ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.45
Committed: Wed Feb 1 20:13:47 2017 UTC (7 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.44: +2 -1 lines
Log Message:
8173706: Is able to set a negative j.u.Vector size in JDK9 b151

File Contents

# Content
1 /*
2 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * The {@code Vector} class implements a growable array of
34 * objects. Like an array, it contains components that can be
35 * accessed using an integer index. However, the size of a
36 * {@code Vector} can grow or shrink as needed to accommodate
37 * adding and removing items after the {@code Vector} has been created.
38 *
39 * <p>Each vector tries to optimize storage management by maintaining a
40 * {@code capacity} and a {@code capacityIncrement}. The
41 * {@code capacity} is always at least as large as the vector
42 * size; it is usually larger because as components are added to the
43 * vector, the vector's storage increases in chunks the size of
44 * {@code capacityIncrement}. An application can increase the
45 * capacity of a vector before inserting a large number of
46 * components; this reduces the amount of incremental reallocation.
47 *
48 * <p id="fail-fast">
49 * The iterators returned by this class's {@link #iterator() iterator} and
50 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
51 * if the vector is structurally modified at any time after the iterator is
52 * created, in any way except through the iterator's own
53 * {@link ListIterator#remove() remove} or
54 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
55 * {@link ConcurrentModificationException}. Thus, in the face of
56 * concurrent modification, the iterator fails quickly and cleanly, rather
57 * than risking arbitrary, non-deterministic behavior at an undetermined
58 * time in the future. The {@link Enumeration Enumerations} returned by
59 * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
60 * Vector is structurally modified at any time after the enumeration is
61 * created then the results of enumerating are undefined.
62 *
63 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
64 * as it is, generally speaking, impossible to make any hard guarantees in the
65 * presence of unsynchronized concurrent modification. Fail-fast iterators
66 * throw {@code ConcurrentModificationException} on a best-effort basis.
67 * Therefore, it would be wrong to write a program that depended on this
68 * exception for its correctness: <i>the fail-fast behavior of iterators
69 * should be used only to detect bugs.</i>
70 *
71 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
72 * implement the {@link List} interface, making it a member of the
73 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 * Java Collections Framework</a>. Unlike the new collection
75 * implementations, {@code Vector} is synchronized. If a thread-safe
76 * implementation is not needed, it is recommended to use {@link
77 * ArrayList} in place of {@code Vector}.
78 *
79 * @param <E> Type of component elements
80 *
81 * @author Lee Boynton
82 * @author Jonathan Payne
83 * @see Collection
84 * @see LinkedList
85 * @since 1.0
86 */
87 public class Vector<E>
88 extends AbstractList<E>
89 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
90 {
91 /**
92 * The array buffer into which the components of the vector are
93 * stored. The capacity of the vector is the length of this array buffer,
94 * and is at least large enough to contain all the vector's elements.
95 *
96 * <p>Any array elements following the last element in the Vector are null.
97 *
98 * @serial
99 */
100 protected Object[] elementData;
101
102 /**
103 * The number of valid components in this {@code Vector} object.
104 * Components {@code elementData[0]} through
105 * {@code elementData[elementCount-1]} are the actual items.
106 *
107 * @serial
108 */
109 protected int elementCount;
110
111 /**
112 * The amount by which the capacity of the vector is automatically
113 * incremented when its size becomes greater than its capacity. If
114 * the capacity increment is less than or equal to zero, the capacity
115 * of the vector is doubled each time it needs to grow.
116 *
117 * @serial
118 */
119 protected int capacityIncrement;
120
121 /** use serialVersionUID from JDK 1.0.2 for interoperability */
122 private static final long serialVersionUID = -2767605614048989439L;
123
124 /**
125 * Constructs an empty vector with the specified initial capacity and
126 * capacity increment.
127 *
128 * @param initialCapacity the initial capacity of the vector
129 * @param capacityIncrement the amount by which the capacity is
130 * increased when the vector overflows
131 * @throws IllegalArgumentException if the specified initial capacity
132 * is negative
133 */
134 public Vector(int initialCapacity, int capacityIncrement) {
135 super();
136 if (initialCapacity < 0)
137 throw new IllegalArgumentException("Illegal Capacity: "+
138 initialCapacity);
139 this.elementData = new Object[initialCapacity];
140 this.capacityIncrement = capacityIncrement;
141 }
142
143 /**
144 * Constructs an empty vector with the specified initial capacity and
145 * with its capacity increment equal to zero.
146 *
147 * @param initialCapacity the initial capacity of the vector
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public Vector(int initialCapacity) {
152 this(initialCapacity, 0);
153 }
154
155 /**
156 * Constructs an empty vector so that its internal data array
157 * has size {@code 10} and its standard capacity increment is
158 * zero.
159 */
160 public Vector() {
161 this(10);
162 }
163
164 /**
165 * Constructs a vector containing the elements of the specified
166 * collection, in the order they are returned by the collection's
167 * iterator.
168 *
169 * @param c the collection whose elements are to be placed into this
170 * vector
171 * @throws NullPointerException if the specified collection is null
172 * @since 1.2
173 */
174 public Vector(Collection<? extends E> c) {
175 elementData = c.toArray();
176 elementCount = elementData.length;
177 // defend against c.toArray (incorrectly) not returning Object[]
178 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
179 if (elementData.getClass() != Object[].class)
180 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
181 }
182
183 /**
184 * Copies the components of this vector into the specified array.
185 * The item at index {@code k} in this vector is copied into
186 * component {@code k} of {@code anArray}.
187 *
188 * @param anArray the array into which the components get copied
189 * @throws NullPointerException if the given array is null
190 * @throws IndexOutOfBoundsException if the specified array is not
191 * large enough to hold all the components of this vector
192 * @throws ArrayStoreException if a component of this vector is not of
193 * a runtime type that can be stored in the specified array
194 * @see #toArray(Object[])
195 */
196 public synchronized void copyInto(Object[] anArray) {
197 System.arraycopy(elementData, 0, anArray, 0, elementCount);
198 }
199
200 /**
201 * Trims the capacity of this vector to be the vector's current
202 * size. If the capacity of this vector is larger than its current
203 * size, then the capacity is changed to equal the size by replacing
204 * its internal data array, kept in the field {@code elementData},
205 * with a smaller one. An application can use this operation to
206 * minimize the storage of a vector.
207 */
208 public synchronized void trimToSize() {
209 modCount++;
210 int oldCapacity = elementData.length;
211 if (elementCount < oldCapacity) {
212 elementData = Arrays.copyOf(elementData, elementCount);
213 }
214 }
215
216 /**
217 * Increases the capacity of this vector, if necessary, to ensure
218 * that it can hold at least the number of components specified by
219 * the minimum capacity argument.
220 *
221 * <p>If the current capacity of this vector is less than
222 * {@code minCapacity}, then its capacity is increased by replacing its
223 * internal data array, kept in the field {@code elementData}, with a
224 * larger one. The size of the new data array will be the old size plus
225 * {@code capacityIncrement}, unless the value of
226 * {@code capacityIncrement} is less than or equal to zero, in which case
227 * the new capacity will be twice the old capacity; but if this new size
228 * is still smaller than {@code minCapacity}, then the new capacity will
229 * be {@code minCapacity}.
230 *
231 * @param minCapacity the desired minimum capacity
232 */
233 public synchronized void ensureCapacity(int minCapacity) {
234 if (minCapacity > 0) {
235 modCount++;
236 if (minCapacity > elementData.length)
237 grow(minCapacity);
238 }
239 }
240
241 /**
242 * The maximum size of array to allocate (unless necessary).
243 * Some VMs reserve some header words in an array.
244 * Attempts to allocate larger arrays may result in
245 * OutOfMemoryError: Requested array size exceeds VM limit
246 */
247 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
248
249 /**
250 * Increases the capacity to ensure that it can hold at least the
251 * number of elements specified by the minimum capacity argument.
252 *
253 * @param minCapacity the desired minimum capacity
254 * @throws OutOfMemoryError if minCapacity is less than zero
255 */
256 private Object[] grow(int minCapacity) {
257 return elementData = Arrays.copyOf(elementData,
258 newCapacity(minCapacity));
259 }
260
261 private Object[] grow() {
262 return grow(elementCount + 1);
263 }
264
265 /**
266 * Returns a capacity at least as large as the given minimum capacity.
267 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
268 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
269 *
270 * @param minCapacity the desired minimum capacity
271 * @throws OutOfMemoryError if minCapacity is less than zero
272 */
273 private int newCapacity(int minCapacity) {
274 // overflow-conscious code
275 int oldCapacity = elementData.length;
276 int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
277 capacityIncrement : oldCapacity);
278 if (newCapacity - minCapacity <= 0) {
279 if (minCapacity < 0) // overflow
280 throw new OutOfMemoryError();
281 return minCapacity;
282 }
283 return (newCapacity - MAX_ARRAY_SIZE <= 0)
284 ? newCapacity
285 : hugeCapacity(minCapacity);
286 }
287
288 private static int hugeCapacity(int minCapacity) {
289 if (minCapacity < 0) // overflow
290 throw new OutOfMemoryError();
291 return (minCapacity > MAX_ARRAY_SIZE) ?
292 Integer.MAX_VALUE :
293 MAX_ARRAY_SIZE;
294 }
295
296 /**
297 * Sets the size of this vector. If the new size is greater than the
298 * current size, new {@code null} items are added to the end of
299 * the vector. If the new size is less than the current size, all
300 * components at index {@code newSize} and greater are discarded.
301 *
302 * @param newSize the new size of this vector
303 * @throws ArrayIndexOutOfBoundsException if the new size is negative
304 */
305 public synchronized void setSize(int newSize) {
306 modCount++;
307 if (newSize > elementData.length)
308 grow(newSize);
309 final Object[] es = elementData;
310 for (int to = elementCount, i = newSize; i < to; i++)
311 es[i] = null;
312 elementCount = newSize;
313 }
314
315 /**
316 * Returns the current capacity of this vector.
317 *
318 * @return the current capacity (the length of its internal
319 * data array, kept in the field {@code elementData}
320 * of this vector)
321 */
322 public synchronized int capacity() {
323 return elementData.length;
324 }
325
326 /**
327 * Returns the number of components in this vector.
328 *
329 * @return the number of components in this vector
330 */
331 public synchronized int size() {
332 return elementCount;
333 }
334
335 /**
336 * Tests if this vector has no components.
337 *
338 * @return {@code true} if and only if this vector has
339 * no components, that is, its size is zero;
340 * {@code false} otherwise.
341 */
342 public synchronized boolean isEmpty() {
343 return elementCount == 0;
344 }
345
346 /**
347 * Returns an enumeration of the components of this vector. The
348 * returned {@code Enumeration} object will generate all items in
349 * this vector. The first item generated is the item at index {@code 0},
350 * then the item at index {@code 1}, and so on. If the vector is
351 * structurally modified while enumerating over the elements then the
352 * results of enumerating are undefined.
353 *
354 * @return an enumeration of the components of this vector
355 * @see Iterator
356 */
357 public Enumeration<E> elements() {
358 return new Enumeration<E>() {
359 int count = 0;
360
361 public boolean hasMoreElements() {
362 return count < elementCount;
363 }
364
365 public E nextElement() {
366 synchronized (Vector.this) {
367 if (count < elementCount) {
368 return elementData(count++);
369 }
370 }
371 throw new NoSuchElementException("Vector Enumeration");
372 }
373 };
374 }
375
376 /**
377 * Returns {@code true} if this vector contains the specified element.
378 * More formally, returns {@code true} if and only if this vector
379 * contains at least one element {@code e} such that
380 * {@code Objects.equals(o, e)}.
381 *
382 * @param o element whose presence in this vector is to be tested
383 * @return {@code true} if this vector contains the specified element
384 */
385 public boolean contains(Object o) {
386 return indexOf(o, 0) >= 0;
387 }
388
389 /**
390 * Returns the index of the first occurrence of the specified element
391 * in this vector, or -1 if this vector does not contain the element.
392 * More formally, returns the lowest index {@code i} such that
393 * {@code Objects.equals(o, get(i))},
394 * or -1 if there is no such index.
395 *
396 * @param o element to search for
397 * @return the index of the first occurrence of the specified element in
398 * this vector, or -1 if this vector does not contain the element
399 */
400 public int indexOf(Object o) {
401 return indexOf(o, 0);
402 }
403
404 /**
405 * Returns the index of the first occurrence of the specified element in
406 * this vector, searching forwards from {@code index}, or returns -1 if
407 * the element is not found.
408 * More formally, returns the lowest index {@code i} such that
409 * {@code (i >= index && Objects.equals(o, get(i)))},
410 * or -1 if there is no such index.
411 *
412 * @param o element to search for
413 * @param index index to start searching from
414 * @return the index of the first occurrence of the element in
415 * this vector at position {@code index} or later in the vector;
416 * {@code -1} if the element is not found.
417 * @throws IndexOutOfBoundsException if the specified index is negative
418 * @see Object#equals(Object)
419 */
420 public synchronized int indexOf(Object o, int index) {
421 if (o == null) {
422 for (int i = index ; i < elementCount ; i++)
423 if (elementData[i]==null)
424 return i;
425 } else {
426 for (int i = index ; i < elementCount ; i++)
427 if (o.equals(elementData[i]))
428 return i;
429 }
430 return -1;
431 }
432
433 /**
434 * Returns the index of the last occurrence of the specified element
435 * in this vector, or -1 if this vector does not contain the element.
436 * More formally, returns the highest index {@code i} such that
437 * {@code Objects.equals(o, get(i))},
438 * or -1 if there is no such index.
439 *
440 * @param o element to search for
441 * @return the index of the last occurrence of the specified element in
442 * this vector, or -1 if this vector does not contain the element
443 */
444 public synchronized int lastIndexOf(Object o) {
445 return lastIndexOf(o, elementCount-1);
446 }
447
448 /**
449 * Returns the index of the last occurrence of the specified element in
450 * this vector, searching backwards from {@code index}, or returns -1 if
451 * the element is not found.
452 * More formally, returns the highest index {@code i} such that
453 * {@code (i <= index && Objects.equals(o, get(i)))},
454 * or -1 if there is no such index.
455 *
456 * @param o element to search for
457 * @param index index to start searching backwards from
458 * @return the index of the last occurrence of the element at position
459 * less than or equal to {@code index} in this vector;
460 * -1 if the element is not found.
461 * @throws IndexOutOfBoundsException if the specified index is greater
462 * than or equal to the current size of this vector
463 */
464 public synchronized int lastIndexOf(Object o, int index) {
465 if (index >= elementCount)
466 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
467
468 if (o == null) {
469 for (int i = index; i >= 0; i--)
470 if (elementData[i]==null)
471 return i;
472 } else {
473 for (int i = index; i >= 0; i--)
474 if (o.equals(elementData[i]))
475 return i;
476 }
477 return -1;
478 }
479
480 /**
481 * Returns the component at the specified index.
482 *
483 * <p>This method is identical in functionality to the {@link #get(int)}
484 * method (which is part of the {@link List} interface).
485 *
486 * @param index an index into this vector
487 * @return the component at the specified index
488 * @throws ArrayIndexOutOfBoundsException if the index is out of range
489 * ({@code index < 0 || index >= size()})
490 */
491 public synchronized E elementAt(int index) {
492 if (index >= elementCount) {
493 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
494 }
495
496 return elementData(index);
497 }
498
499 /**
500 * Returns the first component (the item at index {@code 0}) of
501 * this vector.
502 *
503 * @return the first component of this vector
504 * @throws NoSuchElementException if this vector has no components
505 */
506 public synchronized E firstElement() {
507 if (elementCount == 0) {
508 throw new NoSuchElementException();
509 }
510 return elementData(0);
511 }
512
513 /**
514 * Returns the last component of the vector.
515 *
516 * @return the last component of the vector, i.e., the component at index
517 * {@code size() - 1}
518 * @throws NoSuchElementException if this vector is empty
519 */
520 public synchronized E lastElement() {
521 if (elementCount == 0) {
522 throw new NoSuchElementException();
523 }
524 return elementData(elementCount - 1);
525 }
526
527 /**
528 * Sets the component at the specified {@code index} of this
529 * vector to be the specified object. The previous component at that
530 * position is discarded.
531 *
532 * <p>The index must be a value greater than or equal to {@code 0}
533 * and less than the current size of the vector.
534 *
535 * <p>This method is identical in functionality to the
536 * {@link #set(int, Object) set(int, E)}
537 * method (which is part of the {@link List} interface). Note that the
538 * {@code set} method reverses the order of the parameters, to more closely
539 * match array usage. Note also that the {@code set} method returns the
540 * old value that was stored at the specified position.
541 *
542 * @param obj what the component is to be set to
543 * @param index the specified index
544 * @throws ArrayIndexOutOfBoundsException if the index is out of range
545 * ({@code index < 0 || index >= size()})
546 */
547 public synchronized void setElementAt(E obj, int index) {
548 if (index >= elementCount) {
549 throw new ArrayIndexOutOfBoundsException(index + " >= " +
550 elementCount);
551 }
552 elementData[index] = obj;
553 }
554
555 /**
556 * Deletes the component at the specified index. Each component in
557 * this vector with an index greater or equal to the specified
558 * {@code index} is shifted downward to have an index one
559 * smaller than the value it had previously. The size of this vector
560 * is decreased by {@code 1}.
561 *
562 * <p>The index must be a value greater than or equal to {@code 0}
563 * and less than the current size of the vector.
564 *
565 * <p>This method is identical in functionality to the {@link #remove(int)}
566 * method (which is part of the {@link List} interface). Note that the
567 * {@code remove} method returns the old value that was stored at the
568 * specified position.
569 *
570 * @param index the index of the object to remove
571 * @throws ArrayIndexOutOfBoundsException if the index is out of range
572 * ({@code index < 0 || index >= size()})
573 */
574 public synchronized void removeElementAt(int index) {
575 if (index >= elementCount) {
576 throw new ArrayIndexOutOfBoundsException(index + " >= " +
577 elementCount);
578 }
579 else if (index < 0) {
580 throw new ArrayIndexOutOfBoundsException(index);
581 }
582 int j = elementCount - index - 1;
583 if (j > 0) {
584 System.arraycopy(elementData, index + 1, elementData, index, j);
585 }
586 modCount++;
587 elementCount--;
588 elementData[elementCount] = null; /* to let gc do its work */
589 // checkInvariants();
590 }
591
592 /**
593 * Inserts the specified object as a component in this vector at the
594 * specified {@code index}. Each component in this vector with
595 * an index greater or equal to the specified {@code index} is
596 * shifted upward to have an index one greater than the value it had
597 * previously.
598 *
599 * <p>The index must be a value greater than or equal to {@code 0}
600 * and less than or equal to the current size of the vector. (If the
601 * index is equal to the current size of the vector, the new element
602 * is appended to the Vector.)
603 *
604 * <p>This method is identical in functionality to the
605 * {@link #add(int, Object) add(int, E)}
606 * method (which is part of the {@link List} interface). Note that the
607 * {@code add} method reverses the order of the parameters, to more closely
608 * match array usage.
609 *
610 * @param obj the component to insert
611 * @param index where to insert the new component
612 * @throws ArrayIndexOutOfBoundsException if the index is out of range
613 * ({@code index < 0 || index > size()})
614 */
615 public synchronized void insertElementAt(E obj, int index) {
616 if (index > elementCount) {
617 throw new ArrayIndexOutOfBoundsException(index
618 + " > " + elementCount);
619 }
620 modCount++;
621 final int s = elementCount;
622 Object[] elementData = this.elementData;
623 if (s == elementData.length)
624 elementData = grow();
625 System.arraycopy(elementData, index,
626 elementData, index + 1,
627 s - index);
628 elementData[index] = obj;
629 elementCount = s + 1;
630 }
631
632 /**
633 * Adds the specified component to the end of this vector,
634 * increasing its size by one. The capacity of this vector is
635 * increased if its size becomes greater than its capacity.
636 *
637 * <p>This method is identical in functionality to the
638 * {@link #add(Object) add(E)}
639 * method (which is part of the {@link List} interface).
640 *
641 * @param obj the component to be added
642 */
643 public synchronized void addElement(E obj) {
644 modCount++;
645 add(obj, elementData, elementCount);
646 }
647
648 /**
649 * Removes the first (lowest-indexed) occurrence of the argument
650 * from this vector. If the object is found in this vector, each
651 * component in the vector with an index greater or equal to the
652 * object's index is shifted downward to have an index one smaller
653 * than the value it had previously.
654 *
655 * <p>This method is identical in functionality to the
656 * {@link #remove(Object)} method (which is part of the
657 * {@link List} interface).
658 *
659 * @param obj the component to be removed
660 * @return {@code true} if the argument was a component of this
661 * vector; {@code false} otherwise.
662 */
663 public synchronized boolean removeElement(Object obj) {
664 modCount++;
665 int i = indexOf(obj);
666 if (i >= 0) {
667 removeElementAt(i);
668 return true;
669 }
670 return false;
671 }
672
673 /**
674 * Removes all components from this vector and sets its size to zero.
675 *
676 * <p>This method is identical in functionality to the {@link #clear}
677 * method (which is part of the {@link List} interface).
678 */
679 public synchronized void removeAllElements() {
680 final Object[] es = elementData;
681 for (int to = elementCount, i = elementCount = 0; i < to; i++)
682 es[i] = null;
683 modCount++;
684 }
685
686 /**
687 * Returns a clone of this vector. The copy will contain a
688 * reference to a clone of the internal data array, not a reference
689 * to the original internal data array of this {@code Vector} object.
690 *
691 * @return a clone of this vector
692 */
693 public synchronized Object clone() {
694 try {
695 @SuppressWarnings("unchecked")
696 Vector<E> v = (Vector<E>) super.clone();
697 v.elementData = Arrays.copyOf(elementData, elementCount);
698 v.modCount = 0;
699 return v;
700 } catch (CloneNotSupportedException e) {
701 // this shouldn't happen, since we are Cloneable
702 throw new InternalError(e);
703 }
704 }
705
706 /**
707 * Returns an array containing all of the elements in this Vector
708 * in the correct order.
709 *
710 * @since 1.2
711 */
712 public synchronized Object[] toArray() {
713 return Arrays.copyOf(elementData, elementCount);
714 }
715
716 /**
717 * Returns an array containing all of the elements in this Vector in the
718 * correct order; the runtime type of the returned array is that of the
719 * specified array. If the Vector fits in the specified array, it is
720 * returned therein. Otherwise, a new array is allocated with the runtime
721 * type of the specified array and the size of this Vector.
722 *
723 * <p>If the Vector fits in the specified array with room to spare
724 * (i.e., the array has more elements than the Vector),
725 * the element in the array immediately following the end of the
726 * Vector is set to null. (This is useful in determining the length
727 * of the Vector <em>only</em> if the caller knows that the Vector
728 * does not contain any null elements.)
729 *
730 * @param <T> type of array elements. The same type as {@code <E>} or a
731 * supertype of {@code <E>}.
732 * @param a the array into which the elements of the Vector are to
733 * be stored, if it is big enough; otherwise, a new array of the
734 * same runtime type is allocated for this purpose.
735 * @return an array containing the elements of the Vector
736 * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
737 * a supertype of the runtime type, {@code <E>}, of every element in this
738 * Vector
739 * @throws NullPointerException if the given array is null
740 * @since 1.2
741 */
742 @SuppressWarnings("unchecked")
743 public synchronized <T> T[] toArray(T[] a) {
744 if (a.length < elementCount)
745 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
746
747 System.arraycopy(elementData, 0, a, 0, elementCount);
748
749 if (a.length > elementCount)
750 a[elementCount] = null;
751
752 return a;
753 }
754
755 // Positional Access Operations
756
757 @SuppressWarnings("unchecked")
758 E elementData(int index) {
759 return (E) elementData[index];
760 }
761
762 @SuppressWarnings("unchecked")
763 static <E> E elementAt(Object[] es, int index) {
764 return (E) es[index];
765 }
766
767 /**
768 * Returns the element at the specified position in this Vector.
769 *
770 * @param index index of the element to return
771 * @return object at the specified index
772 * @throws ArrayIndexOutOfBoundsException if the index is out of range
773 * ({@code index < 0 || index >= size()})
774 * @since 1.2
775 */
776 public synchronized E get(int index) {
777 if (index >= elementCount)
778 throw new ArrayIndexOutOfBoundsException(index);
779
780 return elementData(index);
781 }
782
783 /**
784 * Replaces the element at the specified position in this Vector with the
785 * specified element.
786 *
787 * @param index index of the element to replace
788 * @param element element to be stored at the specified position
789 * @return the element previously at the specified position
790 * @throws ArrayIndexOutOfBoundsException if the index is out of range
791 * ({@code index < 0 || index >= size()})
792 * @since 1.2
793 */
794 public synchronized E set(int index, E element) {
795 if (index >= elementCount)
796 throw new ArrayIndexOutOfBoundsException(index);
797
798 E oldValue = elementData(index);
799 elementData[index] = element;
800 return oldValue;
801 }
802
803 /**
804 * This helper method split out from add(E) to keep method
805 * bytecode size under 35 (the -XX:MaxInlineSize default value),
806 * which helps when add(E) is called in a C1-compiled loop.
807 */
808 private void add(E e, Object[] elementData, int s) {
809 if (s == elementData.length)
810 elementData = grow();
811 elementData[s] = e;
812 elementCount = s + 1;
813 // checkInvariants();
814 }
815
816 /**
817 * Appends the specified element to the end of this Vector.
818 *
819 * @param e element to be appended to this Vector
820 * @return {@code true} (as specified by {@link Collection#add})
821 * @since 1.2
822 */
823 public synchronized boolean add(E e) {
824 modCount++;
825 add(e, elementData, elementCount);
826 return true;
827 }
828
829 /**
830 * Removes the first occurrence of the specified element in this Vector
831 * If the Vector does not contain the element, it is unchanged. More
832 * formally, removes the element with the lowest index i such that
833 * {@code Objects.equals(o, get(i))} (if such
834 * an element exists).
835 *
836 * @param o element to be removed from this Vector, if present
837 * @return true if the Vector contained the specified element
838 * @since 1.2
839 */
840 public boolean remove(Object o) {
841 return removeElement(o);
842 }
843
844 /**
845 * Inserts the specified element at the specified position in this Vector.
846 * Shifts the element currently at that position (if any) and any
847 * subsequent elements to the right (adds one to their indices).
848 *
849 * @param index index at which the specified element is to be inserted
850 * @param element element to be inserted
851 * @throws ArrayIndexOutOfBoundsException if the index is out of range
852 * ({@code index < 0 || index > size()})
853 * @since 1.2
854 */
855 public void add(int index, E element) {
856 insertElementAt(element, index);
857 }
858
859 /**
860 * Removes the element at the specified position in this Vector.
861 * Shifts any subsequent elements to the left (subtracts one from their
862 * indices). Returns the element that was removed from the Vector.
863 *
864 * @param index the index of the element to be removed
865 * @return element that was removed
866 * @throws ArrayIndexOutOfBoundsException if the index is out of range
867 * ({@code index < 0 || index >= size()})
868 * @since 1.2
869 */
870 public synchronized E remove(int index) {
871 modCount++;
872 if (index >= elementCount)
873 throw new ArrayIndexOutOfBoundsException(index);
874 E oldValue = elementData(index);
875
876 int numMoved = elementCount - index - 1;
877 if (numMoved > 0)
878 System.arraycopy(elementData, index+1, elementData, index,
879 numMoved);
880 elementData[--elementCount] = null; // Let gc do its work
881
882 // checkInvariants();
883 return oldValue;
884 }
885
886 /**
887 * Removes all of the elements from this Vector. The Vector will
888 * be empty after this call returns (unless it throws an exception).
889 *
890 * @since 1.2
891 */
892 public void clear() {
893 removeAllElements();
894 }
895
896 // Bulk Operations
897
898 /**
899 * Returns true if this Vector contains all of the elements in the
900 * specified Collection.
901 *
902 * @param c a collection whose elements will be tested for containment
903 * in this Vector
904 * @return true if this Vector contains all of the elements in the
905 * specified collection
906 * @throws NullPointerException if the specified collection is null
907 */
908 public synchronized boolean containsAll(Collection<?> c) {
909 return super.containsAll(c);
910 }
911
912 /**
913 * Appends all of the elements in the specified Collection to the end of
914 * this Vector, in the order that they are returned by the specified
915 * Collection's Iterator. The behavior of this operation is undefined if
916 * the specified Collection is modified while the operation is in progress.
917 * (This implies that the behavior of this call is undefined if the
918 * specified Collection is this Vector, and this Vector is nonempty.)
919 *
920 * @param c elements to be inserted into this Vector
921 * @return {@code true} if this Vector changed as a result of the call
922 * @throws NullPointerException if the specified collection is null
923 * @since 1.2
924 */
925 public boolean addAll(Collection<? extends E> c) {
926 Object[] a = c.toArray();
927 modCount++;
928 int numNew = a.length;
929 if (numNew == 0)
930 return false;
931 synchronized (this) {
932 Object[] elementData = this.elementData;
933 final int s = elementCount;
934 if (numNew > elementData.length - s)
935 elementData = grow(s + numNew);
936 System.arraycopy(a, 0, elementData, s, numNew);
937 elementCount = s + numNew;
938 // checkInvariants();
939 return true;
940 }
941 }
942
943 /**
944 * Removes from this Vector all of its elements that are contained in the
945 * specified Collection.
946 *
947 * @param c a collection of elements to be removed from the Vector
948 * @return true if this Vector changed as a result of the call
949 * @throws ClassCastException if the types of one or more elements
950 * in this vector are incompatible with the specified
951 * collection
952 * (<a href="Collection.html#optional-restrictions">optional</a>)
953 * @throws NullPointerException if this vector contains one or more null
954 * elements and the specified collection does not support null
955 * elements
956 * (<a href="Collection.html#optional-restrictions">optional</a>),
957 * or if the specified collection is null
958 * @since 1.2
959 */
960 public boolean removeAll(Collection<?> c) {
961 Objects.requireNonNull(c);
962 return bulkRemove(e -> c.contains(e));
963 }
964
965 /**
966 * Retains only the elements in this Vector that are contained in the
967 * specified Collection. In other words, removes from this Vector all
968 * of its elements that are not contained in the specified Collection.
969 *
970 * @param c a collection of elements to be retained in this Vector
971 * (all other elements are removed)
972 * @return true if this Vector changed as a result of the call
973 * @throws ClassCastException if the types of one or more elements
974 * in this vector are incompatible with the specified
975 * collection
976 * (<a href="Collection.html#optional-restrictions">optional</a>)
977 * @throws NullPointerException if this vector contains one or more null
978 * elements and the specified collection does not support null
979 * elements
980 * (<a href="Collection.html#optional-restrictions">optional</a>),
981 * or if the specified collection is null
982 * @since 1.2
983 */
984 public boolean retainAll(Collection<?> c) {
985 Objects.requireNonNull(c);
986 return bulkRemove(e -> !c.contains(e));
987 }
988
989 /**
990 * @throws NullPointerException {@inheritDoc}
991 */
992 @Override
993 public boolean removeIf(Predicate<? super E> filter) {
994 Objects.requireNonNull(filter);
995 return bulkRemove(filter);
996 }
997
998 // A tiny bit set implementation
999
1000 private static long[] nBits(int n) {
1001 return new long[((n - 1) >> 6) + 1];
1002 }
1003 private static void setBit(long[] bits, int i) {
1004 bits[i >> 6] |= 1L << i;
1005 }
1006 private static boolean isClear(long[] bits, int i) {
1007 return (bits[i >> 6] & (1L << i)) == 0;
1008 }
1009
1010 private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1011 int expectedModCount = modCount;
1012 final Object[] es = elementData;
1013 final int end = elementCount;
1014 int i;
1015 // Optimize for initial run of survivors
1016 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1017 ;
1018 // Tolerate predicates that reentrantly access the collection for
1019 // read (but writers still get CME), so traverse once to find
1020 // elements to delete, a second pass to physically expunge.
1021 if (i < end) {
1022 final int beg = i;
1023 final long[] deathRow = nBits(end - beg);
1024 deathRow[0] = 1L; // set bit 0
1025 for (i = beg + 1; i < end; i++)
1026 if (filter.test(elementAt(es, i)))
1027 setBit(deathRow, i - beg);
1028 if (modCount != expectedModCount)
1029 throw new ConcurrentModificationException();
1030 expectedModCount++;
1031 modCount++;
1032 int w = beg;
1033 for (i = beg; i < end; i++)
1034 if (isClear(deathRow, i - beg))
1035 es[w++] = es[i];
1036 for (i = elementCount = w; i < end; i++)
1037 es[i] = null;
1038 // checkInvariants();
1039 return true;
1040 } else {
1041 if (modCount != expectedModCount)
1042 throw new ConcurrentModificationException();
1043 // checkInvariants();
1044 return false;
1045 }
1046 }
1047
1048 /**
1049 * Inserts all of the elements in the specified Collection into this
1050 * Vector at the specified position. Shifts the element currently at
1051 * that position (if any) and any subsequent elements to the right
1052 * (increases their indices). The new elements will appear in the Vector
1053 * in the order that they are returned by the specified Collection's
1054 * iterator.
1055 *
1056 * @param index index at which to insert the first element from the
1057 * specified collection
1058 * @param c elements to be inserted into this Vector
1059 * @return {@code true} if this Vector changed as a result of the call
1060 * @throws ArrayIndexOutOfBoundsException if the index is out of range
1061 * ({@code index < 0 || index > size()})
1062 * @throws NullPointerException if the specified collection is null
1063 * @since 1.2
1064 */
1065 public synchronized boolean addAll(int index, Collection<? extends E> c) {
1066 if (index < 0 || index > elementCount)
1067 throw new ArrayIndexOutOfBoundsException(index);
1068
1069 Object[] a = c.toArray();
1070 modCount++;
1071 int numNew = a.length;
1072 if (numNew == 0)
1073 return false;
1074 Object[] elementData = this.elementData;
1075 final int s = elementCount;
1076 if (numNew > elementData.length - s)
1077 elementData = grow(s + numNew);
1078
1079 int numMoved = s - index;
1080 if (numMoved > 0)
1081 System.arraycopy(elementData, index,
1082 elementData, index + numNew,
1083 numMoved);
1084 System.arraycopy(a, 0, elementData, index, numNew);
1085 elementCount = s + numNew;
1086 // checkInvariants();
1087 return true;
1088 }
1089
1090 /**
1091 * Compares the specified Object with this Vector for equality. Returns
1092 * true if and only if the specified Object is also a List, both Lists
1093 * have the same size, and all corresponding pairs of elements in the two
1094 * Lists are <em>equal</em>. (Two elements {@code e1} and
1095 * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1096 * In other words, two Lists are defined to be
1097 * equal if they contain the same elements in the same order.
1098 *
1099 * @param o the Object to be compared for equality with this Vector
1100 * @return true if the specified Object is equal to this Vector
1101 */
1102 public synchronized boolean equals(Object o) {
1103 return super.equals(o);
1104 }
1105
1106 /**
1107 * Returns the hash code value for this Vector.
1108 */
1109 public synchronized int hashCode() {
1110 return super.hashCode();
1111 }
1112
1113 /**
1114 * Returns a string representation of this Vector, containing
1115 * the String representation of each element.
1116 */
1117 public synchronized String toString() {
1118 return super.toString();
1119 }
1120
1121 /**
1122 * Returns a view of the portion of this List between fromIndex,
1123 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1124 * equal, the returned List is empty.) The returned List is backed by this
1125 * List, so changes in the returned List are reflected in this List, and
1126 * vice-versa. The returned List supports all of the optional List
1127 * operations supported by this List.
1128 *
1129 * <p>This method eliminates the need for explicit range operations (of
1130 * the sort that commonly exist for arrays). Any operation that expects
1131 * a List can be used as a range operation by operating on a subList view
1132 * instead of a whole List. For example, the following idiom
1133 * removes a range of elements from a List:
1134 * <pre>
1135 * list.subList(from, to).clear();
1136 * </pre>
1137 * Similar idioms may be constructed for indexOf and lastIndexOf,
1138 * and all of the algorithms in the Collections class can be applied to
1139 * a subList.
1140 *
1141 * <p>The semantics of the List returned by this method become undefined if
1142 * the backing list (i.e., this List) is <i>structurally modified</i> in
1143 * any way other than via the returned List. (Structural modifications are
1144 * those that change the size of the List, or otherwise perturb it in such
1145 * a fashion that iterations in progress may yield incorrect results.)
1146 *
1147 * @param fromIndex low endpoint (inclusive) of the subList
1148 * @param toIndex high endpoint (exclusive) of the subList
1149 * @return a view of the specified range within this List
1150 * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1151 * {@code (fromIndex < 0 || toIndex > size)}
1152 * @throws IllegalArgumentException if the endpoint indices are out of order
1153 * {@code (fromIndex > toIndex)}
1154 */
1155 public synchronized List<E> subList(int fromIndex, int toIndex) {
1156 return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1157 this);
1158 }
1159
1160 /**
1161 * Removes from this list all of the elements whose index is between
1162 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1163 * Shifts any succeeding elements to the left (reduces their index).
1164 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1165 * (If {@code toIndex==fromIndex}, this operation has no effect.)
1166 */
1167 protected synchronized void removeRange(int fromIndex, int toIndex) {
1168 modCount++;
1169 shiftTailOverGap(elementData, fromIndex, toIndex);
1170 // checkInvariants();
1171 }
1172
1173 /** Erases the gap from lo to hi, by sliding down following elements. */
1174 private void shiftTailOverGap(Object[] es, int lo, int hi) {
1175 System.arraycopy(es, hi, es, lo, elementCount - hi);
1176 for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1177 es[i] = null;
1178 }
1179
1180 /**
1181 * Saves the state of the {@code Vector} instance to a stream
1182 * (that is, serializes it).
1183 * This method performs synchronization to ensure the consistency
1184 * of the serialized data.
1185 *
1186 * @param s the stream
1187 * @throws java.io.IOException if an I/O error occurs
1188 */
1189 private void writeObject(java.io.ObjectOutputStream s)
1190 throws java.io.IOException {
1191 final java.io.ObjectOutputStream.PutField fields = s.putFields();
1192 final Object[] data;
1193 synchronized (this) {
1194 fields.put("capacityIncrement", capacityIncrement);
1195 fields.put("elementCount", elementCount);
1196 data = elementData.clone();
1197 }
1198 fields.put("elementData", data);
1199 s.writeFields();
1200 }
1201
1202 /**
1203 * Returns a list iterator over the elements in this list (in proper
1204 * sequence), starting at the specified position in the list.
1205 * The specified index indicates the first element that would be
1206 * returned by an initial call to {@link ListIterator#next next}.
1207 * An initial call to {@link ListIterator#previous previous} would
1208 * return the element with the specified index minus one.
1209 *
1210 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1211 *
1212 * @throws IndexOutOfBoundsException {@inheritDoc}
1213 */
1214 public synchronized ListIterator<E> listIterator(int index) {
1215 if (index < 0 || index > elementCount)
1216 throw new IndexOutOfBoundsException("Index: "+index);
1217 return new ListItr(index);
1218 }
1219
1220 /**
1221 * Returns a list iterator over the elements in this list (in proper
1222 * sequence).
1223 *
1224 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1225 *
1226 * @see #listIterator(int)
1227 */
1228 public synchronized ListIterator<E> listIterator() {
1229 return new ListItr(0);
1230 }
1231
1232 /**
1233 * Returns an iterator over the elements in this list in proper sequence.
1234 *
1235 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1236 *
1237 * @return an iterator over the elements in this list in proper sequence
1238 */
1239 public synchronized Iterator<E> iterator() {
1240 return new Itr();
1241 }
1242
1243 /**
1244 * An optimized version of AbstractList.Itr
1245 */
1246 private class Itr implements Iterator<E> {
1247 int cursor; // index of next element to return
1248 int lastRet = -1; // index of last element returned; -1 if no such
1249 int expectedModCount = modCount;
1250
1251 public boolean hasNext() {
1252 // Racy but within spec, since modifications are checked
1253 // within or after synchronization in next/previous
1254 return cursor != elementCount;
1255 }
1256
1257 public E next() {
1258 synchronized (Vector.this) {
1259 checkForComodification();
1260 int i = cursor;
1261 if (i >= elementCount)
1262 throw new NoSuchElementException();
1263 cursor = i + 1;
1264 return elementData(lastRet = i);
1265 }
1266 }
1267
1268 public void remove() {
1269 if (lastRet == -1)
1270 throw new IllegalStateException();
1271 synchronized (Vector.this) {
1272 checkForComodification();
1273 Vector.this.remove(lastRet);
1274 expectedModCount = modCount;
1275 }
1276 cursor = lastRet;
1277 lastRet = -1;
1278 }
1279
1280 @Override
1281 public void forEachRemaining(Consumer<? super E> action) {
1282 Objects.requireNonNull(action);
1283 synchronized (Vector.this) {
1284 final int size = elementCount;
1285 int i = cursor;
1286 if (i >= size) {
1287 return;
1288 }
1289 final Object[] es = elementData;
1290 if (i >= es.length)
1291 throw new ConcurrentModificationException();
1292 while (i < size && modCount == expectedModCount)
1293 action.accept(elementAt(es, i++));
1294 // update once at end of iteration to reduce heap write traffic
1295 cursor = i;
1296 lastRet = i - 1;
1297 checkForComodification();
1298 }
1299 }
1300
1301 final void checkForComodification() {
1302 if (modCount != expectedModCount)
1303 throw new ConcurrentModificationException();
1304 }
1305 }
1306
1307 /**
1308 * An optimized version of AbstractList.ListItr
1309 */
1310 final class ListItr extends Itr implements ListIterator<E> {
1311 ListItr(int index) {
1312 super();
1313 cursor = index;
1314 }
1315
1316 public boolean hasPrevious() {
1317 return cursor != 0;
1318 }
1319
1320 public int nextIndex() {
1321 return cursor;
1322 }
1323
1324 public int previousIndex() {
1325 return cursor - 1;
1326 }
1327
1328 public E previous() {
1329 synchronized (Vector.this) {
1330 checkForComodification();
1331 int i = cursor - 1;
1332 if (i < 0)
1333 throw new NoSuchElementException();
1334 cursor = i;
1335 return elementData(lastRet = i);
1336 }
1337 }
1338
1339 public void set(E e) {
1340 if (lastRet == -1)
1341 throw new IllegalStateException();
1342 synchronized (Vector.this) {
1343 checkForComodification();
1344 Vector.this.set(lastRet, e);
1345 }
1346 }
1347
1348 public void add(E e) {
1349 int i = cursor;
1350 synchronized (Vector.this) {
1351 checkForComodification();
1352 Vector.this.add(i, e);
1353 expectedModCount = modCount;
1354 }
1355 cursor = i + 1;
1356 lastRet = -1;
1357 }
1358 }
1359
1360 /**
1361 * @throws NullPointerException {@inheritDoc}
1362 */
1363 @Override
1364 public synchronized void forEach(Consumer<? super E> action) {
1365 Objects.requireNonNull(action);
1366 final int expectedModCount = modCount;
1367 final Object[] es = elementData;
1368 final int size = elementCount;
1369 for (int i = 0; modCount == expectedModCount && i < size; i++)
1370 action.accept(elementAt(es, i));
1371 if (modCount != expectedModCount)
1372 throw new ConcurrentModificationException();
1373 // checkInvariants();
1374 }
1375
1376 /**
1377 * @throws NullPointerException {@inheritDoc}
1378 */
1379 @Override
1380 public synchronized void replaceAll(UnaryOperator<E> operator) {
1381 Objects.requireNonNull(operator);
1382 final int expectedModCount = modCount;
1383 final Object[] es = elementData;
1384 final int size = elementCount;
1385 for (int i = 0; modCount == expectedModCount && i < size; i++)
1386 es[i] = operator.apply(elementAt(es, i));
1387 if (modCount != expectedModCount)
1388 throw new ConcurrentModificationException();
1389 modCount++;
1390 // checkInvariants();
1391 }
1392
1393 @SuppressWarnings("unchecked")
1394 @Override
1395 public synchronized void sort(Comparator<? super E> c) {
1396 final int expectedModCount = modCount;
1397 Arrays.sort((E[]) elementData, 0, elementCount, c);
1398 if (modCount != expectedModCount)
1399 throw new ConcurrentModificationException();
1400 modCount++;
1401 // checkInvariants();
1402 }
1403
1404 /**
1405 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1406 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1407 * list.
1408 *
1409 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1410 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1411 * Overriding implementations should document the reporting of additional
1412 * characteristic values.
1413 *
1414 * @return a {@code Spliterator} over the elements in this list
1415 * @since 1.8
1416 */
1417 @Override
1418 public Spliterator<E> spliterator() {
1419 return new VectorSpliterator(null, 0, -1, 0);
1420 }
1421
1422 /** Similar to ArrayList Spliterator */
1423 final class VectorSpliterator implements Spliterator<E> {
1424 private Object[] array;
1425 private int index; // current index, modified on advance/split
1426 private int fence; // -1 until used; then one past last index
1427 private int expectedModCount; // initialized when fence set
1428
1429 /** Creates new spliterator covering the given range. */
1430 VectorSpliterator(Object[] array, int origin, int fence,
1431 int expectedModCount) {
1432 this.array = array;
1433 this.index = origin;
1434 this.fence = fence;
1435 this.expectedModCount = expectedModCount;
1436 }
1437
1438 private int getFence() { // initialize on first use
1439 int hi;
1440 if ((hi = fence) < 0) {
1441 synchronized (Vector.this) {
1442 array = elementData;
1443 expectedModCount = modCount;
1444 hi = fence = elementCount;
1445 }
1446 }
1447 return hi;
1448 }
1449
1450 public Spliterator<E> trySplit() {
1451 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1452 return (lo >= mid) ? null :
1453 new VectorSpliterator(array, lo, index = mid, expectedModCount);
1454 }
1455
1456 @SuppressWarnings("unchecked")
1457 public boolean tryAdvance(Consumer<? super E> action) {
1458 Objects.requireNonNull(action);
1459 int i;
1460 if (getFence() > (i = index)) {
1461 index = i + 1;
1462 action.accept((E)array[i]);
1463 if (modCount != expectedModCount)
1464 throw new ConcurrentModificationException();
1465 return true;
1466 }
1467 return false;
1468 }
1469
1470 @SuppressWarnings("unchecked")
1471 public void forEachRemaining(Consumer<? super E> action) {
1472 Objects.requireNonNull(action);
1473 final int hi = getFence();
1474 final Object[] a = array;
1475 int i;
1476 for (i = index, index = hi; i < hi; i++)
1477 action.accept((E) a[i]);
1478 if (modCount != expectedModCount)
1479 throw new ConcurrentModificationException();
1480 }
1481
1482 public long estimateSize() {
1483 return getFence() - index;
1484 }
1485
1486 public int characteristics() {
1487 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1488 }
1489 }
1490
1491 void checkInvariants() {
1492 // assert elementCount >= 0;
1493 // assert elementCount == elementData.length || elementData[elementCount] == null;
1494 }
1495 }