/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package java.util.concurrent; import java.util.concurrent.locks.*; import java.util.*; /** * A bounded {@linkplain BlockingQueue blocking queue} backed by an * array. This queue orders elements FIFO (first-in-first-out). The * head of the queue is that element that has been on the * queue the longest time. The tail of the queue is that * element that has been on the queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * *

This is a classic "bounded buffer", in which a * fixed-sized array holds elements inserted by producers and * extracted by consumers. Once created, the capacity cannot be * increased. Attempts to offer an element to a full queue will * result in the offer operation blocking; attempts to retrieve an * element from an empty queue will similarly block. * *

This class supports an optional fairness policy for ordering * waiting producer and consumer threads. By default, this ordering * is not guaranteed. However, a queue constructed with fairness set * to true grants threads access in FIFO order. Fairness * generally decreases throughput but reduces variability and avoids * starvation. * *

This class implements all of the optional methods * of the {@link Collection} and {@link Iterator} interfaces. * *

This class is a member of the * * Java Collections Framework. * * @since 1.5 * @author Doug Lea * @param the type of elements held in this collection */ public class ArrayBlockingQueue extends AbstractQueue implements BlockingQueue, java.io.Serializable { /** * Serialization ID. This class relies on default serialization * even for the items array, which is default-serialized, even if * it is empty. Otherwise it could not be declared final, which is * necessary here. */ private static final long serialVersionUID = -817911632652898426L; /** The queued items */ private final E[] items; /** items index for next take, poll or remove */ private transient int takeIndex; /** items index for next put, offer, or add. */ private transient int putIndex; /** Number of items in the queue */ private int count; /* * Concurrency control uses the classic two-condition algorithm * found in any textbook. */ /** Main lock guarding all access */ private final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull; // Internal helper methods /** * Circularly increment i. */ final int inc(int i) { return (++i == items.length)? 0 : i; } /** * Insert element at current put position, advance, and signal. * Call only when holding lock. */ private void insert(E x) { items[putIndex] = x; putIndex = inc(putIndex); ++count; notEmpty.signal(); } /** * Extract element at current take position, advance, and signal. * Call only when holding lock. */ private E extract() { final E[] items = this.items; E x = items[takeIndex]; items[takeIndex] = null; takeIndex = inc(takeIndex); --count; notFull.signal(); return x; } /** * Utility for remove and iterator.remove: Delete item at position i. * Call only when holding lock. */ void removeAt(int i) { final E[] items = this.items; // if removing front item, just advance if (i == takeIndex) { items[takeIndex] = null; takeIndex = inc(takeIndex); } else { // slide over all others up through putIndex. for (;;) { int nexti = inc(i); if (nexti != putIndex) { items[i] = items[nexti]; i = nexti; } else { items[i] = null; putIndex = i; break; } } } --count; notFull.signal(); } /** * Creates an ArrayBlockingQueue with the given (fixed) * capacity and default access policy. * @param capacity the capacity of this queue * @throws IllegalArgumentException if capacity is less than 1 */ public ArrayBlockingQueue(int capacity) { this(capacity, false); } /** * Creates an ArrayBlockingQueue with the given (fixed) * capacity and the specified access policy. * @param capacity the capacity of this queue * @param fair if true then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; if false * the access order is unspecified. * @throws IllegalArgumentException if capacity is less than 1 */ public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = (E[]) new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } /** * Creates an ArrayBlockingQueue with the given (fixed) * capacity, the specified access policy and initially containing the * elements of the given collection, * added in traversal order of the collection's iterator. * @param capacity the capacity of this queue * @param fair if true then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; if false * the access order is unspecified. * @param c the collection of elements to initially contain * @throws IllegalArgumentException if capacity is less than * c.size(), or less than 1. * @throws NullPointerException if c or any element within it * is null */ public ArrayBlockingQueue(int capacity, boolean fair, Collection c) { this(capacity, fair); if (capacity < c.size()) throw new IllegalArgumentException(); for (Iterator it = c.iterator(); it.hasNext();) add(it.next()); } /** * Inserts the specified element at the tail of this queue if possible, * returning immediately if this queue is full. * * @param o the element to add. * @return true if it was possible to add the element to * this queue, else false * @throws NullPointerException if the specified element is null */ public boolean offer(E o) { if (o == null) throw new NullPointerException(); final ReentrantLock lock = this.lock; lock.lock(); try { if (count == items.length) return false; else { insert(o); return true; } } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting if * necessary up to the specified wait time for space to become available. * @param o the element to add * @param timeout how long to wait before giving up, in units of * unit * @param unit a TimeUnit determining how to interpret the * timeout parameter * @return true if successful, or false if * the specified waiting time elapses before space is available. * @throws InterruptedException if interrupted while waiting. * @throws NullPointerException if the specified element is null. */ public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException { if (o == null) throw new NullPointerException(); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { long nanos = unit.toNanos(timeout); for (;;) { if (count != items.length) { insert(o); return true; } if (nanos <= 0) return false; try { nanos = notFull.awaitNanos(nanos); } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } } } finally { lock.unlock(); } } public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { if (count == 0) return null; E x = extract(); return x; } finally { lock.unlock(); } } public E poll(long timeout, TimeUnit unit) throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { long nanos = unit.toNanos(timeout); for (;;) { if (count != 0) { E x = extract(); return x; } if (nanos <= 0) return null; try { nanos = notEmpty.awaitNanos(nanos); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } } } finally { lock.unlock(); } } public boolean remove(Object o) { if (o == null) return false; final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int k = 0; for (;;) { if (k++ >= count) return false; if (o.equals(items[i])) { removeAt(i); return true; } i = inc(i); } } finally { lock.unlock(); } } public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : items[takeIndex]; } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { try { while (count == 0) notEmpty.await(); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } E x = extract(); return x; } finally { lock.unlock(); } } /** * Adds the specified element to the tail of this queue, waiting if * necessary for space to become available. * @param o the element to add * @throws InterruptedException if interrupted while waiting. * @throws NullPointerException if the specified element is null. */ public void put(E o) throws InterruptedException { if (o == null) throw new NullPointerException(); final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { try { while (count == items.length) notFull.await(); } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } insert(o); } finally { lock.unlock(); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue. */ public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of elements that this queue can ideally (in * the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current size of this queue. *

Note that you cannot always tell if * an attempt to add an element will succeed by * inspecting remainingCapacity because it may be the * case that a waiting consumer is ready to take an * element out of an otherwise full queue. */ public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.length - count; } finally { lock.unlock(); } } public boolean contains(Object o) { if (o == null) return false; final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int k = 0; while (k++ < count) { if (o.equals(items[i])) return true; i = inc(i); } return false; } finally { lock.unlock(); } } public Object[] toArray() { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { Object[] a = new Object[count]; int k = 0; int i = takeIndex; while (k < count) { a[k++] = items[i]; i = inc(i); } return a; } finally { lock.unlock(); } } public T[] toArray(T[] a) { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { if (a.length < count) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count ); int k = 0; int i = takeIndex; while (k < count) { a[k++] = (T)items[i]; i = inc(i); } if (a.length > count) a[count] = null; return a; } finally { lock.unlock(); } } public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { return super.toString(); } finally { lock.unlock(); } } public void clear() { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int k = count; while (k-- > 0) { items[i] = null; i = inc(i); } count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } finally { lock.unlock(); } } public int drainTo(Collection c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int n = 0; int max = count; while (n < max) { c.add(items[i]); items[i] = null; i = inc(i); ++n; } if (n > 0) { count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } return n; } finally { lock.unlock(); } } public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int n = 0; int sz = count; int max = (maxElements < count)? maxElements : count; while (n < max) { c.add(items[i]); items[i] = null; i = inc(i); ++n; } if (n > 0) { count -= n; takeIndex = i; notFull.signalAll(); } return n; } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The returned Iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence. */ public Iterator iterator() { final ReentrantLock lock = this.lock; lock.lock(); try { return new Itr(); } finally { lock.unlock(); } } /** * Iterator for ArrayBlockingQueue */ private class Itr implements Iterator { /** * Index of element to be returned by next, * or a negative number if no such. */ private int nextIndex; /** * nextItem holds on to item fields because once we claim * that an element exists in hasNext(), we must return it in * the following next() call even if it was in the process of * being removed when hasNext() was called. **/ private E nextItem; /** * Index of element returned by most recent call to next. * Reset to -1 if this element is deleted by a call to remove. */ private int lastRet; Itr() { lastRet = -1; if (count == 0) nextIndex = -1; else { nextIndex = takeIndex; nextItem = items[takeIndex]; } } public boolean hasNext() { /* * No sync. We can return true by mistake here * only if this iterator passed across threads, * which we don't support anyway. */ return nextIndex >= 0; } /** * Check whether nextIndex is valid; if so setting nextItem. * Stops iterator when either hits putIndex or sees null item. */ private void checkNext() { if (nextIndex == putIndex) { nextIndex = -1; nextItem = null; } else { nextItem = items[nextIndex]; if (nextItem == null) nextIndex = -1; } } public E next() { final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { if (nextIndex < 0) throw new NoSuchElementException(); lastRet = nextIndex; E x = nextItem; nextIndex = inc(nextIndex); checkNext(); return x; } finally { lock.unlock(); } } public void remove() { final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { int i = lastRet; if (i == -1) throw new IllegalStateException(); lastRet = -1; int ti = takeIndex; removeAt(i); // back up cursor (reset to front if was first element) nextIndex = (i == ti) ? takeIndex : i; checkNext(); } finally { lock.unlock(); } } } }