81 protected int elementCount;
82
83 /**
84 * The amount by which the capacity of the vector is automatically
85 * incremented when its size becomes greater than its capacity. If
86 * the capacity increment is less than or equal to zero, the capacity
87 * of the vector is doubled each time it needs to grow.
88 *
89 * @serial
90 */
91 protected int capacityIncrement;
92
93 /** use serialVersionUID from JDK 1.0.2 for interoperability */
94 private static final long serialVersionUID = -2767605614048989439L;
95
96 /**
97 * Constructs an empty vector with the specified initial capacity and
98 * capacity increment.
99 *
100 * @param initialCapacity the initial capacity of the vector
101 * @param capacityIncrement the amount by which the capacity is
102 * increased when the vector overflows
103 * @throws IllegalArgumentException if the specified initial capacity
104 * is negative
105 */
106 public Vector(int initialCapacity, int capacityIncrement) {
107 super();
108 if (initialCapacity < 0)
109 throw new IllegalArgumentException("Illegal Capacity: "+
110 initialCapacity);
111 this.elementData = new Object[initialCapacity];
112 this.capacityIncrement = capacityIncrement;
113 }
114
115 /**
116 * Constructs an empty vector with the specified initial capacity and
117 * with its capacity increment equal to zero.
118 *
119 * @param initialCapacity the initial capacity of the vector
120 * @throws IllegalArgumentException if the specified initial capacity
121 * is negative
122 */
123 public Vector(int initialCapacity) {
124 this(initialCapacity, 0);
125 }
126
127 /**
128 * Constructs an empty vector so that its internal data array
129 * has size {@code 10} and its standard capacity increment is
130 * zero.
131 */
132 public Vector() {
133 this(10);
134 }
135
136 /**
137 * Constructs a vector containing the elements of the specified
138 * collection, in the order they are returned by the collection's
139 * iterator.
140 *
141 * @param c the collection whose elements are to be placed into this
142 * vector
143 * @throws NullPointerException if the specified collection is null
144 * @since 1.2
145 */
146 public Vector(Collection<? extends E> c) {
147 elementData = c.toArray();
148 elementCount = elementData.length;
149 // c.toArray might (incorrectly) not return Object[] (see 6260652)
150 if (elementData.getClass() != Object[].class)
151 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
152 }
153
154 /**
155 * Copies the components of this vector into the specified array.
156 * The item at index {@code k} in this vector is copied into
157 * component {@code k} of {@code anArray}.
158 *
159 * @param anArray the array into which the components get copied
160 * @throws NullPointerException if the given array is null
161 * @throws IndexOutOfBoundsException if the specified array is not
162 * large enough to hold all the components of this vector
163 * @throws ArrayStoreException if a component of this vector is not of
164 * a runtime type that can be stored in the specified array
165 * @see #toArray(Object[])
166 */
167 public synchronized void copyInto(Object[] anArray) {
168 System.arraycopy(elementData, 0, anArray, 0, elementCount);
169 }
170
171 /**
172 * Trims the capacity of this vector to be the vector's current
173 * size. If the capacity of this vector is larger than its current
174 * size, then the capacity is changed to equal the size by replacing
175 * its internal data array, kept in the field {@code elementData},
176 * with a smaller one. An application can use this operation to
177 * minimize the storage of a vector.
178 */
179 public synchronized void trimToSize() {
180 modCount++;
181 int oldCapacity = elementData.length;
182 if (elementCount < oldCapacity) {
183 elementData = Arrays.copyOf(elementData, elementCount);
184 }
185 }
186
187 /**
188 * Increases the capacity of this vector, if necessary, to ensure
189 * that it can hold at least the number of components specified by
190 * the minimum capacity argument.
191 *
192 * <p>If the current capacity of this vector is less than
193 * {@code minCapacity}, then its capacity is increased by replacing its
194 * internal data array, kept in the field {@code elementData}, with a
195 * larger one. The size of the new data array will be the old size plus
196 * {@code capacityIncrement}, unless the value of
197 * {@code capacityIncrement} is less than or equal to zero, in which case
198 * the new capacity will be twice the old capacity; but if this new size
199 * is still smaller than {@code minCapacity}, then the new capacity will
200 * be {@code minCapacity}.
201 *
202 * @param minCapacity the desired minimum capacity
203 */
204 public synchronized void ensureCapacity(int minCapacity) {
205 modCount++;
206 ensureCapacityHelper(minCapacity);
207 }
208
209 /**
210 * This implements the unsynchronized semantics of ensureCapacity.
211 * Synchronized methods in this class can internally call this
212 * method for ensuring capacity without incurring the cost of an
213 * extra synchronization.
214 *
215 * @see #ensureCapacity(int)
216 */
217 private void ensureCapacityHelper(int minCapacity) {
218 int oldCapacity = elementData.length;
219 if (minCapacity > oldCapacity) {
220 Object[] oldData = elementData;
221 int newCapacity = (capacityIncrement > 0) ?
222 (oldCapacity + capacityIncrement) : (oldCapacity * 2);
223 if (newCapacity < minCapacity) {
224 newCapacity = minCapacity;
225 }
226 elementData = Arrays.copyOf(elementData, newCapacity);
227 }
228 }
229
230 /**
231 * Sets the size of this vector. If the new size is greater than the
232 * current size, new {@code null} items are added to the end of
233 * the vector. If the new size is less than the current size, all
234 * components at index {@code newSize} and greater are discarded.
235 *
236 * @param newSize the new size of this vector
237 * @throws ArrayIndexOutOfBoundsException if the new size is negative
238 */
239 public synchronized void setSize(int newSize) {
240 modCount++;
241 if (newSize > elementCount) {
242 ensureCapacityHelper(newSize);
243 } else {
244 for (int i = newSize ; i < elementCount ; i++) {
245 elementData[i] = null;
246 }
247 }
248 elementCount = newSize;
249 }
250
251 /**
252 * Returns the current capacity of this vector.
253 *
254 * @return the current capacity (the length of its internal
255 * data array, kept in the field {@code elementData}
256 * of this vector)
257 */
258 public synchronized int capacity() {
259 return elementData.length;
260 }
261
262 /**
263 * Returns the number of components in this vector.
264 *
265 * @return the number of components in this vector
266 */
267 public synchronized int size() {
268 return elementCount;
269 }
270
271 /**
272 * Tests if this vector has no components.
273 *
274 * @return {@code true} if and only if this vector has
275 * no components, that is, its size is zero;
276 * {@code false} otherwise.
277 */
278 public synchronized boolean isEmpty() {
279 return elementCount == 0;
280 }
281
282 /**
283 * Returns an enumeration of the components of this vector. The
284 * returned {@code Enumeration} object will generate all items in
285 * this vector. The first item generated is the item at index {@code 0},
286 * then the item at index {@code 1}, and so on.
287 *
288 * @return an enumeration of the components of this vector
289 * @see Iterator
290 */
291 public Enumeration<E> elements() {
292 return new Enumeration<E>() {
293 int count = 0;
294
295 public boolean hasMoreElements() {
296 return count < elementCount;
297 }
298
299 public E nextElement() {
300 synchronized (Vector.this) {
301 if (count < elementCount) {
302 return (E)elementData[count++];
303 }
304 }
305 throw new NoSuchElementException("Vector Enumeration");
306 }
307 };
308 }
309
310 /**
311 * Returns {@code true} if this vector contains the specified element.
312 * More formally, returns {@code true} if and only if this vector
313 * contains at least one element {@code e} such that
314 * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
315 *
316 * @param o element whose presence in this vector is to be tested
317 * @return {@code true} if this vector contains the specified element
318 */
319 public boolean contains(Object o) {
320 return indexOf(o, 0) >= 0;
321 }
322
323 /**
324 * Returns the index of the first occurrence of the specified element
325 * in this vector, or -1 if this vector does not contain the element.
326 * More formally, returns the lowest index {@code i} such that
327 * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
328 * or -1 if there is no such index.
329 *
330 * @param o element to search for
331 * @return the index of the first occurrence of the specified element in
332 * this vector, or -1 if this vector does not contain the element
333 */
334 public int indexOf(Object o) {
335 return indexOf(o, 0);
336 }
337
338 /**
339 * Returns the index of the first occurrence of the specified element in
340 * this vector, searching forwards from {@code index}, or returns -1 if
341 * the element is not found.
342 * More formally, returns the lowest index {@code i} such that
343 * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
344 * or -1 if there is no such index.
345 *
346 * @param o element to search for
347 * @param index index to start searching from
348 * @return the index of the first occurrence of the element in
349 * this vector at position {@code index} or later in the vector;
350 * {@code -1} if the element is not found.
351 * @throws IndexOutOfBoundsException if the specified index is negative
352 * @see Object#equals(Object)
353 */
354 public synchronized int indexOf(Object o, int index) {
355 if (o == null) {
356 for (int i = index ; i < elementCount ; i++)
357 if (elementData[i]==null)
358 return i;
359 } else {
360 for (int i = index ; i < elementCount ; i++)
361 if (o.equals(elementData[i]))
362 return i;
363 }
364 return -1;
365 }
366
367 /**
368 * Returns the index of the last occurrence of the specified element
369 * in this vector, or -1 if this vector does not contain the element.
370 * More formally, returns the highest index {@code i} such that
371 * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
372 * or -1 if there is no such index.
373 *
374 * @param o element to search for
375 * @return the index of the last occurrence of the specified element in
376 * this vector, or -1 if this vector does not contain the element
377 */
378 public synchronized int lastIndexOf(Object o) {
379 return lastIndexOf(o, elementCount-1);
380 }
381
382 /**
383 * Returns the index of the last occurrence of the specified element in
384 * this vector, searching backwards from {@code index}, or returns -1 if
385 * the element is not found.
386 * More formally, returns the highest index {@code i} such that
387 * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
388 * or -1 if there is no such index.
389 *
390 * @param o element to search for
391 * @param index index to start searching backwards from
392 * @return the index of the last occurrence of the element at position
393 * less than or equal to {@code index} in this vector;
394 * -1 if the element is not found.
395 * @throws IndexOutOfBoundsException if the specified index is greater
396 * than or equal to the current size of this vector
397 */
398 public synchronized int lastIndexOf(Object o, int index) {
399 if (index >= elementCount)
400 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
401
402 if (o == null) {
403 for (int i = index; i >= 0; i--)
404 if (elementData[i]==null)
405 return i;
406 } else {
407 for (int i = index; i >= 0; i--)
408 if (o.equals(elementData[i]))
409 return i;
410 }
411 return -1;
412 }
413
414 /**
415 * Returns the component at the specified index.
416 *
417 * <p>This method is identical in functionality to the {@link #get(int)}
418 * method (which is part of the {@link List} interface).
419 *
420 * @param index an index into this vector
421 * @return the component at the specified index
422 * @throws ArrayIndexOutOfBoundsException if the index is out of range
423 * ({@code index < 0 || index >= size()})
424 */
425 public synchronized E elementAt(int index) {
426 if (index >= elementCount) {
427 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
428 }
429
430 return (E)elementData[index];
431 }
432
433 /**
434 * Returns the first component (the item at index {@code 0}) of
435 * this vector.
436 *
437 * @return the first component of this vector
438 * @throws NoSuchElementException if this vector has no components
439 */
440 public synchronized E firstElement() {
441 if (elementCount == 0) {
442 throw new NoSuchElementException();
443 }
444 return (E)elementData[0];
445 }
446
447 /**
448 * Returns the last component of the vector.
449 *
450 * @return the last component of the vector, i.e., the component at index
451 * <code>size()&nbsp;-&nbsp;1</code>.
452 * @throws NoSuchElementException if this vector is empty
453 */
454 public synchronized E lastElement() {
455 if (elementCount == 0) {
456 throw new NoSuchElementException();
457 }
458 return (E)elementData[elementCount - 1];
459 }
460
461 /**
462 * Sets the component at the specified {@code index} of this
463 * vector to be the specified object. The previous component at that
464 * position is discarded.
465 *
466 * <p>The index must be a value greater than or equal to {@code 0}
467 * and less than the current size of the vector.
468 *
469 * <p>This method is identical in functionality to the
470 * {@link #set(int, Object) set(int, E)}
471 * method (which is part of the {@link List} interface). Note that the
472 * {@code set} method reverses the order of the parameters, to more closely
473 * match array usage. Note also that the {@code set} method returns the
474 * old value that was stored at the specified position.
475 *
476 * @param obj what the component is to be set to
477 * @param index the specified index
478 * @throws ArrayIndexOutOfBoundsException if the index is out of range
479 * ({@code index < 0 || index >= size()})
480 */
481 public synchronized void setElementAt(E obj, int index) {
482 if (index >= elementCount) {
483 throw new ArrayIndexOutOfBoundsException(index + " >= " +
484 elementCount);
485 }
486 elementData[index] = obj;
487 }
488
489 /**
490 * Deletes the component at the specified index. Each component in
491 * this vector with an index greater or equal to the specified
492 * {@code index} is shifted downward to have an index one
493 * smaller than the value it had previously. The size of this vector
494 * is decreased by {@code 1}.
495 *
496 * <p>The index must be a value greater than or equal to {@code 0}
497 * and less than the current size of the vector.
498 *
499 * <p>This method is identical in functionality to the {@link #remove(int)}
500 * method (which is part of the {@link List} interface). Note that the
501 * {@code remove} method returns the old value that was stored at the
502 * specified position.
503 *
504 * @param index the index of the object to remove
505 * @throws ArrayIndexOutOfBoundsException if the index is out of range
506 * ({@code index < 0 || index >= size()})
507 */
508 public synchronized void removeElementAt(int index) {
509 modCount++;
510 if (index >= elementCount) {
511 throw new ArrayIndexOutOfBoundsException(index + " >= " +
512 elementCount);
513 }
514 else if (index < 0) {
515 throw new ArrayIndexOutOfBoundsException(index);
516 }
517 int j = elementCount - index - 1;
518 if (j > 0) {
519 System.arraycopy(elementData, index + 1, elementData, index, j);
520 }
521 elementCount--;
522 elementData[elementCount] = null; /* to let gc do its work */
523 }
524
525 /**
526 * Inserts the specified object as a component in this vector at the
527 * specified {@code index}. Each component in this vector with
528 * an index greater or equal to the specified {@code index} is
529 * shifted upward to have an index one greater than the value it had
530 * previously.
531 *
532 * <p>The index must be a value greater than or equal to {@code 0}
533 * and less than or equal to the current size of the vector. (If the
534 * index is equal to the current size of the vector, the new element
535 * is appended to the Vector.)
536 *
537 * <p>This method is identical in functionality to the
538 * {@link #add(int, Object) add(int, E)}
539 * method (which is part of the {@link List} interface). Note that the
540 * {@code add} method reverses the order of the parameters, to more closely
541 * match array usage.
542 *
543 * @param obj the component to insert
544 * @param index where to insert the new component
545 * @throws ArrayIndexOutOfBoundsException if the index is out of range
546 * ({@code index < 0 || index > size()})
547 */
548 public synchronized void insertElementAt(E obj, int index) {
549 modCount++;
550 if (index > elementCount) {
551 throw new ArrayIndexOutOfBoundsException(index
552 + " > " + elementCount);
553 }
554 ensureCapacityHelper(elementCount + 1);
555 System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
556 elementData[index] = obj;
557 elementCount++;
558 }
559
560 /**
561 * Adds the specified component to the end of this vector,
562 * increasing its size by one. The capacity of this vector is
563 * increased if its size becomes greater than its capacity.
564 *
565 * <p>This method is identical in functionality to the
566 * {@link #remove(Object)} method (which is part of the
567 * {@link List} interface).
568 *
569 * @param obj the component to be added
570 */
571 public synchronized void addElement(E obj) {
572 modCount++;
573 ensureCapacityHelper(elementCount + 1);
574 elementData[elementCount++] = obj;
575 }
576
577 /**
578 * Removes the first (lowest-indexed) occurrence of the argument
579 * from this vector. If the object is found in this vector, each
580 * component in the vector with an index greater or equal to the
581 * object's index is shifted downward to have an index one smaller
582 * than the value it had previously.
583 *
584 * <p>This method is identical in functionality to the remove(Object)
585 * method (which is part of the List interface).
586 *
587 * @param obj the component to be removed
588 * @return {@code true} if the argument was a component of this
589 * vector; {@code false} otherwise.
590 * @see List#remove(Object)
591 * @see List
592 */
593 public synchronized boolean removeElement(Object obj) {
594 modCount++;
595 int i = indexOf(obj);
596 if (i >= 0) {
597 removeElementAt(i);
598 return true;
599 }
600 return false;
601 }
602
603 /**
604 * Removes all components from this vector and sets its size to zero.
605 *
606 * <p>This method is identical in functionality to the {@link #clear}
607 * method (which is part of the {@link List} interface).
608 */
609 public synchronized void removeAllElements() {
610 modCount++;
611 // Let gc do its work
612 for (int i = 0; i < elementCount; i++)
613 elementData[i] = null;
614
615 elementCount = 0;
616 }
617
618 /**
619 * Returns a clone of this vector. The copy will contain a
620 * reference to a clone of the internal data array, not a reference
621 * to the original internal data array of this {@code Vector} object.
622 *
623 * @return a clone of this vector
624 */
625 public synchronized Object clone() {
626 try {
627 Vector<E> v = (Vector<E>) super.clone();
628 v.elementData = Arrays.copyOf(elementData, elementCount);
629 v.modCount = 0;
630 return v;
631 } catch (CloneNotSupportedException e) {
632 // this shouldn't happen, since we are Cloneable
633 throw new InternalError();
634 }
635 }
636
637 /**
638 * Returns an array containing all of the elements in this Vector
639 * in the correct order.
640 *
641 * @since 1.2
642 */
643 public synchronized Object[] toArray() {
644 return Arrays.copyOf(elementData, elementCount);
645 }
646
647 /**
648 * Returns an array containing all of the elements in this Vector in the
649 * correct order; the runtime type of the returned array is that of the
650 * specified array. If the Vector fits in the specified array, it is
651 * returned therein. Otherwise, a new array is allocated with the runtime
652 * type of the specified array and the size of this Vector.
653 *
654 * <p>If the Vector fits in the specified array with room to spare
655 * (i.e., the array has more elements than the Vector),
656 * the element in the array immediately following the end of the
657 * Vector is set to null. (This is useful in determining the length
658 * of the Vector <em>only</em> if the caller knows that the Vector
659 * does not contain any null elements.)
660 *
661 * @param a the array into which the elements of the Vector are to
662 * be stored, if it is big enough; otherwise, a new array of the
663 * same runtime type is allocated for this purpose.
664 * @return an array containing the elements of the Vector
665 * @throws ArrayStoreException if the runtime type of a is not a supertype
666 * of the runtime type of every element in this Vector
667 * @throws NullPointerException if the given array is null
668 * @since 1.2
669 */
670 public synchronized <T> T[] toArray(T[] a) {
671 if (a.length < elementCount)
672 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
673
674 System.arraycopy(elementData, 0, a, 0, elementCount);
675
676 if (a.length > elementCount)
677 a[elementCount] = null;
678
679 return a;
680 }
681
682 // Positional Access Operations
683
684 /**
685 * Returns the element at the specified position in this Vector.
686 *
687 * @param index index of the element to return
688 * @return object at the specified index
689 * @throws ArrayIndexOutOfBoundsException if the index is out of range
690 * ({@code index < 0 || index >= size()})
691 * @since 1.2
692 */
693 public synchronized E get(int index) {
694 if (index >= elementCount)
695 throw new ArrayIndexOutOfBoundsException(index);
696
697 return (E)elementData[index];
698 }
699
700 /**
701 * Replaces the element at the specified position in this Vector with the
702 * specified element.
703 *
704 * @param index index of the element to replace
705 * @param element element to be stored at the specified position
706 * @return the element previously at the specified position
707 * @throws ArrayIndexOutOfBoundsException if the index is out of range
708 * ({@code index < 0 || index >= size()})
709 * @since 1.2
710 */
711 public synchronized E set(int index, E element) {
712 if (index >= elementCount)
713 throw new ArrayIndexOutOfBoundsException(index);
714
715 Object oldValue = elementData[index];
716 elementData[index] = element;
717 return (E)oldValue;
718 }
719
720 /**
721 * Appends the specified element to the end of this Vector.
722 *
723 * @param e element to be appended to this Vector
724 * @return {@code true} (as specified by {@link Collection#add})
725 * @since 1.2
726 */
727 public synchronized boolean add(E e) {
728 modCount++;
729 ensureCapacityHelper(elementCount + 1);
730 elementData[elementCount++] = e;
731 return true;
732 }
733
734 /**
735 * Removes the first occurrence of the specified element in this Vector
736 * If the Vector does not contain the element, it is unchanged. More
737 * formally, removes the element with the lowest index i such that
738 * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
739 * an element exists).
740 *
741 * @param o element to be removed from this Vector, if present
742 * @return true if the Vector contained the specified element
743 * @since 1.2
744 */
745 public boolean remove(Object o) {
746 return removeElement(o);
747 }
748
749 /**
750 * Inserts the specified element at the specified position in this Vector.
751 * Shifts the element currently at that position (if any) and any
752 * subsequent elements to the right (adds one to their indices).
753 *
754 * @param index index at which the specified element is to be inserted
755 * @param element element to be inserted
756 * @throws ArrayIndexOutOfBoundsException if the index is out of range
757 * ({@code index < 0 || index > size()})
758 * @since 1.2
759 */
760 public void add(int index, E element) {
761 insertElementAt(element, index);
762 }
763
764 /**
765 * Removes the element at the specified position in this Vector.
766 * Shifts any subsequent elements to the left (subtracts one from their
767 * indices). Returns the element that was removed from the Vector.
768 *
769 * @exception ArrayIndexOutOfBoundsException index out of range (index
770 * &lt; 0 || index &gt;= size())
771 * @param index the index of the element to be removed
772 * @return element that was removed
773 * @since 1.2
774 */
775 public synchronized E remove(int index) {
776 modCount++;
777 if (index >= elementCount)
778 throw new ArrayIndexOutOfBoundsException(index);
779 Object oldValue = elementData[index];
780
781 int numMoved = elementCount - index - 1;
782 if (numMoved > 0)
783 System.arraycopy(elementData, index+1, elementData, index,
784 numMoved);
785 elementData[--elementCount] = null; // Let gc do its work
786
787 return (E)oldValue;
788 }
789
790 /**
791 * Removes all of the elements from this Vector. The Vector will
792 * be empty after this call returns (unless it throws an exception).
793 *
794 * @since 1.2
795 */
796 public void clear() {
797 removeAllElements();
798 }
799
800 // Bulk Operations
801
802 /**
803 * Returns true if this Vector contains all of the elements in the
804 * specified Collection.
805 *
806 * @param c a collection whose elements will be tested for containment
807 * in this Vector
808 * @return true if this Vector contains all of the elements in the
809 * specified collection
810 * @throws NullPointerException if the specified collection is null
811 */
812 public synchronized boolean containsAll(Collection<?> c) {
813 return super.containsAll(c);
814 }
815
816 /**
817 * Appends all of the elements in the specified Collection to the end of
818 * this Vector, in the order that they are returned by the specified
819 * Collection's Iterator. The behavior of this operation is undefined if
820 * the specified Collection is modified while the operation is in progress.
821 * (This implies that the behavior of this call is undefined if the
822 * specified Collection is this Vector, and this Vector is nonempty.)
823 *
824 * @param c elements to be inserted into this Vector
825 * @return {@code true} if this Vector changed as a result of the call
826 * @throws NullPointerException if the specified collection is null
827 * @since 1.2
828 */
829 public synchronized boolean addAll(Collection<? extends E> c) {
830 modCount++;
831 Object[] a = c.toArray();
832 int numNew = a.length;
833 ensureCapacityHelper(elementCount + numNew);
834 System.arraycopy(a, 0, elementData, elementCount, numNew);
835 elementCount += numNew;
836 return numNew != 0;
837 }
838
839 /**
840 * Removes from this Vector all of its elements that are contained in the
841 * specified Collection.
842 *
843 * @param c a collection of elements to be removed from the Vector
844 * @return true if this Vector changed as a result of the call
845 * @throws ClassCastException if the types of one or more elements
846 * in this vector are incompatible with the specified
847 * collection (optional)
848 * @throws NullPointerException if this vector contains one or more null
849 * elements and the specified collection does not support null
850 * elements (optional), or if the specified collection is null
851 * @since 1.2
852 */
853 public synchronized boolean removeAll(Collection<?> c) {
854 return super.removeAll(c);
855 }
856
857 /**
858 * Retains only the elements in this Vector that are contained in the
859 * specified Collection. In other words, removes from this Vector all
860 * of its elements that are not contained in the specified Collection.
861 *
862 * @param c a collection of elements to be retained in this Vector
863 * (all other elements are removed)
864 * @return true if this Vector changed as a result of the call
865 * @throws ClassCastException if the types of one or more elements
866 * in this vector are incompatible with the specified
867 * collection (optional)
868 * @throws NullPointerException if this vector contains one or more null
869 * elements and the specified collection does not support null
870 * elements (optional), or if the specified collection is null
871 * @since 1.2
872 */
873 public synchronized boolean retainAll(Collection<?> c) {
874 return super.retainAll(c);
875 }
876
877 /**
878 * Inserts all of the elements in the specified Collection into this
879 * Vector at the specified position. Shifts the element currently at
880 * that position (if any) and any subsequent elements to the right
881 * (increases their indices). The new elements will appear in the Vector
882 * in the order that they are returned by the specified Collection's
883 * iterator.
884 *
885 * @param index index at which to insert the first element from the
886 * specified collection
887 * @param c elements to be inserted into this Vector
888 * @return {@code true} if this Vector changed as a result of the call
889 * @exception ArrayIndexOutOfBoundsException index out of range (index
890 * &lt; 0 || index &gt; size())
891 * @throws NullPointerException if the specified collection is null
892 * @since 1.2
893 */
894 public synchronized boolean addAll(int index, Collection<? extends E> c) {
895 modCount++;
896 if (index < 0 || index > elementCount)
897 throw new ArrayIndexOutOfBoundsException(index);
898
899 Object[] a = c.toArray();
900 int numNew = a.length;
901 ensureCapacityHelper(elementCount + numNew);
902
903 int numMoved = elementCount - index;
904 if (numMoved > 0)
905 System.arraycopy(elementData, index, elementData, index + numNew,
906 numMoved);
907
908 System.arraycopy(a, 0, elementData, index, numNew);
909 elementCount += numNew;
910 return numNew != 0;
911 }
912
913 /**
914 * Compares the specified Object with this Vector for equality. Returns
915 * true if and only if the specified Object is also a List, both Lists
916 * have the same size, and all corresponding pairs of elements in the two
917 * Lists are <em>equal</em>. (Two elements {@code e1} and
918 * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
919 * e1.equals(e2))}.) In other words, two Lists are defined to be
920 * equal if they contain the same elements in the same order.
921 *
922 * @param o the Object to be compared for equality with this Vector
923 * @return true if the specified Object is equal to this Vector
924 */
925 public synchronized boolean equals(Object o) {
926 return super.equals(o);
927 }
928
929 /**
930 * Returns the hash code value for this Vector.
931 */
932 public synchronized int hashCode() {
933 return super.hashCode();
934 }
935
936 /**
937 * Returns a string representation of this Vector, containing
938 * the String representation of each element.
939 */
940 public synchronized String toString() {
941 return super.toString();
942 }
943
944 /**
945 * Removes from this List all of the elements whose index is between
946 * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding
947 * elements to the left (reduces their index).
948 * This call shortens the Vector by (toIndex - fromIndex) elements. (If
949 * toIndex==fromIndex, this operation has no effect.)
950 *
951 * @param fromIndex index of first element to be removed
952 * @param toIndex index after last element to be removed
953 */
954 protected synchronized void removeRange(int fromIndex, int toIndex) {
955 modCount++;
956 int numMoved = elementCount - toIndex;
957 System.arraycopy(elementData, toIndex, elementData, fromIndex,
958 numMoved);
959
960 // Let gc do its work
961 int newElementCount = elementCount - (toIndex-fromIndex);
962 while (elementCount != newElementCount)
963 elementData[--elementCount] = null;
964 }
965
966 /**
967 * Save the state of the {@code Vector} instance to a stream (that
968 * is, serialize it). This method is present merely for synchronization.
969 * It just calls the default writeObject method.
970 */
971 private synchronized void writeObject(java.io.ObjectOutputStream s)
972 throws java.io.IOException
973 {
974 s.defaultWriteObject();
975 }
976
977 /**
978 * Returns a list-iterator of the elements in this list (in proper
979 * sequence), starting at the specified position in the list.
980 * Obeys the general contract of {@link List#listIterator(int)}.
981 *
982 * <p>The list-iterator is <i>fail-fast</i>: if the list is structurally
983 * modified at any time after the Iterator is created, in any way except
984 * through the list-iterator's own {@code remove} or {@code add}
985 * methods, the list-iterator will throw a
986 * {@code ConcurrentModificationException}. Thus, in the face of
987 * concurrent modification, the iterator fails quickly and cleanly, rather
988 * than risking arbitrary, non-deterministic behavior at an undetermined
989 * time in the future.
990 *
991 * @param index index of the first element to be returned from the
992 * list-iterator (by a call to {@link ListIterator#next})
993 * @return a list-iterator of the elements in this list (in proper
994 * sequence), starting at the specified position in the list
995 * @throws IndexOutOfBoundsException {@inheritDoc}
996 */
997 public synchronized ListIterator<E> listIterator(int index) {
998 if (index < 0 || index > elementCount)
999 throw new IndexOutOfBoundsException("Index: "+index);
1000 return new VectorIterator(index, elementCount);
1001 }
1002
1003 /**
1004 * {@inheritDoc}
1005 */
1006 public synchronized ListIterator<E> listIterator() {
1007 return new VectorIterator(0, elementCount);
1008 }
1009
1010 /**
1011 * Returns an iterator over the elements in this list in proper sequence.
1012 *
1013 * @return an iterator over the elements in this list in proper sequence
1014 */
1015 public synchronized Iterator<E> iterator() {
1016 return new VectorIterator(0, elementCount);
1017 }
1018
1019 /**
1020 * Helper method to access array elements under synchronization by
1021 * iterators. The caller performs index check with respect to
1022 * expected bounds, so errors accessing the element are reported
1023 * as ConcurrentModificationExceptions.
1024 */
1025 final synchronized Object iteratorGet(int index, int expectedModCount) {
1026 if (modCount == expectedModCount) {
1027 try {
1028 return elementData[index];
1029 } catch(IndexOutOfBoundsException fallThrough) {
1030 }
1031 }
1032 throw new ConcurrentModificationException();
1033 }
1034
1035 /**
1036 * Streamlined specialization of AbstractList version of iterator.
1037 * Locally perfroms bounds checks, but relies on outer Vector
1038 * to access elements under synchronization.
1039 */
1040 private final class VectorIterator implements ListIterator<E> {
1041 int cursor; // Index of next element to return;
1042 int fence; // Upper bound on cursor (cache of size())
1043 int lastRet; // Index of last element, or -1 if no such
1044 int expectedModCount; // To check for CME
1045
1046 VectorIterator(int index, int fence) {
1047 this.cursor = index;
1048 this.fence = fence;
1049 this.lastRet = -1;
1050 this.expectedModCount = Vector.this.modCount;
1051 }
1052
1053 public boolean hasNext() {
1054 return cursor < fence;
1055 }
1056
1057 public boolean hasPrevious() {
1058 return cursor > 0;
1059 }
1060
1061 public int nextIndex() {
1062 return cursor;
1063 }
1064
1065 public int previousIndex() {
1066 return cursor - 1;
1067 }
1068
1069 public E next() {
1070 int i = cursor;
1071 if (i >= fence)
1072 throw new NoSuchElementException();
1073 Object next = Vector.this.iteratorGet(i, expectedModCount);
1074 lastRet = i;
1075 cursor = i + 1;
1076 return (E)next;
1077 }
1078
1079 public E previous() {
1080 int i = cursor - 1;
1081 if (i < 0)
1082 throw new NoSuchElementException();
1083 Object prev = Vector.this.iteratorGet(i, expectedModCount);
1084 lastRet = i;
1085 cursor = i;
1086 return (E)prev;
1087 }
1088
1089 public void set(E e) {
1090 if (lastRet < 0)
1091 throw new IllegalStateException();
1092 if (Vector.this.modCount != expectedModCount)
1093 throw new ConcurrentModificationException();
1094 try {
1095 Vector.this.set(lastRet, e);
1096 expectedModCount = Vector.this.modCount;
1097 } catch (IndexOutOfBoundsException ex) {
1098 throw new ConcurrentModificationException();
1099 }
1100 }
1101
1102 public void remove() {
1103 int i = lastRet;
1104 if (i < 0)
1105 throw new IllegalStateException();
1106 if (Vector.this.modCount != expectedModCount)
1107 throw new ConcurrentModificationException();
1108 try {
1109 Vector.this.remove(i);
1110 if (i < cursor)
1111 cursor--;
1112 lastRet = -1;
1113 fence = Vector.this.size();
1114 expectedModCount = Vector.this.modCount;
1115 } catch (IndexOutOfBoundsException ex) {
1116 throw new ConcurrentModificationException();
1117 }
1118 }
1119
1120 public void add(E e) {
1121 if (Vector.this.modCount != expectedModCount)
1122 throw new ConcurrentModificationException();
1123 try {
1124 int i = cursor;
1125 Vector.this.add(i, e);
1126 cursor = i + 1;
1127 lastRet = -1;
1128 fence = Vector.this.size();
1129 expectedModCount = Vector.this.modCount;
1130 } catch (IndexOutOfBoundsException ex) {
1131 throw new ConcurrentModificationException();
1132 }
1133 }
1134 }
1135
1136 /**
1137 * Returns a view of the portion of this List between fromIndex,
1138 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1139 * equal, the returned List is empty.) The returned List is backed by this
1140 * List, so changes in the returned List are reflected in this List, and
1141 * vice-versa. The returned List supports all of the optional List
1142 * operations supported by this List.
1143 *
1144 * <p>This method eliminates the need for explicit range operations (of
1145 * the sort that commonly exist for arrays). Any operation that expects
1146 * a List can be used as a range operation by operating on a subList view
1147 * instead of a whole List. For example, the following idiom
1148 * removes a range of elements from a List:
1149 * <pre>
1150 * list.subList(from, to).clear();
1151 * </pre>
1152 * Similar idioms may be constructed for indexOf and lastIndexOf,
1153 * and all of the algorithms in the Collections class can be applied to
1154 * a subList.
1155 *
1156 * <p>The semantics of the List returned by this method become undefined if
1157 * the backing list (i.e., this List) is <i>structurally modified</i> in
1158 * any way other than via the returned List. (Structural modifications are
1159 * those that change the size of the List, or otherwise perturb it in such
1160 * a fashion that iterations in progress may yield incorrect results.)
1161 *
1162 * @param fromIndex low endpoint (inclusive) of the subList
1163 * @param toIndex high endpoint (exclusive) of the subList
1164 * @return a view of the specified range within this List
1165 * @throws IndexOutOfBoundsException endpoint index value out of range
1166 * <code>(fromIndex &lt; 0 || toIndex &gt; size)</code>
1167 * @throws IllegalArgumentException endpoint indices out of order
1168 * <code>(fromIndex &gt; toIndex)</code>
1169 */
1170 public synchronized List<E> subList(int fromIndex, int toIndex) {
1171 return new VectorSubList(this, this, fromIndex, fromIndex, toIndex);
1172 }
1173
1174 /**
1175 * This class specializes the AbstractList version of SubList to
1176 * avoid the double-indirection penalty that would arise using a
1177 * synchronized wrapper, as well as to avoid some unnecessary
1178 * checks in sublist iterators.
1179 */
1180 private static final class VectorSubList<E> extends AbstractList<E> implements RandomAccess {
1181 final Vector<E> base; // base list
1182 final AbstractList<E> parent; // Creating list
1183 final int baseOffset; // index wrt Vector
1184 final int parentOffset; // index wrt parent
1185 int length; // length of sublist
1186
1187 VectorSubList(Vector<E> base, AbstractList<E> parent, int baseOffset,
1188 int fromIndex, int toIndex) {
1189 if (fromIndex < 0)
1190 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
1191 if (toIndex > parent.size())
1192 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
1193 if (fromIndex > toIndex)
1194 throw new IllegalArgumentException("fromIndex(" + fromIndex +
1195 ") > toIndex(" + toIndex + ")");
1196
1197 this.base = base;
1198 this.parent = parent;
1199 this.baseOffset = baseOffset;
1200 this.parentOffset = fromIndex;
1201 this.length = toIndex - fromIndex;
1202 modCount = base.modCount;
1203 }
1204
1205 /**
1206 * Returns an IndexOutOfBoundsException with nicer message
1207 */
1208 private IndexOutOfBoundsException indexError(int index) {
1209 return new IndexOutOfBoundsException("Index: " + index +
1210 ", Size: " + length);
1211 }
1212
1213 public E set(int index, E element) {
1214 synchronized(base) {
1215 if (index < 0 || index >= length)
1216 throw indexError(index);
1217 if (base.modCount != modCount)
1218 throw new ConcurrentModificationException();
1219 return base.set(index + baseOffset, element);
1220 }
1221 }
1222
1223 public E get(int index) {
1224 synchronized(base) {
1225 if (index < 0 || index >= length)
1226 throw indexError(index);
1227 if (base.modCount != modCount)
1228 throw new ConcurrentModificationException();
1229 return base.get(index + baseOffset);
1230 }
1231 }
1232
1233 public int size() {
1234 synchronized(base) {
1235 if (base.modCount != modCount)
1236 throw new ConcurrentModificationException();
1237 return length;
1238 }
1239 }
1240
1241 public void add(int index, E element) {
1242 synchronized(base) {
1243 if (index < 0 || index > length)
1244 throw indexError(index);
1245 if (base.modCount != modCount)
1246 throw new ConcurrentModificationException();
1247 parent.add(index + parentOffset, element);
1248 length++;
1249 modCount = base.modCount;
1250 }
1251 }
1252
1253 public E remove(int index) {
1254 synchronized(base) {
1255 if (index < 0 || index >= length)
1256 throw indexError(index);
1257 if (base.modCount != modCount)
1258 throw new ConcurrentModificationException();
1259 E result = parent.remove(index + parentOffset);
1260 length--;
1261 modCount = base.modCount;
1262 return result;
1263 }
1264 }
1265
1266 protected void removeRange(int fromIndex, int toIndex) {
1267 synchronized(base) {
1268 if (base.modCount != modCount)
1269 throw new ConcurrentModificationException();
1270 parent.removeRange(fromIndex + parentOffset,
1271 toIndex + parentOffset);
1272 length -= (toIndex-fromIndex);
1273 modCount = base.modCount;
1274 }
1275 }
1276
1277 public boolean addAll(Collection<? extends E> c) {
1278 return addAll(length, c);
1279 }
1280
1281 public boolean addAll(int index, Collection<? extends E> c) {
1282 synchronized(base) {
1283 if (index < 0 || index > length)
1284 throw indexError(index);
1285 int cSize = c.size();
1286 if (cSize==0)
1287 return false;
1288
1289 if (base.modCount != modCount)
1290 throw new ConcurrentModificationException();
1291 parent.addAll(parentOffset + index, c);
1292 modCount = base.modCount;
1293 length += cSize;
1294 return true;
1295 }
1296 }
1297
1298 public boolean equals(Object o) {
1299 synchronized(base) {return super.equals(o);}
1300 }
1301
1302 public int hashCode() {
1303 synchronized(base) {return super.hashCode();}
1304 }
1305
1306 public int indexOf(Object o) {
1307 synchronized(base) {return super.indexOf(o);}
1308 }
1309
1310 public int lastIndexOf(Object o) {
1311 synchronized(base) {return super.lastIndexOf(o);}
1312 }
1313
1314 public List<E> subList(int fromIndex, int toIndex) {
1315 return new VectorSubList(base, this, fromIndex + baseOffset,
1316 fromIndex, toIndex);
1317 }
1318
1319 public Iterator<E> iterator() {
1320 synchronized(base) {
1321 return new VectorSubListIterator(this, 0);
1322 }
1323 }
1324
1325 public synchronized ListIterator<E> listIterator() {
1326 synchronized(base) {
1327 return new VectorSubListIterator(this, 0);
1328 }
1329 }
1330
1331 public ListIterator<E> listIterator(int index) {
1332 synchronized(base) {
1333 if (index < 0 || index > length)
1334 throw indexError(index);
1335 return new VectorSubListIterator(this, index);
1336 }
1337 }
1338
1339 /**
1340 * Same idea as VectorIterator, except routing structural
1341 * change operations through the sublist.
1342 */
1343 private static final class VectorSubListIterator<E> implements ListIterator<E> {
1344 final Vector<E> base; // base list
1345 final VectorSubList<E> outer; // Sublist creating this iteraor
1346 final int offset; // cursor offset wrt base
1347 int cursor; // Current index
1348 int fence; // Upper bound on cursor
1349 int lastRet; // Index of returned element, or -1
1350 int expectedModCount; // Expected modCount of base Vector
1351
1352 VectorSubListIterator(VectorSubList<E> list, int index) {
1353 this.lastRet = -1;
1354 this.cursor = index;
1355 this.outer = list;
1356 this.offset = list.baseOffset;
1357 this.fence = list.length;
1358 this.base = list.base;
1359 this.expectedModCount = base.modCount;
1360 }
1361
1362 public boolean hasNext() {
1363 return cursor < fence;
1364 }
1365
1366 public boolean hasPrevious() {
1367 return cursor > 0;
1368 }
1369
1370 public int nextIndex() {
1371 return cursor;
1372 }
1373
1374 public int previousIndex() {
1375 return cursor - 1;
1376 }
1377
1378 public E next() {
1379 int i = cursor;
1380 if (cursor >= fence)
1381 throw new NoSuchElementException();
1382 Object next = base.iteratorGet(i + offset, expectedModCount);
1383 lastRet = i;
1384 cursor = i + 1;
1385 return (E)next;
1386 }
1387
1388 public E previous() {
1389 int i = cursor - 1;
1390 if (i < 0)
1391 throw new NoSuchElementException();
1392 Object prev = base.iteratorGet(i + offset, expectedModCount);
1393 lastRet = i;
1394 cursor = i;
1395 return (E)prev;
1396 }
1397
1398 public void set(E e) {
1399 if (lastRet < 0)
1400 throw new IllegalStateException();
1401 if (base.modCount != expectedModCount)
1402 throw new ConcurrentModificationException();
1403 try {
1404 outer.set(lastRet, e);
1405 expectedModCount = base.modCount;
1406 } catch (IndexOutOfBoundsException ex) {
1407 throw new ConcurrentModificationException();
1408 }
1409 }
1410
1411 public void remove() {
1412 int i = lastRet;
1413 if (i < 0)
1414 throw new IllegalStateException();
1415 if (base.modCount != expectedModCount)
1416 throw new ConcurrentModificationException();
1417 try {
1418 outer.remove(i);
1419 if (i < cursor)
1420 cursor--;
1421 lastRet = -1;
1422 fence = outer.length;
1423 expectedModCount = base.modCount;
1424 } catch (IndexOutOfBoundsException ex) {
1425 throw new ConcurrentModificationException();
1426 }
1427 }
1428
1429 public void add(E e) {
1430 if (base.modCount != expectedModCount)
1431 throw new ConcurrentModificationException();
1432 try {
1433 int i = cursor;
1434 outer.add(i, e);
1435 cursor = i + 1;
1436 lastRet = -1;
1437 fence = outer.length;
1438 expectedModCount = base.modCount;
1439 } catch (IndexOutOfBoundsException ex) {
1440 throw new ConcurrentModificationException();
1441 }
1442 }
1443 }
1444 }
1445 }
1446
1447
1448