ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Vector.java
Revision: 1.55
Committed: Wed May 22 17:36:58 2019 UTC (4 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.54: +9 -42 lines
Log Message:
8223593: Refactor code for reallocating storage

File Contents

# Content
1 /*
2 * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.io.IOException;
29 import java.io.ObjectInputStream;
30 import java.io.StreamCorruptedException;
31 import java.util.function.Consumer;
32 import java.util.function.Predicate;
33 import java.util.function.UnaryOperator;
34
35 import jdk.internal.util.ArraysSupport;
36
37 /**
38 * The {@code Vector} class implements a growable array of
39 * objects. Like an array, it contains components that can be
40 * accessed using an integer index. However, the size of a
41 * {@code Vector} can grow or shrink as needed to accommodate
42 * adding and removing items after the {@code Vector} has been created.
43 *
44 * <p>Each vector tries to optimize storage management by maintaining a
45 * {@code capacity} and a {@code capacityIncrement}. The
46 * {@code capacity} is always at least as large as the vector
47 * size; it is usually larger because as components are added to the
48 * vector, the vector's storage increases in chunks the size of
49 * {@code capacityIncrement}. An application can increase the
50 * capacity of a vector before inserting a large number of
51 * components; this reduces the amount of incremental reallocation.
52 *
53 * <p id="fail-fast">
54 * The iterators returned by this class's {@link #iterator() iterator} and
55 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
56 * if the vector is structurally modified at any time after the iterator is
57 * created, in any way except through the iterator's own
58 * {@link ListIterator#remove() remove} or
59 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
60 * {@link ConcurrentModificationException}. Thus, in the face of
61 * concurrent modification, the iterator fails quickly and cleanly, rather
62 * than risking arbitrary, non-deterministic behavior at an undetermined
63 * time in the future. The {@link Enumeration Enumerations} returned by
64 * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
65 * Vector is structurally modified at any time after the enumeration is
66 * created then the results of enumerating are undefined.
67 *
68 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
69 * as it is, generally speaking, impossible to make any hard guarantees in the
70 * presence of unsynchronized concurrent modification. Fail-fast iterators
71 * throw {@code ConcurrentModificationException} on a best-effort basis.
72 * Therefore, it would be wrong to write a program that depended on this
73 * exception for its correctness: <i>the fail-fast behavior of iterators
74 * should be used only to detect bugs.</i>
75 *
76 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
77 * implement the {@link List} interface, making it a member of the
78 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
79 * Java Collections Framework</a>. Unlike the new collection
80 * implementations, {@code Vector} is synchronized. If a thread-safe
81 * implementation is not needed, it is recommended to use {@link
82 * ArrayList} in place of {@code Vector}.
83 *
84 * @param <E> Type of component elements
85 *
86 * @author Lee Boynton
87 * @author Jonathan Payne
88 * @see Collection
89 * @see LinkedList
90 * @since 1.0
91 */
92 public class Vector<E>
93 extends AbstractList<E>
94 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
95 {
96 /**
97 * The array buffer into which the components of the vector are
98 * stored. The capacity of the vector is the length of this array buffer,
99 * and is at least large enough to contain all the vector's elements.
100 *
101 * <p>Any array elements following the last element in the Vector are null.
102 *
103 * @serial
104 */
105 protected Object[] elementData;
106
107 /**
108 * The number of valid components in this {@code Vector} object.
109 * Components {@code elementData[0]} through
110 * {@code elementData[elementCount-1]} are the actual items.
111 *
112 * @serial
113 */
114 protected int elementCount;
115
116 /**
117 * The amount by which the capacity of the vector is automatically
118 * incremented when its size becomes greater than its capacity. If
119 * the capacity increment is less than or equal to zero, the capacity
120 * of the vector is doubled each time it needs to grow.
121 *
122 * @serial
123 */
124 protected int capacityIncrement;
125
126 /** use serialVersionUID from JDK 1.0.2 for interoperability */
127 private static final long serialVersionUID = -2767605614048989439L;
128
129 /**
130 * Constructs an empty vector with the specified initial capacity and
131 * capacity increment.
132 *
133 * @param initialCapacity the initial capacity of the vector
134 * @param capacityIncrement the amount by which the capacity is
135 * increased when the vector overflows
136 * @throws IllegalArgumentException if the specified initial capacity
137 * is negative
138 */
139 public Vector(int initialCapacity, int capacityIncrement) {
140 super();
141 if (initialCapacity < 0)
142 throw new IllegalArgumentException("Illegal Capacity: "+
143 initialCapacity);
144 this.elementData = new Object[initialCapacity];
145 this.capacityIncrement = capacityIncrement;
146 }
147
148 /**
149 * Constructs an empty vector with the specified initial capacity and
150 * with its capacity increment equal to zero.
151 *
152 * @param initialCapacity the initial capacity of the vector
153 * @throws IllegalArgumentException if the specified initial capacity
154 * is negative
155 */
156 public Vector(int initialCapacity) {
157 this(initialCapacity, 0);
158 }
159
160 /**
161 * Constructs an empty vector so that its internal data array
162 * has size {@code 10} and its standard capacity increment is
163 * zero.
164 */
165 public Vector() {
166 this(10);
167 }
168
169 /**
170 * Constructs a vector containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this
175 * vector
176 * @throws NullPointerException if the specified collection is null
177 * @since 1.2
178 */
179 public Vector(Collection<? extends E> c) {
180 elementData = c.toArray();
181 elementCount = elementData.length;
182 // defend against c.toArray (incorrectly) not returning Object[]
183 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
184 if (elementData.getClass() != Object[].class)
185 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
186 }
187
188 /**
189 * Copies the components of this vector into the specified array.
190 * The item at index {@code k} in this vector is copied into
191 * component {@code k} of {@code anArray}.
192 *
193 * @param anArray the array into which the components get copied
194 * @throws NullPointerException if the given array is null
195 * @throws IndexOutOfBoundsException if the specified array is not
196 * large enough to hold all the components of this vector
197 * @throws ArrayStoreException if a component of this vector is not of
198 * a runtime type that can be stored in the specified array
199 * @see #toArray(Object[])
200 */
201 public synchronized void copyInto(Object[] anArray) {
202 System.arraycopy(elementData, 0, anArray, 0, elementCount);
203 }
204
205 /**
206 * Trims the capacity of this vector to be the vector's current
207 * size. If the capacity of this vector is larger than its current
208 * size, then the capacity is changed to equal the size by replacing
209 * its internal data array, kept in the field {@code elementData},
210 * with a smaller one. An application can use this operation to
211 * minimize the storage of a vector.
212 */
213 public synchronized void trimToSize() {
214 modCount++;
215 int oldCapacity = elementData.length;
216 if (elementCount < oldCapacity) {
217 elementData = Arrays.copyOf(elementData, elementCount);
218 }
219 }
220
221 /**
222 * Increases the capacity of this vector, if necessary, to ensure
223 * that it can hold at least the number of components specified by
224 * the minimum capacity argument.
225 *
226 * <p>If the current capacity of this vector is less than
227 * {@code minCapacity}, then its capacity is increased by replacing its
228 * internal data array, kept in the field {@code elementData}, with a
229 * larger one. The size of the new data array will be the old size plus
230 * {@code capacityIncrement}, unless the value of
231 * {@code capacityIncrement} is less than or equal to zero, in which case
232 * the new capacity will be twice the old capacity; but if this new size
233 * is still smaller than {@code minCapacity}, then the new capacity will
234 * be {@code minCapacity}.
235 *
236 * @param minCapacity the desired minimum capacity
237 */
238 public synchronized void ensureCapacity(int minCapacity) {
239 if (minCapacity > 0) {
240 modCount++;
241 if (minCapacity > elementData.length)
242 grow(minCapacity);
243 }
244 }
245
246 /**
247 * Increases the capacity to ensure that it can hold at least the
248 * number of elements specified by the minimum capacity argument.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private Object[] grow(int minCapacity) {
254 int oldCapacity = elementData.length;
255 int newCapacity = ArraysSupport.newLength(oldCapacity,
256 minCapacity - oldCapacity, /* minimum growth */
257 capacityIncrement > 0 ? capacityIncrement : oldCapacity
258 /* preferred growth */);
259 return elementData = Arrays.copyOf(elementData, newCapacity);
260 }
261
262 private Object[] grow() {
263 return grow(elementCount + 1);
264 }
265
266 /**
267 * Sets the size of this vector. If the new size is greater than the
268 * current size, new {@code null} items are added to the end of
269 * the vector. If the new size is less than the current size, all
270 * components at index {@code newSize} and greater are discarded.
271 *
272 * @param newSize the new size of this vector
273 * @throws ArrayIndexOutOfBoundsException if the new size is negative
274 */
275 public synchronized void setSize(int newSize) {
276 modCount++;
277 if (newSize > elementData.length)
278 grow(newSize);
279 final Object[] es = elementData;
280 for (int to = elementCount, i = newSize; i < to; i++)
281 es[i] = null;
282 elementCount = newSize;
283 }
284
285 /**
286 * Returns the current capacity of this vector.
287 *
288 * @return the current capacity (the length of its internal
289 * data array, kept in the field {@code elementData}
290 * of this vector)
291 */
292 public synchronized int capacity() {
293 return elementData.length;
294 }
295
296 /**
297 * Returns the number of components in this vector.
298 *
299 * @return the number of components in this vector
300 */
301 public synchronized int size() {
302 return elementCount;
303 }
304
305 /**
306 * Tests if this vector has no components.
307 *
308 * @return {@code true} if and only if this vector has
309 * no components, that is, its size is zero;
310 * {@code false} otherwise.
311 */
312 public synchronized boolean isEmpty() {
313 return elementCount == 0;
314 }
315
316 /**
317 * Returns an enumeration of the components of this vector. The
318 * returned {@code Enumeration} object will generate all items in
319 * this vector. The first item generated is the item at index {@code 0},
320 * then the item at index {@code 1}, and so on. If the vector is
321 * structurally modified while enumerating over the elements then the
322 * results of enumerating are undefined.
323 *
324 * @return an enumeration of the components of this vector
325 * @see Iterator
326 */
327 public Enumeration<E> elements() {
328 return new Enumeration<E>() {
329 int count = 0;
330
331 public boolean hasMoreElements() {
332 return count < elementCount;
333 }
334
335 public E nextElement() {
336 synchronized (Vector.this) {
337 if (count < elementCount) {
338 return elementData(count++);
339 }
340 }
341 throw new NoSuchElementException("Vector Enumeration");
342 }
343 };
344 }
345
346 /**
347 * Returns {@code true} if this vector contains the specified element.
348 * More formally, returns {@code true} if and only if this vector
349 * contains at least one element {@code e} such that
350 * {@code Objects.equals(o, e)}.
351 *
352 * @param o element whose presence in this vector is to be tested
353 * @return {@code true} if this vector contains the specified element
354 */
355 public boolean contains(Object o) {
356 return indexOf(o, 0) >= 0;
357 }
358
359 /**
360 * Returns the index of the first occurrence of the specified element
361 * in this vector, or -1 if this vector does not contain the element.
362 * More formally, returns the lowest index {@code i} such that
363 * {@code Objects.equals(o, get(i))},
364 * or -1 if there is no such index.
365 *
366 * @param o element to search for
367 * @return the index of the first occurrence of the specified element in
368 * this vector, or -1 if this vector does not contain the element
369 */
370 public int indexOf(Object o) {
371 return indexOf(o, 0);
372 }
373
374 /**
375 * Returns the index of the first occurrence of the specified element in
376 * this vector, searching forwards from {@code index}, or returns -1 if
377 * the element is not found.
378 * More formally, returns the lowest index {@code i} such that
379 * {@code (i >= index && Objects.equals(o, get(i)))},
380 * or -1 if there is no such index.
381 *
382 * @param o element to search for
383 * @param index index to start searching from
384 * @return the index of the first occurrence of the element in
385 * this vector at position {@code index} or later in the vector;
386 * {@code -1} if the element is not found.
387 * @throws IndexOutOfBoundsException if the specified index is negative
388 * @see Object#equals(Object)
389 */
390 public synchronized int indexOf(Object o, int index) {
391 if (o == null) {
392 for (int i = index ; i < elementCount ; i++)
393 if (elementData[i]==null)
394 return i;
395 } else {
396 for (int i = index ; i < elementCount ; i++)
397 if (o.equals(elementData[i]))
398 return i;
399 }
400 return -1;
401 }
402
403 /**
404 * Returns the index of the last occurrence of the specified element
405 * in this vector, or -1 if this vector does not contain the element.
406 * More formally, returns the highest index {@code i} such that
407 * {@code Objects.equals(o, get(i))},
408 * or -1 if there is no such index.
409 *
410 * @param o element to search for
411 * @return the index of the last occurrence of the specified element in
412 * this vector, or -1 if this vector does not contain the element
413 */
414 public synchronized int lastIndexOf(Object o) {
415 return lastIndexOf(o, elementCount-1);
416 }
417
418 /**
419 * Returns the index of the last occurrence of the specified element in
420 * this vector, searching backwards from {@code index}, or returns -1 if
421 * the element is not found.
422 * More formally, returns the highest index {@code i} such that
423 * {@code (i <= index && Objects.equals(o, get(i)))},
424 * or -1 if there is no such index.
425 *
426 * @param o element to search for
427 * @param index index to start searching backwards from
428 * @return the index of the last occurrence of the element at position
429 * less than or equal to {@code index} in this vector;
430 * -1 if the element is not found.
431 * @throws IndexOutOfBoundsException if the specified index is greater
432 * than or equal to the current size of this vector
433 */
434 public synchronized int lastIndexOf(Object o, int index) {
435 if (index >= elementCount)
436 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
437
438 if (o == null) {
439 for (int i = index; i >= 0; i--)
440 if (elementData[i]==null)
441 return i;
442 } else {
443 for (int i = index; i >= 0; i--)
444 if (o.equals(elementData[i]))
445 return i;
446 }
447 return -1;
448 }
449
450 /**
451 * Returns the component at the specified index.
452 *
453 * <p>This method is identical in functionality to the {@link #get(int)}
454 * method (which is part of the {@link List} interface).
455 *
456 * @param index an index into this vector
457 * @return the component at the specified index
458 * @throws ArrayIndexOutOfBoundsException if the index is out of range
459 * ({@code index < 0 || index >= size()})
460 */
461 public synchronized E elementAt(int index) {
462 if (index >= elementCount) {
463 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
464 }
465
466 return elementData(index);
467 }
468
469 /**
470 * Returns the first component (the item at index {@code 0}) of
471 * this vector.
472 *
473 * @return the first component of this vector
474 * @throws NoSuchElementException if this vector has no components
475 */
476 public synchronized E firstElement() {
477 if (elementCount == 0) {
478 throw new NoSuchElementException();
479 }
480 return elementData(0);
481 }
482
483 /**
484 * Returns the last component of the vector.
485 *
486 * @return the last component of the vector, i.e., the component at index
487 * {@code size() - 1}
488 * @throws NoSuchElementException if this vector is empty
489 */
490 public synchronized E lastElement() {
491 if (elementCount == 0) {
492 throw new NoSuchElementException();
493 }
494 return elementData(elementCount - 1);
495 }
496
497 /**
498 * Sets the component at the specified {@code index} of this
499 * vector to be the specified object. The previous component at that
500 * position is discarded.
501 *
502 * <p>The index must be a value greater than or equal to {@code 0}
503 * and less than the current size of the vector.
504 *
505 * <p>This method is identical in functionality to the
506 * {@link #set(int, Object) set(int, E)}
507 * method (which is part of the {@link List} interface). Note that the
508 * {@code set} method reverses the order of the parameters, to more closely
509 * match array usage. Note also that the {@code set} method returns the
510 * old value that was stored at the specified position.
511 *
512 * @param obj what the component is to be set to
513 * @param index the specified index
514 * @throws ArrayIndexOutOfBoundsException if the index is out of range
515 * ({@code index < 0 || index >= size()})
516 */
517 public synchronized void setElementAt(E obj, int index) {
518 if (index >= elementCount) {
519 throw new ArrayIndexOutOfBoundsException(index + " >= " +
520 elementCount);
521 }
522 elementData[index] = obj;
523 }
524
525 /**
526 * Deletes the component at the specified index. Each component in
527 * this vector with an index greater or equal to the specified
528 * {@code index} is shifted downward to have an index one
529 * smaller than the value it had previously. The size of this vector
530 * is decreased by {@code 1}.
531 *
532 * <p>The index must be a value greater than or equal to {@code 0}
533 * and less than the current size of the vector.
534 *
535 * <p>This method is identical in functionality to the {@link #remove(int)}
536 * method (which is part of the {@link List} interface). Note that the
537 * {@code remove} method returns the old value that was stored at the
538 * specified position.
539 *
540 * @param index the index of the object to remove
541 * @throws ArrayIndexOutOfBoundsException if the index is out of range
542 * ({@code index < 0 || index >= size()})
543 */
544 public synchronized void removeElementAt(int index) {
545 if (index >= elementCount) {
546 throw new ArrayIndexOutOfBoundsException(index + " >= " +
547 elementCount);
548 }
549 else if (index < 0) {
550 throw new ArrayIndexOutOfBoundsException(index);
551 }
552 int j = elementCount - index - 1;
553 if (j > 0) {
554 System.arraycopy(elementData, index + 1, elementData, index, j);
555 }
556 modCount++;
557 elementCount--;
558 elementData[elementCount] = null; /* to let gc do its work */
559 // checkInvariants();
560 }
561
562 /**
563 * Inserts the specified object as a component in this vector at the
564 * specified {@code index}. Each component in this vector with
565 * an index greater or equal to the specified {@code index} is
566 * shifted upward to have an index one greater than the value it had
567 * previously.
568 *
569 * <p>The index must be a value greater than or equal to {@code 0}
570 * and less than or equal to the current size of the vector. (If the
571 * index is equal to the current size of the vector, the new element
572 * is appended to the Vector.)
573 *
574 * <p>This method is identical in functionality to the
575 * {@link #add(int, Object) add(int, E)}
576 * method (which is part of the {@link List} interface). Note that the
577 * {@code add} method reverses the order of the parameters, to more closely
578 * match array usage.
579 *
580 * @param obj the component to insert
581 * @param index where to insert the new component
582 * @throws ArrayIndexOutOfBoundsException if the index is out of range
583 * ({@code index < 0 || index > size()})
584 */
585 public synchronized void insertElementAt(E obj, int index) {
586 if (index > elementCount) {
587 throw new ArrayIndexOutOfBoundsException(index
588 + " > " + elementCount);
589 }
590 modCount++;
591 final int s = elementCount;
592 Object[] elementData = this.elementData;
593 if (s == elementData.length)
594 elementData = grow();
595 System.arraycopy(elementData, index,
596 elementData, index + 1,
597 s - index);
598 elementData[index] = obj;
599 elementCount = s + 1;
600 }
601
602 /**
603 * Adds the specified component to the end of this vector,
604 * increasing its size by one. The capacity of this vector is
605 * increased if its size becomes greater than its capacity.
606 *
607 * <p>This method is identical in functionality to the
608 * {@link #add(Object) add(E)}
609 * method (which is part of the {@link List} interface).
610 *
611 * @param obj the component to be added
612 */
613 public synchronized void addElement(E obj) {
614 modCount++;
615 add(obj, elementData, elementCount);
616 }
617
618 /**
619 * Removes the first (lowest-indexed) occurrence of the argument
620 * from this vector. If the object is found in this vector, each
621 * component in the vector with an index greater or equal to the
622 * object's index is shifted downward to have an index one smaller
623 * than the value it had previously.
624 *
625 * <p>This method is identical in functionality to the
626 * {@link #remove(Object)} method (which is part of the
627 * {@link List} interface).
628 *
629 * @param obj the component to be removed
630 * @return {@code true} if the argument was a component of this
631 * vector; {@code false} otherwise.
632 */
633 public synchronized boolean removeElement(Object obj) {
634 modCount++;
635 int i = indexOf(obj);
636 if (i >= 0) {
637 removeElementAt(i);
638 return true;
639 }
640 return false;
641 }
642
643 /**
644 * Removes all components from this vector and sets its size to zero.
645 *
646 * <p>This method is identical in functionality to the {@link #clear}
647 * method (which is part of the {@link List} interface).
648 */
649 public synchronized void removeAllElements() {
650 final Object[] es = elementData;
651 for (int to = elementCount, i = elementCount = 0; i < to; i++)
652 es[i] = null;
653 modCount++;
654 }
655
656 /**
657 * Returns a clone of this vector. The copy will contain a
658 * reference to a clone of the internal data array, not a reference
659 * to the original internal data array of this {@code Vector} object.
660 *
661 * @return a clone of this vector
662 */
663 public synchronized Object clone() {
664 try {
665 @SuppressWarnings("unchecked")
666 Vector<E> v = (Vector<E>) super.clone();
667 v.elementData = Arrays.copyOf(elementData, elementCount);
668 v.modCount = 0;
669 return v;
670 } catch (CloneNotSupportedException e) {
671 // this shouldn't happen, since we are Cloneable
672 throw new InternalError(e);
673 }
674 }
675
676 /**
677 * Returns an array containing all of the elements in this Vector
678 * in the correct order.
679 *
680 * @since 1.2
681 */
682 public synchronized Object[] toArray() {
683 return Arrays.copyOf(elementData, elementCount);
684 }
685
686 /**
687 * Returns an array containing all of the elements in this Vector in the
688 * correct order; the runtime type of the returned array is that of the
689 * specified array. If the Vector fits in the specified array, it is
690 * returned therein. Otherwise, a new array is allocated with the runtime
691 * type of the specified array and the size of this Vector.
692 *
693 * <p>If the Vector fits in the specified array with room to spare
694 * (i.e., the array has more elements than the Vector),
695 * the element in the array immediately following the end of the
696 * Vector is set to null. (This is useful in determining the length
697 * of the Vector <em>only</em> if the caller knows that the Vector
698 * does not contain any null elements.)
699 *
700 * @param <T> type of array elements. The same type as {@code <E>} or a
701 * supertype of {@code <E>}.
702 * @param a the array into which the elements of the Vector are to
703 * be stored, if it is big enough; otherwise, a new array of the
704 * same runtime type is allocated for this purpose.
705 * @return an array containing the elements of the Vector
706 * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
707 * a supertype of the runtime type, {@code <E>}, of every element in this
708 * Vector
709 * @throws NullPointerException if the given array is null
710 * @since 1.2
711 */
712 @SuppressWarnings("unchecked")
713 public synchronized <T> T[] toArray(T[] a) {
714 if (a.length < elementCount)
715 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
716
717 System.arraycopy(elementData, 0, a, 0, elementCount);
718
719 if (a.length > elementCount)
720 a[elementCount] = null;
721
722 return a;
723 }
724
725 // Positional Access Operations
726
727 @SuppressWarnings("unchecked")
728 E elementData(int index) {
729 return (E) elementData[index];
730 }
731
732 @SuppressWarnings("unchecked")
733 static <E> E elementAt(Object[] es, int index) {
734 return (E) es[index];
735 }
736
737 /**
738 * Returns the element at the specified position in this Vector.
739 *
740 * @param index index of the element to return
741 * @return object at the specified index
742 * @throws ArrayIndexOutOfBoundsException if the index is out of range
743 * ({@code index < 0 || index >= size()})
744 * @since 1.2
745 */
746 public synchronized E get(int index) {
747 if (index >= elementCount)
748 throw new ArrayIndexOutOfBoundsException(index);
749
750 return elementData(index);
751 }
752
753 /**
754 * Replaces the element at the specified position in this Vector with the
755 * specified element.
756 *
757 * @param index index of the element to replace
758 * @param element element to be stored at the specified position
759 * @return the element previously at the specified position
760 * @throws ArrayIndexOutOfBoundsException if the index is out of range
761 * ({@code index < 0 || index >= size()})
762 * @since 1.2
763 */
764 public synchronized E set(int index, E element) {
765 if (index >= elementCount)
766 throw new ArrayIndexOutOfBoundsException(index);
767
768 E oldValue = elementData(index);
769 elementData[index] = element;
770 return oldValue;
771 }
772
773 /**
774 * This helper method split out from add(E) to keep method
775 * bytecode size under 35 (the -XX:MaxInlineSize default value),
776 * which helps when add(E) is called in a C1-compiled loop.
777 */
778 private void add(E e, Object[] elementData, int s) {
779 if (s == elementData.length)
780 elementData = grow();
781 elementData[s] = e;
782 elementCount = s + 1;
783 // checkInvariants();
784 }
785
786 /**
787 * Appends the specified element to the end of this Vector.
788 *
789 * @param e element to be appended to this Vector
790 * @return {@code true} (as specified by {@link Collection#add})
791 * @since 1.2
792 */
793 public synchronized boolean add(E e) {
794 modCount++;
795 add(e, elementData, elementCount);
796 return true;
797 }
798
799 /**
800 * Removes the first occurrence of the specified element in this Vector
801 * If the Vector does not contain the element, it is unchanged. More
802 * formally, removes the element with the lowest index i such that
803 * {@code Objects.equals(o, get(i))} (if such
804 * an element exists).
805 *
806 * @param o element to be removed from this Vector, if present
807 * @return true if the Vector contained the specified element
808 * @since 1.2
809 */
810 public boolean remove(Object o) {
811 return removeElement(o);
812 }
813
814 /**
815 * Inserts the specified element at the specified position in this Vector.
816 * Shifts the element currently at that position (if any) and any
817 * subsequent elements to the right (adds one to their indices).
818 *
819 * @param index index at which the specified element is to be inserted
820 * @param element element to be inserted
821 * @throws ArrayIndexOutOfBoundsException if the index is out of range
822 * ({@code index < 0 || index > size()})
823 * @since 1.2
824 */
825 public void add(int index, E element) {
826 insertElementAt(element, index);
827 }
828
829 /**
830 * Removes the element at the specified position in this Vector.
831 * Shifts any subsequent elements to the left (subtracts one from their
832 * indices). Returns the element that was removed from the Vector.
833 *
834 * @param index the index of the element to be removed
835 * @return element that was removed
836 * @throws ArrayIndexOutOfBoundsException if the index is out of range
837 * ({@code index < 0 || index >= size()})
838 * @since 1.2
839 */
840 public synchronized E remove(int index) {
841 modCount++;
842 if (index >= elementCount)
843 throw new ArrayIndexOutOfBoundsException(index);
844 E oldValue = elementData(index);
845
846 int numMoved = elementCount - index - 1;
847 if (numMoved > 0)
848 System.arraycopy(elementData, index+1, elementData, index,
849 numMoved);
850 elementData[--elementCount] = null; // Let gc do its work
851
852 // checkInvariants();
853 return oldValue;
854 }
855
856 /**
857 * Removes all of the elements from this Vector. The Vector will
858 * be empty after this call returns (unless it throws an exception).
859 *
860 * @since 1.2
861 */
862 public void clear() {
863 removeAllElements();
864 }
865
866 // Bulk Operations
867
868 /**
869 * Returns true if this Vector contains all of the elements in the
870 * specified Collection.
871 *
872 * @param c a collection whose elements will be tested for containment
873 * in this Vector
874 * @return true if this Vector contains all of the elements in the
875 * specified collection
876 * @throws NullPointerException if the specified collection is null
877 */
878 public synchronized boolean containsAll(Collection<?> c) {
879 return super.containsAll(c);
880 }
881
882 /**
883 * Appends all of the elements in the specified Collection to the end of
884 * this Vector, in the order that they are returned by the specified
885 * Collection's Iterator. The behavior of this operation is undefined if
886 * the specified Collection is modified while the operation is in progress.
887 * (This implies that the behavior of this call is undefined if the
888 * specified Collection is this Vector, and this Vector is nonempty.)
889 *
890 * @param c elements to be inserted into this Vector
891 * @return {@code true} if this Vector changed as a result of the call
892 * @throws NullPointerException if the specified collection is null
893 * @since 1.2
894 */
895 public boolean addAll(Collection<? extends E> c) {
896 Object[] a = c.toArray();
897 modCount++;
898 int numNew = a.length;
899 if (numNew == 0)
900 return false;
901 synchronized (this) {
902 Object[] elementData = this.elementData;
903 final int s = elementCount;
904 if (numNew > elementData.length - s)
905 elementData = grow(s + numNew);
906 System.arraycopy(a, 0, elementData, s, numNew);
907 elementCount = s + numNew;
908 // checkInvariants();
909 return true;
910 }
911 }
912
913 /**
914 * Removes from this Vector all of its elements that are contained in the
915 * specified Collection.
916 *
917 * @param c a collection of elements to be removed from the Vector
918 * @return true if this Vector changed as a result of the call
919 * @throws ClassCastException if the types of one or more elements
920 * in this vector are incompatible with the specified
921 * collection
922 * (<a href="Collection.html#optional-restrictions">optional</a>)
923 * @throws NullPointerException if this vector contains one or more null
924 * elements and the specified collection does not support null
925 * elements
926 * (<a href="Collection.html#optional-restrictions">optional</a>),
927 * or if the specified collection is null
928 * @since 1.2
929 */
930 public boolean removeAll(Collection<?> c) {
931 Objects.requireNonNull(c);
932 return bulkRemove(e -> c.contains(e));
933 }
934
935 /**
936 * Retains only the elements in this Vector that are contained in the
937 * specified Collection. In other words, removes from this Vector all
938 * of its elements that are not contained in the specified Collection.
939 *
940 * @param c a collection of elements to be retained in this Vector
941 * (all other elements are removed)
942 * @return true if this Vector changed as a result of the call
943 * @throws ClassCastException if the types of one or more elements
944 * in this vector are incompatible with the specified
945 * collection
946 * (<a href="Collection.html#optional-restrictions">optional</a>)
947 * @throws NullPointerException if this vector contains one or more null
948 * elements and the specified collection does not support null
949 * elements
950 * (<a href="Collection.html#optional-restrictions">optional</a>),
951 * or if the specified collection is null
952 * @since 1.2
953 */
954 public boolean retainAll(Collection<?> c) {
955 Objects.requireNonNull(c);
956 return bulkRemove(e -> !c.contains(e));
957 }
958
959 /**
960 * @throws NullPointerException {@inheritDoc}
961 */
962 @Override
963 public boolean removeIf(Predicate<? super E> filter) {
964 Objects.requireNonNull(filter);
965 return bulkRemove(filter);
966 }
967
968 // A tiny bit set implementation
969
970 private static long[] nBits(int n) {
971 return new long[((n - 1) >> 6) + 1];
972 }
973 private static void setBit(long[] bits, int i) {
974 bits[i >> 6] |= 1L << i;
975 }
976 private static boolean isClear(long[] bits, int i) {
977 return (bits[i >> 6] & (1L << i)) == 0;
978 }
979
980 private synchronized boolean bulkRemove(Predicate<? super E> filter) {
981 int expectedModCount = modCount;
982 final Object[] es = elementData;
983 final int end = elementCount;
984 int i;
985 // Optimize for initial run of survivors
986 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
987 ;
988 // Tolerate predicates that reentrantly access the collection for
989 // read (but writers still get CME), so traverse once to find
990 // elements to delete, a second pass to physically expunge.
991 if (i < end) {
992 final int beg = i;
993 final long[] deathRow = nBits(end - beg);
994 deathRow[0] = 1L; // set bit 0
995 for (i = beg + 1; i < end; i++)
996 if (filter.test(elementAt(es, i)))
997 setBit(deathRow, i - beg);
998 if (modCount != expectedModCount)
999 throw new ConcurrentModificationException();
1000 modCount++;
1001 int w = beg;
1002 for (i = beg; i < end; i++)
1003 if (isClear(deathRow, i - beg))
1004 es[w++] = es[i];
1005 for (i = elementCount = w; i < end; i++)
1006 es[i] = null;
1007 // checkInvariants();
1008 return true;
1009 } else {
1010 if (modCount != expectedModCount)
1011 throw new ConcurrentModificationException();
1012 // checkInvariants();
1013 return false;
1014 }
1015 }
1016
1017 /**
1018 * Inserts all of the elements in the specified Collection into this
1019 * Vector at the specified position. Shifts the element currently at
1020 * that position (if any) and any subsequent elements to the right
1021 * (increases their indices). The new elements will appear in the Vector
1022 * in the order that they are returned by the specified Collection's
1023 * iterator.
1024 *
1025 * @param index index at which to insert the first element from the
1026 * specified collection
1027 * @param c elements to be inserted into this Vector
1028 * @return {@code true} if this Vector changed as a result of the call
1029 * @throws ArrayIndexOutOfBoundsException if the index is out of range
1030 * ({@code index < 0 || index > size()})
1031 * @throws NullPointerException if the specified collection is null
1032 * @since 1.2
1033 */
1034 public synchronized boolean addAll(int index, Collection<? extends E> c) {
1035 if (index < 0 || index > elementCount)
1036 throw new ArrayIndexOutOfBoundsException(index);
1037
1038 Object[] a = c.toArray();
1039 modCount++;
1040 int numNew = a.length;
1041 if (numNew == 0)
1042 return false;
1043 Object[] elementData = this.elementData;
1044 final int s = elementCount;
1045 if (numNew > elementData.length - s)
1046 elementData = grow(s + numNew);
1047
1048 int numMoved = s - index;
1049 if (numMoved > 0)
1050 System.arraycopy(elementData, index,
1051 elementData, index + numNew,
1052 numMoved);
1053 System.arraycopy(a, 0, elementData, index, numNew);
1054 elementCount = s + numNew;
1055 // checkInvariants();
1056 return true;
1057 }
1058
1059 /**
1060 * Compares the specified Object with this Vector for equality. Returns
1061 * true if and only if the specified Object is also a List, both Lists
1062 * have the same size, and all corresponding pairs of elements in the two
1063 * Lists are <em>equal</em>. (Two elements {@code e1} and
1064 * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1065 * In other words, two Lists are defined to be
1066 * equal if they contain the same elements in the same order.
1067 *
1068 * @param o the Object to be compared for equality with this Vector
1069 * @return true if the specified Object is equal to this Vector
1070 */
1071 public synchronized boolean equals(Object o) {
1072 return super.equals(o);
1073 }
1074
1075 /**
1076 * Returns the hash code value for this Vector.
1077 */
1078 public synchronized int hashCode() {
1079 return super.hashCode();
1080 }
1081
1082 /**
1083 * Returns a string representation of this Vector, containing
1084 * the String representation of each element.
1085 */
1086 public synchronized String toString() {
1087 return super.toString();
1088 }
1089
1090 /**
1091 * Returns a view of the portion of this List between fromIndex,
1092 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1093 * equal, the returned List is empty.) The returned List is backed by this
1094 * List, so changes in the returned List are reflected in this List, and
1095 * vice-versa. The returned List supports all of the optional List
1096 * operations supported by this List.
1097 *
1098 * <p>This method eliminates the need for explicit range operations (of
1099 * the sort that commonly exist for arrays). Any operation that expects
1100 * a List can be used as a range operation by operating on a subList view
1101 * instead of a whole List. For example, the following idiom
1102 * removes a range of elements from a List:
1103 * <pre>
1104 * list.subList(from, to).clear();
1105 * </pre>
1106 * Similar idioms may be constructed for indexOf and lastIndexOf,
1107 * and all of the algorithms in the Collections class can be applied to
1108 * a subList.
1109 *
1110 * <p>The semantics of the List returned by this method become undefined if
1111 * the backing list (i.e., this List) is <i>structurally modified</i> in
1112 * any way other than via the returned List. (Structural modifications are
1113 * those that change the size of the List, or otherwise perturb it in such
1114 * a fashion that iterations in progress may yield incorrect results.)
1115 *
1116 * @param fromIndex low endpoint (inclusive) of the subList
1117 * @param toIndex high endpoint (exclusive) of the subList
1118 * @return a view of the specified range within this List
1119 * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1120 * {@code (fromIndex < 0 || toIndex > size)}
1121 * @throws IllegalArgumentException if the endpoint indices are out of order
1122 * {@code (fromIndex > toIndex)}
1123 */
1124 public synchronized List<E> subList(int fromIndex, int toIndex) {
1125 return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1126 this);
1127 }
1128
1129 /**
1130 * Removes from this list all of the elements whose index is between
1131 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1132 * Shifts any succeeding elements to the left (reduces their index).
1133 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1134 * (If {@code toIndex==fromIndex}, this operation has no effect.)
1135 */
1136 protected synchronized void removeRange(int fromIndex, int toIndex) {
1137 modCount++;
1138 shiftTailOverGap(elementData, fromIndex, toIndex);
1139 // checkInvariants();
1140 }
1141
1142 /** Erases the gap from lo to hi, by sliding down following elements. */
1143 private void shiftTailOverGap(Object[] es, int lo, int hi) {
1144 System.arraycopy(es, hi, es, lo, elementCount - hi);
1145 for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1146 es[i] = null;
1147 }
1148
1149 /**
1150 * Loads a {@code Vector} instance from a stream
1151 * (that is, deserializes it).
1152 * This method performs checks to ensure the consistency
1153 * of the fields.
1154 *
1155 * @param in the stream
1156 * @throws java.io.IOException if an I/O error occurs
1157 * @throws ClassNotFoundException if the stream contains data
1158 * of a non-existing class
1159 */
1160 private void readObject(ObjectInputStream in)
1161 throws IOException, ClassNotFoundException {
1162 ObjectInputStream.GetField gfields = in.readFields();
1163 int count = gfields.get("elementCount", 0);
1164 Object[] data = (Object[])gfields.get("elementData", null);
1165 if (count < 0 || data == null || count > data.length) {
1166 throw new StreamCorruptedException("Inconsistent vector internals");
1167 }
1168 elementCount = count;
1169 elementData = data.clone();
1170 }
1171
1172 /**
1173 * Saves the state of the {@code Vector} instance to a stream
1174 * (that is, serializes it).
1175 * This method performs synchronization to ensure the consistency
1176 * of the serialized data.
1177 *
1178 * @param s the stream
1179 * @throws java.io.IOException if an I/O error occurs
1180 */
1181 private void writeObject(java.io.ObjectOutputStream s)
1182 throws java.io.IOException {
1183 final java.io.ObjectOutputStream.PutField fields = s.putFields();
1184 final Object[] data;
1185 synchronized (this) {
1186 fields.put("capacityIncrement", capacityIncrement);
1187 fields.put("elementCount", elementCount);
1188 data = elementData.clone();
1189 }
1190 fields.put("elementData", data);
1191 s.writeFields();
1192 }
1193
1194 /**
1195 * Returns a list iterator over the elements in this list (in proper
1196 * sequence), starting at the specified position in the list.
1197 * The specified index indicates the first element that would be
1198 * returned by an initial call to {@link ListIterator#next next}.
1199 * An initial call to {@link ListIterator#previous previous} would
1200 * return the element with the specified index minus one.
1201 *
1202 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1203 *
1204 * @throws IndexOutOfBoundsException {@inheritDoc}
1205 */
1206 public synchronized ListIterator<E> listIterator(int index) {
1207 if (index < 0 || index > elementCount)
1208 throw new IndexOutOfBoundsException("Index: "+index);
1209 return new ListItr(index);
1210 }
1211
1212 /**
1213 * Returns a list iterator over the elements in this list (in proper
1214 * sequence).
1215 *
1216 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1217 *
1218 * @see #listIterator(int)
1219 */
1220 public synchronized ListIterator<E> listIterator() {
1221 return new ListItr(0);
1222 }
1223
1224 /**
1225 * Returns an iterator over the elements in this list in proper sequence.
1226 *
1227 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1228 *
1229 * @return an iterator over the elements in this list in proper sequence
1230 */
1231 public synchronized Iterator<E> iterator() {
1232 return new Itr();
1233 }
1234
1235 /**
1236 * An optimized version of AbstractList.Itr
1237 */
1238 private class Itr implements Iterator<E> {
1239 int cursor; // index of next element to return
1240 int lastRet = -1; // index of last element returned; -1 if no such
1241 int expectedModCount = modCount;
1242
1243 public boolean hasNext() {
1244 // Racy but within spec, since modifications are checked
1245 // within or after synchronization in next/previous
1246 return cursor != elementCount;
1247 }
1248
1249 public E next() {
1250 synchronized (Vector.this) {
1251 checkForComodification();
1252 int i = cursor;
1253 if (i >= elementCount)
1254 throw new NoSuchElementException();
1255 cursor = i + 1;
1256 return elementData(lastRet = i);
1257 }
1258 }
1259
1260 public void remove() {
1261 if (lastRet == -1)
1262 throw new IllegalStateException();
1263 synchronized (Vector.this) {
1264 checkForComodification();
1265 Vector.this.remove(lastRet);
1266 expectedModCount = modCount;
1267 }
1268 cursor = lastRet;
1269 lastRet = -1;
1270 }
1271
1272 @Override
1273 public void forEachRemaining(Consumer<? super E> action) {
1274 Objects.requireNonNull(action);
1275 synchronized (Vector.this) {
1276 final int size = elementCount;
1277 int i = cursor;
1278 if (i >= size) {
1279 return;
1280 }
1281 final Object[] es = elementData;
1282 if (i >= es.length)
1283 throw new ConcurrentModificationException();
1284 while (i < size && modCount == expectedModCount)
1285 action.accept(elementAt(es, i++));
1286 // update once at end of iteration to reduce heap write traffic
1287 cursor = i;
1288 lastRet = i - 1;
1289 checkForComodification();
1290 }
1291 }
1292
1293 final void checkForComodification() {
1294 if (modCount != expectedModCount)
1295 throw new ConcurrentModificationException();
1296 }
1297 }
1298
1299 /**
1300 * An optimized version of AbstractList.ListItr
1301 */
1302 final class ListItr extends Itr implements ListIterator<E> {
1303 ListItr(int index) {
1304 super();
1305 cursor = index;
1306 }
1307
1308 public boolean hasPrevious() {
1309 return cursor != 0;
1310 }
1311
1312 public int nextIndex() {
1313 return cursor;
1314 }
1315
1316 public int previousIndex() {
1317 return cursor - 1;
1318 }
1319
1320 public E previous() {
1321 synchronized (Vector.this) {
1322 checkForComodification();
1323 int i = cursor - 1;
1324 if (i < 0)
1325 throw new NoSuchElementException();
1326 cursor = i;
1327 return elementData(lastRet = i);
1328 }
1329 }
1330
1331 public void set(E e) {
1332 if (lastRet == -1)
1333 throw new IllegalStateException();
1334 synchronized (Vector.this) {
1335 checkForComodification();
1336 Vector.this.set(lastRet, e);
1337 }
1338 }
1339
1340 public void add(E e) {
1341 int i = cursor;
1342 synchronized (Vector.this) {
1343 checkForComodification();
1344 Vector.this.add(i, e);
1345 expectedModCount = modCount;
1346 }
1347 cursor = i + 1;
1348 lastRet = -1;
1349 }
1350 }
1351
1352 /**
1353 * @throws NullPointerException {@inheritDoc}
1354 */
1355 @Override
1356 public synchronized void forEach(Consumer<? super E> action) {
1357 Objects.requireNonNull(action);
1358 final int expectedModCount = modCount;
1359 final Object[] es = elementData;
1360 final int size = elementCount;
1361 for (int i = 0; modCount == expectedModCount && i < size; i++)
1362 action.accept(elementAt(es, i));
1363 if (modCount != expectedModCount)
1364 throw new ConcurrentModificationException();
1365 // checkInvariants();
1366 }
1367
1368 /**
1369 * @throws NullPointerException {@inheritDoc}
1370 */
1371 @Override
1372 public synchronized void replaceAll(UnaryOperator<E> operator) {
1373 Objects.requireNonNull(operator);
1374 final int expectedModCount = modCount;
1375 final Object[] es = elementData;
1376 final int size = elementCount;
1377 for (int i = 0; modCount == expectedModCount && i < size; i++)
1378 es[i] = operator.apply(elementAt(es, i));
1379 if (modCount != expectedModCount)
1380 throw new ConcurrentModificationException();
1381 // TODO(8203662): remove increment of modCount from ...
1382 modCount++;
1383 // checkInvariants();
1384 }
1385
1386 @SuppressWarnings("unchecked")
1387 @Override
1388 public synchronized void sort(Comparator<? super E> c) {
1389 final int expectedModCount = modCount;
1390 Arrays.sort((E[]) elementData, 0, elementCount, c);
1391 if (modCount != expectedModCount)
1392 throw new ConcurrentModificationException();
1393 modCount++;
1394 // checkInvariants();
1395 }
1396
1397 /**
1398 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1399 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1400 * list.
1401 *
1402 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1403 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1404 * Overriding implementations should document the reporting of additional
1405 * characteristic values.
1406 *
1407 * @return a {@code Spliterator} over the elements in this list
1408 * @since 1.8
1409 */
1410 @Override
1411 public Spliterator<E> spliterator() {
1412 return new VectorSpliterator(null, 0, -1, 0);
1413 }
1414
1415 /** Similar to ArrayList Spliterator */
1416 final class VectorSpliterator implements Spliterator<E> {
1417 private Object[] array;
1418 private int index; // current index, modified on advance/split
1419 private int fence; // -1 until used; then one past last index
1420 private int expectedModCount; // initialized when fence set
1421
1422 /** Creates new spliterator covering the given range. */
1423 VectorSpliterator(Object[] array, int origin, int fence,
1424 int expectedModCount) {
1425 this.array = array;
1426 this.index = origin;
1427 this.fence = fence;
1428 this.expectedModCount = expectedModCount;
1429 }
1430
1431 private int getFence() { // initialize on first use
1432 int hi;
1433 if ((hi = fence) < 0) {
1434 synchronized (Vector.this) {
1435 array = elementData;
1436 expectedModCount = modCount;
1437 hi = fence = elementCount;
1438 }
1439 }
1440 return hi;
1441 }
1442
1443 public Spliterator<E> trySplit() {
1444 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1445 return (lo >= mid) ? null :
1446 new VectorSpliterator(array, lo, index = mid, expectedModCount);
1447 }
1448
1449 @SuppressWarnings("unchecked")
1450 public boolean tryAdvance(Consumer<? super E> action) {
1451 Objects.requireNonNull(action);
1452 int i;
1453 if (getFence() > (i = index)) {
1454 index = i + 1;
1455 action.accept((E)array[i]);
1456 if (modCount != expectedModCount)
1457 throw new ConcurrentModificationException();
1458 return true;
1459 }
1460 return false;
1461 }
1462
1463 @SuppressWarnings("unchecked")
1464 public void forEachRemaining(Consumer<? super E> action) {
1465 Objects.requireNonNull(action);
1466 final int hi = getFence();
1467 final Object[] a = array;
1468 int i;
1469 for (i = index, index = hi; i < hi; i++)
1470 action.accept((E) a[i]);
1471 if (modCount != expectedModCount)
1472 throw new ConcurrentModificationException();
1473 }
1474
1475 public long estimateSize() {
1476 return getFence() - index;
1477 }
1478
1479 public int characteristics() {
1480 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1481 }
1482 }
1483
1484 void checkInvariants() {
1485 // assert elementCount >= 0;
1486 // assert elementCount == elementData.length || elementData[elementCount] == null;
1487 }
1488 }