ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.158
Committed: Wed Jan 2 07:43:50 2013 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.157: +0 -2 lines
Log Message:
remove trailing blank javadoc lines

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11     import java.util.stream.Spliterator;
12     import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98     * {@link #computeIfAbsent}. For example, to add a count to a {@code
99     * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100     * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152     * </li>
153     * </ul>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482     /**
483     * Holder for the thread-local hash code determining which
484 dl 1.153 * Cell to use. The code is initialized via the
485     * cellHashCodeGenerator, but may be moved upon collisions.
486 dl 1.149 */
487 dl 1.153 static final class CellHashCode {
488 dl 1.149 int code;
489     }
490    
491     /**
492 dl 1.153 * Generates initial value for per-thread CellHashCodes
493 dl 1.149 */
494 dl 1.153 static final AtomicInteger cellHashCodeGenerator = new AtomicInteger();
495 dl 1.149
496     /**
497 dl 1.153 * Increment for cellHashCodeGenerator. See class ThreadLocal
498 dl 1.149 * for explanation.
499     */
500     static final int SEED_INCREMENT = 0x61c88647;
501    
502     /**
503     * Per-thread counter hash codes. Shared across all instances
504     */
505 dl 1.153 static final ThreadLocal<CellHashCode> threadCellHashCode =
506     new ThreadLocal<CellHashCode>();
507 dl 1.46
508 dl 1.4 /* ---------------- Fields -------------- */
509 tim 1.1
510     /**
511 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
512     * Size is always a power of two. Accessed directly by iterators.
513 jsr166 1.59 */
514 dl 1.151 transient volatile Node<V>[] table;
515 tim 1.1
516     /**
517 dl 1.149 * The next table to use; non-null only while resizing.
518 jsr166 1.59 */
519 dl 1.151 private transient volatile Node<V>[] nextTable;
520 dl 1.149
521     /**
522     * Base counter value, used mainly when there is no contention,
523     * but also as a fallback during table initialization
524     * races. Updated via CAS.
525     */
526     private transient volatile long baseCount;
527 tim 1.1
528     /**
529 dl 1.119 * Table initialization and resizing control. When negative, the
530 dl 1.149 * table is being initialized or resized: -1 for initialization,
531     * else -(1 + the number of active resizing threads). Otherwise,
532     * when table is null, holds the initial table size to use upon
533     * creation, or 0 for default. After initialization, holds the
534     * next element count value upon which to resize the table.
535 tim 1.1 */
536 dl 1.119 private transient volatile int sizeCtl;
537 dl 1.4
538 dl 1.149 /**
539     * The next table index (plus one) to split while resizing.
540     */
541     private transient volatile int transferIndex;
542    
543     /**
544     * The least available table index to split while resizing.
545     */
546     private transient volatile int transferOrigin;
547    
548     /**
549     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
550     */
551 dl 1.153 private transient volatile int cellsBusy;
552 dl 1.149
553     /**
554     * Table of counter cells. When non-null, size is a power of 2.
555     */
556 dl 1.153 private transient volatile Cell[] counterCells;
557 dl 1.149
558 dl 1.119 // views
559 dl 1.137 private transient KeySetView<K,V> keySet;
560 dl 1.142 private transient ValuesView<K,V> values;
561     private transient EntrySetView<K,V> entrySet;
562 dl 1.119
563     /** For serialization compatibility. Null unless serialized; see below */
564     private Segment<K,V>[] segments;
565    
566     /* ---------------- Table element access -------------- */
567    
568     /*
569     * Volatile access methods are used for table elements as well as
570     * elements of in-progress next table while resizing. Uses are
571     * null checked by callers, and implicitly bounds-checked, relying
572     * on the invariants that tab arrays have non-zero size, and all
573     * indices are masked with (tab.length - 1) which is never
574     * negative and always less than length. Note that, to be correct
575     * wrt arbitrary concurrency errors by users, bounds checks must
576     * operate on local variables, which accounts for some odd-looking
577     * inline assignments below.
578     */
579    
580 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
581     (Node<V>[] tab, int i) { // used by Traverser
582     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
583 dl 1.119 }
584    
585 dl 1.151 private static final <V> boolean casTabAt
586     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
587 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
588 dl 1.119 }
589    
590 dl 1.151 private static final <V> void setTabAt
591     (Node<V>[] tab, int i, Node<V> v) {
592 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
593 dl 1.119 }
594    
595     /* ---------------- Nodes -------------- */
596 dl 1.4
597 dl 1.99 /**
598 dl 1.119 * Key-value entry. Note that this is never exported out as a
599     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
600     * field of MOVED are special, and do not contain user keys or
601     * values. Otherwise, keys are never null, and null val fields
602     * indicate that a node is in the process of being deleted or
603     * created. For purposes of read-only access, a key may be read
604     * before a val, but can only be used after checking val to be
605     * non-null.
606 dl 1.99 */
607 dl 1.151 static class Node<V> {
608 dl 1.149 final int hash;
609 dl 1.119 final Object key;
610 dl 1.151 volatile V val;
611     volatile Node<V> next;
612 dl 1.99
613 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
614 dl 1.99 this.hash = hash;
615     this.key = key;
616 dl 1.119 this.val = val;
617 dl 1.99 this.next = next;
618     }
619     }
620    
621 dl 1.119 /* ---------------- TreeBins -------------- */
622    
623 dl 1.99 /**
624 dl 1.119 * Nodes for use in TreeBins
625 dl 1.99 */
626 dl 1.151 static final class TreeNode<V> extends Node<V> {
627     TreeNode<V> parent; // red-black tree links
628     TreeNode<V> left;
629     TreeNode<V> right;
630     TreeNode<V> prev; // needed to unlink next upon deletion
631 dl 1.119 boolean red;
632 dl 1.99
633 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
634 dl 1.119 super(hash, key, val, next);
635     this.parent = parent;
636     }
637 dl 1.99 }
638 tim 1.1
639     /**
640 dl 1.119 * A specialized form of red-black tree for use in bins
641     * whose size exceeds a threshold.
642     *
643     * TreeBins use a special form of comparison for search and
644     * related operations (which is the main reason we cannot use
645     * existing collections such as TreeMaps). TreeBins contain
646     * Comparable elements, but may contain others, as well as
647     * elements that are Comparable but not necessarily Comparable<T>
648     * for the same T, so we cannot invoke compareTo among them. To
649     * handle this, the tree is ordered primarily by hash value, then
650     * by getClass().getName() order, and then by Comparator order
651     * among elements of the same class. On lookup at a node, if
652     * elements are not comparable or compare as 0, both left and
653     * right children may need to be searched in the case of tied hash
654     * values. (This corresponds to the full list search that would be
655     * necessary if all elements were non-Comparable and had tied
656     * hashes.) The red-black balancing code is updated from
657     * pre-jdk-collections
658     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
659     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
660     * Algorithms" (CLR).
661     *
662     * TreeBins also maintain a separate locking discipline than
663     * regular bins. Because they are forwarded via special MOVED
664     * nodes at bin heads (which can never change once established),
665     * we cannot use those nodes as locks. Instead, TreeBin
666     * extends AbstractQueuedSynchronizer to support a simple form of
667     * read-write lock. For update operations and table validation,
668     * the exclusive form of lock behaves in the same way as bin-head
669     * locks. However, lookups use shared read-lock mechanics to allow
670     * multiple readers in the absence of writers. Additionally,
671     * these lookups do not ever block: While the lock is not
672     * available, they proceed along the slow traversal path (via
673     * next-pointers) until the lock becomes available or the list is
674     * exhausted, whichever comes first. (These cases are not fast,
675     * but maximize aggregate expected throughput.) The AQS mechanics
676     * for doing this are straightforward. The lock state is held as
677     * AQS getState(). Read counts are negative; the write count (1)
678     * is positive. There are no signalling preferences among readers
679     * and writers. Since we don't need to export full Lock API, we
680     * just override the minimal AQS methods and use them directly.
681     */
682 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
683 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
684 dl 1.151 transient TreeNode<V> root; // root of tree
685     transient TreeNode<V> first; // head of next-pointer list
686 dl 1.24
687 dl 1.119 /* AQS overrides */
688     public final boolean isHeldExclusively() { return getState() > 0; }
689     public final boolean tryAcquire(int ignore) {
690     if (compareAndSetState(0, 1)) {
691     setExclusiveOwnerThread(Thread.currentThread());
692     return true;
693     }
694     return false;
695     }
696     public final boolean tryRelease(int ignore) {
697     setExclusiveOwnerThread(null);
698     setState(0);
699     return true;
700     }
701     public final int tryAcquireShared(int ignore) {
702     for (int c;;) {
703     if ((c = getState()) > 0)
704     return -1;
705     if (compareAndSetState(c, c -1))
706     return 1;
707     }
708     }
709     public final boolean tryReleaseShared(int ignore) {
710     int c;
711     do {} while (!compareAndSetState(c = getState(), c + 1));
712     return c == -1;
713     }
714    
715     /** From CLR */
716 dl 1.151 private void rotateLeft(TreeNode<V> p) {
717 dl 1.119 if (p != null) {
718 dl 1.151 TreeNode<V> r = p.right, pp, rl;
719 dl 1.119 if ((rl = p.right = r.left) != null)
720     rl.parent = p;
721     if ((pp = r.parent = p.parent) == null)
722     root = r;
723     else if (pp.left == p)
724     pp.left = r;
725     else
726     pp.right = r;
727     r.left = p;
728     p.parent = r;
729     }
730     }
731 dl 1.4
732 dl 1.119 /** From CLR */
733 dl 1.151 private void rotateRight(TreeNode<V> p) {
734 dl 1.119 if (p != null) {
735 dl 1.151 TreeNode<V> l = p.left, pp, lr;
736 dl 1.119 if ((lr = p.left = l.right) != null)
737     lr.parent = p;
738     if ((pp = l.parent = p.parent) == null)
739     root = l;
740     else if (pp.right == p)
741     pp.right = l;
742     else
743     pp.left = l;
744     l.right = p;
745     p.parent = l;
746     }
747     }
748 dl 1.4
749     /**
750 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
751 dl 1.119 * starting at given root.
752 dl 1.4 */
753 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
754     (int h, Object k, TreeNode<V> p) {
755 dl 1.119 Class<?> c = k.getClass();
756     while (p != null) {
757     int dir, ph; Object pk; Class<?> pc;
758     if ((ph = p.hash) == h) {
759     if ((pk = p.key) == k || k.equals(pk))
760     return p;
761     if (c != (pc = pk.getClass()) ||
762     !(k instanceof Comparable) ||
763     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
764 dl 1.148 if ((dir = (c == pc) ? 0 :
765     c.getName().compareTo(pc.getName())) == 0) {
766 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
767 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
768     (r = getTreeNode(h, k, pr)) != null)
769     return r;
770     else if ((pl = p.left) != null && h <= pl.hash)
771     dir = -1;
772     else // nothing there
773     return null;
774 dl 1.99 }
775 dl 1.45 }
776     }
777 dl 1.119 else
778     dir = (h < ph) ? -1 : 1;
779     p = (dir > 0) ? p.right : p.left;
780 dl 1.33 }
781 dl 1.119 return null;
782 dl 1.33 }
783    
784 dl 1.99 /**
785 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
786     * read-lock to call getTreeNode, but during failure to get
787     * lock, searches along next links.
788 dl 1.99 */
789 dl 1.151 final V getValue(int h, Object k) {
790     Node<V> r = null;
791 dl 1.119 int c = getState(); // Must read lock state first
792 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
793 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
794     try {
795     r = getTreeNode(h, k, root);
796     } finally {
797     releaseShared(0);
798 dl 1.99 }
799     break;
800     }
801 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
802 dl 1.119 r = e;
803 dl 1.99 break;
804     }
805 dl 1.119 else
806     c = getState();
807 dl 1.99 }
808 dl 1.119 return r == null ? null : r.val;
809 dl 1.99 }
810    
811     /**
812 dl 1.119 * Finds or adds a node.
813     * @return null if added
814 dl 1.6 */
815 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
816     (int h, Object k, V v) {
817 dl 1.119 Class<?> c = k.getClass();
818 dl 1.151 TreeNode<V> pp = root, p = null;
819 dl 1.119 int dir = 0;
820     while (pp != null) { // find existing node or leaf to insert at
821     int ph; Object pk; Class<?> pc;
822     p = pp;
823     if ((ph = p.hash) == h) {
824     if ((pk = p.key) == k || k.equals(pk))
825     return p;
826     if (c != (pc = pk.getClass()) ||
827     !(k instanceof Comparable) ||
828     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
829 dl 1.151 TreeNode<V> s = null, r = null, pr;
830 dl 1.148 if ((dir = (c == pc) ? 0 :
831     c.getName().compareTo(pc.getName())) == 0) {
832     if ((pr = p.right) != null && h >= pr.hash &&
833     (r = getTreeNode(h, k, pr)) != null)
834     return r;
835     else // continue left
836     dir = -1;
837 dl 1.99 }
838 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
839     s = pr;
840     if (s != null && (r = getTreeNode(h, k, s)) != null)
841     return r;
842 dl 1.99 }
843     }
844 dl 1.119 else
845     dir = (h < ph) ? -1 : 1;
846     pp = (dir > 0) ? p.right : p.left;
847 dl 1.99 }
848    
849 dl 1.151 TreeNode<V> f = first;
850     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
851 dl 1.119 if (p == null)
852     root = x;
853     else { // attach and rebalance; adapted from CLR
854 dl 1.151 TreeNode<V> xp, xpp;
855 dl 1.119 if (f != null)
856     f.prev = x;
857     if (dir <= 0)
858     p.left = x;
859     else
860     p.right = x;
861     x.red = true;
862     while (x != null && (xp = x.parent) != null && xp.red &&
863     (xpp = xp.parent) != null) {
864 dl 1.151 TreeNode<V> xppl = xpp.left;
865 dl 1.119 if (xp == xppl) {
866 dl 1.151 TreeNode<V> y = xpp.right;
867 dl 1.119 if (y != null && y.red) {
868     y.red = false;
869     xp.red = false;
870     xpp.red = true;
871     x = xpp;
872     }
873     else {
874     if (x == xp.right) {
875     rotateLeft(x = xp);
876     xpp = (xp = x.parent) == null ? null : xp.parent;
877     }
878     if (xp != null) {
879     xp.red = false;
880     if (xpp != null) {
881     xpp.red = true;
882     rotateRight(xpp);
883     }
884     }
885     }
886     }
887     else {
888 dl 1.151 TreeNode<V> y = xppl;
889 dl 1.119 if (y != null && y.red) {
890     y.red = false;
891     xp.red = false;
892     xpp.red = true;
893     x = xpp;
894     }
895     else {
896     if (x == xp.left) {
897     rotateRight(x = xp);
898     xpp = (xp = x.parent) == null ? null : xp.parent;
899     }
900     if (xp != null) {
901     xp.red = false;
902     if (xpp != null) {
903     xpp.red = true;
904     rotateLeft(xpp);
905     }
906     }
907 dl 1.99 }
908     }
909     }
910 dl 1.151 TreeNode<V> r = root;
911 dl 1.119 if (r != null && r.red)
912     r.red = false;
913 dl 1.99 }
914 dl 1.119 return null;
915 dl 1.99 }
916 dl 1.45
917 dl 1.119 /**
918     * Removes the given node, that must be present before this
919     * call. This is messier than typical red-black deletion code
920     * because we cannot swap the contents of an interior node
921     * with a leaf successor that is pinned by "next" pointers
922     * that are accessible independently of lock. So instead we
923     * swap the tree linkages.
924     */
925 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
926     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
927     TreeNode<V> pred = p.prev;
928 dl 1.119 if (pred == null)
929     first = next;
930     else
931     pred.next = next;
932     if (next != null)
933     next.prev = pred;
934 dl 1.151 TreeNode<V> replacement;
935     TreeNode<V> pl = p.left;
936     TreeNode<V> pr = p.right;
937 dl 1.119 if (pl != null && pr != null) {
938 dl 1.151 TreeNode<V> s = pr, sl;
939 dl 1.119 while ((sl = s.left) != null) // find successor
940     s = sl;
941     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
942 dl 1.151 TreeNode<V> sr = s.right;
943     TreeNode<V> pp = p.parent;
944 dl 1.119 if (s == pr) { // p was s's direct parent
945     p.parent = s;
946     s.right = p;
947     }
948     else {
949 dl 1.151 TreeNode<V> sp = s.parent;
950 dl 1.119 if ((p.parent = sp) != null) {
951     if (s == sp.left)
952     sp.left = p;
953     else
954     sp.right = p;
955 dl 1.45 }
956 dl 1.119 if ((s.right = pr) != null)
957     pr.parent = s;
958 dl 1.4 }
959 dl 1.119 p.left = null;
960     if ((p.right = sr) != null)
961     sr.parent = p;
962     if ((s.left = pl) != null)
963     pl.parent = s;
964     if ((s.parent = pp) == null)
965     root = s;
966     else if (p == pp.left)
967     pp.left = s;
968     else
969     pp.right = s;
970     replacement = sr;
971     }
972     else
973     replacement = (pl != null) ? pl : pr;
974 dl 1.151 TreeNode<V> pp = p.parent;
975 dl 1.119 if (replacement == null) {
976     if (pp == null) {
977     root = null;
978     return;
979     }
980     replacement = p;
981 dl 1.99 }
982 dl 1.119 else {
983     replacement.parent = pp;
984     if (pp == null)
985     root = replacement;
986     else if (p == pp.left)
987     pp.left = replacement;
988     else
989     pp.right = replacement;
990     p.left = p.right = p.parent = null;
991 dl 1.4 }
992 dl 1.119 if (!p.red) { // rebalance, from CLR
993 dl 1.151 TreeNode<V> x = replacement;
994 dl 1.119 while (x != null) {
995 dl 1.151 TreeNode<V> xp, xpl;
996 dl 1.119 if (x.red || (xp = x.parent) == null) {
997     x.red = false;
998 dl 1.99 break;
999 dl 1.119 }
1000     if (x == (xpl = xp.left)) {
1001 dl 1.151 TreeNode<V> sib = xp.right;
1002 dl 1.119 if (sib != null && sib.red) {
1003     sib.red = false;
1004     xp.red = true;
1005     rotateLeft(xp);
1006     sib = (xp = x.parent) == null ? null : xp.right;
1007     }
1008     if (sib == null)
1009     x = xp;
1010     else {
1011 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1012 dl 1.119 if ((sr == null || !sr.red) &&
1013     (sl == null || !sl.red)) {
1014     sib.red = true;
1015     x = xp;
1016     }
1017     else {
1018     if (sr == null || !sr.red) {
1019     if (sl != null)
1020     sl.red = false;
1021     sib.red = true;
1022     rotateRight(sib);
1023 dl 1.149 sib = (xp = x.parent) == null ?
1024     null : xp.right;
1025 dl 1.119 }
1026     if (sib != null) {
1027     sib.red = (xp == null) ? false : xp.red;
1028     if ((sr = sib.right) != null)
1029     sr.red = false;
1030     }
1031     if (xp != null) {
1032     xp.red = false;
1033     rotateLeft(xp);
1034     }
1035     x = root;
1036     }
1037     }
1038     }
1039     else { // symmetric
1040 dl 1.151 TreeNode<V> sib = xpl;
1041 dl 1.119 if (sib != null && sib.red) {
1042     sib.red = false;
1043     xp.red = true;
1044     rotateRight(xp);
1045     sib = (xp = x.parent) == null ? null : xp.left;
1046     }
1047     if (sib == null)
1048     x = xp;
1049     else {
1050 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1051 dl 1.119 if ((sl == null || !sl.red) &&
1052     (sr == null || !sr.red)) {
1053     sib.red = true;
1054     x = xp;
1055     }
1056     else {
1057     if (sl == null || !sl.red) {
1058     if (sr != null)
1059     sr.red = false;
1060     sib.red = true;
1061     rotateLeft(sib);
1062 dl 1.149 sib = (xp = x.parent) == null ?
1063     null : xp.left;
1064 dl 1.119 }
1065     if (sib != null) {
1066     sib.red = (xp == null) ? false : xp.red;
1067     if ((sl = sib.left) != null)
1068     sl.red = false;
1069     }
1070     if (xp != null) {
1071     xp.red = false;
1072     rotateRight(xp);
1073     }
1074     x = root;
1075     }
1076     }
1077     }
1078 dl 1.45 }
1079 dl 1.4 }
1080 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1081     if (p == pp.left) // detach pointers
1082     pp.left = null;
1083     else if (p == pp.right)
1084     pp.right = null;
1085     p.parent = null;
1086     }
1087 dl 1.4 }
1088 tim 1.1 }
1089    
1090 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1091 tim 1.1
1092 dl 1.99 /**
1093 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1094 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1095     * that vary only in bits above the current mask will always
1096     * collide. (Among known examples are sets of Float keys holding
1097     * consecutive whole numbers in small tables.) To counter this,
1098     * we apply a transform that spreads the impact of higher bits
1099     * downward. There is a tradeoff between speed, utility, and
1100     * quality of bit-spreading. Because many common sets of hashes
1101     * are already reasonably distributed across bits (so don't benefit
1102     * from spreading), and because we use trees to handle large sets
1103     * of collisions in bins, we don't need excessively high quality.
1104     */
1105     private static final int spread(int h) {
1106     h ^= (h >>> 18) ^ (h >>> 12);
1107     return (h ^ (h >>> 10)) & HASH_BITS;
1108 dl 1.99 }
1109    
1110     /**
1111 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1112     * only when locked.
1113 dl 1.119 */
1114 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1115 dl 1.149 if (key instanceof Comparable) {
1116 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1117     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1118 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1119 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1120 dl 1.119 }
1121 dl 1.99 }
1122 tim 1.11
1123 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1124    
1125     /** Implementation for get and containsKey */
1126 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1127 dl 1.119 int h = spread(k.hashCode());
1128 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1129     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1130 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1131 dl 1.149 if ((eh = e.hash) < 0) {
1132 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1133 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1134     else { // restart with new table
1135     tab = (Node<V>[])ek;
1136 dl 1.119 continue retry;
1137     }
1138     }
1139 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1140 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1141 dl 1.151 return ev;
1142 dl 1.119 }
1143     break;
1144     }
1145     return null;
1146 tim 1.1 }
1147    
1148     /**
1149 dl 1.119 * Implementation for the four public remove/replace methods:
1150     * Replaces node value with v, conditional upon match of cv if
1151     * non-null. If resulting value is null, delete.
1152     */
1153 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1154     (Object k, V v, Object cv) {
1155 dl 1.119 int h = spread(k.hashCode());
1156 dl 1.151 V oldVal = null;
1157     for (Node<V>[] tab = table;;) {
1158     Node<V> f; int i, fh; Object fk;
1159 dl 1.119 if (tab == null ||
1160     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1161     break;
1162 dl 1.149 else if ((fh = f.hash) < 0) {
1163 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1164 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1165 dl 1.119 boolean validated = false;
1166     boolean deleted = false;
1167     t.acquire(0);
1168     try {
1169     if (tabAt(tab, i) == f) {
1170     validated = true;
1171 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1172 dl 1.119 if (p != null) {
1173 dl 1.151 V pv = p.val;
1174 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1175     oldVal = pv;
1176     if ((p.val = v) == null) {
1177     deleted = true;
1178     t.deleteTreeNode(p);
1179     }
1180     }
1181     }
1182     }
1183     } finally {
1184     t.release(0);
1185     }
1186     if (validated) {
1187     if (deleted)
1188 dl 1.149 addCount(-1L, -1);
1189 dl 1.119 break;
1190     }
1191     }
1192     else
1193 dl 1.151 tab = (Node<V>[])fk;
1194 dl 1.119 }
1195 dl 1.149 else if (fh != h && f.next == null) // precheck
1196 dl 1.119 break; // rules out possible existence
1197 dl 1.149 else {
1198 dl 1.119 boolean validated = false;
1199     boolean deleted = false;
1200 jsr166 1.150 synchronized (f) {
1201 dl 1.119 if (tabAt(tab, i) == f) {
1202     validated = true;
1203 dl 1.151 for (Node<V> e = f, pred = null;;) {
1204     Object ek; V ev;
1205 dl 1.149 if (e.hash == h &&
1206 dl 1.119 ((ev = e.val) != null) &&
1207     ((ek = e.key) == k || k.equals(ek))) {
1208     if (cv == null || cv == ev || cv.equals(ev)) {
1209     oldVal = ev;
1210     if ((e.val = v) == null) {
1211     deleted = true;
1212 dl 1.151 Node<V> en = e.next;
1213 dl 1.119 if (pred != null)
1214     pred.next = en;
1215     else
1216     setTabAt(tab, i, en);
1217     }
1218     }
1219     break;
1220     }
1221     pred = e;
1222     if ((e = e.next) == null)
1223     break;
1224     }
1225     }
1226     }
1227     if (validated) {
1228     if (deleted)
1229 dl 1.149 addCount(-1L, -1);
1230 dl 1.119 break;
1231     }
1232     }
1233     }
1234 dl 1.151 return oldVal;
1235 dl 1.55 }
1236    
1237 dl 1.119 /*
1238 dl 1.149 * Internal versions of insertion methods
1239     * All have the same basic structure as the first (internalPut):
1240 dl 1.119 * 1. If table uninitialized, create
1241     * 2. If bin empty, try to CAS new node
1242     * 3. If bin stale, use new table
1243     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1244     * 5. Lock and validate; if valid, scan and add or update
1245 tim 1.1 *
1246 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1247     * enough table space, and also more lazily performs count updates
1248     * and checks.
1249     *
1250     * Most of the function-accepting methods can't be factored nicely
1251     * because they require different functional forms, so instead
1252     * sprawl out similar mechanics.
1253 tim 1.1 */
1254    
1255 dl 1.149 /** Implementation for put and putIfAbsent */
1256     @SuppressWarnings("unchecked") private final V internalPut
1257     (K k, V v, boolean onlyIfAbsent) {
1258     if (k == null || v == null) throw new NullPointerException();
1259 dl 1.119 int h = spread(k.hashCode());
1260 dl 1.149 int len = 0;
1261 dl 1.151 for (Node<V>[] tab = table;;) {
1262     int i, fh; Node<V> f; Object fk; V fv;
1263 dl 1.119 if (tab == null)
1264     tab = initTable();
1265     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1266 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1267 dl 1.119 break; // no lock when adding to empty bin
1268 dl 1.99 }
1269 dl 1.149 else if ((fh = f.hash) < 0) {
1270 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1271 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1272     V oldVal = null;
1273 dl 1.119 t.acquire(0);
1274     try {
1275     if (tabAt(tab, i) == f) {
1276 dl 1.149 len = 2;
1277 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1278 dl 1.119 if (p != null) {
1279     oldVal = p.val;
1280 dl 1.149 if (!onlyIfAbsent)
1281     p.val = v;
1282 dl 1.119 }
1283     }
1284     } finally {
1285     t.release(0);
1286     }
1287 dl 1.149 if (len != 0) {
1288 dl 1.119 if (oldVal != null)
1289 dl 1.151 return oldVal;
1290 dl 1.119 break;
1291     }
1292     }
1293     else
1294 dl 1.151 tab = (Node<V>[])fk;
1295 dl 1.119 }
1296 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1297     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1298 dl 1.151 return fv;
1299 dl 1.149 else {
1300 dl 1.151 V oldVal = null;
1301 jsr166 1.150 synchronized (f) {
1302 dl 1.119 if (tabAt(tab, i) == f) {
1303 dl 1.149 len = 1;
1304 dl 1.151 for (Node<V> e = f;; ++len) {
1305     Object ek; V ev;
1306 dl 1.149 if (e.hash == h &&
1307 dl 1.119 (ev = e.val) != null &&
1308     ((ek = e.key) == k || k.equals(ek))) {
1309     oldVal = ev;
1310 dl 1.149 if (!onlyIfAbsent)
1311     e.val = v;
1312 dl 1.119 break;
1313     }
1314 dl 1.151 Node<V> last = e;
1315 dl 1.119 if ((e = e.next) == null) {
1316 dl 1.151 last.next = new Node<V>(h, k, v, null);
1317 dl 1.149 if (len >= TREE_THRESHOLD)
1318 dl 1.119 replaceWithTreeBin(tab, i, k);
1319     break;
1320     }
1321     }
1322     }
1323     }
1324 dl 1.149 if (len != 0) {
1325 dl 1.119 if (oldVal != null)
1326 dl 1.151 return oldVal;
1327 dl 1.119 break;
1328     }
1329     }
1330 dl 1.45 }
1331 dl 1.149 addCount(1L, len);
1332 dl 1.119 return null;
1333 dl 1.21 }
1334    
1335 dl 1.119 /** Implementation for computeIfAbsent */
1336 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1337 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1338 dl 1.149 if (k == null || mf == null)
1339     throw new NullPointerException();
1340 dl 1.119 int h = spread(k.hashCode());
1341 dl 1.151 V val = null;
1342 dl 1.149 int len = 0;
1343 dl 1.151 for (Node<V>[] tab = table;;) {
1344     Node<V> f; int i; Object fk;
1345 dl 1.119 if (tab == null)
1346     tab = initTable();
1347     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1348 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1349 jsr166 1.150 synchronized (node) {
1350 dl 1.149 if (casTabAt(tab, i, null, node)) {
1351     len = 1;
1352     try {
1353     if ((val = mf.apply(k)) != null)
1354     node.val = val;
1355     } finally {
1356     if (val == null)
1357     setTabAt(tab, i, null);
1358 dl 1.119 }
1359     }
1360     }
1361 dl 1.149 if (len != 0)
1362 dl 1.119 break;
1363     }
1364 dl 1.149 else if (f.hash < 0) {
1365 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1366 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1367 dl 1.119 boolean added = false;
1368     t.acquire(0);
1369     try {
1370     if (tabAt(tab, i) == f) {
1371 dl 1.149 len = 1;
1372 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1373 dl 1.119 if (p != null)
1374     val = p.val;
1375     else if ((val = mf.apply(k)) != null) {
1376     added = true;
1377 dl 1.149 len = 2;
1378 dl 1.119 t.putTreeNode(h, k, val);
1379     }
1380     }
1381     } finally {
1382     t.release(0);
1383     }
1384 dl 1.149 if (len != 0) {
1385 dl 1.119 if (!added)
1386 dl 1.151 return val;
1387 dl 1.119 break;
1388     }
1389     }
1390     else
1391 dl 1.151 tab = (Node<V>[])fk;
1392 dl 1.119 }
1393     else {
1394 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1395     Object ek; V ev;
1396 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1397     ((ek = e.key) == k || k.equals(ek)))
1398 dl 1.151 return ev;
1399 dl 1.119 }
1400 dl 1.149 boolean added = false;
1401 jsr166 1.150 synchronized (f) {
1402 dl 1.149 if (tabAt(tab, i) == f) {
1403     len = 1;
1404 dl 1.151 for (Node<V> e = f;; ++len) {
1405     Object ek; V ev;
1406 dl 1.149 if (e.hash == h &&
1407     (ev = e.val) != null &&
1408     ((ek = e.key) == k || k.equals(ek))) {
1409     val = ev;
1410     break;
1411     }
1412 dl 1.151 Node<V> last = e;
1413 dl 1.149 if ((e = e.next) == null) {
1414     if ((val = mf.apply(k)) != null) {
1415     added = true;
1416 dl 1.151 last.next = new Node<V>(h, k, val, null);
1417 dl 1.149 if (len >= TREE_THRESHOLD)
1418     replaceWithTreeBin(tab, i, k);
1419 dl 1.119 }
1420 dl 1.149 break;
1421 dl 1.119 }
1422     }
1423     }
1424 dl 1.149 }
1425     if (len != 0) {
1426     if (!added)
1427 dl 1.151 return val;
1428 dl 1.149 break;
1429 dl 1.119 }
1430 dl 1.105 }
1431 dl 1.99 }
1432 dl 1.149 if (val != null)
1433     addCount(1L, len);
1434 dl 1.151 return val;
1435 tim 1.1 }
1436    
1437 dl 1.119 /** Implementation for compute */
1438 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1439     (K k, boolean onlyIfPresent,
1440 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1441 dl 1.149 if (k == null || mf == null)
1442     throw new NullPointerException();
1443 dl 1.119 int h = spread(k.hashCode());
1444 dl 1.151 V val = null;
1445 dl 1.119 int delta = 0;
1446 dl 1.149 int len = 0;
1447 dl 1.151 for (Node<V>[] tab = table;;) {
1448     Node<V> f; int i, fh; Object fk;
1449 dl 1.119 if (tab == null)
1450     tab = initTable();
1451     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1452     if (onlyIfPresent)
1453     break;
1454 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1455 jsr166 1.150 synchronized (node) {
1456 dl 1.149 if (casTabAt(tab, i, null, node)) {
1457     try {
1458     len = 1;
1459     if ((val = mf.apply(k, null)) != null) {
1460     node.val = val;
1461     delta = 1;
1462     }
1463     } finally {
1464     if (delta == 0)
1465     setTabAt(tab, i, null);
1466 dl 1.119 }
1467     }
1468     }
1469 dl 1.149 if (len != 0)
1470 dl 1.119 break;
1471     }
1472 dl 1.149 else if ((fh = f.hash) < 0) {
1473 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1474 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1475 dl 1.119 t.acquire(0);
1476     try {
1477     if (tabAt(tab, i) == f) {
1478 dl 1.149 len = 1;
1479 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1480 dl 1.149 if (p == null && onlyIfPresent)
1481     break;
1482 dl 1.151 V pv = (p == null) ? null : p.val;
1483     if ((val = mf.apply(k, pv)) != null) {
1484 dl 1.119 if (p != null)
1485     p.val = val;
1486     else {
1487 dl 1.149 len = 2;
1488 dl 1.119 delta = 1;
1489     t.putTreeNode(h, k, val);
1490     }
1491     }
1492     else if (p != null) {
1493     delta = -1;
1494     t.deleteTreeNode(p);
1495     }
1496     }
1497     } finally {
1498     t.release(0);
1499     }
1500 dl 1.149 if (len != 0)
1501 dl 1.119 break;
1502     }
1503     else
1504 dl 1.151 tab = (Node<V>[])fk;
1505 dl 1.119 }
1506 dl 1.149 else {
1507 jsr166 1.150 synchronized (f) {
1508 dl 1.119 if (tabAt(tab, i) == f) {
1509 dl 1.149 len = 1;
1510 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1511     Object ek; V ev;
1512 dl 1.149 if (e.hash == h &&
1513 dl 1.119 (ev = e.val) != null &&
1514     ((ek = e.key) == k || k.equals(ek))) {
1515 dl 1.151 val = mf.apply(k, ev);
1516 dl 1.119 if (val != null)
1517     e.val = val;
1518     else {
1519     delta = -1;
1520 dl 1.151 Node<V> en = e.next;
1521 dl 1.119 if (pred != null)
1522     pred.next = en;
1523     else
1524     setTabAt(tab, i, en);
1525     }
1526     break;
1527     }
1528     pred = e;
1529     if ((e = e.next) == null) {
1530 dl 1.149 if (!onlyIfPresent &&
1531     (val = mf.apply(k, null)) != null) {
1532 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1533 dl 1.119 delta = 1;
1534 dl 1.149 if (len >= TREE_THRESHOLD)
1535 dl 1.119 replaceWithTreeBin(tab, i, k);
1536     }
1537     break;
1538     }
1539     }
1540     }
1541     }
1542 dl 1.149 if (len != 0)
1543 dl 1.119 break;
1544     }
1545     }
1546 dl 1.149 if (delta != 0)
1547     addCount((long)delta, len);
1548 dl 1.151 return val;
1549 dl 1.119 }
1550    
1551 dl 1.126 /** Implementation for merge */
1552 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1553 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1554 dl 1.149 if (k == null || v == null || mf == null)
1555     throw new NullPointerException();
1556 dl 1.119 int h = spread(k.hashCode());
1557 dl 1.151 V val = null;
1558 dl 1.119 int delta = 0;
1559 dl 1.149 int len = 0;
1560 dl 1.151 for (Node<V>[] tab = table;;) {
1561     int i; Node<V> f; Object fk; V fv;
1562 dl 1.119 if (tab == null)
1563     tab = initTable();
1564     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1565 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1566 dl 1.119 delta = 1;
1567     val = v;
1568     break;
1569     }
1570     }
1571 dl 1.149 else if (f.hash < 0) {
1572 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1573 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1574 dl 1.119 t.acquire(0);
1575     try {
1576     if (tabAt(tab, i) == f) {
1577 dl 1.149 len = 1;
1578 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1579     val = (p == null) ? v : mf.apply(p.val, v);
1580 dl 1.119 if (val != null) {
1581     if (p != null)
1582     p.val = val;
1583     else {
1584 dl 1.149 len = 2;
1585 dl 1.119 delta = 1;
1586     t.putTreeNode(h, k, val);
1587     }
1588     }
1589     else if (p != null) {
1590     delta = -1;
1591     t.deleteTreeNode(p);
1592     }
1593     }
1594     } finally {
1595     t.release(0);
1596     }
1597 dl 1.149 if (len != 0)
1598 dl 1.119 break;
1599     }
1600     else
1601 dl 1.151 tab = (Node<V>[])fk;
1602 dl 1.119 }
1603 dl 1.149 else {
1604 jsr166 1.150 synchronized (f) {
1605 dl 1.119 if (tabAt(tab, i) == f) {
1606 dl 1.149 len = 1;
1607 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1608     Object ek; V ev;
1609 dl 1.149 if (e.hash == h &&
1610 dl 1.119 (ev = e.val) != null &&
1611     ((ek = e.key) == k || k.equals(ek))) {
1612 dl 1.151 val = mf.apply(ev, v);
1613 dl 1.119 if (val != null)
1614     e.val = val;
1615     else {
1616     delta = -1;
1617 dl 1.151 Node<V> en = e.next;
1618 dl 1.119 if (pred != null)
1619     pred.next = en;
1620     else
1621     setTabAt(tab, i, en);
1622     }
1623     break;
1624     }
1625     pred = e;
1626     if ((e = e.next) == null) {
1627     val = v;
1628 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1629 dl 1.119 delta = 1;
1630 dl 1.149 if (len >= TREE_THRESHOLD)
1631 dl 1.119 replaceWithTreeBin(tab, i, k);
1632     break;
1633     }
1634     }
1635     }
1636     }
1637 dl 1.149 if (len != 0)
1638 dl 1.119 break;
1639 dl 1.105 }
1640 dl 1.99 }
1641 dl 1.149 if (delta != 0)
1642     addCount((long)delta, len);
1643 dl 1.151 return val;
1644 dl 1.119 }
1645    
1646     /** Implementation for putAll */
1647 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1648     (Map<? extends K, ? extends V> m) {
1649 dl 1.119 tryPresize(m.size());
1650     long delta = 0L; // number of uncommitted additions
1651     boolean npe = false; // to throw exception on exit for nulls
1652     try { // to clean up counts on other exceptions
1653 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1654     Object k; V v;
1655 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1656     (v = entry.getValue()) == null) {
1657     npe = true;
1658     break;
1659     }
1660     int h = spread(k.hashCode());
1661 dl 1.151 for (Node<V>[] tab = table;;) {
1662     int i; Node<V> f; int fh; Object fk;
1663 dl 1.119 if (tab == null)
1664     tab = initTable();
1665     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1666 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1667 dl 1.119 ++delta;
1668     break;
1669     }
1670     }
1671 dl 1.149 else if ((fh = f.hash) < 0) {
1672 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1673 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1674 dl 1.119 boolean validated = false;
1675     t.acquire(0);
1676     try {
1677     if (tabAt(tab, i) == f) {
1678     validated = true;
1679 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1680 dl 1.119 if (p != null)
1681     p.val = v;
1682     else {
1683     t.putTreeNode(h, k, v);
1684     ++delta;
1685     }
1686     }
1687     } finally {
1688     t.release(0);
1689     }
1690     if (validated)
1691     break;
1692     }
1693     else
1694 dl 1.151 tab = (Node<V>[])fk;
1695 dl 1.119 }
1696 dl 1.149 else {
1697     int len = 0;
1698 jsr166 1.150 synchronized (f) {
1699 dl 1.119 if (tabAt(tab, i) == f) {
1700 dl 1.149 len = 1;
1701 dl 1.151 for (Node<V> e = f;; ++len) {
1702     Object ek; V ev;
1703 dl 1.149 if (e.hash == h &&
1704 dl 1.119 (ev = e.val) != null &&
1705     ((ek = e.key) == k || k.equals(ek))) {
1706     e.val = v;
1707     break;
1708     }
1709 dl 1.151 Node<V> last = e;
1710 dl 1.119 if ((e = e.next) == null) {
1711     ++delta;
1712 dl 1.151 last.next = new Node<V>(h, k, v, null);
1713 dl 1.149 if (len >= TREE_THRESHOLD)
1714 dl 1.119 replaceWithTreeBin(tab, i, k);
1715     break;
1716     }
1717     }
1718     }
1719     }
1720 dl 1.149 if (len != 0) {
1721     if (len > 1)
1722     addCount(delta, len);
1723 dl 1.119 break;
1724 dl 1.99 }
1725 dl 1.21 }
1726     }
1727 dl 1.45 }
1728     } finally {
1729 dl 1.149 if (delta != 0L)
1730     addCount(delta, 2);
1731 dl 1.45 }
1732 dl 1.119 if (npe)
1733     throw new NullPointerException();
1734 tim 1.1 }
1735 dl 1.19
1736 dl 1.149 /**
1737     * Implementation for clear. Steps through each bin, removing all
1738     * nodes.
1739     */
1740 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1741 dl 1.149 long delta = 0L; // negative number of deletions
1742     int i = 0;
1743 dl 1.151 Node<V>[] tab = table;
1744 dl 1.149 while (tab != null && i < tab.length) {
1745 dl 1.151 Node<V> f = tabAt(tab, i);
1746 dl 1.149 if (f == null)
1747     ++i;
1748     else if (f.hash < 0) {
1749     Object fk;
1750     if ((fk = f.key) instanceof TreeBin) {
1751 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1752 dl 1.149 t.acquire(0);
1753     try {
1754     if (tabAt(tab, i) == f) {
1755 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1756 dl 1.149 if (p.val != null) { // (currently always true)
1757     p.val = null;
1758     --delta;
1759     }
1760     }
1761     t.first = null;
1762     t.root = null;
1763     ++i;
1764     }
1765     } finally {
1766     t.release(0);
1767     }
1768     }
1769     else
1770 dl 1.151 tab = (Node<V>[])fk;
1771 dl 1.149 }
1772     else {
1773 jsr166 1.150 synchronized (f) {
1774 dl 1.149 if (tabAt(tab, i) == f) {
1775 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1776 dl 1.149 if (e.val != null) { // (currently always true)
1777     e.val = null;
1778     --delta;
1779     }
1780     }
1781     setTabAt(tab, i, null);
1782     ++i;
1783     }
1784     }
1785     }
1786     }
1787     if (delta != 0L)
1788     addCount(delta, -1);
1789     }
1790    
1791 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1792    
1793 tim 1.1 /**
1794 dl 1.119 * Returns a power of two table size for the given desired capacity.
1795     * See Hackers Delight, sec 3.2
1796 tim 1.1 */
1797 dl 1.119 private static final int tableSizeFor(int c) {
1798     int n = c - 1;
1799     n |= n >>> 1;
1800     n |= n >>> 2;
1801     n |= n >>> 4;
1802     n |= n >>> 8;
1803     n |= n >>> 16;
1804     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1805 tim 1.1 }
1806    
1807     /**
1808 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1809     */
1810 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1811     Node<V>[] tab; int sc;
1812 dl 1.119 while ((tab = table) == null) {
1813     if ((sc = sizeCtl) < 0)
1814     Thread.yield(); // lost initialization race; just spin
1815 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1816 dl 1.119 try {
1817     if ((tab = table) == null) {
1818     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1819 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1820     table = tab = (Node<V>[])tb;
1821 dl 1.119 sc = n - (n >>> 2);
1822     }
1823     } finally {
1824     sizeCtl = sc;
1825     }
1826     break;
1827     }
1828     }
1829     return tab;
1830 dl 1.4 }
1831    
1832     /**
1833 dl 1.149 * Adds to count, and if table is too small and not already
1834     * resizing, initiates transfer. If already resizing, helps
1835     * perform transfer if work is available. Rechecks occupancy
1836     * after a transfer to see if another resize is already needed
1837     * because resizings are lagging additions.
1838     *
1839     * @param x the count to add
1840     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1841     */
1842     private final void addCount(long x, int check) {
1843 dl 1.153 Cell[] as; long b, s;
1844 dl 1.149 if ((as = counterCells) != null ||
1845     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1846 dl 1.153 CellHashCode hc; Cell a; long v; int m;
1847 dl 1.149 boolean uncontended = true;
1848 dl 1.153 if ((hc = threadCellHashCode.get()) == null ||
1849 dl 1.149 as == null || (m = as.length - 1) < 0 ||
1850     (a = as[m & hc.code]) == null ||
1851     !(uncontended =
1852     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1853     fullAddCount(x, hc, uncontended);
1854     return;
1855     }
1856     if (check <= 1)
1857     return;
1858     s = sumCount();
1859     }
1860     if (check >= 0) {
1861 dl 1.151 Node<V>[] tab, nt; int sc;
1862 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1863     tab.length < MAXIMUM_CAPACITY) {
1864     if (sc < 0) {
1865     if (sc == -1 || transferIndex <= transferOrigin ||
1866     (nt = nextTable) == null)
1867     break;
1868     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1869     transfer(tab, nt);
1870 dl 1.119 }
1871 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1872     transfer(tab, null);
1873     s = sumCount();
1874 dl 1.119 }
1875     }
1876 dl 1.4 }
1877    
1878     /**
1879 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1880 tim 1.1 *
1881 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1882 tim 1.1 */
1883 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1884 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1885     tableSizeFor(size + (size >>> 1) + 1);
1886     int sc;
1887     while ((sc = sizeCtl) >= 0) {
1888 dl 1.151 Node<V>[] tab = table; int n;
1889 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1890     n = (sc > c) ? sc : c;
1891 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1892 dl 1.119 try {
1893     if (table == tab) {
1894 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1895     table = (Node<V>[])tb;
1896 dl 1.119 sc = n - (n >>> 2);
1897     }
1898     } finally {
1899     sizeCtl = sc;
1900     }
1901     }
1902     }
1903     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1904     break;
1905 dl 1.149 else if (tab == table &&
1906     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1907     transfer(tab, null);
1908 dl 1.119 }
1909 dl 1.4 }
1910    
1911 dl 1.119 /*
1912     * Moves and/or copies the nodes in each bin to new table. See
1913     * above for explanation.
1914 dl 1.4 */
1915 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1916     (Node<V>[] tab, Node<V>[] nextTab) {
1917 dl 1.149 int n = tab.length, stride;
1918     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1919     stride = MIN_TRANSFER_STRIDE; // subdivide range
1920     if (nextTab == null) { // initiating
1921     try {
1922 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1923     nextTab = (Node<V>[])tb;
1924 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1925 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1926     return;
1927     }
1928     nextTable = nextTab;
1929     transferOrigin = n;
1930     transferIndex = n;
1931 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1932 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1933 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1934 dl 1.149 for (int m = nextk; m < k; ++m)
1935     nextTab[m] = rev;
1936     for (int m = n + nextk; m < n + k; ++m)
1937     nextTab[m] = rev;
1938     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1939     }
1940     }
1941     int nextn = nextTab.length;
1942 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1943 dl 1.149 boolean advance = true;
1944     for (int i = 0, bound = 0;;) {
1945 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1946 dl 1.149 while (advance) {
1947     if (--i >= bound)
1948     advance = false;
1949     else if ((nextIndex = transferIndex) <= transferOrigin) {
1950     i = -1;
1951     advance = false;
1952     }
1953     else if (U.compareAndSwapInt
1954     (this, TRANSFERINDEX, nextIndex,
1955 jsr166 1.150 nextBound = (nextIndex > stride ?
1956 dl 1.149 nextIndex - stride : 0))) {
1957     bound = nextBound;
1958     i = nextIndex - 1;
1959     advance = false;
1960     }
1961     }
1962     if (i < 0 || i >= n || i + n >= nextn) {
1963     for (int sc;;) {
1964     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1965     if (sc == -1) {
1966     nextTable = null;
1967     table = nextTab;
1968     sizeCtl = (n << 1) - (n >>> 1);
1969     }
1970     return;
1971     }
1972     }
1973     }
1974     else if ((f = tabAt(tab, i)) == null) {
1975     if (casTabAt(tab, i, null, fwd)) {
1976 dl 1.119 setTabAt(nextTab, i, null);
1977     setTabAt(nextTab, i + n, null);
1978 dl 1.149 advance = true;
1979     }
1980     }
1981     else if (f.hash >= 0) {
1982 jsr166 1.150 synchronized (f) {
1983 dl 1.149 if (tabAt(tab, i) == f) {
1984     int runBit = f.hash & n;
1985 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1986     for (Node<V> p = f.next; p != null; p = p.next) {
1987 dl 1.149 int b = p.hash & n;
1988     if (b != runBit) {
1989     runBit = b;
1990     lastRun = p;
1991     }
1992     }
1993     if (runBit == 0)
1994     lo = lastRun;
1995     else
1996     hi = lastRun;
1997 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1998 dl 1.149 int ph = p.hash;
1999 dl 1.151 Object pk = p.key; V pv = p.val;
2000 dl 1.149 if ((ph & n) == 0)
2001 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
2002 dl 1.149 else
2003 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
2004 dl 1.149 }
2005     setTabAt(nextTab, i, lo);
2006     setTabAt(nextTab, i + n, hi);
2007     setTabAt(tab, i, fwd);
2008     advance = true;
2009 dl 1.119 }
2010     }
2011     }
2012 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
2013 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
2014 dl 1.149 t.acquire(0);
2015     try {
2016     if (tabAt(tab, i) == f) {
2017 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
2018     TreeBin<V> ht = new TreeBin<V>();
2019 dl 1.149 int lc = 0, hc = 0;
2020 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
2021 dl 1.149 int h = e.hash;
2022 dl 1.151 Object k = e.key; V v = e.val;
2023 dl 1.149 if ((h & n) == 0) {
2024     ++lc;
2025     lt.putTreeNode(h, k, v);
2026     }
2027     else {
2028     ++hc;
2029     ht.putTreeNode(h, k, v);
2030     }
2031     }
2032 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2033 dl 1.149 if (lc < TREE_THRESHOLD) {
2034     ln = null;
2035 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2036     ln = new Node<V>(p.hash, p.key, p.val, ln);
2037 dl 1.149 }
2038     else
2039 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2040 dl 1.149 setTabAt(nextTab, i, ln);
2041     if (hc < TREE_THRESHOLD) {
2042     hn = null;
2043 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2044     hn = new Node<V>(p.hash, p.key, p.val, hn);
2045 dl 1.119 }
2046 dl 1.149 else
2047 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2048 dl 1.149 setTabAt(nextTab, i + n, hn);
2049 dl 1.119 setTabAt(tab, i, fwd);
2050 dl 1.149 advance = true;
2051 dl 1.119 }
2052     } finally {
2053 dl 1.149 t.release(0);
2054 dl 1.119 }
2055     }
2056     else
2057 dl 1.149 advance = true; // already processed
2058 dl 1.119 }
2059 dl 1.4 }
2060 tim 1.1
2061 dl 1.149 /* ---------------- Counter support -------------- */
2062    
2063     final long sumCount() {
2064 dl 1.153 Cell[] as = counterCells; Cell a;
2065 dl 1.149 long sum = baseCount;
2066     if (as != null) {
2067     for (int i = 0; i < as.length; ++i) {
2068     if ((a = as[i]) != null)
2069     sum += a.value;
2070 dl 1.119 }
2071     }
2072 dl 1.149 return sum;
2073 dl 1.119 }
2074    
2075 dl 1.149 // See LongAdder version for explanation
2076 dl 1.153 private final void fullAddCount(long x, CellHashCode hc,
2077 dl 1.149 boolean wasUncontended) {
2078     int h;
2079     if (hc == null) {
2080 dl 1.153 hc = new CellHashCode();
2081     int s = cellHashCodeGenerator.addAndGet(SEED_INCREMENT);
2082 dl 1.149 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2083 dl 1.153 threadCellHashCode.set(hc);
2084 dl 1.119 }
2085     else
2086 dl 1.149 h = hc.code;
2087     boolean collide = false; // True if last slot nonempty
2088     for (;;) {
2089 dl 1.153 Cell[] as; Cell a; int n; long v;
2090 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2091     if ((a = as[(n - 1) & h]) == null) {
2092 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2093     Cell r = new Cell(x); // Optimistic create
2094     if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 boolean created = false;
2097     try { // Recheck under lock
2098 dl 1.153 Cell[] rs; int m, j;
2099 dl 1.149 if ((rs = counterCells) != null &&
2100     (m = rs.length) > 0 &&
2101     rs[j = (m - 1) & h] == null) {
2102     rs[j] = r;
2103     created = true;
2104 dl 1.128 }
2105 dl 1.149 } finally {
2106 dl 1.153 cellsBusy = 0;
2107 dl 1.119 }
2108 dl 1.149 if (created)
2109     break;
2110     continue; // Slot is now non-empty
2111     }
2112     }
2113     collide = false;
2114     }
2115     else if (!wasUncontended) // CAS already known to fail
2116     wasUncontended = true; // Continue after rehash
2117     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2118     break;
2119     else if (counterCells != as || n >= NCPU)
2120     collide = false; // At max size or stale
2121     else if (!collide)
2122     collide = true;
2123 dl 1.153 else if (cellsBusy == 0 &&
2124     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2125 dl 1.149 try {
2126     if (counterCells == as) {// Expand table unless stale
2127 dl 1.153 Cell[] rs = new Cell[n << 1];
2128 dl 1.149 for (int i = 0; i < n; ++i)
2129     rs[i] = as[i];
2130     counterCells = rs;
2131 dl 1.119 }
2132     } finally {
2133 dl 1.153 cellsBusy = 0;
2134 dl 1.119 }
2135 dl 1.149 collide = false;
2136     continue; // Retry with expanded table
2137 dl 1.119 }
2138 dl 1.149 h ^= h << 13; // Rehash
2139     h ^= h >>> 17;
2140     h ^= h << 5;
2141     }
2142 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2143     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2144 dl 1.149 boolean init = false;
2145     try { // Initialize table
2146     if (counterCells == as) {
2147 dl 1.153 Cell[] rs = new Cell[2];
2148     rs[h & 1] = new Cell(x);
2149 dl 1.149 counterCells = rs;
2150     init = true;
2151 dl 1.119 }
2152     } finally {
2153 dl 1.153 cellsBusy = 0;
2154 dl 1.119 }
2155 dl 1.149 if (init)
2156     break;
2157 dl 1.119 }
2158 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2159     break; // Fall back on using base
2160 dl 1.119 }
2161 dl 1.149 hc.code = h; // Record index for next time
2162 dl 1.119 }
2163    
2164     /* ----------------Table Traversal -------------- */
2165    
2166     /**
2167     * Encapsulates traversal for methods such as containsValue; also
2168 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2169 dl 1.119 *
2170     * At each step, the iterator snapshots the key ("nextKey") and
2171     * value ("nextVal") of a valid node (i.e., one that, at point of
2172     * snapshot, has a non-null user value). Because val fields can
2173     * change (including to null, indicating deletion), field nextVal
2174     * might not be accurate at point of use, but still maintains the
2175     * weak consistency property of holding a value that was once
2176 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2177     * updated (nulled out) when the iterator cannot advance.
2178 dl 1.119 *
2179     * Internal traversals directly access these fields, as in:
2180     * {@code while (it.advance() != null) { process(it.nextKey); }}
2181     *
2182     * Exported iterators must track whether the iterator has advanced
2183     * (in hasNext vs next) (by setting/checking/nulling field
2184     * nextVal), and then extract key, value, or key-value pairs as
2185     * return values of next().
2186     *
2187     * The iterator visits once each still-valid node that was
2188     * reachable upon iterator construction. It might miss some that
2189     * were added to a bin after the bin was visited, which is OK wrt
2190     * consistency guarantees. Maintaining this property in the face
2191     * of possible ongoing resizes requires a fair amount of
2192     * bookkeeping state that is difficult to optimize away amidst
2193     * volatile accesses. Even so, traversal maintains reasonable
2194     * throughput.
2195     *
2196     * Normally, iteration proceeds bin-by-bin traversing lists.
2197     * However, if the table has been resized, then all future steps
2198     * must traverse both the bin at the current index as well as at
2199     * (index + baseSize); and so on for further resizings. To
2200     * paranoically cope with potential sharing by users of iterators
2201     * across threads, iteration terminates if a bounds checks fails
2202     * for a table read.
2203     *
2204 dl 1.153 * This class supports both Spliterator-based traversal and
2205     * CountedCompleter-based bulk tasks. The same "batch" field is
2206     * used, but in slightly different ways, in the two cases. For
2207     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2208     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2209     * size that halves down to zero for leaf tasks, that is only
2210     * computed upon execution of the task. (Tasks can be submitted to
2211     * any pool, of any size, so we don't know scale factors until
2212     * running.)
2213     *
2214 dl 1.146 * This class extends CountedCompleter to streamline parallel
2215     * iteration in bulk operations. This adds only a few fields of
2216     * space overhead, which is small enough in cases where it is not
2217     * needed to not worry about it. Because CountedCompleter is
2218     * Serializable, but iterators need not be, we need to add warning
2219     * suppressions.
2220 dl 1.119 */
2221 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2222     extends CountedCompleter<R> {
2223 dl 1.119 final ConcurrentHashMap<K, V> map;
2224 dl 1.151 Node<V> next; // the next entry to use
2225 dl 1.119 Object nextKey; // cached key field of next
2226 dl 1.151 V nextVal; // cached val field of next
2227     Node<V>[] tab; // current table; updated if resized
2228 dl 1.119 int index; // index of bin to use next
2229     int baseIndex; // current index of initial table
2230     int baseLimit; // index bound for initial table
2231 dl 1.130 int baseSize; // initial table size
2232 dl 1.146 int batch; // split control
2233 dl 1.119 /** Creates iterator for all entries in the table. */
2234     Traverser(ConcurrentHashMap<K, V> map) {
2235 dl 1.130 this.map = map;
2236 dl 1.153 Node<V>[] t;
2237     if ((t = tab = map.table) != null)
2238     baseLimit = baseSize = t.length;
2239 dl 1.119 }
2240    
2241 dl 1.153 /** Task constructor */
2242 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2243     super(it);
2244 dl 1.153 this.map = map;
2245     this.batch = batch; // -1 if unknown
2246     if (it == null) {
2247 dl 1.151 Node<V>[] t;
2248 dl 1.153 if ((t = tab = map.table) != null)
2249     baseLimit = baseSize = t.length;
2250     }
2251     else { // split parent
2252     this.tab = it.tab;
2253 dl 1.146 this.baseSize = it.baseSize;
2254     int hi = this.baseLimit = it.baseLimit;
2255     it.baseLimit = this.index = this.baseIndex =
2256     (hi + it.baseIndex + 1) >>> 1;
2257     }
2258 dl 1.119 }
2259    
2260 dl 1.153 /** Spliterator constructor */
2261     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2262     super(it);
2263     this.map = map;
2264     if (it == null) {
2265     Node<V>[] t;
2266     if ((t = tab = map.table) != null)
2267     baseLimit = baseSize = t.length;
2268     long n = map.sumCount();
2269     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2270     (int)n);
2271     }
2272     else {
2273     this.tab = it.tab;
2274     this.baseSize = it.baseSize;
2275     int hi = this.baseLimit = it.baseLimit;
2276     it.baseLimit = this.index = this.baseIndex =
2277     (hi + it.baseIndex + 1) >>> 1;
2278     this.batch = it.batch >>>= 1;
2279     }
2280     }
2281    
2282 dl 1.119 /**
2283     * Advances next; returns nextVal or null if terminated.
2284     * See above for explanation.
2285     */
2286 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2287     Node<V> e = next;
2288     V ev = null;
2289 dl 1.119 outer: do {
2290     if (e != null) // advance past used/skipped node
2291     e = e.next;
2292     while (e == null) { // get to next non-null bin
2293 dl 1.130 ConcurrentHashMap<K, V> m;
2294 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2295 dl 1.130 if ((t = tab) != null)
2296     n = t.length;
2297     else if ((m = map) != null && (t = tab = m.table) != null)
2298     n = baseLimit = baseSize = t.length;
2299     else
2300 dl 1.119 break outer;
2301 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2302     (i = index) < 0 || i >= n)
2303     break outer;
2304 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2305 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2306 dl 1.151 e = ((TreeBin<V>)ek).first;
2307 dl 1.119 else {
2308 dl 1.151 tab = (Node<V>[])ek;
2309 dl 1.119 continue; // restarts due to null val
2310     }
2311     } // visit upper slots if present
2312     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2313     }
2314     nextKey = e.key;
2315     } while ((ev = e.val) == null); // skip deleted or special nodes
2316     next = e;
2317     return nextVal = ev;
2318     }
2319    
2320     public final void remove() {
2321 dl 1.137 Object k = nextKey;
2322     if (k == null && (advance() == null || (k = nextKey) == null))
2323 dl 1.119 throw new IllegalStateException();
2324 dl 1.137 map.internalReplace(k, null, null);
2325 dl 1.119 }
2326    
2327     public final boolean hasNext() {
2328     return nextVal != null || advance() != null;
2329     }
2330    
2331     public final boolean hasMoreElements() { return hasNext(); }
2332 dl 1.146
2333     public void compute() { } // default no-op CountedCompleter body
2334    
2335     /**
2336     * Returns a batch value > 0 if this task should (and must) be
2337     * split, if so, adding to pending count, and in any case
2338     * updating batch value. The initial batch value is approx
2339     * exp2 of the number of times (minus one) to split task by
2340     * two before executing leaf action. This value is faster to
2341     * compute and more convenient to use as a guide to splitting
2342     * than is the depth, since it is used while dividing by two
2343     * anyway.
2344     */
2345     final int preSplit() {
2346 dl 1.153 int b; ForkJoinPool pool;
2347     if ((b = batch) < 0) { // force initialization
2348     int sp = (((pool = getPool()) == null) ?
2349     ForkJoinPool.getCommonPoolParallelism() :
2350     pool.getParallelism()) << 3; // slack of 8
2351     long n = map.sumCount();
2352     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2353 dl 1.146 }
2354 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2355 dl 1.146 if ((batch = b) > 0)
2356     addToPendingCount(1);
2357     return b;
2358     }
2359    
2360 dl 1.153 // spliterator support
2361    
2362     public long exactSizeIfKnown() {
2363     return -1;
2364     }
2365    
2366     public boolean hasExactSplits() {
2367     return false;
2368     }
2369    
2370     public long estimateSize() {
2371     return batch;
2372     }
2373 dl 1.119 }
2374    
2375     /* ---------------- Public operations -------------- */
2376    
2377     /**
2378     * Creates a new, empty map with the default initial table size (16).
2379     */
2380     public ConcurrentHashMap() {
2381     }
2382    
2383     /**
2384     * Creates a new, empty map with an initial table size
2385     * accommodating the specified number of elements without the need
2386     * to dynamically resize.
2387     *
2388     * @param initialCapacity The implementation performs internal
2389     * sizing to accommodate this many elements.
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative
2392     */
2393     public ConcurrentHashMap(int initialCapacity) {
2394     if (initialCapacity < 0)
2395     throw new IllegalArgumentException();
2396     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2397     MAXIMUM_CAPACITY :
2398     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2399     this.sizeCtl = cap;
2400     }
2401    
2402     /**
2403     * Creates a new map with the same mappings as the given map.
2404     *
2405     * @param m the map
2406     */
2407     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2408     this.sizeCtl = DEFAULT_CAPACITY;
2409     internalPutAll(m);
2410     }
2411    
2412     /**
2413     * Creates a new, empty map with an initial table size based on
2414     * the given number of elements ({@code initialCapacity}) and
2415     * initial table density ({@code loadFactor}).
2416     *
2417     * @param initialCapacity the initial capacity. The implementation
2418     * performs internal sizing to accommodate this many elements,
2419     * given the specified load factor.
2420     * @param loadFactor the load factor (table density) for
2421     * establishing the initial table size
2422     * @throws IllegalArgumentException if the initial capacity of
2423     * elements is negative or the load factor is nonpositive
2424     *
2425     * @since 1.6
2426     */
2427     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2428     this(initialCapacity, loadFactor, 1);
2429     }
2430    
2431     /**
2432     * Creates a new, empty map with an initial table size based on
2433     * the given number of elements ({@code initialCapacity}), table
2434     * density ({@code loadFactor}), and number of concurrently
2435     * updating threads ({@code concurrencyLevel}).
2436     *
2437     * @param initialCapacity the initial capacity. The implementation
2438     * performs internal sizing to accommodate this many elements,
2439     * given the specified load factor.
2440     * @param loadFactor the load factor (table density) for
2441     * establishing the initial table size
2442     * @param concurrencyLevel the estimated number of concurrently
2443     * updating threads. The implementation may use this value as
2444     * a sizing hint.
2445     * @throws IllegalArgumentException if the initial capacity is
2446     * negative or the load factor or concurrencyLevel are
2447     * nonpositive
2448     */
2449     public ConcurrentHashMap(int initialCapacity,
2450     float loadFactor, int concurrencyLevel) {
2451     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2452     throw new IllegalArgumentException();
2453     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2454     initialCapacity = concurrencyLevel; // as estimated threads
2455     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2456     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2457     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2458     this.sizeCtl = cap;
2459     }
2460    
2461     /**
2462 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2463     * from the given type to {@code Boolean.TRUE}.
2464     *
2465     * @return the new set
2466     */
2467     public static <K> KeySetView<K,Boolean> newKeySet() {
2468     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2469     Boolean.TRUE);
2470     }
2471    
2472     /**
2473     * Creates a new {@link Set} backed by a ConcurrentHashMap
2474     * from the given type to {@code Boolean.TRUE}.
2475     *
2476     * @param initialCapacity The implementation performs internal
2477     * sizing to accommodate this many elements.
2478     * @throws IllegalArgumentException if the initial capacity of
2479     * elements is negative
2480     * @return the new set
2481     */
2482     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2483 dl 1.149 return new KeySetView<K,Boolean>
2484     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2485 dl 1.137 }
2486    
2487     /**
2488 dl 1.119 * {@inheritDoc}
2489     */
2490     public boolean isEmpty() {
2491 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2492 dl 1.119 }
2493    
2494     /**
2495     * {@inheritDoc}
2496     */
2497     public int size() {
2498 dl 1.149 long n = sumCount();
2499 dl 1.119 return ((n < 0L) ? 0 :
2500     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2501     (int)n);
2502     }
2503    
2504     /**
2505     * Returns the number of mappings. This method should be used
2506     * instead of {@link #size} because a ConcurrentHashMap may
2507     * contain more mappings than can be represented as an int. The
2508 dl 1.146 * value returned is an estimate; the actual count may differ if
2509     * there are concurrent insertions or removals.
2510 dl 1.119 *
2511     * @return the number of mappings
2512     */
2513     public long mappingCount() {
2514 dl 1.149 long n = sumCount();
2515 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2516 dl 1.119 }
2517    
2518     /**
2519     * Returns the value to which the specified key is mapped,
2520     * or {@code null} if this map contains no mapping for the key.
2521     *
2522     * <p>More formally, if this map contains a mapping from a key
2523     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2524     * then this method returns {@code v}; otherwise it returns
2525     * {@code null}. (There can be at most one such mapping.)
2526     *
2527     * @throws NullPointerException if the specified key is null
2528     */
2529 dl 1.149 public V get(Object key) {
2530     return internalGet(key);
2531 dl 1.119 }
2532    
2533     /**
2534 dl 1.129 * Returns the value to which the specified key is mapped,
2535 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2536 dl 1.129 *
2537     * @param key the key
2538     * @param defaultValue the value to return if this map contains
2539 jsr166 1.134 * no mapping for the given key
2540 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2541     * @throws NullPointerException if the specified key is null
2542     */
2543 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2544     V v;
2545     return (v = internalGet(key)) == null ? defaultValue : v;
2546 dl 1.129 }
2547    
2548     /**
2549 dl 1.119 * Tests if the specified object is a key in this table.
2550     *
2551     * @param key possible key
2552     * @return {@code true} if and only if the specified object
2553     * is a key in this table, as determined by the
2554     * {@code equals} method; {@code false} otherwise
2555     * @throws NullPointerException if the specified key is null
2556     */
2557     public boolean containsKey(Object key) {
2558     return internalGet(key) != null;
2559     }
2560    
2561     /**
2562     * Returns {@code true} if this map maps one or more keys to the
2563     * specified value. Note: This method may require a full traversal
2564     * of the map, and is much slower than method {@code containsKey}.
2565     *
2566     * @param value value whose presence in this map is to be tested
2567     * @return {@code true} if this map maps one or more keys to the
2568     * specified value
2569     * @throws NullPointerException if the specified value is null
2570     */
2571     public boolean containsValue(Object value) {
2572     if (value == null)
2573     throw new NullPointerException();
2574 dl 1.151 V v;
2575 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2576     while ((v = it.advance()) != null) {
2577     if (v == value || value.equals(v))
2578     return true;
2579     }
2580     return false;
2581     }
2582    
2583     /**
2584     * Legacy method testing if some key maps into the specified value
2585     * in this table. This method is identical in functionality to
2586     * {@link #containsValue}, and exists solely to ensure
2587     * full compatibility with class {@link java.util.Hashtable},
2588     * which supported this method prior to introduction of the
2589     * Java Collections framework.
2590     *
2591     * @param value a value to search for
2592     * @return {@code true} if and only if some key maps to the
2593     * {@code value} argument in this table as
2594     * determined by the {@code equals} method;
2595     * {@code false} otherwise
2596     * @throws NullPointerException if the specified value is null
2597     */
2598 dl 1.151 @Deprecated public boolean contains(Object value) {
2599 dl 1.119 return containsValue(value);
2600     }
2601    
2602     /**
2603     * Maps the specified key to the specified value in this table.
2604     * Neither the key nor the value can be null.
2605     *
2606 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2607 dl 1.119 * with a key that is equal to the original key.
2608     *
2609     * @param key key with which the specified value is to be associated
2610     * @param value value to be associated with the specified key
2611     * @return the previous value associated with {@code key}, or
2612     * {@code null} if there was no mapping for {@code key}
2613     * @throws NullPointerException if the specified key or value is null
2614     */
2615 dl 1.149 public V put(K key, V value) {
2616     return internalPut(key, value, false);
2617 dl 1.119 }
2618    
2619     /**
2620     * {@inheritDoc}
2621     *
2622     * @return the previous value associated with the specified key,
2623     * or {@code null} if there was no mapping for the key
2624     * @throws NullPointerException if the specified key or value is null
2625     */
2626 dl 1.149 public V putIfAbsent(K key, V value) {
2627     return internalPut(key, value, true);
2628 dl 1.119 }
2629    
2630     /**
2631     * Copies all of the mappings from the specified map to this one.
2632     * These mappings replace any mappings that this map had for any of the
2633     * keys currently in the specified map.
2634     *
2635     * @param m mappings to be stored in this map
2636     */
2637     public void putAll(Map<? extends K, ? extends V> m) {
2638     internalPutAll(m);
2639     }
2640    
2641     /**
2642 dl 1.153 * If the specified key is not already associated with a value (or
2643     * is mapped to {@code null}), attempts to compute its value using
2644     * the given mapping function and enters it into this map unless
2645     * {@code null}. The entire method invocation is performed
2646     * atomically, so the function is applied at most once per key.
2647     * Some attempted update operations on this map by other threads
2648     * may be blocked while computation is in progress, so the
2649     * computation should be short and simple, and must not attempt to
2650     * update any other mappings of this Map.
2651 dl 1.119 *
2652     * @param key key with which the specified value is to be associated
2653     * @param mappingFunction the function to compute a value
2654     * @return the current (existing or computed) value associated with
2655 jsr166 1.134 * the specified key, or null if the computed value is null
2656 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2657     * is null
2658     * @throws IllegalStateException if the computation detectably
2659     * attempts a recursive update to this map that would
2660     * otherwise never complete
2661     * @throws RuntimeException or Error if the mappingFunction does so,
2662     * in which case the mapping is left unestablished
2663     */
2664 dl 1.149 public V computeIfAbsent
2665 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2666 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2667 dl 1.119 }
2668    
2669     /**
2670 dl 1.153 * If the value for the specified key is present and non-null,
2671     * attempts to compute a new mapping given the key and its current
2672     * mapped value. The entire method invocation is performed
2673     * atomically. Some attempted update operations on this map by
2674 dl 1.119 * other threads may be blocked while computation is in progress,
2675     * so the computation should be short and simple, and must not
2676 dl 1.153 * attempt to update any other mappings of this Map.
2677 dl 1.119 *
2678     * @param key key with which the specified value is to be associated
2679     * @param remappingFunction the function to compute a value
2680 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2681 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2682     * is null
2683     * @throws IllegalStateException if the computation detectably
2684     * attempts a recursive update to this map that would
2685     * otherwise never complete
2686     * @throws RuntimeException or Error if the remappingFunction does so,
2687     * in which case the mapping is unchanged
2688     */
2689 dl 1.149 public V computeIfPresent
2690 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2691 dl 1.149 return internalCompute(key, true, remappingFunction);
2692 dl 1.119 }
2693    
2694     /**
2695 dl 1.153 * Attempts to compute a mapping for the specified key and its
2696     * current mapped value (or {@code null} if there is no current
2697     * mapping). The entire method invocation is performed atomically.
2698     * Some attempted update operations on this map by other threads
2699     * may be blocked while computation is in progress, so the
2700     * computation should be short and simple, and must not attempt to
2701     * update any other mappings of this Map.
2702 dl 1.119 *
2703     * @param key key with which the specified value is to be associated
2704     * @param remappingFunction the function to compute a value
2705 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2706 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2707     * is null
2708     * @throws IllegalStateException if the computation detectably
2709     * attempts a recursive update to this map that would
2710     * otherwise never complete
2711     * @throws RuntimeException or Error if the remappingFunction does so,
2712     * in which case the mapping is unchanged
2713     */
2714 dl 1.149 public V compute
2715 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2716 dl 1.149 return internalCompute(key, false, remappingFunction);
2717 dl 1.119 }
2718    
2719     /**
2720 dl 1.153 * If the specified key is not already associated with a
2721     * (non-null) value, associates it with the given value.
2722     * Otherwise, replaces the value with the results of the given
2723     * remapping function, or removes if {@code null}. The entire
2724     * method invocation is performed atomically. Some attempted
2725     * update operations on this map by other threads may be blocked
2726     * while computation is in progress, so the computation should be
2727     * short and simple, and must not attempt to update any other
2728     * mappings of this Map.
2729     *
2730     * @param key key with which the specified value is to be associated
2731     * @param value the value to use if absent
2732     * @param remappingFunction the function to recompute a value if present
2733     * @return the new value associated with the specified key, or null if none
2734     * @throws NullPointerException if the specified key or the
2735     * remappingFunction is null
2736     * @throws RuntimeException or Error if the remappingFunction does so,
2737     * in which case the mapping is unchanged
2738 dl 1.119 */
2739 dl 1.149 public V merge
2740     (K key, V value,
2741 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2742 dl 1.149 return internalMerge(key, value, remappingFunction);
2743 dl 1.119 }
2744    
2745     /**
2746     * Removes the key (and its corresponding value) from this map.
2747     * This method does nothing if the key is not in the map.
2748     *
2749     * @param key the key that needs to be removed
2750     * @return the previous value associated with {@code key}, or
2751     * {@code null} if there was no mapping for {@code key}
2752     * @throws NullPointerException if the specified key is null
2753     */
2754 dl 1.149 public V remove(Object key) {
2755     return internalReplace(key, null, null);
2756 dl 1.119 }
2757    
2758     /**
2759     * {@inheritDoc}
2760     *
2761     * @throws NullPointerException if the specified key is null
2762     */
2763     public boolean remove(Object key, Object value) {
2764 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2765 tim 1.1 }
2766 dl 1.31
2767     /**
2768 jsr166 1.68 * {@inheritDoc}
2769     *
2770     * @throws NullPointerException if any of the arguments are null
2771 dl 1.31 */
2772     public boolean replace(K key, V oldValue, V newValue) {
2773 dl 1.119 if (key == null || oldValue == null || newValue == null)
2774 dl 1.31 throw new NullPointerException();
2775 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2776 dl 1.32 }
2777    
2778     /**
2779 jsr166 1.68 * {@inheritDoc}
2780     *
2781     * @return the previous value associated with the specified key,
2782 dl 1.119 * or {@code null} if there was no mapping for the key
2783 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2784 dl 1.32 */
2785 dl 1.149 public V replace(K key, V value) {
2786 dl 1.119 if (key == null || value == null)
2787 dl 1.32 throw new NullPointerException();
2788 dl 1.149 return internalReplace(key, value, null);
2789 dl 1.31 }
2790    
2791 tim 1.1 /**
2792 jsr166 1.68 * Removes all of the mappings from this map.
2793 tim 1.1 */
2794     public void clear() {
2795 dl 1.119 internalClear();
2796 tim 1.1 }
2797    
2798     /**
2799 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2800     * The set is backed by the map, so changes to the map are
2801 dl 1.137 * reflected in the set, and vice-versa.
2802     *
2803     * @return the set view
2804     */
2805     public KeySetView<K,V> keySet() {
2806     KeySetView<K,V> ks = keySet;
2807     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2808     }
2809    
2810     /**
2811     * Returns a {@link Set} view of the keys in this map, using the
2812     * given common mapped value for any additions (i.e., {@link
2813     * Collection#add} and {@link Collection#addAll}). This is of
2814     * course only appropriate if it is acceptable to use the same
2815     * value for all additions from this view.
2816 jsr166 1.68 *
2817 dl 1.137 * @param mappedValue the mapped value to use for any
2818     * additions.
2819     * @return the set view
2820     * @throws NullPointerException if the mappedValue is null
2821 tim 1.1 */
2822 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2823     if (mappedValue == null)
2824     throw new NullPointerException();
2825     return new KeySetView<K,V>(this, mappedValue);
2826 tim 1.1 }
2827    
2828     /**
2829 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2830     * The collection is backed by the map, so changes to the map are
2831 jsr166 1.143 * reflected in the collection, and vice-versa.
2832 tim 1.1 */
2833 dl 1.142 public ValuesView<K,V> values() {
2834     ValuesView<K,V> vs = values;
2835     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2836 dl 1.119 }
2837    
2838     /**
2839     * Returns a {@link Set} view of the mappings contained in this map.
2840     * The set is backed by the map, so changes to the map are
2841     * reflected in the set, and vice-versa. The set supports element
2842     * removal, which removes the corresponding mapping from the map,
2843     * via the {@code Iterator.remove}, {@code Set.remove},
2844     * {@code removeAll}, {@code retainAll}, and {@code clear}
2845     * operations. It does not support the {@code add} or
2846     * {@code addAll} operations.
2847     *
2848     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2849     * that will never throw {@link ConcurrentModificationException},
2850     * and guarantees to traverse elements as they existed upon
2851     * construction of the iterator, and may (but is not guaranteed to)
2852     * reflect any modifications subsequent to construction.
2853     */
2854     public Set<Map.Entry<K,V>> entrySet() {
2855 dl 1.142 EntrySetView<K,V> es = entrySet;
2856     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2857 dl 1.119 }
2858    
2859     /**
2860     * Returns an enumeration of the keys in this table.
2861     *
2862     * @return an enumeration of the keys in this table
2863     * @see #keySet()
2864     */
2865     public Enumeration<K> keys() {
2866     return new KeyIterator<K,V>(this);
2867     }
2868    
2869     /**
2870     * Returns an enumeration of the values in this table.
2871     *
2872     * @return an enumeration of the values in this table
2873     * @see #values()
2874     */
2875     public Enumeration<V> elements() {
2876     return new ValueIterator<K,V>(this);
2877     }
2878    
2879     /**
2880     * Returns the hash code value for this {@link Map}, i.e.,
2881     * the sum of, for each key-value pair in the map,
2882     * {@code key.hashCode() ^ value.hashCode()}.
2883     *
2884     * @return the hash code value for this map
2885     */
2886     public int hashCode() {
2887     int h = 0;
2888     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2889 dl 1.151 V v;
2890 dl 1.119 while ((v = it.advance()) != null) {
2891     h += it.nextKey.hashCode() ^ v.hashCode();
2892     }
2893     return h;
2894     }
2895    
2896     /**
2897     * Returns a string representation of this map. The string
2898     * representation consists of a list of key-value mappings (in no
2899     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2900     * mappings are separated by the characters {@code ", "} (comma
2901     * and space). Each key-value mapping is rendered as the key
2902     * followed by an equals sign ("{@code =}") followed by the
2903     * associated value.
2904     *
2905     * @return a string representation of this map
2906     */
2907     public String toString() {
2908     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2909     StringBuilder sb = new StringBuilder();
2910     sb.append('{');
2911 dl 1.151 V v;
2912 dl 1.119 if ((v = it.advance()) != null) {
2913     for (;;) {
2914     Object k = it.nextKey;
2915     sb.append(k == this ? "(this Map)" : k);
2916     sb.append('=');
2917     sb.append(v == this ? "(this Map)" : v);
2918     if ((v = it.advance()) == null)
2919     break;
2920     sb.append(',').append(' ');
2921     }
2922     }
2923     return sb.append('}').toString();
2924     }
2925    
2926     /**
2927     * Compares the specified object with this map for equality.
2928     * Returns {@code true} if the given object is a map with the same
2929     * mappings as this map. This operation may return misleading
2930     * results if either map is concurrently modified during execution
2931     * of this method.
2932     *
2933     * @param o object to be compared for equality with this map
2934     * @return {@code true} if the specified object is equal to this map
2935     */
2936     public boolean equals(Object o) {
2937     if (o != this) {
2938     if (!(o instanceof Map))
2939     return false;
2940     Map<?,?> m = (Map<?,?>) o;
2941     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2942 dl 1.151 V val;
2943 dl 1.119 while ((val = it.advance()) != null) {
2944     Object v = m.get(it.nextKey);
2945     if (v == null || (v != val && !v.equals(val)))
2946     return false;
2947     }
2948     for (Map.Entry<?,?> e : m.entrySet()) {
2949     Object mk, mv, v;
2950     if ((mk = e.getKey()) == null ||
2951     (mv = e.getValue()) == null ||
2952     (v = internalGet(mk)) == null ||
2953     (mv != v && !mv.equals(v)))
2954     return false;
2955     }
2956     }
2957     return true;
2958     }
2959    
2960     /* ----------------Iterators -------------- */
2961    
2962 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2963     extends Traverser<K,V,Object>
2964 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2965 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2966 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2967 dl 1.153 super(map, it);
2968 dl 1.119 }
2969 dl 1.155 public KeyIterator<K,V> trySplit() {
2970     if (tab != null && baseIndex == baseLimit)
2971     return null;
2972 dl 1.146 return new KeyIterator<K,V>(map, this);
2973 dl 1.119 }
2974 dl 1.128 @SuppressWarnings("unchecked") public final K next() {
2975 dl 1.119 if (nextVal == null && advance() == null)
2976     throw new NoSuchElementException();
2977     Object k = nextKey;
2978     nextVal = null;
2979     return (K) k;
2980     }
2981    
2982     public final K nextElement() { return next(); }
2983 dl 1.153
2984     public Iterator<K> iterator() { return this; }
2985    
2986     public void forEach(Block<? super K> action) {
2987     if (action == null) throw new NullPointerException();
2988     while (advance() != null)
2989     action.accept((K)nextKey);
2990     }
2991 dl 1.119 }
2992    
2993 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2994     extends Traverser<K,V,Object>
2995 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2996 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2997 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2998 dl 1.153 super(map, it);
2999 dl 1.119 }
3000 dl 1.155 public ValueIterator<K,V> trySplit() {
3001     if (tab != null && baseIndex == baseLimit)
3002     return null;
3003 dl 1.146 return new ValueIterator<K,V>(map, this);
3004 dl 1.119 }
3005    
3006 dl 1.151 public final V next() {
3007     V v;
3008 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3009     throw new NoSuchElementException();
3010     nextVal = null;
3011 dl 1.151 return v;
3012 dl 1.119 }
3013    
3014     public final V nextElement() { return next(); }
3015 dl 1.153
3016     public Iterator<V> iterator() { return this; }
3017    
3018     public void forEach(Block<? super V> action) {
3019     if (action == null) throw new NullPointerException();
3020     V v;
3021     while ((v = advance()) != null)
3022     action.accept(v);
3023     }
3024 dl 1.119 }
3025    
3026 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3027     extends Traverser<K,V,Object>
3028 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3029 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3030 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3031 dl 1.153 super(map, it);
3032 dl 1.119 }
3033 dl 1.155 public EntryIterator<K,V> trySplit() {
3034     if (tab != null && baseIndex == baseLimit)
3035     return null;
3036 dl 1.146 return new EntryIterator<K,V>(map, this);
3037 dl 1.119 }
3038    
3039 dl 1.128 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3040 dl 1.151 V v;
3041 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3042     throw new NoSuchElementException();
3043     Object k = nextKey;
3044     nextVal = null;
3045 dl 1.151 return new MapEntry<K,V>((K)k, v, map);
3046 dl 1.119 }
3047 dl 1.153
3048     public Iterator<Map.Entry<K,V>> iterator() { return this; }
3049    
3050     public void forEach(Block<? super Map.Entry<K,V>> action) {
3051     if (action == null) throw new NullPointerException();
3052     V v;
3053     while ((v = advance()) != null)
3054     action.accept(entryFor((K)nextKey, v));
3055     }
3056 dl 1.119 }
3057    
3058     /**
3059     * Exported Entry for iterators
3060     */
3061     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3062     final K key; // non-null
3063     V val; // non-null
3064     final ConcurrentHashMap<K, V> map;
3065     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3066     this.key = key;
3067     this.val = val;
3068     this.map = map;
3069     }
3070     public final K getKey() { return key; }
3071     public final V getValue() { return val; }
3072     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3073     public final String toString(){ return key + "=" + val; }
3074    
3075     public final boolean equals(Object o) {
3076     Object k, v; Map.Entry<?,?> e;
3077     return ((o instanceof Map.Entry) &&
3078     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3079     (v = e.getValue()) != null &&
3080     (k == key || k.equals(key)) &&
3081     (v == val || v.equals(val)));
3082     }
3083    
3084     /**
3085     * Sets our entry's value and writes through to the map. The
3086     * value to return is somewhat arbitrary here. Since we do not
3087     * necessarily track asynchronous changes, the most recent
3088     * "previous" value could be different from what we return (or
3089     * could even have been removed in which case the put will
3090     * re-establish). We do not and cannot guarantee more.
3091     */
3092     public final V setValue(V value) {
3093     if (value == null) throw new NullPointerException();
3094     V v = val;
3095     val = value;
3096     map.put(key, value);
3097     return v;
3098     }
3099     }
3100    
3101 dl 1.146 /**
3102     * Returns exportable snapshot entry for the given key and value
3103     * when write-through can't or shouldn't be used.
3104     */
3105     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3106     return new AbstractMap.SimpleEntry<K,V>(k, v);
3107     }
3108    
3109 dl 1.142 /* ---------------- Serialization Support -------------- */
3110 dl 1.119
3111     /**
3112 dl 1.142 * Stripped-down version of helper class used in previous version,
3113     * declared for the sake of serialization compatibility
3114 dl 1.119 */
3115 dl 1.142 static class Segment<K,V> implements Serializable {
3116     private static final long serialVersionUID = 2249069246763182397L;
3117     final float loadFactor;
3118     Segment(float lf) { this.loadFactor = lf; }
3119     }
3120 dl 1.119
3121 dl 1.142 /**
3122     * Saves the state of the {@code ConcurrentHashMap} instance to a
3123     * stream (i.e., serializes it).
3124     * @param s the stream
3125     * @serialData
3126     * the key (Object) and value (Object)
3127     * for each key-value mapping, followed by a null pair.
3128     * The key-value mappings are emitted in no particular order.
3129     */
3130 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3131     (java.io.ObjectOutputStream s)
3132 dl 1.142 throws java.io.IOException {
3133     if (segments == null) { // for serialization compatibility
3134     segments = (Segment<K,V>[])
3135     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3136     for (int i = 0; i < segments.length; ++i)
3137     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3138     }
3139     s.defaultWriteObject();
3140     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3141 dl 1.151 V v;
3142 dl 1.142 while ((v = it.advance()) != null) {
3143     s.writeObject(it.nextKey);
3144     s.writeObject(v);
3145     }
3146     s.writeObject(null);
3147     s.writeObject(null);
3148     segments = null; // throw away
3149     }
3150 dl 1.119
3151 dl 1.142 /**
3152     * Reconstitutes the instance from a stream (that is, deserializes it).
3153     * @param s the stream
3154     */
3155 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3156     (java.io.ObjectInputStream s)
3157 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3158     s.defaultReadObject();
3159     this.segments = null; // unneeded
3160 dl 1.119
3161 dl 1.142 // Create all nodes, then place in table once size is known
3162     long size = 0L;
3163 dl 1.151 Node<V> p = null;
3164 dl 1.142 for (;;) {
3165     K k = (K) s.readObject();
3166     V v = (V) s.readObject();
3167     if (k != null && v != null) {
3168     int h = spread(k.hashCode());
3169 dl 1.151 p = new Node<V>(h, k, v, p);
3170 dl 1.142 ++size;
3171 dl 1.119 }
3172 dl 1.142 else
3173     break;
3174 dl 1.119 }
3175 dl 1.142 if (p != null) {
3176     boolean init = false;
3177     int n;
3178     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3179     n = MAXIMUM_CAPACITY;
3180     else {
3181     int sz = (int)size;
3182     n = tableSizeFor(sz + (sz >>> 1) + 1);
3183     }
3184     int sc = sizeCtl;
3185     boolean collide = false;
3186     if (n > sc &&
3187 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3188 dl 1.142 try {
3189     if (table == null) {
3190     init = true;
3191 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3192     Node<V>[] tab = (Node<V>[])rt;
3193 dl 1.142 int mask = n - 1;
3194     while (p != null) {
3195     int j = p.hash & mask;
3196 dl 1.151 Node<V> next = p.next;
3197     Node<V> q = p.next = tabAt(tab, j);
3198 dl 1.142 setTabAt(tab, j, p);
3199     if (!collide && q != null && q.hash == p.hash)
3200     collide = true;
3201     p = next;
3202     }
3203     table = tab;
3204 dl 1.149 addCount(size, -1);
3205 dl 1.142 sc = n - (n >>> 2);
3206     }
3207     } finally {
3208     sizeCtl = sc;
3209     }
3210     if (collide) { // rescan and convert to TreeBins
3211 dl 1.151 Node<V>[] tab = table;
3212 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3213     int c = 0;
3214 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3215 dl 1.142 if (++c > TREE_THRESHOLD &&
3216     (e.key instanceof Comparable)) {
3217     replaceWithTreeBin(tab, i, e.key);
3218     break;
3219     }
3220     }
3221     }
3222 dl 1.119 }
3223     }
3224 dl 1.142 if (!init) { // Can only happen if unsafely published.
3225     while (p != null) {
3226 dl 1.151 internalPut((K)p.key, p.val, false);
3227 dl 1.142 p = p.next;
3228     }
3229 dl 1.119 }
3230     }
3231 dl 1.142 }
3232 dl 1.119
3233 dl 1.142 // -------------------------------------------------------
3234    
3235 dl 1.151 // Sequential bulk operations
3236    
3237 dl 1.119 /**
3238 dl 1.137 * Performs the given action for each (key, value).
3239 dl 1.119 *
3240 dl 1.137 * @param action the action
3241 dl 1.119 */
3242 dl 1.151 @SuppressWarnings("unchecked") public void forEachSequentially
3243 dl 1.153 (BiBlock<? super K, ? super V> action) {
3244 dl 1.151 if (action == null) throw new NullPointerException();
3245     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3246     V v;
3247     while ((v = it.advance()) != null)
3248 dl 1.153 action.accept((K)it.nextKey, v);
3249 dl 1.119 }
3250    
3251     /**
3252 dl 1.137 * Performs the given action for each non-null transformation
3253     * of each (key, value).
3254     *
3255     * @param transformer a function returning the transformation
3256     * for an element, or null of there is no transformation (in
3257     * which case the action is not applied).
3258     * @param action the action
3259 dl 1.119 */
3260 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3261 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3262     Block<? super U> action) {
3263 dl 1.151 if (transformer == null || action == null)
3264     throw new NullPointerException();
3265     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3266     V v; U u;
3267     while ((v = it.advance()) != null) {
3268     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3269 dl 1.153 action.accept(u);
3270 dl 1.151 }
3271 dl 1.137 }
3272    
3273     /**
3274     * Returns a non-null result from applying the given search
3275 dl 1.151 * function on each (key, value), or null if none.
3276 dl 1.137 *
3277     * @param searchFunction a function returning a non-null
3278     * result on success, else null
3279     * @return a non-null result from applying the given search
3280     * function on each (key, value), or null if none
3281     */
3282 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchSequentially
3283 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3284 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3285     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3286     V v; U u;
3287     while ((v = it.advance()) != null) {
3288     if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3289     return u;
3290     }
3291     return null;
3292 dl 1.137 }
3293    
3294     /**
3295     * Returns the result of accumulating the given transformation
3296     * of all (key, value) pairs using the given reducer to
3297     * combine values, or null if none.
3298     *
3299     * @param transformer a function returning the transformation
3300     * for an element, or null of there is no transformation (in
3301     * which case it is not combined).
3302     * @param reducer a commutative associative combining function
3303     * @return the result of accumulating the given transformation
3304     * of all (key, value) pairs
3305     */
3306 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3307 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3308     BiFunction<? super U, ? super U, ? extends U> reducer) {
3309 dl 1.151 if (transformer == null || reducer == null)
3310     throw new NullPointerException();
3311     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3312     U r = null, u; V v;
3313     while ((v = it.advance()) != null) {
3314     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3315     r = (r == null) ? u : reducer.apply(r, u);
3316     }
3317     return r;
3318 dl 1.137 }
3319    
3320     /**
3321     * Returns the result of accumulating the given transformation
3322     * of all (key, value) pairs using the given reducer to
3323     * combine values, and the given basis as an identity value.
3324     *
3325     * @param transformer a function returning the transformation
3326     * for an element
3327     * @param basis the identity (initial default value) for the reduction
3328     * @param reducer a commutative associative combining function
3329     * @return the result of accumulating the given transformation
3330     * of all (key, value) pairs
3331     */
3332 dl 1.151 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3333 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
3334 dl 1.151 double basis,
3335 dl 1.153 DoubleBinaryOperator reducer) {
3336 dl 1.151 if (transformer == null || reducer == null)
3337     throw new NullPointerException();
3338     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3339     double r = basis; V v;
3340     while ((v = it.advance()) != null)
3341 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey, v));
3342 dl 1.151 return r;
3343 dl 1.137 }
3344 dl 1.119
3345 dl 1.137 /**
3346     * Returns the result of accumulating the given transformation
3347     * of all (key, value) pairs using the given reducer to
3348     * combine values, and the given basis as an identity value.
3349     *
3350     * @param transformer a function returning the transformation
3351     * for an element
3352     * @param basis the identity (initial default value) for the reduction
3353     * @param reducer a commutative associative combining function
3354     * @return the result of accumulating the given transformation
3355     * of all (key, value) pairs
3356     */
3357 dl 1.151 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3358 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
3359 dl 1.151 long basis,
3360 dl 1.153 LongBinaryOperator reducer) {
3361 dl 1.151 if (transformer == null || reducer == null)
3362     throw new NullPointerException();
3363     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364     long r = basis; V v;
3365     while ((v = it.advance()) != null)
3366 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey, v));
3367 dl 1.151 return r;
3368 dl 1.137 }
3369    
3370     /**
3371     * Returns the result of accumulating the given transformation
3372     * of all (key, value) pairs using the given reducer to
3373     * combine values, and the given basis as an identity value.
3374     *
3375     * @param transformer a function returning the transformation
3376     * for an element
3377     * @param basis the identity (initial default value) for the reduction
3378     * @param reducer a commutative associative combining function
3379     * @return the result of accumulating the given transformation
3380     * of all (key, value) pairs
3381     */
3382 dl 1.151 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3383 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
3384 dl 1.151 int basis,
3385 dl 1.153 IntBinaryOperator reducer) {
3386 dl 1.151 if (transformer == null || reducer == null)
3387     throw new NullPointerException();
3388     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3389     int r = basis; V v;
3390     while ((v = it.advance()) != null)
3391 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey, v));
3392 dl 1.151 return r;
3393 dl 1.137 }
3394    
3395     /**
3396     * Performs the given action for each key.
3397     *
3398     * @param action the action
3399     */
3400 dl 1.151 @SuppressWarnings("unchecked") public void forEachKeySequentially
3401 dl 1.153 (Block<? super K> action) {
3402 dl 1.151 if (action == null) throw new NullPointerException();
3403     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404     while (it.advance() != null)
3405 dl 1.153 action.accept((K)it.nextKey);
3406 dl 1.137 }
3407 dl 1.119
3408 dl 1.137 /**
3409     * Performs the given action for each non-null transformation
3410     * of each key.
3411     *
3412     * @param transformer a function returning the transformation
3413     * for an element, or null of there is no transformation (in
3414     * which case the action is not applied).
3415     * @param action the action
3416     */
3417 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3418 dl 1.153 (Function<? super K, ? extends U> transformer,
3419     Block<? super U> action) {
3420 dl 1.151 if (transformer == null || action == null)
3421     throw new NullPointerException();
3422     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3423     U u;
3424     while (it.advance() != null) {
3425     if ((u = transformer.apply((K)it.nextKey)) != null)
3426 dl 1.153 action.accept(u);
3427 dl 1.151 }
3428 dl 1.137 ForkJoinTasks.forEachKey
3429     (this, transformer, action).invoke();
3430     }
3431 dl 1.119
3432 dl 1.137 /**
3433     * Returns a non-null result from applying the given search
3434 dl 1.151 * function on each key, or null if none.
3435 dl 1.137 *
3436     * @param searchFunction a function returning a non-null
3437     * result on success, else null
3438     * @return a non-null result from applying the given search
3439     * function on each key, or null if none
3440     */
3441 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3442 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3443 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3444     U u;
3445     while (it.advance() != null) {
3446     if ((u = searchFunction.apply((K)it.nextKey)) != null)
3447     return u;
3448     }
3449     return null;
3450 dl 1.137 }
3451 dl 1.119
3452 dl 1.137 /**
3453     * Returns the result of accumulating all keys using the given
3454     * reducer to combine values, or null if none.
3455     *
3456     * @param reducer a commutative associative combining function
3457     * @return the result of accumulating all keys using the given
3458     * reducer to combine values, or null if none
3459     */
3460 dl 1.151 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3461 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3462 dl 1.151 if (reducer == null) throw new NullPointerException();
3463     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3464     K r = null;
3465     while (it.advance() != null) {
3466     K u = (K)it.nextKey;
3467     r = (r == null) ? u : reducer.apply(r, u);
3468     }
3469     return r;
3470 dl 1.137 }
3471 dl 1.119
3472 dl 1.137 /**
3473     * Returns the result of accumulating the given transformation
3474     * of all keys using the given reducer to combine values, or
3475     * null if none.
3476     *
3477     * @param transformer a function returning the transformation
3478     * for an element, or null of there is no transformation (in
3479     * which case it is not combined).
3480     * @param reducer a commutative associative combining function
3481     * @return the result of accumulating the given transformation
3482     * of all keys
3483     */
3484 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3485 dl 1.153 (Function<? super K, ? extends U> transformer,
3486     BiFunction<? super U, ? super U, ? extends U> reducer) {
3487 dl 1.151 if (transformer == null || reducer == null)
3488     throw new NullPointerException();
3489     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3490     U r = null, u;
3491     while (it.advance() != null) {
3492     if ((u = transformer.apply((K)it.nextKey)) != null)
3493     r = (r == null) ? u : reducer.apply(r, u);
3494     }
3495     return r;
3496 dl 1.137 }
3497 dl 1.119
3498 dl 1.137 /**
3499     * Returns the result of accumulating the given transformation
3500     * of all keys using the given reducer to combine values, and
3501     * the given basis as an identity value.
3502     *
3503     * @param transformer a function returning the transformation
3504     * for an element
3505     * @param basis the identity (initial default value) for the reduction
3506     * @param reducer a commutative associative combining function
3507 jsr166 1.157 * @return the result of accumulating the given transformation
3508 dl 1.137 * of all keys
3509     */
3510 dl 1.151 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3511 dl 1.153 (DoubleFunction<? super K> transformer,
3512 dl 1.151 double basis,
3513 dl 1.153 DoubleBinaryOperator reducer) {
3514 dl 1.151 if (transformer == null || reducer == null)
3515     throw new NullPointerException();
3516     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3517     double r = basis;
3518     while (it.advance() != null)
3519 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey));
3520 dl 1.151 return r;
3521 dl 1.137 }
3522 dl 1.119
3523 dl 1.137 /**
3524     * Returns the result of accumulating the given transformation
3525     * of all keys using the given reducer to combine values, and
3526     * the given basis as an identity value.
3527     *
3528     * @param transformer a function returning the transformation
3529     * for an element
3530     * @param basis the identity (initial default value) for the reduction
3531     * @param reducer a commutative associative combining function
3532     * @return the result of accumulating the given transformation
3533     * of all keys
3534     */
3535 dl 1.151 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3536 dl 1.153 (LongFunction<? super K> transformer,
3537 dl 1.151 long basis,
3538 dl 1.153 LongBinaryOperator reducer) {
3539 dl 1.151 if (transformer == null || reducer == null)
3540     throw new NullPointerException();
3541     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3542     long r = basis;
3543     while (it.advance() != null)
3544 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey));
3545 dl 1.151 return r;
3546 dl 1.137 }
3547 dl 1.119
3548 dl 1.137 /**
3549     * Returns the result of accumulating the given transformation
3550     * of all keys using the given reducer to combine values, and
3551     * the given basis as an identity value.
3552     *
3553     * @param transformer a function returning the transformation
3554     * for an element
3555     * @param basis the identity (initial default value) for the reduction
3556     * @param reducer a commutative associative combining function
3557     * @return the result of accumulating the given transformation
3558     * of all keys
3559     */
3560 dl 1.151 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3561 dl 1.153 (IntFunction<? super K> transformer,
3562 dl 1.151 int basis,
3563 dl 1.153 IntBinaryOperator reducer) {
3564 dl 1.151 if (transformer == null || reducer == null)
3565     throw new NullPointerException();
3566     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3567     int r = basis;
3568     while (it.advance() != null)
3569 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey));
3570 dl 1.151 return r;
3571 dl 1.137 }
3572 dl 1.119
3573 dl 1.137 /**
3574     * Performs the given action for each value.
3575     *
3576     * @param action the action
3577     */
3578 dl 1.153 public void forEachValueSequentially(Block<? super V> action) {
3579 dl 1.151 if (action == null) throw new NullPointerException();
3580     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3581     V v;
3582     while ((v = it.advance()) != null)
3583 dl 1.153 action.accept(v);
3584 dl 1.137 }
3585 dl 1.119
3586 dl 1.137 /**
3587     * Performs the given action for each non-null transformation
3588     * of each value.
3589     *
3590     * @param transformer a function returning the transformation
3591     * for an element, or null of there is no transformation (in
3592     * which case the action is not applied).
3593     */
3594 dl 1.151 public <U> void forEachValueSequentially
3595 dl 1.153 (Function<? super V, ? extends U> transformer,
3596     Block<? super U> action) {
3597 dl 1.151 if (transformer == null || action == null)
3598     throw new NullPointerException();
3599     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3600     V v; U u;
3601     while ((v = it.advance()) != null) {
3602     if ((u = transformer.apply(v)) != null)
3603 dl 1.153 action.accept(u);
3604 dl 1.151 }
3605 dl 1.137 }
3606 dl 1.119
3607 dl 1.137 /**
3608     * Returns a non-null result from applying the given search
3609 dl 1.151 * function on each value, or null if none.
3610 dl 1.137 *
3611     * @param searchFunction a function returning a non-null
3612     * result on success, else null
3613     * @return a non-null result from applying the given search
3614     * function on each value, or null if none
3615     */
3616 dl 1.151 public <U> U searchValuesSequentially
3617 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3618 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3619     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3620     V v; U u;
3621     while ((v = it.advance()) != null) {
3622     if ((u = searchFunction.apply(v)) != null)
3623     return u;
3624     }
3625     return null;
3626 dl 1.137 }
3627 dl 1.119
3628 dl 1.137 /**
3629     * Returns the result of accumulating all values using the
3630     * given reducer to combine values, or null if none.
3631     *
3632     * @param reducer a commutative associative combining function
3633 jsr166 1.157 * @return the result of accumulating all values
3634 dl 1.137 */
3635 dl 1.151 public V reduceValuesSequentially
3636 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3637 dl 1.151 if (reducer == null) throw new NullPointerException();
3638     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3639     V r = null; V v;
3640     while ((v = it.advance()) != null)
3641     r = (r == null) ? v : reducer.apply(r, v);
3642     return r;
3643 dl 1.137 }
3644 dl 1.119
3645 dl 1.137 /**
3646     * Returns the result of accumulating the given transformation
3647     * of all values using the given reducer to combine values, or
3648     * null if none.
3649     *
3650     * @param transformer a function returning the transformation
3651     * for an element, or null of there is no transformation (in
3652     * which case it is not combined).
3653     * @param reducer a commutative associative combining function
3654     * @return the result of accumulating the given transformation
3655     * of all values
3656     */
3657 dl 1.151 public <U> U reduceValuesSequentially
3658 dl 1.153 (Function<? super V, ? extends U> transformer,
3659     BiFunction<? super U, ? super U, ? extends U> reducer) {
3660 dl 1.151 if (transformer == null || reducer == null)
3661     throw new NullPointerException();
3662     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3663     U r = null, u; V v;
3664     while ((v = it.advance()) != null) {
3665     if ((u = transformer.apply(v)) != null)
3666     r = (r == null) ? u : reducer.apply(r, u);
3667     }
3668     return r;
3669 dl 1.137 }
3670 dl 1.119
3671 dl 1.137 /**
3672     * Returns the result of accumulating the given transformation
3673     * of all values using the given reducer to combine values,
3674     * and the given basis as an identity value.
3675     *
3676     * @param transformer a function returning the transformation
3677     * for an element
3678     * @param basis the identity (initial default value) for the reduction
3679     * @param reducer a commutative associative combining function
3680     * @return the result of accumulating the given transformation
3681     * of all values
3682     */
3683 dl 1.151 public double reduceValuesToDoubleSequentially
3684 dl 1.153 (DoubleFunction<? super V> transformer,
3685 dl 1.151 double basis,
3686 dl 1.153 DoubleBinaryOperator reducer) {
3687 dl 1.151 if (transformer == null || reducer == null)
3688     throw new NullPointerException();
3689     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3690     double r = basis; V v;
3691     while ((v = it.advance()) != null)
3692 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3693 dl 1.151 return r;
3694 dl 1.137 }
3695 dl 1.119
3696 dl 1.137 /**
3697     * Returns the result of accumulating the given transformation
3698     * of all values using the given reducer to combine values,
3699     * and the given basis as an identity value.
3700     *
3701     * @param transformer a function returning the transformation
3702     * for an element
3703     * @param basis the identity (initial default value) for the reduction
3704     * @param reducer a commutative associative combining function
3705     * @return the result of accumulating the given transformation
3706     * of all values
3707     */
3708 dl 1.151 public long reduceValuesToLongSequentially
3709 dl 1.153 (LongFunction<? super V> transformer,
3710 dl 1.151 long basis,
3711 dl 1.153 LongBinaryOperator reducer) {
3712 dl 1.151 if (transformer == null || reducer == null)
3713     throw new NullPointerException();
3714     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3715     long r = basis; V v;
3716     while ((v = it.advance()) != null)
3717 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3718 dl 1.151 return r;
3719 dl 1.137 }
3720 dl 1.119
3721 dl 1.137 /**
3722     * Returns the result of accumulating the given transformation
3723     * of all values using the given reducer to combine values,
3724     * and the given basis as an identity value.
3725     *
3726     * @param transformer a function returning the transformation
3727     * for an element
3728     * @param basis the identity (initial default value) for the reduction
3729     * @param reducer a commutative associative combining function
3730     * @return the result of accumulating the given transformation
3731     * of all values
3732     */
3733 dl 1.151 public int reduceValuesToIntSequentially
3734 dl 1.153 (IntFunction<? super V> transformer,
3735 dl 1.151 int basis,
3736 dl 1.153 IntBinaryOperator reducer) {
3737 dl 1.151 if (transformer == null || reducer == null)
3738     throw new NullPointerException();
3739     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3740     int r = basis; V v;
3741     while ((v = it.advance()) != null)
3742 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3743 dl 1.151 return r;
3744 dl 1.137 }
3745 dl 1.119
3746 dl 1.137 /**
3747     * Performs the given action for each entry.
3748     *
3749     * @param action the action
3750     */
3751 dl 1.151 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3752 dl 1.153 (Block<? super Map.Entry<K,V>> action) {
3753 dl 1.151 if (action == null) throw new NullPointerException();
3754     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3755     V v;
3756     while ((v = it.advance()) != null)
3757 dl 1.153 action.accept(entryFor((K)it.nextKey, v));
3758 dl 1.137 }
3759 dl 1.119
3760 dl 1.137 /**
3761     * Performs the given action for each non-null transformation
3762     * of each entry.
3763     *
3764     * @param transformer a function returning the transformation
3765     * for an element, or null of there is no transformation (in
3766     * which case the action is not applied).
3767     * @param action the action
3768     */
3769 dl 1.151 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3770 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3771     Block<? super U> action) {
3772 dl 1.151 if (transformer == null || action == null)
3773     throw new NullPointerException();
3774     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3775     V v; U u;
3776     while ((v = it.advance()) != null) {
3777     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3778 dl 1.153 action.accept(u);
3779 dl 1.151 }
3780 dl 1.137 }
3781 dl 1.119
3782 dl 1.137 /**
3783     * Returns a non-null result from applying the given search
3784 dl 1.151 * function on each entry, or null if none.
3785 dl 1.137 *
3786     * @param searchFunction a function returning a non-null
3787     * result on success, else null
3788     * @return a non-null result from applying the given search
3789     * function on each entry, or null if none
3790     */
3791 dl 1.151 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3792 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3793 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3794     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3795     V v; U u;
3796     while ((v = it.advance()) != null) {
3797     if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3798     return u;
3799     }
3800     return null;
3801 dl 1.137 }
3802 dl 1.119
3803 dl 1.137 /**
3804     * Returns the result of accumulating all entries using the
3805     * given reducer to combine values, or null if none.
3806     *
3807     * @param reducer a commutative associative combining function
3808     * @return the result of accumulating all entries
3809     */
3810 dl 1.151 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3811 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3812 dl 1.151 if (reducer == null) throw new NullPointerException();
3813     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3814     Map.Entry<K,V> r = null; V v;
3815     while ((v = it.advance()) != null) {
3816     Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3817     r = (r == null) ? u : reducer.apply(r, u);
3818     }
3819     return r;
3820 dl 1.137 }
3821 dl 1.119
3822 dl 1.137 /**
3823     * Returns the result of accumulating the given transformation
3824     * of all entries using the given reducer to combine values,
3825     * or null if none.
3826     *
3827     * @param transformer a function returning the transformation
3828     * for an element, or null of there is no transformation (in
3829     * which case it is not combined).
3830     * @param reducer a commutative associative combining function
3831     * @return the result of accumulating the given transformation
3832     * of all entries
3833     */
3834 dl 1.151 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3835 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3836     BiFunction<? super U, ? super U, ? extends U> reducer) {
3837 dl 1.151 if (transformer == null || reducer == null)
3838     throw new NullPointerException();
3839     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3840     U r = null, u; V v;
3841     while ((v = it.advance()) != null) {
3842     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3843     r = (r == null) ? u : reducer.apply(r, u);
3844     }
3845     return r;
3846 dl 1.137 }
3847 dl 1.119
3848 dl 1.137 /**
3849     * Returns the result of accumulating the given transformation
3850     * of all entries using the given reducer to combine values,
3851     * and the given basis as an identity value.
3852     *
3853     * @param transformer a function returning the transformation
3854     * for an element
3855     * @param basis the identity (initial default value) for the reduction
3856     * @param reducer a commutative associative combining function
3857     * @return the result of accumulating the given transformation
3858     * of all entries
3859     */
3860 dl 1.151 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3861 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
3862 dl 1.151 double basis,
3863 dl 1.153 DoubleBinaryOperator reducer) {
3864 dl 1.151 if (transformer == null || reducer == null)
3865     throw new NullPointerException();
3866     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3867     double r = basis; V v;
3868     while ((v = it.advance()) != null)
3869 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)it.nextKey, v)));
3870 dl 1.151 return r;
3871 dl 1.137 }
3872 dl 1.119
3873 dl 1.137 /**
3874     * Returns the result of accumulating the given transformation
3875     * of all entries using the given reducer to combine values,
3876     * and the given basis as an identity value.
3877     *
3878     * @param transformer a function returning the transformation
3879     * for an element
3880     * @param basis the identity (initial default value) for the reduction
3881     * @param reducer a commutative associative combining function
3882 jsr166 1.157 * @return the result of accumulating the given transformation
3883 dl 1.137 * of all entries
3884     */
3885 dl 1.151 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3886 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
3887 dl 1.151 long basis,
3888 dl 1.153 LongBinaryOperator reducer) {
3889 dl 1.151 if (transformer == null || reducer == null)
3890     throw new NullPointerException();
3891     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3892     long r = basis; V v;
3893     while ((v = it.advance()) != null)
3894 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)it.nextKey, v)));
3895 dl 1.151 return r;
3896 dl 1.137 }
3897 dl 1.119
3898 dl 1.137 /**
3899     * Returns the result of accumulating the given transformation
3900     * of all entries using the given reducer to combine values,
3901     * and the given basis as an identity value.
3902     *
3903     * @param transformer a function returning the transformation
3904     * for an element
3905     * @param basis the identity (initial default value) for the reduction
3906     * @param reducer a commutative associative combining function
3907     * @return the result of accumulating the given transformation
3908     * of all entries
3909     */
3910 dl 1.151 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3911 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
3912 dl 1.151 int basis,
3913 dl 1.153 IntBinaryOperator reducer) {
3914 dl 1.151 if (transformer == null || reducer == null)
3915     throw new NullPointerException();
3916     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3917     int r = basis; V v;
3918     while ((v = it.advance()) != null)
3919 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)it.nextKey, v)));
3920 dl 1.151 return r;
3921 dl 1.119 }
3922    
3923 dl 1.151 // Parallel bulk operations
3924 dl 1.142
3925     /**
3926 dl 1.151 * Performs the given action for each (key, value).
3927     *
3928     * @param action the action
3929 dl 1.142 */
3930 dl 1.153 public void forEachInParallel(BiBlock<? super K,? super V> action) {
3931 dl 1.151 ForkJoinTasks.forEach
3932     (this, action).invoke();
3933     }
3934 dl 1.142
3935 dl 1.151 /**
3936     * Performs the given action for each non-null transformation
3937     * of each (key, value).
3938     *
3939     * @param transformer a function returning the transformation
3940     * for an element, or null of there is no transformation (in
3941     * which case the action is not applied).
3942     * @param action the action
3943     */
3944     public <U> void forEachInParallel
3945 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3946     Block<? super U> action) {
3947 dl 1.151 ForkJoinTasks.forEach
3948     (this, transformer, action).invoke();
3949     }
3950 dl 1.142
3951 dl 1.151 /**
3952     * Returns a non-null result from applying the given search
3953     * function on each (key, value), or null if none. Upon
3954     * success, further element processing is suppressed and the
3955     * results of any other parallel invocations of the search
3956     * function are ignored.
3957     *
3958     * @param searchFunction a function returning a non-null
3959     * result on success, else null
3960     * @return a non-null result from applying the given search
3961     * function on each (key, value), or null if none
3962     */
3963     public <U> U searchInParallel
3964 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3965 dl 1.151 return ForkJoinTasks.search
3966     (this, searchFunction).invoke();
3967     }
3968 dl 1.142
3969 dl 1.151 /**
3970     * Returns the result of accumulating the given transformation
3971     * of all (key, value) pairs using the given reducer to
3972     * combine values, or null if none.
3973     *
3974     * @param transformer a function returning the transformation
3975     * for an element, or null of there is no transformation (in
3976     * which case it is not combined).
3977     * @param reducer a commutative associative combining function
3978     * @return the result of accumulating the given transformation
3979     * of all (key, value) pairs
3980     */
3981     public <U> U reduceInParallel
3982 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3983     BiFunction<? super U, ? super U, ? extends U> reducer) {
3984 dl 1.151 return ForkJoinTasks.reduce
3985     (this, transformer, reducer).invoke();
3986     }
3987 dl 1.142
3988 dl 1.151 /**
3989     * Returns the result of accumulating the given transformation
3990     * of all (key, value) pairs using the given reducer to
3991     * combine values, and the given basis as an identity value.
3992     *
3993     * @param transformer a function returning the transformation
3994     * for an element
3995     * @param basis the identity (initial default value) for the reduction
3996     * @param reducer a commutative associative combining function
3997     * @return the result of accumulating the given transformation
3998     * of all (key, value) pairs
3999     */
4000     public double reduceToDoubleInParallel
4001 dl 1.153 (DoubleBiFunction<? super K, ? super V> transformer,
4002 dl 1.151 double basis,
4003 dl 1.153 DoubleBinaryOperator reducer) {
4004 dl 1.151 return ForkJoinTasks.reduceToDouble
4005     (this, transformer, basis, reducer).invoke();
4006     }
4007    
4008     /**
4009     * Returns the result of accumulating the given transformation
4010     * of all (key, value) pairs using the given reducer to
4011     * combine values, and the given basis as an identity value.
4012     *
4013     * @param transformer a function returning the transformation
4014     * for an element
4015     * @param basis the identity (initial default value) for the reduction
4016     * @param reducer a commutative associative combining function
4017     * @return the result of accumulating the given transformation
4018     * of all (key, value) pairs
4019     */
4020     public long reduceToLongInParallel
4021 dl 1.153 (LongBiFunction<? super K, ? super V> transformer,
4022 dl 1.151 long basis,
4023 dl 1.153 LongBinaryOperator reducer) {
4024 dl 1.151 return ForkJoinTasks.reduceToLong
4025     (this, transformer, basis, reducer).invoke();
4026     }
4027    
4028     /**
4029     * Returns the result of accumulating the given transformation
4030     * of all (key, value) pairs using the given reducer to
4031     * combine values, and the given basis as an identity value.
4032     *
4033     * @param transformer a function returning the transformation
4034     * for an element
4035     * @param basis the identity (initial default value) for the reduction
4036     * @param reducer a commutative associative combining function
4037     * @return the result of accumulating the given transformation
4038     * of all (key, value) pairs
4039     */
4040     public int reduceToIntInParallel
4041 dl 1.153 (IntBiFunction<? super K, ? super V> transformer,
4042 dl 1.151 int basis,
4043 dl 1.153 IntBinaryOperator reducer) {
4044 dl 1.151 return ForkJoinTasks.reduceToInt
4045     (this, transformer, basis, reducer).invoke();
4046     }
4047    
4048     /**
4049     * Performs the given action for each key.
4050     *
4051     * @param action the action
4052     */
4053 dl 1.153 public void forEachKeyInParallel(Block<? super K> action) {
4054 dl 1.151 ForkJoinTasks.forEachKey
4055     (this, action).invoke();
4056     }
4057    
4058     /**
4059     * Performs the given action for each non-null transformation
4060     * of each key.
4061     *
4062     * @param transformer a function returning the transformation
4063     * for an element, or null of there is no transformation (in
4064     * which case the action is not applied).
4065     * @param action the action
4066     */
4067     public <U> void forEachKeyInParallel
4068 dl 1.153 (Function<? super K, ? extends U> transformer,
4069     Block<? super U> action) {
4070 dl 1.151 ForkJoinTasks.forEachKey
4071     (this, transformer, action).invoke();
4072     }
4073    
4074     /**
4075     * Returns a non-null result from applying the given search
4076     * function on each key, or null if none. Upon success,
4077     * further element processing is suppressed and the results of
4078     * any other parallel invocations of the search function are
4079     * ignored.
4080     *
4081     * @param searchFunction a function returning a non-null
4082     * result on success, else null
4083     * @return a non-null result from applying the given search
4084     * function on each key, or null if none
4085     */
4086     public <U> U searchKeysInParallel
4087 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4088 dl 1.151 return ForkJoinTasks.searchKeys
4089     (this, searchFunction).invoke();
4090     }
4091    
4092     /**
4093     * Returns the result of accumulating all keys using the given
4094     * reducer to combine values, or null if none.
4095     *
4096     * @param reducer a commutative associative combining function
4097     * @return the result of accumulating all keys using the given
4098     * reducer to combine values, or null if none
4099     */
4100     public K reduceKeysInParallel
4101 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4102 dl 1.151 return ForkJoinTasks.reduceKeys
4103     (this, reducer).invoke();
4104     }
4105    
4106     /**
4107     * Returns the result of accumulating the given transformation
4108     * of all keys using the given reducer to combine values, or
4109     * null if none.
4110     *
4111     * @param transformer a function returning the transformation
4112     * for an element, or null of there is no transformation (in
4113     * which case it is not combined).
4114     * @param reducer a commutative associative combining function
4115     * @return the result of accumulating the given transformation
4116     * of all keys
4117     */
4118     public <U> U reduceKeysInParallel
4119 dl 1.153 (Function<? super K, ? extends U> transformer,
4120     BiFunction<? super U, ? super U, ? extends U> reducer) {
4121 dl 1.151 return ForkJoinTasks.reduceKeys
4122     (this, transformer, reducer).invoke();
4123     }
4124    
4125     /**
4126     * Returns the result of accumulating the given transformation
4127     * of all keys using the given reducer to combine values, and
4128     * the given basis as an identity value.
4129     *
4130     * @param transformer a function returning the transformation
4131     * for an element
4132     * @param basis the identity (initial default value) for the reduction
4133     * @param reducer a commutative associative combining function
4134 jsr166 1.157 * @return the result of accumulating the given transformation
4135 dl 1.151 * of all keys
4136     */
4137     public double reduceKeysToDoubleInParallel
4138 dl 1.153 (DoubleFunction<? super K> transformer,
4139 dl 1.151 double basis,
4140 dl 1.153 DoubleBinaryOperator reducer) {
4141 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4142     (this, transformer, basis, reducer).invoke();
4143     }
4144    
4145     /**
4146     * Returns the result of accumulating the given transformation
4147     * of all keys using the given reducer to combine values, and
4148     * the given basis as an identity value.
4149     *
4150     * @param transformer a function returning the transformation
4151     * for an element
4152     * @param basis the identity (initial default value) for the reduction
4153     * @param reducer a commutative associative combining function
4154     * @return the result of accumulating the given transformation
4155     * of all keys
4156     */
4157     public long reduceKeysToLongInParallel
4158 dl 1.153 (LongFunction<? super K> transformer,
4159 dl 1.151 long basis,
4160 dl 1.153 LongBinaryOperator reducer) {
4161 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4162     (this, transformer, basis, reducer).invoke();
4163     }
4164    
4165     /**
4166     * Returns the result of accumulating the given transformation
4167     * of all keys using the given reducer to combine values, and
4168     * the given basis as an identity value.
4169     *
4170     * @param transformer a function returning the transformation
4171     * for an element
4172     * @param basis the identity (initial default value) for the reduction
4173     * @param reducer a commutative associative combining function
4174     * @return the result of accumulating the given transformation
4175     * of all keys
4176     */
4177     public int reduceKeysToIntInParallel
4178 dl 1.153 (IntFunction<? super K> transformer,
4179 dl 1.151 int basis,
4180 dl 1.153 IntBinaryOperator reducer) {
4181 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4182     (this, transformer, basis, reducer).invoke();
4183     }
4184    
4185     /**
4186     * Performs the given action for each value.
4187     *
4188     * @param action the action
4189     */
4190 dl 1.153 public void forEachValueInParallel(Block<? super V> action) {
4191 dl 1.151 ForkJoinTasks.forEachValue
4192     (this, action).invoke();
4193     }
4194    
4195     /**
4196     * Performs the given action for each non-null transformation
4197     * of each value.
4198     *
4199     * @param transformer a function returning the transformation
4200     * for an element, or null of there is no transformation (in
4201     * which case the action is not applied).
4202     */
4203     public <U> void forEachValueInParallel
4204 dl 1.153 (Function<? super V, ? extends U> transformer,
4205     Block<? super U> action) {
4206 dl 1.151 ForkJoinTasks.forEachValue
4207     (this, transformer, action).invoke();
4208     }
4209    
4210     /**
4211     * Returns a non-null result from applying the given search
4212     * function on each value, or null if none. Upon success,
4213     * further element processing is suppressed and the results of
4214     * any other parallel invocations of the search function are
4215     * ignored.
4216     *
4217     * @param searchFunction a function returning a non-null
4218     * result on success, else null
4219     * @return a non-null result from applying the given search
4220     * function on each value, or null if none
4221     */
4222     public <U> U searchValuesInParallel
4223 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4224 dl 1.151 return ForkJoinTasks.searchValues
4225     (this, searchFunction).invoke();
4226     }
4227    
4228     /**
4229     * Returns the result of accumulating all values using the
4230     * given reducer to combine values, or null if none.
4231     *
4232     * @param reducer a commutative associative combining function
4233 jsr166 1.157 * @return the result of accumulating all values
4234 dl 1.151 */
4235     public V reduceValuesInParallel
4236 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4237 dl 1.151 return ForkJoinTasks.reduceValues
4238     (this, reducer).invoke();
4239     }
4240    
4241     /**
4242     * Returns the result of accumulating the given transformation
4243     * of all values using the given reducer to combine values, or
4244     * null if none.
4245     *
4246     * @param transformer a function returning the transformation
4247     * for an element, or null of there is no transformation (in
4248     * which case it is not combined).
4249     * @param reducer a commutative associative combining function
4250     * @return the result of accumulating the given transformation
4251     * of all values
4252     */
4253     public <U> U reduceValuesInParallel
4254 dl 1.153 (Function<? super V, ? extends U> transformer,
4255     BiFunction<? super U, ? super U, ? extends U> reducer) {
4256 dl 1.151 return ForkJoinTasks.reduceValues
4257     (this, transformer, reducer).invoke();
4258     }
4259    
4260     /**
4261     * Returns the result of accumulating the given transformation
4262     * of all values using the given reducer to combine values,
4263     * and the given basis as an identity value.
4264     *
4265     * @param transformer a function returning the transformation
4266     * for an element
4267     * @param basis the identity (initial default value) for the reduction
4268     * @param reducer a commutative associative combining function
4269     * @return the result of accumulating the given transformation
4270     * of all values
4271     */
4272     public double reduceValuesToDoubleInParallel
4273 dl 1.153 (DoubleFunction<? super V> transformer,
4274 dl 1.151 double basis,
4275 dl 1.153 DoubleBinaryOperator reducer) {
4276 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4277     (this, transformer, basis, reducer).invoke();
4278     }
4279    
4280     /**
4281     * Returns the result of accumulating the given transformation
4282     * of all values using the given reducer to combine values,
4283     * and the given basis as an identity value.
4284     *
4285     * @param transformer a function returning the transformation
4286     * for an element
4287     * @param basis the identity (initial default value) for the reduction
4288     * @param reducer a commutative associative combining function
4289     * @return the result of accumulating the given transformation
4290     * of all values
4291     */
4292     public long reduceValuesToLongInParallel
4293 dl 1.153 (LongFunction<? super V> transformer,
4294 dl 1.151 long basis,
4295 dl 1.153 LongBinaryOperator reducer) {
4296 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4297     (this, transformer, basis, reducer).invoke();
4298     }
4299    
4300     /**
4301     * Returns the result of accumulating the given transformation
4302     * of all values using the given reducer to combine values,
4303     * and the given basis as an identity value.
4304     *
4305     * @param transformer a function returning the transformation
4306     * for an element
4307     * @param basis the identity (initial default value) for the reduction
4308     * @param reducer a commutative associative combining function
4309     * @return the result of accumulating the given transformation
4310     * of all values
4311     */
4312     public int reduceValuesToIntInParallel
4313 dl 1.153 (IntFunction<? super V> transformer,
4314 dl 1.151 int basis,
4315 dl 1.153 IntBinaryOperator reducer) {
4316 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4317     (this, transformer, basis, reducer).invoke();
4318     }
4319    
4320     /**
4321     * Performs the given action for each entry.
4322     *
4323     * @param action the action
4324     */
4325 dl 1.153 public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4326 dl 1.151 ForkJoinTasks.forEachEntry
4327     (this, action).invoke();
4328     }
4329    
4330     /**
4331     * Performs the given action for each non-null transformation
4332     * of each entry.
4333     *
4334     * @param transformer a function returning the transformation
4335     * for an element, or null of there is no transformation (in
4336     * which case the action is not applied).
4337     * @param action the action
4338     */
4339     public <U> void forEachEntryInParallel
4340 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4341     Block<? super U> action) {
4342 dl 1.151 ForkJoinTasks.forEachEntry
4343     (this, transformer, action).invoke();
4344     }
4345    
4346     /**
4347     * Returns a non-null result from applying the given search
4348     * function on each entry, or null if none. Upon success,
4349     * further element processing is suppressed and the results of
4350     * any other parallel invocations of the search function are
4351     * ignored.
4352     *
4353     * @param searchFunction a function returning a non-null
4354     * result on success, else null
4355     * @return a non-null result from applying the given search
4356     * function on each entry, or null if none
4357     */
4358     public <U> U searchEntriesInParallel
4359 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4360 dl 1.151 return ForkJoinTasks.searchEntries
4361     (this, searchFunction).invoke();
4362     }
4363    
4364     /**
4365     * Returns the result of accumulating all entries using the
4366     * given reducer to combine values, or null if none.
4367     *
4368     * @param reducer a commutative associative combining function
4369     * @return the result of accumulating all entries
4370     */
4371     public Map.Entry<K,V> reduceEntriesInParallel
4372 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4373 dl 1.151 return ForkJoinTasks.reduceEntries
4374     (this, reducer).invoke();
4375     }
4376    
4377     /**
4378     * Returns the result of accumulating the given transformation
4379     * of all entries using the given reducer to combine values,
4380     * or null if none.
4381     *
4382     * @param transformer a function returning the transformation
4383     * for an element, or null of there is no transformation (in
4384     * which case it is not combined).
4385     * @param reducer a commutative associative combining function
4386     * @return the result of accumulating the given transformation
4387     * of all entries
4388     */
4389     public <U> U reduceEntriesInParallel
4390 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4391     BiFunction<? super U, ? super U, ? extends U> reducer) {
4392 dl 1.151 return ForkJoinTasks.reduceEntries
4393     (this, transformer, reducer).invoke();
4394     }
4395    
4396     /**
4397     * Returns the result of accumulating the given transformation
4398     * of all entries using the given reducer to combine values,
4399     * and the given basis as an identity value.
4400     *
4401     * @param transformer a function returning the transformation
4402     * for an element
4403     * @param basis the identity (initial default value) for the reduction
4404     * @param reducer a commutative associative combining function
4405     * @return the result of accumulating the given transformation
4406     * of all entries
4407     */
4408     public double reduceEntriesToDoubleInParallel
4409 dl 1.153 (DoubleFunction<Map.Entry<K,V>> transformer,
4410 dl 1.151 double basis,
4411 dl 1.153 DoubleBinaryOperator reducer) {
4412 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4413     (this, transformer, basis, reducer).invoke();
4414     }
4415    
4416     /**
4417     * Returns the result of accumulating the given transformation
4418     * of all entries using the given reducer to combine values,
4419     * and the given basis as an identity value.
4420     *
4421     * @param transformer a function returning the transformation
4422     * for an element
4423     * @param basis the identity (initial default value) for the reduction
4424     * @param reducer a commutative associative combining function
4425 jsr166 1.157 * @return the result of accumulating the given transformation
4426 dl 1.151 * of all entries
4427     */
4428     public long reduceEntriesToLongInParallel
4429 dl 1.153 (LongFunction<Map.Entry<K,V>> transformer,
4430 dl 1.151 long basis,
4431 dl 1.153 LongBinaryOperator reducer) {
4432 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4433     (this, transformer, basis, reducer).invoke();
4434     }
4435    
4436     /**
4437     * Returns the result of accumulating the given transformation
4438     * of all entries using the given reducer to combine values,
4439     * and the given basis as an identity value.
4440     *
4441     * @param transformer a function returning the transformation
4442     * for an element
4443     * @param basis the identity (initial default value) for the reduction
4444     * @param reducer a commutative associative combining function
4445     * @return the result of accumulating the given transformation
4446     * of all entries
4447     */
4448     public int reduceEntriesToIntInParallel
4449 dl 1.153 (IntFunction<Map.Entry<K,V>> transformer,
4450 dl 1.151 int basis,
4451 dl 1.153 IntBinaryOperator reducer) {
4452 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4453     (this, transformer, basis, reducer).invoke();
4454     }
4455    
4456    
4457     /* ----------------Views -------------- */
4458    
4459     /**
4460     * Base class for views.
4461     */
4462     static abstract class CHMView<K, V> {
4463     final ConcurrentHashMap<K, V> map;
4464     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4465    
4466     /**
4467     * Returns the map backing this view.
4468     *
4469     * @return the map backing this view
4470     */
4471     public ConcurrentHashMap<K,V> getMap() { return map; }
4472    
4473     public final int size() { return map.size(); }
4474     public final boolean isEmpty() { return map.isEmpty(); }
4475     public final void clear() { map.clear(); }
4476    
4477     // implementations below rely on concrete classes supplying these
4478     abstract public Iterator<?> iterator();
4479     abstract public boolean contains(Object o);
4480     abstract public boolean remove(Object o);
4481    
4482     private static final String oomeMsg = "Required array size too large";
4483 dl 1.142
4484     public final Object[] toArray() {
4485     long sz = map.mappingCount();
4486     if (sz > (long)(MAX_ARRAY_SIZE))
4487     throw new OutOfMemoryError(oomeMsg);
4488     int n = (int)sz;
4489     Object[] r = new Object[n];
4490     int i = 0;
4491     Iterator<?> it = iterator();
4492     while (it.hasNext()) {
4493     if (i == n) {
4494     if (n >= MAX_ARRAY_SIZE)
4495     throw new OutOfMemoryError(oomeMsg);
4496     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4497     n = MAX_ARRAY_SIZE;
4498     else
4499     n += (n >>> 1) + 1;
4500     r = Arrays.copyOf(r, n);
4501     }
4502     r[i++] = it.next();
4503     }
4504     return (i == n) ? r : Arrays.copyOf(r, i);
4505     }
4506    
4507     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4508     long sz = map.mappingCount();
4509     if (sz > (long)(MAX_ARRAY_SIZE))
4510     throw new OutOfMemoryError(oomeMsg);
4511     int m = (int)sz;
4512     T[] r = (a.length >= m) ? a :
4513     (T[])java.lang.reflect.Array
4514     .newInstance(a.getClass().getComponentType(), m);
4515     int n = r.length;
4516     int i = 0;
4517     Iterator<?> it = iterator();
4518     while (it.hasNext()) {
4519     if (i == n) {
4520     if (n >= MAX_ARRAY_SIZE)
4521     throw new OutOfMemoryError(oomeMsg);
4522     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4523     n = MAX_ARRAY_SIZE;
4524     else
4525     n += (n >>> 1) + 1;
4526     r = Arrays.copyOf(r, n);
4527     }
4528     r[i++] = (T)it.next();
4529     }
4530     if (a == r && i < n) {
4531     r[i] = null; // null-terminate
4532     return r;
4533     }
4534     return (i == n) ? r : Arrays.copyOf(r, i);
4535     }
4536    
4537     public final int hashCode() {
4538     int h = 0;
4539     for (Iterator<?> it = iterator(); it.hasNext();)
4540     h += it.next().hashCode();
4541     return h;
4542     }
4543    
4544     public final String toString() {
4545     StringBuilder sb = new StringBuilder();
4546     sb.append('[');
4547     Iterator<?> it = iterator();
4548     if (it.hasNext()) {
4549     for (;;) {
4550     Object e = it.next();
4551     sb.append(e == this ? "(this Collection)" : e);
4552     if (!it.hasNext())
4553     break;
4554     sb.append(',').append(' ');
4555     }
4556     }
4557     return sb.append(']').toString();
4558     }
4559    
4560     public final boolean containsAll(Collection<?> c) {
4561     if (c != this) {
4562     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4563     Object e = it.next();
4564     if (e == null || !contains(e))
4565     return false;
4566     }
4567     }
4568     return true;
4569     }
4570    
4571     public final boolean removeAll(Collection<?> c) {
4572     boolean modified = false;
4573     for (Iterator<?> it = iterator(); it.hasNext();) {
4574     if (c.contains(it.next())) {
4575     it.remove();
4576     modified = true;
4577     }
4578     }
4579     return modified;
4580     }
4581    
4582     public final boolean retainAll(Collection<?> c) {
4583     boolean modified = false;
4584     for (Iterator<?> it = iterator(); it.hasNext();) {
4585     if (!c.contains(it.next())) {
4586     it.remove();
4587     modified = true;
4588     }
4589     }
4590     return modified;
4591     }
4592    
4593     }
4594    
4595     /**
4596     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4597     * which additions may optionally be enabled by mapping to a
4598     * common value. This class cannot be directly instantiated. See
4599     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4600     * {@link #newKeySet(int)}.
4601     */
4602 dl 1.149 public static class KeySetView<K,V> extends CHMView<K,V>
4603     implements Set<K>, java.io.Serializable {
4604 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4605     private final V value;
4606     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4607     super(map);
4608     this.value = value;
4609     }
4610    
4611     /**
4612     * Returns the default mapped value for additions,
4613     * or {@code null} if additions are not supported.
4614     *
4615     * @return the default mapped value for additions, or {@code null}
4616     * if not supported.
4617     */
4618     public V getMappedValue() { return value; }
4619    
4620     // implement Set API
4621    
4622     public boolean contains(Object o) { return map.containsKey(o); }
4623     public boolean remove(Object o) { return map.remove(o) != null; }
4624    
4625     /**
4626     * Returns a "weakly consistent" iterator that will never
4627     * throw {@link ConcurrentModificationException}, and
4628     * guarantees to traverse elements as they existed upon
4629     * construction of the iterator, and may (but is not
4630     * guaranteed to) reflect any modifications subsequent to
4631     * construction.
4632     *
4633     * @return an iterator over the keys of this map
4634     */
4635     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4636     public boolean add(K e) {
4637     V v;
4638     if ((v = value) == null)
4639     throw new UnsupportedOperationException();
4640     if (e == null)
4641     throw new NullPointerException();
4642 dl 1.149 return map.internalPut(e, v, true) == null;
4643 dl 1.142 }
4644     public boolean addAll(Collection<? extends K> c) {
4645     boolean added = false;
4646     V v;
4647     if ((v = value) == null)
4648     throw new UnsupportedOperationException();
4649     for (K e : c) {
4650     if (e == null)
4651     throw new NullPointerException();
4652 dl 1.149 if (map.internalPut(e, v, true) == null)
4653 dl 1.142 added = true;
4654     }
4655     return added;
4656     }
4657     public boolean equals(Object o) {
4658     Set<?> c;
4659     return ((o instanceof Set) &&
4660     ((c = (Set<?>)o) == this ||
4661     (containsAll(c) && c.containsAll(this))));
4662     }
4663 dl 1.153
4664     public Stream<K> stream() {
4665     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4666     }
4667     public Stream<K> parallelStream() {
4668     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4669     0);
4670     }
4671 dl 1.142 }
4672    
4673     /**
4674     * A view of a ConcurrentHashMap as a {@link Collection} of
4675     * values, in which additions are disabled. This class cannot be
4676     * directly instantiated. See {@link #values},
4677     *
4678     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4679     * that will never throw {@link ConcurrentModificationException},
4680     * and guarantees to traverse elements as they existed upon
4681     * construction of the iterator, and may (but is not guaranteed to)
4682     * reflect any modifications subsequent to construction.
4683     */
4684     public static final class ValuesView<K,V> extends CHMView<K,V>
4685     implements Collection<V> {
4686     ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4687     public final boolean contains(Object o) { return map.containsValue(o); }
4688     public final boolean remove(Object o) {
4689     if (o != null) {
4690     Iterator<V> it = new ValueIterator<K,V>(map);
4691     while (it.hasNext()) {
4692     if (o.equals(it.next())) {
4693     it.remove();
4694     return true;
4695     }
4696     }
4697     }
4698     return false;
4699     }
4700    
4701     /**
4702     * Returns a "weakly consistent" iterator that will never
4703     * throw {@link ConcurrentModificationException}, and
4704     * guarantees to traverse elements as they existed upon
4705     * construction of the iterator, and may (but is not
4706     * guaranteed to) reflect any modifications subsequent to
4707     * construction.
4708     *
4709     * @return an iterator over the values of this map
4710     */
4711     public final Iterator<V> iterator() {
4712     return new ValueIterator<K,V>(map);
4713     }
4714     public final boolean add(V e) {
4715     throw new UnsupportedOperationException();
4716     }
4717     public final boolean addAll(Collection<? extends V> c) {
4718     throw new UnsupportedOperationException();
4719     }
4720    
4721 dl 1.153 public Stream<V> stream() {
4722     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4723     }
4724    
4725     public Stream<V> parallelStream() {
4726     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4727     0);
4728     }
4729    
4730 dl 1.142 }
4731    
4732     /**
4733     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4734     * entries. This class cannot be directly instantiated. See
4735     * {@link #entrySet}.
4736     */
4737     public static final class EntrySetView<K,V> extends CHMView<K,V>
4738     implements Set<Map.Entry<K,V>> {
4739     EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4740     public final boolean contains(Object o) {
4741     Object k, v, r; Map.Entry<?,?> e;
4742     return ((o instanceof Map.Entry) &&
4743     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4744     (r = map.get(k)) != null &&
4745     (v = e.getValue()) != null &&
4746     (v == r || v.equals(r)));
4747     }
4748     public final boolean remove(Object o) {
4749     Object k, v; Map.Entry<?,?> e;
4750     return ((o instanceof Map.Entry) &&
4751     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4752     (v = e.getValue()) != null &&
4753     map.remove(k, v));
4754     }
4755    
4756     /**
4757     * Returns a "weakly consistent" iterator that will never
4758     * throw {@link ConcurrentModificationException}, and
4759     * guarantees to traverse elements as they existed upon
4760     * construction of the iterator, and may (but is not
4761     * guaranteed to) reflect any modifications subsequent to
4762     * construction.
4763     *
4764     * @return an iterator over the entries of this map
4765     */
4766     public final Iterator<Map.Entry<K,V>> iterator() {
4767     return new EntryIterator<K,V>(map);
4768     }
4769    
4770     public final boolean add(Entry<K,V> e) {
4771     K key = e.getKey();
4772     V value = e.getValue();
4773     if (key == null || value == null)
4774     throw new NullPointerException();
4775 dl 1.149 return map.internalPut(key, value, false) == null;
4776 dl 1.142 }
4777     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4778     boolean added = false;
4779     for (Entry<K,V> e : c) {
4780     if (add(e))
4781     added = true;
4782     }
4783     return added;
4784     }
4785     public boolean equals(Object o) {
4786     Set<?> c;
4787     return ((o instanceof Set) &&
4788     ((c = (Set<?>)o) == this ||
4789     (containsAll(c) && c.containsAll(this))));
4790     }
4791 dl 1.153
4792     public Stream<Map.Entry<K,V>> stream() {
4793     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4794     }
4795    
4796     public Stream<Map.Entry<K,V>> parallelStream() {
4797     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4798     0);
4799     }
4800 dl 1.142 }
4801    
4802 dl 1.119 // ---------------------------------------------------------------------
4803    
4804     /**
4805     * Predefined tasks for performing bulk parallel operations on
4806     * ConcurrentHashMaps. These tasks follow the forms and rules used
4807 dl 1.137 * for bulk operations. Each method has the same name, but returns
4808     * a task rather than invoking it. These methods may be useful in
4809     * custom applications such as submitting a task without waiting
4810     * for completion, using a custom pool, or combining with other
4811     * tasks.
4812 dl 1.119 */
4813     public static class ForkJoinTasks {
4814     private ForkJoinTasks() {}
4815    
4816     /**
4817     * Returns a task that when invoked, performs the given
4818     * action for each (key, value)
4819     *
4820     * @param map the map
4821     * @param action the action
4822     * @return the task
4823     */
4824 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4825 dl 1.119 (ConcurrentHashMap<K,V> map,
4826 dl 1.153 BiBlock<? super K, ? super V> action) {
4827 dl 1.119 if (action == null) throw new NullPointerException();
4828 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4829 dl 1.119 }
4830    
4831     /**
4832     * Returns a task that when invoked, performs the given
4833     * action for each non-null transformation of each (key, value)
4834     *
4835     * @param map the map
4836     * @param transformer a function returning the transformation
4837 jsr166 1.135 * for an element, or null if there is no transformation (in
4838 jsr166 1.134 * which case the action is not applied)
4839 dl 1.119 * @param action the action
4840     * @return the task
4841     */
4842 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4843 dl 1.119 (ConcurrentHashMap<K,V> map,
4844 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4845     Block<? super U> action) {
4846 dl 1.119 if (transformer == null || action == null)
4847     throw new NullPointerException();
4848     return new ForEachTransformedMappingTask<K,V,U>
4849 dl 1.146 (map, null, -1, transformer, action);
4850 dl 1.119 }
4851    
4852     /**
4853 dl 1.126 * Returns a task that when invoked, returns a non-null result
4854     * from applying the given search function on each (key,
4855     * value), or null if none. Upon success, further element
4856     * processing is suppressed and the results of any other
4857     * parallel invocations of the search function are ignored.
4858 dl 1.119 *
4859     * @param map the map
4860     * @param searchFunction a function returning a non-null
4861     * result on success, else null
4862     * @return the task
4863     */
4864     public static <K,V,U> ForkJoinTask<U> search
4865     (ConcurrentHashMap<K,V> map,
4866 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4867 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4868     return new SearchMappingsTask<K,V,U>
4869 dl 1.146 (map, null, -1, searchFunction,
4870 dl 1.119 new AtomicReference<U>());
4871     }
4872    
4873     /**
4874     * Returns a task that when invoked, returns the result of
4875     * accumulating the given transformation of all (key, value) pairs
4876     * using the given reducer to combine values, or null if none.
4877     *
4878     * @param map the map
4879     * @param transformer a function returning the transformation
4880 jsr166 1.135 * for an element, or null if there is no transformation (in
4881 dl 1.119 * which case it is not combined).
4882     * @param reducer a commutative associative combining function
4883     * @return the task
4884     */
4885     public static <K,V,U> ForkJoinTask<U> reduce
4886     (ConcurrentHashMap<K,V> map,
4887 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4888     BiFunction<? super U, ? super U, ? extends U> reducer) {
4889 dl 1.119 if (transformer == null || reducer == null)
4890     throw new NullPointerException();
4891     return new MapReduceMappingsTask<K,V,U>
4892 dl 1.130 (map, null, -1, null, transformer, reducer);
4893 dl 1.119 }
4894    
4895     /**
4896     * Returns a task that when invoked, returns the result of
4897     * accumulating the given transformation of all (key, value) pairs
4898     * using the given reducer to combine values, and the given
4899     * basis as an identity value.
4900     *
4901     * @param map the map
4902     * @param transformer a function returning the transformation
4903     * for an element
4904     * @param basis the identity (initial default value) for the reduction
4905     * @param reducer a commutative associative combining function
4906     * @return the task
4907     */
4908     public static <K,V> ForkJoinTask<Double> reduceToDouble
4909     (ConcurrentHashMap<K,V> map,
4910 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
4911 dl 1.119 double basis,
4912 dl 1.153 DoubleBinaryOperator reducer) {
4913 dl 1.119 if (transformer == null || reducer == null)
4914     throw new NullPointerException();
4915     return new MapReduceMappingsToDoubleTask<K,V>
4916 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4917 dl 1.119 }
4918    
4919     /**
4920     * Returns a task that when invoked, returns the result of
4921     * accumulating the given transformation of all (key, value) pairs
4922     * using the given reducer to combine values, and the given
4923     * basis as an identity value.
4924     *
4925     * @param map the map
4926     * @param transformer a function returning the transformation
4927     * for an element
4928     * @param basis the identity (initial default value) for the reduction
4929     * @param reducer a commutative associative combining function
4930     * @return the task
4931     */
4932     public static <K,V> ForkJoinTask<Long> reduceToLong
4933     (ConcurrentHashMap<K,V> map,
4934 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
4935 dl 1.119 long basis,
4936 dl 1.153 LongBinaryOperator reducer) {
4937 dl 1.119 if (transformer == null || reducer == null)
4938     throw new NullPointerException();
4939     return new MapReduceMappingsToLongTask<K,V>
4940 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4941 dl 1.119 }
4942    
4943     /**
4944     * Returns a task that when invoked, returns the result of
4945     * accumulating the given transformation of all (key, value) pairs
4946     * using the given reducer to combine values, and the given
4947     * basis as an identity value.
4948     *
4949     * @param transformer a function returning the transformation
4950     * for an element
4951     * @param basis the identity (initial default value) for the reduction
4952     * @param reducer a commutative associative combining function
4953     * @return the task
4954     */
4955     public static <K,V> ForkJoinTask<Integer> reduceToInt
4956     (ConcurrentHashMap<K,V> map,
4957 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
4958 dl 1.119 int basis,
4959 dl 1.153 IntBinaryOperator reducer) {
4960 dl 1.119 if (transformer == null || reducer == null)
4961     throw new NullPointerException();
4962     return new MapReduceMappingsToIntTask<K,V>
4963 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4964 dl 1.119 }
4965    
4966     /**
4967     * Returns a task that when invoked, performs the given action
4968 jsr166 1.123 * for each key.
4969 dl 1.119 *
4970     * @param map the map
4971     * @param action the action
4972     * @return the task
4973     */
4974 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4975 dl 1.119 (ConcurrentHashMap<K,V> map,
4976 dl 1.153 Block<? super K> action) {
4977 dl 1.119 if (action == null) throw new NullPointerException();
4978 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4979 dl 1.119 }
4980    
4981     /**
4982     * Returns a task that when invoked, performs the given action
4983 jsr166 1.123 * for each non-null transformation of each key.
4984 dl 1.119 *
4985     * @param map the map
4986     * @param transformer a function returning the transformation
4987 jsr166 1.135 * for an element, or null if there is no transformation (in
4988 jsr166 1.134 * which case the action is not applied)
4989 dl 1.119 * @param action the action
4990     * @return the task
4991     */
4992 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4993 dl 1.119 (ConcurrentHashMap<K,V> map,
4994 dl 1.153 Function<? super K, ? extends U> transformer,
4995     Block<? super U> action) {
4996 dl 1.119 if (transformer == null || action == null)
4997     throw new NullPointerException();
4998     return new ForEachTransformedKeyTask<K,V,U>
4999 dl 1.146 (map, null, -1, transformer, action);
5000 dl 1.119 }
5001    
5002     /**
5003     * Returns a task that when invoked, returns a non-null result
5004     * from applying the given search function on each key, or
5005 dl 1.126 * null if none. Upon success, further element processing is
5006     * suppressed and the results of any other parallel
5007     * invocations of the search function are ignored.
5008 dl 1.119 *
5009     * @param map the map
5010     * @param searchFunction a function returning a non-null
5011     * result on success, else null
5012     * @return the task
5013     */
5014     public static <K,V,U> ForkJoinTask<U> searchKeys
5015     (ConcurrentHashMap<K,V> map,
5016 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5017 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5018     return new SearchKeysTask<K,V,U>
5019 dl 1.146 (map, null, -1, searchFunction,
5020 dl 1.119 new AtomicReference<U>());
5021     }
5022    
5023     /**
5024     * Returns a task that when invoked, returns the result of
5025     * accumulating all keys using the given reducer to combine
5026     * values, or null if none.
5027     *
5028     * @param map the map
5029     * @param reducer a commutative associative combining function
5030     * @return the task
5031     */
5032     public static <K,V> ForkJoinTask<K> reduceKeys
5033     (ConcurrentHashMap<K,V> map,
5034 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5035 dl 1.119 if (reducer == null) throw new NullPointerException();
5036     return new ReduceKeysTask<K,V>
5037 dl 1.130 (map, null, -1, null, reducer);
5038 dl 1.119 }
5039 jsr166 1.125
5040 dl 1.119 /**
5041     * Returns a task that when invoked, returns the result of
5042     * accumulating the given transformation of all keys using the given
5043     * reducer to combine values, or null if none.
5044     *
5045     * @param map the map
5046     * @param transformer a function returning the transformation
5047 jsr166 1.135 * for an element, or null if there is no transformation (in
5048 dl 1.119 * which case it is not combined).
5049     * @param reducer a commutative associative combining function
5050     * @return the task
5051     */
5052     public static <K,V,U> ForkJoinTask<U> reduceKeys
5053     (ConcurrentHashMap<K,V> map,
5054 dl 1.153 Function<? super K, ? extends U> transformer,
5055     BiFunction<? super U, ? super U, ? extends U> reducer) {
5056 dl 1.119 if (transformer == null || reducer == null)
5057     throw new NullPointerException();
5058     return new MapReduceKeysTask<K,V,U>
5059 dl 1.130 (map, null, -1, null, transformer, reducer);
5060 dl 1.119 }
5061    
5062     /**
5063     * Returns a task that when invoked, returns the result of
5064     * accumulating the given transformation of all keys using the given
5065     * reducer to combine values, and the given basis as an
5066     * identity value.
5067     *
5068     * @param map the map
5069     * @param transformer a function returning the transformation
5070     * for an element
5071     * @param basis the identity (initial default value) for the reduction
5072     * @param reducer a commutative associative combining function
5073     * @return the task
5074     */
5075     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5076     (ConcurrentHashMap<K,V> map,
5077 dl 1.153 DoubleFunction<? super K> transformer,
5078 dl 1.119 double basis,
5079 dl 1.153 DoubleBinaryOperator reducer) {
5080 dl 1.119 if (transformer == null || reducer == null)
5081     throw new NullPointerException();
5082     return new MapReduceKeysToDoubleTask<K,V>
5083 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5084 dl 1.119 }
5085    
5086     /**
5087     * Returns a task that when invoked, returns the result of
5088     * accumulating the given transformation of all keys using the given
5089     * reducer to combine values, and the given basis as an
5090     * identity value.
5091     *
5092     * @param map the map
5093     * @param transformer a function returning the transformation
5094     * for an element
5095     * @param basis the identity (initial default value) for the reduction
5096     * @param reducer a commutative associative combining function
5097     * @return the task
5098     */
5099     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5100     (ConcurrentHashMap<K,V> map,
5101 dl 1.153 LongFunction<? super K> transformer,
5102 dl 1.119 long basis,
5103 dl 1.153 LongBinaryOperator reducer) {
5104 dl 1.119 if (transformer == null || reducer == null)
5105     throw new NullPointerException();
5106     return new MapReduceKeysToLongTask<K,V>
5107 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5108 dl 1.119 }
5109    
5110     /**
5111     * Returns a task that when invoked, returns the result of
5112     * accumulating the given transformation of all keys using the given
5113     * reducer to combine values, and the given basis as an
5114     * identity value.
5115     *
5116     * @param map the map
5117     * @param transformer a function returning the transformation
5118     * for an element
5119     * @param basis the identity (initial default value) for the reduction
5120     * @param reducer a commutative associative combining function
5121     * @return the task
5122     */
5123     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5124     (ConcurrentHashMap<K,V> map,
5125 dl 1.153 IntFunction<? super K> transformer,
5126 dl 1.119 int basis,
5127 dl 1.153 IntBinaryOperator reducer) {
5128 dl 1.119 if (transformer == null || reducer == null)
5129     throw new NullPointerException();
5130     return new MapReduceKeysToIntTask<K,V>
5131 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5132 dl 1.119 }
5133    
5134     /**
5135     * Returns a task that when invoked, performs the given action
5136 jsr166 1.123 * for each value.
5137 dl 1.119 *
5138     * @param map the map
5139     * @param action the action
5140     */
5141 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5142 dl 1.119 (ConcurrentHashMap<K,V> map,
5143 dl 1.153 Block<? super V> action) {
5144 dl 1.119 if (action == null) throw new NullPointerException();
5145 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5146 dl 1.119 }
5147    
5148     /**
5149     * Returns a task that when invoked, performs the given action
5150 jsr166 1.123 * for each non-null transformation of each value.
5151 dl 1.119 *
5152     * @param map the map
5153     * @param transformer a function returning the transformation
5154 jsr166 1.135 * for an element, or null if there is no transformation (in
5155 jsr166 1.134 * which case the action is not applied)
5156 dl 1.119 * @param action the action
5157     */
5158 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5159 dl 1.119 (ConcurrentHashMap<K,V> map,
5160 dl 1.153 Function<? super V, ? extends U> transformer,
5161     Block<? super U> action) {
5162 dl 1.119 if (transformer == null || action == null)
5163     throw new NullPointerException();
5164     return new ForEachTransformedValueTask<K,V,U>
5165 dl 1.146 (map, null, -1, transformer, action);
5166 dl 1.119 }
5167    
5168     /**
5169     * Returns a task that when invoked, returns a non-null result
5170     * from applying the given search function on each value, or
5171 dl 1.126 * null if none. Upon success, further element processing is
5172     * suppressed and the results of any other parallel
5173     * invocations of the search function are ignored.
5174 dl 1.119 *
5175     * @param map the map
5176     * @param searchFunction a function returning a non-null
5177     * result on success, else null
5178     * @return the task
5179     */
5180     public static <K,V,U> ForkJoinTask<U> searchValues
5181     (ConcurrentHashMap<K,V> map,
5182 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5183 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5184     return new SearchValuesTask<K,V,U>
5185 dl 1.146 (map, null, -1, searchFunction,
5186 dl 1.119 new AtomicReference<U>());
5187     }
5188    
5189     /**
5190     * Returns a task that when invoked, returns the result of
5191     * accumulating all values using the given reducer to combine
5192     * values, or null if none.
5193     *
5194     * @param map the map
5195     * @param reducer a commutative associative combining function
5196     * @return the task
5197     */
5198     public static <K,V> ForkJoinTask<V> reduceValues
5199     (ConcurrentHashMap<K,V> map,
5200 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5201 dl 1.119 if (reducer == null) throw new NullPointerException();
5202     return new ReduceValuesTask<K,V>
5203 dl 1.130 (map, null, -1, null, reducer);
5204 dl 1.119 }
5205    
5206     /**
5207     * Returns a task that when invoked, returns the result of
5208     * accumulating the given transformation of all values using the
5209     * given reducer to combine values, or null if none.
5210     *
5211     * @param map the map
5212     * @param transformer a function returning the transformation
5213 jsr166 1.135 * for an element, or null if there is no transformation (in
5214 dl 1.119 * which case it is not combined).
5215     * @param reducer a commutative associative combining function
5216     * @return the task
5217     */
5218     public static <K,V,U> ForkJoinTask<U> reduceValues
5219     (ConcurrentHashMap<K,V> map,
5220 dl 1.153 Function<? super V, ? extends U> transformer,
5221     BiFunction<? super U, ? super U, ? extends U> reducer) {
5222 dl 1.119 if (transformer == null || reducer == null)
5223     throw new NullPointerException();
5224     return new MapReduceValuesTask<K,V,U>
5225 dl 1.130 (map, null, -1, null, transformer, reducer);
5226 dl 1.119 }
5227    
5228     /**
5229     * Returns a task that when invoked, returns the result of
5230     * accumulating the given transformation of all values using the
5231     * given reducer to combine values, and the given basis as an
5232     * identity value.
5233     *
5234     * @param map the map
5235     * @param transformer a function returning the transformation
5236     * for an element
5237     * @param basis the identity (initial default value) for the reduction
5238     * @param reducer a commutative associative combining function
5239     * @return the task
5240     */
5241     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5242     (ConcurrentHashMap<K,V> map,
5243 dl 1.153 DoubleFunction<? super V> transformer,
5244 dl 1.119 double basis,
5245 dl 1.153 DoubleBinaryOperator reducer) {
5246 dl 1.119 if (transformer == null || reducer == null)
5247     throw new NullPointerException();
5248     return new MapReduceValuesToDoubleTask<K,V>
5249 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5250 dl 1.119 }
5251    
5252     /**
5253     * Returns a task that when invoked, returns the result of
5254     * accumulating the given transformation of all values using the
5255     * given reducer to combine values, and the given basis as an
5256     * identity value.
5257     *
5258     * @param map the map
5259     * @param transformer a function returning the transformation
5260     * for an element
5261     * @param basis the identity (initial default value) for the reduction
5262     * @param reducer a commutative associative combining function
5263     * @return the task
5264     */
5265     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5266     (ConcurrentHashMap<K,V> map,
5267 dl 1.153 LongFunction<? super V> transformer,
5268 dl 1.119 long basis,
5269 dl 1.153 LongBinaryOperator reducer) {
5270 dl 1.119 if (transformer == null || reducer == null)
5271     throw new NullPointerException();
5272     return new MapReduceValuesToLongTask<K,V>
5273 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5274 dl 1.119 }
5275    
5276     /**
5277     * Returns a task that when invoked, returns the result of
5278     * accumulating the given transformation of all values using the
5279     * given reducer to combine values, and the given basis as an
5280     * identity value.
5281     *
5282     * @param map the map
5283     * @param transformer a function returning the transformation
5284     * for an element
5285     * @param basis the identity (initial default value) for the reduction
5286     * @param reducer a commutative associative combining function
5287     * @return the task
5288     */
5289     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5290     (ConcurrentHashMap<K,V> map,
5291 dl 1.153 IntFunction<? super V> transformer,
5292 dl 1.119 int basis,
5293 dl 1.153 IntBinaryOperator reducer) {
5294 dl 1.119 if (transformer == null || reducer == null)
5295     throw new NullPointerException();
5296     return new MapReduceValuesToIntTask<K,V>
5297 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5298 dl 1.119 }
5299    
5300     /**
5301     * Returns a task that when invoked, perform the given action
5302 jsr166 1.123 * for each entry.
5303 dl 1.119 *
5304     * @param map the map
5305     * @param action the action
5306     */
5307 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5308 dl 1.119 (ConcurrentHashMap<K,V> map,
5309 dl 1.153 Block<? super Map.Entry<K,V>> action) {
5310 dl 1.119 if (action == null) throw new NullPointerException();
5311 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5312 dl 1.119 }
5313    
5314     /**
5315     * Returns a task that when invoked, perform the given action
5316 jsr166 1.123 * for each non-null transformation of each entry.
5317 dl 1.119 *
5318     * @param map the map
5319     * @param transformer a function returning the transformation
5320 jsr166 1.135 * for an element, or null if there is no transformation (in
5321 jsr166 1.134 * which case the action is not applied)
5322 dl 1.119 * @param action the action
5323     */
5324 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5325 dl 1.119 (ConcurrentHashMap<K,V> map,
5326 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5327     Block<? super U> action) {
5328 dl 1.119 if (transformer == null || action == null)
5329     throw new NullPointerException();
5330     return new ForEachTransformedEntryTask<K,V,U>
5331 dl 1.146 (map, null, -1, transformer, action);
5332 dl 1.119 }
5333    
5334     /**
5335     * Returns a task that when invoked, returns a non-null result
5336     * from applying the given search function on each entry, or
5337 dl 1.126 * null if none. Upon success, further element processing is
5338     * suppressed and the results of any other parallel
5339     * invocations of the search function are ignored.
5340 dl 1.119 *
5341     * @param map the map
5342     * @param searchFunction a function returning a non-null
5343     * result on success, else null
5344     * @return the task
5345     */
5346     public static <K,V,U> ForkJoinTask<U> searchEntries
5347     (ConcurrentHashMap<K,V> map,
5348 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5349 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5350     return new SearchEntriesTask<K,V,U>
5351 dl 1.146 (map, null, -1, searchFunction,
5352 dl 1.119 new AtomicReference<U>());
5353     }
5354    
5355     /**
5356     * Returns a task that when invoked, returns the result of
5357     * accumulating all entries using the given reducer to combine
5358     * values, or null if none.
5359     *
5360     * @param map the map
5361     * @param reducer a commutative associative combining function
5362     * @return the task
5363     */
5364     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5365     (ConcurrentHashMap<K,V> map,
5366 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5367 dl 1.119 if (reducer == null) throw new NullPointerException();
5368     return new ReduceEntriesTask<K,V>
5369 dl 1.130 (map, null, -1, null, reducer);
5370 dl 1.119 }
5371    
5372     /**
5373     * Returns a task that when invoked, returns the result of
5374     * accumulating the given transformation of all entries using the
5375     * given reducer to combine values, or null if none.
5376     *
5377     * @param map the map
5378     * @param transformer a function returning the transformation
5379 jsr166 1.135 * for an element, or null if there is no transformation (in
5380 dl 1.119 * which case it is not combined).
5381     * @param reducer a commutative associative combining function
5382     * @return the task
5383     */
5384     public static <K,V,U> ForkJoinTask<U> reduceEntries
5385     (ConcurrentHashMap<K,V> map,
5386 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5387     BiFunction<? super U, ? super U, ? extends U> reducer) {
5388 dl 1.119 if (transformer == null || reducer == null)
5389     throw new NullPointerException();
5390     return new MapReduceEntriesTask<K,V,U>
5391 dl 1.130 (map, null, -1, null, transformer, reducer);
5392 dl 1.119 }
5393    
5394     /**
5395     * Returns a task that when invoked, returns the result of
5396     * accumulating the given transformation of all entries using the
5397     * given reducer to combine values, and the given basis as an
5398     * identity value.
5399     *
5400     * @param map the map
5401     * @param transformer a function returning the transformation
5402     * for an element
5403     * @param basis the identity (initial default value) for the reduction
5404     * @param reducer a commutative associative combining function
5405     * @return the task
5406     */
5407     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5408     (ConcurrentHashMap<K,V> map,
5409 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
5410 dl 1.119 double basis,
5411 dl 1.153 DoubleBinaryOperator reducer) {
5412 dl 1.119 if (transformer == null || reducer == null)
5413     throw new NullPointerException();
5414     return new MapReduceEntriesToDoubleTask<K,V>
5415 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5416 dl 1.119 }
5417    
5418     /**
5419     * Returns a task that when invoked, returns the result of
5420     * accumulating the given transformation of all entries using the
5421     * given reducer to combine values, and the given basis as an
5422     * identity value.
5423     *
5424     * @param map the map
5425     * @param transformer a function returning the transformation
5426     * for an element
5427     * @param basis the identity (initial default value) for the reduction
5428     * @param reducer a commutative associative combining function
5429     * @return the task
5430     */
5431     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5432     (ConcurrentHashMap<K,V> map,
5433 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
5434 dl 1.119 long basis,
5435 dl 1.153 LongBinaryOperator reducer) {
5436 dl 1.119 if (transformer == null || reducer == null)
5437     throw new NullPointerException();
5438     return new MapReduceEntriesToLongTask<K,V>
5439 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5440 dl 1.119 }
5441    
5442     /**
5443     * Returns a task that when invoked, returns the result of
5444     * accumulating the given transformation of all entries using the
5445     * given reducer to combine values, and the given basis as an
5446     * identity value.
5447     *
5448     * @param map the map
5449     * @param transformer a function returning the transformation
5450     * for an element
5451     * @param basis the identity (initial default value) for the reduction
5452     * @param reducer a commutative associative combining function
5453     * @return the task
5454     */
5455     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5456     (ConcurrentHashMap<K,V> map,
5457 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
5458 dl 1.119 int basis,
5459 dl 1.153 IntBinaryOperator reducer) {
5460 dl 1.119 if (transformer == null || reducer == null)
5461     throw new NullPointerException();
5462     return new MapReduceEntriesToIntTask<K,V>
5463 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5464 dl 1.119 }
5465     }
5466    
5467     // -------------------------------------------------------
5468    
5469     /*
5470     * Task classes. Coded in a regular but ugly format/style to
5471     * simplify checks that each variant differs in the right way from
5472 dl 1.149 * others. The null screenings exist because compilers cannot tell
5473     * that we've already null-checked task arguments, so we force
5474     * simplest hoisted bypass to help avoid convoluted traps.
5475 dl 1.119 */
5476    
5477 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5478 dl 1.146 extends Traverser<K,V,Void> {
5479 dl 1.153 final Block<? super K> action;
5480 dl 1.119 ForEachKeyTask
5481 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5482 dl 1.153 Block<? super K> action) {
5483 dl 1.146 super(m, p, b);
5484 dl 1.119 this.action = action;
5485     }
5486 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5487 dl 1.153 final Block<? super K> action;
5488 dl 1.149 if ((action = this.action) != null) {
5489     for (int b; (b = preSplit()) > 0;)
5490     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5491     while (advance() != null)
5492 dl 1.153 action.accept((K)nextKey);
5493 dl 1.149 propagateCompletion();
5494     }
5495 dl 1.119 }
5496     }
5497    
5498 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5499 dl 1.146 extends Traverser<K,V,Void> {
5500 dl 1.153 final Block<? super V> action;
5501 dl 1.119 ForEachValueTask
5502 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5503 dl 1.153 Block<? super V> action) {
5504 dl 1.146 super(m, p, b);
5505 dl 1.119 this.action = action;
5506     }
5507 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5508 dl 1.153 final Block<? super V> action;
5509 dl 1.149 if ((action = this.action) != null) {
5510     for (int b; (b = preSplit()) > 0;)
5511     new ForEachValueTask<K,V>(map, this, b, action).fork();
5512 dl 1.151 V v;
5513 dl 1.149 while ((v = advance()) != null)
5514 dl 1.153 action.accept(v);
5515 dl 1.149 propagateCompletion();
5516     }
5517 dl 1.119 }
5518     }
5519    
5520 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5521 dl 1.146 extends Traverser<K,V,Void> {
5522 dl 1.153 final Block<? super Entry<K,V>> action;
5523 dl 1.119 ForEachEntryTask
5524 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5525 dl 1.153 Block<? super Entry<K,V>> action) {
5526 dl 1.146 super(m, p, b);
5527 dl 1.119 this.action = action;
5528     }
5529 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5530 dl 1.153 final Block<? super Entry<K,V>> action;
5531 dl 1.149 if ((action = this.action) != null) {
5532     for (int b; (b = preSplit()) > 0;)
5533     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5534 dl 1.151 V v;
5535 dl 1.149 while ((v = advance()) != null)
5536 dl 1.153 action.accept(entryFor((K)nextKey, v));
5537 dl 1.149 propagateCompletion();
5538     }
5539 dl 1.119 }
5540     }
5541    
5542 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5543 dl 1.146 extends Traverser<K,V,Void> {
5544 dl 1.153 final BiBlock<? super K, ? super V> action;
5545 dl 1.119 ForEachMappingTask
5546 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5547 dl 1.153 BiBlock<? super K,? super V> action) {
5548 dl 1.146 super(m, p, b);
5549 dl 1.119 this.action = action;
5550     }
5551 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5552 dl 1.153 final BiBlock<? super K, ? super V> action;
5553 dl 1.149 if ((action = this.action) != null) {
5554     for (int b; (b = preSplit()) > 0;)
5555     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5556 dl 1.151 V v;
5557 dl 1.149 while ((v = advance()) != null)
5558 dl 1.153 action.accept((K)nextKey, v);
5559 dl 1.149 propagateCompletion();
5560     }
5561 dl 1.119 }
5562     }
5563    
5564 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5565 dl 1.146 extends Traverser<K,V,Void> {
5566 dl 1.153 final Function<? super K, ? extends U> transformer;
5567     final Block<? super U> action;
5568 dl 1.119 ForEachTransformedKeyTask
5569 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5570 dl 1.153 Function<? super K, ? extends U> transformer, Block<? super U> action) {
5571 dl 1.146 super(m, p, b);
5572     this.transformer = transformer; this.action = action;
5573     }
5574     @SuppressWarnings("unchecked") public final void compute() {
5575 dl 1.153 final Function<? super K, ? extends U> transformer;
5576     final Block<? super U> action;
5577 dl 1.149 if ((transformer = this.transformer) != null &&
5578     (action = this.action) != null) {
5579     for (int b; (b = preSplit()) > 0;)
5580     new ForEachTransformedKeyTask<K,V,U>
5581     (map, this, b, transformer, action).fork();
5582     U u;
5583     while (advance() != null) {
5584     if ((u = transformer.apply((K)nextKey)) != null)
5585 dl 1.153 action.accept(u);
5586 dl 1.149 }
5587     propagateCompletion();
5588 dl 1.119 }
5589     }
5590     }
5591    
5592 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5593 dl 1.146 extends Traverser<K,V,Void> {
5594 dl 1.153 final Function<? super V, ? extends U> transformer;
5595     final Block<? super U> action;
5596 dl 1.119 ForEachTransformedValueTask
5597 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5598 dl 1.153 Function<? super V, ? extends U> transformer, Block<? super U> action) {
5599 dl 1.146 super(m, p, b);
5600     this.transformer = transformer; this.action = action;
5601     }
5602     @SuppressWarnings("unchecked") public final void compute() {
5603 dl 1.153 final Function<? super V, ? extends U> transformer;
5604     final Block<? super U> action;
5605 dl 1.149 if ((transformer = this.transformer) != null &&
5606     (action = this.action) != null) {
5607     for (int b; (b = preSplit()) > 0;)
5608     new ForEachTransformedValueTask<K,V,U>
5609     (map, this, b, transformer, action).fork();
5610 dl 1.151 V v; U u;
5611 dl 1.149 while ((v = advance()) != null) {
5612 dl 1.151 if ((u = transformer.apply(v)) != null)
5613 dl 1.153 action.accept(u);
5614 dl 1.149 }
5615     propagateCompletion();
5616 dl 1.119 }
5617     }
5618 tim 1.1 }
5619    
5620 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5621 dl 1.146 extends Traverser<K,V,Void> {
5622 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5623     final Block<? super U> action;
5624 dl 1.119 ForEachTransformedEntryTask
5625 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5626 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5627 dl 1.146 super(m, p, b);
5628     this.transformer = transformer; this.action = action;
5629     }
5630     @SuppressWarnings("unchecked") public final void compute() {
5631 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5632     final Block<? super U> action;
5633 dl 1.149 if ((transformer = this.transformer) != null &&
5634     (action = this.action) != null) {
5635     for (int b; (b = preSplit()) > 0;)
5636     new ForEachTransformedEntryTask<K,V,U>
5637     (map, this, b, transformer, action).fork();
5638 dl 1.151 V v; U u;
5639 dl 1.149 while ((v = advance()) != null) {
5640     if ((u = transformer.apply(entryFor((K)nextKey,
5641 dl 1.151 v))) != null)
5642 dl 1.153 action.accept(u);
5643 dl 1.149 }
5644     propagateCompletion();
5645 dl 1.119 }
5646     }
5647 tim 1.1 }
5648    
5649 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5650 dl 1.146 extends Traverser<K,V,Void> {
5651 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5652     final Block<? super U> action;
5653 dl 1.119 ForEachTransformedMappingTask
5654 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5655 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5656     Block<? super U> action) {
5657 dl 1.146 super(m, p, b);
5658     this.transformer = transformer; this.action = action;
5659 dl 1.119 }
5660 dl 1.146 @SuppressWarnings("unchecked") public final void compute() {
5661 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5662     final Block<? super U> action;
5663 dl 1.149 if ((transformer = this.transformer) != null &&
5664     (action = this.action) != null) {
5665     for (int b; (b = preSplit()) > 0;)
5666     new ForEachTransformedMappingTask<K,V,U>
5667     (map, this, b, transformer, action).fork();
5668 dl 1.151 V v; U u;
5669 dl 1.149 while ((v = advance()) != null) {
5670 dl 1.151 if ((u = transformer.apply((K)nextKey, v)) != null)
5671 dl 1.153 action.accept(u);
5672 dl 1.149 }
5673     propagateCompletion();
5674 dl 1.119 }
5675     }
5676 tim 1.1 }
5677    
5678 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5679 dl 1.146 extends Traverser<K,V,U> {
5680 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5681 dl 1.119 final AtomicReference<U> result;
5682     SearchKeysTask
5683 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5684 dl 1.153 Function<? super K, ? extends U> searchFunction,
5685 dl 1.119 AtomicReference<U> result) {
5686 dl 1.146 super(m, p, b);
5687 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5688     }
5689 dl 1.146 public final U getRawResult() { return result.get(); }
5690     @SuppressWarnings("unchecked") public final void compute() {
5691 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5692 dl 1.146 final AtomicReference<U> result;
5693 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5694     (result = this.result) != null) {
5695     for (int b;;) {
5696     if (result.get() != null)
5697     return;
5698     if ((b = preSplit()) <= 0)
5699     break;
5700     new SearchKeysTask<K,V,U>
5701     (map, this, b, searchFunction, result).fork();
5702 dl 1.128 }
5703 dl 1.149 while (result.get() == null) {
5704     U u;
5705     if (advance() == null) {
5706     propagateCompletion();
5707     break;
5708     }
5709     if ((u = searchFunction.apply((K)nextKey)) != null) {
5710     if (result.compareAndSet(null, u))
5711     quietlyCompleteRoot();
5712     break;
5713     }
5714 dl 1.119 }
5715     }
5716     }
5717 tim 1.1 }
5718    
5719 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5720 dl 1.146 extends Traverser<K,V,U> {
5721 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5722 dl 1.119 final AtomicReference<U> result;
5723     SearchValuesTask
5724 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5725 dl 1.153 Function<? super V, ? extends U> searchFunction,
5726 dl 1.119 AtomicReference<U> result) {
5727 dl 1.146 super(m, p, b);
5728 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5729     }
5730 dl 1.146 public final U getRawResult() { return result.get(); }
5731     @SuppressWarnings("unchecked") public final void compute() {
5732 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5733 dl 1.146 final AtomicReference<U> result;
5734 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5735     (result = this.result) != null) {
5736     for (int b;;) {
5737     if (result.get() != null)
5738     return;
5739     if ((b = preSplit()) <= 0)
5740     break;
5741     new SearchValuesTask<K,V,U>
5742     (map, this, b, searchFunction, result).fork();
5743 dl 1.128 }
5744 dl 1.149 while (result.get() == null) {
5745 dl 1.151 V v; U u;
5746 dl 1.149 if ((v = advance()) == null) {
5747     propagateCompletion();
5748     break;
5749     }
5750 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5751 dl 1.149 if (result.compareAndSet(null, u))
5752     quietlyCompleteRoot();
5753     break;
5754     }
5755 dl 1.119 }
5756     }
5757     }
5758     }
5759 tim 1.11
5760 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5761 dl 1.146 extends Traverser<K,V,U> {
5762 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5763 dl 1.119 final AtomicReference<U> result;
5764     SearchEntriesTask
5765 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5766 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5767 dl 1.119 AtomicReference<U> result) {
5768 dl 1.146 super(m, p, b);
5769 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5770     }
5771 dl 1.146 public final U getRawResult() { return result.get(); }
5772     @SuppressWarnings("unchecked") public final void compute() {
5773 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5774 dl 1.146 final AtomicReference<U> result;
5775 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5776     (result = this.result) != null) {
5777     for (int b;;) {
5778     if (result.get() != null)
5779     return;
5780     if ((b = preSplit()) <= 0)
5781     break;
5782     new SearchEntriesTask<K,V,U>
5783     (map, this, b, searchFunction, result).fork();
5784 dl 1.128 }
5785 dl 1.149 while (result.get() == null) {
5786 dl 1.151 V v; U u;
5787 dl 1.149 if ((v = advance()) == null) {
5788     propagateCompletion();
5789     break;
5790     }
5791     if ((u = searchFunction.apply(entryFor((K)nextKey,
5792 dl 1.151 v))) != null) {
5793 dl 1.149 if (result.compareAndSet(null, u))
5794     quietlyCompleteRoot();
5795     return;
5796     }
5797 dl 1.119 }
5798     }
5799     }
5800     }
5801 tim 1.1
5802 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5803 dl 1.146 extends Traverser<K,V,U> {
5804 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5805 dl 1.119 final AtomicReference<U> result;
5806     SearchMappingsTask
5807 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5808 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5809 dl 1.119 AtomicReference<U> result) {
5810 dl 1.146 super(m, p, b);
5811 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5812     }
5813 dl 1.146 public final U getRawResult() { return result.get(); }
5814     @SuppressWarnings("unchecked") public final void compute() {
5815 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5816 dl 1.146 final AtomicReference<U> result;
5817 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5818     (result = this.result) != null) {
5819     for (int b;;) {
5820     if (result.get() != null)
5821     return;
5822     if ((b = preSplit()) <= 0)
5823     break;
5824     new SearchMappingsTask<K,V,U>
5825     (map, this, b, searchFunction, result).fork();
5826 dl 1.128 }
5827 dl 1.149 while (result.get() == null) {
5828 dl 1.151 V v; U u;
5829 dl 1.149 if ((v = advance()) == null) {
5830     propagateCompletion();
5831     break;
5832     }
5833 dl 1.151 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5834 dl 1.149 if (result.compareAndSet(null, u))
5835     quietlyCompleteRoot();
5836     break;
5837     }
5838 dl 1.119 }
5839     }
5840 tim 1.1 }
5841 dl 1.119 }
5842 tim 1.1
5843 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5844 dl 1.146 extends Traverser<K,V,K> {
5845 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5846 dl 1.119 K result;
5847 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5848 dl 1.119 ReduceKeysTask
5849 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5850 dl 1.128 ReduceKeysTask<K,V> nextRight,
5851 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5852 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5853 dl 1.119 this.reducer = reducer;
5854     }
5855 dl 1.146 public final K getRawResult() { return result; }
5856     @SuppressWarnings("unchecked") public final void compute() {
5857 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5858 dl 1.149 if ((reducer = this.reducer) != null) {
5859     for (int b; (b = preSplit()) > 0;)
5860     (rights = new ReduceKeysTask<K,V>
5861     (map, this, b, rights, reducer)).fork();
5862     K r = null;
5863     while (advance() != null) {
5864     K u = (K)nextKey;
5865 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5866 dl 1.149 }
5867     result = r;
5868     CountedCompleter<?> c;
5869     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5870     ReduceKeysTask<K,V>
5871     t = (ReduceKeysTask<K,V>)c,
5872     s = t.rights;
5873     while (s != null) {
5874     K tr, sr;
5875     if ((sr = s.result) != null)
5876     t.result = (((tr = t.result) == null) ? sr :
5877     reducer.apply(tr, sr));
5878     s = t.rights = s.nextRight;
5879     }
5880 dl 1.99 }
5881 dl 1.138 }
5882 tim 1.1 }
5883 dl 1.119 }
5884 tim 1.1
5885 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5886 dl 1.146 extends Traverser<K,V,V> {
5887 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5888 dl 1.119 V result;
5889 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5890 dl 1.119 ReduceValuesTask
5891 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5892 dl 1.128 ReduceValuesTask<K,V> nextRight,
5893 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5894 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5895 dl 1.119 this.reducer = reducer;
5896     }
5897 dl 1.146 public final V getRawResult() { return result; }
5898     @SuppressWarnings("unchecked") public final void compute() {
5899 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5900 dl 1.149 if ((reducer = this.reducer) != null) {
5901     for (int b; (b = preSplit()) > 0;)
5902     (rights = new ReduceValuesTask<K,V>
5903     (map, this, b, rights, reducer)).fork();
5904 dl 1.153 V r = null, v;
5905     while ((v = advance()) != null)
5906 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5907 dl 1.149 result = r;
5908     CountedCompleter<?> c;
5909     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5910     ReduceValuesTask<K,V>
5911     t = (ReduceValuesTask<K,V>)c,
5912     s = t.rights;
5913     while (s != null) {
5914     V tr, sr;
5915     if ((sr = s.result) != null)
5916     t.result = (((tr = t.result) == null) ? sr :
5917     reducer.apply(tr, sr));
5918     s = t.rights = s.nextRight;
5919     }
5920 dl 1.119 }
5921     }
5922 tim 1.1 }
5923 dl 1.119 }
5924 tim 1.1
5925 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5926 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5927 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5928 dl 1.119 Map.Entry<K,V> result;
5929 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5930 dl 1.119 ReduceEntriesTask
5931 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5932 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5933 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5934 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5935 dl 1.119 this.reducer = reducer;
5936     }
5937 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5938     @SuppressWarnings("unchecked") public final void compute() {
5939 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5940 dl 1.149 if ((reducer = this.reducer) != null) {
5941     for (int b; (b = preSplit()) > 0;)
5942     (rights = new ReduceEntriesTask<K,V>
5943     (map, this, b, rights, reducer)).fork();
5944     Map.Entry<K,V> r = null;
5945 dl 1.151 V v;
5946 dl 1.149 while ((v = advance()) != null) {
5947 dl 1.151 Map.Entry<K,V> u = entryFor((K)nextKey, v);
5948 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5949     }
5950     result = r;
5951     CountedCompleter<?> c;
5952     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5953     ReduceEntriesTask<K,V>
5954     t = (ReduceEntriesTask<K,V>)c,
5955     s = t.rights;
5956     while (s != null) {
5957     Map.Entry<K,V> tr, sr;
5958     if ((sr = s.result) != null)
5959     t.result = (((tr = t.result) == null) ? sr :
5960     reducer.apply(tr, sr));
5961     s = t.rights = s.nextRight;
5962     }
5963 dl 1.119 }
5964 dl 1.138 }
5965 dl 1.119 }
5966     }
5967 dl 1.99
5968 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5969 dl 1.146 extends Traverser<K,V,U> {
5970 dl 1.153 final Function<? super K, ? extends U> transformer;
5971     final BiFunction<? super U, ? super U, ? extends U> reducer;
5972 dl 1.119 U result;
5973 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5974 dl 1.119 MapReduceKeysTask
5975 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5976 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5977 dl 1.153 Function<? super K, ? extends U> transformer,
5978     BiFunction<? super U, ? super U, ? extends U> reducer) {
5979 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5980 dl 1.119 this.transformer = transformer;
5981     this.reducer = reducer;
5982     }
5983 dl 1.146 public final U getRawResult() { return result; }
5984     @SuppressWarnings("unchecked") public final void compute() {
5985 dl 1.153 final Function<? super K, ? extends U> transformer;
5986     final BiFunction<? super U, ? super U, ? extends U> reducer;
5987 dl 1.149 if ((transformer = this.transformer) != null &&
5988     (reducer = this.reducer) != null) {
5989     for (int b; (b = preSplit()) > 0;)
5990     (rights = new MapReduceKeysTask<K,V,U>
5991     (map, this, b, rights, transformer, reducer)).fork();
5992     U r = null, u;
5993     while (advance() != null) {
5994     if ((u = transformer.apply((K)nextKey)) != null)
5995     r = (r == null) ? u : reducer.apply(r, u);
5996     }
5997     result = r;
5998     CountedCompleter<?> c;
5999     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6000     MapReduceKeysTask<K,V,U>
6001     t = (MapReduceKeysTask<K,V,U>)c,
6002     s = t.rights;
6003     while (s != null) {
6004     U tr, sr;
6005     if ((sr = s.result) != null)
6006     t.result = (((tr = t.result) == null) ? sr :
6007     reducer.apply(tr, sr));
6008     s = t.rights = s.nextRight;
6009     }
6010 dl 1.119 }
6011 dl 1.138 }
6012 tim 1.1 }
6013 dl 1.4 }
6014    
6015 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6016 dl 1.146 extends Traverser<K,V,U> {
6017 dl 1.153 final Function<? super V, ? extends U> transformer;
6018     final BiFunction<? super U, ? super U, ? extends U> reducer;
6019 dl 1.119 U result;
6020 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6021 dl 1.119 MapReduceValuesTask
6022 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6023 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6024 dl 1.153 Function<? super V, ? extends U> transformer,
6025     BiFunction<? super U, ? super U, ? extends U> reducer) {
6026 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6027 dl 1.119 this.transformer = transformer;
6028     this.reducer = reducer;
6029     }
6030 dl 1.146 public final U getRawResult() { return result; }
6031     @SuppressWarnings("unchecked") public final void compute() {
6032 dl 1.153 final Function<? super V, ? extends U> transformer;
6033     final BiFunction<? super U, ? super U, ? extends U> reducer;
6034 dl 1.149 if ((transformer = this.transformer) != null &&
6035     (reducer = this.reducer) != null) {
6036     for (int b; (b = preSplit()) > 0;)
6037     (rights = new MapReduceValuesTask<K,V,U>
6038     (map, this, b, rights, transformer, reducer)).fork();
6039     U r = null, u;
6040 dl 1.151 V v;
6041 dl 1.149 while ((v = advance()) != null) {
6042 dl 1.151 if ((u = transformer.apply(v)) != null)
6043 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6044     }
6045     result = r;
6046     CountedCompleter<?> c;
6047     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048     MapReduceValuesTask<K,V,U>
6049     t = (MapReduceValuesTask<K,V,U>)c,
6050     s = t.rights;
6051     while (s != null) {
6052     U tr, sr;
6053     if ((sr = s.result) != null)
6054     t.result = (((tr = t.result) == null) ? sr :
6055     reducer.apply(tr, sr));
6056     s = t.rights = s.nextRight;
6057     }
6058 dl 1.119 }
6059     }
6060     }
6061 dl 1.4 }
6062    
6063 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6064 dl 1.146 extends Traverser<K,V,U> {
6065 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6066     final BiFunction<? super U, ? super U, ? extends U> reducer;
6067 dl 1.119 U result;
6068 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6069 dl 1.119 MapReduceEntriesTask
6070 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6071 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6072 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6073     BiFunction<? super U, ? super U, ? extends U> reducer) {
6074 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6075 dl 1.119 this.transformer = transformer;
6076     this.reducer = reducer;
6077     }
6078 dl 1.146 public final U getRawResult() { return result; }
6079     @SuppressWarnings("unchecked") public final void compute() {
6080 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6081     final BiFunction<? super U, ? super U, ? extends U> reducer;
6082 dl 1.149 if ((transformer = this.transformer) != null &&
6083     (reducer = this.reducer) != null) {
6084     for (int b; (b = preSplit()) > 0;)
6085     (rights = new MapReduceEntriesTask<K,V,U>
6086     (map, this, b, rights, transformer, reducer)).fork();
6087     U r = null, u;
6088 dl 1.151 V v;
6089 dl 1.149 while ((v = advance()) != null) {
6090     if ((u = transformer.apply(entryFor((K)nextKey,
6091 dl 1.151 v))) != null)
6092 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6093     }
6094     result = r;
6095     CountedCompleter<?> c;
6096     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6097     MapReduceEntriesTask<K,V,U>
6098     t = (MapReduceEntriesTask<K,V,U>)c,
6099     s = t.rights;
6100     while (s != null) {
6101     U tr, sr;
6102     if ((sr = s.result) != null)
6103     t.result = (((tr = t.result) == null) ? sr :
6104     reducer.apply(tr, sr));
6105     s = t.rights = s.nextRight;
6106     }
6107 dl 1.119 }
6108 dl 1.138 }
6109 dl 1.119 }
6110 dl 1.4 }
6111 tim 1.1
6112 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6113 dl 1.146 extends Traverser<K,V,U> {
6114 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6115     final BiFunction<? super U, ? super U, ? extends U> reducer;
6116 dl 1.119 U result;
6117 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6118 dl 1.119 MapReduceMappingsTask
6119 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6120 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6121 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6122     BiFunction<? super U, ? super U, ? extends U> reducer) {
6123 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6124 dl 1.119 this.transformer = transformer;
6125     this.reducer = reducer;
6126     }
6127 dl 1.146 public final U getRawResult() { return result; }
6128     @SuppressWarnings("unchecked") public final void compute() {
6129 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6130     final BiFunction<? super U, ? super U, ? extends U> reducer;
6131 dl 1.149 if ((transformer = this.transformer) != null &&
6132     (reducer = this.reducer) != null) {
6133     for (int b; (b = preSplit()) > 0;)
6134     (rights = new MapReduceMappingsTask<K,V,U>
6135     (map, this, b, rights, transformer, reducer)).fork();
6136     U r = null, u;
6137 dl 1.151 V v;
6138 dl 1.149 while ((v = advance()) != null) {
6139 dl 1.151 if ((u = transformer.apply((K)nextKey, v)) != null)
6140 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6141     }
6142     result = r;
6143     CountedCompleter<?> c;
6144     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6145     MapReduceMappingsTask<K,V,U>
6146     t = (MapReduceMappingsTask<K,V,U>)c,
6147     s = t.rights;
6148     while (s != null) {
6149     U tr, sr;
6150     if ((sr = s.result) != null)
6151     t.result = (((tr = t.result) == null) ? sr :
6152     reducer.apply(tr, sr));
6153     s = t.rights = s.nextRight;
6154     }
6155 dl 1.119 }
6156     }
6157     }
6158     }
6159 jsr166 1.114
6160 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6161 dl 1.146 extends Traverser<K,V,Double> {
6162 dl 1.153 final DoubleFunction<? super K> transformer;
6163     final DoubleBinaryOperator reducer;
6164 dl 1.119 final double basis;
6165     double result;
6166 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6167 dl 1.119 MapReduceKeysToDoubleTask
6168 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6169 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6170 dl 1.153 DoubleFunction<? super K> transformer,
6171 dl 1.119 double basis,
6172 dl 1.153 DoubleBinaryOperator reducer) {
6173 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6174 dl 1.119 this.transformer = transformer;
6175     this.basis = basis; this.reducer = reducer;
6176     }
6177 dl 1.146 public final Double getRawResult() { return result; }
6178     @SuppressWarnings("unchecked") public final void compute() {
6179 dl 1.153 final DoubleFunction<? super K> transformer;
6180     final DoubleBinaryOperator reducer;
6181 dl 1.149 if ((transformer = this.transformer) != null &&
6182     (reducer = this.reducer) != null) {
6183     double r = this.basis;
6184     for (int b; (b = preSplit()) > 0;)
6185     (rights = new MapReduceKeysToDoubleTask<K,V>
6186     (map, this, b, rights, transformer, r, reducer)).fork();
6187     while (advance() != null)
6188 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey));
6189 dl 1.149 result = r;
6190     CountedCompleter<?> c;
6191     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192     MapReduceKeysToDoubleTask<K,V>
6193     t = (MapReduceKeysToDoubleTask<K,V>)c,
6194     s = t.rights;
6195     while (s != null) {
6196 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6197 dl 1.149 s = t.rights = s.nextRight;
6198     }
6199 dl 1.119 }
6200 dl 1.138 }
6201 dl 1.79 }
6202 dl 1.119 }
6203 dl 1.79
6204 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6205 dl 1.146 extends Traverser<K,V,Double> {
6206 dl 1.153 final DoubleFunction<? super V> transformer;
6207     final DoubleBinaryOperator reducer;
6208 dl 1.119 final double basis;
6209     double result;
6210 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6211 dl 1.119 MapReduceValuesToDoubleTask
6212 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6213 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6214 dl 1.153 DoubleFunction<? super V> transformer,
6215 dl 1.119 double basis,
6216 dl 1.153 DoubleBinaryOperator reducer) {
6217 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6218 dl 1.119 this.transformer = transformer;
6219     this.basis = basis; this.reducer = reducer;
6220     }
6221 dl 1.146 public final Double getRawResult() { return result; }
6222     @SuppressWarnings("unchecked") public final void compute() {
6223 dl 1.153 final DoubleFunction<? super V> transformer;
6224     final DoubleBinaryOperator reducer;
6225 dl 1.149 if ((transformer = this.transformer) != null &&
6226     (reducer = this.reducer) != null) {
6227     double r = this.basis;
6228     for (int b; (b = preSplit()) > 0;)
6229     (rights = new MapReduceValuesToDoubleTask<K,V>
6230     (map, this, b, rights, transformer, r, reducer)).fork();
6231 dl 1.151 V v;
6232 dl 1.149 while ((v = advance()) != null)
6233 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6234 dl 1.149 result = r;
6235     CountedCompleter<?> c;
6236     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6237     MapReduceValuesToDoubleTask<K,V>
6238     t = (MapReduceValuesToDoubleTask<K,V>)c,
6239     s = t.rights;
6240     while (s != null) {
6241 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6242 dl 1.149 s = t.rights = s.nextRight;
6243     }
6244 dl 1.119 }
6245     }
6246 dl 1.30 }
6247 dl 1.79 }
6248 dl 1.30
6249 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6250 dl 1.146 extends Traverser<K,V,Double> {
6251 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6252     final DoubleBinaryOperator reducer;
6253 dl 1.119 final double basis;
6254     double result;
6255 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6256 dl 1.119 MapReduceEntriesToDoubleTask
6257 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6258 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6259 dl 1.153 DoubleFunction<Map.Entry<K,V>> transformer,
6260 dl 1.119 double basis,
6261 dl 1.153 DoubleBinaryOperator reducer) {
6262 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6263 dl 1.119 this.transformer = transformer;
6264     this.basis = basis; this.reducer = reducer;
6265     }
6266 dl 1.146 public final Double getRawResult() { return result; }
6267     @SuppressWarnings("unchecked") public final void compute() {
6268 dl 1.153 final DoubleFunction<Map.Entry<K,V>> transformer;
6269     final DoubleBinaryOperator reducer;
6270 dl 1.149 if ((transformer = this.transformer) != null &&
6271     (reducer = this.reducer) != null) {
6272     double r = this.basis;
6273     for (int b; (b = preSplit()) > 0;)
6274     (rights = new MapReduceEntriesToDoubleTask<K,V>
6275     (map, this, b, rights, transformer, r, reducer)).fork();
6276 dl 1.151 V v;
6277 dl 1.149 while ((v = advance()) != null)
6278 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)nextKey,
6279 dl 1.151 v)));
6280 dl 1.149 result = r;
6281     CountedCompleter<?> c;
6282     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6283     MapReduceEntriesToDoubleTask<K,V>
6284     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6285     s = t.rights;
6286     while (s != null) {
6287 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6288 dl 1.149 s = t.rights = s.nextRight;
6289     }
6290 dl 1.119 }
6291 dl 1.138 }
6292 dl 1.30 }
6293 tim 1.1 }
6294    
6295 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6296 dl 1.146 extends Traverser<K,V,Double> {
6297 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6298     final DoubleBinaryOperator reducer;
6299 dl 1.119 final double basis;
6300     double result;
6301 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6302 dl 1.119 MapReduceMappingsToDoubleTask
6303 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6304 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6305 dl 1.153 DoubleBiFunction<? super K, ? super V> transformer,
6306 dl 1.119 double basis,
6307 dl 1.153 DoubleBinaryOperator reducer) {
6308 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6309 dl 1.119 this.transformer = transformer;
6310     this.basis = basis; this.reducer = reducer;
6311     }
6312 dl 1.146 public final Double getRawResult() { return result; }
6313     @SuppressWarnings("unchecked") public final void compute() {
6314 dl 1.153 final DoubleBiFunction<? super K, ? super V> transformer;
6315     final DoubleBinaryOperator reducer;
6316 dl 1.149 if ((transformer = this.transformer) != null &&
6317     (reducer = this.reducer) != null) {
6318     double r = this.basis;
6319     for (int b; (b = preSplit()) > 0;)
6320     (rights = new MapReduceMappingsToDoubleTask<K,V>
6321     (map, this, b, rights, transformer, r, reducer)).fork();
6322 dl 1.151 V v;
6323 dl 1.149 while ((v = advance()) != null)
6324 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey, v));
6325 dl 1.149 result = r;
6326     CountedCompleter<?> c;
6327     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6328     MapReduceMappingsToDoubleTask<K,V>
6329     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6330     s = t.rights;
6331     while (s != null) {
6332 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6333 dl 1.149 s = t.rights = s.nextRight;
6334     }
6335 dl 1.119 }
6336     }
6337 dl 1.4 }
6338 dl 1.119 }
6339    
6340 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6341 dl 1.146 extends Traverser<K,V,Long> {
6342 dl 1.153 final LongFunction<? super K> transformer;
6343     final LongBinaryOperator reducer;
6344 dl 1.119 final long basis;
6345     long result;
6346 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6347 dl 1.119 MapReduceKeysToLongTask
6348 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6349 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6350 dl 1.153 LongFunction<? super K> transformer,
6351 dl 1.119 long basis,
6352 dl 1.153 LongBinaryOperator reducer) {
6353 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6354 dl 1.119 this.transformer = transformer;
6355     this.basis = basis; this.reducer = reducer;
6356     }
6357 dl 1.146 public final Long getRawResult() { return result; }
6358     @SuppressWarnings("unchecked") public final void compute() {
6359 dl 1.153 final LongFunction<? super K> transformer;
6360     final LongBinaryOperator reducer;
6361 dl 1.149 if ((transformer = this.transformer) != null &&
6362     (reducer = this.reducer) != null) {
6363     long r = this.basis;
6364     for (int b; (b = preSplit()) > 0;)
6365     (rights = new MapReduceKeysToLongTask<K,V>
6366     (map, this, b, rights, transformer, r, reducer)).fork();
6367     while (advance() != null)
6368 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey));
6369 dl 1.149 result = r;
6370     CountedCompleter<?> c;
6371     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6372     MapReduceKeysToLongTask<K,V>
6373     t = (MapReduceKeysToLongTask<K,V>)c,
6374     s = t.rights;
6375     while (s != null) {
6376 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6377 dl 1.149 s = t.rights = s.nextRight;
6378     }
6379 dl 1.119 }
6380 dl 1.138 }
6381 dl 1.4 }
6382 dl 1.119 }
6383    
6384 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6385 dl 1.146 extends Traverser<K,V,Long> {
6386 dl 1.153 final LongFunction<? super V> transformer;
6387     final LongBinaryOperator reducer;
6388 dl 1.119 final long basis;
6389     long result;
6390 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6391 dl 1.119 MapReduceValuesToLongTask
6392 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6393 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6394 dl 1.153 LongFunction<? super V> transformer,
6395 dl 1.119 long basis,
6396 dl 1.153 LongBinaryOperator reducer) {
6397 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6398 dl 1.119 this.transformer = transformer;
6399     this.basis = basis; this.reducer = reducer;
6400     }
6401 dl 1.146 public final Long getRawResult() { return result; }
6402     @SuppressWarnings("unchecked") public final void compute() {
6403 dl 1.153 final LongFunction<? super V> transformer;
6404     final LongBinaryOperator reducer;
6405 dl 1.149 if ((transformer = this.transformer) != null &&
6406     (reducer = this.reducer) != null) {
6407     long r = this.basis;
6408     for (int b; (b = preSplit()) > 0;)
6409     (rights = new MapReduceValuesToLongTask<K,V>
6410     (map, this, b, rights, transformer, r, reducer)).fork();
6411 dl 1.151 V v;
6412 dl 1.149 while ((v = advance()) != null)
6413 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6414 dl 1.149 result = r;
6415     CountedCompleter<?> c;
6416     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6417     MapReduceValuesToLongTask<K,V>
6418     t = (MapReduceValuesToLongTask<K,V>)c,
6419     s = t.rights;
6420     while (s != null) {
6421 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6422 dl 1.149 s = t.rights = s.nextRight;
6423     }
6424 dl 1.119 }
6425     }
6426 jsr166 1.95 }
6427 dl 1.119 }
6428    
6429 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6430 dl 1.146 extends Traverser<K,V,Long> {
6431 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6432     final LongBinaryOperator reducer;
6433 dl 1.119 final long basis;
6434     long result;
6435 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6436 dl 1.119 MapReduceEntriesToLongTask
6437 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6438 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6439 dl 1.153 LongFunction<Map.Entry<K,V>> transformer,
6440 dl 1.119 long basis,
6441 dl 1.153 LongBinaryOperator reducer) {
6442 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6443 dl 1.119 this.transformer = transformer;
6444     this.basis = basis; this.reducer = reducer;
6445     }
6446 dl 1.146 public final Long getRawResult() { return result; }
6447     @SuppressWarnings("unchecked") public final void compute() {
6448 dl 1.153 final LongFunction<Map.Entry<K,V>> transformer;
6449     final LongBinaryOperator reducer;
6450 dl 1.149 if ((transformer = this.transformer) != null &&
6451     (reducer = this.reducer) != null) {
6452     long r = this.basis;
6453     for (int b; (b = preSplit()) > 0;)
6454     (rights = new MapReduceEntriesToLongTask<K,V>
6455     (map, this, b, rights, transformer, r, reducer)).fork();
6456 dl 1.151 V v;
6457 dl 1.149 while ((v = advance()) != null)
6458 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)nextKey, v)));
6459 dl 1.149 result = r;
6460     CountedCompleter<?> c;
6461     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6462     MapReduceEntriesToLongTask<K,V>
6463     t = (MapReduceEntriesToLongTask<K,V>)c,
6464     s = t.rights;
6465     while (s != null) {
6466 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6467 dl 1.149 s = t.rights = s.nextRight;
6468     }
6469 dl 1.119 }
6470 dl 1.138 }
6471 dl 1.4 }
6472 tim 1.1 }
6473    
6474 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6475 dl 1.146 extends Traverser<K,V,Long> {
6476 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6477     final LongBinaryOperator reducer;
6478 dl 1.119 final long basis;
6479     long result;
6480 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6481 dl 1.119 MapReduceMappingsToLongTask
6482 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6483 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6484 dl 1.153 LongBiFunction<? super K, ? super V> transformer,
6485 dl 1.119 long basis,
6486 dl 1.153 LongBinaryOperator reducer) {
6487 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6488 dl 1.119 this.transformer = transformer;
6489     this.basis = basis; this.reducer = reducer;
6490     }
6491 dl 1.146 public final Long getRawResult() { return result; }
6492     @SuppressWarnings("unchecked") public final void compute() {
6493 dl 1.153 final LongBiFunction<? super K, ? super V> transformer;
6494     final LongBinaryOperator reducer;
6495 dl 1.149 if ((transformer = this.transformer) != null &&
6496     (reducer = this.reducer) != null) {
6497     long r = this.basis;
6498     for (int b; (b = preSplit()) > 0;)
6499     (rights = new MapReduceMappingsToLongTask<K,V>
6500     (map, this, b, rights, transformer, r, reducer)).fork();
6501 dl 1.151 V v;
6502 dl 1.149 while ((v = advance()) != null)
6503 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey, v));
6504 dl 1.149 result = r;
6505     CountedCompleter<?> c;
6506     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6507     MapReduceMappingsToLongTask<K,V>
6508     t = (MapReduceMappingsToLongTask<K,V>)c,
6509     s = t.rights;
6510     while (s != null) {
6511 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6512 dl 1.149 s = t.rights = s.nextRight;
6513     }
6514 dl 1.119 }
6515     }
6516 dl 1.4 }
6517 tim 1.1 }
6518    
6519 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6520 dl 1.146 extends Traverser<K,V,Integer> {
6521 dl 1.153 final IntFunction<? super K> transformer;
6522     final IntBinaryOperator reducer;
6523 dl 1.119 final int basis;
6524     int result;
6525 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6526 dl 1.119 MapReduceKeysToIntTask
6527 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6528 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6529 dl 1.153 IntFunction<? super K> transformer,
6530 dl 1.119 int basis,
6531 dl 1.153 IntBinaryOperator reducer) {
6532 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6533 dl 1.119 this.transformer = transformer;
6534     this.basis = basis; this.reducer = reducer;
6535     }
6536 dl 1.146 public final Integer getRawResult() { return result; }
6537     @SuppressWarnings("unchecked") public final void compute() {
6538 dl 1.153 final IntFunction<? super K> transformer;
6539     final IntBinaryOperator reducer;
6540 dl 1.149 if ((transformer = this.transformer) != null &&
6541     (reducer = this.reducer) != null) {
6542     int r = this.basis;
6543     for (int b; (b = preSplit()) > 0;)
6544     (rights = new MapReduceKeysToIntTask<K,V>
6545     (map, this, b, rights, transformer, r, reducer)).fork();
6546     while (advance() != null)
6547 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey));
6548 dl 1.149 result = r;
6549     CountedCompleter<?> c;
6550     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6551     MapReduceKeysToIntTask<K,V>
6552     t = (MapReduceKeysToIntTask<K,V>)c,
6553     s = t.rights;
6554     while (s != null) {
6555 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6556 dl 1.149 s = t.rights = s.nextRight;
6557     }
6558 dl 1.119 }
6559 dl 1.138 }
6560 dl 1.30 }
6561     }
6562    
6563 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6564 dl 1.146 extends Traverser<K,V,Integer> {
6565 dl 1.153 final IntFunction<? super V> transformer;
6566     final IntBinaryOperator reducer;
6567 dl 1.119 final int basis;
6568     int result;
6569 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6570 dl 1.119 MapReduceValuesToIntTask
6571 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6572 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6573 dl 1.153 IntFunction<? super V> transformer,
6574 dl 1.119 int basis,
6575 dl 1.153 IntBinaryOperator reducer) {
6576 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6577 dl 1.119 this.transformer = transformer;
6578     this.basis = basis; this.reducer = reducer;
6579     }
6580 dl 1.146 public final Integer getRawResult() { return result; }
6581     @SuppressWarnings("unchecked") public final void compute() {
6582 dl 1.153 final IntFunction<? super V> transformer;
6583     final IntBinaryOperator reducer;
6584 dl 1.149 if ((transformer = this.transformer) != null &&
6585     (reducer = this.reducer) != null) {
6586     int r = this.basis;
6587     for (int b; (b = preSplit()) > 0;)
6588     (rights = new MapReduceValuesToIntTask<K,V>
6589     (map, this, b, rights, transformer, r, reducer)).fork();
6590 dl 1.151 V v;
6591 dl 1.149 while ((v = advance()) != null)
6592 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6593 dl 1.149 result = r;
6594     CountedCompleter<?> c;
6595     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6596     MapReduceValuesToIntTask<K,V>
6597     t = (MapReduceValuesToIntTask<K,V>)c,
6598     s = t.rights;
6599     while (s != null) {
6600 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6601 dl 1.149 s = t.rights = s.nextRight;
6602     }
6603 dl 1.119 }
6604 dl 1.2 }
6605 tim 1.1 }
6606     }
6607    
6608 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6609 dl 1.146 extends Traverser<K,V,Integer> {
6610 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6611     final IntBinaryOperator reducer;
6612 dl 1.119 final int basis;
6613     int result;
6614 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6615 dl 1.119 MapReduceEntriesToIntTask
6616 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6617 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6618 dl 1.153 IntFunction<Map.Entry<K,V>> transformer,
6619 dl 1.119 int basis,
6620 dl 1.153 IntBinaryOperator reducer) {
6621 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6622 dl 1.119 this.transformer = transformer;
6623     this.basis = basis; this.reducer = reducer;
6624     }
6625 dl 1.146 public final Integer getRawResult() { return result; }
6626     @SuppressWarnings("unchecked") public final void compute() {
6627 dl 1.153 final IntFunction<Map.Entry<K,V>> transformer;
6628     final IntBinaryOperator reducer;
6629 dl 1.149 if ((transformer = this.transformer) != null &&
6630     (reducer = this.reducer) != null) {
6631     int r = this.basis;
6632     for (int b; (b = preSplit()) > 0;)
6633     (rights = new MapReduceEntriesToIntTask<K,V>
6634     (map, this, b, rights, transformer, r, reducer)).fork();
6635 dl 1.151 V v;
6636 dl 1.149 while ((v = advance()) != null)
6637 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)nextKey,
6638 dl 1.151 v)));
6639 dl 1.149 result = r;
6640     CountedCompleter<?> c;
6641     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6642     MapReduceEntriesToIntTask<K,V>
6643     t = (MapReduceEntriesToIntTask<K,V>)c,
6644     s = t.rights;
6645     while (s != null) {
6646 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6647 dl 1.149 s = t.rights = s.nextRight;
6648     }
6649 dl 1.119 }
6650 dl 1.138 }
6651 dl 1.4 }
6652 dl 1.119 }
6653 tim 1.1
6654 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6655 dl 1.146 extends Traverser<K,V,Integer> {
6656 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6657     final IntBinaryOperator reducer;
6658 dl 1.119 final int basis;
6659     int result;
6660 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6661 dl 1.119 MapReduceMappingsToIntTask
6662 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6663     MapReduceMappingsToIntTask<K,V> nextRight,
6664 dl 1.153 IntBiFunction<? super K, ? super V> transformer,
6665 dl 1.119 int basis,
6666 dl 1.153 IntBinaryOperator reducer) {
6667 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6668 dl 1.119 this.transformer = transformer;
6669     this.basis = basis; this.reducer = reducer;
6670     }
6671 dl 1.146 public final Integer getRawResult() { return result; }
6672     @SuppressWarnings("unchecked") public final void compute() {
6673 dl 1.153 final IntBiFunction<? super K, ? super V> transformer;
6674     final IntBinaryOperator reducer;
6675 dl 1.149 if ((transformer = this.transformer) != null &&
6676     (reducer = this.reducer) != null) {
6677     int r = this.basis;
6678     for (int b; (b = preSplit()) > 0;)
6679     (rights = new MapReduceMappingsToIntTask<K,V>
6680     (map, this, b, rights, transformer, r, reducer)).fork();
6681 dl 1.151 V v;
6682 dl 1.149 while ((v = advance()) != null)
6683 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey, v));
6684 dl 1.149 result = r;
6685     CountedCompleter<?> c;
6686     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6687     MapReduceMappingsToIntTask<K,V>
6688     t = (MapReduceMappingsToIntTask<K,V>)c,
6689     s = t.rights;
6690     while (s != null) {
6691 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6692 dl 1.149 s = t.rights = s.nextRight;
6693     }
6694 dl 1.119 }
6695 dl 1.138 }
6696 tim 1.1 }
6697     }
6698 dl 1.99
6699     // Unsafe mechanics
6700 dl 1.149 private static final sun.misc.Unsafe U;
6701     private static final long SIZECTL;
6702     private static final long TRANSFERINDEX;
6703     private static final long TRANSFERORIGIN;
6704     private static final long BASECOUNT;
6705 dl 1.153 private static final long CELLSBUSY;
6706 dl 1.149 private static final long CELLVALUE;
6707 dl 1.119 private static final long ABASE;
6708     private static final int ASHIFT;
6709 dl 1.99
6710     static {
6711 dl 1.119 int ss;
6712 dl 1.99 try {
6713 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6714 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6715 dl 1.149 SIZECTL = U.objectFieldOffset
6716 dl 1.119 (k.getDeclaredField("sizeCtl"));
6717 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6718     (k.getDeclaredField("transferIndex"));
6719     TRANSFERORIGIN = U.objectFieldOffset
6720     (k.getDeclaredField("transferOrigin"));
6721     BASECOUNT = U.objectFieldOffset
6722     (k.getDeclaredField("baseCount"));
6723 dl 1.153 CELLSBUSY = U.objectFieldOffset
6724     (k.getDeclaredField("cellsBusy"));
6725     Class<?> ck = Cell.class;
6726 dl 1.149 CELLVALUE = U.objectFieldOffset
6727     (ck.getDeclaredField("value"));
6728 dl 1.119 Class<?> sc = Node[].class;
6729 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6730     ss = U.arrayIndexScale(sc);
6731     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6732 dl 1.99 } catch (Exception e) {
6733     throw new Error(e);
6734     }
6735 dl 1.119 if ((ss & (ss-1)) != 0)
6736 dl 1.99 throw new Error("data type scale not a power of two");
6737     }
6738 jsr166 1.152
6739     }