ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.145
Committed: Sun Nov 18 18:03:10 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.144: +9 -9 lines
Log Message:
normalize whitespace after <p>

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.atomic.LongAdder;
9     import java.util.concurrent.ForkJoinPool;
10     import java.util.concurrent.ForkJoinTask;
11    
12     import java.util.Comparator;
13     import java.util.Arrays;
14     import java.util.Map;
15     import java.util.Set;
16     import java.util.Collection;
17     import java.util.AbstractMap;
18     import java.util.AbstractSet;
19     import java.util.AbstractCollection;
20     import java.util.Hashtable;
21     import java.util.HashMap;
22     import java.util.Iterator;
23     import java.util.Enumeration;
24     import java.util.ConcurrentModificationException;
25     import java.util.NoSuchElementException;
26     import java.util.concurrent.ConcurrentMap;
27     import java.util.concurrent.ThreadLocalRandom;
28     import java.util.concurrent.locks.LockSupport;
29     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30     import java.util.concurrent.atomic.AtomicReference;
31    
32 tim 1.1 import java.io.Serializable;
33    
34     /**
35 dl 1.4 * A hash table supporting full concurrency of retrievals and
36 dl 1.119 * high expected concurrency for updates. This class obeys the
37 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
38 dl 1.19 * includes versions of methods corresponding to each method of
39 dl 1.119 * {@code Hashtable}. However, even though all operations are
40 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
41     * and there is <em>not</em> any support for locking the entire table
42     * in a way that prevents all access. This class is fully
43 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
44 dl 1.4 * thread safety but not on its synchronization details.
45 tim 1.11 *
46 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
47 dl 1.119 * block, so may overlap with update operations (including {@code put}
48     * and {@code remove}). Retrievals reflect the results of the most
49     * recently <em>completed</em> update operations holding upon their
50 dl 1.126 * onset. (More formally, an update operation for a given key bears a
51     * <em>happens-before</em> relation with any (non-null) retrieval for
52     * that key reporting the updated value.) For aggregate operations
53     * such as {@code putAll} and {@code clear}, concurrent retrievals may
54     * reflect insertion or removal of only some entries. Similarly,
55     * Iterators and Enumerations return elements reflecting the state of
56     * the hash table at some point at or since the creation of the
57     * iterator/enumeration. They do <em>not</em> throw {@link
58     * ConcurrentModificationException}. However, iterators are designed
59     * to be used by only one thread at a time. Bear in mind that the
60     * results of aggregate status methods including {@code size}, {@code
61     * isEmpty}, and {@code containsValue} are typically useful only when
62     * a map is not undergoing concurrent updates in other threads.
63     * Otherwise the results of these methods reflect transient states
64     * that may be adequate for monitoring or estimation purposes, but not
65     * for program control.
66 tim 1.1 *
67 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
68 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
69     * the same slot modulo the table size), with the expected average
70     * effect of maintaining roughly two bins per mapping (corresponding
71     * to a 0.75 load factor threshold for resizing). There may be much
72     * variance around this average as mappings are added and removed, but
73     * overall, this maintains a commonly accepted time/space tradeoff for
74     * hash tables. However, resizing this or any other kind of hash
75     * table may be a relatively slow operation. When possible, it is a
76     * good idea to provide a size estimate as an optional {@code
77     * initialCapacity} constructor argument. An additional optional
78     * {@code loadFactor} constructor argument provides a further means of
79     * customizing initial table capacity by specifying the table density
80     * to be used in calculating the amount of space to allocate for the
81     * given number of elements. Also, for compatibility with previous
82     * versions of this class, constructors may optionally specify an
83     * expected {@code concurrencyLevel} as an additional hint for
84     * internal sizing. Note that using many keys with exactly the same
85     * {@code hashCode()} is a sure way to slow down performance of any
86     * hash table.
87 tim 1.1 *
88 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
89 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90     * (using {@link #keySet(Object)} when only keys are of interest, and the
91     * mapped values are (perhaps transiently) not used or all take the
92     * same mapping value.
93     *
94 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
95 dl 1.137 * form of histogram or multiset) by using {@link LongAdder} values
96     * and initializing via {@link #computeIfAbsent}. For example, to add
97     * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
98     * can use {@code freqs.computeIfAbsent(k -> new
99     * LongAdder()).increment();}
100     *
101 dl 1.45 * <p>This class and its views and iterators implement all of the
102     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
103     * interfaces.
104 dl 1.23 *
105 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
106 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
107 tim 1.1 *
108 dl 1.137 * <p>ConcurrentHashMaps support parallel operations using the {@link
109 jsr166 1.140 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
110 dl 1.137 * are available in class {@link ForkJoinTasks}). These operations are
111     * designed to be safely, and often sensibly, applied even with maps
112     * that are being concurrently updated by other threads; for example,
113     * when computing a snapshot summary of the values in a shared
114     * registry. There are three kinds of operation, each with four
115     * forms, accepting functions with Keys, Values, Entries, and (Key,
116 dl 1.142 * Value) arguments and/or return values. (The first three forms are
117     * also available via the {@link #keySet()}, {@link #values()} and
118     * {@link #entrySet()} views). Because the elements of a
119 dl 1.137 * ConcurrentHashMap are not ordered in any particular way, and may be
120     * processed in different orders in different parallel executions, the
121     * correctness of supplied functions should not depend on any
122     * ordering, or on any other objects or values that may transiently
123     * change while computation is in progress; and except for forEach
124     * actions, should ideally be side-effect-free.
125     *
126     * <ul>
127     * <li> forEach: Perform a given action on each element.
128     * A variant form applies a given transformation on each element
129     * before performing the action.</li>
130     *
131     * <li> search: Return the first available non-null result of
132     * applying a given function on each element; skipping further
133     * search when a result is found.</li>
134     *
135     * <li> reduce: Accumulate each element. The supplied reduction
136     * function cannot rely on ordering (more formally, it should be
137     * both associative and commutative). There are five variants:
138     *
139     * <ul>
140     *
141     * <li> Plain reductions. (There is not a form of this method for
142     * (key, value) function arguments since there is no corresponding
143     * return type.)</li>
144     *
145     * <li> Mapped reductions that accumulate the results of a given
146     * function applied to each element.</li>
147     *
148     * <li> Reductions to scalar doubles, longs, and ints, using a
149     * given basis value.</li>
150     *
151     * </li>
152     * </ul>
153     * </ul>
154     *
155     * <p>The concurrency properties of bulk operations follow
156     * from those of ConcurrentHashMap: Any non-null result returned
157     * from {@code get(key)} and related access methods bears a
158     * happens-before relation with the associated insertion or
159     * update. The result of any bulk operation reflects the
160     * composition of these per-element relations (but is not
161     * necessarily atomic with respect to the map as a whole unless it
162     * is somehow known to be quiescent). Conversely, because keys
163     * and values in the map are never null, null serves as a reliable
164     * atomic indicator of the current lack of any result. To
165     * maintain this property, null serves as an implicit basis for
166     * all non-scalar reduction operations. For the double, long, and
167     * int versions, the basis should be one that, when combined with
168     * any other value, returns that other value (more formally, it
169     * should be the identity element for the reduction). Most common
170     * reductions have these properties; for example, computing a sum
171     * with basis 0 or a minimum with basis MAX_VALUE.
172     *
173     * <p>Search and transformation functions provided as arguments
174     * should similarly return null to indicate the lack of any result
175     * (in which case it is not used). In the case of mapped
176     * reductions, this also enables transformations to serve as
177     * filters, returning null (or, in the case of primitive
178     * specializations, the identity basis) if the element should not
179     * be combined. You can create compound transformations and
180     * filterings by composing them yourself under this "null means
181     * there is nothing there now" rule before using them in search or
182     * reduce operations.
183     *
184     * <p>Methods accepting and/or returning Entry arguments maintain
185     * key-value associations. They may be useful for example when
186     * finding the key for the greatest value. Note that "plain" Entry
187     * arguments can be supplied using {@code new
188     * AbstractMap.SimpleEntry(k,v)}.
189     *
190 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
191 dl 1.137 * exception encountered in the application of a supplied
192     * function. Bear in mind when handling such exceptions that other
193     * concurrently executing functions could also have thrown
194     * exceptions, or would have done so if the first exception had
195     * not occurred.
196     *
197     * <p>Parallel speedups for bulk operations compared to sequential
198     * processing are common but not guaranteed. Operations involving
199     * brief functions on small maps may execute more slowly than
200     * sequential loops if the underlying work to parallelize the
201 jsr166 1.141 * computation is more expensive than the computation itself.
202     * Similarly, parallelization may not lead to much actual parallelism
203     * if all processors are busy performing unrelated tasks.
204 dl 1.137 *
205 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
206 dl 1.137 *
207     * <p><em>jsr166e note: During transition, this class
208     * uses nested functional interfaces with different names but the
209 jsr166 1.144 * same forms as those expected for JDK8.</em>
210 dl 1.137 *
211 dl 1.42 * <p>This class is a member of the
212 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213 dl 1.42 * Java Collections Framework</a>.
214     *
215 dl 1.8 * @since 1.5
216     * @author Doug Lea
217 dl 1.27 * @param <K> the type of keys maintained by this map
218 jsr166 1.64 * @param <V> the type of mapped values
219 dl 1.8 */
220 dl 1.119 public class ConcurrentHashMap<K, V>
221     implements ConcurrentMap<K, V>, Serializable {
222 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
223 tim 1.1
224 dl 1.119 /**
225     * A partitionable iterator. A Spliterator can be traversed
226     * directly, but can also be partitioned (before traversal) by
227     * creating another Spliterator that covers a non-overlapping
228     * portion of the elements, and so may be amenable to parallel
229     * execution.
230     *
231 jsr166 1.145 * <p>This interface exports a subset of expected JDK8
232 dl 1.119 * functionality.
233     *
234     * <p>Sample usage: Here is one (of the several) ways to compute
235     * the sum of the values held in a map using the ForkJoin
236     * framework. As illustrated here, Spliterators are well suited to
237     * designs in which a task repeatedly splits off half its work
238     * into forked subtasks until small enough to process directly,
239     * and then joins these subtasks. Variants of this style can also
240     * be used in completion-based designs.
241     *
242     * <pre>
243     * {@code ConcurrentHashMap<String, Long> m = ...
244     * // split as if have 8 * parallelism, for load balance
245     * int n = m.size();
246     * int p = aForkJoinPool.getParallelism() * 8;
247     * int split = (n < p)? n : p;
248     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249     * // ...
250     * static class SumValues extends RecursiveTask<Long> {
251     * final Spliterator<Long> s;
252     * final int split; // split while > 1
253     * final SumValues nextJoin; // records forked subtasks to join
254     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256     * }
257     * public Long compute() {
258     * long sum = 0;
259     * SumValues subtasks = null; // fork subtasks
260     * for (int s = split >>> 1; s > 0; s >>>= 1)
261     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262     * while (s.hasNext()) // directly process remaining elements
263     * sum += s.next();
264     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
265     * sum += t.join(); // collect subtask results
266     * return sum;
267     * }
268     * }
269     * }</pre>
270     */
271     public static interface Spliterator<T> extends Iterator<T> {
272     /**
273     * Returns a Spliterator covering approximately half of the
274     * elements, guaranteed not to overlap with those subsequently
275     * returned by this Spliterator. After invoking this method,
276     * the current Spliterator will <em>not</em> produce any of
277     * the elements of the returned Spliterator, but the two
278     * Spliterators together will produce all of the elements that
279     * would have been produced by this Spliterator had this
280     * method not been called. The exact number of elements
281     * produced by the returned Spliterator is not guaranteed, and
282     * may be zero (i.e., with {@code hasNext()} reporting {@code
283     * false}) if this Spliterator cannot be further split.
284     *
285     * @return a Spliterator covering approximately half of the
286     * elements
287     * @throws IllegalStateException if this Spliterator has
288     * already commenced traversing elements
289     */
290     Spliterator<T> split();
291     }
292    
293 dl 1.137
294 tim 1.1 /*
295 dl 1.119 * Overview:
296     *
297     * The primary design goal of this hash table is to maintain
298     * concurrent readability (typically method get(), but also
299     * iterators and related methods) while minimizing update
300     * contention. Secondary goals are to keep space consumption about
301     * the same or better than java.util.HashMap, and to support high
302     * initial insertion rates on an empty table by many threads.
303     *
304     * Each key-value mapping is held in a Node. Because Node fields
305     * can contain special values, they are defined using plain Object
306     * types. Similarly in turn, all internal methods that use them
307     * work off Object types. And similarly, so do the internal
308     * methods of auxiliary iterator and view classes. All public
309     * generic typed methods relay in/out of these internal methods,
310     * supplying null-checks and casts as needed. This also allows
311     * many of the public methods to be factored into a smaller number
312     * of internal methods (although sadly not so for the five
313     * variants of put-related operations). The validation-based
314     * approach explained below leads to a lot of code sprawl because
315     * retry-control precludes factoring into smaller methods.
316     *
317     * The table is lazily initialized to a power-of-two size upon the
318     * first insertion. Each bin in the table normally contains a
319     * list of Nodes (most often, the list has only zero or one Node).
320     * Table accesses require volatile/atomic reads, writes, and
321     * CASes. Because there is no other way to arrange this without
322     * adding further indirections, we use intrinsics
323     * (sun.misc.Unsafe) operations. The lists of nodes within bins
324     * are always accurately traversable under volatile reads, so long
325     * as lookups check hash code and non-nullness of value before
326     * checking key equality.
327     *
328     * We use the top two bits of Node hash fields for control
329     * purposes -- they are available anyway because of addressing
330     * constraints. As explained further below, these top bits are
331     * used as follows:
332     * 00 - Normal
333     * 01 - Locked
334     * 11 - Locked and may have a thread waiting for lock
335     * 10 - Node is a forwarding node
336     *
337     * The lower 30 bits of each Node's hash field contain a
338     * transformation of the key's hash code, except for forwarding
339     * nodes, for which the lower bits are zero (and so always have
340     * hash field == MOVED).
341     *
342     * Insertion (via put or its variants) of the first node in an
343     * empty bin is performed by just CASing it to the bin. This is
344     * by far the most common case for put operations under most
345     * key/hash distributions. Other update operations (insert,
346     * delete, and replace) require locks. We do not want to waste
347     * the space required to associate a distinct lock object with
348     * each bin, so instead use the first node of a bin list itself as
349     * a lock. Blocking support for these locks relies on the builtin
350     * "synchronized" monitors. However, we also need a tryLock
351     * construction, so we overlay these by using bits of the Node
352     * hash field for lock control (see above), and so normally use
353     * builtin monitors only for blocking and signalling using
354     * wait/notifyAll constructions. See Node.tryAwaitLock.
355     *
356     * Using the first node of a list as a lock does not by itself
357     * suffice though: When a node is locked, any update must first
358     * validate that it is still the first node after locking it, and
359     * retry if not. Because new nodes are always appended to lists,
360     * once a node is first in a bin, it remains first until deleted
361     * or the bin becomes invalidated (upon resizing). However,
362     * operations that only conditionally update may inspect nodes
363     * until the point of update. This is a converse of sorts to the
364     * lazy locking technique described by Herlihy & Shavit.
365     *
366     * The main disadvantage of per-bin locks is that other update
367     * operations on other nodes in a bin list protected by the same
368     * lock can stall, for example when user equals() or mapping
369     * functions take a long time. However, statistically, under
370     * random hash codes, this is not a common problem. Ideally, the
371     * frequency of nodes in bins follows a Poisson distribution
372     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
373     * parameter of about 0.5 on average, given the resizing threshold
374     * of 0.75, although with a large variance because of resizing
375     * granularity. Ignoring variance, the expected occurrences of
376     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
377     * first values are:
378     *
379     * 0: 0.60653066
380     * 1: 0.30326533
381     * 2: 0.07581633
382     * 3: 0.01263606
383     * 4: 0.00157952
384     * 5: 0.00015795
385     * 6: 0.00001316
386     * 7: 0.00000094
387     * 8: 0.00000006
388     * more: less than 1 in ten million
389     *
390     * Lock contention probability for two threads accessing distinct
391     * elements is roughly 1 / (8 * #elements) under random hashes.
392     *
393     * Actual hash code distributions encountered in practice
394     * sometimes deviate significantly from uniform randomness. This
395     * includes the case when N > (1<<30), so some keys MUST collide.
396     * Similarly for dumb or hostile usages in which multiple keys are
397     * designed to have identical hash codes. Also, although we guard
398     * against the worst effects of this (see method spread), sets of
399     * hashes may differ only in bits that do not impact their bin
400     * index for a given power-of-two mask. So we use a secondary
401     * strategy that applies when the number of nodes in a bin exceeds
402     * a threshold, and at least one of the keys implements
403     * Comparable. These TreeBins use a balanced tree to hold nodes
404     * (a specialized form of red-black trees), bounding search time
405     * to O(log N). Each search step in a TreeBin is around twice as
406     * slow as in a regular list, but given that N cannot exceed
407     * (1<<64) (before running out of addresses) this bounds search
408     * steps, lock hold times, etc, to reasonable constants (roughly
409     * 100 nodes inspected per operation worst case) so long as keys
410     * are Comparable (which is very common -- String, Long, etc).
411     * TreeBin nodes (TreeNodes) also maintain the same "next"
412     * traversal pointers as regular nodes, so can be traversed in
413     * iterators in the same way.
414     *
415     * The table is resized when occupancy exceeds a percentage
416     * threshold (nominally, 0.75, but see below). Only a single
417     * thread performs the resize (using field "sizeCtl", to arrange
418     * exclusion), but the table otherwise remains usable for reads
419     * and updates. Resizing proceeds by transferring bins, one by
420     * one, from the table to the next table. Because we are using
421     * power-of-two expansion, the elements from each bin must either
422     * stay at same index, or move with a power of two offset. We
423     * eliminate unnecessary node creation by catching cases where old
424     * nodes can be reused because their next fields won't change. On
425     * average, only about one-sixth of them need cloning when a table
426     * doubles. The nodes they replace will be garbage collectable as
427     * soon as they are no longer referenced by any reader thread that
428     * may be in the midst of concurrently traversing table. Upon
429     * transfer, the old table bin contains only a special forwarding
430     * node (with hash field "MOVED") that contains the next table as
431     * its key. On encountering a forwarding node, access and update
432     * operations restart, using the new table.
433     *
434     * Each bin transfer requires its bin lock. However, unlike other
435     * cases, a transfer can skip a bin if it fails to acquire its
436     * lock, and revisit it later (unless it is a TreeBin). Method
437     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
438     * have been skipped because of failure to acquire a lock, and
439     * blocks only if none are available (i.e., only very rarely).
440     * The transfer operation must also ensure that all accessible
441     * bins in both the old and new table are usable by any traversal.
442     * When there are no lock acquisition failures, this is arranged
443     * simply by proceeding from the last bin (table.length - 1) up
444     * towards the first. Upon seeing a forwarding node, traversals
445     * (see class Iter) arrange to move to the new table
446     * without revisiting nodes. However, when any node is skipped
447     * during a transfer, all earlier table bins may have become
448     * visible, so are initialized with a reverse-forwarding node back
449     * to the old table until the new ones are established. (This
450     * sometimes requires transiently locking a forwarding node, which
451     * is possible under the above encoding.) These more expensive
452     * mechanics trigger only when necessary.
453     *
454     * The traversal scheme also applies to partial traversals of
455     * ranges of bins (via an alternate Traverser constructor)
456     * to support partitioned aggregate operations. Also, read-only
457     * operations give up if ever forwarded to a null table, which
458     * provides support for shutdown-style clearing, which is also not
459     * currently implemented.
460     *
461     * Lazy table initialization minimizes footprint until first use,
462     * and also avoids resizings when the first operation is from a
463     * putAll, constructor with map argument, or deserialization.
464     * These cases attempt to override the initial capacity settings,
465     * but harmlessly fail to take effect in cases of races.
466     *
467     * The element count is maintained using a LongAdder, which avoids
468     * contention on updates but can encounter cache thrashing if read
469     * too frequently during concurrent access. To avoid reading so
470     * often, resizing is attempted either when a bin lock is
471     * contended, or upon adding to a bin already holding two or more
472     * nodes (checked before adding in the xIfAbsent methods, after
473     * adding in others). Under uniform hash distributions, the
474     * probability of this occurring at threshold is around 13%,
475     * meaning that only about 1 in 8 puts check threshold (and after
476     * resizing, many fewer do so). But this approximation has high
477     * variance for small table sizes, so we check on any collision
478     * for sizes <= 64. The bulk putAll operation further reduces
479     * contention by only committing count updates upon these size
480     * checks.
481     *
482     * Maintaining API and serialization compatibility with previous
483     * versions of this class introduces several oddities. Mainly: We
484     * leave untouched but unused constructor arguments refering to
485     * concurrencyLevel. We accept a loadFactor constructor argument,
486     * but apply it only to initial table capacity (which is the only
487     * time that we can guarantee to honor it.) We also declare an
488     * unused "Segment" class that is instantiated in minimal form
489     * only when serializing.
490 dl 1.4 */
491 tim 1.1
492 dl 1.4 /* ---------------- Constants -------------- */
493 tim 1.11
494 dl 1.4 /**
495 dl 1.119 * The largest possible table capacity. This value must be
496     * exactly 1<<30 to stay within Java array allocation and indexing
497     * bounds for power of two table sizes, and is further required
498     * because the top two bits of 32bit hash fields are used for
499     * control purposes.
500 dl 1.4 */
501 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
502 dl 1.56
503     /**
504 dl 1.119 * The default initial table capacity. Must be a power of 2
505     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
506 dl 1.56 */
507 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
508 dl 1.56
509     /**
510 dl 1.119 * The largest possible (non-power of two) array size.
511     * Needed by toArray and related methods.
512 jsr166 1.59 */
513 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
514 tim 1.1
515     /**
516 dl 1.119 * The default concurrency level for this table. Unused but
517     * defined for compatibility with previous versions of this class.
518 dl 1.4 */
519 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
520 tim 1.11
521 tim 1.1 /**
522 dl 1.119 * The load factor for this table. Overrides of this value in
523     * constructors affect only the initial table capacity. The
524     * actual floating point value isn't normally used -- it is
525     * simpler to use expressions such as {@code n - (n >>> 2)} for
526     * the associated resizing threshold.
527 dl 1.99 */
528 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
529 dl 1.99
530     /**
531 dl 1.119 * The buffer size for skipped bins during transfers. The
532     * value is arbitrary but should be large enough to avoid
533     * most locking stalls during resizes.
534 dl 1.21 */
535 dl 1.119 private static final int TRANSFER_BUFFER_SIZE = 32;
536 dl 1.21
537 dl 1.46 /**
538 dl 1.119 * The bin count threshold for using a tree rather than list for a
539     * bin. The value reflects the approximate break-even point for
540     * using tree-based operations.
541     */
542     private static final int TREE_THRESHOLD = 8;
543    
544     /*
545     * Encodings for special uses of Node hash fields. See above for
546     * explanation.
547 dl 1.46 */
548 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
549     static final int LOCKED = 0x40000000; // set/tested only as a bit
550     static final int WAITING = 0xc0000000; // both bits set/tested together
551     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
552 dl 1.46
553 dl 1.4 /* ---------------- Fields -------------- */
554 tim 1.1
555     /**
556 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
557     * Size is always a power of two. Accessed directly by iterators.
558 jsr166 1.59 */
559 dl 1.119 transient volatile Node[] table;
560 tim 1.1
561     /**
562 dl 1.119 * The counter maintaining number of elements.
563 jsr166 1.59 */
564 dl 1.119 private transient final LongAdder counter;
565 tim 1.1
566     /**
567 dl 1.119 * Table initialization and resizing control. When negative, the
568     * table is being initialized or resized. Otherwise, when table is
569     * null, holds the initial table size to use upon creation, or 0
570     * for default. After initialization, holds the next element count
571     * value upon which to resize the table.
572 tim 1.1 */
573 dl 1.119 private transient volatile int sizeCtl;
574 dl 1.4
575 dl 1.119 // views
576 dl 1.137 private transient KeySetView<K,V> keySet;
577 dl 1.142 private transient ValuesView<K,V> values;
578     private transient EntrySetView<K,V> entrySet;
579 dl 1.119
580     /** For serialization compatibility. Null unless serialized; see below */
581     private Segment<K,V>[] segments;
582    
583     /* ---------------- Table element access -------------- */
584    
585     /*
586     * Volatile access methods are used for table elements as well as
587     * elements of in-progress next table while resizing. Uses are
588     * null checked by callers, and implicitly bounds-checked, relying
589     * on the invariants that tab arrays have non-zero size, and all
590     * indices are masked with (tab.length - 1) which is never
591     * negative and always less than length. Note that, to be correct
592     * wrt arbitrary concurrency errors by users, bounds checks must
593     * operate on local variables, which accounts for some odd-looking
594     * inline assignments below.
595     */
596    
597     static final Node tabAt(Node[] tab, int i) { // used by Iter
598     return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
599     }
600    
601     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
602     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
603     }
604    
605     private static final void setTabAt(Node[] tab, int i, Node v) {
606     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
607     }
608    
609     /* ---------------- Nodes -------------- */
610 dl 1.4
611 dl 1.99 /**
612 dl 1.119 * Key-value entry. Note that this is never exported out as a
613     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
614     * field of MOVED are special, and do not contain user keys or
615     * values. Otherwise, keys are never null, and null val fields
616     * indicate that a node is in the process of being deleted or
617     * created. For purposes of read-only access, a key may be read
618     * before a val, but can only be used after checking val to be
619     * non-null.
620 dl 1.99 */
621 dl 1.119 static class Node {
622     volatile int hash;
623     final Object key;
624     volatile Object val;
625     volatile Node next;
626 dl 1.99
627 dl 1.119 Node(int hash, Object key, Object val, Node next) {
628 dl 1.99 this.hash = hash;
629     this.key = key;
630 dl 1.119 this.val = val;
631 dl 1.99 this.next = next;
632     }
633    
634 dl 1.119 /** CompareAndSet the hash field */
635     final boolean casHash(int cmp, int val) {
636     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637     }
638    
639     /** The number of spins before blocking for a lock */
640     static final int MAX_SPINS =
641     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642    
643 dl 1.99 /**
644 dl 1.119 * Spins a while if LOCKED bit set and this node is the first
645     * of its bin, and then sets WAITING bits on hash field and
646     * blocks (once) if they are still set. It is OK for this
647     * method to return even if lock is not available upon exit,
648     * which enables these simple single-wait mechanics.
649     *
650     * The corresponding signalling operation is performed within
651     * callers: Upon detecting that WAITING has been set when
652     * unlocking lock (via a failed CAS from non-waiting LOCKED
653     * state), unlockers acquire the sync lock and perform a
654     * notifyAll.
655 dl 1.128 *
656     * The initial sanity check on tab and bounds is not currently
657     * necessary in the only usages of this method, but enables
658     * use in other future contexts.
659 dl 1.99 */
660 dl 1.119 final void tryAwaitLock(Node[] tab, int i) {
661 dl 1.128 if (tab != null && i >= 0 && i < tab.length) { // sanity check
662 dl 1.119 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663     int spins = MAX_SPINS, h;
664     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665     if (spins >= 0) {
666     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667     if (r >= 0 && --spins == 0)
668     Thread.yield(); // yield before block
669     }
670     else if (casHash(h, h | WAITING)) {
671     synchronized (this) {
672     if (tabAt(tab, i) == this &&
673     (hash & WAITING) == WAITING) {
674     try {
675     wait();
676     } catch (InterruptedException ie) {
677 dl 1.142 try {
678     Thread.currentThread().interrupt();
679     } catch (SecurityException ignore) {
680     }
681 dl 1.119 }
682     }
683     else
684     notifyAll(); // possibly won race vs signaller
685     }
686     break;
687     }
688     }
689     }
690 dl 1.99 }
691    
692 dl 1.119 // Unsafe mechanics for casHash
693     private static final sun.misc.Unsafe UNSAFE;
694     private static final long hashOffset;
695    
696 dl 1.99 static {
697     try {
698     UNSAFE = sun.misc.Unsafe.getUnsafe();
699 dl 1.119 Class<?> k = Node.class;
700     hashOffset = UNSAFE.objectFieldOffset
701     (k.getDeclaredField("hash"));
702 dl 1.99 } catch (Exception e) {
703     throw new Error(e);
704     }
705     }
706     }
707    
708 dl 1.119 /* ---------------- TreeBins -------------- */
709    
710 dl 1.99 /**
711 dl 1.119 * Nodes for use in TreeBins
712 dl 1.99 */
713 dl 1.119 static final class TreeNode extends Node {
714     TreeNode parent; // red-black tree links
715     TreeNode left;
716     TreeNode right;
717     TreeNode prev; // needed to unlink next upon deletion
718     boolean red;
719 dl 1.99
720 dl 1.119 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
721     super(hash, key, val, next);
722     this.parent = parent;
723     }
724 dl 1.99 }
725 tim 1.1
726     /**
727 dl 1.119 * A specialized form of red-black tree for use in bins
728     * whose size exceeds a threshold.
729     *
730     * TreeBins use a special form of comparison for search and
731     * related operations (which is the main reason we cannot use
732     * existing collections such as TreeMaps). TreeBins contain
733     * Comparable elements, but may contain others, as well as
734     * elements that are Comparable but not necessarily Comparable<T>
735     * for the same T, so we cannot invoke compareTo among them. To
736     * handle this, the tree is ordered primarily by hash value, then
737     * by getClass().getName() order, and then by Comparator order
738     * among elements of the same class. On lookup at a node, if
739     * elements are not comparable or compare as 0, both left and
740     * right children may need to be searched in the case of tied hash
741     * values. (This corresponds to the full list search that would be
742     * necessary if all elements were non-Comparable and had tied
743     * hashes.) The red-black balancing code is updated from
744     * pre-jdk-collections
745     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
746     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
747     * Algorithms" (CLR).
748     *
749     * TreeBins also maintain a separate locking discipline than
750     * regular bins. Because they are forwarded via special MOVED
751     * nodes at bin heads (which can never change once established),
752     * we cannot use those nodes as locks. Instead, TreeBin
753     * extends AbstractQueuedSynchronizer to support a simple form of
754     * read-write lock. For update operations and table validation,
755     * the exclusive form of lock behaves in the same way as bin-head
756     * locks. However, lookups use shared read-lock mechanics to allow
757     * multiple readers in the absence of writers. Additionally,
758     * these lookups do not ever block: While the lock is not
759     * available, they proceed along the slow traversal path (via
760     * next-pointers) until the lock becomes available or the list is
761     * exhausted, whichever comes first. (These cases are not fast,
762     * but maximize aggregate expected throughput.) The AQS mechanics
763     * for doing this are straightforward. The lock state is held as
764     * AQS getState(). Read counts are negative; the write count (1)
765     * is positive. There are no signalling preferences among readers
766     * and writers. Since we don't need to export full Lock API, we
767     * just override the minimal AQS methods and use them directly.
768     */
769     static final class TreeBin extends AbstractQueuedSynchronizer {
770 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
771 dl 1.119 transient TreeNode root; // root of tree
772     transient TreeNode first; // head of next-pointer list
773 dl 1.24
774 dl 1.119 /* AQS overrides */
775     public final boolean isHeldExclusively() { return getState() > 0; }
776     public final boolean tryAcquire(int ignore) {
777     if (compareAndSetState(0, 1)) {
778     setExclusiveOwnerThread(Thread.currentThread());
779     return true;
780     }
781     return false;
782     }
783     public final boolean tryRelease(int ignore) {
784     setExclusiveOwnerThread(null);
785     setState(0);
786     return true;
787     }
788     public final int tryAcquireShared(int ignore) {
789     for (int c;;) {
790     if ((c = getState()) > 0)
791     return -1;
792     if (compareAndSetState(c, c -1))
793     return 1;
794     }
795     }
796     public final boolean tryReleaseShared(int ignore) {
797     int c;
798     do {} while (!compareAndSetState(c = getState(), c + 1));
799     return c == -1;
800     }
801    
802     /** From CLR */
803     private void rotateLeft(TreeNode p) {
804     if (p != null) {
805     TreeNode r = p.right, pp, rl;
806     if ((rl = p.right = r.left) != null)
807     rl.parent = p;
808     if ((pp = r.parent = p.parent) == null)
809     root = r;
810     else if (pp.left == p)
811     pp.left = r;
812     else
813     pp.right = r;
814     r.left = p;
815     p.parent = r;
816     }
817     }
818 dl 1.4
819 dl 1.119 /** From CLR */
820     private void rotateRight(TreeNode p) {
821     if (p != null) {
822     TreeNode l = p.left, pp, lr;
823     if ((lr = p.left = l.right) != null)
824     lr.parent = p;
825     if ((pp = l.parent = p.parent) == null)
826     root = l;
827     else if (pp.right == p)
828     pp.right = l;
829     else
830     pp.left = l;
831     l.right = p;
832     p.parent = l;
833     }
834     }
835 dl 1.4
836     /**
837 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
838 dl 1.119 * starting at given root.
839 dl 1.4 */
840 dl 1.128 @SuppressWarnings("unchecked") final TreeNode getTreeNode
841     (int h, Object k, TreeNode p) {
842 dl 1.119 Class<?> c = k.getClass();
843     while (p != null) {
844     int dir, ph; Object pk; Class<?> pc;
845     if ((ph = p.hash) == h) {
846     if ((pk = p.key) == k || k.equals(pk))
847     return p;
848     if (c != (pc = pk.getClass()) ||
849     !(k instanceof Comparable) ||
850     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
851     dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
852     TreeNode r = null, s = null, pl, pr;
853     if (dir >= 0) {
854     if ((pl = p.left) != null && h <= pl.hash)
855     s = pl;
856 dl 1.99 }
857 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
858     s = pr;
859     if (s != null && (r = getTreeNode(h, k, s)) != null)
860     return r;
861 dl 1.45 }
862     }
863 dl 1.119 else
864     dir = (h < ph) ? -1 : 1;
865     p = (dir > 0) ? p.right : p.left;
866 dl 1.33 }
867 dl 1.119 return null;
868 dl 1.33 }
869    
870 dl 1.99 /**
871 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
872     * read-lock to call getTreeNode, but during failure to get
873     * lock, searches along next links.
874 dl 1.99 */
875 dl 1.119 final Object getValue(int h, Object k) {
876     Node r = null;
877     int c = getState(); // Must read lock state first
878     for (Node e = first; e != null; e = e.next) {
879     if (c <= 0 && compareAndSetState(c, c - 1)) {
880     try {
881     r = getTreeNode(h, k, root);
882     } finally {
883     releaseShared(0);
884 dl 1.99 }
885     break;
886     }
887 dl 1.119 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
888     r = e;
889 dl 1.99 break;
890     }
891 dl 1.119 else
892     c = getState();
893 dl 1.99 }
894 dl 1.119 return r == null ? null : r.val;
895 dl 1.99 }
896    
897     /**
898 dl 1.119 * Finds or adds a node.
899     * @return null if added
900 dl 1.6 */
901 dl 1.128 @SuppressWarnings("unchecked") final TreeNode putTreeNode
902     (int h, Object k, Object v) {
903 dl 1.119 Class<?> c = k.getClass();
904     TreeNode pp = root, p = null;
905     int dir = 0;
906     while (pp != null) { // find existing node or leaf to insert at
907     int ph; Object pk; Class<?> pc;
908     p = pp;
909     if ((ph = p.hash) == h) {
910     if ((pk = p.key) == k || k.equals(pk))
911     return p;
912     if (c != (pc = pk.getClass()) ||
913     !(k instanceof Comparable) ||
914     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
915     dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
916     TreeNode r = null, s = null, pl, pr;
917     if (dir >= 0) {
918     if ((pl = p.left) != null && h <= pl.hash)
919     s = pl;
920 dl 1.99 }
921 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
922     s = pr;
923     if (s != null && (r = getTreeNode(h, k, s)) != null)
924     return r;
925 dl 1.99 }
926     }
927 dl 1.119 else
928     dir = (h < ph) ? -1 : 1;
929     pp = (dir > 0) ? p.right : p.left;
930 dl 1.99 }
931    
932 dl 1.119 TreeNode f = first;
933     TreeNode x = first = new TreeNode(h, k, v, f, p);
934     if (p == null)
935     root = x;
936     else { // attach and rebalance; adapted from CLR
937     TreeNode xp, xpp;
938     if (f != null)
939     f.prev = x;
940     if (dir <= 0)
941     p.left = x;
942     else
943     p.right = x;
944     x.red = true;
945     while (x != null && (xp = x.parent) != null && xp.red &&
946     (xpp = xp.parent) != null) {
947     TreeNode xppl = xpp.left;
948     if (xp == xppl) {
949     TreeNode y = xpp.right;
950     if (y != null && y.red) {
951     y.red = false;
952     xp.red = false;
953     xpp.red = true;
954     x = xpp;
955     }
956     else {
957     if (x == xp.right) {
958     rotateLeft(x = xp);
959     xpp = (xp = x.parent) == null ? null : xp.parent;
960     }
961     if (xp != null) {
962     xp.red = false;
963     if (xpp != null) {
964     xpp.red = true;
965     rotateRight(xpp);
966     }
967     }
968     }
969     }
970     else {
971     TreeNode y = xppl;
972     if (y != null && y.red) {
973     y.red = false;
974     xp.red = false;
975     xpp.red = true;
976     x = xpp;
977     }
978     else {
979     if (x == xp.left) {
980     rotateRight(x = xp);
981     xpp = (xp = x.parent) == null ? null : xp.parent;
982     }
983     if (xp != null) {
984     xp.red = false;
985     if (xpp != null) {
986     xpp.red = true;
987     rotateLeft(xpp);
988     }
989     }
990 dl 1.99 }
991     }
992     }
993 dl 1.119 TreeNode r = root;
994     if (r != null && r.red)
995     r.red = false;
996 dl 1.99 }
997 dl 1.119 return null;
998 dl 1.99 }
999 dl 1.45
1000 dl 1.119 /**
1001     * Removes the given node, that must be present before this
1002     * call. This is messier than typical red-black deletion code
1003     * because we cannot swap the contents of an interior node
1004     * with a leaf successor that is pinned by "next" pointers
1005     * that are accessible independently of lock. So instead we
1006     * swap the tree linkages.
1007     */
1008     final void deleteTreeNode(TreeNode p) {
1009     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1010     TreeNode pred = p.prev;
1011     if (pred == null)
1012     first = next;
1013     else
1014     pred.next = next;
1015     if (next != null)
1016     next.prev = pred;
1017     TreeNode replacement;
1018     TreeNode pl = p.left;
1019     TreeNode pr = p.right;
1020     if (pl != null && pr != null) {
1021     TreeNode s = pr, sl;
1022     while ((sl = s.left) != null) // find successor
1023     s = sl;
1024     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1025     TreeNode sr = s.right;
1026     TreeNode pp = p.parent;
1027     if (s == pr) { // p was s's direct parent
1028     p.parent = s;
1029     s.right = p;
1030     }
1031     else {
1032     TreeNode sp = s.parent;
1033     if ((p.parent = sp) != null) {
1034     if (s == sp.left)
1035     sp.left = p;
1036     else
1037     sp.right = p;
1038 dl 1.45 }
1039 dl 1.119 if ((s.right = pr) != null)
1040     pr.parent = s;
1041 dl 1.4 }
1042 dl 1.119 p.left = null;
1043     if ((p.right = sr) != null)
1044     sr.parent = p;
1045     if ((s.left = pl) != null)
1046     pl.parent = s;
1047     if ((s.parent = pp) == null)
1048     root = s;
1049     else if (p == pp.left)
1050     pp.left = s;
1051     else
1052     pp.right = s;
1053     replacement = sr;
1054     }
1055     else
1056     replacement = (pl != null) ? pl : pr;
1057     TreeNode pp = p.parent;
1058     if (replacement == null) {
1059     if (pp == null) {
1060     root = null;
1061     return;
1062     }
1063     replacement = p;
1064 dl 1.99 }
1065 dl 1.119 else {
1066     replacement.parent = pp;
1067     if (pp == null)
1068     root = replacement;
1069     else if (p == pp.left)
1070     pp.left = replacement;
1071     else
1072     pp.right = replacement;
1073     p.left = p.right = p.parent = null;
1074 dl 1.4 }
1075 dl 1.119 if (!p.red) { // rebalance, from CLR
1076     TreeNode x = replacement;
1077     while (x != null) {
1078     TreeNode xp, xpl;
1079     if (x.red || (xp = x.parent) == null) {
1080     x.red = false;
1081 dl 1.99 break;
1082 dl 1.119 }
1083     if (x == (xpl = xp.left)) {
1084     TreeNode sib = xp.right;
1085     if (sib != null && sib.red) {
1086     sib.red = false;
1087     xp.red = true;
1088     rotateLeft(xp);
1089     sib = (xp = x.parent) == null ? null : xp.right;
1090     }
1091     if (sib == null)
1092     x = xp;
1093     else {
1094     TreeNode sl = sib.left, sr = sib.right;
1095     if ((sr == null || !sr.red) &&
1096     (sl == null || !sl.red)) {
1097     sib.red = true;
1098     x = xp;
1099     }
1100     else {
1101     if (sr == null || !sr.red) {
1102     if (sl != null)
1103     sl.red = false;
1104     sib.red = true;
1105     rotateRight(sib);
1106     sib = (xp = x.parent) == null ? null : xp.right;
1107     }
1108     if (sib != null) {
1109     sib.red = (xp == null) ? false : xp.red;
1110     if ((sr = sib.right) != null)
1111     sr.red = false;
1112     }
1113     if (xp != null) {
1114     xp.red = false;
1115     rotateLeft(xp);
1116     }
1117     x = root;
1118     }
1119     }
1120     }
1121     else { // symmetric
1122     TreeNode sib = xpl;
1123     if (sib != null && sib.red) {
1124     sib.red = false;
1125     xp.red = true;
1126     rotateRight(xp);
1127     sib = (xp = x.parent) == null ? null : xp.left;
1128     }
1129     if (sib == null)
1130     x = xp;
1131     else {
1132     TreeNode sl = sib.left, sr = sib.right;
1133     if ((sl == null || !sl.red) &&
1134     (sr == null || !sr.red)) {
1135     sib.red = true;
1136     x = xp;
1137     }
1138     else {
1139     if (sl == null || !sl.red) {
1140     if (sr != null)
1141     sr.red = false;
1142     sib.red = true;
1143     rotateLeft(sib);
1144     sib = (xp = x.parent) == null ? null : xp.left;
1145     }
1146     if (sib != null) {
1147     sib.red = (xp == null) ? false : xp.red;
1148     if ((sl = sib.left) != null)
1149     sl.red = false;
1150     }
1151     if (xp != null) {
1152     xp.red = false;
1153     rotateRight(xp);
1154     }
1155     x = root;
1156     }
1157     }
1158     }
1159 dl 1.45 }
1160 dl 1.4 }
1161 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1162     if (p == pp.left) // detach pointers
1163     pp.left = null;
1164     else if (p == pp.right)
1165     pp.right = null;
1166     p.parent = null;
1167     }
1168 dl 1.4 }
1169 tim 1.1 }
1170    
1171 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1172 tim 1.1
1173 dl 1.99 /**
1174 dl 1.119 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1175     * Because the table uses power-of-two masking, sets of hashes
1176     * that vary only in bits above the current mask will always
1177     * collide. (Among known examples are sets of Float keys holding
1178     * consecutive whole numbers in small tables.) To counter this,
1179     * we apply a transform that spreads the impact of higher bits
1180     * downward. There is a tradeoff between speed, utility, and
1181     * quality of bit-spreading. Because many common sets of hashes
1182     * are already reasonably distributed across bits (so don't benefit
1183     * from spreading), and because we use trees to handle large sets
1184     * of collisions in bins, we don't need excessively high quality.
1185     */
1186     private static final int spread(int h) {
1187     h ^= (h >>> 18) ^ (h >>> 12);
1188     return (h ^ (h >>> 10)) & HASH_BITS;
1189 dl 1.99 }
1190    
1191     /**
1192 dl 1.119 * Replaces a list bin with a tree bin. Call only when locked.
1193     * Fails to replace if the given key is non-comparable or table
1194     * is, or needs, resizing.
1195     */
1196     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1197     if ((key instanceof Comparable) &&
1198     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1199     TreeBin t = new TreeBin();
1200     for (Node e = tabAt(tab, index); e != null; e = e.next)
1201     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202     setTabAt(tab, index, new Node(MOVED, t, null, null));
1203     }
1204 dl 1.99 }
1205 tim 1.11
1206 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1207    
1208     /** Implementation for get and containsKey */
1209     private final Object internalGet(Object k) {
1210     int h = spread(k.hashCode());
1211     retry: for (Node[] tab = table; tab != null;) {
1212     Node e, p; Object ek, ev; int eh; // locals to read fields once
1213     for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1214     if ((eh = e.hash) == MOVED) {
1215     if ((ek = e.key) instanceof TreeBin) // search TreeBin
1216     return ((TreeBin)ek).getValue(h, k);
1217     else { // restart with new table
1218     tab = (Node[])ek;
1219     continue retry;
1220     }
1221     }
1222     else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1223     ((ek = e.key) == k || k.equals(ek)))
1224     return ev;
1225     }
1226     break;
1227     }
1228     return null;
1229 tim 1.1 }
1230    
1231     /**
1232 dl 1.119 * Implementation for the four public remove/replace methods:
1233     * Replaces node value with v, conditional upon match of cv if
1234     * non-null. If resulting value is null, delete.
1235     */
1236     private final Object internalReplace(Object k, Object v, Object cv) {
1237     int h = spread(k.hashCode());
1238     Object oldVal = null;
1239     for (Node[] tab = table;;) {
1240     Node f; int i, fh; Object fk;
1241     if (tab == null ||
1242     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1243     break;
1244     else if ((fh = f.hash) == MOVED) {
1245     if ((fk = f.key) instanceof TreeBin) {
1246     TreeBin t = (TreeBin)fk;
1247     boolean validated = false;
1248     boolean deleted = false;
1249     t.acquire(0);
1250     try {
1251     if (tabAt(tab, i) == f) {
1252     validated = true;
1253     TreeNode p = t.getTreeNode(h, k, t.root);
1254     if (p != null) {
1255     Object pv = p.val;
1256     if (cv == null || cv == pv || cv.equals(pv)) {
1257     oldVal = pv;
1258     if ((p.val = v) == null) {
1259     deleted = true;
1260     t.deleteTreeNode(p);
1261     }
1262     }
1263     }
1264     }
1265     } finally {
1266     t.release(0);
1267     }
1268     if (validated) {
1269     if (deleted)
1270     counter.add(-1L);
1271     break;
1272     }
1273     }
1274     else
1275     tab = (Node[])fk;
1276     }
1277     else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1278     break; // rules out possible existence
1279     else if ((fh & LOCKED) != 0) {
1280     checkForResize(); // try resizing if can't get lock
1281     f.tryAwaitLock(tab, i);
1282     }
1283     else if (f.casHash(fh, fh | LOCKED)) {
1284     boolean validated = false;
1285     boolean deleted = false;
1286     try {
1287     if (tabAt(tab, i) == f) {
1288     validated = true;
1289     for (Node e = f, pred = null;;) {
1290     Object ek, ev;
1291     if ((e.hash & HASH_BITS) == h &&
1292     ((ev = e.val) != null) &&
1293     ((ek = e.key) == k || k.equals(ek))) {
1294     if (cv == null || cv == ev || cv.equals(ev)) {
1295     oldVal = ev;
1296     if ((e.val = v) == null) {
1297     deleted = true;
1298     Node en = e.next;
1299     if (pred != null)
1300     pred.next = en;
1301     else
1302     setTabAt(tab, i, en);
1303     }
1304     }
1305     break;
1306     }
1307     pred = e;
1308     if ((e = e.next) == null)
1309     break;
1310     }
1311     }
1312     } finally {
1313     if (!f.casHash(fh | LOCKED, fh)) {
1314     f.hash = fh;
1315     synchronized (f) { f.notifyAll(); };
1316     }
1317     }
1318     if (validated) {
1319     if (deleted)
1320     counter.add(-1L);
1321     break;
1322     }
1323     }
1324     }
1325     return oldVal;
1326 dl 1.55 }
1327    
1328 dl 1.119 /*
1329 dl 1.126 * Internal versions of the six insertion methods, each a
1330 dl 1.119 * little more complicated than the last. All have
1331     * the same basic structure as the first (internalPut):
1332     * 1. If table uninitialized, create
1333     * 2. If bin empty, try to CAS new node
1334     * 3. If bin stale, use new table
1335     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1336     * 5. Lock and validate; if valid, scan and add or update
1337 tim 1.1 *
1338 dl 1.119 * The others interweave other checks and/or alternative actions:
1339     * * Plain put checks for and performs resize after insertion.
1340     * * putIfAbsent prescans for mapping without lock (and fails to add
1341     * if present), which also makes pre-emptive resize checks worthwhile.
1342     * * computeIfAbsent extends form used in putIfAbsent with additional
1343     * mechanics to deal with, calls, potential exceptions and null
1344     * returns from function call.
1345     * * compute uses the same function-call mechanics, but without
1346     * the prescans
1347 dl 1.126 * * merge acts as putIfAbsent in the absent case, but invokes the
1348     * update function if present
1349 dl 1.119 * * putAll attempts to pre-allocate enough table space
1350     * and more lazily performs count updates and checks.
1351 jsr166 1.76 *
1352 dl 1.119 * Someday when details settle down a bit more, it might be worth
1353     * some factoring to reduce sprawl.
1354 tim 1.1 */
1355    
1356 dl 1.119 /** Implementation for put */
1357     private final Object internalPut(Object k, Object v) {
1358     int h = spread(k.hashCode());
1359     int count = 0;
1360     for (Node[] tab = table;;) {
1361     int i; Node f; int fh; Object fk;
1362     if (tab == null)
1363     tab = initTable();
1364     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1365     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1366     break; // no lock when adding to empty bin
1367 dl 1.99 }
1368 dl 1.119 else if ((fh = f.hash) == MOVED) {
1369     if ((fk = f.key) instanceof TreeBin) {
1370     TreeBin t = (TreeBin)fk;
1371     Object oldVal = null;
1372     t.acquire(0);
1373     try {
1374     if (tabAt(tab, i) == f) {
1375     count = 2;
1376     TreeNode p = t.putTreeNode(h, k, v);
1377     if (p != null) {
1378     oldVal = p.val;
1379     p.val = v;
1380     }
1381     }
1382     } finally {
1383     t.release(0);
1384     }
1385     if (count != 0) {
1386     if (oldVal != null)
1387     return oldVal;
1388     break;
1389     }
1390     }
1391     else
1392     tab = (Node[])fk;
1393     }
1394     else if ((fh & LOCKED) != 0) {
1395     checkForResize();
1396     f.tryAwaitLock(tab, i);
1397     }
1398     else if (f.casHash(fh, fh | LOCKED)) {
1399     Object oldVal = null;
1400     try { // needed in case equals() throws
1401     if (tabAt(tab, i) == f) {
1402     count = 1;
1403     for (Node e = f;; ++count) {
1404     Object ek, ev;
1405     if ((e.hash & HASH_BITS) == h &&
1406     (ev = e.val) != null &&
1407     ((ek = e.key) == k || k.equals(ek))) {
1408     oldVal = ev;
1409     e.val = v;
1410     break;
1411     }
1412     Node last = e;
1413     if ((e = e.next) == null) {
1414     last.next = new Node(h, k, v, null);
1415     if (count >= TREE_THRESHOLD)
1416     replaceWithTreeBin(tab, i, k);
1417     break;
1418     }
1419     }
1420     }
1421     } finally { // unlock and signal if needed
1422     if (!f.casHash(fh | LOCKED, fh)) {
1423     f.hash = fh;
1424     synchronized (f) { f.notifyAll(); };
1425     }
1426     }
1427     if (count != 0) {
1428     if (oldVal != null)
1429     return oldVal;
1430     if (tab.length <= 64)
1431     count = 2;
1432     break;
1433 dl 1.99 }
1434 dl 1.21 }
1435     }
1436 dl 1.119 counter.add(1L);
1437     if (count > 1)
1438     checkForResize();
1439     return null;
1440 tim 1.1 }
1441    
1442 dl 1.119 /** Implementation for putIfAbsent */
1443     private final Object internalPutIfAbsent(Object k, Object v) {
1444     int h = spread(k.hashCode());
1445     int count = 0;
1446     for (Node[] tab = table;;) {
1447     int i; Node f; int fh; Object fk, fv;
1448     if (tab == null)
1449     tab = initTable();
1450     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1452     break;
1453     }
1454     else if ((fh = f.hash) == MOVED) {
1455     if ((fk = f.key) instanceof TreeBin) {
1456     TreeBin t = (TreeBin)fk;
1457     Object oldVal = null;
1458     t.acquire(0);
1459     try {
1460     if (tabAt(tab, i) == f) {
1461     count = 2;
1462     TreeNode p = t.putTreeNode(h, k, v);
1463     if (p != null)
1464     oldVal = p.val;
1465     }
1466     } finally {
1467     t.release(0);
1468     }
1469     if (count != 0) {
1470     if (oldVal != null)
1471     return oldVal;
1472     break;
1473     }
1474     }
1475     else
1476     tab = (Node[])fk;
1477     }
1478     else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479     ((fk = f.key) == k || k.equals(fk)))
1480     return fv;
1481     else {
1482     Node g = f.next;
1483     if (g != null) { // at least 2 nodes -- search and maybe resize
1484     for (Node e = g;;) {
1485     Object ek, ev;
1486     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487     ((ek = e.key) == k || k.equals(ek)))
1488     return ev;
1489     if ((e = e.next) == null) {
1490     checkForResize();
1491     break;
1492     }
1493     }
1494     }
1495     if (((fh = f.hash) & LOCKED) != 0) {
1496     checkForResize();
1497     f.tryAwaitLock(tab, i);
1498     }
1499     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500     Object oldVal = null;
1501     try {
1502     if (tabAt(tab, i) == f) {
1503     count = 1;
1504     for (Node e = f;; ++count) {
1505     Object ek, ev;
1506     if ((e.hash & HASH_BITS) == h &&
1507     (ev = e.val) != null &&
1508     ((ek = e.key) == k || k.equals(ek))) {
1509     oldVal = ev;
1510     break;
1511     }
1512     Node last = e;
1513     if ((e = e.next) == null) {
1514     last.next = new Node(h, k, v, null);
1515     if (count >= TREE_THRESHOLD)
1516     replaceWithTreeBin(tab, i, k);
1517     break;
1518     }
1519     }
1520     }
1521     } finally {
1522     if (!f.casHash(fh | LOCKED, fh)) {
1523     f.hash = fh;
1524     synchronized (f) { f.notifyAll(); };
1525     }
1526     }
1527     if (count != 0) {
1528     if (oldVal != null)
1529     return oldVal;
1530     if (tab.length <= 64)
1531     count = 2;
1532     break;
1533     }
1534     }
1535     }
1536 dl 1.45 }
1537 dl 1.119 counter.add(1L);
1538     if (count > 1)
1539     checkForResize();
1540     return null;
1541 dl 1.21 }
1542    
1543 dl 1.119 /** Implementation for computeIfAbsent */
1544     private final Object internalComputeIfAbsent(K k,
1545     Fun<? super K, ?> mf) {
1546     int h = spread(k.hashCode());
1547     Object val = null;
1548     int count = 0;
1549     for (Node[] tab = table;;) {
1550     Node f; int i, fh; Object fk, fv;
1551     if (tab == null)
1552     tab = initTable();
1553     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1554     Node node = new Node(fh = h | LOCKED, k, null, null);
1555     if (casTabAt(tab, i, null, node)) {
1556     count = 1;
1557     try {
1558     if ((val = mf.apply(k)) != null)
1559     node.val = val;
1560     } finally {
1561     if (val == null)
1562     setTabAt(tab, i, null);
1563     if (!node.casHash(fh, h)) {
1564     node.hash = h;
1565     synchronized (node) { node.notifyAll(); };
1566     }
1567     }
1568     }
1569     if (count != 0)
1570     break;
1571     }
1572     else if ((fh = f.hash) == MOVED) {
1573     if ((fk = f.key) instanceof TreeBin) {
1574     TreeBin t = (TreeBin)fk;
1575     boolean added = false;
1576     t.acquire(0);
1577     try {
1578     if (tabAt(tab, i) == f) {
1579     count = 1;
1580     TreeNode p = t.getTreeNode(h, k, t.root);
1581     if (p != null)
1582     val = p.val;
1583     else if ((val = mf.apply(k)) != null) {
1584     added = true;
1585     count = 2;
1586     t.putTreeNode(h, k, val);
1587     }
1588     }
1589     } finally {
1590     t.release(0);
1591     }
1592     if (count != 0) {
1593     if (!added)
1594     return val;
1595     break;
1596     }
1597     }
1598     else
1599     tab = (Node[])fk;
1600     }
1601     else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602     ((fk = f.key) == k || k.equals(fk)))
1603     return fv;
1604     else {
1605     Node g = f.next;
1606     if (g != null) {
1607     for (Node e = g;;) {
1608     Object ek, ev;
1609     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610     ((ek = e.key) == k || k.equals(ek)))
1611     return ev;
1612     if ((e = e.next) == null) {
1613     checkForResize();
1614     break;
1615     }
1616     }
1617     }
1618     if (((fh = f.hash) & LOCKED) != 0) {
1619     checkForResize();
1620     f.tryAwaitLock(tab, i);
1621     }
1622     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1623     boolean added = false;
1624     try {
1625     if (tabAt(tab, i) == f) {
1626     count = 1;
1627     for (Node e = f;; ++count) {
1628     Object ek, ev;
1629     if ((e.hash & HASH_BITS) == h &&
1630     (ev = e.val) != null &&
1631     ((ek = e.key) == k || k.equals(ek))) {
1632     val = ev;
1633     break;
1634     }
1635     Node last = e;
1636     if ((e = e.next) == null) {
1637     if ((val = mf.apply(k)) != null) {
1638     added = true;
1639     last.next = new Node(h, k, val, null);
1640     if (count >= TREE_THRESHOLD)
1641     replaceWithTreeBin(tab, i, k);
1642     }
1643     break;
1644     }
1645     }
1646     }
1647     } finally {
1648     if (!f.casHash(fh | LOCKED, fh)) {
1649     f.hash = fh;
1650     synchronized (f) { f.notifyAll(); };
1651     }
1652     }
1653     if (count != 0) {
1654     if (!added)
1655     return val;
1656     if (tab.length <= 64)
1657     count = 2;
1658     break;
1659     }
1660     }
1661 dl 1.105 }
1662 dl 1.99 }
1663 dl 1.119 if (val != null) {
1664     counter.add(1L);
1665     if (count > 1)
1666     checkForResize();
1667     }
1668     return val;
1669 tim 1.1 }
1670    
1671 dl 1.119 /** Implementation for compute */
1672 dl 1.128 @SuppressWarnings("unchecked") private final Object internalCompute
1673     (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1674 dl 1.119 int h = spread(k.hashCode());
1675     Object val = null;
1676     int delta = 0;
1677     int count = 0;
1678     for (Node[] tab = table;;) {
1679     Node f; int i, fh; Object fk;
1680     if (tab == null)
1681     tab = initTable();
1682     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1683     if (onlyIfPresent)
1684     break;
1685     Node node = new Node(fh = h | LOCKED, k, null, null);
1686     if (casTabAt(tab, i, null, node)) {
1687     try {
1688     count = 1;
1689     if ((val = mf.apply(k, null)) != null) {
1690     node.val = val;
1691     delta = 1;
1692     }
1693     } finally {
1694     if (delta == 0)
1695     setTabAt(tab, i, null);
1696     if (!node.casHash(fh, h)) {
1697     node.hash = h;
1698     synchronized (node) { node.notifyAll(); };
1699     }
1700     }
1701     }
1702     if (count != 0)
1703     break;
1704     }
1705     else if ((fh = f.hash) == MOVED) {
1706     if ((fk = f.key) instanceof TreeBin) {
1707     TreeBin t = (TreeBin)fk;
1708     t.acquire(0);
1709     try {
1710     if (tabAt(tab, i) == f) {
1711     count = 1;
1712     TreeNode p = t.getTreeNode(h, k, t.root);
1713     Object pv = (p == null) ? null : p.val;
1714     if ((val = mf.apply(k, (V)pv)) != null) {
1715     if (p != null)
1716     p.val = val;
1717     else {
1718     count = 2;
1719     delta = 1;
1720     t.putTreeNode(h, k, val);
1721     }
1722     }
1723     else if (p != null) {
1724     delta = -1;
1725     t.deleteTreeNode(p);
1726     }
1727     }
1728     } finally {
1729     t.release(0);
1730     }
1731     if (count != 0)
1732     break;
1733     }
1734     else
1735     tab = (Node[])fk;
1736     }
1737     else if ((fh & LOCKED) != 0) {
1738     checkForResize();
1739     f.tryAwaitLock(tab, i);
1740     }
1741     else if (f.casHash(fh, fh | LOCKED)) {
1742     try {
1743     if (tabAt(tab, i) == f) {
1744     count = 1;
1745     for (Node e = f, pred = null;; ++count) {
1746     Object ek, ev;
1747     if ((e.hash & HASH_BITS) == h &&
1748     (ev = e.val) != null &&
1749     ((ek = e.key) == k || k.equals(ek))) {
1750     val = mf.apply(k, (V)ev);
1751     if (val != null)
1752     e.val = val;
1753     else {
1754     delta = -1;
1755     Node en = e.next;
1756     if (pred != null)
1757     pred.next = en;
1758     else
1759     setTabAt(tab, i, en);
1760     }
1761     break;
1762     }
1763     pred = e;
1764     if ((e = e.next) == null) {
1765     if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1766     pred.next = new Node(h, k, val, null);
1767     delta = 1;
1768     if (count >= TREE_THRESHOLD)
1769     replaceWithTreeBin(tab, i, k);
1770     }
1771     break;
1772     }
1773     }
1774     }
1775     } finally {
1776     if (!f.casHash(fh | LOCKED, fh)) {
1777     f.hash = fh;
1778     synchronized (f) { f.notifyAll(); };
1779     }
1780     }
1781     if (count != 0) {
1782     if (tab.length <= 64)
1783     count = 2;
1784     break;
1785     }
1786     }
1787     }
1788     if (delta != 0) {
1789     counter.add((long)delta);
1790     if (count > 1)
1791     checkForResize();
1792     }
1793     return val;
1794     }
1795    
1796 dl 1.126 /** Implementation for merge */
1797 dl 1.128 @SuppressWarnings("unchecked") private final Object internalMerge
1798     (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1799 dl 1.119 int h = spread(k.hashCode());
1800     Object val = null;
1801     int delta = 0;
1802     int count = 0;
1803     for (Node[] tab = table;;) {
1804     int i; Node f; int fh; Object fk, fv;
1805     if (tab == null)
1806     tab = initTable();
1807     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1808     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809     delta = 1;
1810     val = v;
1811     break;
1812     }
1813     }
1814     else if ((fh = f.hash) == MOVED) {
1815     if ((fk = f.key) instanceof TreeBin) {
1816     TreeBin t = (TreeBin)fk;
1817     t.acquire(0);
1818     try {
1819     if (tabAt(tab, i) == f) {
1820     count = 1;
1821     TreeNode p = t.getTreeNode(h, k, t.root);
1822     val = (p == null) ? v : mf.apply((V)p.val, v);
1823     if (val != null) {
1824     if (p != null)
1825     p.val = val;
1826     else {
1827     count = 2;
1828     delta = 1;
1829     t.putTreeNode(h, k, val);
1830     }
1831     }
1832     else if (p != null) {
1833     delta = -1;
1834     t.deleteTreeNode(p);
1835     }
1836     }
1837     } finally {
1838     t.release(0);
1839     }
1840     if (count != 0)
1841     break;
1842     }
1843     else
1844     tab = (Node[])fk;
1845     }
1846     else if ((fh & LOCKED) != 0) {
1847     checkForResize();
1848     f.tryAwaitLock(tab, i);
1849     }
1850     else if (f.casHash(fh, fh | LOCKED)) {
1851     try {
1852     if (tabAt(tab, i) == f) {
1853     count = 1;
1854     for (Node e = f, pred = null;; ++count) {
1855     Object ek, ev;
1856     if ((e.hash & HASH_BITS) == h &&
1857     (ev = e.val) != null &&
1858     ((ek = e.key) == k || k.equals(ek))) {
1859     val = mf.apply(v, (V)ev);
1860     if (val != null)
1861     e.val = val;
1862     else {
1863     delta = -1;
1864     Node en = e.next;
1865     if (pred != null)
1866     pred.next = en;
1867     else
1868     setTabAt(tab, i, en);
1869     }
1870     break;
1871     }
1872     pred = e;
1873     if ((e = e.next) == null) {
1874     val = v;
1875     pred.next = new Node(h, k, val, null);
1876     delta = 1;
1877     if (count >= TREE_THRESHOLD)
1878     replaceWithTreeBin(tab, i, k);
1879     break;
1880     }
1881     }
1882     }
1883     } finally {
1884     if (!f.casHash(fh | LOCKED, fh)) {
1885     f.hash = fh;
1886     synchronized (f) { f.notifyAll(); };
1887     }
1888     }
1889     if (count != 0) {
1890     if (tab.length <= 64)
1891     count = 2;
1892     break;
1893     }
1894 dl 1.105 }
1895 dl 1.99 }
1896 dl 1.119 if (delta != 0) {
1897     counter.add((long)delta);
1898     if (count > 1)
1899     checkForResize();
1900     }
1901     return val;
1902     }
1903    
1904     /** Implementation for putAll */
1905     private final void internalPutAll(Map<?, ?> m) {
1906     tryPresize(m.size());
1907     long delta = 0L; // number of uncommitted additions
1908     boolean npe = false; // to throw exception on exit for nulls
1909     try { // to clean up counts on other exceptions
1910     for (Map.Entry<?, ?> entry : m.entrySet()) {
1911     Object k, v;
1912     if (entry == null || (k = entry.getKey()) == null ||
1913     (v = entry.getValue()) == null) {
1914     npe = true;
1915     break;
1916     }
1917     int h = spread(k.hashCode());
1918     for (Node[] tab = table;;) {
1919     int i; Node f; int fh; Object fk;
1920     if (tab == null)
1921     tab = initTable();
1922     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1923     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1924     ++delta;
1925     break;
1926     }
1927     }
1928     else if ((fh = f.hash) == MOVED) {
1929     if ((fk = f.key) instanceof TreeBin) {
1930     TreeBin t = (TreeBin)fk;
1931     boolean validated = false;
1932     t.acquire(0);
1933     try {
1934     if (tabAt(tab, i) == f) {
1935     validated = true;
1936     TreeNode p = t.getTreeNode(h, k, t.root);
1937     if (p != null)
1938     p.val = v;
1939     else {
1940     t.putTreeNode(h, k, v);
1941     ++delta;
1942     }
1943     }
1944     } finally {
1945     t.release(0);
1946     }
1947     if (validated)
1948     break;
1949     }
1950     else
1951     tab = (Node[])fk;
1952     }
1953     else if ((fh & LOCKED) != 0) {
1954     counter.add(delta);
1955     delta = 0L;
1956     checkForResize();
1957     f.tryAwaitLock(tab, i);
1958     }
1959     else if (f.casHash(fh, fh | LOCKED)) {
1960     int count = 0;
1961     try {
1962     if (tabAt(tab, i) == f) {
1963     count = 1;
1964     for (Node e = f;; ++count) {
1965     Object ek, ev;
1966     if ((e.hash & HASH_BITS) == h &&
1967     (ev = e.val) != null &&
1968     ((ek = e.key) == k || k.equals(ek))) {
1969     e.val = v;
1970     break;
1971     }
1972     Node last = e;
1973     if ((e = e.next) == null) {
1974     ++delta;
1975     last.next = new Node(h, k, v, null);
1976     if (count >= TREE_THRESHOLD)
1977     replaceWithTreeBin(tab, i, k);
1978     break;
1979     }
1980     }
1981     }
1982     } finally {
1983     if (!f.casHash(fh | LOCKED, fh)) {
1984     f.hash = fh;
1985     synchronized (f) { f.notifyAll(); };
1986     }
1987     }
1988     if (count != 0) {
1989     if (count > 1) {
1990     counter.add(delta);
1991     delta = 0L;
1992     checkForResize();
1993 dl 1.99 }
1994 dl 1.119 break;
1995 dl 1.99 }
1996 dl 1.21 }
1997     }
1998 dl 1.45 }
1999     } finally {
2000 dl 1.119 if (delta != 0)
2001     counter.add(delta);
2002 dl 1.45 }
2003 dl 1.119 if (npe)
2004     throw new NullPointerException();
2005 tim 1.1 }
2006 dl 1.19
2007 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
2008    
2009 tim 1.1 /**
2010 dl 1.119 * Returns a power of two table size for the given desired capacity.
2011     * See Hackers Delight, sec 3.2
2012 tim 1.1 */
2013 dl 1.119 private static final int tableSizeFor(int c) {
2014     int n = c - 1;
2015     n |= n >>> 1;
2016     n |= n >>> 2;
2017     n |= n >>> 4;
2018     n |= n >>> 8;
2019     n |= n >>> 16;
2020     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2021 tim 1.1 }
2022    
2023     /**
2024 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
2025     */
2026     private final Node[] initTable() {
2027     Node[] tab; int sc;
2028     while ((tab = table) == null) {
2029     if ((sc = sizeCtl) < 0)
2030     Thread.yield(); // lost initialization race; just spin
2031     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2032     try {
2033     if ((tab = table) == null) {
2034     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2035     tab = table = new Node[n];
2036     sc = n - (n >>> 2);
2037     }
2038     } finally {
2039     sizeCtl = sc;
2040     }
2041     break;
2042     }
2043     }
2044     return tab;
2045 dl 1.4 }
2046    
2047     /**
2048 dl 1.119 * If table is too small and not already resizing, creates next
2049     * table and transfers bins. Rechecks occupancy after a transfer
2050     * to see if another resize is already needed because resizings
2051     * are lagging additions.
2052 dl 1.51 */
2053 dl 1.119 private final void checkForResize() {
2054     Node[] tab; int n, sc;
2055     while ((tab = table) != null &&
2056     (n = tab.length) < MAXIMUM_CAPACITY &&
2057     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2058     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2059     try {
2060     if (tab == table) {
2061     table = rebuild(tab);
2062     sc = (n << 1) - (n >>> 1);
2063     }
2064     } finally {
2065     sizeCtl = sc;
2066     }
2067     }
2068 dl 1.4 }
2069    
2070     /**
2071 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2072 tim 1.1 *
2073 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2074 tim 1.1 */
2075 dl 1.119 private final void tryPresize(int size) {
2076     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2077     tableSizeFor(size + (size >>> 1) + 1);
2078     int sc;
2079     while ((sc = sizeCtl) >= 0) {
2080     Node[] tab = table; int n;
2081     if (tab == null || (n = tab.length) == 0) {
2082     n = (sc > c) ? sc : c;
2083     if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2084     try {
2085     if (table == tab) {
2086     table = new Node[n];
2087     sc = n - (n >>> 2);
2088     }
2089     } finally {
2090     sizeCtl = sc;
2091     }
2092     }
2093     }
2094     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2095     break;
2096     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2097     try {
2098     if (table == tab) {
2099     table = rebuild(tab);
2100     sc = (n << 1) - (n >>> 1);
2101     }
2102     } finally {
2103     sizeCtl = sc;
2104     }
2105     }
2106     }
2107 dl 1.4 }
2108    
2109 dl 1.119 /*
2110     * Moves and/or copies the nodes in each bin to new table. See
2111     * above for explanation.
2112 dl 1.4 *
2113 dl 1.119 * @return the new table
2114 dl 1.4 */
2115 dl 1.119 private static final Node[] rebuild(Node[] tab) {
2116     int n = tab.length;
2117     Node[] nextTab = new Node[n << 1];
2118     Node fwd = new Node(MOVED, nextTab, null, null);
2119     int[] buffer = null; // holds bins to revisit; null until needed
2120     Node rev = null; // reverse forwarder; null until needed
2121     int nbuffered = 0; // the number of bins in buffer list
2122     int bufferIndex = 0; // buffer index of current buffered bin
2123     int bin = n - 1; // current non-buffered bin or -1 if none
2124    
2125     for (int i = bin;;) { // start upwards sweep
2126     int fh; Node f;
2127     if ((f = tabAt(tab, i)) == null) {
2128 dl 1.128 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2129 dl 1.119 if (!casTabAt(tab, i, f, fwd))
2130     continue;
2131     }
2132     else { // transiently use a locked forwarding node
2133     Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2134     if (!casTabAt(tab, i, f, g))
2135     continue;
2136     setTabAt(nextTab, i, null);
2137     setTabAt(nextTab, i + n, null);
2138     setTabAt(tab, i, fwd);
2139     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140     g.hash = MOVED;
2141     synchronized (g) { g.notifyAll(); }
2142     }
2143     }
2144     }
2145     else if ((fh = f.hash) == MOVED) {
2146     Object fk = f.key;
2147     if (fk instanceof TreeBin) {
2148     TreeBin t = (TreeBin)fk;
2149     boolean validated = false;
2150     t.acquire(0);
2151     try {
2152     if (tabAt(tab, i) == f) {
2153     validated = true;
2154     splitTreeBin(nextTab, i, t);
2155     setTabAt(tab, i, fwd);
2156     }
2157     } finally {
2158     t.release(0);
2159     }
2160     if (!validated)
2161     continue;
2162     }
2163     }
2164     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2165     boolean validated = false;
2166     try { // split to lo and hi lists; copying as needed
2167     if (tabAt(tab, i) == f) {
2168     validated = true;
2169     splitBin(nextTab, i, f);
2170     setTabAt(tab, i, fwd);
2171     }
2172     } finally {
2173     if (!f.casHash(fh | LOCKED, fh)) {
2174     f.hash = fh;
2175     synchronized (f) { f.notifyAll(); };
2176     }
2177     }
2178     if (!validated)
2179     continue;
2180     }
2181     else {
2182     if (buffer == null) // initialize buffer for revisits
2183     buffer = new int[TRANSFER_BUFFER_SIZE];
2184     if (bin < 0 && bufferIndex > 0) {
2185     int j = buffer[--bufferIndex];
2186     buffer[bufferIndex] = i;
2187     i = j; // swap with another bin
2188     continue;
2189     }
2190     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191     f.tryAwaitLock(tab, i);
2192     continue; // no other options -- block
2193     }
2194     if (rev == null) // initialize reverse-forwarder
2195     rev = new Node(MOVED, tab, null, null);
2196     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197     continue; // recheck before adding to list
2198     buffer[nbuffered++] = i;
2199     setTabAt(nextTab, i, rev); // install place-holders
2200     setTabAt(nextTab, i + n, rev);
2201     }
2202    
2203     if (bin > 0)
2204     i = --bin;
2205     else if (buffer != null && nbuffered > 0) {
2206     bin = -1;
2207     i = buffer[bufferIndex = --nbuffered];
2208     }
2209     else
2210     return nextTab;
2211     }
2212 dl 1.4 }
2213 tim 1.1
2214 dl 1.4 /**
2215 dl 1.119 * Splits a normal bin with list headed by e into lo and hi parts;
2216     * installs in given table.
2217 dl 1.4 */
2218 dl 1.119 private static void splitBin(Node[] nextTab, int i, Node e) {
2219     int bit = nextTab.length >>> 1; // bit to split on
2220     int runBit = e.hash & bit;
2221     Node lastRun = e, lo = null, hi = null;
2222     for (Node p = e.next; p != null; p = p.next) {
2223     int b = p.hash & bit;
2224     if (b != runBit) {
2225     runBit = b;
2226     lastRun = p;
2227     }
2228     }
2229     if (runBit == 0)
2230     lo = lastRun;
2231     else
2232     hi = lastRun;
2233     for (Node p = e; p != lastRun; p = p.next) {
2234     int ph = p.hash & HASH_BITS;
2235     Object pk = p.key, pv = p.val;
2236     if ((ph & bit) == 0)
2237     lo = new Node(ph, pk, pv, lo);
2238     else
2239     hi = new Node(ph, pk, pv, hi);
2240     }
2241     setTabAt(nextTab, i, lo);
2242     setTabAt(nextTab, i + bit, hi);
2243     }
2244    
2245     /**
2246     * Splits a tree bin into lo and hi parts; installs in given table.
2247     */
2248     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2249     int bit = nextTab.length >>> 1;
2250     TreeBin lt = new TreeBin();
2251     TreeBin ht = new TreeBin();
2252     int lc = 0, hc = 0;
2253     for (Node e = t.first; e != null; e = e.next) {
2254     int h = e.hash & HASH_BITS;
2255     Object k = e.key, v = e.val;
2256     if ((h & bit) == 0) {
2257     ++lc;
2258     lt.putTreeNode(h, k, v);
2259     }
2260     else {
2261     ++hc;
2262     ht.putTreeNode(h, k, v);
2263     }
2264     }
2265     Node ln, hn; // throw away trees if too small
2266     if (lc <= (TREE_THRESHOLD >>> 1)) {
2267     ln = null;
2268     for (Node p = lt.first; p != null; p = p.next)
2269     ln = new Node(p.hash, p.key, p.val, ln);
2270     }
2271     else
2272     ln = new Node(MOVED, lt, null, null);
2273     setTabAt(nextTab, i, ln);
2274     if (hc <= (TREE_THRESHOLD >>> 1)) {
2275     hn = null;
2276     for (Node p = ht.first; p != null; p = p.next)
2277     hn = new Node(p.hash, p.key, p.val, hn);
2278     }
2279     else
2280     hn = new Node(MOVED, ht, null, null);
2281     setTabAt(nextTab, i + bit, hn);
2282     }
2283    
2284     /**
2285     * Implementation for clear. Steps through each bin, removing all
2286     * nodes.
2287     */
2288     private final void internalClear() {
2289     long delta = 0L; // negative number of deletions
2290     int i = 0;
2291     Node[] tab = table;
2292     while (tab != null && i < tab.length) {
2293     int fh; Object fk;
2294     Node f = tabAt(tab, i);
2295     if (f == null)
2296     ++i;
2297     else if ((fh = f.hash) == MOVED) {
2298     if ((fk = f.key) instanceof TreeBin) {
2299     TreeBin t = (TreeBin)fk;
2300     t.acquire(0);
2301     try {
2302     if (tabAt(tab, i) == f) {
2303     for (Node p = t.first; p != null; p = p.next) {
2304 dl 1.128 if (p.val != null) { // (currently always true)
2305     p.val = null;
2306     --delta;
2307     }
2308 dl 1.119 }
2309     t.first = null;
2310     t.root = null;
2311     ++i;
2312     }
2313     } finally {
2314     t.release(0);
2315     }
2316     }
2317     else
2318     tab = (Node[])fk;
2319     }
2320     else if ((fh & LOCKED) != 0) {
2321     counter.add(delta); // opportunistically update count
2322     delta = 0L;
2323     f.tryAwaitLock(tab, i);
2324     }
2325     else if (f.casHash(fh, fh | LOCKED)) {
2326     try {
2327     if (tabAt(tab, i) == f) {
2328     for (Node e = f; e != null; e = e.next) {
2329 dl 1.128 if (e.val != null) { // (currently always true)
2330     e.val = null;
2331     --delta;
2332     }
2333 dl 1.119 }
2334     setTabAt(tab, i, null);
2335     ++i;
2336     }
2337     } finally {
2338     if (!f.casHash(fh | LOCKED, fh)) {
2339     f.hash = fh;
2340     synchronized (f) { f.notifyAll(); };
2341     }
2342     }
2343     }
2344     }
2345     if (delta != 0)
2346     counter.add(delta);
2347     }
2348    
2349     /* ----------------Table Traversal -------------- */
2350    
2351     /**
2352     * Encapsulates traversal for methods such as containsValue; also
2353 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2354 dl 1.119 *
2355     * At each step, the iterator snapshots the key ("nextKey") and
2356     * value ("nextVal") of a valid node (i.e., one that, at point of
2357     * snapshot, has a non-null user value). Because val fields can
2358     * change (including to null, indicating deletion), field nextVal
2359     * might not be accurate at point of use, but still maintains the
2360     * weak consistency property of holding a value that was once
2361 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2362     * updated (nulled out) when the iterator cannot advance.
2363 dl 1.119 *
2364     * Internal traversals directly access these fields, as in:
2365     * {@code while (it.advance() != null) { process(it.nextKey); }}
2366     *
2367     * Exported iterators must track whether the iterator has advanced
2368     * (in hasNext vs next) (by setting/checking/nulling field
2369     * nextVal), and then extract key, value, or key-value pairs as
2370     * return values of next().
2371     *
2372     * The iterator visits once each still-valid node that was
2373     * reachable upon iterator construction. It might miss some that
2374     * were added to a bin after the bin was visited, which is OK wrt
2375     * consistency guarantees. Maintaining this property in the face
2376     * of possible ongoing resizes requires a fair amount of
2377     * bookkeeping state that is difficult to optimize away amidst
2378     * volatile accesses. Even so, traversal maintains reasonable
2379     * throughput.
2380     *
2381     * Normally, iteration proceeds bin-by-bin traversing lists.
2382     * However, if the table has been resized, then all future steps
2383     * must traverse both the bin at the current index as well as at
2384     * (index + baseSize); and so on for further resizings. To
2385     * paranoically cope with potential sharing by users of iterators
2386     * across threads, iteration terminates if a bounds checks fails
2387     * for a table read.
2388     *
2389     * This class extends ForkJoinTask to streamline parallel
2390     * iteration in bulk operations (see BulkTask). This adds only an
2391     * int of space overhead, which is close enough to negligible in
2392 dl 1.126 * cases where it is not needed to not worry about it. Because
2393     * ForkJoinTask is Serializable, but iterators need not be, we
2394     * need to add warning suppressions.
2395 dl 1.119 */
2396 dl 1.128 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2397 dl 1.119 final ConcurrentHashMap<K, V> map;
2398     Node next; // the next entry to use
2399     Object nextKey; // cached key field of next
2400     Object nextVal; // cached val field of next
2401     Node[] tab; // current table; updated if resized
2402     int index; // index of bin to use next
2403     int baseIndex; // current index of initial table
2404     int baseLimit; // index bound for initial table
2405 dl 1.130 int baseSize; // initial table size
2406 dl 1.119
2407     /** Creates iterator for all entries in the table. */
2408     Traverser(ConcurrentHashMap<K, V> map) {
2409 dl 1.130 this.map = map;
2410 dl 1.119 }
2411    
2412     /** Creates iterator for split() methods */
2413 dl 1.128 Traverser(Traverser<K,V,?> it) {
2414 dl 1.130 ConcurrentHashMap<K, V> m; Node[] t;
2415     if ((m = this.map = it.map) == null)
2416     t = null;
2417     else if ((t = it.tab) == null && // force parent tab initialization
2418     (t = it.tab = m.table) != null)
2419     it.baseLimit = it.baseSize = t.length;
2420     this.tab = t;
2421 dl 1.119 this.baseSize = it.baseSize;
2422 dl 1.128 it.baseLimit = this.index = this.baseIndex =
2423     ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2424 dl 1.119 }
2425    
2426     /**
2427     * Advances next; returns nextVal or null if terminated.
2428     * See above for explanation.
2429     */
2430     final Object advance() {
2431 dl 1.137 Node e = next;
2432 dl 1.119 Object ev = null;
2433     outer: do {
2434     if (e != null) // advance past used/skipped node
2435     e = e.next;
2436     while (e == null) { // get to next non-null bin
2437 dl 1.130 ConcurrentHashMap<K, V> m;
2438 dl 1.119 Node[] t; int b, i, n; Object ek; // checks must use locals
2439 dl 1.130 if ((t = tab) != null)
2440     n = t.length;
2441     else if ((m = map) != null && (t = tab = m.table) != null)
2442     n = baseLimit = baseSize = t.length;
2443     else
2444 dl 1.119 break outer;
2445 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2446     (i = index) < 0 || i >= n)
2447     break outer;
2448     if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2449 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2450     e = ((TreeBin)ek).first;
2451     else {
2452     tab = (Node[])ek;
2453     continue; // restarts due to null val
2454     }
2455     } // visit upper slots if present
2456     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2457     }
2458     nextKey = e.key;
2459     } while ((ev = e.val) == null); // skip deleted or special nodes
2460     next = e;
2461     return nextVal = ev;
2462     }
2463    
2464     public final void remove() {
2465 dl 1.137 Object k = nextKey;
2466     if (k == null && (advance() == null || (k = nextKey) == null))
2467 dl 1.119 throw new IllegalStateException();
2468 dl 1.137 map.internalReplace(k, null, null);
2469 dl 1.119 }
2470    
2471     public final boolean hasNext() {
2472     return nextVal != null || advance() != null;
2473     }
2474    
2475     public final boolean hasMoreElements() { return hasNext(); }
2476     public final void setRawResult(Object x) { }
2477     public R getRawResult() { return null; }
2478     public boolean exec() { return true; }
2479     }
2480    
2481     /* ---------------- Public operations -------------- */
2482    
2483     /**
2484     * Creates a new, empty map with the default initial table size (16).
2485     */
2486     public ConcurrentHashMap() {
2487     this.counter = new LongAdder();
2488     }
2489    
2490     /**
2491     * Creates a new, empty map with an initial table size
2492     * accommodating the specified number of elements without the need
2493     * to dynamically resize.
2494     *
2495     * @param initialCapacity The implementation performs internal
2496     * sizing to accommodate this many elements.
2497     * @throws IllegalArgumentException if the initial capacity of
2498     * elements is negative
2499     */
2500     public ConcurrentHashMap(int initialCapacity) {
2501     if (initialCapacity < 0)
2502     throw new IllegalArgumentException();
2503     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2504     MAXIMUM_CAPACITY :
2505     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506     this.counter = new LongAdder();
2507     this.sizeCtl = cap;
2508     }
2509    
2510     /**
2511     * Creates a new map with the same mappings as the given map.
2512     *
2513     * @param m the map
2514     */
2515     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2516     this.counter = new LongAdder();
2517     this.sizeCtl = DEFAULT_CAPACITY;
2518     internalPutAll(m);
2519     }
2520    
2521     /**
2522     * Creates a new, empty map with an initial table size based on
2523     * the given number of elements ({@code initialCapacity}) and
2524     * initial table density ({@code loadFactor}).
2525     *
2526     * @param initialCapacity the initial capacity. The implementation
2527     * performs internal sizing to accommodate this many elements,
2528     * given the specified load factor.
2529     * @param loadFactor the load factor (table density) for
2530     * establishing the initial table size
2531     * @throws IllegalArgumentException if the initial capacity of
2532     * elements is negative or the load factor is nonpositive
2533     *
2534     * @since 1.6
2535     */
2536     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2537     this(initialCapacity, loadFactor, 1);
2538     }
2539    
2540     /**
2541     * Creates a new, empty map with an initial table size based on
2542     * the given number of elements ({@code initialCapacity}), table
2543     * density ({@code loadFactor}), and number of concurrently
2544     * updating threads ({@code concurrencyLevel}).
2545     *
2546     * @param initialCapacity the initial capacity. The implementation
2547     * performs internal sizing to accommodate this many elements,
2548     * given the specified load factor.
2549     * @param loadFactor the load factor (table density) for
2550     * establishing the initial table size
2551     * @param concurrencyLevel the estimated number of concurrently
2552     * updating threads. The implementation may use this value as
2553     * a sizing hint.
2554     * @throws IllegalArgumentException if the initial capacity is
2555     * negative or the load factor or concurrencyLevel are
2556     * nonpositive
2557     */
2558     public ConcurrentHashMap(int initialCapacity,
2559     float loadFactor, int concurrencyLevel) {
2560     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2561     throw new IllegalArgumentException();
2562     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2563     initialCapacity = concurrencyLevel; // as estimated threads
2564     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2565     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2566     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2567     this.counter = new LongAdder();
2568     this.sizeCtl = cap;
2569     }
2570    
2571     /**
2572 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2573     * from the given type to {@code Boolean.TRUE}.
2574     *
2575     * @return the new set
2576     */
2577     public static <K> KeySetView<K,Boolean> newKeySet() {
2578     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2579     Boolean.TRUE);
2580     }
2581    
2582     /**
2583     * Creates a new {@link Set} backed by a ConcurrentHashMap
2584     * from the given type to {@code Boolean.TRUE}.
2585     *
2586     * @param initialCapacity The implementation performs internal
2587     * sizing to accommodate this many elements.
2588     * @throws IllegalArgumentException if the initial capacity of
2589     * elements is negative
2590     * @return the new set
2591     */
2592     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2593     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2594     Boolean.TRUE);
2595     }
2596    
2597     /**
2598 dl 1.119 * {@inheritDoc}
2599     */
2600     public boolean isEmpty() {
2601     return counter.sum() <= 0L; // ignore transient negative values
2602     }
2603    
2604     /**
2605     * {@inheritDoc}
2606     */
2607     public int size() {
2608     long n = counter.sum();
2609     return ((n < 0L) ? 0 :
2610     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2611     (int)n);
2612     }
2613    
2614     /**
2615     * Returns the number of mappings. This method should be used
2616     * instead of {@link #size} because a ConcurrentHashMap may
2617     * contain more mappings than can be represented as an int. The
2618     * value returned is a snapshot; the actual count may differ if
2619 dl 1.127 * there are ongoing concurrent insertions or removals.
2620 dl 1.119 *
2621     * @return the number of mappings
2622     */
2623     public long mappingCount() {
2624     long n = counter.sum();
2625 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2626 dl 1.119 }
2627    
2628     /**
2629     * Returns the value to which the specified key is mapped,
2630     * or {@code null} if this map contains no mapping for the key.
2631     *
2632     * <p>More formally, if this map contains a mapping from a key
2633     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2634     * then this method returns {@code v}; otherwise it returns
2635     * {@code null}. (There can be at most one such mapping.)
2636     *
2637     * @throws NullPointerException if the specified key is null
2638     */
2639 dl 1.128 @SuppressWarnings("unchecked") public V get(Object key) {
2640 dl 1.119 if (key == null)
2641     throw new NullPointerException();
2642     return (V)internalGet(key);
2643     }
2644    
2645     /**
2646 dl 1.129 * Returns the value to which the specified key is mapped,
2647 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2648 dl 1.129 *
2649     * @param key the key
2650     * @param defaultValue the value to return if this map contains
2651 jsr166 1.134 * no mapping for the given key
2652 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2653     * @throws NullPointerException if the specified key is null
2654     */
2655     @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2656     if (key == null)
2657     throw new NullPointerException();
2658     V v = (V) internalGet(key);
2659     return v == null ? defaultValue : v;
2660     }
2661    
2662     /**
2663 dl 1.119 * Tests if the specified object is a key in this table.
2664     *
2665     * @param key possible key
2666     * @return {@code true} if and only if the specified object
2667     * is a key in this table, as determined by the
2668     * {@code equals} method; {@code false} otherwise
2669     * @throws NullPointerException if the specified key is null
2670     */
2671     public boolean containsKey(Object key) {
2672     if (key == null)
2673     throw new NullPointerException();
2674     return internalGet(key) != null;
2675     }
2676    
2677     /**
2678     * Returns {@code true} if this map maps one or more keys to the
2679     * specified value. Note: This method may require a full traversal
2680     * of the map, and is much slower than method {@code containsKey}.
2681     *
2682     * @param value value whose presence in this map is to be tested
2683     * @return {@code true} if this map maps one or more keys to the
2684     * specified value
2685     * @throws NullPointerException if the specified value is null
2686     */
2687     public boolean containsValue(Object value) {
2688     if (value == null)
2689     throw new NullPointerException();
2690     Object v;
2691     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2692     while ((v = it.advance()) != null) {
2693     if (v == value || value.equals(v))
2694     return true;
2695     }
2696     return false;
2697     }
2698    
2699     /**
2700     * Legacy method testing if some key maps into the specified value
2701     * in this table. This method is identical in functionality to
2702     * {@link #containsValue}, and exists solely to ensure
2703     * full compatibility with class {@link java.util.Hashtable},
2704     * which supported this method prior to introduction of the
2705     * Java Collections framework.
2706     *
2707     * @param value a value to search for
2708     * @return {@code true} if and only if some key maps to the
2709     * {@code value} argument in this table as
2710     * determined by the {@code equals} method;
2711     * {@code false} otherwise
2712     * @throws NullPointerException if the specified value is null
2713     */
2714     public boolean contains(Object value) {
2715     return containsValue(value);
2716     }
2717    
2718     /**
2719     * Maps the specified key to the specified value in this table.
2720     * Neither the key nor the value can be null.
2721     *
2722 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2723 dl 1.119 * with a key that is equal to the original key.
2724     *
2725     * @param key key with which the specified value is to be associated
2726     * @param value value to be associated with the specified key
2727     * @return the previous value associated with {@code key}, or
2728     * {@code null} if there was no mapping for {@code key}
2729     * @throws NullPointerException if the specified key or value is null
2730     */
2731 dl 1.128 @SuppressWarnings("unchecked") public V put(K key, V value) {
2732 dl 1.119 if (key == null || value == null)
2733     throw new NullPointerException();
2734     return (V)internalPut(key, value);
2735     }
2736    
2737     /**
2738     * {@inheritDoc}
2739     *
2740     * @return the previous value associated with the specified key,
2741     * or {@code null} if there was no mapping for the key
2742     * @throws NullPointerException if the specified key or value is null
2743     */
2744 dl 1.128 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2745 dl 1.119 if (key == null || value == null)
2746     throw new NullPointerException();
2747     return (V)internalPutIfAbsent(key, value);
2748     }
2749    
2750     /**
2751     * Copies all of the mappings from the specified map to this one.
2752     * These mappings replace any mappings that this map had for any of the
2753     * keys currently in the specified map.
2754     *
2755     * @param m mappings to be stored in this map
2756     */
2757     public void putAll(Map<? extends K, ? extends V> m) {
2758     internalPutAll(m);
2759     }
2760    
2761     /**
2762     * If the specified key is not already associated with a value,
2763     * computes its value using the given mappingFunction and enters
2764     * it into the map unless null. This is equivalent to
2765     * <pre> {@code
2766     * if (map.containsKey(key))
2767     * return map.get(key);
2768     * value = mappingFunction.apply(key);
2769     * if (value != null)
2770     * map.put(key, value);
2771     * return value;}</pre>
2772     *
2773     * except that the action is performed atomically. If the
2774     * function returns {@code null} no mapping is recorded. If the
2775     * function itself throws an (unchecked) exception, the exception
2776     * is rethrown to its caller, and no mapping is recorded. Some
2777     * attempted update operations on this map by other threads may be
2778     * blocked while computation is in progress, so the computation
2779     * should be short and simple, and must not attempt to update any
2780     * other mappings of this Map. The most appropriate usage is to
2781     * construct a new object serving as an initial mapped value, or
2782     * memoized result, as in:
2783     *
2784     * <pre> {@code
2785     * map.computeIfAbsent(key, new Fun<K, V>() {
2786     * public V map(K k) { return new Value(f(k)); }});}</pre>
2787     *
2788     * @param key key with which the specified value is to be associated
2789     * @param mappingFunction the function to compute a value
2790     * @return the current (existing or computed) value associated with
2791 jsr166 1.134 * the specified key, or null if the computed value is null
2792 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2793     * is null
2794     * @throws IllegalStateException if the computation detectably
2795     * attempts a recursive update to this map that would
2796     * otherwise never complete
2797     * @throws RuntimeException or Error if the mappingFunction does so,
2798     * in which case the mapping is left unestablished
2799     */
2800 dl 1.128 @SuppressWarnings("unchecked") public V computeIfAbsent
2801     (K key, Fun<? super K, ? extends V> mappingFunction) {
2802 dl 1.119 if (key == null || mappingFunction == null)
2803     throw new NullPointerException();
2804     return (V)internalComputeIfAbsent(key, mappingFunction);
2805     }
2806    
2807     /**
2808     * If the given key is present, computes a new mapping value given a key and
2809     * its current mapped value. This is equivalent to
2810     * <pre> {@code
2811     * if (map.containsKey(key)) {
2812     * value = remappingFunction.apply(key, map.get(key));
2813     * if (value != null)
2814     * map.put(key, value);
2815     * else
2816     * map.remove(key);
2817     * }
2818     * }</pre>
2819     *
2820     * except that the action is performed atomically. If the
2821     * function returns {@code null}, the mapping is removed. If the
2822     * function itself throws an (unchecked) exception, the exception
2823     * is rethrown to its caller, and the current mapping is left
2824     * unchanged. Some attempted update operations on this map by
2825     * other threads may be blocked while computation is in progress,
2826     * so the computation should be short and simple, and must not
2827     * attempt to update any other mappings of this Map. For example,
2828     * to either create or append new messages to a value mapping:
2829     *
2830     * @param key key with which the specified value is to be associated
2831     * @param remappingFunction the function to compute a value
2832 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2833 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2834     * is null
2835     * @throws IllegalStateException if the computation detectably
2836     * attempts a recursive update to this map that would
2837     * otherwise never complete
2838     * @throws RuntimeException or Error if the remappingFunction does so,
2839     * in which case the mapping is unchanged
2840     */
2841 dl 1.128 @SuppressWarnings("unchecked") public V computeIfPresent
2842     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2843 dl 1.119 if (key == null || remappingFunction == null)
2844     throw new NullPointerException();
2845     return (V)internalCompute(key, true, remappingFunction);
2846     }
2847    
2848     /**
2849     * Computes a new mapping value given a key and
2850     * its current mapped value (or {@code null} if there is no current
2851     * mapping). This is equivalent to
2852     * <pre> {@code
2853     * value = remappingFunction.apply(key, map.get(key));
2854     * if (value != null)
2855     * map.put(key, value);
2856     * else
2857     * map.remove(key);
2858     * }</pre>
2859     *
2860     * except that the action is performed atomically. If the
2861     * function returns {@code null}, the mapping is removed. If the
2862     * function itself throws an (unchecked) exception, the exception
2863     * is rethrown to its caller, and the current mapping is left
2864     * unchanged. Some attempted update operations on this map by
2865     * other threads may be blocked while computation is in progress,
2866     * so the computation should be short and simple, and must not
2867     * attempt to update any other mappings of this Map. For example,
2868     * to either create or append new messages to a value mapping:
2869     *
2870     * <pre> {@code
2871     * Map<Key, String> map = ...;
2872     * final String msg = ...;
2873     * map.compute(key, new BiFun<Key, String, String>() {
2874     * public String apply(Key k, String v) {
2875     * return (v == null) ? msg : v + msg;});}}</pre>
2876     *
2877     * @param key key with which the specified value is to be associated
2878     * @param remappingFunction the function to compute a value
2879 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2880 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2881     * is null
2882     * @throws IllegalStateException if the computation detectably
2883     * attempts a recursive update to this map that would
2884     * otherwise never complete
2885     * @throws RuntimeException or Error if the remappingFunction does so,
2886     * in which case the mapping is unchanged
2887     */
2888 dl 1.128 @SuppressWarnings("unchecked") public V compute
2889     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2890 dl 1.119 if (key == null || remappingFunction == null)
2891     throw new NullPointerException();
2892     return (V)internalCompute(key, false, remappingFunction);
2893     }
2894    
2895     /**
2896     * If the specified key is not already associated
2897     * with a value, associate it with the given value.
2898     * Otherwise, replace the value with the results of
2899     * the given remapping function. This is equivalent to:
2900     * <pre> {@code
2901     * if (!map.containsKey(key))
2902     * map.put(value);
2903     * else {
2904     * newValue = remappingFunction.apply(map.get(key), value);
2905     * if (value != null)
2906     * map.put(key, value);
2907     * else
2908     * map.remove(key);
2909     * }
2910     * }</pre>
2911     * except that the action is performed atomically. If the
2912     * function returns {@code null}, the mapping is removed. If the
2913     * function itself throws an (unchecked) exception, the exception
2914     * is rethrown to its caller, and the current mapping is left
2915     * unchanged. Some attempted update operations on this map by
2916     * other threads may be blocked while computation is in progress,
2917     * so the computation should be short and simple, and must not
2918     * attempt to update any other mappings of this Map.
2919     */
2920 dl 1.128 @SuppressWarnings("unchecked") public V merge
2921     (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2922 dl 1.119 if (key == null || value == null || remappingFunction == null)
2923     throw new NullPointerException();
2924     return (V)internalMerge(key, value, remappingFunction);
2925     }
2926    
2927     /**
2928     * Removes the key (and its corresponding value) from this map.
2929     * This method does nothing if the key is not in the map.
2930     *
2931     * @param key the key that needs to be removed
2932     * @return the previous value associated with {@code key}, or
2933     * {@code null} if there was no mapping for {@code key}
2934     * @throws NullPointerException if the specified key is null
2935     */
2936 dl 1.128 @SuppressWarnings("unchecked") public V remove(Object key) {
2937 dl 1.119 if (key == null)
2938     throw new NullPointerException();
2939     return (V)internalReplace(key, null, null);
2940     }
2941    
2942     /**
2943     * {@inheritDoc}
2944     *
2945     * @throws NullPointerException if the specified key is null
2946     */
2947     public boolean remove(Object key, Object value) {
2948     if (key == null)
2949     throw new NullPointerException();
2950     if (value == null)
2951     return false;
2952     return internalReplace(key, null, value) != null;
2953 tim 1.1 }
2954 dl 1.31
2955     /**
2956 jsr166 1.68 * {@inheritDoc}
2957     *
2958     * @throws NullPointerException if any of the arguments are null
2959 dl 1.31 */
2960     public boolean replace(K key, V oldValue, V newValue) {
2961 dl 1.119 if (key == null || oldValue == null || newValue == null)
2962 dl 1.31 throw new NullPointerException();
2963 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2964 dl 1.32 }
2965    
2966     /**
2967 jsr166 1.68 * {@inheritDoc}
2968     *
2969     * @return the previous value associated with the specified key,
2970 dl 1.119 * or {@code null} if there was no mapping for the key
2971 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2972 dl 1.32 */
2973 dl 1.128 @SuppressWarnings("unchecked") public V replace(K key, V value) {
2974 dl 1.119 if (key == null || value == null)
2975 dl 1.32 throw new NullPointerException();
2976 dl 1.119 return (V)internalReplace(key, value, null);
2977 dl 1.31 }
2978    
2979 tim 1.1 /**
2980 jsr166 1.68 * Removes all of the mappings from this map.
2981 tim 1.1 */
2982     public void clear() {
2983 dl 1.119 internalClear();
2984 tim 1.1 }
2985    
2986     /**
2987 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2988     * The set is backed by the map, so changes to the map are
2989 dl 1.137 * reflected in the set, and vice-versa.
2990     *
2991     * @return the set view
2992     */
2993     public KeySetView<K,V> keySet() {
2994     KeySetView<K,V> ks = keySet;
2995     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2996     }
2997    
2998     /**
2999     * Returns a {@link Set} view of the keys in this map, using the
3000     * given common mapped value for any additions (i.e., {@link
3001     * Collection#add} and {@link Collection#addAll}). This is of
3002     * course only appropriate if it is acceptable to use the same
3003     * value for all additions from this view.
3004 jsr166 1.68 *
3005 dl 1.137 * @param mappedValue the mapped value to use for any
3006     * additions.
3007     * @return the set view
3008     * @throws NullPointerException if the mappedValue is null
3009 tim 1.1 */
3010 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
3011     if (mappedValue == null)
3012     throw new NullPointerException();
3013     return new KeySetView<K,V>(this, mappedValue);
3014 tim 1.1 }
3015    
3016     /**
3017 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
3018     * The collection is backed by the map, so changes to the map are
3019 jsr166 1.143 * reflected in the collection, and vice-versa.
3020 tim 1.1 */
3021 dl 1.142 public ValuesView<K,V> values() {
3022     ValuesView<K,V> vs = values;
3023     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3024 dl 1.119 }
3025    
3026     /**
3027     * Returns a {@link Set} view of the mappings contained in this map.
3028     * The set is backed by the map, so changes to the map are
3029     * reflected in the set, and vice-versa. The set supports element
3030     * removal, which removes the corresponding mapping from the map,
3031     * via the {@code Iterator.remove}, {@code Set.remove},
3032     * {@code removeAll}, {@code retainAll}, and {@code clear}
3033     * operations. It does not support the {@code add} or
3034     * {@code addAll} operations.
3035     *
3036     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3037     * that will never throw {@link ConcurrentModificationException},
3038     * and guarantees to traverse elements as they existed upon
3039     * construction of the iterator, and may (but is not guaranteed to)
3040     * reflect any modifications subsequent to construction.
3041     */
3042     public Set<Map.Entry<K,V>> entrySet() {
3043 dl 1.142 EntrySetView<K,V> es = entrySet;
3044     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3045 dl 1.119 }
3046    
3047     /**
3048     * Returns an enumeration of the keys in this table.
3049     *
3050     * @return an enumeration of the keys in this table
3051     * @see #keySet()
3052     */
3053     public Enumeration<K> keys() {
3054     return new KeyIterator<K,V>(this);
3055     }
3056    
3057     /**
3058     * Returns an enumeration of the values in this table.
3059     *
3060     * @return an enumeration of the values in this table
3061     * @see #values()
3062     */
3063     public Enumeration<V> elements() {
3064     return new ValueIterator<K,V>(this);
3065     }
3066    
3067     /**
3068 jsr166 1.122 * Returns a partitionable iterator of the keys in this map.
3069 dl 1.119 *
3070 jsr166 1.122 * @return a partitionable iterator of the keys in this map
3071 dl 1.119 */
3072     public Spliterator<K> keySpliterator() {
3073     return new KeyIterator<K,V>(this);
3074     }
3075    
3076     /**
3077 jsr166 1.122 * Returns a partitionable iterator of the values in this map.
3078 dl 1.119 *
3079 jsr166 1.122 * @return a partitionable iterator of the values in this map
3080 dl 1.119 */
3081     public Spliterator<V> valueSpliterator() {
3082     return new ValueIterator<K,V>(this);
3083     }
3084    
3085     /**
3086 jsr166 1.122 * Returns a partitionable iterator of the entries in this map.
3087 dl 1.119 *
3088 jsr166 1.122 * @return a partitionable iterator of the entries in this map
3089 dl 1.119 */
3090     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3091     return new EntryIterator<K,V>(this);
3092     }
3093    
3094     /**
3095     * Returns the hash code value for this {@link Map}, i.e.,
3096     * the sum of, for each key-value pair in the map,
3097     * {@code key.hashCode() ^ value.hashCode()}.
3098     *
3099     * @return the hash code value for this map
3100     */
3101     public int hashCode() {
3102     int h = 0;
3103     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3104     Object v;
3105     while ((v = it.advance()) != null) {
3106     h += it.nextKey.hashCode() ^ v.hashCode();
3107     }
3108     return h;
3109     }
3110    
3111     /**
3112     * Returns a string representation of this map. The string
3113     * representation consists of a list of key-value mappings (in no
3114     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3115     * mappings are separated by the characters {@code ", "} (comma
3116     * and space). Each key-value mapping is rendered as the key
3117     * followed by an equals sign ("{@code =}") followed by the
3118     * associated value.
3119     *
3120     * @return a string representation of this map
3121     */
3122     public String toString() {
3123     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3124     StringBuilder sb = new StringBuilder();
3125     sb.append('{');
3126     Object v;
3127     if ((v = it.advance()) != null) {
3128     for (;;) {
3129     Object k = it.nextKey;
3130     sb.append(k == this ? "(this Map)" : k);
3131     sb.append('=');
3132     sb.append(v == this ? "(this Map)" : v);
3133     if ((v = it.advance()) == null)
3134     break;
3135     sb.append(',').append(' ');
3136     }
3137     }
3138     return sb.append('}').toString();
3139     }
3140    
3141     /**
3142     * Compares the specified object with this map for equality.
3143     * Returns {@code true} if the given object is a map with the same
3144     * mappings as this map. This operation may return misleading
3145     * results if either map is concurrently modified during execution
3146     * of this method.
3147     *
3148     * @param o object to be compared for equality with this map
3149     * @return {@code true} if the specified object is equal to this map
3150     */
3151     public boolean equals(Object o) {
3152     if (o != this) {
3153     if (!(o instanceof Map))
3154     return false;
3155     Map<?,?> m = (Map<?,?>) o;
3156     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3157     Object val;
3158     while ((val = it.advance()) != null) {
3159     Object v = m.get(it.nextKey);
3160     if (v == null || (v != val && !v.equals(val)))
3161     return false;
3162     }
3163     for (Map.Entry<?,?> e : m.entrySet()) {
3164     Object mk, mv, v;
3165     if ((mk = e.getKey()) == null ||
3166     (mv = e.getValue()) == null ||
3167     (v = internalGet(mk)) == null ||
3168     (mv != v && !mv.equals(v)))
3169     return false;
3170     }
3171     }
3172     return true;
3173     }
3174    
3175     /* ----------------Iterators -------------- */
3176    
3177 dl 1.128 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3178 dl 1.119 implements Spliterator<K>, Enumeration<K> {
3179     KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3180 dl 1.128 KeyIterator(Traverser<K,V,Object> it) {
3181     super(it);
3182 dl 1.119 }
3183     public KeyIterator<K,V> split() {
3184 dl 1.137 if (nextKey != null)
3185 dl 1.119 throw new IllegalStateException();
3186 dl 1.128 return new KeyIterator<K,V>(this);
3187 dl 1.119 }
3188 dl 1.128 @SuppressWarnings("unchecked") public final K next() {
3189 dl 1.119 if (nextVal == null && advance() == null)
3190     throw new NoSuchElementException();
3191     Object k = nextKey;
3192     nextVal = null;
3193     return (K) k;
3194     }
3195    
3196     public final K nextElement() { return next(); }
3197     }
3198    
3199 dl 1.128 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3200 dl 1.119 implements Spliterator<V>, Enumeration<V> {
3201     ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3202 dl 1.128 ValueIterator(Traverser<K,V,Object> it) {
3203     super(it);
3204 dl 1.119 }
3205     public ValueIterator<K,V> split() {
3206 dl 1.137 if (nextKey != null)
3207 dl 1.119 throw new IllegalStateException();
3208 dl 1.128 return new ValueIterator<K,V>(this);
3209 dl 1.119 }
3210    
3211 dl 1.128 @SuppressWarnings("unchecked") public final V next() {
3212 dl 1.119 Object v;
3213     if ((v = nextVal) == null && (v = advance()) == null)
3214     throw new NoSuchElementException();
3215     nextVal = null;
3216     return (V) v;
3217     }
3218    
3219     public final V nextElement() { return next(); }
3220     }
3221    
3222 dl 1.128 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3223 dl 1.119 implements Spliterator<Map.Entry<K,V>> {
3224     EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3225 dl 1.128 EntryIterator(Traverser<K,V,Object> it) {
3226     super(it);
3227 dl 1.119 }
3228     public EntryIterator<K,V> split() {
3229 dl 1.137 if (nextKey != null)
3230 dl 1.119 throw new IllegalStateException();
3231 dl 1.128 return new EntryIterator<K,V>(this);
3232 dl 1.119 }
3233    
3234 dl 1.128 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3235 dl 1.119 Object v;
3236     if ((v = nextVal) == null && (v = advance()) == null)
3237     throw new NoSuchElementException();
3238     Object k = nextKey;
3239     nextVal = null;
3240     return new MapEntry<K,V>((K)k, (V)v, map);
3241     }
3242     }
3243    
3244     /**
3245     * Exported Entry for iterators
3246     */
3247     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3248     final K key; // non-null
3249     V val; // non-null
3250     final ConcurrentHashMap<K, V> map;
3251     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3252     this.key = key;
3253     this.val = val;
3254     this.map = map;
3255     }
3256     public final K getKey() { return key; }
3257     public final V getValue() { return val; }
3258     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3259     public final String toString(){ return key + "=" + val; }
3260    
3261     public final boolean equals(Object o) {
3262     Object k, v; Map.Entry<?,?> e;
3263     return ((o instanceof Map.Entry) &&
3264     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3265     (v = e.getValue()) != null &&
3266     (k == key || k.equals(key)) &&
3267     (v == val || v.equals(val)));
3268     }
3269    
3270     /**
3271     * Sets our entry's value and writes through to the map. The
3272     * value to return is somewhat arbitrary here. Since we do not
3273     * necessarily track asynchronous changes, the most recent
3274     * "previous" value could be different from what we return (or
3275     * could even have been removed in which case the put will
3276     * re-establish). We do not and cannot guarantee more.
3277     */
3278     public final V setValue(V value) {
3279     if (value == null) throw new NullPointerException();
3280     V v = val;
3281     val = value;
3282     map.put(key, value);
3283     return v;
3284     }
3285     }
3286    
3287 dl 1.142 /* ---------------- Serialization Support -------------- */
3288 dl 1.119
3289     /**
3290 dl 1.142 * Stripped-down version of helper class used in previous version,
3291     * declared for the sake of serialization compatibility
3292 dl 1.119 */
3293 dl 1.142 static class Segment<K,V> implements Serializable {
3294     private static final long serialVersionUID = 2249069246763182397L;
3295     final float loadFactor;
3296     Segment(float lf) { this.loadFactor = lf; }
3297     }
3298 dl 1.119
3299 dl 1.142 /**
3300     * Saves the state of the {@code ConcurrentHashMap} instance to a
3301     * stream (i.e., serializes it).
3302     * @param s the stream
3303     * @serialData
3304     * the key (Object) and value (Object)
3305     * for each key-value mapping, followed by a null pair.
3306     * The key-value mappings are emitted in no particular order.
3307     */
3308     @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3309     throws java.io.IOException {
3310     if (segments == null) { // for serialization compatibility
3311     segments = (Segment<K,V>[])
3312     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3313     for (int i = 0; i < segments.length; ++i)
3314     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3315     }
3316     s.defaultWriteObject();
3317     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3318     Object v;
3319     while ((v = it.advance()) != null) {
3320     s.writeObject(it.nextKey);
3321     s.writeObject(v);
3322     }
3323     s.writeObject(null);
3324     s.writeObject(null);
3325     segments = null; // throw away
3326     }
3327 dl 1.119
3328 dl 1.142 /**
3329     * Reconstitutes the instance from a stream (that is, deserializes it).
3330     * @param s the stream
3331     */
3332     @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3333     throws java.io.IOException, ClassNotFoundException {
3334     s.defaultReadObject();
3335     this.segments = null; // unneeded
3336     // initialize transient final field
3337     UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3338 dl 1.119
3339 dl 1.142 // Create all nodes, then place in table once size is known
3340     long size = 0L;
3341     Node p = null;
3342     for (;;) {
3343     K k = (K) s.readObject();
3344     V v = (V) s.readObject();
3345     if (k != null && v != null) {
3346     int h = spread(k.hashCode());
3347     p = new Node(h, k, v, p);
3348     ++size;
3349 dl 1.119 }
3350 dl 1.142 else
3351     break;
3352 dl 1.119 }
3353 dl 1.142 if (p != null) {
3354     boolean init = false;
3355     int n;
3356     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3357     n = MAXIMUM_CAPACITY;
3358     else {
3359     int sz = (int)size;
3360     n = tableSizeFor(sz + (sz >>> 1) + 1);
3361     }
3362     int sc = sizeCtl;
3363     boolean collide = false;
3364     if (n > sc &&
3365     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3366     try {
3367     if (table == null) {
3368     init = true;
3369     Node[] tab = new Node[n];
3370     int mask = n - 1;
3371     while (p != null) {
3372     int j = p.hash & mask;
3373     Node next = p.next;
3374     Node q = p.next = tabAt(tab, j);
3375     setTabAt(tab, j, p);
3376     if (!collide && q != null && q.hash == p.hash)
3377     collide = true;
3378     p = next;
3379     }
3380     table = tab;
3381     counter.add(size);
3382     sc = n - (n >>> 2);
3383     }
3384     } finally {
3385     sizeCtl = sc;
3386     }
3387     if (collide) { // rescan and convert to TreeBins
3388     Node[] tab = table;
3389     for (int i = 0; i < tab.length; ++i) {
3390     int c = 0;
3391     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3392     if (++c > TREE_THRESHOLD &&
3393     (e.key instanceof Comparable)) {
3394     replaceWithTreeBin(tab, i, e.key);
3395     break;
3396     }
3397     }
3398     }
3399 dl 1.119 }
3400     }
3401 dl 1.142 if (!init) { // Can only happen if unsafely published.
3402     while (p != null) {
3403     internalPut(p.key, p.val);
3404     p = p.next;
3405     }
3406 dl 1.119 }
3407     }
3408 dl 1.142 }
3409 dl 1.119
3410    
3411 dl 1.142 // -------------------------------------------------------
3412    
3413     // Sams
3414     /** Interface describing a void action of one argument */
3415 dl 1.119 public interface Action<A> { void apply(A a); }
3416     /** Interface describing a void action of two arguments */
3417     public interface BiAction<A,B> { void apply(A a, B b); }
3418     /** Interface describing a function of one argument */
3419     public interface Fun<A,T> { T apply(A a); }
3420     /** Interface describing a function of two arguments */
3421     public interface BiFun<A,B,T> { T apply(A a, B b); }
3422     /** Interface describing a function of no arguments */
3423     public interface Generator<T> { T apply(); }
3424     /** Interface describing a function mapping its argument to a double */
3425     public interface ObjectToDouble<A> { double apply(A a); }
3426     /** Interface describing a function mapping its argument to a long */
3427     public interface ObjectToLong<A> { long apply(A a); }
3428     /** Interface describing a function mapping its argument to an int */
3429     public interface ObjectToInt<A> {int apply(A a); }
3430     /** Interface describing a function mapping two arguments to a double */
3431     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3432     /** Interface describing a function mapping two arguments to a long */
3433     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3434     /** Interface describing a function mapping two arguments to an int */
3435     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3436     /** Interface describing a function mapping a double to a double */
3437     public interface DoubleToDouble { double apply(double a); }
3438     /** Interface describing a function mapping a long to a long */
3439     public interface LongToLong { long apply(long a); }
3440     /** Interface describing a function mapping an int to an int */
3441     public interface IntToInt { int apply(int a); }
3442     /** Interface describing a function mapping two doubles to a double */
3443     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3444     /** Interface describing a function mapping two longs to a long */
3445     public interface LongByLongToLong { long apply(long a, long b); }
3446     /** Interface describing a function mapping two ints to an int */
3447     public interface IntByIntToInt { int apply(int a, int b); }
3448    
3449    
3450     // -------------------------------------------------------
3451    
3452     /**
3453 dl 1.137 * Performs the given action for each (key, value).
3454 dl 1.119 *
3455 dl 1.137 * @param action the action
3456 dl 1.119 */
3457 dl 1.137 public void forEach(BiAction<K,V> action) {
3458     ForkJoinTasks.forEach
3459     (this, action).invoke();
3460 dl 1.119 }
3461    
3462     /**
3463 dl 1.137 * Performs the given action for each non-null transformation
3464     * of each (key, value).
3465     *
3466     * @param transformer a function returning the transformation
3467     * for an element, or null of there is no transformation (in
3468     * which case the action is not applied).
3469     * @param action the action
3470 dl 1.119 */
3471 dl 1.137 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3472     Action<U> action) {
3473     ForkJoinTasks.forEach
3474     (this, transformer, action).invoke();
3475     }
3476    
3477     /**
3478     * Returns a non-null result from applying the given search
3479     * function on each (key, value), or null if none. Upon
3480     * success, further element processing is suppressed and the
3481     * results of any other parallel invocations of the search
3482     * function are ignored.
3483     *
3484     * @param searchFunction a function returning a non-null
3485     * result on success, else null
3486     * @return a non-null result from applying the given search
3487     * function on each (key, value), or null if none
3488     */
3489     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3490     return ForkJoinTasks.search
3491     (this, searchFunction).invoke();
3492     }
3493    
3494     /**
3495     * Returns the result of accumulating the given transformation
3496     * of all (key, value) pairs using the given reducer to
3497     * combine values, or null if none.
3498     *
3499     * @param transformer a function returning the transformation
3500     * for an element, or null of there is no transformation (in
3501     * which case it is not combined).
3502     * @param reducer a commutative associative combining function
3503     * @return the result of accumulating the given transformation
3504     * of all (key, value) pairs
3505     */
3506     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3507     BiFun<? super U, ? super U, ? extends U> reducer) {
3508     return ForkJoinTasks.reduce
3509     (this, transformer, reducer).invoke();
3510     }
3511    
3512     /**
3513     * Returns the result of accumulating the given transformation
3514     * of all (key, value) pairs using the given reducer to
3515     * combine values, and the given basis as an identity value.
3516     *
3517     * @param transformer a function returning the transformation
3518     * for an element
3519     * @param basis the identity (initial default value) for the reduction
3520     * @param reducer a commutative associative combining function
3521     * @return the result of accumulating the given transformation
3522     * of all (key, value) pairs
3523     */
3524     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3525     double basis,
3526     DoubleByDoubleToDouble reducer) {
3527     return ForkJoinTasks.reduceToDouble
3528     (this, transformer, basis, reducer).invoke();
3529     }
3530 dl 1.119
3531 dl 1.137 /**
3532     * Returns the result of accumulating the given transformation
3533     * of all (key, value) pairs using the given reducer to
3534     * combine values, and the given basis as an identity value.
3535     *
3536     * @param transformer a function returning the transformation
3537     * for an element
3538     * @param basis the identity (initial default value) for the reduction
3539     * @param reducer a commutative associative combining function
3540     * @return the result of accumulating the given transformation
3541     * of all (key, value) pairs
3542     */
3543     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3544     long basis,
3545     LongByLongToLong reducer) {
3546     return ForkJoinTasks.reduceToLong
3547     (this, transformer, basis, reducer).invoke();
3548     }
3549    
3550     /**
3551     * Returns the result of accumulating the given transformation
3552     * of all (key, value) pairs using the given reducer to
3553     * combine values, and the given basis as an identity value.
3554     *
3555     * @param transformer a function returning the transformation
3556     * for an element
3557     * @param basis the identity (initial default value) for the reduction
3558     * @param reducer a commutative associative combining function
3559     * @return the result of accumulating the given transformation
3560     * of all (key, value) pairs
3561     */
3562     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3563     int basis,
3564     IntByIntToInt reducer) {
3565     return ForkJoinTasks.reduceToInt
3566     (this, transformer, basis, reducer).invoke();
3567     }
3568    
3569     /**
3570     * Performs the given action for each key.
3571     *
3572     * @param action the action
3573     */
3574     public void forEachKey(Action<K> action) {
3575     ForkJoinTasks.forEachKey
3576     (this, action).invoke();
3577     }
3578 dl 1.119
3579 dl 1.137 /**
3580     * Performs the given action for each non-null transformation
3581     * of each key.
3582     *
3583     * @param transformer a function returning the transformation
3584     * for an element, or null of there is no transformation (in
3585     * which case the action is not applied).
3586     * @param action the action
3587     */
3588     public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3589     Action<U> action) {
3590     ForkJoinTasks.forEachKey
3591     (this, transformer, action).invoke();
3592     }
3593 dl 1.119
3594 dl 1.137 /**
3595     * Returns a non-null result from applying the given search
3596     * function on each key, or null if none. Upon success,
3597     * further element processing is suppressed and the results of
3598     * any other parallel invocations of the search function are
3599     * ignored.
3600     *
3601     * @param searchFunction a function returning a non-null
3602     * result on success, else null
3603     * @return a non-null result from applying the given search
3604     * function on each key, or null if none
3605     */
3606     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3607     return ForkJoinTasks.searchKeys
3608     (this, searchFunction).invoke();
3609     }
3610 dl 1.119
3611 dl 1.137 /**
3612     * Returns the result of accumulating all keys using the given
3613     * reducer to combine values, or null if none.
3614     *
3615     * @param reducer a commutative associative combining function
3616     * @return the result of accumulating all keys using the given
3617     * reducer to combine values, or null if none
3618     */
3619     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3620     return ForkJoinTasks.reduceKeys
3621     (this, reducer).invoke();
3622     }
3623 dl 1.119
3624 dl 1.137 /**
3625     * Returns the result of accumulating the given transformation
3626     * of all keys using the given reducer to combine values, or
3627     * null if none.
3628     *
3629     * @param transformer a function returning the transformation
3630     * for an element, or null of there is no transformation (in
3631     * which case it is not combined).
3632     * @param reducer a commutative associative combining function
3633     * @return the result of accumulating the given transformation
3634     * of all keys
3635     */
3636     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3637 dl 1.119 BiFun<? super U, ? super U, ? extends U> reducer) {
3638 dl 1.137 return ForkJoinTasks.reduceKeys
3639     (this, transformer, reducer).invoke();
3640     }
3641 dl 1.119
3642 dl 1.137 /**
3643     * Returns the result of accumulating the given transformation
3644     * of all keys using the given reducer to combine values, and
3645     * the given basis as an identity value.
3646     *
3647     * @param transformer a function returning the transformation
3648     * for an element
3649     * @param basis the identity (initial default value) for the reduction
3650     * @param reducer a commutative associative combining function
3651     * @return the result of accumulating the given transformation
3652     * of all keys
3653     */
3654     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3655 dl 1.119 double basis,
3656     DoubleByDoubleToDouble reducer) {
3657 dl 1.137 return ForkJoinTasks.reduceKeysToDouble
3658     (this, transformer, basis, reducer).invoke();
3659     }
3660 dl 1.119
3661 dl 1.137 /**
3662     * Returns the result of accumulating the given transformation
3663     * of all keys using the given reducer to combine values, and
3664     * the given basis as an identity value.
3665     *
3666     * @param transformer a function returning the transformation
3667     * for an element
3668     * @param basis the identity (initial default value) for the reduction
3669     * @param reducer a commutative associative combining function
3670     * @return the result of accumulating the given transformation
3671     * of all keys
3672     */
3673     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3674 dl 1.119 long basis,
3675     LongByLongToLong reducer) {
3676 dl 1.137 return ForkJoinTasks.reduceKeysToLong
3677     (this, transformer, basis, reducer).invoke();
3678     }
3679 dl 1.119
3680 dl 1.137 /**
3681     * Returns the result of accumulating the given transformation
3682     * of all keys using the given reducer to combine values, and
3683     * the given basis as an identity value.
3684     *
3685     * @param transformer a function returning the transformation
3686     * for an element
3687     * @param basis the identity (initial default value) for the reduction
3688     * @param reducer a commutative associative combining function
3689     * @return the result of accumulating the given transformation
3690     * of all keys
3691     */
3692     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3693 dl 1.119 int basis,
3694     IntByIntToInt reducer) {
3695 dl 1.137 return ForkJoinTasks.reduceKeysToInt
3696     (this, transformer, basis, reducer).invoke();
3697     }
3698 dl 1.119
3699 dl 1.137 /**
3700     * Performs the given action for each value.
3701     *
3702     * @param action the action
3703     */
3704     public void forEachValue(Action<V> action) {
3705     ForkJoinTasks.forEachValue
3706     (this, action).invoke();
3707     }
3708 dl 1.119
3709 dl 1.137 /**
3710     * Performs the given action for each non-null transformation
3711     * of each value.
3712     *
3713     * @param transformer a function returning the transformation
3714     * for an element, or null of there is no transformation (in
3715     * which case the action is not applied).
3716     */
3717     public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3718     Action<U> action) {
3719     ForkJoinTasks.forEachValue
3720     (this, transformer, action).invoke();
3721     }
3722 dl 1.119
3723 dl 1.137 /**
3724     * Returns a non-null result from applying the given search
3725     * function on each value, or null if none. Upon success,
3726     * further element processing is suppressed and the results of
3727     * any other parallel invocations of the search function are
3728     * ignored.
3729     *
3730     * @param searchFunction a function returning a non-null
3731     * result on success, else null
3732     * @return a non-null result from applying the given search
3733     * function on each value, or null if none
3734     *
3735     */
3736     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3737     return ForkJoinTasks.searchValues
3738     (this, searchFunction).invoke();
3739     }
3740 dl 1.119
3741 dl 1.137 /**
3742     * Returns the result of accumulating all values using the
3743     * given reducer to combine values, or null if none.
3744     *
3745     * @param reducer a commutative associative combining function
3746     * @return the result of accumulating all values
3747     */
3748     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3749     return ForkJoinTasks.reduceValues
3750     (this, reducer).invoke();
3751     }
3752 dl 1.119
3753 dl 1.137 /**
3754     * Returns the result of accumulating the given transformation
3755     * of all values using the given reducer to combine values, or
3756     * null if none.
3757     *
3758     * @param transformer a function returning the transformation
3759     * for an element, or null of there is no transformation (in
3760     * which case it is not combined).
3761     * @param reducer a commutative associative combining function
3762     * @return the result of accumulating the given transformation
3763     * of all values
3764     */
3765     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3766     BiFun<? super U, ? super U, ? extends U> reducer) {
3767     return ForkJoinTasks.reduceValues
3768     (this, transformer, reducer).invoke();
3769     }
3770 dl 1.119
3771 dl 1.137 /**
3772     * Returns the result of accumulating the given transformation
3773     * of all values using the given reducer to combine values,
3774     * and the given basis as an identity value.
3775     *
3776     * @param transformer a function returning the transformation
3777     * for an element
3778     * @param basis the identity (initial default value) for the reduction
3779     * @param reducer a commutative associative combining function
3780     * @return the result of accumulating the given transformation
3781     * of all values
3782     */
3783     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3784     double basis,
3785     DoubleByDoubleToDouble reducer) {
3786     return ForkJoinTasks.reduceValuesToDouble
3787     (this, transformer, basis, reducer).invoke();
3788     }
3789 dl 1.119
3790 dl 1.137 /**
3791     * Returns the result of accumulating the given transformation
3792     * of all values using the given reducer to combine values,
3793     * and the given basis as an identity value.
3794     *
3795     * @param transformer a function returning the transformation
3796     * for an element
3797     * @param basis the identity (initial default value) for the reduction
3798     * @param reducer a commutative associative combining function
3799     * @return the result of accumulating the given transformation
3800     * of all values
3801     */
3802     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3803     long basis,
3804     LongByLongToLong reducer) {
3805     return ForkJoinTasks.reduceValuesToLong
3806     (this, transformer, basis, reducer).invoke();
3807     }
3808 dl 1.119
3809 dl 1.137 /**
3810     * Returns the result of accumulating the given transformation
3811     * of all values using the given reducer to combine values,
3812     * and the given basis as an identity value.
3813     *
3814     * @param transformer a function returning the transformation
3815     * for an element
3816     * @param basis the identity (initial default value) for the reduction
3817     * @param reducer a commutative associative combining function
3818     * @return the result of accumulating the given transformation
3819     * of all values
3820     */
3821     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3822     int basis,
3823     IntByIntToInt reducer) {
3824     return ForkJoinTasks.reduceValuesToInt
3825     (this, transformer, basis, reducer).invoke();
3826     }
3827 dl 1.119
3828 dl 1.137 /**
3829     * Performs the given action for each entry.
3830     *
3831     * @param action the action
3832     */
3833     public void forEachEntry(Action<Map.Entry<K,V>> action) {
3834     ForkJoinTasks.forEachEntry
3835     (this, action).invoke();
3836     }
3837 dl 1.119
3838 dl 1.137 /**
3839     * Performs the given action for each non-null transformation
3840     * of each entry.
3841     *
3842     * @param transformer a function returning the transformation
3843     * for an element, or null of there is no transformation (in
3844     * which case the action is not applied).
3845     * @param action the action
3846     */
3847     public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3848     Action<U> action) {
3849     ForkJoinTasks.forEachEntry
3850     (this, transformer, action).invoke();
3851     }
3852 dl 1.119
3853 dl 1.137 /**
3854     * Returns a non-null result from applying the given search
3855     * function on each entry, or null if none. Upon success,
3856     * further element processing is suppressed and the results of
3857     * any other parallel invocations of the search function are
3858     * ignored.
3859     *
3860     * @param searchFunction a function returning a non-null
3861     * result on success, else null
3862     * @return a non-null result from applying the given search
3863     * function on each entry, or null if none
3864     */
3865     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3866     return ForkJoinTasks.searchEntries
3867     (this, searchFunction).invoke();
3868     }
3869 dl 1.119
3870 dl 1.137 /**
3871     * Returns the result of accumulating all entries using the
3872     * given reducer to combine values, or null if none.
3873     *
3874     * @param reducer a commutative associative combining function
3875     * @return the result of accumulating all entries
3876     */
3877     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3878     return ForkJoinTasks.reduceEntries
3879     (this, reducer).invoke();
3880     }
3881 dl 1.119
3882 dl 1.137 /**
3883     * Returns the result of accumulating the given transformation
3884     * of all entries using the given reducer to combine values,
3885     * or null if none.
3886     *
3887     * @param transformer a function returning the transformation
3888     * for an element, or null of there is no transformation (in
3889     * which case it is not combined).
3890     * @param reducer a commutative associative combining function
3891     * @return the result of accumulating the given transformation
3892     * of all entries
3893     */
3894     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3895     BiFun<? super U, ? super U, ? extends U> reducer) {
3896     return ForkJoinTasks.reduceEntries
3897     (this, transformer, reducer).invoke();
3898     }
3899 dl 1.119
3900 dl 1.137 /**
3901     * Returns the result of accumulating the given transformation
3902     * of all entries using the given reducer to combine values,
3903     * and the given basis as an identity value.
3904     *
3905     * @param transformer a function returning the transformation
3906     * for an element
3907     * @param basis the identity (initial default value) for the reduction
3908     * @param reducer a commutative associative combining function
3909     * @return the result of accumulating the given transformation
3910     * of all entries
3911     */
3912     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3913     double basis,
3914     DoubleByDoubleToDouble reducer) {
3915     return ForkJoinTasks.reduceEntriesToDouble
3916     (this, transformer, basis, reducer).invoke();
3917     }
3918 dl 1.119
3919 dl 1.137 /**
3920     * Returns the result of accumulating the given transformation
3921     * of all entries using the given reducer to combine values,
3922     * and the given basis as an identity value.
3923     *
3924     * @param transformer a function returning the transformation
3925     * for an element
3926     * @param basis the identity (initial default value) for the reduction
3927     * @param reducer a commutative associative combining function
3928     * @return the result of accumulating the given transformation
3929     * of all entries
3930     */
3931     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3932     long basis,
3933     LongByLongToLong reducer) {
3934     return ForkJoinTasks.reduceEntriesToLong
3935     (this, transformer, basis, reducer).invoke();
3936     }
3937 dl 1.119
3938 dl 1.137 /**
3939     * Returns the result of accumulating the given transformation
3940     * of all entries using the given reducer to combine values,
3941     * and the given basis as an identity value.
3942     *
3943     * @param transformer a function returning the transformation
3944     * for an element
3945     * @param basis the identity (initial default value) for the reduction
3946     * @param reducer a commutative associative combining function
3947     * @return the result of accumulating the given transformation
3948     * of all entries
3949     */
3950     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3951     int basis,
3952     IntByIntToInt reducer) {
3953     return ForkJoinTasks.reduceEntriesToInt
3954     (this, transformer, basis, reducer).invoke();
3955 dl 1.119 }
3956    
3957 dl 1.142 /* ----------------Views -------------- */
3958    
3959     /**
3960     * Base class for views.
3961     */
3962     static abstract class CHMView<K, V> {
3963     final ConcurrentHashMap<K, V> map;
3964     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
3965    
3966     /**
3967     * Returns the map backing this view.
3968     *
3969     * @return the map backing this view
3970     */
3971     public ConcurrentHashMap<K,V> getMap() { return map; }
3972    
3973     public final int size() { return map.size(); }
3974     public final boolean isEmpty() { return map.isEmpty(); }
3975     public final void clear() { map.clear(); }
3976    
3977     // implementations below rely on concrete classes supplying these
3978     abstract public Iterator<?> iterator();
3979     abstract public boolean contains(Object o);
3980     abstract public boolean remove(Object o);
3981    
3982     private static final String oomeMsg = "Required array size too large";
3983    
3984     public final Object[] toArray() {
3985     long sz = map.mappingCount();
3986     if (sz > (long)(MAX_ARRAY_SIZE))
3987     throw new OutOfMemoryError(oomeMsg);
3988     int n = (int)sz;
3989     Object[] r = new Object[n];
3990     int i = 0;
3991     Iterator<?> it = iterator();
3992     while (it.hasNext()) {
3993     if (i == n) {
3994     if (n >= MAX_ARRAY_SIZE)
3995     throw new OutOfMemoryError(oomeMsg);
3996     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3997     n = MAX_ARRAY_SIZE;
3998     else
3999     n += (n >>> 1) + 1;
4000     r = Arrays.copyOf(r, n);
4001     }
4002     r[i++] = it.next();
4003     }
4004     return (i == n) ? r : Arrays.copyOf(r, i);
4005     }
4006    
4007     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4008     long sz = map.mappingCount();
4009     if (sz > (long)(MAX_ARRAY_SIZE))
4010     throw new OutOfMemoryError(oomeMsg);
4011     int m = (int)sz;
4012     T[] r = (a.length >= m) ? a :
4013     (T[])java.lang.reflect.Array
4014     .newInstance(a.getClass().getComponentType(), m);
4015     int n = r.length;
4016     int i = 0;
4017     Iterator<?> it = iterator();
4018     while (it.hasNext()) {
4019     if (i == n) {
4020     if (n >= MAX_ARRAY_SIZE)
4021     throw new OutOfMemoryError(oomeMsg);
4022     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4023     n = MAX_ARRAY_SIZE;
4024     else
4025     n += (n >>> 1) + 1;
4026     r = Arrays.copyOf(r, n);
4027     }
4028     r[i++] = (T)it.next();
4029     }
4030     if (a == r && i < n) {
4031     r[i] = null; // null-terminate
4032     return r;
4033     }
4034     return (i == n) ? r : Arrays.copyOf(r, i);
4035     }
4036    
4037     public final int hashCode() {
4038     int h = 0;
4039     for (Iterator<?> it = iterator(); it.hasNext();)
4040     h += it.next().hashCode();
4041     return h;
4042     }
4043    
4044     public final String toString() {
4045     StringBuilder sb = new StringBuilder();
4046     sb.append('[');
4047     Iterator<?> it = iterator();
4048     if (it.hasNext()) {
4049     for (;;) {
4050     Object e = it.next();
4051     sb.append(e == this ? "(this Collection)" : e);
4052     if (!it.hasNext())
4053     break;
4054     sb.append(',').append(' ');
4055     }
4056     }
4057     return sb.append(']').toString();
4058     }
4059    
4060     public final boolean containsAll(Collection<?> c) {
4061     if (c != this) {
4062     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4063     Object e = it.next();
4064     if (e == null || !contains(e))
4065     return false;
4066     }
4067     }
4068     return true;
4069     }
4070    
4071     public final boolean removeAll(Collection<?> c) {
4072     boolean modified = false;
4073     for (Iterator<?> it = iterator(); it.hasNext();) {
4074     if (c.contains(it.next())) {
4075     it.remove();
4076     modified = true;
4077     }
4078     }
4079     return modified;
4080     }
4081    
4082     public final boolean retainAll(Collection<?> c) {
4083     boolean modified = false;
4084     for (Iterator<?> it = iterator(); it.hasNext();) {
4085     if (!c.contains(it.next())) {
4086     it.remove();
4087     modified = true;
4088     }
4089     }
4090     return modified;
4091     }
4092    
4093     }
4094    
4095     /**
4096     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4097     * which additions may optionally be enabled by mapping to a
4098     * common value. This class cannot be directly instantiated. See
4099     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4100     * {@link #newKeySet(int)}.
4101     */
4102     public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4103     private static final long serialVersionUID = 7249069246763182397L;
4104     private final V value;
4105     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4106     super(map);
4107     this.value = value;
4108     }
4109    
4110     /**
4111     * Returns the default mapped value for additions,
4112     * or {@code null} if additions are not supported.
4113     *
4114     * @return the default mapped value for additions, or {@code null}
4115     * if not supported.
4116     */
4117     public V getMappedValue() { return value; }
4118    
4119     // implement Set API
4120    
4121     public boolean contains(Object o) { return map.containsKey(o); }
4122     public boolean remove(Object o) { return map.remove(o) != null; }
4123    
4124     /**
4125     * Returns a "weakly consistent" iterator that will never
4126     * throw {@link ConcurrentModificationException}, and
4127     * guarantees to traverse elements as they existed upon
4128     * construction of the iterator, and may (but is not
4129     * guaranteed to) reflect any modifications subsequent to
4130     * construction.
4131     *
4132     * @return an iterator over the keys of this map
4133     */
4134     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4135     public boolean add(K e) {
4136     V v;
4137     if ((v = value) == null)
4138     throw new UnsupportedOperationException();
4139     if (e == null)
4140     throw new NullPointerException();
4141     return map.internalPutIfAbsent(e, v) == null;
4142     }
4143     public boolean addAll(Collection<? extends K> c) {
4144     boolean added = false;
4145     V v;
4146     if ((v = value) == null)
4147     throw new UnsupportedOperationException();
4148     for (K e : c) {
4149     if (e == null)
4150     throw new NullPointerException();
4151     if (map.internalPutIfAbsent(e, v) == null)
4152     added = true;
4153     }
4154     return added;
4155     }
4156     public boolean equals(Object o) {
4157     Set<?> c;
4158     return ((o instanceof Set) &&
4159     ((c = (Set<?>)o) == this ||
4160     (containsAll(c) && c.containsAll(this))));
4161     }
4162    
4163     /**
4164     * Performs the given action for each key.
4165     *
4166     * @param action the action
4167     */
4168     public void forEach(Action<K> action) {
4169     ForkJoinTasks.forEachKey
4170     (map, action).invoke();
4171     }
4172    
4173     /**
4174     * Performs the given action for each non-null transformation
4175     * of each key.
4176     *
4177     * @param transformer a function returning the transformation
4178     * for an element, or null of there is no transformation (in
4179     * which case the action is not applied).
4180     * @param action the action
4181     */
4182     public <U> void forEach(Fun<? super K, ? extends U> transformer,
4183     Action<U> action) {
4184     ForkJoinTasks.forEachKey
4185     (map, transformer, action).invoke();
4186     }
4187    
4188     /**
4189     * Returns a non-null result from applying the given search
4190     * function on each key, or null if none. Upon success,
4191     * further element processing is suppressed and the results of
4192     * any other parallel invocations of the search function are
4193     * ignored.
4194     *
4195     * @param searchFunction a function returning a non-null
4196     * result on success, else null
4197     * @return a non-null result from applying the given search
4198     * function on each key, or null if none
4199     */
4200     public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4201     return ForkJoinTasks.searchKeys
4202     (map, searchFunction).invoke();
4203     }
4204    
4205     /**
4206     * Returns the result of accumulating all keys using the given
4207     * reducer to combine values, or null if none.
4208     *
4209     * @param reducer a commutative associative combining function
4210     * @return the result of accumulating all keys using the given
4211     * reducer to combine values, or null if none
4212     */
4213     public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4214     return ForkJoinTasks.reduceKeys
4215     (map, reducer).invoke();
4216     }
4217    
4218     /**
4219     * Returns the result of accumulating the given transformation
4220     * of all keys using the given reducer to combine values, and
4221     * the given basis as an identity value.
4222     *
4223     * @param transformer a function returning the transformation
4224     * for an element
4225     * @param basis the identity (initial default value) for the reduction
4226     * @param reducer a commutative associative combining function
4227     * @return the result of accumulating the given transformation
4228     * of all keys
4229     */
4230     public double reduceToDouble(ObjectToDouble<? super K> transformer,
4231     double basis,
4232     DoubleByDoubleToDouble reducer) {
4233     return ForkJoinTasks.reduceKeysToDouble
4234     (map, transformer, basis, reducer).invoke();
4235     }
4236    
4237    
4238     /**
4239     * Returns the result of accumulating the given transformation
4240     * of all keys using the given reducer to combine values, and
4241     * the given basis as an identity value.
4242     *
4243     * @param transformer a function returning the transformation
4244     * for an element
4245     * @param basis the identity (initial default value) for the reduction
4246     * @param reducer a commutative associative combining function
4247     * @return the result of accumulating the given transformation
4248     * of all keys
4249     */
4250     public long reduceToLong(ObjectToLong<? super K> transformer,
4251     long basis,
4252     LongByLongToLong reducer) {
4253     return ForkJoinTasks.reduceKeysToLong
4254     (map, transformer, basis, reducer).invoke();
4255     }
4256 jsr166 1.143
4257 dl 1.142 /**
4258     * Returns the result of accumulating the given transformation
4259     * of all keys using the given reducer to combine values, and
4260     * the given basis as an identity value.
4261     *
4262     * @param transformer a function returning the transformation
4263     * for an element
4264     * @param basis the identity (initial default value) for the reduction
4265     * @param reducer a commutative associative combining function
4266     * @return the result of accumulating the given transformation
4267     * of all keys
4268     */
4269     public int reduceToInt(ObjectToInt<? super K> transformer,
4270     int basis,
4271     IntByIntToInt reducer) {
4272     return ForkJoinTasks.reduceKeysToInt
4273     (map, transformer, basis, reducer).invoke();
4274     }
4275 jsr166 1.143
4276 dl 1.142 }
4277    
4278     /**
4279     * A view of a ConcurrentHashMap as a {@link Collection} of
4280     * values, in which additions are disabled. This class cannot be
4281     * directly instantiated. See {@link #values},
4282     *
4283     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4284     * that will never throw {@link ConcurrentModificationException},
4285     * and guarantees to traverse elements as they existed upon
4286     * construction of the iterator, and may (but is not guaranteed to)
4287     * reflect any modifications subsequent to construction.
4288     */
4289     public static final class ValuesView<K,V> extends CHMView<K,V>
4290     implements Collection<V> {
4291     ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4292     public final boolean contains(Object o) { return map.containsValue(o); }
4293     public final boolean remove(Object o) {
4294     if (o != null) {
4295     Iterator<V> it = new ValueIterator<K,V>(map);
4296     while (it.hasNext()) {
4297     if (o.equals(it.next())) {
4298     it.remove();
4299     return true;
4300     }
4301     }
4302     }
4303     return false;
4304     }
4305    
4306     /**
4307     * Returns a "weakly consistent" iterator that will never
4308     * throw {@link ConcurrentModificationException}, and
4309     * guarantees to traverse elements as they existed upon
4310     * construction of the iterator, and may (but is not
4311     * guaranteed to) reflect any modifications subsequent to
4312     * construction.
4313     *
4314     * @return an iterator over the values of this map
4315     */
4316     public final Iterator<V> iterator() {
4317     return new ValueIterator<K,V>(map);
4318     }
4319     public final boolean add(V e) {
4320     throw new UnsupportedOperationException();
4321     }
4322     public final boolean addAll(Collection<? extends V> c) {
4323     throw new UnsupportedOperationException();
4324     }
4325    
4326     /**
4327     * Performs the given action for each value.
4328     *
4329     * @param action the action
4330     */
4331     public void forEach(Action<V> action) {
4332     ForkJoinTasks.forEachValue
4333     (map, action).invoke();
4334     }
4335    
4336     /**
4337     * Performs the given action for each non-null transformation
4338     * of each value.
4339     *
4340     * @param transformer a function returning the transformation
4341     * for an element, or null of there is no transformation (in
4342     * which case the action is not applied).
4343     */
4344     public <U> void forEach(Fun<? super V, ? extends U> transformer,
4345     Action<U> action) {
4346     ForkJoinTasks.forEachValue
4347     (map, transformer, action).invoke();
4348     }
4349    
4350     /**
4351     * Returns a non-null result from applying the given search
4352     * function on each value, or null if none. Upon success,
4353     * further element processing is suppressed and the results of
4354     * any other parallel invocations of the search function are
4355     * ignored.
4356     *
4357     * @param searchFunction a function returning a non-null
4358     * result on success, else null
4359     * @return a non-null result from applying the given search
4360     * function on each value, or null if none
4361     *
4362     */
4363     public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4364     return ForkJoinTasks.searchValues
4365     (map, searchFunction).invoke();
4366     }
4367    
4368     /**
4369     * Returns the result of accumulating all values using the
4370     * given reducer to combine values, or null if none.
4371     *
4372     * @param reducer a commutative associative combining function
4373     * @return the result of accumulating all values
4374     */
4375     public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4376     return ForkJoinTasks.reduceValues
4377     (map, reducer).invoke();
4378     }
4379    
4380     /**
4381     * Returns the result of accumulating the given transformation
4382     * of all values using the given reducer to combine values, or
4383     * null if none.
4384     *
4385     * @param transformer a function returning the transformation
4386     * for an element, or null of there is no transformation (in
4387     * which case it is not combined).
4388     * @param reducer a commutative associative combining function
4389     * @return the result of accumulating the given transformation
4390     * of all values
4391     */
4392     public <U> U reduce(Fun<? super V, ? extends U> transformer,
4393     BiFun<? super U, ? super U, ? extends U> reducer) {
4394     return ForkJoinTasks.reduceValues
4395     (map, transformer, reducer).invoke();
4396     }
4397 jsr166 1.143
4398 dl 1.142 /**
4399     * Returns the result of accumulating the given transformation
4400     * of all values using the given reducer to combine values,
4401     * and the given basis as an identity value.
4402     *
4403     * @param transformer a function returning the transformation
4404     * for an element
4405     * @param basis the identity (initial default value) for the reduction
4406     * @param reducer a commutative associative combining function
4407     * @return the result of accumulating the given transformation
4408     * of all values
4409     */
4410     public double reduceToDouble(ObjectToDouble<? super V> transformer,
4411     double basis,
4412     DoubleByDoubleToDouble reducer) {
4413     return ForkJoinTasks.reduceValuesToDouble
4414     (map, transformer, basis, reducer).invoke();
4415     }
4416    
4417     /**
4418     * Returns the result of accumulating the given transformation
4419     * of all values using the given reducer to combine values,
4420     * and the given basis as an identity value.
4421     *
4422     * @param transformer a function returning the transformation
4423     * for an element
4424     * @param basis the identity (initial default value) for the reduction
4425     * @param reducer a commutative associative combining function
4426     * @return the result of accumulating the given transformation
4427     * of all values
4428     */
4429     public long reduceToLong(ObjectToLong<? super V> transformer,
4430     long basis,
4431     LongByLongToLong reducer) {
4432     return ForkJoinTasks.reduceValuesToLong
4433     (map, transformer, basis, reducer).invoke();
4434     }
4435    
4436     /**
4437     * Returns the result of accumulating the given transformation
4438     * of all values using the given reducer to combine values,
4439     * and the given basis as an identity value.
4440     *
4441     * @param transformer a function returning the transformation
4442     * for an element
4443     * @param basis the identity (initial default value) for the reduction
4444     * @param reducer a commutative associative combining function
4445     * @return the result of accumulating the given transformation
4446     * of all values
4447     */
4448     public int reduceToInt(ObjectToInt<? super V> transformer,
4449     int basis,
4450     IntByIntToInt reducer) {
4451     return ForkJoinTasks.reduceValuesToInt
4452     (map, transformer, basis, reducer).invoke();
4453     }
4454    
4455     }
4456    
4457     /**
4458     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4459     * entries. This class cannot be directly instantiated. See
4460     * {@link #entrySet}.
4461     */
4462     public static final class EntrySetView<K,V> extends CHMView<K,V>
4463     implements Set<Map.Entry<K,V>> {
4464     EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4465     public final boolean contains(Object o) {
4466     Object k, v, r; Map.Entry<?,?> e;
4467     return ((o instanceof Map.Entry) &&
4468     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4469     (r = map.get(k)) != null &&
4470     (v = e.getValue()) != null &&
4471     (v == r || v.equals(r)));
4472     }
4473     public final boolean remove(Object o) {
4474     Object k, v; Map.Entry<?,?> e;
4475     return ((o instanceof Map.Entry) &&
4476     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4477     (v = e.getValue()) != null &&
4478     map.remove(k, v));
4479     }
4480    
4481     /**
4482     * Returns a "weakly consistent" iterator that will never
4483     * throw {@link ConcurrentModificationException}, and
4484     * guarantees to traverse elements as they existed upon
4485     * construction of the iterator, and may (but is not
4486     * guaranteed to) reflect any modifications subsequent to
4487     * construction.
4488     *
4489     * @return an iterator over the entries of this map
4490     */
4491     public final Iterator<Map.Entry<K,V>> iterator() {
4492     return new EntryIterator<K,V>(map);
4493     }
4494    
4495     public final boolean add(Entry<K,V> e) {
4496     K key = e.getKey();
4497     V value = e.getValue();
4498     if (key == null || value == null)
4499     throw new NullPointerException();
4500     return map.internalPut(key, value) == null;
4501     }
4502     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4503     boolean added = false;
4504     for (Entry<K,V> e : c) {
4505     if (add(e))
4506     added = true;
4507     }
4508     return added;
4509     }
4510     public boolean equals(Object o) {
4511     Set<?> c;
4512     return ((o instanceof Set) &&
4513     ((c = (Set<?>)o) == this ||
4514     (containsAll(c) && c.containsAll(this))));
4515     }
4516    
4517     /**
4518     * Performs the given action for each entry.
4519     *
4520     * @param action the action
4521     */
4522     public void forEach(Action<Map.Entry<K,V>> action) {
4523     ForkJoinTasks.forEachEntry
4524     (map, action).invoke();
4525     }
4526    
4527     /**
4528     * Performs the given action for each non-null transformation
4529     * of each entry.
4530     *
4531     * @param transformer a function returning the transformation
4532     * for an element, or null of there is no transformation (in
4533     * which case the action is not applied).
4534     * @param action the action
4535     */
4536     public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4537     Action<U> action) {
4538     ForkJoinTasks.forEachEntry
4539     (map, transformer, action).invoke();
4540     }
4541    
4542     /**
4543     * Returns a non-null result from applying the given search
4544     * function on each entry, or null if none. Upon success,
4545     * further element processing is suppressed and the results of
4546     * any other parallel invocations of the search function are
4547     * ignored.
4548     *
4549     * @param searchFunction a function returning a non-null
4550     * result on success, else null
4551     * @return a non-null result from applying the given search
4552     * function on each entry, or null if none
4553     */
4554     public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4555     return ForkJoinTasks.searchEntries
4556     (map, searchFunction).invoke();
4557     }
4558    
4559     /**
4560     * Returns the result of accumulating all entries using the
4561     * given reducer to combine values, or null if none.
4562     *
4563     * @param reducer a commutative associative combining function
4564     * @return the result of accumulating all entries
4565     */
4566     public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4567     return ForkJoinTasks.reduceEntries
4568     (map, reducer).invoke();
4569     }
4570    
4571     /**
4572     * Returns the result of accumulating the given transformation
4573     * of all entries using the given reducer to combine values,
4574     * or null if none.
4575     *
4576     * @param transformer a function returning the transformation
4577     * for an element, or null of there is no transformation (in
4578     * which case it is not combined).
4579     * @param reducer a commutative associative combining function
4580     * @return the result of accumulating the given transformation
4581     * of all entries
4582     */
4583     public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4584     BiFun<? super U, ? super U, ? extends U> reducer) {
4585     return ForkJoinTasks.reduceEntries
4586     (map, transformer, reducer).invoke();
4587     }
4588    
4589     /**
4590     * Returns the result of accumulating the given transformation
4591     * of all entries using the given reducer to combine values,
4592     * and the given basis as an identity value.
4593     *
4594     * @param transformer a function returning the transformation
4595     * for an element
4596     * @param basis the identity (initial default value) for the reduction
4597     * @param reducer a commutative associative combining function
4598     * @return the result of accumulating the given transformation
4599     * of all entries
4600     */
4601     public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4602     double basis,
4603     DoubleByDoubleToDouble reducer) {
4604     return ForkJoinTasks.reduceEntriesToDouble
4605     (map, transformer, basis, reducer).invoke();
4606     }
4607    
4608     /**
4609     * Returns the result of accumulating the given transformation
4610     * of all entries using the given reducer to combine values,
4611     * and the given basis as an identity value.
4612     *
4613     * @param transformer a function returning the transformation
4614     * for an element
4615     * @param basis the identity (initial default value) for the reduction
4616     * @param reducer a commutative associative combining function
4617     * @return the result of accumulating the given transformation
4618     * of all entries
4619     */
4620     public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4621     long basis,
4622     LongByLongToLong reducer) {
4623     return ForkJoinTasks.reduceEntriesToLong
4624     (map, transformer, basis, reducer).invoke();
4625     }
4626    
4627     /**
4628     * Returns the result of accumulating the given transformation
4629     * of all entries using the given reducer to combine values,
4630     * and the given basis as an identity value.
4631     *
4632     * @param transformer a function returning the transformation
4633     * for an element
4634     * @param basis the identity (initial default value) for the reduction
4635     * @param reducer a commutative associative combining function
4636     * @return the result of accumulating the given transformation
4637     * of all entries
4638     */
4639     public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4640     int basis,
4641     IntByIntToInt reducer) {
4642     return ForkJoinTasks.reduceEntriesToInt
4643     (map, transformer, basis, reducer).invoke();
4644     }
4645    
4646     }
4647    
4648 dl 1.119 // ---------------------------------------------------------------------
4649    
4650     /**
4651     * Predefined tasks for performing bulk parallel operations on
4652     * ConcurrentHashMaps. These tasks follow the forms and rules used
4653 dl 1.137 * for bulk operations. Each method has the same name, but returns
4654     * a task rather than invoking it. These methods may be useful in
4655     * custom applications such as submitting a task without waiting
4656     * for completion, using a custom pool, or combining with other
4657     * tasks.
4658 dl 1.119 */
4659     public static class ForkJoinTasks {
4660     private ForkJoinTasks() {}
4661    
4662     /**
4663     * Returns a task that when invoked, performs the given
4664     * action for each (key, value)
4665     *
4666     * @param map the map
4667     * @param action the action
4668     * @return the task
4669     */
4670 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4671 dl 1.119 (ConcurrentHashMap<K,V> map,
4672     BiAction<K,V> action) {
4673     if (action == null) throw new NullPointerException();
4674 dl 1.137 return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4675 dl 1.119 }
4676    
4677     /**
4678     * Returns a task that when invoked, performs the given
4679     * action for each non-null transformation of each (key, value)
4680     *
4681     * @param map the map
4682     * @param transformer a function returning the transformation
4683 jsr166 1.135 * for an element, or null if there is no transformation (in
4684 jsr166 1.134 * which case the action is not applied)
4685 dl 1.119 * @param action the action
4686     * @return the task
4687     */
4688 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4689 dl 1.119 (ConcurrentHashMap<K,V> map,
4690     BiFun<? super K, ? super V, ? extends U> transformer,
4691     Action<U> action) {
4692     if (transformer == null || action == null)
4693     throw new NullPointerException();
4694     return new ForEachTransformedMappingTask<K,V,U>
4695 dl 1.137 (map, null, -1, null, transformer, action);
4696 dl 1.119 }
4697    
4698     /**
4699 dl 1.126 * Returns a task that when invoked, returns a non-null result
4700     * from applying the given search function on each (key,
4701     * value), or null if none. Upon success, further element
4702     * processing is suppressed and the results of any other
4703     * parallel invocations of the search function are ignored.
4704 dl 1.119 *
4705     * @param map the map
4706     * @param searchFunction a function returning a non-null
4707     * result on success, else null
4708     * @return the task
4709     */
4710     public static <K,V,U> ForkJoinTask<U> search
4711     (ConcurrentHashMap<K,V> map,
4712     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4713     if (searchFunction == null) throw new NullPointerException();
4714     return new SearchMappingsTask<K,V,U>
4715 dl 1.137 (map, null, -1, null, searchFunction,
4716 dl 1.119 new AtomicReference<U>());
4717     }
4718    
4719     /**
4720     * Returns a task that when invoked, returns the result of
4721     * accumulating the given transformation of all (key, value) pairs
4722     * using the given reducer to combine values, or null if none.
4723     *
4724     * @param map the map
4725     * @param transformer a function returning the transformation
4726 jsr166 1.135 * for an element, or null if there is no transformation (in
4727 dl 1.119 * which case it is not combined).
4728     * @param reducer a commutative associative combining function
4729     * @return the task
4730     */
4731     public static <K,V,U> ForkJoinTask<U> reduce
4732     (ConcurrentHashMap<K,V> map,
4733     BiFun<? super K, ? super V, ? extends U> transformer,
4734     BiFun<? super U, ? super U, ? extends U> reducer) {
4735     if (transformer == null || reducer == null)
4736     throw new NullPointerException();
4737     return new MapReduceMappingsTask<K,V,U>
4738 dl 1.130 (map, null, -1, null, transformer, reducer);
4739 dl 1.119 }
4740    
4741     /**
4742     * Returns a task that when invoked, returns the result of
4743     * accumulating the given transformation of all (key, value) pairs
4744     * using the given reducer to combine values, and the given
4745     * basis as an identity value.
4746     *
4747     * @param map the map
4748     * @param transformer a function returning the transformation
4749     * for an element
4750     * @param basis the identity (initial default value) for the reduction
4751     * @param reducer a commutative associative combining function
4752     * @return the task
4753     */
4754     public static <K,V> ForkJoinTask<Double> reduceToDouble
4755     (ConcurrentHashMap<K,V> map,
4756     ObjectByObjectToDouble<? super K, ? super V> transformer,
4757     double basis,
4758     DoubleByDoubleToDouble reducer) {
4759     if (transformer == null || reducer == null)
4760     throw new NullPointerException();
4761     return new MapReduceMappingsToDoubleTask<K,V>
4762 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4763 dl 1.119 }
4764    
4765     /**
4766     * Returns a task that when invoked, returns the result of
4767     * accumulating the given transformation of all (key, value) pairs
4768     * using the given reducer to combine values, and the given
4769     * basis as an identity value.
4770     *
4771     * @param map the map
4772     * @param transformer a function returning the transformation
4773     * for an element
4774     * @param basis the identity (initial default value) for the reduction
4775     * @param reducer a commutative associative combining function
4776     * @return the task
4777     */
4778     public static <K,V> ForkJoinTask<Long> reduceToLong
4779     (ConcurrentHashMap<K,V> map,
4780     ObjectByObjectToLong<? super K, ? super V> transformer,
4781     long basis,
4782     LongByLongToLong reducer) {
4783     if (transformer == null || reducer == null)
4784     throw new NullPointerException();
4785     return new MapReduceMappingsToLongTask<K,V>
4786 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4787 dl 1.119 }
4788    
4789     /**
4790     * Returns a task that when invoked, returns the result of
4791     * accumulating the given transformation of all (key, value) pairs
4792     * using the given reducer to combine values, and the given
4793     * basis as an identity value.
4794     *
4795     * @param transformer a function returning the transformation
4796     * for an element
4797     * @param basis the identity (initial default value) for the reduction
4798     * @param reducer a commutative associative combining function
4799     * @return the task
4800     */
4801     public static <K,V> ForkJoinTask<Integer> reduceToInt
4802     (ConcurrentHashMap<K,V> map,
4803     ObjectByObjectToInt<? super K, ? super V> transformer,
4804     int basis,
4805     IntByIntToInt reducer) {
4806     if (transformer == null || reducer == null)
4807     throw new NullPointerException();
4808     return new MapReduceMappingsToIntTask<K,V>
4809 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4810 dl 1.119 }
4811    
4812     /**
4813     * Returns a task that when invoked, performs the given action
4814 jsr166 1.123 * for each key.
4815 dl 1.119 *
4816     * @param map the map
4817     * @param action the action
4818     * @return the task
4819     */
4820 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4821 dl 1.119 (ConcurrentHashMap<K,V> map,
4822     Action<K> action) {
4823     if (action == null) throw new NullPointerException();
4824 dl 1.137 return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4825 dl 1.119 }
4826    
4827     /**
4828     * Returns a task that when invoked, performs the given action
4829 jsr166 1.123 * for each non-null transformation of each key.
4830 dl 1.119 *
4831     * @param map the map
4832     * @param transformer a function returning the transformation
4833 jsr166 1.135 * for an element, or null if there is no transformation (in
4834 jsr166 1.134 * which case the action is not applied)
4835 dl 1.119 * @param action the action
4836     * @return the task
4837     */
4838 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4839 dl 1.119 (ConcurrentHashMap<K,V> map,
4840     Fun<? super K, ? extends U> transformer,
4841     Action<U> action) {
4842     if (transformer == null || action == null)
4843     throw new NullPointerException();
4844     return new ForEachTransformedKeyTask<K,V,U>
4845 dl 1.137 (map, null, -1, null, transformer, action);
4846 dl 1.119 }
4847    
4848     /**
4849     * Returns a task that when invoked, returns a non-null result
4850     * from applying the given search function on each key, or
4851 dl 1.126 * null if none. Upon success, further element processing is
4852     * suppressed and the results of any other parallel
4853     * invocations of the search function are ignored.
4854 dl 1.119 *
4855     * @param map the map
4856     * @param searchFunction a function returning a non-null
4857     * result on success, else null
4858     * @return the task
4859     */
4860     public static <K,V,U> ForkJoinTask<U> searchKeys
4861     (ConcurrentHashMap<K,V> map,
4862     Fun<? super K, ? extends U> searchFunction) {
4863     if (searchFunction == null) throw new NullPointerException();
4864     return new SearchKeysTask<K,V,U>
4865 dl 1.137 (map, null, -1, null, searchFunction,
4866 dl 1.119 new AtomicReference<U>());
4867     }
4868    
4869     /**
4870     * Returns a task that when invoked, returns the result of
4871     * accumulating all keys using the given reducer to combine
4872     * values, or null if none.
4873     *
4874     * @param map the map
4875     * @param reducer a commutative associative combining function
4876     * @return the task
4877     */
4878     public static <K,V> ForkJoinTask<K> reduceKeys
4879     (ConcurrentHashMap<K,V> map,
4880     BiFun<? super K, ? super K, ? extends K> reducer) {
4881     if (reducer == null) throw new NullPointerException();
4882     return new ReduceKeysTask<K,V>
4883 dl 1.130 (map, null, -1, null, reducer);
4884 dl 1.119 }
4885 jsr166 1.125
4886 dl 1.119 /**
4887     * Returns a task that when invoked, returns the result of
4888     * accumulating the given transformation of all keys using the given
4889     * reducer to combine values, or null if none.
4890     *
4891     * @param map the map
4892     * @param transformer a function returning the transformation
4893 jsr166 1.135 * for an element, or null if there is no transformation (in
4894 dl 1.119 * which case it is not combined).
4895     * @param reducer a commutative associative combining function
4896     * @return the task
4897     */
4898     public static <K,V,U> ForkJoinTask<U> reduceKeys
4899     (ConcurrentHashMap<K,V> map,
4900     Fun<? super K, ? extends U> transformer,
4901     BiFun<? super U, ? super U, ? extends U> reducer) {
4902     if (transformer == null || reducer == null)
4903     throw new NullPointerException();
4904     return new MapReduceKeysTask<K,V,U>
4905 dl 1.130 (map, null, -1, null, transformer, reducer);
4906 dl 1.119 }
4907    
4908     /**
4909     * Returns a task that when invoked, returns the result of
4910     * accumulating the given transformation of all keys using the given
4911     * reducer to combine values, and the given basis as an
4912     * identity value.
4913     *
4914     * @param map the map
4915     * @param transformer a function returning the transformation
4916     * for an element
4917     * @param basis the identity (initial default value) for the reduction
4918     * @param reducer a commutative associative combining function
4919     * @return the task
4920     */
4921     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4922     (ConcurrentHashMap<K,V> map,
4923     ObjectToDouble<? super K> transformer,
4924     double basis,
4925     DoubleByDoubleToDouble reducer) {
4926     if (transformer == null || reducer == null)
4927     throw new NullPointerException();
4928     return new MapReduceKeysToDoubleTask<K,V>
4929 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4930 dl 1.119 }
4931    
4932     /**
4933     * Returns a task that when invoked, returns the result of
4934     * accumulating the given transformation of all keys using the given
4935     * reducer to combine values, and the given basis as an
4936     * identity value.
4937     *
4938     * @param map the map
4939     * @param transformer a function returning the transformation
4940     * for an element
4941     * @param basis the identity (initial default value) for the reduction
4942     * @param reducer a commutative associative combining function
4943     * @return the task
4944     */
4945     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4946     (ConcurrentHashMap<K,V> map,
4947     ObjectToLong<? super K> transformer,
4948     long basis,
4949     LongByLongToLong reducer) {
4950     if (transformer == null || reducer == null)
4951     throw new NullPointerException();
4952     return new MapReduceKeysToLongTask<K,V>
4953 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4954 dl 1.119 }
4955    
4956     /**
4957     * Returns a task that when invoked, returns the result of
4958     * accumulating the given transformation of all keys using the given
4959     * reducer to combine values, and the given basis as an
4960     * identity value.
4961     *
4962     * @param map the map
4963     * @param transformer a function returning the transformation
4964     * for an element
4965     * @param basis the identity (initial default value) for the reduction
4966     * @param reducer a commutative associative combining function
4967     * @return the task
4968     */
4969     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4970     (ConcurrentHashMap<K,V> map,
4971     ObjectToInt<? super K> transformer,
4972     int basis,
4973     IntByIntToInt reducer) {
4974     if (transformer == null || reducer == null)
4975     throw new NullPointerException();
4976     return new MapReduceKeysToIntTask<K,V>
4977 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4978 dl 1.119 }
4979    
4980     /**
4981     * Returns a task that when invoked, performs the given action
4982 jsr166 1.123 * for each value.
4983 dl 1.119 *
4984     * @param map the map
4985     * @param action the action
4986     */
4987 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
4988 dl 1.119 (ConcurrentHashMap<K,V> map,
4989     Action<V> action) {
4990     if (action == null) throw new NullPointerException();
4991 dl 1.137 return new ForEachValueTask<K,V>(map, null, -1, null, action);
4992 dl 1.119 }
4993    
4994     /**
4995     * Returns a task that when invoked, performs the given action
4996 jsr166 1.123 * for each non-null transformation of each value.
4997 dl 1.119 *
4998     * @param map the map
4999     * @param transformer a function returning the transformation
5000 jsr166 1.135 * for an element, or null if there is no transformation (in
5001 jsr166 1.134 * which case the action is not applied)
5002 dl 1.119 * @param action the action
5003     */
5004 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5005 dl 1.119 (ConcurrentHashMap<K,V> map,
5006     Fun<? super V, ? extends U> transformer,
5007     Action<U> action) {
5008     if (transformer == null || action == null)
5009     throw new NullPointerException();
5010     return new ForEachTransformedValueTask<K,V,U>
5011 dl 1.137 (map, null, -1, null, transformer, action);
5012 dl 1.119 }
5013    
5014     /**
5015     * Returns a task that when invoked, returns a non-null result
5016     * from applying the given search function on each value, or
5017 dl 1.126 * null if none. Upon success, further element processing is
5018     * suppressed and the results of any other parallel
5019     * invocations of the search function are ignored.
5020 dl 1.119 *
5021     * @param map the map
5022     * @param searchFunction a function returning a non-null
5023     * result on success, else null
5024     * @return the task
5025     */
5026     public static <K,V,U> ForkJoinTask<U> searchValues
5027     (ConcurrentHashMap<K,V> map,
5028     Fun<? super V, ? extends U> searchFunction) {
5029     if (searchFunction == null) throw new NullPointerException();
5030     return new SearchValuesTask<K,V,U>
5031 dl 1.137 (map, null, -1, null, searchFunction,
5032 dl 1.119 new AtomicReference<U>());
5033     }
5034    
5035     /**
5036     * Returns a task that when invoked, returns the result of
5037     * accumulating all values using the given reducer to combine
5038     * values, or null if none.
5039     *
5040     * @param map the map
5041     * @param reducer a commutative associative combining function
5042     * @return the task
5043     */
5044     public static <K,V> ForkJoinTask<V> reduceValues
5045     (ConcurrentHashMap<K,V> map,
5046     BiFun<? super V, ? super V, ? extends V> reducer) {
5047     if (reducer == null) throw new NullPointerException();
5048     return new ReduceValuesTask<K,V>
5049 dl 1.130 (map, null, -1, null, reducer);
5050 dl 1.119 }
5051    
5052     /**
5053     * Returns a task that when invoked, returns the result of
5054     * accumulating the given transformation of all values using the
5055     * given reducer to combine values, or null if none.
5056     *
5057     * @param map the map
5058     * @param transformer a function returning the transformation
5059 jsr166 1.135 * for an element, or null if there is no transformation (in
5060 dl 1.119 * which case it is not combined).
5061     * @param reducer a commutative associative combining function
5062     * @return the task
5063     */
5064     public static <K,V,U> ForkJoinTask<U> reduceValues
5065     (ConcurrentHashMap<K,V> map,
5066     Fun<? super V, ? extends U> transformer,
5067     BiFun<? super U, ? super U, ? extends U> reducer) {
5068     if (transformer == null || reducer == null)
5069     throw new NullPointerException();
5070     return new MapReduceValuesTask<K,V,U>
5071 dl 1.130 (map, null, -1, null, transformer, reducer);
5072 dl 1.119 }
5073    
5074     /**
5075     * Returns a task that when invoked, returns the result of
5076     * accumulating the given transformation of all values using the
5077     * given reducer to combine values, and the given basis as an
5078     * identity value.
5079     *
5080     * @param map the map
5081     * @param transformer a function returning the transformation
5082     * for an element
5083     * @param basis the identity (initial default value) for the reduction
5084     * @param reducer a commutative associative combining function
5085     * @return the task
5086     */
5087     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5088     (ConcurrentHashMap<K,V> map,
5089     ObjectToDouble<? super V> transformer,
5090     double basis,
5091     DoubleByDoubleToDouble reducer) {
5092     if (transformer == null || reducer == null)
5093     throw new NullPointerException();
5094     return new MapReduceValuesToDoubleTask<K,V>
5095 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5096 dl 1.119 }
5097    
5098     /**
5099     * Returns a task that when invoked, returns the result of
5100     * accumulating the given transformation of all values using the
5101     * given reducer to combine values, and the given basis as an
5102     * identity value.
5103     *
5104     * @param map the map
5105     * @param transformer a function returning the transformation
5106     * for an element
5107     * @param basis the identity (initial default value) for the reduction
5108     * @param reducer a commutative associative combining function
5109     * @return the task
5110     */
5111     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5112     (ConcurrentHashMap<K,V> map,
5113     ObjectToLong<? super V> transformer,
5114     long basis,
5115     LongByLongToLong reducer) {
5116     if (transformer == null || reducer == null)
5117     throw new NullPointerException();
5118     return new MapReduceValuesToLongTask<K,V>
5119 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5120 dl 1.119 }
5121    
5122     /**
5123     * Returns a task that when invoked, returns the result of
5124     * accumulating the given transformation of all values using the
5125     * given reducer to combine values, and the given basis as an
5126     * identity value.
5127     *
5128     * @param map the map
5129     * @param transformer a function returning the transformation
5130     * for an element
5131     * @param basis the identity (initial default value) for the reduction
5132     * @param reducer a commutative associative combining function
5133     * @return the task
5134     */
5135     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5136     (ConcurrentHashMap<K,V> map,
5137     ObjectToInt<? super V> transformer,
5138     int basis,
5139     IntByIntToInt reducer) {
5140     if (transformer == null || reducer == null)
5141     throw new NullPointerException();
5142     return new MapReduceValuesToIntTask<K,V>
5143 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5144 dl 1.119 }
5145    
5146     /**
5147     * Returns a task that when invoked, perform the given action
5148 jsr166 1.123 * for each entry.
5149 dl 1.119 *
5150     * @param map the map
5151     * @param action the action
5152     */
5153 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5154 dl 1.119 (ConcurrentHashMap<K,V> map,
5155     Action<Map.Entry<K,V>> action) {
5156     if (action == null) throw new NullPointerException();
5157 dl 1.137 return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5158 dl 1.119 }
5159    
5160     /**
5161     * Returns a task that when invoked, perform the given action
5162 jsr166 1.123 * for each non-null transformation of each entry.
5163 dl 1.119 *
5164     * @param map the map
5165     * @param transformer a function returning the transformation
5166 jsr166 1.135 * for an element, or null if there is no transformation (in
5167 jsr166 1.134 * which case the action is not applied)
5168 dl 1.119 * @param action the action
5169     */
5170 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5171 dl 1.119 (ConcurrentHashMap<K,V> map,
5172     Fun<Map.Entry<K,V>, ? extends U> transformer,
5173     Action<U> action) {
5174     if (transformer == null || action == null)
5175     throw new NullPointerException();
5176     return new ForEachTransformedEntryTask<K,V,U>
5177 dl 1.137 (map, null, -1, null, transformer, action);
5178 dl 1.119 }
5179    
5180     /**
5181     * Returns a task that when invoked, returns a non-null result
5182     * from applying the given search function on each entry, or
5183 dl 1.126 * null if none. Upon success, further element processing is
5184     * suppressed and the results of any other parallel
5185     * invocations of the search function are ignored.
5186 dl 1.119 *
5187     * @param map the map
5188     * @param searchFunction a function returning a non-null
5189     * result on success, else null
5190     * @return the task
5191     */
5192     public static <K,V,U> ForkJoinTask<U> searchEntries
5193     (ConcurrentHashMap<K,V> map,
5194     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5195     if (searchFunction == null) throw new NullPointerException();
5196     return new SearchEntriesTask<K,V,U>
5197 dl 1.137 (map, null, -1, null, searchFunction,
5198 dl 1.119 new AtomicReference<U>());
5199     }
5200    
5201     /**
5202     * Returns a task that when invoked, returns the result of
5203     * accumulating all entries using the given reducer to combine
5204     * values, or null if none.
5205     *
5206     * @param map the map
5207     * @param reducer a commutative associative combining function
5208     * @return the task
5209     */
5210     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5211     (ConcurrentHashMap<K,V> map,
5212     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5213     if (reducer == null) throw new NullPointerException();
5214     return new ReduceEntriesTask<K,V>
5215 dl 1.130 (map, null, -1, null, reducer);
5216 dl 1.119 }
5217    
5218     /**
5219     * Returns a task that when invoked, returns the result of
5220     * accumulating the given transformation of all entries using the
5221     * given reducer to combine values, or null if none.
5222     *
5223     * @param map the map
5224     * @param transformer a function returning the transformation
5225 jsr166 1.135 * for an element, or null if there is no transformation (in
5226 dl 1.119 * which case it is not combined).
5227     * @param reducer a commutative associative combining function
5228     * @return the task
5229     */
5230     public static <K,V,U> ForkJoinTask<U> reduceEntries
5231     (ConcurrentHashMap<K,V> map,
5232     Fun<Map.Entry<K,V>, ? extends U> transformer,
5233     BiFun<? super U, ? super U, ? extends U> reducer) {
5234     if (transformer == null || reducer == null)
5235     throw new NullPointerException();
5236     return new MapReduceEntriesTask<K,V,U>
5237 dl 1.130 (map, null, -1, null, transformer, reducer);
5238 dl 1.119 }
5239    
5240     /**
5241     * Returns a task that when invoked, returns the result of
5242     * accumulating the given transformation of all entries using the
5243     * given reducer to combine values, and the given basis as an
5244     * identity value.
5245     *
5246     * @param map the map
5247     * @param transformer a function returning the transformation
5248     * for an element
5249     * @param basis the identity (initial default value) for the reduction
5250     * @param reducer a commutative associative combining function
5251     * @return the task
5252     */
5253     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5254     (ConcurrentHashMap<K,V> map,
5255     ObjectToDouble<Map.Entry<K,V>> transformer,
5256     double basis,
5257     DoubleByDoubleToDouble reducer) {
5258     if (transformer == null || reducer == null)
5259     throw new NullPointerException();
5260     return new MapReduceEntriesToDoubleTask<K,V>
5261 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5262 dl 1.119 }
5263    
5264     /**
5265     * Returns a task that when invoked, returns the result of
5266     * accumulating the given transformation of all entries using the
5267     * given reducer to combine values, and the given basis as an
5268     * identity value.
5269     *
5270     * @param map the map
5271     * @param transformer a function returning the transformation
5272     * for an element
5273     * @param basis the identity (initial default value) for the reduction
5274     * @param reducer a commutative associative combining function
5275     * @return the task
5276     */
5277     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5278     (ConcurrentHashMap<K,V> map,
5279     ObjectToLong<Map.Entry<K,V>> transformer,
5280     long basis,
5281     LongByLongToLong reducer) {
5282     if (transformer == null || reducer == null)
5283     throw new NullPointerException();
5284     return new MapReduceEntriesToLongTask<K,V>
5285 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5286 dl 1.119 }
5287    
5288     /**
5289     * Returns a task that when invoked, returns the result of
5290     * accumulating the given transformation of all entries using the
5291     * given reducer to combine values, and the given basis as an
5292     * identity value.
5293     *
5294     * @param map the map
5295     * @param transformer a function returning the transformation
5296     * for an element
5297     * @param basis the identity (initial default value) for the reduction
5298     * @param reducer a commutative associative combining function
5299     * @return the task
5300     */
5301     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5302     (ConcurrentHashMap<K,V> map,
5303     ObjectToInt<Map.Entry<K,V>> transformer,
5304     int basis,
5305     IntByIntToInt reducer) {
5306     if (transformer == null || reducer == null)
5307     throw new NullPointerException();
5308     return new MapReduceEntriesToIntTask<K,V>
5309 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5310 dl 1.119 }
5311     }
5312    
5313     // -------------------------------------------------------
5314    
5315     /**
5316     * Base for FJ tasks for bulk operations. This adds a variant of
5317 jsr166 1.122 * CountedCompleters and some split and merge bookkeeping to
5318 dl 1.119 * iterator functionality. The forEach and reduce methods are
5319     * similar to those illustrated in CountedCompleter documentation,
5320     * except that bottom-up reduction completions perform them within
5321     * their compute methods. The search methods are like forEach
5322     * except they continually poll for success and exit early. Also,
5323     * exceptions are handled in a simpler manner, by just trying to
5324     * complete root task exceptionally.
5325     */
5326 dl 1.128 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5327 dl 1.119 final BulkTask<K,V,?> parent; // completion target
5328 dl 1.130 int batch; // split control; -1 for unknown
5329 dl 1.119 int pending; // completion control
5330    
5331 jsr166 1.131 BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5332 dl 1.130 int batch) {
5333 dl 1.119 super(map);
5334     this.parent = parent;
5335     this.batch = batch;
5336 dl 1.130 if (parent != null && map != null) { // split parent
5337     Node[] t;
5338     if ((t = parent.tab) == null &&
5339     (t = parent.tab = map.table) != null)
5340     parent.baseLimit = parent.baseSize = t.length;
5341     this.tab = t;
5342     this.baseSize = parent.baseSize;
5343     int hi = this.baseLimit = parent.baseLimit;
5344     parent.baseLimit = this.index = this.baseIndex =
5345     (hi + parent.baseIndex + 1) >>> 1;
5346     }
5347 dl 1.119 }
5348    
5349     /**
5350 dl 1.128 * Forces root task to complete.
5351     * @param ex if null, complete normally, else exceptionally
5352     * @return false to simplify use
5353 dl 1.119 */
5354 dl 1.128 final boolean tryCompleteComputation(Throwable ex) {
5355 dl 1.119 for (BulkTask<K,V,?> a = this;;) {
5356     BulkTask<K,V,?> p = a.parent;
5357     if (p == null) {
5358 dl 1.128 if (ex != null)
5359     a.completeExceptionally(ex);
5360     else
5361     a.quietlyComplete();
5362     return false;
5363 dl 1.119 }
5364     a = p;
5365     }
5366     }
5367    
5368 dl 1.128 /**
5369     * Version of tryCompleteComputation for function screening checks
5370     */
5371     final boolean abortOnNullFunction() {
5372     return tryCompleteComputation(new Error("Unexpected null function"));
5373 dl 1.119 }
5374    
5375     // utilities
5376    
5377     /** CompareAndSet pending count */
5378     final boolean casPending(int cmp, int val) {
5379     return U.compareAndSwapInt(this, PENDING, cmp, val);
5380     }
5381    
5382     /**
5383 jsr166 1.123 * Returns approx exp2 of the number of times (minus one) to
5384 dl 1.119 * split task by two before executing leaf action. This value
5385     * is faster to compute and more convenient to use as a guide
5386     * to splitting than is the depth, since it is used while
5387     * dividing by two anyway.
5388     */
5389     final int batch() {
5390 dl 1.137 ConcurrentHashMap<K, V> m; int b; Node[] t; ForkJoinPool pool;
5391 dl 1.130 if ((b = batch) < 0 && (m = map) != null) { // force initialization
5392     if ((t = tab) == null && (t = tab = m.table) != null)
5393     baseLimit = baseSize = t.length;
5394     if (t != null) {
5395     long n = m.counter.sum();
5396 jsr166 1.139 int par = ((pool = getPool()) == null) ?
5397 dl 1.137 ForkJoinPool.getCommonPoolParallelism() :
5398     pool.getParallelism();
5399     int sp = par << 3; // slack of 8
5400 dl 1.130 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5401     }
5402 dl 1.119 }
5403     return b;
5404     }
5405    
5406     /**
5407 jsr166 1.123 * Returns exportable snapshot entry.
5408 dl 1.119 */
5409     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5410 dl 1.126 return new AbstractMap.SimpleEntry<K,V>(k, v);
5411 dl 1.119 }
5412    
5413     // Unsafe mechanics
5414     private static final sun.misc.Unsafe U;
5415     private static final long PENDING;
5416     static {
5417     try {
5418     U = sun.misc.Unsafe.getUnsafe();
5419     PENDING = U.objectFieldOffset
5420     (BulkTask.class.getDeclaredField("pending"));
5421     } catch (Exception e) {
5422     throw new Error(e);
5423     }
5424     }
5425     }
5426    
5427 dl 1.138 /**
5428     * Base class for non-reductive actions
5429     */
5430     @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5431     BulkAction<K,V,?> nextTask;
5432     BulkAction(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5433     int batch, BulkAction<K,V,?> nextTask) {
5434     super(map, parent, batch);
5435     this.nextTask = nextTask;
5436     }
5437    
5438     /**
5439     * Try to complete task and upward parents. Upon hitting
5440     * non-completed parent, if a non-FJ task, try to help out the
5441     * computation.
5442     */
5443     final void tryComplete(BulkAction<K,V,?> subtasks) {
5444     BulkTask<K,V,?> a = this, s = a;
5445     for (int c;;) {
5446     if ((c = a.pending) == 0) {
5447     if ((a = (s = a).parent) == null) {
5448     s.quietlyComplete();
5449     break;
5450     }
5451     }
5452     else if (a.casPending(c, c - 1)) {
5453     if (subtasks != null && !inForkJoinPool()) {
5454     while ((s = a.parent) != null)
5455     a = s;
5456     while (!a.isDone()) {
5457     BulkAction<K,V,?> next = subtasks.nextTask;
5458     if (subtasks.tryUnfork())
5459     subtasks.exec();
5460     if ((subtasks = next) == null)
5461     break;
5462     }
5463     }
5464     break;
5465     }
5466     }
5467     }
5468    
5469     }
5470    
5471 dl 1.119 /*
5472     * Task classes. Coded in a regular but ugly format/style to
5473     * simplify checks that each variant differs in the right way from
5474     * others.
5475     */
5476    
5477 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5478 dl 1.138 extends BulkAction<K,V,Void> {
5479 dl 1.119 final Action<K> action;
5480     ForEachKeyTask
5481 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5482 dl 1.138 ForEachKeyTask<K,V> nextTask,
5483 dl 1.119 Action<K> action) {
5484 dl 1.138 super(m, p, b, nextTask);
5485 dl 1.119 this.action = action;
5486     }
5487 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5488 dl 1.119 final Action<K> action = this.action;
5489     if (action == null)
5490 dl 1.128 return abortOnNullFunction();
5491 dl 1.138 ForEachKeyTask<K,V> subtasks = null;
5492 dl 1.128 try {
5493     int b = batch(), c;
5494     while (b > 1 && baseIndex != baseLimit) {
5495     do {} while (!casPending(c = pending, c+1));
5496 dl 1.138 (subtasks = new ForEachKeyTask<K,V>
5497     (map, this, b >>>= 1, subtasks, action)).fork();
5498 dl 1.128 }
5499     while (advance() != null)
5500     action.apply((K)nextKey);
5501     } catch (Throwable ex) {
5502     return tryCompleteComputation(ex);
5503 dl 1.119 }
5504 dl 1.138 tryComplete(subtasks);
5505 dl 1.128 return false;
5506 dl 1.119 }
5507     }
5508    
5509 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5510 dl 1.138 extends BulkAction<K,V,Void> {
5511 dl 1.119 final Action<V> action;
5512     ForEachValueTask
5513 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5514 dl 1.138 ForEachValueTask<K,V> nextTask,
5515 dl 1.119 Action<V> action) {
5516 dl 1.138 super(m, p, b, nextTask);
5517 dl 1.119 this.action = action;
5518     }
5519 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5520 dl 1.119 final Action<V> action = this.action;
5521     if (action == null)
5522 dl 1.128 return abortOnNullFunction();
5523 dl 1.138 ForEachValueTask<K,V> subtasks = null;
5524 dl 1.128 try {
5525     int b = batch(), c;
5526     while (b > 1 && baseIndex != baseLimit) {
5527     do {} while (!casPending(c = pending, c+1));
5528 dl 1.138 (subtasks = new ForEachValueTask<K,V>
5529     (map, this, b >>>= 1, subtasks, action)).fork();
5530 dl 1.128 }
5531     Object v;
5532     while ((v = advance()) != null)
5533     action.apply((V)v);
5534     } catch (Throwable ex) {
5535     return tryCompleteComputation(ex);
5536 dl 1.119 }
5537 dl 1.138 tryComplete(subtasks);
5538 dl 1.128 return false;
5539 dl 1.119 }
5540     }
5541    
5542 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5543 dl 1.138 extends BulkAction<K,V,Void> {
5544 dl 1.119 final Action<Entry<K,V>> action;
5545     ForEachEntryTask
5546 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5547 dl 1.138 ForEachEntryTask<K,V> nextTask,
5548 dl 1.119 Action<Entry<K,V>> action) {
5549 dl 1.138 super(m, p, b, nextTask);
5550 dl 1.119 this.action = action;
5551     }
5552 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5553 dl 1.119 final Action<Entry<K,V>> action = this.action;
5554     if (action == null)
5555 dl 1.128 return abortOnNullFunction();
5556 dl 1.138 ForEachEntryTask<K,V> subtasks = null;
5557 dl 1.128 try {
5558     int b = batch(), c;
5559     while (b > 1 && baseIndex != baseLimit) {
5560     do {} while (!casPending(c = pending, c+1));
5561 dl 1.138 (subtasks = new ForEachEntryTask<K,V>
5562     (map, this, b >>>= 1, subtasks, action)).fork();
5563 dl 1.128 }
5564     Object v;
5565     while ((v = advance()) != null)
5566     action.apply(entryFor((K)nextKey, (V)v));
5567     } catch (Throwable ex) {
5568     return tryCompleteComputation(ex);
5569 dl 1.119 }
5570 dl 1.138 tryComplete(subtasks);
5571 dl 1.128 return false;
5572 dl 1.119 }
5573     }
5574    
5575 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5576 dl 1.138 extends BulkAction<K,V,Void> {
5577 dl 1.119 final BiAction<K,V> action;
5578     ForEachMappingTask
5579 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5580 dl 1.138 ForEachMappingTask<K,V> nextTask,
5581 dl 1.119 BiAction<K,V> action) {
5582 dl 1.138 super(m, p, b, nextTask);
5583 dl 1.119 this.action = action;
5584     }
5585 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5586 dl 1.119 final BiAction<K,V> action = this.action;
5587     if (action == null)
5588 dl 1.128 return abortOnNullFunction();
5589 dl 1.138 ForEachMappingTask<K,V> subtasks = null;
5590 dl 1.128 try {
5591     int b = batch(), c;
5592     while (b > 1 && baseIndex != baseLimit) {
5593     do {} while (!casPending(c = pending, c+1));
5594 dl 1.138 (subtasks = new ForEachMappingTask<K,V>
5595     (map, this, b >>>= 1, subtasks, action)).fork();
5596 dl 1.128 }
5597     Object v;
5598     while ((v = advance()) != null)
5599     action.apply((K)nextKey, (V)v);
5600     } catch (Throwable ex) {
5601     return tryCompleteComputation(ex);
5602 dl 1.119 }
5603 dl 1.138 tryComplete(subtasks);
5604 dl 1.128 return false;
5605 dl 1.119 }
5606     }
5607    
5608 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5609 dl 1.138 extends BulkAction<K,V,Void> {
5610 dl 1.119 final Fun<? super K, ? extends U> transformer;
5611     final Action<U> action;
5612     ForEachTransformedKeyTask
5613 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5614 dl 1.138 ForEachTransformedKeyTask<K,V,U> nextTask,
5615 dl 1.119 Fun<? super K, ? extends U> transformer,
5616     Action<U> action) {
5617 dl 1.138 super(m, p, b, nextTask);
5618 dl 1.119 this.transformer = transformer;
5619     this.action = action;
5620    
5621     }
5622 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5623 dl 1.119 final Fun<? super K, ? extends U> transformer =
5624     this.transformer;
5625     final Action<U> action = this.action;
5626     if (transformer == null || action == null)
5627 dl 1.128 return abortOnNullFunction();
5628 dl 1.138 ForEachTransformedKeyTask<K,V,U> subtasks = null;
5629 dl 1.128 try {
5630     int b = batch(), c;
5631     while (b > 1 && baseIndex != baseLimit) {
5632     do {} while (!casPending(c = pending, c+1));
5633 dl 1.138 (subtasks = new ForEachTransformedKeyTask<K,V,U>
5634     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5635 dl 1.128 }
5636     U u;
5637     while (advance() != null) {
5638     if ((u = transformer.apply((K)nextKey)) != null)
5639     action.apply(u);
5640     }
5641     } catch (Throwable ex) {
5642     return tryCompleteComputation(ex);
5643 dl 1.119 }
5644 dl 1.138 tryComplete(subtasks);
5645 dl 1.128 return false;
5646 dl 1.119 }
5647     }
5648    
5649 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5650 dl 1.138 extends BulkAction<K,V,Void> {
5651 dl 1.119 final Fun<? super V, ? extends U> transformer;
5652     final Action<U> action;
5653     ForEachTransformedValueTask
5654 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5655 dl 1.138 ForEachTransformedValueTask<K,V,U> nextTask,
5656 dl 1.119 Fun<? super V, ? extends U> transformer,
5657     Action<U> action) {
5658 dl 1.138 super(m, p, b, nextTask);
5659 dl 1.119 this.transformer = transformer;
5660     this.action = action;
5661    
5662     }
5663 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5664 dl 1.119 final Fun<? super V, ? extends U> transformer =
5665     this.transformer;
5666     final Action<U> action = this.action;
5667     if (transformer == null || action == null)
5668 dl 1.128 return abortOnNullFunction();
5669 dl 1.138 ForEachTransformedValueTask<K,V,U> subtasks = null;
5670 dl 1.128 try {
5671     int b = batch(), c;
5672     while (b > 1 && baseIndex != baseLimit) {
5673     do {} while (!casPending(c = pending, c+1));
5674 dl 1.138 (subtasks = new ForEachTransformedValueTask<K,V,U>
5675     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5676 dl 1.128 }
5677     Object v; U u;
5678     while ((v = advance()) != null) {
5679     if ((u = transformer.apply((V)v)) != null)
5680     action.apply(u);
5681     }
5682     } catch (Throwable ex) {
5683     return tryCompleteComputation(ex);
5684 dl 1.119 }
5685 dl 1.138 tryComplete(subtasks);
5686 dl 1.128 return false;
5687 dl 1.119 }
5688 tim 1.1 }
5689    
5690 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5691 dl 1.138 extends BulkAction<K,V,Void> {
5692 dl 1.119 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5693     final Action<U> action;
5694     ForEachTransformedEntryTask
5695 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5696 dl 1.138 ForEachTransformedEntryTask<K,V,U> nextTask,
5697 dl 1.119 Fun<Map.Entry<K,V>, ? extends U> transformer,
5698     Action<U> action) {
5699 dl 1.138 super(m, p, b, nextTask);
5700 dl 1.119 this.transformer = transformer;
5701     this.action = action;
5702    
5703     }
5704 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5705 dl 1.119 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5706     this.transformer;
5707     final Action<U> action = this.action;
5708     if (transformer == null || action == null)
5709 dl 1.128 return abortOnNullFunction();
5710 dl 1.138 ForEachTransformedEntryTask<K,V,U> subtasks = null;
5711 dl 1.128 try {
5712     int b = batch(), c;
5713     while (b > 1 && baseIndex != baseLimit) {
5714     do {} while (!casPending(c = pending, c+1));
5715 dl 1.138 (subtasks = new ForEachTransformedEntryTask<K,V,U>
5716     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5717 dl 1.128 }
5718     Object v; U u;
5719     while ((v = advance()) != null) {
5720     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5721     action.apply(u);
5722     }
5723     } catch (Throwable ex) {
5724     return tryCompleteComputation(ex);
5725 dl 1.119 }
5726 dl 1.138 tryComplete(subtasks);
5727 dl 1.128 return false;
5728 dl 1.119 }
5729 tim 1.1 }
5730    
5731 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5732 dl 1.138 extends BulkAction<K,V,Void> {
5733 dl 1.119 final BiFun<? super K, ? super V, ? extends U> transformer;
5734     final Action<U> action;
5735     ForEachTransformedMappingTask
5736 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5737 dl 1.138 ForEachTransformedMappingTask<K,V,U> nextTask,
5738 dl 1.119 BiFun<? super K, ? super V, ? extends U> transformer,
5739     Action<U> action) {
5740 dl 1.138 super(m, p, b, nextTask);
5741 dl 1.119 this.transformer = transformer;
5742     this.action = action;
5743    
5744     }
5745 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5746 dl 1.119 final BiFun<? super K, ? super V, ? extends U> transformer =
5747     this.transformer;
5748     final Action<U> action = this.action;
5749     if (transformer == null || action == null)
5750 dl 1.128 return abortOnNullFunction();
5751 dl 1.138 ForEachTransformedMappingTask<K,V,U> subtasks = null;
5752 dl 1.128 try {
5753     int b = batch(), c;
5754     while (b > 1 && baseIndex != baseLimit) {
5755     do {} while (!casPending(c = pending, c+1));
5756 dl 1.138 (subtasks = new ForEachTransformedMappingTask<K,V,U>
5757     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5758 dl 1.128 }
5759     Object v; U u;
5760     while ((v = advance()) != null) {
5761     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5762     action.apply(u);
5763     }
5764     } catch (Throwable ex) {
5765     return tryCompleteComputation(ex);
5766 dl 1.119 }
5767 dl 1.138 tryComplete(subtasks);
5768 dl 1.128 return false;
5769 dl 1.119 }
5770 tim 1.1 }
5771    
5772 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5773 dl 1.138 extends BulkAction<K,V,U> {
5774 dl 1.119 final Fun<? super K, ? extends U> searchFunction;
5775     final AtomicReference<U> result;
5776     SearchKeysTask
5777 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5778 dl 1.138 SearchKeysTask<K,V,U> nextTask,
5779 dl 1.119 Fun<? super K, ? extends U> searchFunction,
5780     AtomicReference<U> result) {
5781 dl 1.138 super(m, p, b, nextTask);
5782 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5783     }
5784 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5785 dl 1.119 AtomicReference<U> result = this.result;
5786     final Fun<? super K, ? extends U> searchFunction =
5787     this.searchFunction;
5788     if (searchFunction == null || result == null)
5789 dl 1.128 return abortOnNullFunction();
5790 dl 1.138 SearchKeysTask<K,V,U> subtasks = null;
5791 dl 1.128 try {
5792     int b = batch(), c;
5793     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5794     do {} while (!casPending(c = pending, c+1));
5795 dl 1.138 (subtasks = new SearchKeysTask<K,V,U>
5796     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5797 dl 1.128 }
5798     U u;
5799     while (result.get() == null && advance() != null) {
5800     if ((u = searchFunction.apply((K)nextKey)) != null) {
5801     if (result.compareAndSet(null, u))
5802     tryCompleteComputation(null);
5803     break;
5804 dl 1.126 }
5805 dl 1.119 }
5806 dl 1.128 } catch (Throwable ex) {
5807     return tryCompleteComputation(ex);
5808 dl 1.119 }
5809 dl 1.138 tryComplete(subtasks);
5810 dl 1.128 return false;
5811 dl 1.119 }
5812     public final U getRawResult() { return result.get(); }
5813 tim 1.1 }
5814    
5815 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5816 dl 1.138 extends BulkAction<K,V,U> {
5817 dl 1.119 final Fun<? super V, ? extends U> searchFunction;
5818     final AtomicReference<U> result;
5819     SearchValuesTask
5820 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5821 dl 1.138 SearchValuesTask<K,V,U> nextTask,
5822 dl 1.119 Fun<? super V, ? extends U> searchFunction,
5823     AtomicReference<U> result) {
5824 dl 1.138 super(m, p, b, nextTask);
5825 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5826     }
5827 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5828 dl 1.119 AtomicReference<U> result = this.result;
5829     final Fun<? super V, ? extends U> searchFunction =
5830     this.searchFunction;
5831     if (searchFunction == null || result == null)
5832 dl 1.128 return abortOnNullFunction();
5833 dl 1.138 SearchValuesTask<K,V,U> subtasks = null;
5834 dl 1.128 try {
5835     int b = batch(), c;
5836     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5837     do {} while (!casPending(c = pending, c+1));
5838 dl 1.138 (subtasks = new SearchValuesTask<K,V,U>
5839     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5840 dl 1.128 }
5841     Object v; U u;
5842     while (result.get() == null && (v = advance()) != null) {
5843     if ((u = searchFunction.apply((V)v)) != null) {
5844     if (result.compareAndSet(null, u))
5845     tryCompleteComputation(null);
5846     break;
5847 dl 1.126 }
5848 dl 1.119 }
5849 dl 1.128 } catch (Throwable ex) {
5850     return tryCompleteComputation(ex);
5851 dl 1.119 }
5852 dl 1.138 tryComplete(subtasks);
5853 dl 1.128 return false;
5854 dl 1.119 }
5855     public final U getRawResult() { return result.get(); }
5856     }
5857 tim 1.11
5858 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5859 dl 1.138 extends BulkAction<K,V,U> {
5860 dl 1.119 final Fun<Entry<K,V>, ? extends U> searchFunction;
5861     final AtomicReference<U> result;
5862     SearchEntriesTask
5863 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5864 dl 1.138 SearchEntriesTask<K,V,U> nextTask,
5865 dl 1.119 Fun<Entry<K,V>, ? extends U> searchFunction,
5866     AtomicReference<U> result) {
5867 dl 1.138 super(m, p, b, nextTask);
5868 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5869     }
5870 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5871 dl 1.119 AtomicReference<U> result = this.result;
5872     final Fun<Entry<K,V>, ? extends U> searchFunction =
5873     this.searchFunction;
5874     if (searchFunction == null || result == null)
5875 dl 1.128 return abortOnNullFunction();
5876 dl 1.138 SearchEntriesTask<K,V,U> subtasks = null;
5877 dl 1.128 try {
5878     int b = batch(), c;
5879     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5880     do {} while (!casPending(c = pending, c+1));
5881 dl 1.138 (subtasks = new SearchEntriesTask<K,V,U>
5882     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5883 dl 1.128 }
5884     Object v; U u;
5885     while (result.get() == null && (v = advance()) != null) {
5886     if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5887     if (result.compareAndSet(null, u))
5888     tryCompleteComputation(null);
5889     break;
5890 dl 1.126 }
5891 dl 1.119 }
5892 dl 1.128 } catch (Throwable ex) {
5893     return tryCompleteComputation(ex);
5894 dl 1.119 }
5895 dl 1.138 tryComplete(subtasks);
5896 dl 1.128 return false;
5897 dl 1.119 }
5898     public final U getRawResult() { return result.get(); }
5899     }
5900 tim 1.1
5901 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5902 dl 1.138 extends BulkAction<K,V,U> {
5903 dl 1.119 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5904     final AtomicReference<U> result;
5905     SearchMappingsTask
5906 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5907 dl 1.138 SearchMappingsTask<K,V,U> nextTask,
5908 dl 1.119 BiFun<? super K, ? super V, ? extends U> searchFunction,
5909     AtomicReference<U> result) {
5910 dl 1.138 super(m, p, b, nextTask);
5911 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5912     }
5913 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5914 dl 1.119 AtomicReference<U> result = this.result;
5915     final BiFun<? super K, ? super V, ? extends U> searchFunction =
5916     this.searchFunction;
5917     if (searchFunction == null || result == null)
5918 dl 1.128 return abortOnNullFunction();
5919 dl 1.138 SearchMappingsTask<K,V,U> subtasks = null;
5920 dl 1.128 try {
5921     int b = batch(), c;
5922     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5923     do {} while (!casPending(c = pending, c+1));
5924 dl 1.138 (subtasks = new SearchMappingsTask<K,V,U>
5925     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5926 dl 1.128 }
5927     Object v; U u;
5928     while (result.get() == null && (v = advance()) != null) {
5929     if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5930     if (result.compareAndSet(null, u))
5931     tryCompleteComputation(null);
5932     break;
5933 dl 1.126 }
5934 dl 1.119 }
5935 dl 1.128 } catch (Throwable ex) {
5936     return tryCompleteComputation(ex);
5937 dl 1.119 }
5938 dl 1.138 tryComplete(subtasks);
5939 dl 1.128 return false;
5940 tim 1.1 }
5941 dl 1.119 public final U getRawResult() { return result.get(); }
5942     }
5943 tim 1.1
5944 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5945 dl 1.119 extends BulkTask<K,V,K> {
5946     final BiFun<? super K, ? super K, ? extends K> reducer;
5947     K result;
5948 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5949 dl 1.119 ReduceKeysTask
5950 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5951 dl 1.128 ReduceKeysTask<K,V> nextRight,
5952 dl 1.119 BiFun<? super K, ? super K, ? extends K> reducer) {
5953 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5954 dl 1.119 this.reducer = reducer;
5955     }
5956 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
5957 dl 1.119 final BiFun<? super K, ? super K, ? extends K> reducer =
5958     this.reducer;
5959     if (reducer == null)
5960 dl 1.128 return abortOnNullFunction();
5961     try {
5962     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5963     do {} while (!casPending(c = pending, c+1));
5964     (rights = new ReduceKeysTask<K,V>
5965 dl 1.130 (map, this, b >>>= 1, rights, reducer)).fork();
5966 dl 1.128 }
5967     K r = null;
5968     while (advance() != null) {
5969     K u = (K)nextKey;
5970     r = (r == null) ? u : reducer.apply(r, u);
5971 dl 1.99 }
5972 dl 1.128 result = r;
5973     for (ReduceKeysTask<K,V> t = this, s;;) {
5974     int c; BulkTask<K,V,?> par; K tr, sr;
5975     if ((c = t.pending) == 0) {
5976     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5977     if ((sr = s.result) != null)
5978 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5979 dl 1.128 }
5980     if ((par = t.parent) == null ||
5981     !(par instanceof ReduceKeysTask)) {
5982     t.quietlyComplete();
5983     break;
5984     }
5985     t = (ReduceKeysTask<K,V>)par;
5986     }
5987     else if (t.casPending(c, c - 1))
5988     break;
5989 tim 1.1 }
5990 dl 1.128 } catch (Throwable ex) {
5991     return tryCompleteComputation(ex);
5992 tim 1.1 }
5993 dl 1.138 ReduceKeysTask<K,V> s = rights;
5994     if (s != null && !inForkJoinPool()) {
5995     do {
5996     if (s.tryUnfork())
5997     s.exec();
5998     } while ((s = s.nextRight) != null);
5999     }
6000 dl 1.128 return false;
6001 tim 1.1 }
6002 dl 1.119 public final K getRawResult() { return result; }
6003     }
6004 tim 1.1
6005 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6006 dl 1.119 extends BulkTask<K,V,V> {
6007     final BiFun<? super V, ? super V, ? extends V> reducer;
6008     V result;
6009 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
6010 dl 1.119 ReduceValuesTask
6011 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6012 dl 1.128 ReduceValuesTask<K,V> nextRight,
6013 dl 1.119 BiFun<? super V, ? super V, ? extends V> reducer) {
6014 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6015 dl 1.119 this.reducer = reducer;
6016     }
6017 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6018 dl 1.119 final BiFun<? super V, ? super V, ? extends V> reducer =
6019     this.reducer;
6020     if (reducer == null)
6021 dl 1.128 return abortOnNullFunction();
6022     try {
6023     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6024     do {} while (!casPending(c = pending, c+1));
6025     (rights = new ReduceValuesTask<K,V>
6026 dl 1.130 (map, this, b >>>= 1, rights, reducer)).fork();
6027 dl 1.128 }
6028     V r = null;
6029     Object v;
6030     while ((v = advance()) != null) {
6031     V u = (V)v;
6032     r = (r == null) ? u : reducer.apply(r, u);
6033 dl 1.119 }
6034 dl 1.128 result = r;
6035     for (ReduceValuesTask<K,V> t = this, s;;) {
6036     int c; BulkTask<K,V,?> par; V tr, sr;
6037     if ((c = t.pending) == 0) {
6038     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6039     if ((sr = s.result) != null)
6040 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6041 dl 1.128 }
6042     if ((par = t.parent) == null ||
6043     !(par instanceof ReduceValuesTask)) {
6044     t.quietlyComplete();
6045     break;
6046     }
6047     t = (ReduceValuesTask<K,V>)par;
6048     }
6049     else if (t.casPending(c, c - 1))
6050     break;
6051 dl 1.119 }
6052 dl 1.128 } catch (Throwable ex) {
6053     return tryCompleteComputation(ex);
6054 dl 1.119 }
6055 dl 1.138 ReduceValuesTask<K,V> s = rights;
6056     if (s != null && !inForkJoinPool()) {
6057     do {
6058     if (s.tryUnfork())
6059     s.exec();
6060     } while ((s = s.nextRight) != null);
6061     }
6062 dl 1.128 return false;
6063 tim 1.1 }
6064 dl 1.119 public final V getRawResult() { return result; }
6065     }
6066 tim 1.1
6067 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6068 dl 1.119 extends BulkTask<K,V,Map.Entry<K,V>> {
6069     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6070     Map.Entry<K,V> result;
6071 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
6072 dl 1.119 ReduceEntriesTask
6073 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6074     ReduceEntriesTask<K,V> nextRight,
6075 dl 1.119 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6076 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6077 dl 1.119 this.reducer = reducer;
6078     }
6079 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6080 dl 1.119 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
6081     this.reducer;
6082     if (reducer == null)
6083 dl 1.128 return abortOnNullFunction();
6084     try {
6085     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6086     do {} while (!casPending(c = pending, c+1));
6087     (rights = new ReduceEntriesTask<K,V>
6088 dl 1.130 (map, this, b >>>= 1, rights, reducer)).fork();
6089 dl 1.128 }
6090     Map.Entry<K,V> r = null;
6091     Object v;
6092     while ((v = advance()) != null) {
6093     Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6094     r = (r == null) ? u : reducer.apply(r, u);
6095 dl 1.119 }
6096 dl 1.128 result = r;
6097     for (ReduceEntriesTask<K,V> t = this, s;;) {
6098     int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
6099     if ((c = t.pending) == 0) {
6100     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6101     if ((sr = s.result) != null)
6102 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6103 dl 1.128 }
6104     if ((par = t.parent) == null ||
6105     !(par instanceof ReduceEntriesTask)) {
6106     t.quietlyComplete();
6107     break;
6108     }
6109     t = (ReduceEntriesTask<K,V>)par;
6110     }
6111     else if (t.casPending(c, c - 1))
6112     break;
6113 dl 1.119 }
6114 dl 1.128 } catch (Throwable ex) {
6115     return tryCompleteComputation(ex);
6116 dl 1.119 }
6117 dl 1.138 ReduceEntriesTask<K,V> s = rights;
6118     if (s != null && !inForkJoinPool()) {
6119     do {
6120     if (s.tryUnfork())
6121     s.exec();
6122     } while ((s = s.nextRight) != null);
6123     }
6124 dl 1.128 return false;
6125 dl 1.119 }
6126     public final Map.Entry<K,V> getRawResult() { return result; }
6127     }
6128 dl 1.99
6129 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6130 dl 1.119 extends BulkTask<K,V,U> {
6131     final Fun<? super K, ? extends U> transformer;
6132     final BiFun<? super U, ? super U, ? extends U> reducer;
6133     U result;
6134 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
6135 dl 1.119 MapReduceKeysTask
6136 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6137 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
6138 dl 1.119 Fun<? super K, ? extends U> transformer,
6139     BiFun<? super U, ? super U, ? extends U> reducer) {
6140 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6141 dl 1.119 this.transformer = transformer;
6142     this.reducer = reducer;
6143     }
6144 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6145 dl 1.119 final Fun<? super K, ? extends U> transformer =
6146     this.transformer;
6147     final BiFun<? super U, ? super U, ? extends U> reducer =
6148     this.reducer;
6149     if (transformer == null || reducer == null)
6150 dl 1.128 return abortOnNullFunction();
6151     try {
6152     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6153     do {} while (!casPending(c = pending, c+1));
6154     (rights = new MapReduceKeysTask<K,V,U>
6155 dl 1.130 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6156 dl 1.128 }
6157     U r = null, u;
6158     while (advance() != null) {
6159     if ((u = transformer.apply((K)nextKey)) != null)
6160     r = (r == null) ? u : reducer.apply(r, u);
6161 dl 1.119 }
6162 dl 1.128 result = r;
6163     for (MapReduceKeysTask<K,V,U> t = this, s;;) {
6164     int c; BulkTask<K,V,?> par; U tr, sr;
6165     if ((c = t.pending) == 0) {
6166     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6167     if ((sr = s.result) != null)
6168 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6169 dl 1.128 }
6170     if ((par = t.parent) == null ||
6171     !(par instanceof MapReduceKeysTask)) {
6172     t.quietlyComplete();
6173     break;
6174     }
6175     t = (MapReduceKeysTask<K,V,U>)par;
6176     }
6177     else if (t.casPending(c, c - 1))
6178     break;
6179 dl 1.119 }
6180 dl 1.128 } catch (Throwable ex) {
6181     return tryCompleteComputation(ex);
6182 dl 1.119 }
6183 dl 1.138 MapReduceKeysTask<K,V,U> s = rights;
6184     if (s != null && !inForkJoinPool()) {
6185     do {
6186     if (s.tryUnfork())
6187     s.exec();
6188     } while ((s = s.nextRight) != null);
6189     }
6190 dl 1.128 return false;
6191 tim 1.1 }
6192 dl 1.119 public final U getRawResult() { return result; }
6193 dl 1.4 }
6194    
6195 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6196 dl 1.119 extends BulkTask<K,V,U> {
6197     final Fun<? super V, ? extends U> transformer;
6198     final BiFun<? super U, ? super U, ? extends U> reducer;
6199     U result;
6200 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6201 dl 1.119 MapReduceValuesTask
6202 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6203 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6204 dl 1.119 Fun<? super V, ? extends U> transformer,
6205     BiFun<? super U, ? super U, ? extends U> reducer) {
6206 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6207 dl 1.119 this.transformer = transformer;
6208     this.reducer = reducer;
6209     }
6210 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6211 dl 1.119 final Fun<? super V, ? extends U> transformer =
6212     this.transformer;
6213     final BiFun<? super U, ? super U, ? extends U> reducer =
6214     this.reducer;
6215     if (transformer == null || reducer == null)
6216 dl 1.128 return abortOnNullFunction();
6217     try {
6218     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6219     do {} while (!casPending(c = pending, c+1));
6220     (rights = new MapReduceValuesTask<K,V,U>
6221 dl 1.130 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6222 dl 1.128 }
6223     U r = null, u;
6224     Object v;
6225     while ((v = advance()) != null) {
6226     if ((u = transformer.apply((V)v)) != null)
6227     r = (r == null) ? u : reducer.apply(r, u);
6228 dl 1.119 }
6229 dl 1.128 result = r;
6230     for (MapReduceValuesTask<K,V,U> t = this, s;;) {
6231     int c; BulkTask<K,V,?> par; U tr, sr;
6232     if ((c = t.pending) == 0) {
6233     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6234     if ((sr = s.result) != null)
6235 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6236 dl 1.128 }
6237     if ((par = t.parent) == null ||
6238     !(par instanceof MapReduceValuesTask)) {
6239     t.quietlyComplete();
6240     break;
6241     }
6242     t = (MapReduceValuesTask<K,V,U>)par;
6243     }
6244     else if (t.casPending(c, c - 1))
6245     break;
6246 dl 1.119 }
6247 dl 1.128 } catch (Throwable ex) {
6248     return tryCompleteComputation(ex);
6249 dl 1.119 }
6250 dl 1.138 MapReduceValuesTask<K,V,U> s = rights;
6251     if (s != null && !inForkJoinPool()) {
6252     do {
6253     if (s.tryUnfork())
6254     s.exec();
6255     } while ((s = s.nextRight) != null);
6256     }
6257 dl 1.128 return false;
6258 dl 1.119 }
6259     public final U getRawResult() { return result; }
6260 dl 1.4 }
6261    
6262 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6263 dl 1.119 extends BulkTask<K,V,U> {
6264     final Fun<Map.Entry<K,V>, ? extends U> transformer;
6265     final BiFun<? super U, ? super U, ? extends U> reducer;
6266     U result;
6267 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6268 dl 1.119 MapReduceEntriesTask
6269 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6270 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6271 dl 1.119 Fun<Map.Entry<K,V>, ? extends U> transformer,
6272     BiFun<? super U, ? super U, ? extends U> reducer) {
6273 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6274 dl 1.119 this.transformer = transformer;
6275     this.reducer = reducer;
6276     }
6277 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6278 dl 1.119 final Fun<Map.Entry<K,V>, ? extends U> transformer =
6279     this.transformer;
6280     final BiFun<? super U, ? super U, ? extends U> reducer =
6281     this.reducer;
6282     if (transformer == null || reducer == null)
6283 dl 1.128 return abortOnNullFunction();
6284     try {
6285     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6286     do {} while (!casPending(c = pending, c+1));
6287     (rights = new MapReduceEntriesTask<K,V,U>
6288 dl 1.130 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6289 dl 1.128 }
6290     U r = null, u;
6291     Object v;
6292     while ((v = advance()) != null) {
6293     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6294     r = (r == null) ? u : reducer.apply(r, u);
6295 dl 1.119 }
6296 dl 1.128 result = r;
6297     for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
6298     int c; BulkTask<K,V,?> par; U tr, sr;
6299     if ((c = t.pending) == 0) {
6300     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6301     if ((sr = s.result) != null)
6302 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6303 dl 1.128 }
6304     if ((par = t.parent) == null ||
6305     !(par instanceof MapReduceEntriesTask)) {
6306     t.quietlyComplete();
6307     break;
6308     }
6309     t = (MapReduceEntriesTask<K,V,U>)par;
6310     }
6311     else if (t.casPending(c, c - 1))
6312     break;
6313 dl 1.119 }
6314 dl 1.128 } catch (Throwable ex) {
6315     return tryCompleteComputation(ex);
6316 dl 1.119 }
6317 dl 1.138 MapReduceEntriesTask<K,V,U> s = rights;
6318     if (s != null && !inForkJoinPool()) {
6319     do {
6320     if (s.tryUnfork())
6321     s.exec();
6322     } while ((s = s.nextRight) != null);
6323     }
6324 dl 1.128 return false;
6325 dl 1.119 }
6326     public final U getRawResult() { return result; }
6327 dl 1.4 }
6328 tim 1.1
6329 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6330 dl 1.119 extends BulkTask<K,V,U> {
6331     final BiFun<? super K, ? super V, ? extends U> transformer;
6332     final BiFun<? super U, ? super U, ? extends U> reducer;
6333     U result;
6334 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6335 dl 1.119 MapReduceMappingsTask
6336 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6337 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6338 dl 1.119 BiFun<? super K, ? super V, ? extends U> transformer,
6339     BiFun<? super U, ? super U, ? extends U> reducer) {
6340 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6341 dl 1.119 this.transformer = transformer;
6342     this.reducer = reducer;
6343     }
6344 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6345 dl 1.119 final BiFun<? super K, ? super V, ? extends U> transformer =
6346     this.transformer;
6347     final BiFun<? super U, ? super U, ? extends U> reducer =
6348     this.reducer;
6349     if (transformer == null || reducer == null)
6350 dl 1.128 return abortOnNullFunction();
6351     try {
6352     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6353     do {} while (!casPending(c = pending, c+1));
6354     (rights = new MapReduceMappingsTask<K,V,U>
6355 dl 1.130 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6356 dl 1.128 }
6357     U r = null, u;
6358     Object v;
6359     while ((v = advance()) != null) {
6360     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6361     r = (r == null) ? u : reducer.apply(r, u);
6362 dl 1.119 }
6363 dl 1.128 result = r;
6364     for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
6365     int c; BulkTask<K,V,?> par; U tr, sr;
6366     if ((c = t.pending) == 0) {
6367     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6368     if ((sr = s.result) != null)
6369 jsr166 1.132 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6370 dl 1.128 }
6371     if ((par = t.parent) == null ||
6372     !(par instanceof MapReduceMappingsTask)) {
6373     t.quietlyComplete();
6374     break;
6375     }
6376     t = (MapReduceMappingsTask<K,V,U>)par;
6377     }
6378     else if (t.casPending(c, c - 1))
6379     break;
6380 dl 1.119 }
6381 dl 1.128 } catch (Throwable ex) {
6382     return tryCompleteComputation(ex);
6383 dl 1.119 }
6384 dl 1.138 MapReduceMappingsTask<K,V,U> s = rights;
6385     if (s != null && !inForkJoinPool()) {
6386     do {
6387     if (s.tryUnfork())
6388     s.exec();
6389     } while ((s = s.nextRight) != null);
6390     }
6391 dl 1.128 return false;
6392 dl 1.119 }
6393     public final U getRawResult() { return result; }
6394     }
6395 jsr166 1.114
6396 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6397 dl 1.119 extends BulkTask<K,V,Double> {
6398     final ObjectToDouble<? super K> transformer;
6399     final DoubleByDoubleToDouble reducer;
6400     final double basis;
6401     double result;
6402 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6403 dl 1.119 MapReduceKeysToDoubleTask
6404 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6405 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6406 dl 1.119 ObjectToDouble<? super K> transformer,
6407     double basis,
6408     DoubleByDoubleToDouble reducer) {
6409 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6410 dl 1.119 this.transformer = transformer;
6411     this.basis = basis; this.reducer = reducer;
6412     }
6413 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6414 dl 1.119 final ObjectToDouble<? super K> transformer =
6415     this.transformer;
6416     final DoubleByDoubleToDouble reducer = this.reducer;
6417     if (transformer == null || reducer == null)
6418 dl 1.128 return abortOnNullFunction();
6419     try {
6420     final double id = this.basis;
6421     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6422     do {} while (!casPending(c = pending, c+1));
6423     (rights = new MapReduceKeysToDoubleTask<K,V>
6424 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6425 dl 1.128 }
6426     double r = id;
6427     while (advance() != null)
6428     r = reducer.apply(r, transformer.apply((K)nextKey));
6429     result = r;
6430     for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6431     int c; BulkTask<K,V,?> par;
6432     if ((c = t.pending) == 0) {
6433     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6434     t.result = reducer.apply(t.result, s.result);
6435     }
6436     if ((par = t.parent) == null ||
6437     !(par instanceof MapReduceKeysToDoubleTask)) {
6438     t.quietlyComplete();
6439     break;
6440     }
6441     t = (MapReduceKeysToDoubleTask<K,V>)par;
6442     }
6443     else if (t.casPending(c, c - 1))
6444     break;
6445 dl 1.119 }
6446 dl 1.128 } catch (Throwable ex) {
6447     return tryCompleteComputation(ex);
6448 dl 1.119 }
6449 dl 1.138 MapReduceKeysToDoubleTask<K,V> s = rights;
6450     if (s != null && !inForkJoinPool()) {
6451     do {
6452     if (s.tryUnfork())
6453     s.exec();
6454     } while ((s = s.nextRight) != null);
6455     }
6456 dl 1.128 return false;
6457 dl 1.79 }
6458 dl 1.119 public final Double getRawResult() { return result; }
6459     }
6460 dl 1.79
6461 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6462 dl 1.119 extends BulkTask<K,V,Double> {
6463     final ObjectToDouble<? super V> transformer;
6464     final DoubleByDoubleToDouble reducer;
6465     final double basis;
6466     double result;
6467 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6468 dl 1.119 MapReduceValuesToDoubleTask
6469 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6470 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6471 dl 1.119 ObjectToDouble<? super V> transformer,
6472     double basis,
6473     DoubleByDoubleToDouble reducer) {
6474 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6475 dl 1.119 this.transformer = transformer;
6476     this.basis = basis; this.reducer = reducer;
6477     }
6478 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6479 dl 1.119 final ObjectToDouble<? super V> transformer =
6480     this.transformer;
6481     final DoubleByDoubleToDouble reducer = this.reducer;
6482     if (transformer == null || reducer == null)
6483 dl 1.128 return abortOnNullFunction();
6484     try {
6485     final double id = this.basis;
6486     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6487     do {} while (!casPending(c = pending, c+1));
6488     (rights = new MapReduceValuesToDoubleTask<K,V>
6489 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6490 dl 1.128 }
6491     double r = id;
6492     Object v;
6493     while ((v = advance()) != null)
6494     r = reducer.apply(r, transformer.apply((V)v));
6495     result = r;
6496     for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6497     int c; BulkTask<K,V,?> par;
6498     if ((c = t.pending) == 0) {
6499     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6500     t.result = reducer.apply(t.result, s.result);
6501     }
6502     if ((par = t.parent) == null ||
6503     !(par instanceof MapReduceValuesToDoubleTask)) {
6504     t.quietlyComplete();
6505     break;
6506     }
6507     t = (MapReduceValuesToDoubleTask<K,V>)par;
6508     }
6509     else if (t.casPending(c, c - 1))
6510     break;
6511 dl 1.119 }
6512 dl 1.128 } catch (Throwable ex) {
6513     return tryCompleteComputation(ex);
6514 dl 1.119 }
6515 dl 1.138 MapReduceValuesToDoubleTask<K,V> s = rights;
6516     if (s != null && !inForkJoinPool()) {
6517     do {
6518     if (s.tryUnfork())
6519     s.exec();
6520     } while ((s = s.nextRight) != null);
6521     }
6522 dl 1.128 return false;
6523 dl 1.30 }
6524 dl 1.119 public final Double getRawResult() { return result; }
6525 dl 1.79 }
6526 dl 1.30
6527 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6528 dl 1.119 extends BulkTask<K,V,Double> {
6529     final ObjectToDouble<Map.Entry<K,V>> transformer;
6530     final DoubleByDoubleToDouble reducer;
6531     final double basis;
6532     double result;
6533 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6534 dl 1.119 MapReduceEntriesToDoubleTask
6535 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6536 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6537 dl 1.119 ObjectToDouble<Map.Entry<K,V>> transformer,
6538     double basis,
6539     DoubleByDoubleToDouble reducer) {
6540 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6541 dl 1.119 this.transformer = transformer;
6542     this.basis = basis; this.reducer = reducer;
6543     }
6544 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6545 dl 1.119 final ObjectToDouble<Map.Entry<K,V>> transformer =
6546     this.transformer;
6547     final DoubleByDoubleToDouble reducer = this.reducer;
6548     if (transformer == null || reducer == null)
6549 dl 1.128 return abortOnNullFunction();
6550     try {
6551     final double id = this.basis;
6552     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6553     do {} while (!casPending(c = pending, c+1));
6554     (rights = new MapReduceEntriesToDoubleTask<K,V>
6555 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6556 dl 1.128 }
6557     double r = id;
6558     Object v;
6559     while ((v = advance()) != null)
6560     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6561     result = r;
6562     for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6563     int c; BulkTask<K,V,?> par;
6564     if ((c = t.pending) == 0) {
6565     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6566     t.result = reducer.apply(t.result, s.result);
6567     }
6568     if ((par = t.parent) == null ||
6569     !(par instanceof MapReduceEntriesToDoubleTask)) {
6570     t.quietlyComplete();
6571     break;
6572     }
6573     t = (MapReduceEntriesToDoubleTask<K,V>)par;
6574     }
6575     else if (t.casPending(c, c - 1))
6576     break;
6577 dl 1.119 }
6578 dl 1.128 } catch (Throwable ex) {
6579     return tryCompleteComputation(ex);
6580 dl 1.119 }
6581 dl 1.138 MapReduceEntriesToDoubleTask<K,V> s = rights;
6582     if (s != null && !inForkJoinPool()) {
6583     do {
6584     if (s.tryUnfork())
6585     s.exec();
6586     } while ((s = s.nextRight) != null);
6587     }
6588 dl 1.128 return false;
6589 dl 1.30 }
6590 dl 1.119 public final Double getRawResult() { return result; }
6591 tim 1.1 }
6592    
6593 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6594 dl 1.119 extends BulkTask<K,V,Double> {
6595     final ObjectByObjectToDouble<? super K, ? super V> transformer;
6596     final DoubleByDoubleToDouble reducer;
6597     final double basis;
6598     double result;
6599 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6600 dl 1.119 MapReduceMappingsToDoubleTask
6601 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6602 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6603 dl 1.119 ObjectByObjectToDouble<? super K, ? super V> transformer,
6604     double basis,
6605     DoubleByDoubleToDouble reducer) {
6606 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6607 dl 1.119 this.transformer = transformer;
6608     this.basis = basis; this.reducer = reducer;
6609     }
6610 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6611 dl 1.119 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6612     this.transformer;
6613     final DoubleByDoubleToDouble reducer = this.reducer;
6614     if (transformer == null || reducer == null)
6615 dl 1.128 return abortOnNullFunction();
6616     try {
6617     final double id = this.basis;
6618     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6619     do {} while (!casPending(c = pending, c+1));
6620     (rights = new MapReduceMappingsToDoubleTask<K,V>
6621 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6622 dl 1.128 }
6623     double r = id;
6624     Object v;
6625     while ((v = advance()) != null)
6626     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6627     result = r;
6628     for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6629     int c; BulkTask<K,V,?> par;
6630     if ((c = t.pending) == 0) {
6631     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6632     t.result = reducer.apply(t.result, s.result);
6633     }
6634     if ((par = t.parent) == null ||
6635     !(par instanceof MapReduceMappingsToDoubleTask)) {
6636     t.quietlyComplete();
6637     break;
6638     }
6639     t = (MapReduceMappingsToDoubleTask<K,V>)par;
6640     }
6641     else if (t.casPending(c, c - 1))
6642     break;
6643 dl 1.119 }
6644 dl 1.128 } catch (Throwable ex) {
6645     return tryCompleteComputation(ex);
6646 dl 1.119 }
6647 dl 1.138 MapReduceMappingsToDoubleTask<K,V> s = rights;
6648     if (s != null && !inForkJoinPool()) {
6649     do {
6650     if (s.tryUnfork())
6651     s.exec();
6652     } while ((s = s.nextRight) != null);
6653     }
6654 dl 1.128 return false;
6655 dl 1.4 }
6656 dl 1.119 public final Double getRawResult() { return result; }
6657     }
6658    
6659 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6660 dl 1.119 extends BulkTask<K,V,Long> {
6661     final ObjectToLong<? super K> transformer;
6662     final LongByLongToLong reducer;
6663     final long basis;
6664     long result;
6665 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6666 dl 1.119 MapReduceKeysToLongTask
6667 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6668 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6669 dl 1.119 ObjectToLong<? super K> transformer,
6670     long basis,
6671     LongByLongToLong reducer) {
6672 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6673 dl 1.119 this.transformer = transformer;
6674     this.basis = basis; this.reducer = reducer;
6675     }
6676 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6677 dl 1.119 final ObjectToLong<? super K> transformer =
6678     this.transformer;
6679     final LongByLongToLong reducer = this.reducer;
6680     if (transformer == null || reducer == null)
6681 dl 1.128 return abortOnNullFunction();
6682     try {
6683     final long id = this.basis;
6684     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6685     do {} while (!casPending(c = pending, c+1));
6686     (rights = new MapReduceKeysToLongTask<K,V>
6687 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6688 dl 1.128 }
6689     long r = id;
6690     while (advance() != null)
6691     r = reducer.apply(r, transformer.apply((K)nextKey));
6692     result = r;
6693     for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6694     int c; BulkTask<K,V,?> par;
6695     if ((c = t.pending) == 0) {
6696     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6697     t.result = reducer.apply(t.result, s.result);
6698     }
6699     if ((par = t.parent) == null ||
6700     !(par instanceof MapReduceKeysToLongTask)) {
6701     t.quietlyComplete();
6702     break;
6703     }
6704     t = (MapReduceKeysToLongTask<K,V>)par;
6705     }
6706     else if (t.casPending(c, c - 1))
6707     break;
6708 dl 1.119 }
6709 dl 1.128 } catch (Throwable ex) {
6710     return tryCompleteComputation(ex);
6711 dl 1.119 }
6712 dl 1.138 MapReduceKeysToLongTask<K,V> s = rights;
6713     if (s != null && !inForkJoinPool()) {
6714     do {
6715     if (s.tryUnfork())
6716     s.exec();
6717     } while ((s = s.nextRight) != null);
6718     }
6719 dl 1.128 return false;
6720 dl 1.4 }
6721 dl 1.119 public final Long getRawResult() { return result; }
6722     }
6723    
6724 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6725 dl 1.119 extends BulkTask<K,V,Long> {
6726     final ObjectToLong<? super V> transformer;
6727     final LongByLongToLong reducer;
6728     final long basis;
6729     long result;
6730 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6731 dl 1.119 MapReduceValuesToLongTask
6732 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6733 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6734 dl 1.119 ObjectToLong<? super V> transformer,
6735     long basis,
6736     LongByLongToLong reducer) {
6737 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6738 dl 1.119 this.transformer = transformer;
6739     this.basis = basis; this.reducer = reducer;
6740     }
6741 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6742 dl 1.119 final ObjectToLong<? super V> transformer =
6743     this.transformer;
6744     final LongByLongToLong reducer = this.reducer;
6745     if (transformer == null || reducer == null)
6746 dl 1.128 return abortOnNullFunction();
6747     try {
6748     final long id = this.basis;
6749     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6750     do {} while (!casPending(c = pending, c+1));
6751     (rights = new MapReduceValuesToLongTask<K,V>
6752 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6753 dl 1.128 }
6754     long r = id;
6755     Object v;
6756     while ((v = advance()) != null)
6757     r = reducer.apply(r, transformer.apply((V)v));
6758     result = r;
6759     for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6760     int c; BulkTask<K,V,?> par;
6761     if ((c = t.pending) == 0) {
6762     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6763     t.result = reducer.apply(t.result, s.result);
6764     }
6765     if ((par = t.parent) == null ||
6766     !(par instanceof MapReduceValuesToLongTask)) {
6767     t.quietlyComplete();
6768     break;
6769     }
6770     t = (MapReduceValuesToLongTask<K,V>)par;
6771     }
6772     else if (t.casPending(c, c - 1))
6773     break;
6774 dl 1.119 }
6775 dl 1.128 } catch (Throwable ex) {
6776     return tryCompleteComputation(ex);
6777 dl 1.119 }
6778 dl 1.138 MapReduceValuesToLongTask<K,V> s = rights;
6779     if (s != null && !inForkJoinPool()) {
6780     do {
6781     if (s.tryUnfork())
6782     s.exec();
6783     } while ((s = s.nextRight) != null);
6784     }
6785 dl 1.128 return false;
6786 jsr166 1.95 }
6787 dl 1.119 public final Long getRawResult() { return result; }
6788     }
6789    
6790 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6791 dl 1.119 extends BulkTask<K,V,Long> {
6792     final ObjectToLong<Map.Entry<K,V>> transformer;
6793     final LongByLongToLong reducer;
6794     final long basis;
6795     long result;
6796 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6797 dl 1.119 MapReduceEntriesToLongTask
6798 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6799 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6800 dl 1.119 ObjectToLong<Map.Entry<K,V>> transformer,
6801     long basis,
6802     LongByLongToLong reducer) {
6803 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6804 dl 1.119 this.transformer = transformer;
6805     this.basis = basis; this.reducer = reducer;
6806     }
6807 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6808 dl 1.119 final ObjectToLong<Map.Entry<K,V>> transformer =
6809     this.transformer;
6810     final LongByLongToLong reducer = this.reducer;
6811     if (transformer == null || reducer == null)
6812 dl 1.128 return abortOnNullFunction();
6813     try {
6814     final long id = this.basis;
6815     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6816     do {} while (!casPending(c = pending, c+1));
6817     (rights = new MapReduceEntriesToLongTask<K,V>
6818 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6819 dl 1.128 }
6820     long r = id;
6821     Object v;
6822     while ((v = advance()) != null)
6823     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6824     result = r;
6825     for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6826     int c; BulkTask<K,V,?> par;
6827     if ((c = t.pending) == 0) {
6828     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6829     t.result = reducer.apply(t.result, s.result);
6830     }
6831     if ((par = t.parent) == null ||
6832     !(par instanceof MapReduceEntriesToLongTask)) {
6833     t.quietlyComplete();
6834     break;
6835     }
6836     t = (MapReduceEntriesToLongTask<K,V>)par;
6837     }
6838     else if (t.casPending(c, c - 1))
6839     break;
6840 dl 1.119 }
6841 dl 1.128 } catch (Throwable ex) {
6842     return tryCompleteComputation(ex);
6843 dl 1.119 }
6844 dl 1.138 MapReduceEntriesToLongTask<K,V> s = rights;
6845     if (s != null && !inForkJoinPool()) {
6846     do {
6847     if (s.tryUnfork())
6848     s.exec();
6849     } while ((s = s.nextRight) != null);
6850     }
6851 dl 1.128 return false;
6852 dl 1.4 }
6853 dl 1.119 public final Long getRawResult() { return result; }
6854 tim 1.1 }
6855    
6856 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6857 dl 1.119 extends BulkTask<K,V,Long> {
6858     final ObjectByObjectToLong<? super K, ? super V> transformer;
6859     final LongByLongToLong reducer;
6860     final long basis;
6861     long result;
6862 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6863 dl 1.119 MapReduceMappingsToLongTask
6864 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6865 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6866 dl 1.119 ObjectByObjectToLong<? super K, ? super V> transformer,
6867     long basis,
6868     LongByLongToLong reducer) {
6869 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6870 dl 1.119 this.transformer = transformer;
6871     this.basis = basis; this.reducer = reducer;
6872     }
6873 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6874 dl 1.119 final ObjectByObjectToLong<? super K, ? super V> transformer =
6875     this.transformer;
6876     final LongByLongToLong reducer = this.reducer;
6877     if (transformer == null || reducer == null)
6878 dl 1.128 return abortOnNullFunction();
6879     try {
6880     final long id = this.basis;
6881     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6882     do {} while (!casPending(c = pending, c+1));
6883     (rights = new MapReduceMappingsToLongTask<K,V>
6884 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6885 dl 1.128 }
6886     long r = id;
6887     Object v;
6888     while ((v = advance()) != null)
6889     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6890     result = r;
6891     for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6892     int c; BulkTask<K,V,?> par;
6893     if ((c = t.pending) == 0) {
6894     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6895     t.result = reducer.apply(t.result, s.result);
6896     }
6897     if ((par = t.parent) == null ||
6898     !(par instanceof MapReduceMappingsToLongTask)) {
6899     t.quietlyComplete();
6900     break;
6901     }
6902     t = (MapReduceMappingsToLongTask<K,V>)par;
6903     }
6904     else if (t.casPending(c, c - 1))
6905     break;
6906 dl 1.119 }
6907 dl 1.128 } catch (Throwable ex) {
6908     return tryCompleteComputation(ex);
6909 dl 1.119 }
6910 dl 1.138 MapReduceMappingsToLongTask<K,V> s = rights;
6911     if (s != null && !inForkJoinPool()) {
6912     do {
6913     if (s.tryUnfork())
6914     s.exec();
6915     } while ((s = s.nextRight) != null);
6916     }
6917 dl 1.128 return false;
6918 dl 1.4 }
6919 dl 1.119 public final Long getRawResult() { return result; }
6920 tim 1.1 }
6921    
6922 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6923 dl 1.119 extends BulkTask<K,V,Integer> {
6924     final ObjectToInt<? super K> transformer;
6925     final IntByIntToInt reducer;
6926     final int basis;
6927     int result;
6928 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6929 dl 1.119 MapReduceKeysToIntTask
6930 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6931 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6932 dl 1.119 ObjectToInt<? super K> transformer,
6933     int basis,
6934     IntByIntToInt reducer) {
6935 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6936 dl 1.119 this.transformer = transformer;
6937     this.basis = basis; this.reducer = reducer;
6938     }
6939 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
6940 dl 1.119 final ObjectToInt<? super K> transformer =
6941     this.transformer;
6942     final IntByIntToInt reducer = this.reducer;
6943     if (transformer == null || reducer == null)
6944 dl 1.128 return abortOnNullFunction();
6945     try {
6946     final int id = this.basis;
6947     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6948     do {} while (!casPending(c = pending, c+1));
6949     (rights = new MapReduceKeysToIntTask<K,V>
6950 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6951 dl 1.128 }
6952     int r = id;
6953     while (advance() != null)
6954     r = reducer.apply(r, transformer.apply((K)nextKey));
6955     result = r;
6956     for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6957     int c; BulkTask<K,V,?> par;
6958     if ((c = t.pending) == 0) {
6959     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6960     t.result = reducer.apply(t.result, s.result);
6961     }
6962     if ((par = t.parent) == null ||
6963     !(par instanceof MapReduceKeysToIntTask)) {
6964     t.quietlyComplete();
6965     break;
6966     }
6967     t = (MapReduceKeysToIntTask<K,V>)par;
6968     }
6969     else if (t.casPending(c, c - 1))
6970     break;
6971 dl 1.119 }
6972 dl 1.128 } catch (Throwable ex) {
6973     return tryCompleteComputation(ex);
6974 dl 1.119 }
6975 dl 1.138 MapReduceKeysToIntTask<K,V> s = rights;
6976     if (s != null && !inForkJoinPool()) {
6977     do {
6978     if (s.tryUnfork())
6979     s.exec();
6980     } while ((s = s.nextRight) != null);
6981     }
6982 dl 1.128 return false;
6983 dl 1.30 }
6984 dl 1.119 public final Integer getRawResult() { return result; }
6985 dl 1.30 }
6986    
6987 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6988 dl 1.119 extends BulkTask<K,V,Integer> {
6989     final ObjectToInt<? super V> transformer;
6990     final IntByIntToInt reducer;
6991     final int basis;
6992     int result;
6993 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6994 dl 1.119 MapReduceValuesToIntTask
6995 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6996 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6997 dl 1.119 ObjectToInt<? super V> transformer,
6998     int basis,
6999     IntByIntToInt reducer) {
7000 dl 1.130 super(m, p, b); this.nextRight = nextRight;
7001 dl 1.119 this.transformer = transformer;
7002     this.basis = basis; this.reducer = reducer;
7003     }
7004 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
7005 dl 1.119 final ObjectToInt<? super V> transformer =
7006     this.transformer;
7007     final IntByIntToInt reducer = this.reducer;
7008     if (transformer == null || reducer == null)
7009 dl 1.128 return abortOnNullFunction();
7010     try {
7011     final int id = this.basis;
7012     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7013     do {} while (!casPending(c = pending, c+1));
7014     (rights = new MapReduceValuesToIntTask<K,V>
7015 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7016 dl 1.128 }
7017     int r = id;
7018     Object v;
7019     while ((v = advance()) != null)
7020     r = reducer.apply(r, transformer.apply((V)v));
7021     result = r;
7022     for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
7023     int c; BulkTask<K,V,?> par;
7024     if ((c = t.pending) == 0) {
7025     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7026     t.result = reducer.apply(t.result, s.result);
7027     }
7028     if ((par = t.parent) == null ||
7029     !(par instanceof MapReduceValuesToIntTask)) {
7030     t.quietlyComplete();
7031     break;
7032     }
7033     t = (MapReduceValuesToIntTask<K,V>)par;
7034     }
7035     else if (t.casPending(c, c - 1))
7036     break;
7037 dl 1.119 }
7038 dl 1.128 } catch (Throwable ex) {
7039     return tryCompleteComputation(ex);
7040 dl 1.2 }
7041 dl 1.138 MapReduceValuesToIntTask<K,V> s = rights;
7042     if (s != null && !inForkJoinPool()) {
7043     do {
7044     if (s.tryUnfork())
7045     s.exec();
7046     } while ((s = s.nextRight) != null);
7047     }
7048 dl 1.128 return false;
7049 tim 1.1 }
7050 dl 1.119 public final Integer getRawResult() { return result; }
7051 tim 1.1 }
7052    
7053 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
7054 dl 1.119 extends BulkTask<K,V,Integer> {
7055     final ObjectToInt<Map.Entry<K,V>> transformer;
7056     final IntByIntToInt reducer;
7057     final int basis;
7058     int result;
7059 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
7060 dl 1.119 MapReduceEntriesToIntTask
7061 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
7062 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
7063 dl 1.119 ObjectToInt<Map.Entry<K,V>> transformer,
7064     int basis,
7065     IntByIntToInt reducer) {
7066 dl 1.130 super(m, p, b); this.nextRight = nextRight;
7067 dl 1.119 this.transformer = transformer;
7068     this.basis = basis; this.reducer = reducer;
7069     }
7070 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
7071 dl 1.119 final ObjectToInt<Map.Entry<K,V>> transformer =
7072     this.transformer;
7073     final IntByIntToInt reducer = this.reducer;
7074     if (transformer == null || reducer == null)
7075 dl 1.128 return abortOnNullFunction();
7076     try {
7077     final int id = this.basis;
7078     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7079     do {} while (!casPending(c = pending, c+1));
7080     (rights = new MapReduceEntriesToIntTask<K,V>
7081 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7082 dl 1.128 }
7083     int r = id;
7084     Object v;
7085     while ((v = advance()) != null)
7086     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
7087     result = r;
7088     for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
7089     int c; BulkTask<K,V,?> par;
7090     if ((c = t.pending) == 0) {
7091     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7092     t.result = reducer.apply(t.result, s.result);
7093     }
7094     if ((par = t.parent) == null ||
7095     !(par instanceof MapReduceEntriesToIntTask)) {
7096     t.quietlyComplete();
7097     break;
7098     }
7099     t = (MapReduceEntriesToIntTask<K,V>)par;
7100     }
7101     else if (t.casPending(c, c - 1))
7102     break;
7103 dl 1.119 }
7104 dl 1.128 } catch (Throwable ex) {
7105     return tryCompleteComputation(ex);
7106 dl 1.99 }
7107 dl 1.138 MapReduceEntriesToIntTask<K,V> s = rights;
7108     if (s != null && !inForkJoinPool()) {
7109     do {
7110     if (s.tryUnfork())
7111     s.exec();
7112     } while ((s = s.nextRight) != null);
7113     }
7114 dl 1.128 return false;
7115 dl 1.4 }
7116 dl 1.119 public final Integer getRawResult() { return result; }
7117     }
7118 tim 1.1
7119 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
7120 dl 1.119 extends BulkTask<K,V,Integer> {
7121     final ObjectByObjectToInt<? super K, ? super V> transformer;
7122     final IntByIntToInt reducer;
7123     final int basis;
7124     int result;
7125 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
7126 dl 1.119 MapReduceMappingsToIntTask
7127 dl 1.130 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
7128     MapReduceMappingsToIntTask<K,V> rights,
7129 dl 1.119 ObjectByObjectToInt<? super K, ? super V> transformer,
7130     int basis,
7131     IntByIntToInt reducer) {
7132 dl 1.130 super(m, p, b); this.nextRight = nextRight;
7133 dl 1.119 this.transformer = transformer;
7134     this.basis = basis; this.reducer = reducer;
7135     }
7136 dl 1.128 @SuppressWarnings("unchecked") public final boolean exec() {
7137 dl 1.119 final ObjectByObjectToInt<? super K, ? super V> transformer =
7138     this.transformer;
7139     final IntByIntToInt reducer = this.reducer;
7140     if (transformer == null || reducer == null)
7141 dl 1.128 return abortOnNullFunction();
7142     try {
7143     final int id = this.basis;
7144     for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7145     do {} while (!casPending(c = pending, c+1));
7146     (rights = new MapReduceMappingsToIntTask<K,V>
7147 dl 1.130 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7148 dl 1.128 }
7149     int r = id;
7150     Object v;
7151     while ((v = advance()) != null)
7152     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
7153     result = r;
7154     for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
7155     int c; BulkTask<K,V,?> par;
7156     if ((c = t.pending) == 0) {
7157     for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7158     t.result = reducer.apply(t.result, s.result);
7159     }
7160     if ((par = t.parent) == null ||
7161     !(par instanceof MapReduceMappingsToIntTask)) {
7162     t.quietlyComplete();
7163     break;
7164     }
7165     t = (MapReduceMappingsToIntTask<K,V>)par;
7166     }
7167     else if (t.casPending(c, c - 1))
7168     break;
7169 dl 1.119 }
7170 dl 1.128 } catch (Throwable ex) {
7171     return tryCompleteComputation(ex);
7172 dl 1.119 }
7173 dl 1.138 MapReduceMappingsToIntTask<K,V> s = rights;
7174     if (s != null && !inForkJoinPool()) {
7175     do {
7176     if (s.tryUnfork())
7177     s.exec();
7178     } while ((s = s.nextRight) != null);
7179     }
7180 dl 1.128 return false;
7181 tim 1.1 }
7182 dl 1.119 public final Integer getRawResult() { return result; }
7183 tim 1.1 }
7184 dl 1.99
7185     // Unsafe mechanics
7186     private static final sun.misc.Unsafe UNSAFE;
7187 dl 1.119 private static final long counterOffset;
7188     private static final long sizeCtlOffset;
7189     private static final long ABASE;
7190     private static final int ASHIFT;
7191 dl 1.99
7192     static {
7193 dl 1.119 int ss;
7194 dl 1.99 try {
7195 dl 1.126 UNSAFE = sun.misc.Unsafe.getUnsafe();
7196 dl 1.119 Class<?> k = ConcurrentHashMap.class;
7197     counterOffset = UNSAFE.objectFieldOffset
7198     (k.getDeclaredField("counter"));
7199     sizeCtlOffset = UNSAFE.objectFieldOffset
7200     (k.getDeclaredField("sizeCtl"));
7201     Class<?> sc = Node[].class;
7202     ABASE = UNSAFE.arrayBaseOffset(sc);
7203 dl 1.99 ss = UNSAFE.arrayIndexScale(sc);
7204     } catch (Exception e) {
7205     throw new Error(e);
7206     }
7207 dl 1.119 if ((ss & (ss-1)) != 0)
7208 dl 1.99 throw new Error("data type scale not a power of two");
7209 dl 1.119 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
7210 dl 1.99 }
7211 dl 1.128 }