ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ArrayBlockingQueue.java
Revision: 1.94
Committed: Mon Jul 18 20:08:18 2011 UTC (12 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.93: +38 -16 lines
Log Message:
Improve the class comment for class Itrs

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.38 * Expert Group and released to the public domain, as explained at
4 jsr166 1.78 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 jsr166 1.85 import java.util.concurrent.locks.Condition;
9     import java.util.concurrent.locks.ReentrantLock;
10     import java.util.AbstractQueue;
11     import java.util.Collection;
12     import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.89 import java.lang.ref.WeakReference;
15 tim 1.1
16     /**
17 dl 1.25 * A bounded {@linkplain BlockingQueue blocking queue} backed by an
18     * array. This queue orders elements FIFO (first-in-first-out). The
19     * <em>head</em> of the queue is that element that has been on the
20     * queue the longest time. The <em>tail</em> of the queue is that
21     * element that has been on the queue the shortest time. New elements
22     * are inserted at the tail of the queue, and the queue retrieval
23     * operations obtain elements at the head of the queue.
24 dholmes 1.13 *
25 dl 1.40 * <p>This is a classic &quot;bounded buffer&quot;, in which a
26     * fixed-sized array holds elements inserted by producers and
27     * extracted by consumers. Once created, the capacity cannot be
28 jsr166 1.69 * changed. Attempts to {@code put} an element into a full queue
29     * will result in the operation blocking; attempts to {@code take} an
30 dl 1.40 * element from an empty queue will similarly block.
31 dl 1.11 *
32 jsr166 1.72 * <p>This class supports an optional fairness policy for ordering
33 dl 1.42 * waiting producer and consumer threads. By default, this ordering
34     * is not guaranteed. However, a queue constructed with fairness set
35 jsr166 1.69 * to {@code true} grants threads access in FIFO order. Fairness
36 dl 1.42 * generally decreases throughput but reduces variability and avoids
37     * starvation.
38 brian 1.7 *
39 dl 1.43 * <p>This class and its iterator implement all of the
40     * <em>optional</em> methods of the {@link Collection} and {@link
41 jsr166 1.47 * Iterator} interfaces.
42 dl 1.26 *
43 dl 1.41 * <p>This class is a member of the
44 jsr166 1.54 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
45 dl 1.41 * Java Collections Framework</a>.
46     *
47 dl 1.8 * @since 1.5
48     * @author Doug Lea
49 dl 1.33 * @param <E> the type of elements held in this collection
50 dl 1.8 */
51 dl 1.5 public class ArrayBlockingQueue<E> extends AbstractQueue<E>
52 tim 1.1 implements BlockingQueue<E>, java.io.Serializable {
53    
54 dl 1.36 /**
55 dl 1.42 * Serialization ID. This class relies on default serialization
56     * even for the items array, which is default-serialized, even if
57     * it is empty. Otherwise it could not be declared final, which is
58 dl 1.36 * necessary here.
59     */
60     private static final long serialVersionUID = -817911632652898426L;
61    
62 jsr166 1.73 /** The queued items */
63 jsr166 1.68 final Object[] items;
64 jsr166 1.73
65     /** items index for next take, poll, peek or remove */
66 jsr166 1.58 int takeIndex;
67 jsr166 1.73
68     /** items index for next put, offer, or add */
69 jsr166 1.58 int putIndex;
70 jsr166 1.73
71     /** Number of elements in the queue */
72 jsr166 1.59 int count;
73 tim 1.12
74 dl 1.5 /*
75 dl 1.36 * Concurrency control uses the classic two-condition algorithm
76 dl 1.5 * found in any textbook.
77     */
78    
79 dl 1.11 /** Main lock guarding all access */
80 jsr166 1.58 final ReentrantLock lock;
81 jsr166 1.85
82 dholmes 1.13 /** Condition for waiting takes */
83 dl 1.37 private final Condition notEmpty;
84 jsr166 1.85
85 dl 1.35 /** Condition for waiting puts */
86 dl 1.37 private final Condition notFull;
87 dl 1.5
88 jsr166 1.89 /**
89     * Shared state for currently active iterators, or null if there
90     * are known not to be any. Allows queue operations to update
91     * iterator state.
92     */
93     transient Itrs itrs = null;
94    
95 dl 1.5 // Internal helper methods
96    
97     /**
98     * Circularly increment i.
99     */
100 dl 1.40 final int inc(int i) {
101 jsr166 1.58 return (++i == items.length) ? 0 : i;
102 dl 1.5 }
103    
104 jsr166 1.71 /**
105     * Circularly decrement i.
106     */
107     final int dec(int i) {
108     return ((i == 0) ? items.length : i) - 1;
109     }
110    
111 jsr166 1.68 /**
112     * Returns item at index i.
113     */
114     final E itemAt(int i) {
115 jsr166 1.84 @SuppressWarnings("unchecked") E x = (E) items[i];
116     return x;
117 jsr166 1.68 }
118    
119     /**
120     * Throws NullPointerException if argument is null.
121     *
122     * @param v the element
123     */
124     private static void checkNotNull(Object v) {
125     if (v == null)
126     throw new NullPointerException();
127     }
128    
129 dl 1.5 /**
130 jsr166 1.47 * Inserts element at current put position, advances, and signals.
131 dl 1.9 * Call only when holding lock.
132 dl 1.5 */
133 jsr166 1.88 private void enqueue(E x) {
134 jsr166 1.89 assert lock.getHoldCount() == 1;
135     assert items[putIndex] == null;
136 dl 1.5 items[putIndex] = x;
137     putIndex = inc(putIndex);
138 jsr166 1.89 count++;
139 dl 1.9 notEmpty.signal();
140 tim 1.1 }
141 tim 1.12
142 dl 1.5 /**
143 jsr166 1.47 * Extracts element at current take position, advances, and signals.
144 dl 1.9 * Call only when holding lock.
145 dl 1.5 */
146 jsr166 1.88 private E dequeue() {
147 jsr166 1.89 assert lock.getHoldCount() == 1;
148     assert items[takeIndex] != null;
149 jsr166 1.68 final Object[] items = this.items;
150 jsr166 1.84 @SuppressWarnings("unchecked") E x = (E) items[takeIndex];
151 dl 1.5 items[takeIndex] = null;
152     takeIndex = inc(takeIndex);
153 jsr166 1.89 count--;
154     if (itrs != null)
155     itrs.elementDequeued();
156 dl 1.9 notFull.signal();
157 dl 1.5 return x;
158     }
159    
160     /**
161 jsr166 1.90 * Deletes item at array index removeIndex.
162 jsr166 1.89 * Utility for remove(Object) and iterator.remove.
163 dl 1.9 * Call only when holding lock.
164 dl 1.5 */
165 jsr166 1.90 void removeAt(final int removeIndex) {
166 jsr166 1.89 assert lock.getHoldCount() == 1;
167 jsr166 1.90 assert items[removeIndex] != null;
168     assert removeIndex >= 0 && removeIndex < items.length;
169 jsr166 1.68 final Object[] items = this.items;
170 jsr166 1.90 if (removeIndex == takeIndex) {
171 jsr166 1.89 // removing front item; just advance
172 dl 1.9 items[takeIndex] = null;
173     takeIndex = inc(takeIndex);
174 jsr166 1.90 count--;
175 jsr166 1.89 if (itrs != null)
176     itrs.elementDequeued();
177 tim 1.23 } else {
178 jsr166 1.89 // an "interior" remove
179 jsr166 1.90
180 dl 1.9 // slide over all others up through putIndex.
181 jsr166 1.90 final int putIndex = this.putIndex;
182     for (int i = removeIndex;;) {
183     int next = inc(i);
184     if (next != putIndex) {
185     items[i] = items[next];
186     i = next;
187 tim 1.23 } else {
188 dl 1.9 items[i] = null;
189 jsr166 1.90 this.putIndex = i;
190 dl 1.9 break;
191     }
192 dl 1.5 }
193 jsr166 1.90 count--;
194     if (itrs != null)
195     itrs.removedAt(removeIndex);
196 dl 1.5 }
197 dl 1.9 notFull.signal();
198 tim 1.1 }
199    
200     /**
201 jsr166 1.69 * Creates an {@code ArrayBlockingQueue} with the given (fixed)
202 dholmes 1.13 * capacity and default access policy.
203 jsr166 1.50 *
204 dholmes 1.13 * @param capacity the capacity of this queue
205 jsr166 1.69 * @throws IllegalArgumentException if {@code capacity < 1}
206 dl 1.5 */
207 dholmes 1.13 public ArrayBlockingQueue(int capacity) {
208 dl 1.36 this(capacity, false);
209 dl 1.5 }
210 dl 1.2
211 dl 1.5 /**
212 jsr166 1.69 * Creates an {@code ArrayBlockingQueue} with the given (fixed)
213 dholmes 1.13 * capacity and the specified access policy.
214 jsr166 1.50 *
215 dholmes 1.13 * @param capacity the capacity of this queue
216 jsr166 1.69 * @param fair if {@code true} then queue accesses for threads blocked
217 jsr166 1.50 * on insertion or removal, are processed in FIFO order;
218 jsr166 1.69 * if {@code false} the access order is unspecified.
219     * @throws IllegalArgumentException if {@code capacity < 1}
220 dl 1.11 */
221 dholmes 1.13 public ArrayBlockingQueue(int capacity, boolean fair) {
222 dl 1.36 if (capacity <= 0)
223     throw new IllegalArgumentException();
224 jsr166 1.68 this.items = new Object[capacity];
225 dl 1.36 lock = new ReentrantLock(fair);
226     notEmpty = lock.newCondition();
227     notFull = lock.newCondition();
228 dl 1.5 }
229    
230 dholmes 1.16 /**
231 jsr166 1.69 * Creates an {@code ArrayBlockingQueue} with the given (fixed)
232 dholmes 1.21 * capacity, the specified access policy and initially containing the
233 tim 1.17 * elements of the given collection,
234 dholmes 1.16 * added in traversal order of the collection's iterator.
235 jsr166 1.50 *
236 dholmes 1.16 * @param capacity the capacity of this queue
237 jsr166 1.69 * @param fair if {@code true} then queue accesses for threads blocked
238 jsr166 1.50 * on insertion or removal, are processed in FIFO order;
239 jsr166 1.69 * if {@code false} the access order is unspecified.
240 dholmes 1.16 * @param c the collection of elements to initially contain
241 jsr166 1.69 * @throws IllegalArgumentException if {@code capacity} is less than
242     * {@code c.size()}, or less than 1.
243 jsr166 1.50 * @throws NullPointerException if the specified collection or any
244     * of its elements are null
245 dholmes 1.16 */
246 tim 1.20 public ArrayBlockingQueue(int capacity, boolean fair,
247 dholmes 1.18 Collection<? extends E> c) {
248 dl 1.36 this(capacity, fair);
249 dholmes 1.16
250 jsr166 1.68 final ReentrantLock lock = this.lock;
251     lock.lock(); // Lock only for visibility, not mutual exclusion
252     try {
253     int i = 0;
254     try {
255     for (E e : c) {
256     checkNotNull(e);
257     items[i++] = e;
258     }
259     } catch (ArrayIndexOutOfBoundsException ex) {
260     throw new IllegalArgumentException();
261     }
262     count = i;
263     putIndex = (i == capacity) ? 0 : i;
264     } finally {
265     lock.unlock();
266     }
267 dholmes 1.16 }
268 dl 1.2
269 dholmes 1.13 /**
270 jsr166 1.50 * Inserts the specified element at the tail of this queue if it is
271     * possible to do so immediately without exceeding the queue's capacity,
272 jsr166 1.69 * returning {@code true} upon success and throwing an
273     * {@code IllegalStateException} if this queue is full.
274 dl 1.25 *
275 jsr166 1.50 * @param e the element to add
276 jsr166 1.69 * @return {@code true} (as specified by {@link Collection#add})
277 jsr166 1.50 * @throws IllegalStateException if this queue is full
278     * @throws NullPointerException if the specified element is null
279     */
280     public boolean add(E e) {
281 jsr166 1.56 return super.add(e);
282 jsr166 1.50 }
283    
284     /**
285     * Inserts the specified element at the tail of this queue if it is
286     * possible to do so immediately without exceeding the queue's capacity,
287 jsr166 1.69 * returning {@code true} upon success and {@code false} if this queue
288 jsr166 1.50 * is full. This method is generally preferable to method {@link #add},
289     * which can fail to insert an element only by throwing an exception.
290     *
291     * @throws NullPointerException if the specified element is null
292 dholmes 1.13 */
293 jsr166 1.49 public boolean offer(E e) {
294 jsr166 1.68 checkNotNull(e);
295 dl 1.36 final ReentrantLock lock = this.lock;
296 dl 1.5 lock.lock();
297     try {
298 jsr166 1.59 if (count == items.length)
299 dl 1.2 return false;
300 dl 1.5 else {
301 jsr166 1.88 enqueue(e);
302 dl 1.5 return true;
303     }
304 tim 1.23 } finally {
305 tim 1.12 lock.unlock();
306 dl 1.2 }
307 dl 1.5 }
308 dl 1.2
309 dholmes 1.13 /**
310 jsr166 1.50 * Inserts the specified element at the tail of this queue, waiting
311     * for space to become available if the queue is full.
312     *
313     * @throws InterruptedException {@inheritDoc}
314     * @throws NullPointerException {@inheritDoc}
315     */
316     public void put(E e) throws InterruptedException {
317 jsr166 1.68 checkNotNull(e);
318 jsr166 1.50 final ReentrantLock lock = this.lock;
319     lock.lockInterruptibly();
320     try {
321 jsr166 1.59 while (count == items.length)
322 jsr166 1.58 notFull.await();
323 jsr166 1.88 enqueue(e);
324 jsr166 1.50 } finally {
325     lock.unlock();
326     }
327     }
328    
329     /**
330     * Inserts the specified element at the tail of this queue, waiting
331     * up to the specified wait time for space to become available if
332     * the queue is full.
333     *
334     * @throws InterruptedException {@inheritDoc}
335     * @throws NullPointerException {@inheritDoc}
336 brian 1.7 */
337 jsr166 1.49 public boolean offer(E e, long timeout, TimeUnit unit)
338 dholmes 1.13 throws InterruptedException {
339 dl 1.2
340 jsr166 1.68 checkNotNull(e);
341 jsr166 1.56 long nanos = unit.toNanos(timeout);
342 dl 1.36 final ReentrantLock lock = this.lock;
343 dl 1.5 lock.lockInterruptibly();
344     try {
345 jsr166 1.59 while (count == items.length) {
346 dl 1.5 if (nanos <= 0)
347     return false;
348 jsr166 1.58 nanos = notFull.awaitNanos(nanos);
349 dl 1.5 }
350 jsr166 1.88 enqueue(e);
351 jsr166 1.58 return true;
352 tim 1.23 } finally {
353 dl 1.5 lock.unlock();
354 dl 1.2 }
355 dl 1.5 }
356 dl 1.2
357 dholmes 1.13 public E poll() {
358 dl 1.36 final ReentrantLock lock = this.lock;
359 dholmes 1.13 lock.lock();
360     try {
361 jsr166 1.88 return (count == 0) ? null : dequeue();
362 tim 1.23 } finally {
363 tim 1.15 lock.unlock();
364 dholmes 1.13 }
365     }
366    
367 jsr166 1.50 public E take() throws InterruptedException {
368     final ReentrantLock lock = this.lock;
369     lock.lockInterruptibly();
370     try {
371 jsr166 1.59 while (count == 0)
372 jsr166 1.58 notEmpty.await();
373 jsr166 1.88 return dequeue();
374 jsr166 1.50 } finally {
375     lock.unlock();
376     }
377     }
378    
379 dl 1.5 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
380 jsr166 1.56 long nanos = unit.toNanos(timeout);
381 dl 1.36 final ReentrantLock lock = this.lock;
382 dl 1.5 lock.lockInterruptibly();
383     try {
384 jsr166 1.59 while (count == 0) {
385 dl 1.5 if (nanos <= 0)
386     return null;
387 jsr166 1.58 nanos = notEmpty.awaitNanos(nanos);
388 dl 1.2 }
389 jsr166 1.88 return dequeue();
390 tim 1.23 } finally {
391 dl 1.5 lock.unlock();
392     }
393     }
394 dl 1.2
395 dholmes 1.13 public E peek() {
396 dl 1.36 final ReentrantLock lock = this.lock;
397 dholmes 1.13 lock.lock();
398     try {
399 jsr166 1.68 return (count == 0) ? null : itemAt(takeIndex);
400 tim 1.23 } finally {
401 dholmes 1.13 lock.unlock();
402     }
403     }
404    
405     // this doc comment is overridden to remove the reference to collections
406     // greater in size than Integer.MAX_VALUE
407 tim 1.15 /**
408 dl 1.25 * Returns the number of elements in this queue.
409     *
410 jsr166 1.50 * @return the number of elements in this queue
411 dholmes 1.13 */
412     public int size() {
413 dl 1.36 final ReentrantLock lock = this.lock;
414 dholmes 1.13 lock.lock();
415     try {
416     return count;
417 tim 1.23 } finally {
418 dholmes 1.13 lock.unlock();
419     }
420     }
421    
422     // this doc comment is a modified copy of the inherited doc comment,
423     // without the reference to unlimited queues.
424 tim 1.15 /**
425 jsr166 1.48 * Returns the number of additional elements that this queue can ideally
426     * (in the absence of memory or resource constraints) accept without
427 dholmes 1.13 * blocking. This is always equal to the initial capacity of this queue
428 jsr166 1.69 * less the current {@code size} of this queue.
429 jsr166 1.48 *
430     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
431 jsr166 1.69 * an element will succeed by inspecting {@code remainingCapacity}
432 jsr166 1.48 * because it may be the case that another thread is about to
433 jsr166 1.50 * insert or remove an element.
434 dholmes 1.13 */
435     public int remainingCapacity() {
436 dl 1.36 final ReentrantLock lock = this.lock;
437 dholmes 1.13 lock.lock();
438     try {
439     return items.length - count;
440 tim 1.23 } finally {
441 dholmes 1.13 lock.unlock();
442     }
443     }
444    
445 jsr166 1.50 /**
446     * Removes a single instance of the specified element from this queue,
447 jsr166 1.69 * if it is present. More formally, removes an element {@code e} such
448     * that {@code o.equals(e)}, if this queue contains one or more such
449 jsr166 1.50 * elements.
450 jsr166 1.69 * Returns {@code true} if this queue contained the specified element
451 jsr166 1.50 * (or equivalently, if this queue changed as a result of the call).
452     *
453 jsr166 1.64 * <p>Removal of interior elements in circular array based queues
454 dl 1.60 * is an intrinsically slow and disruptive operation, so should
455     * be undertaken only in exceptional circumstances, ideally
456     * only when the queue is known not to be accessible by other
457     * threads.
458     *
459 jsr166 1.50 * @param o element to be removed from this queue, if present
460 jsr166 1.69 * @return {@code true} if this queue changed as a result of the call
461 jsr166 1.50 */
462     public boolean remove(Object o) {
463     if (o == null) return false;
464 jsr166 1.68 final Object[] items = this.items;
465 jsr166 1.50 final ReentrantLock lock = this.lock;
466     lock.lock();
467     try {
468 jsr166 1.86 if (count > 0) {
469     final int putIndex = this.putIndex;
470     int i = takeIndex;
471     do {
472     if (o.equals(items[i])) {
473     removeAt(i);
474     return true;
475     }
476     } while ((i = inc(i)) != putIndex);
477 jsr166 1.50 }
478 jsr166 1.68 return false;
479 jsr166 1.50 } finally {
480     lock.unlock();
481     }
482     }
483 dholmes 1.13
484 jsr166 1.50 /**
485 jsr166 1.69 * Returns {@code true} if this queue contains the specified element.
486     * More formally, returns {@code true} if and only if this queue contains
487     * at least one element {@code e} such that {@code o.equals(e)}.
488 jsr166 1.50 *
489     * @param o object to be checked for containment in this queue
490 jsr166 1.69 * @return {@code true} if this queue contains the specified element
491 jsr166 1.50 */
492 dholmes 1.21 public boolean contains(Object o) {
493     if (o == null) return false;
494 jsr166 1.68 final Object[] items = this.items;
495 dl 1.36 final ReentrantLock lock = this.lock;
496 dl 1.5 lock.lock();
497     try {
498 jsr166 1.86 if (count > 0) {
499     final int putIndex = this.putIndex;
500     int i = takeIndex;
501     do {
502     if (o.equals(items[i]))
503     return true;
504     } while ((i = inc(i)) != putIndex);
505     }
506 dl 1.2 return false;
507 tim 1.23 } finally {
508 dl 1.5 lock.unlock();
509     }
510     }
511 brian 1.7
512 jsr166 1.50 /**
513     * Returns an array containing all of the elements in this queue, in
514     * proper sequence.
515     *
516     * <p>The returned array will be "safe" in that no references to it are
517     * maintained by this queue. (In other words, this method must allocate
518     * a new array). The caller is thus free to modify the returned array.
519 jsr166 1.51 *
520 jsr166 1.50 * <p>This method acts as bridge between array-based and collection-based
521     * APIs.
522     *
523     * @return an array containing all of the elements in this queue
524     */
525 dl 1.5 public Object[] toArray() {
526 jsr166 1.68 final Object[] items = this.items;
527 dl 1.36 final ReentrantLock lock = this.lock;
528 dl 1.5 lock.lock();
529     try {
530 jsr166 1.68 final int count = this.count;
531 dl 1.34 Object[] a = new Object[count];
532 jsr166 1.68 for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
533     a[k] = items[i];
534 dl 1.2 return a;
535 tim 1.23 } finally {
536 dl 1.5 lock.unlock();
537     }
538     }
539 brian 1.7
540 jsr166 1.50 /**
541     * Returns an array containing all of the elements in this queue, in
542     * proper sequence; the runtime type of the returned array is that of
543     * the specified array. If the queue fits in the specified array, it
544     * is returned therein. Otherwise, a new array is allocated with the
545     * runtime type of the specified array and the size of this queue.
546     *
547     * <p>If this queue fits in the specified array with room to spare
548     * (i.e., the array has more elements than this queue), the element in
549     * the array immediately following the end of the queue is set to
550 jsr166 1.69 * {@code null}.
551 jsr166 1.50 *
552     * <p>Like the {@link #toArray()} method, this method acts as bridge between
553     * array-based and collection-based APIs. Further, this method allows
554     * precise control over the runtime type of the output array, and may,
555     * under certain circumstances, be used to save allocation costs.
556     *
557 jsr166 1.69 * <p>Suppose {@code x} is a queue known to contain only strings.
558 jsr166 1.50 * The following code can be used to dump the queue into a newly
559 jsr166 1.69 * allocated array of {@code String}:
560 jsr166 1.50 *
561 jsr166 1.80 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
562 jsr166 1.50 *
563 jsr166 1.69 * Note that {@code toArray(new Object[0])} is identical in function to
564     * {@code toArray()}.
565 jsr166 1.50 *
566     * @param a the array into which the elements of the queue are to
567     * be stored, if it is big enough; otherwise, a new array of the
568     * same runtime type is allocated for this purpose
569     * @return an array containing all of the elements in this queue
570     * @throws ArrayStoreException if the runtime type of the specified array
571     * is not a supertype of the runtime type of every element in
572     * this queue
573     * @throws NullPointerException if the specified array is null
574     */
575 jsr166 1.68 @SuppressWarnings("unchecked")
576 dl 1.5 public <T> T[] toArray(T[] a) {
577 jsr166 1.68 final Object[] items = this.items;
578 dl 1.36 final ReentrantLock lock = this.lock;
579 dl 1.5 lock.lock();
580     try {
581 jsr166 1.68 final int count = this.count;
582     final int len = a.length;
583     if (len < count)
584 dholmes 1.16 a = (T[])java.lang.reflect.Array.newInstance(
585 jsr166 1.68 a.getClass().getComponentType(), count);
586     for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
587     a[k] = (T) items[i];
588     if (len > count)
589 dl 1.5 a[count] = null;
590 dl 1.2 return a;
591 tim 1.23 } finally {
592 dl 1.5 lock.unlock();
593     }
594     }
595 dl 1.6
596     public String toString() {
597 dl 1.36 final ReentrantLock lock = this.lock;
598 dl 1.6 lock.lock();
599     try {
600 jsr166 1.68 int k = count;
601     if (k == 0)
602     return "[]";
603    
604     StringBuilder sb = new StringBuilder();
605     sb.append('[');
606     for (int i = takeIndex; ; i = inc(i)) {
607     Object e = items[i];
608     sb.append(e == this ? "(this Collection)" : e);
609     if (--k == 0)
610     return sb.append(']').toString();
611     sb.append(',').append(' ');
612     }
613 tim 1.23 } finally {
614 dl 1.6 lock.unlock();
615     }
616     }
617 tim 1.12
618 dl 1.44 /**
619     * Atomically removes all of the elements from this queue.
620     * The queue will be empty after this call returns.
621     */
622 dl 1.30 public void clear() {
623 jsr166 1.68 final Object[] items = this.items;
624 dl 1.36 final ReentrantLock lock = this.lock;
625 dl 1.30 lock.lock();
626     try {
627 jsr166 1.86 int k = count;
628     if (k > 0) {
629     final int putIndex = this.putIndex;
630     int i = takeIndex;
631     do {
632     items[i] = null;
633     } while ((i = inc(i)) != putIndex);
634     takeIndex = putIndex;
635     count = 0;
636 jsr166 1.89 if (itrs != null)
637     itrs.queueIsEmpty();
638 jsr166 1.86 for (; k > 0 && lock.hasWaiters(notFull); k--)
639     notFull.signal();
640     }
641 dl 1.30 } finally {
642     lock.unlock();
643     }
644     }
645    
646 jsr166 1.50 /**
647     * @throws UnsupportedOperationException {@inheritDoc}
648     * @throws ClassCastException {@inheritDoc}
649     * @throws NullPointerException {@inheritDoc}
650     * @throws IllegalArgumentException {@inheritDoc}
651     */
652 dl 1.30 public int drainTo(Collection<? super E> c) {
653 jsr166 1.81 return drainTo(c, Integer.MAX_VALUE);
654 dl 1.30 }
655    
656 jsr166 1.50 /**
657     * @throws UnsupportedOperationException {@inheritDoc}
658     * @throws ClassCastException {@inheritDoc}
659     * @throws NullPointerException {@inheritDoc}
660     * @throws IllegalArgumentException {@inheritDoc}
661     */
662 dl 1.30 public int drainTo(Collection<? super E> c, int maxElements) {
663 jsr166 1.68 checkNotNull(c);
664 dl 1.30 if (c == this)
665     throw new IllegalArgumentException();
666     if (maxElements <= 0)
667     return 0;
668 jsr166 1.68 final Object[] items = this.items;
669 dl 1.36 final ReentrantLock lock = this.lock;
670 dl 1.30 lock.lock();
671     try {
672 jsr166 1.82 int n = Math.min(maxElements, count);
673     int take = takeIndex;
674     int i = 0;
675     try {
676     while (i < n) {
677 jsr166 1.84 @SuppressWarnings("unchecked") E x = (E) items[take];
678     c.add(x);
679 jsr166 1.82 items[take] = null;
680     take = inc(take);
681 jsr166 1.86 i++;
682 jsr166 1.82 }
683     return n;
684     } finally {
685     // Restore invariants even if c.add() threw
686 jsr166 1.89 if (i > 0) {
687     count -= i;
688     takeIndex = take;
689     if (itrs != null) {
690     if (count == 0)
691     itrs.queueIsEmpty();
692     else if (i > take)
693     itrs.takeIndexWrapped();
694     }
695     for (; i > 0 && lock.hasWaiters(notFull); i--)
696     notFull.signal();
697     }
698 dl 1.30 }
699     } finally {
700     lock.unlock();
701     }
702     }
703    
704 brian 1.7 /**
705 dl 1.75 * Returns an iterator over the elements in this queue in proper sequence.
706 jsr166 1.77 * The elements will be returned in order from first (head) to last (tail).
707     *
708 jsr166 1.87 * <p>The returned iterator is a "weakly consistent" iterator that
709 jsr166 1.77 * will never throw {@link java.util.ConcurrentModificationException
710 jsr166 1.87 * ConcurrentModificationException}, and guarantees to traverse
711     * elements as they existed upon construction of the iterator, and
712     * may (but is not guaranteed to) reflect any modifications
713     * subsequent to construction.
714 brian 1.7 *
715 jsr166 1.50 * @return an iterator over the elements in this queue in proper sequence
716 brian 1.7 */
717 dl 1.5 public Iterator<E> iterator() {
718 jsr166 1.68 return new Itr();
719 dl 1.5 }
720 dl 1.8
721     /**
722 jsr166 1.94 * Shared data between iterators and their queue, allowing queue
723 jsr166 1.89 * modifications to update iterators when elements are removed.
724     *
725 jsr166 1.94 * This adds a lot of complexity for the sake of correctly
726     * handling some uncommon operations, but the combination of
727     * circular-arrays and supporting interior removes (i.e., those
728     * not at head) would cause iterators to sometimes lose their
729     * places and/or (re)report elements they shouldn't. To avoid
730     * this, when a queue has one or more iterators, it keeps iterator
731     * state consistent by:
732     *
733     * (1) keeping track of the number of "cycles", that is, the
734     * number of times takeIndex has wrapped around to 0.
735     * (2) notifying all iterators via the callback removedAt whenever
736     * an interior element is removed (and thus other elements may
737     * be shifted).
738     *
739     * These suffice to eliminate iterator inconsistencies, but
740     * unfortunately add the secondary responsibility of maintaining
741     * the list of iterators. We track all active iterators in a
742     * simple linked list (accessed only when the queue's lock is
743     * held) of weak references to Itr. The list is cleaned up using
744     * 3 different mechanisms:
745 jsr166 1.89 *
746     * (1) Whenever a new iterator is created, do some O(1) checking for
747     * stale list elements.
748     *
749     * (2) Whenever takeIndex wraps around to 0, check for iterators
750     * that have been unused for more than one wrap-around cycle.
751     *
752     * (3) Whenever the queue becomes empty, all iterators are notified
753     * and this entire data structure is discarded.
754     *
755 jsr166 1.94 * So in addition to the removedAt callback that is necessary for
756     * correctness, iterators have the shutdown and takeIndexWrapped
757     * callbacks that help remove stale iterators from the list.
758     *
759     * Whenever a list element is examined, it is expunged if either
760     * the GC has determined that the iterator is discarded, or if the
761     * iterator reports that it is "detached" (does not need any
762     * further state updates). Overhead is maximal when takeIndex
763     * never advances, iterators are discarded before they are
764     * exhausted, and all removals are interior removes, in which case
765     * all stale iterators are discovered by the GC. But even in this
766     * case we don't increase the amortized complexity.
767     *
768     * Care must be taken to keep list sweeping methods from
769     * reentrantly invoking another such method, causing subtle
770     * corruption bugs.
771 jsr166 1.89 */
772     class Itrs {
773    
774     /**
775     * Node in a linked list of weak iterator references.
776     */
777     private class Node extends WeakReference<Itr> {
778     Node next;
779    
780     Node(Itr iterator, Node next) {
781     super(iterator);
782     this.next = next;
783     }
784     }
785    
786     /** Incremented whenever takeIndex wraps around to 0 */
787     int cycles = 0;
788    
789     /** Linked list of weak iterator references */
790 jsr166 1.93 private Node head;
791 jsr166 1.89
792     /** Used to expunge stale iterators */
793     private Node sweeper = null;
794    
795     private static final int SHORT_SWEEP_PROBES = 4;
796     private static final int LONG_SWEEP_PROBES = 16;
797    
798 jsr166 1.93 Itrs(Itr initial) {
799     register(initial);
800     }
801    
802 jsr166 1.89 /**
803     * Sweeps itrs, looking for and expunging stale iterators.
804     * If at least one was found, tries harder to find more.
805 jsr166 1.94 * Called only from iterating thread.
806 jsr166 1.89 *
807     * @param tryHarder whether to start in try-harder mode, because
808     * there is known to be at least one iterator to collect
809     */
810     void doSomeSweeping(boolean tryHarder) {
811     assert lock.getHoldCount() == 1;
812 jsr166 1.93 assert head != null;
813 jsr166 1.89 int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
814     Node o, p;
815     final Node sweeper = this.sweeper;
816 jsr166 1.93 boolean passedGo; // to limit search to one full sweep
817 jsr166 1.89
818 jsr166 1.93 if (sweeper == null) {
819     o = null;
820     p = head;
821     passedGo = true;
822     } else {
823 jsr166 1.89 o = sweeper;
824     p = o.next;
825 jsr166 1.93 passedGo = false;
826 jsr166 1.89 }
827    
828 jsr166 1.93 for (; probes > 0; probes--) {
829     if (p == null) {
830     if (passedGo)
831     break;
832     o = null;
833     p = head;
834     passedGo = true;
835     }
836 jsr166 1.89 final Itr it = p.get();
837     final Node next = p.next;
838     if (it == null || it.isDetached()) {
839     // found a discarded/exhausted iterator
840     probes = LONG_SWEEP_PROBES; // "try harder"
841     // unlink p
842     p.clear();
843     p.next = null;
844 jsr166 1.93 if (o == null) {
845 jsr166 1.89 head = next;
846 jsr166 1.93 if (next == null) {
847     // We've run out of iterators to track; retire
848     itrs = null;
849     return;
850     }
851     }
852 jsr166 1.89 else
853     o.next = next;
854     } else {
855     o = p;
856     }
857     p = next;
858     }
859    
860     this.sweeper = (p == null) ? null : o;
861     }
862    
863     /**
864     * Adds a new iterator to the linked list of tracked iterators.
865     */
866     void register(Itr itr) {
867     assert lock.getHoldCount() == 1;
868     head = new Node(itr, head);
869     }
870    
871     /**
872     * Called whenever takeIndex wraps around to 0.
873     *
874     * Notifies all iterators, and expunges any that are now stale.
875     */
876     void takeIndexWrapped() {
877     assert lock.getHoldCount() == 1;
878     cycles++;
879     for (Node o = null, p = head; p != null;) {
880     final Itr it = p.get();
881     final Node next = p.next;
882     if (it == null || it.takeIndexWrapped()) {
883     // unlink p
884     assert it == null || it.isDetached();
885     p.clear();
886     p.next = null;
887     if (o == null)
888     head = next;
889     else
890     o.next = next;
891     } else {
892     o = p;
893     }
894     p = next;
895     }
896     if (head == null) // no more iterators to track
897     itrs = null;
898     }
899    
900     /**
901 jsr166 1.90 * Called whenever an interior remove (not at takeIndex) occured.
902 jsr166 1.93 *
903     * Notifies all iterators, and expunges any that are now stale.
904 jsr166 1.89 */
905 jsr166 1.90 void removedAt(int removedIndex) {
906 jsr166 1.89 for (Node o = null, p = head; p != null;) {
907     final Itr it = p.get();
908     final Node next = p.next;
909 jsr166 1.90 if (it == null || it.removedAt(removedIndex)) {
910 jsr166 1.89 // unlink p
911     assert it == null || it.isDetached();
912     p.clear();
913     p.next = null;
914     if (o == null)
915     head = next;
916     else
917     o.next = next;
918     } else {
919     o = p;
920     }
921     p = next;
922     }
923     if (head == null) // no more iterators to track
924     itrs = null;
925     }
926    
927     /**
928     * Called whenever the queue becomes empty.
929     *
930     * Notifies all active iterators that the queue is empty,
931     * clears all weak refs, and unlinks the itrs datastructure.
932     */
933     void queueIsEmpty() {
934     assert lock.getHoldCount() == 1;
935     for (Node p = head; p != null; p = p.next) {
936     Itr it = p.get();
937     if (it != null) {
938     p.clear();
939     it.shutdown();
940     }
941     }
942     head = null;
943     itrs = null;
944     }
945    
946     /**
947 jsr166 1.90 * Called whenever an element has been dequeued (at takeIndex).
948 jsr166 1.89 */
949     void elementDequeued() {
950     assert lock.getHoldCount() == 1;
951     if (count == 0)
952     queueIsEmpty();
953     else if (takeIndex == 0)
954     takeIndexWrapped();
955     }
956     }
957    
958     /**
959     * Iterator for ArrayBlockingQueue.
960     *
961     * To maintain weak consistency with respect to puts and takes, we
962     * read ahead one slot, so as to not report hasNext true but then
963     * not have an element to return.
964     *
965     * We switch into "detached" mode (allowing prompt unlinking from
966     * itrs without help from the GC) when all indices are negative, or
967     * when hasNext returns false for the first time. This allows the
968     * iterator to track concurrent updates completely accurately,
969     * except for the corner case of the user calling Iterator.remove()
970     * after hasNext() returned false. Even in this case, we ensure
971     * that we don't remove the wrong element by keeping track of the
972     * expected element to remove, in lastItem. Yes, we may fail to
973     * remove lastItem from the queue if it moved due to an interleaved
974     * interior remove while in detached mode.
975 dl 1.8 */
976 dl 1.5 private class Itr implements Iterator<E> {
977 jsr166 1.91 /** Index to look for new nextItem; NONE at end */
978 jsr166 1.89 private int cursor;
979    
980     /** Element to be returned by next call to next(); null if none */
981     private E nextItem;
982    
983 jsr166 1.91 /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
984 jsr166 1.89 private int nextIndex;
985    
986     /** Last element returned; null if none or not detached. */
987     private E lastItem;
988    
989 jsr166 1.91 /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
990 jsr166 1.89 private int lastRet;
991    
992 jsr166 1.91 /** Previous value of takeIndex, or DETACHED when detached */
993 jsr166 1.89 private int prevTakeIndex;
994    
995     /** Previous value of iters.cycles */
996     private int prevCycles;
997 tim 1.12
998 jsr166 1.91 /** Special index value indicating "not available" or "undefined" */
999     private static final int NONE = -1;
1000    
1001     /**
1002     * Special index value indicating "removed elsewhere", that is,
1003     * removed by some operation other than a call to this.remove().
1004     */
1005     private static final int REMOVED = -2;
1006    
1007     /** Special value for prevTakeIndex indicating "detached mode" */
1008     private static final int DETACHED = -3;
1009    
1010 dl 1.66 Itr() {
1011 jsr166 1.89 assert lock.getHoldCount() == 0;
1012 jsr166 1.91 lastRet = NONE;
1013 jsr166 1.68 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1014     lock.lock();
1015     try {
1016 jsr166 1.89 if (count == 0) {
1017     assert itrs == null;
1018 jsr166 1.91 cursor = NONE;
1019     nextIndex = NONE;
1020     prevTakeIndex = DETACHED;
1021 jsr166 1.89 } else {
1022     final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1023     prevTakeIndex = takeIndex;
1024 jsr166 1.68 nextItem = itemAt(nextIndex = takeIndex);
1025 jsr166 1.89 cursor = incCursor(takeIndex);
1026     if (itrs == null) {
1027 jsr166 1.93 itrs = new Itrs(this);
1028 jsr166 1.89 } else {
1029     itrs.register(this); // in this order
1030     itrs.doSomeSweeping(false);
1031     }
1032     prevCycles = itrs.cycles;
1033     assert takeIndex >= 0;
1034     assert prevTakeIndex == takeIndex;
1035     assert nextIndex >= 0;
1036     assert nextItem != null;
1037     }
1038 jsr166 1.68 } finally {
1039     lock.unlock();
1040     }
1041 dl 1.5 }
1042 tim 1.12
1043 jsr166 1.89 boolean isDetached() {
1044     assert lock.getHoldCount() == 1;
1045     return prevTakeIndex < 0;
1046     }
1047    
1048     private int incCursor(int index) {
1049     assert lock.getHoldCount() == 1;
1050     index = inc(index);
1051     if (index == putIndex)
1052 jsr166 1.91 index = NONE;
1053 jsr166 1.89 return index;
1054     }
1055    
1056     /**
1057     * Returns true if index is invalidated by the given number of
1058     * dequeues, starting from prevTakeIndex.
1059     */
1060     private boolean invalidated(int index, int prevTakeIndex,
1061     long dequeues, int length) {
1062     if (index < 0)
1063     return false;
1064     int distance = index - prevTakeIndex;
1065     if (distance < 0)
1066     distance += length;
1067     return dequeues > distance;
1068     }
1069    
1070     /**
1071     * Adjusts indices to incorporate all dequeues since the last
1072     * operation on this iterator. Call only from iterating thread.
1073     */
1074     private void incorporateDequeues() {
1075     assert lock.getHoldCount() == 1;
1076     assert itrs != null;
1077     assert !isDetached();
1078     assert count > 0;
1079    
1080     final int cycles = itrs.cycles;
1081     final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1082     final int prevCycles = this.prevCycles;
1083     final int prevTakeIndex = this.prevTakeIndex;
1084    
1085     if (cycles != prevCycles || takeIndex != prevTakeIndex) {
1086     final int len = items.length;
1087     // how far takeIndex has advanced since the previous
1088     // operation of this iterator
1089     long dequeues = (cycles - prevCycles) * len
1090     + (takeIndex - prevTakeIndex);
1091    
1092     // Check indices for invalidation
1093     if (invalidated(lastRet, prevTakeIndex, dequeues, len))
1094 jsr166 1.91 lastRet = REMOVED;
1095 jsr166 1.89 if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
1096 jsr166 1.91 nextIndex = REMOVED;
1097 jsr166 1.89 if (invalidated(cursor, prevTakeIndex, dequeues, len))
1098     cursor = takeIndex;
1099    
1100     if (cursor < 0 && nextIndex < 0 && lastRet < 0)
1101     detach();
1102     else {
1103     this.prevCycles = cycles;
1104     this.prevTakeIndex = takeIndex;
1105     }
1106     }
1107     }
1108    
1109     /**
1110     * Called when itrs should stop tracking this iterator, either
1111     * because there are no more indices to update (cursor < 0 &&
1112     * nextIndex < 0 && lastRet < 0) or as a special exception, when
1113     * lastRet >= 0, because hasNext() is about to return false for the
1114     * first time. Call only from iterating thread.
1115     */
1116     private void detach() {
1117     // Switch to detached mode
1118     assert lock.getHoldCount() == 1;
1119 jsr166 1.91 assert cursor == NONE;
1120 jsr166 1.89 assert nextIndex < 0;
1121     assert lastRet < 0 || nextItem == null;
1122     assert lastRet < 0 ^ lastItem != null;
1123     if (prevTakeIndex >= 0) {
1124     assert itrs != null;
1125 jsr166 1.91 prevTakeIndex = DETACHED;
1126 jsr166 1.89 // try to unlink from itrs (but not too hard)
1127     itrs.doSomeSweeping(true);
1128     }
1129     }
1130    
1131     /**
1132     * For performance reasons, we would like not to acquire a lock in
1133     * hasNext in the common case. To allow for this, we only access
1134     * fields (i.e. nextItem) that are not modified by update operations
1135     * triggered by queue modifications.
1136     */
1137 dl 1.5 public boolean hasNext() {
1138 jsr166 1.89 assert lock.getHoldCount() == 0;
1139     if (nextItem != null)
1140     return true;
1141     noNext();
1142     return false;
1143     }
1144    
1145     private void noNext() {
1146     final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1147     lock.lock();
1148     try {
1149 jsr166 1.91 assert cursor == NONE;
1150     assert nextIndex == NONE;
1151 jsr166 1.89 if (!isDetached()) {
1152     assert lastRet >= 0;
1153     incorporateDequeues(); // might update lastRet
1154     if (lastRet >= 0) {
1155     lastItem = itemAt(lastRet);
1156     assert lastItem != null;
1157     detach();
1158     }
1159     }
1160     assert isDetached();
1161     assert lastRet < 0 ^ lastItem != null;
1162     } finally {
1163     lock.unlock();
1164     }
1165 dl 1.5 }
1166 tim 1.12
1167 dl 1.5 public E next() {
1168 jsr166 1.89 assert lock.getHoldCount() == 0;
1169     final E x = nextItem;
1170     if (x == null)
1171     throw new NoSuchElementException();
1172 dl 1.66 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1173     lock.lock();
1174     try {
1175 jsr166 1.92 if (!isDetached())
1176 jsr166 1.89 incorporateDequeues();
1177 jsr166 1.91 assert nextIndex != NONE;
1178 jsr166 1.89 assert lastItem == null;
1179 dl 1.66 lastRet = nextIndex;
1180 jsr166 1.89 final int cursor = this.cursor;
1181     if (cursor >= 0) {
1182     nextItem = itemAt(nextIndex = cursor);
1183     assert nextItem != null;
1184     this.cursor = incCursor(cursor);
1185     } else {
1186 jsr166 1.91 nextIndex = NONE;
1187 jsr166 1.89 nextItem = null;
1188     }
1189 dl 1.66 } finally {
1190     lock.unlock();
1191 dl 1.2 }
1192 jsr166 1.89 return x;
1193 dl 1.5 }
1194 tim 1.12
1195 dl 1.5 public void remove() {
1196 jsr166 1.89 assert lock.getHoldCount() == 0;
1197 dl 1.36 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1198 dl 1.5 lock.lock();
1199     try {
1200 jsr166 1.92 if (!isDetached())
1201     incorporateDequeues(); // might update lastRet or detach
1202     final int lastRet = this.lastRet;
1203     this.lastRet = NONE;
1204 jsr166 1.89 if (lastRet >= 0) {
1205 jsr166 1.92 if (!isDetached())
1206     removeAt(lastRet);
1207     else {
1208     final E lastItem = this.lastItem;
1209 jsr166 1.89 assert lastItem != null;
1210 jsr166 1.92 this.lastItem = null;
1211 jsr166 1.89 if (itemAt(lastRet) == lastItem)
1212     removeAt(lastRet);
1213     }
1214 jsr166 1.91 } else if (lastRet == NONE)
1215 dl 1.66 throw new IllegalStateException();
1216 jsr166 1.91 // else lastRet == REMOVED and the last returned element was
1217 jsr166 1.89 // previously asynchronously removed via an operation other
1218     // than this.remove(), so nothing to do.
1219    
1220     if (cursor < 0 && nextIndex < 0)
1221     detach();
1222     } finally {
1223     lock.unlock();
1224 jsr166 1.91 assert lastRet == NONE;
1225 jsr166 1.89 assert lastItem == null;
1226     }
1227     }
1228    
1229     /**
1230     * Called to notify the iterator that the queue is empty, or that it
1231     * has fallen hopelessly behind, so that it should abandon any
1232     * further iteration, except possibly to return one more element
1233     * from next(), as promised by returning true from hasNext().
1234     */
1235     void shutdown() {
1236     assert lock.getHoldCount() == 1;
1237 jsr166 1.91 cursor = NONE;
1238 jsr166 1.89 if (nextIndex >= 0)
1239 jsr166 1.91 nextIndex = REMOVED;
1240 jsr166 1.89 if (lastRet >= 0) {
1241 jsr166 1.91 lastRet = REMOVED;
1242 jsr166 1.61 lastItem = null;
1243 jsr166 1.89 }
1244 jsr166 1.91 prevTakeIndex = DETACHED;
1245 jsr166 1.89 // Don't set nextItem to null because we must continue to be
1246     // able to return it on next().
1247     //
1248     // Caller will unlink from itrs when convenient.
1249     }
1250    
1251     private int distance(int index, int prevTakeIndex, int length) {
1252     int distance = index - prevTakeIndex;
1253     if (distance < 0)
1254     distance += length;
1255     return distance;
1256     }
1257    
1258     /**
1259 jsr166 1.90 * Called whenever an interior remove (not at takeIndex) occured.
1260 jsr166 1.89 *
1261 jsr166 1.90 * @return true if this iterator should be unlinked from itrs
1262 jsr166 1.89 */
1263 jsr166 1.90 boolean removedAt(int removedIndex) {
1264 jsr166 1.89 assert lock.getHoldCount() == 1;
1265     if (isDetached())
1266     return true;
1267    
1268     final int cycles = itrs.cycles;
1269     final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1270     final int prevCycles = this.prevCycles;
1271     final int prevTakeIndex = this.prevTakeIndex;
1272     final int len = items.length;
1273     int cycleDiff = cycles - prevCycles;
1274 jsr166 1.90 if (removedIndex < takeIndex)
1275 jsr166 1.89 cycleDiff++;
1276     final int removedDistance =
1277 jsr166 1.90 (cycleDiff * len) + (removedIndex - prevTakeIndex);
1278 jsr166 1.89 assert removedDistance >= 0;
1279     int cursor = this.cursor;
1280     if (cursor >= 0) {
1281     int x = distance(cursor, prevTakeIndex, len);
1282     if (x == removedDistance) {
1283 jsr166 1.90 if (cursor == putIndex)
1284 jsr166 1.91 this.cursor = cursor = NONE;
1285 jsr166 1.89 }
1286     else if (x > removedDistance) {
1287     assert cursor != prevTakeIndex;
1288     this.cursor = cursor = dec(cursor);
1289 jsr166 1.71 }
1290 dl 1.5 }
1291 jsr166 1.89 int lastRet = this.lastRet;
1292     if (lastRet >= 0) {
1293     int x = distance(lastRet, prevTakeIndex, len);
1294     if (x == removedDistance)
1295 jsr166 1.91 this.lastRet = lastRet = REMOVED;
1296 jsr166 1.89 else if (x > removedDistance)
1297     this.lastRet = lastRet = dec(lastRet);
1298     }
1299     int nextIndex = this.nextIndex;
1300     if (nextIndex >= 0) {
1301     int x = distance(nextIndex, prevTakeIndex, len);
1302     if (x == removedDistance)
1303 jsr166 1.91 this.nextIndex = nextIndex = REMOVED;
1304 jsr166 1.89 else if (x > removedDistance)
1305     this.nextIndex = nextIndex = dec(nextIndex);
1306     }
1307     else if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
1308 jsr166 1.91 this.prevTakeIndex = DETACHED;
1309 jsr166 1.89 return true;
1310     }
1311     return false;
1312     }
1313    
1314     /**
1315     * Called whenever takeIndex wraps around to zero.
1316     *
1317 jsr166 1.90 * @return true if this iterator should be unlinked from itrs
1318 jsr166 1.89 */
1319     boolean takeIndexWrapped() {
1320     assert lock.getHoldCount() == 1;
1321     if (isDetached())
1322     return true;
1323     if (itrs.cycles - prevCycles > 1) {
1324     // All the elements that existed at the time of the last
1325     // operation are gone, so abandon further iteration.
1326     shutdown();
1327     return true;
1328     }
1329     return false;
1330 dl 1.5 }
1331 jsr166 1.89
1332     // /** Uncomment for debugging. */
1333     // public String toString() {
1334     // return ("cursor=" + cursor + " " +
1335     // "nextIndex=" + nextIndex + " " +
1336     // "lastRet=" + lastRet + " " +
1337     // "nextItem=" + nextItem + " " +
1338     // "lastItem=" + lastItem + " " +
1339     // "prevCycles=" + prevCycles + " " +
1340     // "prevTakeIndex=" + prevTakeIndex + " " +
1341     // "size()=" + size() + " " +
1342     // "remainingCapacity()=" + remainingCapacity());
1343     // }
1344 tim 1.1 }
1345     }