ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.40
Committed: Mon Dec 5 00:08:01 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.39: +16 -11 lines
Log Message:
refactor using shiftTailOverGap

File Contents

# Content
1 /*
2 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * The {@code Vector} class implements a growable array of
34 * objects. Like an array, it contains components that can be
35 * accessed using an integer index. However, the size of a
36 * {@code Vector} can grow or shrink as needed to accommodate
37 * adding and removing items after the {@code Vector} has been created.
38 *
39 * <p>Each vector tries to optimize storage management by maintaining a
40 * {@code capacity} and a {@code capacityIncrement}. The
41 * {@code capacity} is always at least as large as the vector
42 * size; it is usually larger because as components are added to the
43 * vector, the vector's storage increases in chunks the size of
44 * {@code capacityIncrement}. An application can increase the
45 * capacity of a vector before inserting a large number of
46 * components; this reduces the amount of incremental reallocation.
47 *
48 * <p id="fail-fast">
49 * The iterators returned by this class's {@link #iterator() iterator} and
50 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
51 * if the vector is structurally modified at any time after the iterator is
52 * created, in any way except through the iterator's own
53 * {@link ListIterator#remove() remove} or
54 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
55 * {@link ConcurrentModificationException}. Thus, in the face of
56 * concurrent modification, the iterator fails quickly and cleanly, rather
57 * than risking arbitrary, non-deterministic behavior at an undetermined
58 * time in the future. The {@link Enumeration Enumerations} returned by
59 * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
60 * Vector is structurally modified at any time after the enumeration is
61 * created then the results of enumerating are undefined.
62 *
63 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
64 * as it is, generally speaking, impossible to make any hard guarantees in the
65 * presence of unsynchronized concurrent modification. Fail-fast iterators
66 * throw {@code ConcurrentModificationException} on a best-effort basis.
67 * Therefore, it would be wrong to write a program that depended on this
68 * exception for its correctness: <i>the fail-fast behavior of iterators
69 * should be used only to detect bugs.</i>
70 *
71 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
72 * implement the {@link List} interface, making it a member of the
73 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 * Java Collections Framework</a>. Unlike the new collection
75 * implementations, {@code Vector} is synchronized. If a thread-safe
76 * implementation is not needed, it is recommended to use {@link
77 * ArrayList} in place of {@code Vector}.
78 *
79 * @param <E> Type of component elements
80 *
81 * @author Lee Boynton
82 * @author Jonathan Payne
83 * @see Collection
84 * @see LinkedList
85 * @since 1.0
86 */
87 public class Vector<E>
88 extends AbstractList<E>
89 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
90 {
91 /**
92 * The array buffer into which the components of the vector are
93 * stored. The capacity of the vector is the length of this array buffer,
94 * and is at least large enough to contain all the vector's elements.
95 *
96 * <p>Any array elements following the last element in the Vector are null.
97 *
98 * @serial
99 */
100 protected Object[] elementData;
101
102 /**
103 * The number of valid components in this {@code Vector} object.
104 * Components {@code elementData[0]} through
105 * {@code elementData[elementCount-1]} are the actual items.
106 *
107 * @serial
108 */
109 protected int elementCount;
110
111 /**
112 * The amount by which the capacity of the vector is automatically
113 * incremented when its size becomes greater than its capacity. If
114 * the capacity increment is less than or equal to zero, the capacity
115 * of the vector is doubled each time it needs to grow.
116 *
117 * @serial
118 */
119 protected int capacityIncrement;
120
121 /** use serialVersionUID from JDK 1.0.2 for interoperability */
122 private static final long serialVersionUID = -2767605614048989439L;
123
124 /**
125 * Constructs an empty vector with the specified initial capacity and
126 * capacity increment.
127 *
128 * @param initialCapacity the initial capacity of the vector
129 * @param capacityIncrement the amount by which the capacity is
130 * increased when the vector overflows
131 * @throws IllegalArgumentException if the specified initial capacity
132 * is negative
133 */
134 public Vector(int initialCapacity, int capacityIncrement) {
135 super();
136 if (initialCapacity < 0)
137 throw new IllegalArgumentException("Illegal Capacity: "+
138 initialCapacity);
139 this.elementData = new Object[initialCapacity];
140 this.capacityIncrement = capacityIncrement;
141 }
142
143 /**
144 * Constructs an empty vector with the specified initial capacity and
145 * with its capacity increment equal to zero.
146 *
147 * @param initialCapacity the initial capacity of the vector
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public Vector(int initialCapacity) {
152 this(initialCapacity, 0);
153 }
154
155 /**
156 * Constructs an empty vector so that its internal data array
157 * has size {@code 10} and its standard capacity increment is
158 * zero.
159 */
160 public Vector() {
161 this(10);
162 }
163
164 /**
165 * Constructs a vector containing the elements of the specified
166 * collection, in the order they are returned by the collection's
167 * iterator.
168 *
169 * @param c the collection whose elements are to be placed into this
170 * vector
171 * @throws NullPointerException if the specified collection is null
172 * @since 1.2
173 */
174 public Vector(Collection<? extends E> c) {
175 elementData = c.toArray();
176 elementCount = elementData.length;
177 // defend against c.toArray (incorrectly) not returning Object[]
178 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
179 if (elementData.getClass() != Object[].class)
180 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
181 }
182
183 /**
184 * Copies the components of this vector into the specified array.
185 * The item at index {@code k} in this vector is copied into
186 * component {@code k} of {@code anArray}.
187 *
188 * @param anArray the array into which the components get copied
189 * @throws NullPointerException if the given array is null
190 * @throws IndexOutOfBoundsException if the specified array is not
191 * large enough to hold all the components of this vector
192 * @throws ArrayStoreException if a component of this vector is not of
193 * a runtime type that can be stored in the specified array
194 * @see #toArray(Object[])
195 */
196 public synchronized void copyInto(Object[] anArray) {
197 System.arraycopy(elementData, 0, anArray, 0, elementCount);
198 }
199
200 /**
201 * Trims the capacity of this vector to be the vector's current
202 * size. If the capacity of this vector is larger than its current
203 * size, then the capacity is changed to equal the size by replacing
204 * its internal data array, kept in the field {@code elementData},
205 * with a smaller one. An application can use this operation to
206 * minimize the storage of a vector.
207 */
208 public synchronized void trimToSize() {
209 modCount++;
210 int oldCapacity = elementData.length;
211 if (elementCount < oldCapacity) {
212 elementData = Arrays.copyOf(elementData, elementCount);
213 }
214 }
215
216 /**
217 * Increases the capacity of this vector, if necessary, to ensure
218 * that it can hold at least the number of components specified by
219 * the minimum capacity argument.
220 *
221 * <p>If the current capacity of this vector is less than
222 * {@code minCapacity}, then its capacity is increased by replacing its
223 * internal data array, kept in the field {@code elementData}, with a
224 * larger one. The size of the new data array will be the old size plus
225 * {@code capacityIncrement}, unless the value of
226 * {@code capacityIncrement} is less than or equal to zero, in which case
227 * the new capacity will be twice the old capacity; but if this new size
228 * is still smaller than {@code minCapacity}, then the new capacity will
229 * be {@code minCapacity}.
230 *
231 * @param minCapacity the desired minimum capacity
232 */
233 public synchronized void ensureCapacity(int minCapacity) {
234 if (minCapacity > 0) {
235 modCount++;
236 if (minCapacity > elementData.length)
237 grow(minCapacity);
238 }
239 }
240
241 /**
242 * The maximum size of array to allocate (unless necessary).
243 * Some VMs reserve some header words in an array.
244 * Attempts to allocate larger arrays may result in
245 * OutOfMemoryError: Requested array size exceeds VM limit
246 */
247 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
248
249 /**
250 * Increases the capacity to ensure that it can hold at least the
251 * number of elements specified by the minimum capacity argument.
252 *
253 * @param minCapacity the desired minimum capacity
254 * @throws OutOfMemoryError if minCapacity is less than zero
255 */
256 private Object[] grow(int minCapacity) {
257 return elementData = Arrays.copyOf(elementData,
258 newCapacity(minCapacity));
259 }
260
261 private Object[] grow() {
262 return grow(elementCount + 1);
263 }
264
265 /**
266 * Returns a capacity at least as large as the given minimum capacity.
267 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
268 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
269 *
270 * @param minCapacity the desired minimum capacity
271 * @throws OutOfMemoryError if minCapacity is less than zero
272 */
273 private int newCapacity(int minCapacity) {
274 // overflow-conscious code
275 int oldCapacity = elementData.length;
276 int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
277 capacityIncrement : oldCapacity);
278 if (newCapacity - minCapacity <= 0) {
279 if (minCapacity < 0) // overflow
280 throw new OutOfMemoryError();
281 return minCapacity;
282 }
283 return (newCapacity - MAX_ARRAY_SIZE <= 0)
284 ? newCapacity
285 : hugeCapacity(minCapacity);
286 }
287
288 private static int hugeCapacity(int minCapacity) {
289 if (minCapacity < 0) // overflow
290 throw new OutOfMemoryError();
291 return (minCapacity > MAX_ARRAY_SIZE) ?
292 Integer.MAX_VALUE :
293 MAX_ARRAY_SIZE;
294 }
295
296 /**
297 * Sets the size of this vector. If the new size is greater than the
298 * current size, new {@code null} items are added to the end of
299 * the vector. If the new size is less than the current size, all
300 * components at index {@code newSize} and greater are discarded.
301 *
302 * @param newSize the new size of this vector
303 * @throws ArrayIndexOutOfBoundsException if the new size is negative
304 */
305 public synchronized void setSize(int newSize) {
306 modCount++;
307 if (newSize > elementData.length)
308 grow(newSize);
309 final Object[] es = elementData;
310 for (int to = elementCount, i = elementCount = newSize; i < to; i++)
311 es[i] = null;
312 }
313
314 /**
315 * Returns the current capacity of this vector.
316 *
317 * @return the current capacity (the length of its internal
318 * data array, kept in the field {@code elementData}
319 * of this vector)
320 */
321 public synchronized int capacity() {
322 return elementData.length;
323 }
324
325 /**
326 * Returns the number of components in this vector.
327 *
328 * @return the number of components in this vector
329 */
330 public synchronized int size() {
331 return elementCount;
332 }
333
334 /**
335 * Tests if this vector has no components.
336 *
337 * @return {@code true} if and only if this vector has
338 * no components, that is, its size is zero;
339 * {@code false} otherwise.
340 */
341 public synchronized boolean isEmpty() {
342 return elementCount == 0;
343 }
344
345 /**
346 * Returns an enumeration of the components of this vector. The
347 * returned {@code Enumeration} object will generate all items in
348 * this vector. The first item generated is the item at index {@code 0},
349 * then the item at index {@code 1}, and so on. If the vector is
350 * structurally modified while enumerating over the elements then the
351 * results of enumerating are undefined.
352 *
353 * @return an enumeration of the components of this vector
354 * @see Iterator
355 */
356 public Enumeration<E> elements() {
357 return new Enumeration<E>() {
358 int count = 0;
359
360 public boolean hasMoreElements() {
361 return count < elementCount;
362 }
363
364 public E nextElement() {
365 synchronized (Vector.this) {
366 if (count < elementCount) {
367 return elementData(count++);
368 }
369 }
370 throw new NoSuchElementException("Vector Enumeration");
371 }
372 };
373 }
374
375 /**
376 * Returns {@code true} if this vector contains the specified element.
377 * More formally, returns {@code true} if and only if this vector
378 * contains at least one element {@code e} such that
379 * {@code Objects.equals(o, e)}.
380 *
381 * @param o element whose presence in this vector is to be tested
382 * @return {@code true} if this vector contains the specified element
383 */
384 public boolean contains(Object o) {
385 return indexOf(o, 0) >= 0;
386 }
387
388 /**
389 * Returns the index of the first occurrence of the specified element
390 * in this vector, or -1 if this vector does not contain the element.
391 * More formally, returns the lowest index {@code i} such that
392 * {@code Objects.equals(o, get(i))},
393 * or -1 if there is no such index.
394 *
395 * @param o element to search for
396 * @return the index of the first occurrence of the specified element in
397 * this vector, or -1 if this vector does not contain the element
398 */
399 public int indexOf(Object o) {
400 return indexOf(o, 0);
401 }
402
403 /**
404 * Returns the index of the first occurrence of the specified element in
405 * this vector, searching forwards from {@code index}, or returns -1 if
406 * the element is not found.
407 * More formally, returns the lowest index {@code i} such that
408 * {@code (i >= index && Objects.equals(o, get(i)))},
409 * or -1 if there is no such index.
410 *
411 * @param o element to search for
412 * @param index index to start searching from
413 * @return the index of the first occurrence of the element in
414 * this vector at position {@code index} or later in the vector;
415 * {@code -1} if the element is not found.
416 * @throws IndexOutOfBoundsException if the specified index is negative
417 * @see Object#equals(Object)
418 */
419 public synchronized int indexOf(Object o, int index) {
420 if (o == null) {
421 for (int i = index ; i < elementCount ; i++)
422 if (elementData[i]==null)
423 return i;
424 } else {
425 for (int i = index ; i < elementCount ; i++)
426 if (o.equals(elementData[i]))
427 return i;
428 }
429 return -1;
430 }
431
432 /**
433 * Returns the index of the last occurrence of the specified element
434 * in this vector, or -1 if this vector does not contain the element.
435 * More formally, returns the highest index {@code i} such that
436 * {@code Objects.equals(o, get(i))},
437 * or -1 if there is no such index.
438 *
439 * @param o element to search for
440 * @return the index of the last occurrence of the specified element in
441 * this vector, or -1 if this vector does not contain the element
442 */
443 public synchronized int lastIndexOf(Object o) {
444 return lastIndexOf(o, elementCount-1);
445 }
446
447 /**
448 * Returns the index of the last occurrence of the specified element in
449 * this vector, searching backwards from {@code index}, or returns -1 if
450 * the element is not found.
451 * More formally, returns the highest index {@code i} such that
452 * {@code (i <= index && Objects.equals(o, get(i)))},
453 * or -1 if there is no such index.
454 *
455 * @param o element to search for
456 * @param index index to start searching backwards from
457 * @return the index of the last occurrence of the element at position
458 * less than or equal to {@code index} in this vector;
459 * -1 if the element is not found.
460 * @throws IndexOutOfBoundsException if the specified index is greater
461 * than or equal to the current size of this vector
462 */
463 public synchronized int lastIndexOf(Object o, int index) {
464 if (index >= elementCount)
465 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
466
467 if (o == null) {
468 for (int i = index; i >= 0; i--)
469 if (elementData[i]==null)
470 return i;
471 } else {
472 for (int i = index; i >= 0; i--)
473 if (o.equals(elementData[i]))
474 return i;
475 }
476 return -1;
477 }
478
479 /**
480 * Returns the component at the specified index.
481 *
482 * <p>This method is identical in functionality to the {@link #get(int)}
483 * method (which is part of the {@link List} interface).
484 *
485 * @param index an index into this vector
486 * @return the component at the specified index
487 * @throws ArrayIndexOutOfBoundsException if the index is out of range
488 * ({@code index < 0 || index >= size()})
489 */
490 public synchronized E elementAt(int index) {
491 if (index >= elementCount) {
492 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
493 }
494
495 return elementData(index);
496 }
497
498 /**
499 * Returns the first component (the item at index {@code 0}) of
500 * this vector.
501 *
502 * @return the first component of this vector
503 * @throws NoSuchElementException if this vector has no components
504 */
505 public synchronized E firstElement() {
506 if (elementCount == 0) {
507 throw new NoSuchElementException();
508 }
509 return elementData(0);
510 }
511
512 /**
513 * Returns the last component of the vector.
514 *
515 * @return the last component of the vector, i.e., the component at index
516 * {@code size() - 1}
517 * @throws NoSuchElementException if this vector is empty
518 */
519 public synchronized E lastElement() {
520 if (elementCount == 0) {
521 throw new NoSuchElementException();
522 }
523 return elementData(elementCount - 1);
524 }
525
526 /**
527 * Sets the component at the specified {@code index} of this
528 * vector to be the specified object. The previous component at that
529 * position is discarded.
530 *
531 * <p>The index must be a value greater than or equal to {@code 0}
532 * and less than the current size of the vector.
533 *
534 * <p>This method is identical in functionality to the
535 * {@link #set(int, Object) set(int, E)}
536 * method (which is part of the {@link List} interface). Note that the
537 * {@code set} method reverses the order of the parameters, to more closely
538 * match array usage. Note also that the {@code set} method returns the
539 * old value that was stored at the specified position.
540 *
541 * @param obj what the component is to be set to
542 * @param index the specified index
543 * @throws ArrayIndexOutOfBoundsException if the index is out of range
544 * ({@code index < 0 || index >= size()})
545 */
546 public synchronized void setElementAt(E obj, int index) {
547 if (index >= elementCount) {
548 throw new ArrayIndexOutOfBoundsException(index + " >= " +
549 elementCount);
550 }
551 elementData[index] = obj;
552 }
553
554 /**
555 * Deletes the component at the specified index. Each component in
556 * this vector with an index greater or equal to the specified
557 * {@code index} is shifted downward to have an index one
558 * smaller than the value it had previously. The size of this vector
559 * is decreased by {@code 1}.
560 *
561 * <p>The index must be a value greater than or equal to {@code 0}
562 * and less than the current size of the vector.
563 *
564 * <p>This method is identical in functionality to the {@link #remove(int)}
565 * method (which is part of the {@link List} interface). Note that the
566 * {@code remove} method returns the old value that was stored at the
567 * specified position.
568 *
569 * @param index the index of the object to remove
570 * @throws ArrayIndexOutOfBoundsException if the index is out of range
571 * ({@code index < 0 || index >= size()})
572 */
573 public synchronized void removeElementAt(int index) {
574 if (index >= elementCount) {
575 throw new ArrayIndexOutOfBoundsException(index + " >= " +
576 elementCount);
577 }
578 else if (index < 0) {
579 throw new ArrayIndexOutOfBoundsException(index);
580 }
581 int j = elementCount - index - 1;
582 if (j > 0) {
583 System.arraycopy(elementData, index + 1, elementData, index, j);
584 }
585 modCount++;
586 elementCount--;
587 elementData[elementCount] = null; /* to let gc do its work */
588 // checkInvariants();
589 }
590
591 /**
592 * Inserts the specified object as a component in this vector at the
593 * specified {@code index}. Each component in this vector with
594 * an index greater or equal to the specified {@code index} is
595 * shifted upward to have an index one greater than the value it had
596 * previously.
597 *
598 * <p>The index must be a value greater than or equal to {@code 0}
599 * and less than or equal to the current size of the vector. (If the
600 * index is equal to the current size of the vector, the new element
601 * is appended to the Vector.)
602 *
603 * <p>This method is identical in functionality to the
604 * {@link #add(int, Object) add(int, E)}
605 * method (which is part of the {@link List} interface). Note that the
606 * {@code add} method reverses the order of the parameters, to more closely
607 * match array usage.
608 *
609 * @param obj the component to insert
610 * @param index where to insert the new component
611 * @throws ArrayIndexOutOfBoundsException if the index is out of range
612 * ({@code index < 0 || index > size()})
613 */
614 public synchronized void insertElementAt(E obj, int index) {
615 if (index > elementCount) {
616 throw new ArrayIndexOutOfBoundsException(index
617 + " > " + elementCount);
618 }
619 modCount++;
620 final int s = elementCount;
621 Object[] elementData = this.elementData;
622 if (s == elementData.length)
623 elementData = grow();
624 System.arraycopy(elementData, index,
625 elementData, index + 1,
626 s - index);
627 elementData[index] = obj;
628 elementCount = s + 1;
629 }
630
631 /**
632 * Adds the specified component to the end of this vector,
633 * increasing its size by one. The capacity of this vector is
634 * increased if its size becomes greater than its capacity.
635 *
636 * <p>This method is identical in functionality to the
637 * {@link #add(Object) add(E)}
638 * method (which is part of the {@link List} interface).
639 *
640 * @param obj the component to be added
641 */
642 public synchronized void addElement(E obj) {
643 modCount++;
644 add(obj, elementData, elementCount);
645 }
646
647 /**
648 * Removes the first (lowest-indexed) occurrence of the argument
649 * from this vector. If the object is found in this vector, each
650 * component in the vector with an index greater or equal to the
651 * object's index is shifted downward to have an index one smaller
652 * than the value it had previously.
653 *
654 * <p>This method is identical in functionality to the
655 * {@link #remove(Object)} method (which is part of the
656 * {@link List} interface).
657 *
658 * @param obj the component to be removed
659 * @return {@code true} if the argument was a component of this
660 * vector; {@code false} otherwise.
661 */
662 public synchronized boolean removeElement(Object obj) {
663 modCount++;
664 int i = indexOf(obj);
665 if (i >= 0) {
666 removeElementAt(i);
667 return true;
668 }
669 return false;
670 }
671
672 /**
673 * Removes all components from this vector and sets its size to zero.
674 *
675 * <p>This method is identical in functionality to the {@link #clear}
676 * method (which is part of the {@link List} interface).
677 */
678 public synchronized void removeAllElements() {
679 final Object[] es = elementData;
680 for (int to = elementCount, i = elementCount = 0; i < to; i++)
681 es[i] = null;
682 modCount++;
683 }
684
685 /**
686 * Returns a clone of this vector. The copy will contain a
687 * reference to a clone of the internal data array, not a reference
688 * to the original internal data array of this {@code Vector} object.
689 *
690 * @return a clone of this vector
691 */
692 public synchronized Object clone() {
693 try {
694 @SuppressWarnings("unchecked")
695 Vector<E> v = (Vector<E>) super.clone();
696 v.elementData = Arrays.copyOf(elementData, elementCount);
697 v.modCount = 0;
698 return v;
699 } catch (CloneNotSupportedException e) {
700 // this shouldn't happen, since we are Cloneable
701 throw new InternalError(e);
702 }
703 }
704
705 /**
706 * Returns an array containing all of the elements in this Vector
707 * in the correct order.
708 *
709 * @since 1.2
710 */
711 public synchronized Object[] toArray() {
712 return Arrays.copyOf(elementData, elementCount);
713 }
714
715 /**
716 * Returns an array containing all of the elements in this Vector in the
717 * correct order; the runtime type of the returned array is that of the
718 * specified array. If the Vector fits in the specified array, it is
719 * returned therein. Otherwise, a new array is allocated with the runtime
720 * type of the specified array and the size of this Vector.
721 *
722 * <p>If the Vector fits in the specified array with room to spare
723 * (i.e., the array has more elements than the Vector),
724 * the element in the array immediately following the end of the
725 * Vector is set to null. (This is useful in determining the length
726 * of the Vector <em>only</em> if the caller knows that the Vector
727 * does not contain any null elements.)
728 *
729 * @param <T> type of array elements. The same type as {@code <E>} or a
730 * supertype of {@code <E>}.
731 * @param a the array into which the elements of the Vector are to
732 * be stored, if it is big enough; otherwise, a new array of the
733 * same runtime type is allocated for this purpose.
734 * @return an array containing the elements of the Vector
735 * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
736 * a supertype of the runtime type, {@code <E>}, of every element in this
737 * Vector
738 * @throws NullPointerException if the given array is null
739 * @since 1.2
740 */
741 @SuppressWarnings("unchecked")
742 public synchronized <T> T[] toArray(T[] a) {
743 if (a.length < elementCount)
744 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
745
746 System.arraycopy(elementData, 0, a, 0, elementCount);
747
748 if (a.length > elementCount)
749 a[elementCount] = null;
750
751 return a;
752 }
753
754 // Positional Access Operations
755
756 @SuppressWarnings("unchecked")
757 E elementData(int index) {
758 return (E) elementData[index];
759 }
760
761 @SuppressWarnings("unchecked")
762 static <E> E elementAt(Object[] es, int index) {
763 return (E) es[index];
764 }
765
766 /**
767 * Returns the element at the specified position in this Vector.
768 *
769 * @param index index of the element to return
770 * @return object at the specified index
771 * @throws ArrayIndexOutOfBoundsException if the index is out of range
772 * ({@code index < 0 || index >= size()})
773 * @since 1.2
774 */
775 public synchronized E get(int index) {
776 if (index >= elementCount)
777 throw new ArrayIndexOutOfBoundsException(index);
778
779 return elementData(index);
780 }
781
782 /**
783 * Replaces the element at the specified position in this Vector with the
784 * specified element.
785 *
786 * @param index index of the element to replace
787 * @param element element to be stored at the specified position
788 * @return the element previously at the specified position
789 * @throws ArrayIndexOutOfBoundsException if the index is out of range
790 * ({@code index < 0 || index >= size()})
791 * @since 1.2
792 */
793 public synchronized E set(int index, E element) {
794 if (index >= elementCount)
795 throw new ArrayIndexOutOfBoundsException(index);
796
797 E oldValue = elementData(index);
798 elementData[index] = element;
799 return oldValue;
800 }
801
802 /**
803 * This helper method split out from add(E) to keep method
804 * bytecode size under 35 (the -XX:MaxInlineSize default value),
805 * which helps when add(E) is called in a C1-compiled loop.
806 */
807 private void add(E e, Object[] elementData, int s) {
808 if (s == elementData.length)
809 elementData = grow();
810 elementData[s] = e;
811 elementCount = s + 1;
812 // checkInvariants();
813 }
814
815 /**
816 * Appends the specified element to the end of this Vector.
817 *
818 * @param e element to be appended to this Vector
819 * @return {@code true} (as specified by {@link Collection#add})
820 * @since 1.2
821 */
822 public synchronized boolean add(E e) {
823 modCount++;
824 add(e, elementData, elementCount);
825 return true;
826 }
827
828 /**
829 * Removes the first occurrence of the specified element in this Vector
830 * If the Vector does not contain the element, it is unchanged. More
831 * formally, removes the element with the lowest index i such that
832 * {@code Objects.equals(o, get(i))} (if such
833 * an element exists).
834 *
835 * @param o element to be removed from this Vector, if present
836 * @return true if the Vector contained the specified element
837 * @since 1.2
838 */
839 public boolean remove(Object o) {
840 return removeElement(o);
841 }
842
843 /**
844 * Inserts the specified element at the specified position in this Vector.
845 * Shifts the element currently at that position (if any) and any
846 * subsequent elements to the right (adds one to their indices).
847 *
848 * @param index index at which the specified element is to be inserted
849 * @param element element to be inserted
850 * @throws ArrayIndexOutOfBoundsException if the index is out of range
851 * ({@code index < 0 || index > size()})
852 * @since 1.2
853 */
854 public void add(int index, E element) {
855 insertElementAt(element, index);
856 }
857
858 /**
859 * Removes the element at the specified position in this Vector.
860 * Shifts any subsequent elements to the left (subtracts one from their
861 * indices). Returns the element that was removed from the Vector.
862 *
863 * @param index the index of the element to be removed
864 * @return element that was removed
865 * @throws ArrayIndexOutOfBoundsException if the index is out of range
866 * ({@code index < 0 || index >= size()})
867 * @since 1.2
868 */
869 public synchronized E remove(int index) {
870 modCount++;
871 if (index >= elementCount)
872 throw new ArrayIndexOutOfBoundsException(index);
873 E oldValue = elementData(index);
874
875 int numMoved = elementCount - index - 1;
876 if (numMoved > 0)
877 System.arraycopy(elementData, index+1, elementData, index,
878 numMoved);
879 elementData[--elementCount] = null; // Let gc do its work
880
881 // checkInvariants();
882 return oldValue;
883 }
884
885 /**
886 * Removes all of the elements from this Vector. The Vector will
887 * be empty after this call returns (unless it throws an exception).
888 *
889 * @since 1.2
890 */
891 public void clear() {
892 removeAllElements();
893 }
894
895 // Bulk Operations
896
897 /**
898 * Returns true if this Vector contains all of the elements in the
899 * specified Collection.
900 *
901 * @param c a collection whose elements will be tested for containment
902 * in this Vector
903 * @return true if this Vector contains all of the elements in the
904 * specified collection
905 * @throws NullPointerException if the specified collection is null
906 */
907 public synchronized boolean containsAll(Collection<?> c) {
908 return super.containsAll(c);
909 }
910
911 /**
912 * Appends all of the elements in the specified Collection to the end of
913 * this Vector, in the order that they are returned by the specified
914 * Collection's Iterator. The behavior of this operation is undefined if
915 * the specified Collection is modified while the operation is in progress.
916 * (This implies that the behavior of this call is undefined if the
917 * specified Collection is this Vector, and this Vector is nonempty.)
918 *
919 * @param c elements to be inserted into this Vector
920 * @return {@code true} if this Vector changed as a result of the call
921 * @throws NullPointerException if the specified collection is null
922 * @since 1.2
923 */
924 public boolean addAll(Collection<? extends E> c) {
925 Object[] a = c.toArray();
926 modCount++;
927 int numNew = a.length;
928 if (numNew == 0)
929 return false;
930 synchronized (this) {
931 Object[] elementData = this.elementData;
932 final int s = elementCount;
933 if (numNew > elementData.length - s)
934 elementData = grow(s + numNew);
935 System.arraycopy(a, 0, elementData, s, numNew);
936 elementCount = s + numNew;
937 // checkInvariants();
938 return true;
939 }
940 }
941
942 /**
943 * Removes from this Vector all of its elements that are contained in the
944 * specified Collection.
945 *
946 * @param c a collection of elements to be removed from the Vector
947 * @return true if this Vector changed as a result of the call
948 * @throws ClassCastException if the types of one or more elements
949 * in this vector are incompatible with the specified
950 * collection
951 * (<a href="Collection.html#optional-restrictions">optional</a>)
952 * @throws NullPointerException if this vector contains one or more null
953 * elements and the specified collection does not support null
954 * elements
955 * (<a href="Collection.html#optional-restrictions">optional</a>),
956 * or if the specified collection is null
957 * @since 1.2
958 */
959 public boolean removeAll(Collection<?> c) {
960 Objects.requireNonNull(c);
961 return bulkRemove(e -> c.contains(e));
962 }
963
964 /**
965 * Retains only the elements in this Vector that are contained in the
966 * specified Collection. In other words, removes from this Vector all
967 * of its elements that are not contained in the specified Collection.
968 *
969 * @param c a collection of elements to be retained in this Vector
970 * (all other elements are removed)
971 * @return true if this Vector changed as a result of the call
972 * @throws ClassCastException if the types of one or more elements
973 * in this vector are incompatible with the specified
974 * collection
975 * (<a href="Collection.html#optional-restrictions">optional</a>)
976 * @throws NullPointerException if this vector contains one or more null
977 * elements and the specified collection does not support null
978 * elements
979 * (<a href="Collection.html#optional-restrictions">optional</a>),
980 * or if the specified collection is null
981 * @since 1.2
982 */
983 public boolean retainAll(Collection<?> c) {
984 Objects.requireNonNull(c);
985 return bulkRemove(e -> !c.contains(e));
986 }
987
988 @Override
989 public boolean removeIf(Predicate<? super E> filter) {
990 Objects.requireNonNull(filter);
991 return bulkRemove(filter);
992 }
993
994 // A tiny bit set implementation
995
996 private static long[] nBits(int n) {
997 return new long[((n - 1) >> 6) + 1];
998 }
999 private static void setBit(long[] bits, int i) {
1000 bits[i >> 6] |= 1L << i;
1001 }
1002 private static boolean isClear(long[] bits, int i) {
1003 return (bits[i >> 6] & (1L << i)) == 0;
1004 }
1005
1006 private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1007 int expectedModCount = modCount;
1008 final Object[] es = elementData;
1009 final int end = elementCount;
1010 int i;
1011 // Optimize for initial run of survivors
1012 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1013 ;
1014 // Tolerate predicates that reentrantly access the collection for
1015 // read (but writers still get CME), so traverse once to find
1016 // elements to delete, a second pass to physically expunge.
1017 if (i < end) {
1018 final int beg = i;
1019 final long[] deathRow = nBits(end - beg);
1020 deathRow[0] = 1L; // set bit 0
1021 for (i = beg + 1; i < end; i++)
1022 if (filter.test(elementAt(es, i)))
1023 setBit(deathRow, i - beg);
1024 if (modCount != expectedModCount)
1025 throw new ConcurrentModificationException();
1026 expectedModCount++;
1027 modCount++;
1028 int w = beg;
1029 for (i = beg; i < end; i++)
1030 if (isClear(deathRow, i - beg))
1031 es[w++] = es[i];
1032 for (i = elementCount = w; i < end; i++)
1033 es[i] = null;
1034 // checkInvariants();
1035 return true;
1036 } else {
1037 if (modCount != expectedModCount)
1038 throw new ConcurrentModificationException();
1039 // checkInvariants();
1040 return false;
1041 }
1042 }
1043
1044 /**
1045 * Inserts all of the elements in the specified Collection into this
1046 * Vector at the specified position. Shifts the element currently at
1047 * that position (if any) and any subsequent elements to the right
1048 * (increases their indices). The new elements will appear in the Vector
1049 * in the order that they are returned by the specified Collection's
1050 * iterator.
1051 *
1052 * @param index index at which to insert the first element from the
1053 * specified collection
1054 * @param c elements to be inserted into this Vector
1055 * @return {@code true} if this Vector changed as a result of the call
1056 * @throws ArrayIndexOutOfBoundsException if the index is out of range
1057 * ({@code index < 0 || index > size()})
1058 * @throws NullPointerException if the specified collection is null
1059 * @since 1.2
1060 */
1061 public synchronized boolean addAll(int index, Collection<? extends E> c) {
1062 if (index < 0 || index > elementCount)
1063 throw new ArrayIndexOutOfBoundsException(index);
1064
1065 Object[] a = c.toArray();
1066 modCount++;
1067 int numNew = a.length;
1068 if (numNew == 0)
1069 return false;
1070 Object[] elementData = this.elementData;
1071 final int s = elementCount;
1072 if (numNew > elementData.length - s)
1073 elementData = grow(s + numNew);
1074
1075 int numMoved = s - index;
1076 if (numMoved > 0)
1077 System.arraycopy(elementData, index,
1078 elementData, index + numNew,
1079 numMoved);
1080 System.arraycopy(a, 0, elementData, index, numNew);
1081 elementCount = s + numNew;
1082 // checkInvariants();
1083 return true;
1084 }
1085
1086 /**
1087 * Compares the specified Object with this Vector for equality. Returns
1088 * true if and only if the specified Object is also a List, both Lists
1089 * have the same size, and all corresponding pairs of elements in the two
1090 * Lists are <em>equal</em>. (Two elements {@code e1} and
1091 * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1092 * In other words, two Lists are defined to be
1093 * equal if they contain the same elements in the same order.
1094 *
1095 * @param o the Object to be compared for equality with this Vector
1096 * @return true if the specified Object is equal to this Vector
1097 */
1098 public synchronized boolean equals(Object o) {
1099 return super.equals(o);
1100 }
1101
1102 /**
1103 * Returns the hash code value for this Vector.
1104 */
1105 public synchronized int hashCode() {
1106 return super.hashCode();
1107 }
1108
1109 /**
1110 * Returns a string representation of this Vector, containing
1111 * the String representation of each element.
1112 */
1113 public synchronized String toString() {
1114 return super.toString();
1115 }
1116
1117 /**
1118 * Returns a view of the portion of this List between fromIndex,
1119 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1120 * equal, the returned List is empty.) The returned List is backed by this
1121 * List, so changes in the returned List are reflected in this List, and
1122 * vice-versa. The returned List supports all of the optional List
1123 * operations supported by this List.
1124 *
1125 * <p>This method eliminates the need for explicit range operations (of
1126 * the sort that commonly exist for arrays). Any operation that expects
1127 * a List can be used as a range operation by operating on a subList view
1128 * instead of a whole List. For example, the following idiom
1129 * removes a range of elements from a List:
1130 * <pre>
1131 * list.subList(from, to).clear();
1132 * </pre>
1133 * Similar idioms may be constructed for indexOf and lastIndexOf,
1134 * and all of the algorithms in the Collections class can be applied to
1135 * a subList.
1136 *
1137 * <p>The semantics of the List returned by this method become undefined if
1138 * the backing list (i.e., this List) is <i>structurally modified</i> in
1139 * any way other than via the returned List. (Structural modifications are
1140 * those that change the size of the List, or otherwise perturb it in such
1141 * a fashion that iterations in progress may yield incorrect results.)
1142 *
1143 * @param fromIndex low endpoint (inclusive) of the subList
1144 * @param toIndex high endpoint (exclusive) of the subList
1145 * @return a view of the specified range within this List
1146 * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1147 * {@code (fromIndex < 0 || toIndex > size)}
1148 * @throws IllegalArgumentException if the endpoint indices are out of order
1149 * {@code (fromIndex > toIndex)}
1150 */
1151 public synchronized List<E> subList(int fromIndex, int toIndex) {
1152 return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1153 this);
1154 }
1155
1156 /**
1157 * Removes from this list all of the elements whose index is between
1158 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1159 * Shifts any succeeding elements to the left (reduces their index).
1160 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1161 * (If {@code toIndex==fromIndex}, this operation has no effect.)
1162 */
1163 protected synchronized void removeRange(int fromIndex, int toIndex) {
1164 modCount++;
1165 shiftTailOverGap(elementData, fromIndex, toIndex);
1166 // checkInvariants();
1167 }
1168
1169 /** Erases the gap from lo to hi, by sliding down following elements. */
1170 private void shiftTailOverGap(Object[] es, int lo, int hi) {
1171 System.arraycopy(es, hi, es, lo, elementCount - hi);
1172 for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1173 es[i] = null;
1174 }
1175
1176 /**
1177 * Saves the state of the {@code Vector} instance to a stream
1178 * (that is, serializes it).
1179 * This method performs synchronization to ensure the consistency
1180 * of the serialized data.
1181 *
1182 * @param s the stream
1183 * @throws java.io.IOException if an I/O error occurs
1184 */
1185 private void writeObject(java.io.ObjectOutputStream s)
1186 throws java.io.IOException {
1187 final java.io.ObjectOutputStream.PutField fields = s.putFields();
1188 final Object[] data;
1189 synchronized (this) {
1190 fields.put("capacityIncrement", capacityIncrement);
1191 fields.put("elementCount", elementCount);
1192 data = elementData.clone();
1193 }
1194 fields.put("elementData", data);
1195 s.writeFields();
1196 }
1197
1198 /**
1199 * Returns a list iterator over the elements in this list (in proper
1200 * sequence), starting at the specified position in the list.
1201 * The specified index indicates the first element that would be
1202 * returned by an initial call to {@link ListIterator#next next}.
1203 * An initial call to {@link ListIterator#previous previous} would
1204 * return the element with the specified index minus one.
1205 *
1206 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1207 *
1208 * @throws IndexOutOfBoundsException {@inheritDoc}
1209 */
1210 public synchronized ListIterator<E> listIterator(int index) {
1211 if (index < 0 || index > elementCount)
1212 throw new IndexOutOfBoundsException("Index: "+index);
1213 return new ListItr(index);
1214 }
1215
1216 /**
1217 * Returns a list iterator over the elements in this list (in proper
1218 * sequence).
1219 *
1220 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1221 *
1222 * @see #listIterator(int)
1223 */
1224 public synchronized ListIterator<E> listIterator() {
1225 return new ListItr(0);
1226 }
1227
1228 /**
1229 * Returns an iterator over the elements in this list in proper sequence.
1230 *
1231 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1232 *
1233 * @return an iterator over the elements in this list in proper sequence
1234 */
1235 public synchronized Iterator<E> iterator() {
1236 return new Itr();
1237 }
1238
1239 /**
1240 * An optimized version of AbstractList.Itr
1241 */
1242 private class Itr implements Iterator<E> {
1243 int cursor; // index of next element to return
1244 int lastRet = -1; // index of last element returned; -1 if no such
1245 int expectedModCount = modCount;
1246
1247 public boolean hasNext() {
1248 // Racy but within spec, since modifications are checked
1249 // within or after synchronization in next/previous
1250 return cursor != elementCount;
1251 }
1252
1253 public E next() {
1254 synchronized (Vector.this) {
1255 checkForComodification();
1256 int i = cursor;
1257 if (i >= elementCount)
1258 throw new NoSuchElementException();
1259 cursor = i + 1;
1260 return elementData(lastRet = i);
1261 }
1262 }
1263
1264 public void remove() {
1265 if (lastRet == -1)
1266 throw new IllegalStateException();
1267 synchronized (Vector.this) {
1268 checkForComodification();
1269 Vector.this.remove(lastRet);
1270 expectedModCount = modCount;
1271 }
1272 cursor = lastRet;
1273 lastRet = -1;
1274 }
1275
1276 @Override
1277 public void forEachRemaining(Consumer<? super E> action) {
1278 Objects.requireNonNull(action);
1279 synchronized (Vector.this) {
1280 final int size = elementCount;
1281 int i = cursor;
1282 if (i >= size) {
1283 return;
1284 }
1285 final Object[] es = elementData;
1286 if (i >= es.length)
1287 throw new ConcurrentModificationException();
1288 while (i < size && modCount == expectedModCount)
1289 action.accept(elementAt(es, i++));
1290 // update once at end of iteration to reduce heap write traffic
1291 cursor = i;
1292 lastRet = i - 1;
1293 checkForComodification();
1294 }
1295 }
1296
1297 final void checkForComodification() {
1298 if (modCount != expectedModCount)
1299 throw new ConcurrentModificationException();
1300 }
1301 }
1302
1303 /**
1304 * An optimized version of AbstractList.ListItr
1305 */
1306 final class ListItr extends Itr implements ListIterator<E> {
1307 ListItr(int index) {
1308 super();
1309 cursor = index;
1310 }
1311
1312 public boolean hasPrevious() {
1313 return cursor != 0;
1314 }
1315
1316 public int nextIndex() {
1317 return cursor;
1318 }
1319
1320 public int previousIndex() {
1321 return cursor - 1;
1322 }
1323
1324 public E previous() {
1325 synchronized (Vector.this) {
1326 checkForComodification();
1327 int i = cursor - 1;
1328 if (i < 0)
1329 throw new NoSuchElementException();
1330 cursor = i;
1331 return elementData(lastRet = i);
1332 }
1333 }
1334
1335 public void set(E e) {
1336 if (lastRet == -1)
1337 throw new IllegalStateException();
1338 synchronized (Vector.this) {
1339 checkForComodification();
1340 Vector.this.set(lastRet, e);
1341 }
1342 }
1343
1344 public void add(E e) {
1345 int i = cursor;
1346 synchronized (Vector.this) {
1347 checkForComodification();
1348 Vector.this.add(i, e);
1349 expectedModCount = modCount;
1350 }
1351 cursor = i + 1;
1352 lastRet = -1;
1353 }
1354 }
1355
1356 @Override
1357 public synchronized void forEach(Consumer<? super E> action) {
1358 Objects.requireNonNull(action);
1359 final int expectedModCount = modCount;
1360 final Object[] es = elementData;
1361 final int size = elementCount;
1362 for (int i = 0; modCount == expectedModCount && i < size; i++)
1363 action.accept(elementAt(es, i));
1364 if (modCount != expectedModCount)
1365 throw new ConcurrentModificationException();
1366 // checkInvariants();
1367 }
1368
1369 @Override
1370 public synchronized void replaceAll(UnaryOperator<E> operator) {
1371 Objects.requireNonNull(operator);
1372 final int expectedModCount = modCount;
1373 final Object[] es = elementData;
1374 final int size = elementCount;
1375 for (int i = 0; modCount == expectedModCount && i < size; i++)
1376 es[i] = operator.apply(elementAt(es, i));
1377 if (modCount != expectedModCount)
1378 throw new ConcurrentModificationException();
1379 modCount++;
1380 // checkInvariants();
1381 }
1382
1383 @SuppressWarnings("unchecked")
1384 @Override
1385 public synchronized void sort(Comparator<? super E> c) {
1386 final int expectedModCount = modCount;
1387 Arrays.sort((E[]) elementData, 0, elementCount, c);
1388 if (modCount != expectedModCount)
1389 throw new ConcurrentModificationException();
1390 modCount++;
1391 // checkInvariants();
1392 }
1393
1394 /**
1395 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1396 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1397 * list.
1398 *
1399 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1400 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1401 * Overriding implementations should document the reporting of additional
1402 * characteristic values.
1403 *
1404 * @return a {@code Spliterator} over the elements in this list
1405 * @since 1.8
1406 */
1407 @Override
1408 public Spliterator<E> spliterator() {
1409 return new VectorSpliterator(null, 0, -1, 0);
1410 }
1411
1412 /** Similar to ArrayList Spliterator */
1413 final class VectorSpliterator implements Spliterator<E> {
1414 private Object[] array;
1415 private int index; // current index, modified on advance/split
1416 private int fence; // -1 until used; then one past last index
1417 private int expectedModCount; // initialized when fence set
1418
1419 /** Create new spliterator covering the given range */
1420 VectorSpliterator(Object[] array, int origin, int fence,
1421 int expectedModCount) {
1422 this.array = array;
1423 this.index = origin;
1424 this.fence = fence;
1425 this.expectedModCount = expectedModCount;
1426 }
1427
1428 private int getFence() { // initialize on first use
1429 int hi;
1430 if ((hi = fence) < 0) {
1431 synchronized (Vector.this) {
1432 array = elementData;
1433 expectedModCount = modCount;
1434 hi = fence = elementCount;
1435 }
1436 }
1437 return hi;
1438 }
1439
1440 public Spliterator<E> trySplit() {
1441 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1442 return (lo >= mid) ? null :
1443 new VectorSpliterator(array, lo, index = mid, expectedModCount);
1444 }
1445
1446 @SuppressWarnings("unchecked")
1447 public boolean tryAdvance(Consumer<? super E> action) {
1448 int i;
1449 if (action == null)
1450 throw new NullPointerException();
1451 if (getFence() > (i = index)) {
1452 index = i + 1;
1453 action.accept((E)array[i]);
1454 if (modCount != expectedModCount)
1455 throw new ConcurrentModificationException();
1456 return true;
1457 }
1458 return false;
1459 }
1460
1461 @SuppressWarnings("unchecked")
1462 public void forEachRemaining(Consumer<? super E> action) {
1463 if (action == null)
1464 throw new NullPointerException();
1465 final int hi = getFence();
1466 final Object[] a = array;
1467 int i;
1468 for (i = index, index = hi; i < hi; i++)
1469 action.accept((E) a[i]);
1470 if (modCount != expectedModCount)
1471 throw new ConcurrentModificationException();
1472 }
1473
1474 public long estimateSize() {
1475 return getFence() - index;
1476 }
1477
1478 public int characteristics() {
1479 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1480 }
1481 }
1482
1483 void checkInvariants() {
1484 // assert elementCount >= 0;
1485 // assert elementCount == elementData.length || elementData[elementCount] == null;
1486 }
1487 }