ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.181
Committed: Mon Feb 11 17:40:59 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.180: +1 -1 lines
Log Message:
#values -> #values()

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152 jsr166 1.178 * </ul>
153 dl 1.137 * </li>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695 dl 1.164 if (len > 1) {
1696 dl 1.149 addCount(delta, len);
1697 dl 1.164 delta = 0L;
1698     }
1699 dl 1.119 break;
1700 dl 1.99 }
1701 dl 1.21 }
1702     }
1703 dl 1.45 }
1704     } finally {
1705 dl 1.149 if (delta != 0L)
1706     addCount(delta, 2);
1707 dl 1.45 }
1708 dl 1.119 if (npe)
1709     throw new NullPointerException();
1710 tim 1.1 }
1711 dl 1.19
1712 dl 1.149 /**
1713     * Implementation for clear. Steps through each bin, removing all
1714     * nodes.
1715     */
1716 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1717 dl 1.149 long delta = 0L; // negative number of deletions
1718     int i = 0;
1719 dl 1.151 Node<V>[] tab = table;
1720 dl 1.149 while (tab != null && i < tab.length) {
1721 dl 1.151 Node<V> f = tabAt(tab, i);
1722 dl 1.149 if (f == null)
1723     ++i;
1724     else if (f.hash < 0) {
1725     Object fk;
1726     if ((fk = f.key) instanceof TreeBin) {
1727 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1728 dl 1.149 t.acquire(0);
1729     try {
1730     if (tabAt(tab, i) == f) {
1731 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1732 dl 1.149 if (p.val != null) { // (currently always true)
1733     p.val = null;
1734     --delta;
1735     }
1736     }
1737     t.first = null;
1738     t.root = null;
1739     ++i;
1740     }
1741     } finally {
1742     t.release(0);
1743     }
1744     }
1745     else
1746 dl 1.151 tab = (Node<V>[])fk;
1747 dl 1.149 }
1748     else {
1749 jsr166 1.150 synchronized (f) {
1750 dl 1.149 if (tabAt(tab, i) == f) {
1751 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1752 dl 1.149 if (e.val != null) { // (currently always true)
1753     e.val = null;
1754     --delta;
1755     }
1756     }
1757     setTabAt(tab, i, null);
1758     ++i;
1759     }
1760     }
1761     }
1762     }
1763     if (delta != 0L)
1764     addCount(delta, -1);
1765     }
1766    
1767 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1768    
1769 tim 1.1 /**
1770 dl 1.119 * Returns a power of two table size for the given desired capacity.
1771     * See Hackers Delight, sec 3.2
1772 tim 1.1 */
1773 dl 1.119 private static final int tableSizeFor(int c) {
1774     int n = c - 1;
1775     n |= n >>> 1;
1776     n |= n >>> 2;
1777     n |= n >>> 4;
1778     n |= n >>> 8;
1779     n |= n >>> 16;
1780     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 tim 1.1 }
1782    
1783     /**
1784 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1785     */
1786 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787     Node<V>[] tab; int sc;
1788 dl 1.119 while ((tab = table) == null) {
1789     if ((sc = sizeCtl) < 0)
1790     Thread.yield(); // lost initialization race; just spin
1791 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 dl 1.119 try {
1793     if ((tab = table) == null) {
1794     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796     table = tab = (Node<V>[])tb;
1797 dl 1.119 sc = n - (n >>> 2);
1798     }
1799     } finally {
1800     sizeCtl = sc;
1801     }
1802     break;
1803     }
1804     }
1805     return tab;
1806 dl 1.4 }
1807    
1808     /**
1809 dl 1.149 * Adds to count, and if table is too small and not already
1810     * resizing, initiates transfer. If already resizing, helps
1811     * perform transfer if work is available. Rechecks occupancy
1812     * after a transfer to see if another resize is already needed
1813     * because resizings are lagging additions.
1814     *
1815     * @param x the count to add
1816     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817     */
1818     private final void addCount(long x, int check) {
1819 dl 1.153 Cell[] as; long b, s;
1820 dl 1.149 if ((as = counterCells) != null ||
1821     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 dl 1.160 Cell a; long v; int m;
1823 dl 1.149 boolean uncontended = true;
1824 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1825     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 dl 1.149 !(uncontended =
1827     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 dl 1.160 fullAddCount(x, uncontended);
1829 dl 1.149 return;
1830     }
1831     if (check <= 1)
1832     return;
1833     s = sumCount();
1834     }
1835     if (check >= 0) {
1836 dl 1.151 Node<V>[] tab, nt; int sc;
1837 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838     tab.length < MAXIMUM_CAPACITY) {
1839     if (sc < 0) {
1840     if (sc == -1 || transferIndex <= transferOrigin ||
1841     (nt = nextTable) == null)
1842     break;
1843     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844     transfer(tab, nt);
1845 dl 1.119 }
1846 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847     transfer(tab, null);
1848     s = sumCount();
1849 dl 1.119 }
1850     }
1851 dl 1.4 }
1852    
1853     /**
1854 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1855 tim 1.1 *
1856 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1857 tim 1.1 */
1858 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860     tableSizeFor(size + (size >>> 1) + 1);
1861     int sc;
1862     while ((sc = sizeCtl) >= 0) {
1863 dl 1.151 Node<V>[] tab = table; int n;
1864 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1865     n = (sc > c) ? sc : c;
1866 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 dl 1.119 try {
1868     if (table == tab) {
1869 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870     table = (Node<V>[])tb;
1871 dl 1.119 sc = n - (n >>> 2);
1872     }
1873     } finally {
1874     sizeCtl = sc;
1875     }
1876     }
1877     }
1878     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879     break;
1880 dl 1.149 else if (tab == table &&
1881     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882     transfer(tab, null);
1883 dl 1.119 }
1884 dl 1.4 }
1885    
1886 jsr166 1.170 /**
1887 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
1888     * above for explanation.
1889 dl 1.4 */
1890 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1891     (Node<V>[] tab, Node<V>[] nextTab) {
1892 dl 1.149 int n = tab.length, stride;
1893     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894     stride = MIN_TRANSFER_STRIDE; // subdivide range
1895     if (nextTab == null) { // initiating
1896     try {
1897 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898     nextTab = (Node<V>[])tb;
1899 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1900 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1901     return;
1902     }
1903     nextTable = nextTab;
1904     transferOrigin = n;
1905     transferIndex = n;
1906 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1909 dl 1.149 for (int m = nextk; m < k; ++m)
1910     nextTab[m] = rev;
1911     for (int m = n + nextk; m < n + k; ++m)
1912     nextTab[m] = rev;
1913     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914     }
1915     }
1916     int nextn = nextTab.length;
1917 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 dl 1.149 boolean advance = true;
1919     for (int i = 0, bound = 0;;) {
1920 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1921 dl 1.149 while (advance) {
1922     if (--i >= bound)
1923     advance = false;
1924     else if ((nextIndex = transferIndex) <= transferOrigin) {
1925     i = -1;
1926     advance = false;
1927     }
1928     else if (U.compareAndSwapInt
1929     (this, TRANSFERINDEX, nextIndex,
1930 jsr166 1.150 nextBound = (nextIndex > stride ?
1931 dl 1.149 nextIndex - stride : 0))) {
1932     bound = nextBound;
1933     i = nextIndex - 1;
1934     advance = false;
1935     }
1936     }
1937     if (i < 0 || i >= n || i + n >= nextn) {
1938     for (int sc;;) {
1939     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940     if (sc == -1) {
1941     nextTable = null;
1942     table = nextTab;
1943     sizeCtl = (n << 1) - (n >>> 1);
1944     }
1945     return;
1946     }
1947     }
1948     }
1949     else if ((f = tabAt(tab, i)) == null) {
1950     if (casTabAt(tab, i, null, fwd)) {
1951 dl 1.119 setTabAt(nextTab, i, null);
1952     setTabAt(nextTab, i + n, null);
1953 dl 1.149 advance = true;
1954     }
1955     }
1956     else if (f.hash >= 0) {
1957 jsr166 1.150 synchronized (f) {
1958 dl 1.149 if (tabAt(tab, i) == f) {
1959     int runBit = f.hash & n;
1960 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1961     for (Node<V> p = f.next; p != null; p = p.next) {
1962 dl 1.149 int b = p.hash & n;
1963     if (b != runBit) {
1964     runBit = b;
1965     lastRun = p;
1966     }
1967     }
1968     if (runBit == 0)
1969     lo = lastRun;
1970     else
1971     hi = lastRun;
1972 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 dl 1.149 int ph = p.hash;
1974 dl 1.151 Object pk = p.key; V pv = p.val;
1975 dl 1.149 if ((ph & n) == 0)
1976 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1977 dl 1.149 else
1978 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1979 dl 1.149 }
1980     setTabAt(nextTab, i, lo);
1981     setTabAt(nextTab, i + n, hi);
1982     setTabAt(tab, i, fwd);
1983     advance = true;
1984 dl 1.119 }
1985     }
1986     }
1987 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1988 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1989 dl 1.149 t.acquire(0);
1990     try {
1991     if (tabAt(tab, i) == f) {
1992 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1993     TreeBin<V> ht = new TreeBin<V>();
1994 dl 1.149 int lc = 0, hc = 0;
1995 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1996 dl 1.149 int h = e.hash;
1997 dl 1.151 Object k = e.key; V v = e.val;
1998 dl 1.149 if ((h & n) == 0) {
1999     ++lc;
2000     lt.putTreeNode(h, k, v);
2001     }
2002     else {
2003     ++hc;
2004     ht.putTreeNode(h, k, v);
2005     }
2006     }
2007 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2008 dl 1.149 if (lc < TREE_THRESHOLD) {
2009     ln = null;
2010 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2011     ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 dl 1.149 }
2013     else
2014 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2015 dl 1.149 setTabAt(nextTab, i, ln);
2016     if (hc < TREE_THRESHOLD) {
2017     hn = null;
2018 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2019     hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 dl 1.119 }
2021 dl 1.149 else
2022 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2023 dl 1.149 setTabAt(nextTab, i + n, hn);
2024 dl 1.119 setTabAt(tab, i, fwd);
2025 dl 1.149 advance = true;
2026 dl 1.119 }
2027     } finally {
2028 dl 1.149 t.release(0);
2029 dl 1.119 }
2030     }
2031     else
2032 dl 1.149 advance = true; // already processed
2033 dl 1.119 }
2034 dl 1.4 }
2035 tim 1.1
2036 dl 1.149 /* ---------------- Counter support -------------- */
2037    
2038     final long sumCount() {
2039 dl 1.153 Cell[] as = counterCells; Cell a;
2040 dl 1.149 long sum = baseCount;
2041     if (as != null) {
2042     for (int i = 0; i < as.length; ++i) {
2043     if ((a = as[i]) != null)
2044     sum += a.value;
2045 dl 1.119 }
2046     }
2047 dl 1.149 return sum;
2048 dl 1.119 }
2049    
2050 dl 1.149 // See LongAdder version for explanation
2051 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2052 dl 1.149 int h;
2053 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054     ThreadLocalRandom.localInit(); // force initialization
2055     h = ThreadLocalRandom.getProbe();
2056     wasUncontended = true;
2057 dl 1.119 }
2058 dl 1.149 boolean collide = false; // True if last slot nonempty
2059     for (;;) {
2060 dl 1.153 Cell[] as; Cell a; int n; long v;
2061 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2062     if ((a = as[(n - 1) & h]) == null) {
2063 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2064     Cell r = new Cell(x); // Optimistic create
2065     if (cellsBusy == 0 &&
2066     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 dl 1.149 boolean created = false;
2068     try { // Recheck under lock
2069 dl 1.153 Cell[] rs; int m, j;
2070 dl 1.149 if ((rs = counterCells) != null &&
2071     (m = rs.length) > 0 &&
2072     rs[j = (m - 1) & h] == null) {
2073     rs[j] = r;
2074     created = true;
2075 dl 1.128 }
2076 dl 1.149 } finally {
2077 dl 1.153 cellsBusy = 0;
2078 dl 1.119 }
2079 dl 1.149 if (created)
2080     break;
2081     continue; // Slot is now non-empty
2082     }
2083     }
2084     collide = false;
2085     }
2086     else if (!wasUncontended) // CAS already known to fail
2087     wasUncontended = true; // Continue after rehash
2088     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089     break;
2090     else if (counterCells != as || n >= NCPU)
2091     collide = false; // At max size or stale
2092     else if (!collide)
2093     collide = true;
2094 dl 1.153 else if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 try {
2097     if (counterCells == as) {// Expand table unless stale
2098 dl 1.153 Cell[] rs = new Cell[n << 1];
2099 dl 1.149 for (int i = 0; i < n; ++i)
2100     rs[i] = as[i];
2101     counterCells = rs;
2102 dl 1.119 }
2103     } finally {
2104 dl 1.153 cellsBusy = 0;
2105 dl 1.119 }
2106 dl 1.149 collide = false;
2107     continue; // Retry with expanded table
2108 dl 1.119 }
2109 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2110 dl 1.149 }
2111 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 dl 1.149 boolean init = false;
2114     try { // Initialize table
2115     if (counterCells == as) {
2116 dl 1.153 Cell[] rs = new Cell[2];
2117     rs[h & 1] = new Cell(x);
2118 dl 1.149 counterCells = rs;
2119     init = true;
2120 dl 1.119 }
2121     } finally {
2122 dl 1.153 cellsBusy = 0;
2123 dl 1.119 }
2124 dl 1.149 if (init)
2125     break;
2126 dl 1.119 }
2127 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128     break; // Fall back on using base
2129 dl 1.119 }
2130     }
2131    
2132     /* ----------------Table Traversal -------------- */
2133    
2134     /**
2135     * Encapsulates traversal for methods such as containsValue; also
2136 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2137 dl 1.119 *
2138     * At each step, the iterator snapshots the key ("nextKey") and
2139     * value ("nextVal") of a valid node (i.e., one that, at point of
2140     * snapshot, has a non-null user value). Because val fields can
2141     * change (including to null, indicating deletion), field nextVal
2142     * might not be accurate at point of use, but still maintains the
2143     * weak consistency property of holding a value that was once
2144 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2145     * updated (nulled out) when the iterator cannot advance.
2146 dl 1.119 *
2147     * Internal traversals directly access these fields, as in:
2148     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149     *
2150     * Exported iterators must track whether the iterator has advanced
2151     * (in hasNext vs next) (by setting/checking/nulling field
2152     * nextVal), and then extract key, value, or key-value pairs as
2153     * return values of next().
2154     *
2155     * The iterator visits once each still-valid node that was
2156     * reachable upon iterator construction. It might miss some that
2157     * were added to a bin after the bin was visited, which is OK wrt
2158     * consistency guarantees. Maintaining this property in the face
2159     * of possible ongoing resizes requires a fair amount of
2160     * bookkeeping state that is difficult to optimize away amidst
2161     * volatile accesses. Even so, traversal maintains reasonable
2162     * throughput.
2163     *
2164     * Normally, iteration proceeds bin-by-bin traversing lists.
2165     * However, if the table has been resized, then all future steps
2166     * must traverse both the bin at the current index as well as at
2167     * (index + baseSize); and so on for further resizings. To
2168     * paranoically cope with potential sharing by users of iterators
2169     * across threads, iteration terminates if a bounds checks fails
2170     * for a table read.
2171     *
2172 dl 1.153 * This class supports both Spliterator-based traversal and
2173     * CountedCompleter-based bulk tasks. The same "batch" field is
2174     * used, but in slightly different ways, in the two cases. For
2175     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177     * size that halves down to zero for leaf tasks, that is only
2178     * computed upon execution of the task. (Tasks can be submitted to
2179     * any pool, of any size, so we don't know scale factors until
2180     * running.)
2181     *
2182 dl 1.146 * This class extends CountedCompleter to streamline parallel
2183     * iteration in bulk operations. This adds only a few fields of
2184     * space overhead, which is small enough in cases where it is not
2185     * needed to not worry about it. Because CountedCompleter is
2186     * Serializable, but iterators need not be, we need to add warning
2187     * suppressions.
2188 dl 1.119 */
2189 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190     extends CountedCompleter<R> {
2191 dl 1.119 final ConcurrentHashMap<K, V> map;
2192 dl 1.151 Node<V> next; // the next entry to use
2193 jsr166 1.168 K nextKey; // cached key field of next
2194 dl 1.151 V nextVal; // cached val field of next
2195     Node<V>[] tab; // current table; updated if resized
2196 dl 1.119 int index; // index of bin to use next
2197     int baseIndex; // current index of initial table
2198     int baseLimit; // index bound for initial table
2199 dl 1.130 int baseSize; // initial table size
2200 dl 1.146 int batch; // split control
2201 dl 1.119 /** Creates iterator for all entries in the table. */
2202     Traverser(ConcurrentHashMap<K, V> map) {
2203 dl 1.130 this.map = map;
2204 dl 1.153 Node<V>[] t;
2205     if ((t = tab = map.table) != null)
2206     baseLimit = baseSize = t.length;
2207 dl 1.119 }
2208    
2209 dl 1.153 /** Task constructor */
2210 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211     super(it);
2212 dl 1.153 this.map = map;
2213     this.batch = batch; // -1 if unknown
2214     if (it == null) {
2215 dl 1.151 Node<V>[] t;
2216 dl 1.153 if ((t = tab = map.table) != null)
2217     baseLimit = baseSize = t.length;
2218     }
2219     else { // split parent
2220     this.tab = it.tab;
2221 dl 1.146 this.baseSize = it.baseSize;
2222     int hi = this.baseLimit = it.baseLimit;
2223     it.baseLimit = this.index = this.baseIndex =
2224     (hi + it.baseIndex + 1) >>> 1;
2225     }
2226 dl 1.119 }
2227    
2228 dl 1.153 /** Spliterator constructor */
2229     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230     super(it);
2231     this.map = map;
2232     if (it == null) {
2233     Node<V>[] t;
2234     if ((t = tab = map.table) != null)
2235     baseLimit = baseSize = t.length;
2236     long n = map.sumCount();
2237     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238     (int)n);
2239     }
2240     else {
2241     this.tab = it.tab;
2242     this.baseSize = it.baseSize;
2243     int hi = this.baseLimit = it.baseLimit;
2244     it.baseLimit = this.index = this.baseIndex =
2245     (hi + it.baseIndex + 1) >>> 1;
2246     this.batch = it.batch >>>= 1;
2247     }
2248     }
2249    
2250 dl 1.119 /**
2251     * Advances next; returns nextVal or null if terminated.
2252     * See above for explanation.
2253     */
2254 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2255     Node<V> e = next;
2256     V ev = null;
2257 dl 1.119 outer: do {
2258     if (e != null) // advance past used/skipped node
2259     e = e.next;
2260     while (e == null) { // get to next non-null bin
2261 dl 1.130 ConcurrentHashMap<K, V> m;
2262 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 dl 1.130 if ((t = tab) != null)
2264     n = t.length;
2265     else if ((m = map) != null && (t = tab = m.table) != null)
2266     n = baseLimit = baseSize = t.length;
2267     else
2268 dl 1.119 break outer;
2269 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2270     (i = index) < 0 || i >= n)
2271     break outer;
2272 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2274 dl 1.151 e = ((TreeBin<V>)ek).first;
2275 dl 1.119 else {
2276 dl 1.151 tab = (Node<V>[])ek;
2277 dl 1.119 continue; // restarts due to null val
2278     }
2279     } // visit upper slots if present
2280     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281     }
2282 jsr166 1.168 nextKey = (K)e.key;
2283 dl 1.119 } while ((ev = e.val) == null); // skip deleted or special nodes
2284     next = e;
2285     return nextVal = ev;
2286     }
2287    
2288     public final void remove() {
2289 jsr166 1.168 K k = nextKey;
2290 dl 1.137 if (k == null && (advance() == null || (k = nextKey) == null))
2291 dl 1.119 throw new IllegalStateException();
2292 dl 1.137 map.internalReplace(k, null, null);
2293 dl 1.119 }
2294    
2295     public final boolean hasNext() {
2296     return nextVal != null || advance() != null;
2297     }
2298    
2299     public final boolean hasMoreElements() { return hasNext(); }
2300 dl 1.146
2301     public void compute() { } // default no-op CountedCompleter body
2302    
2303     /**
2304     * Returns a batch value > 0 if this task should (and must) be
2305     * split, if so, adding to pending count, and in any case
2306     * updating batch value. The initial batch value is approx
2307     * exp2 of the number of times (minus one) to split task by
2308     * two before executing leaf action. This value is faster to
2309     * compute and more convenient to use as a guide to splitting
2310     * than is the depth, since it is used while dividing by two
2311     * anyway.
2312     */
2313     final int preSplit() {
2314 dl 1.153 int b; ForkJoinPool pool;
2315     if ((b = batch) < 0) { // force initialization
2316     int sp = (((pool = getPool()) == null) ?
2317     ForkJoinPool.getCommonPoolParallelism() :
2318     pool.getParallelism()) << 3; // slack of 8
2319     long n = map.sumCount();
2320     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 dl 1.146 }
2322 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 dl 1.146 if ((batch = b) > 0)
2324     addToPendingCount(1);
2325     return b;
2326     }
2327    
2328 dl 1.153 // spliterator support
2329    
2330 dl 1.160 public boolean hasExactSize() {
2331     return false;
2332 dl 1.153 }
2333    
2334     public boolean hasExactSplits() {
2335     return false;
2336     }
2337    
2338     public long estimateSize() {
2339     return batch;
2340     }
2341 dl 1.119 }
2342    
2343     /* ---------------- Public operations -------------- */
2344    
2345     /**
2346     * Creates a new, empty map with the default initial table size (16).
2347     */
2348     public ConcurrentHashMap() {
2349     }
2350    
2351     /**
2352     * Creates a new, empty map with an initial table size
2353     * accommodating the specified number of elements without the need
2354     * to dynamically resize.
2355     *
2356     * @param initialCapacity The implementation performs internal
2357     * sizing to accommodate this many elements.
2358     * @throws IllegalArgumentException if the initial capacity of
2359     * elements is negative
2360     */
2361     public ConcurrentHashMap(int initialCapacity) {
2362     if (initialCapacity < 0)
2363     throw new IllegalArgumentException();
2364     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365     MAXIMUM_CAPACITY :
2366     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367     this.sizeCtl = cap;
2368     }
2369    
2370     /**
2371     * Creates a new map with the same mappings as the given map.
2372     *
2373     * @param m the map
2374     */
2375     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376     this.sizeCtl = DEFAULT_CAPACITY;
2377     internalPutAll(m);
2378     }
2379    
2380     /**
2381     * Creates a new, empty map with an initial table size based on
2382     * the given number of elements ({@code initialCapacity}) and
2383     * initial table density ({@code loadFactor}).
2384     *
2385     * @param initialCapacity the initial capacity. The implementation
2386     * performs internal sizing to accommodate this many elements,
2387     * given the specified load factor.
2388     * @param loadFactor the load factor (table density) for
2389     * establishing the initial table size
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative or the load factor is nonpositive
2392     *
2393     * @since 1.6
2394     */
2395     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396     this(initialCapacity, loadFactor, 1);
2397     }
2398    
2399     /**
2400     * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}), table
2402     * density ({@code loadFactor}), and number of concurrently
2403     * updating threads ({@code concurrencyLevel}).
2404     *
2405     * @param initialCapacity the initial capacity. The implementation
2406     * performs internal sizing to accommodate this many elements,
2407     * given the specified load factor.
2408     * @param loadFactor the load factor (table density) for
2409     * establishing the initial table size
2410     * @param concurrencyLevel the estimated number of concurrently
2411     * updating threads. The implementation may use this value as
2412     * a sizing hint.
2413     * @throws IllegalArgumentException if the initial capacity is
2414     * negative or the load factor or concurrencyLevel are
2415     * nonpositive
2416     */
2417     public ConcurrentHashMap(int initialCapacity,
2418     float loadFactor, int concurrencyLevel) {
2419     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420     throw new IllegalArgumentException();
2421     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2422     initialCapacity = concurrencyLevel; // as estimated threads
2423     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426     this.sizeCtl = cap;
2427     }
2428    
2429     /**
2430 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2431     * from the given type to {@code Boolean.TRUE}.
2432     *
2433     * @return the new set
2434     */
2435     public static <K> KeySetView<K,Boolean> newKeySet() {
2436     return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437     Boolean.TRUE);
2438     }
2439    
2440     /**
2441     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442     * from the given type to {@code Boolean.TRUE}.
2443     *
2444     * @param initialCapacity The implementation performs internal
2445     * sizing to accommodate this many elements.
2446     * @throws IllegalArgumentException if the initial capacity of
2447     * elements is negative
2448     * @return the new set
2449     */
2450     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 dl 1.149 return new KeySetView<K,Boolean>
2452     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 dl 1.137 }
2454    
2455     /**
2456 dl 1.119 * {@inheritDoc}
2457     */
2458     public boolean isEmpty() {
2459 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2460 dl 1.119 }
2461    
2462     /**
2463     * {@inheritDoc}
2464     */
2465     public int size() {
2466 dl 1.149 long n = sumCount();
2467 dl 1.119 return ((n < 0L) ? 0 :
2468     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469     (int)n);
2470     }
2471    
2472     /**
2473     * Returns the number of mappings. This method should be used
2474     * instead of {@link #size} because a ConcurrentHashMap may
2475     * contain more mappings than can be represented as an int. The
2476 dl 1.146 * value returned is an estimate; the actual count may differ if
2477     * there are concurrent insertions or removals.
2478 dl 1.119 *
2479     * @return the number of mappings
2480     */
2481     public long mappingCount() {
2482 dl 1.149 long n = sumCount();
2483 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2484 dl 1.119 }
2485    
2486     /**
2487     * Returns the value to which the specified key is mapped,
2488     * or {@code null} if this map contains no mapping for the key.
2489     *
2490     * <p>More formally, if this map contains a mapping from a key
2491     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492     * then this method returns {@code v}; otherwise it returns
2493     * {@code null}. (There can be at most one such mapping.)
2494     *
2495     * @throws NullPointerException if the specified key is null
2496     */
2497 dl 1.149 public V get(Object key) {
2498     return internalGet(key);
2499 dl 1.119 }
2500    
2501     /**
2502 dl 1.129 * Returns the value to which the specified key is mapped,
2503 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2504 dl 1.129 *
2505     * @param key the key
2506     * @param defaultValue the value to return if this map contains
2507 jsr166 1.134 * no mapping for the given key
2508 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2509     * @throws NullPointerException if the specified key is null
2510     */
2511 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2512     V v;
2513     return (v = internalGet(key)) == null ? defaultValue : v;
2514 dl 1.129 }
2515    
2516     /**
2517 dl 1.119 * Tests if the specified object is a key in this table.
2518     *
2519     * @param key possible key
2520     * @return {@code true} if and only if the specified object
2521     * is a key in this table, as determined by the
2522     * {@code equals} method; {@code false} otherwise
2523     * @throws NullPointerException if the specified key is null
2524     */
2525     public boolean containsKey(Object key) {
2526     return internalGet(key) != null;
2527     }
2528    
2529     /**
2530     * Returns {@code true} if this map maps one or more keys to the
2531     * specified value. Note: This method may require a full traversal
2532     * of the map, and is much slower than method {@code containsKey}.
2533     *
2534     * @param value value whose presence in this map is to be tested
2535     * @return {@code true} if this map maps one or more keys to the
2536     * specified value
2537     * @throws NullPointerException if the specified value is null
2538     */
2539     public boolean containsValue(Object value) {
2540     if (value == null)
2541     throw new NullPointerException();
2542 dl 1.151 V v;
2543 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544     while ((v = it.advance()) != null) {
2545     if (v == value || value.equals(v))
2546     return true;
2547     }
2548     return false;
2549     }
2550    
2551     /**
2552     * Legacy method testing if some key maps into the specified value
2553     * in this table. This method is identical in functionality to
2554 jsr166 1.176 * {@link #containsValue(Object)}, and exists solely to ensure
2555 dl 1.119 * full compatibility with class {@link java.util.Hashtable},
2556     * which supported this method prior to introduction of the
2557     * Java Collections framework.
2558     *
2559     * @param value a value to search for
2560     * @return {@code true} if and only if some key maps to the
2561     * {@code value} argument in this table as
2562     * determined by the {@code equals} method;
2563     * {@code false} otherwise
2564     * @throws NullPointerException if the specified value is null
2565     */
2566 dl 1.151 @Deprecated public boolean contains(Object value) {
2567 dl 1.119 return containsValue(value);
2568     }
2569    
2570     /**
2571     * Maps the specified key to the specified value in this table.
2572     * Neither the key nor the value can be null.
2573     *
2574 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2575 dl 1.119 * with a key that is equal to the original key.
2576     *
2577     * @param key key with which the specified value is to be associated
2578     * @param value value to be associated with the specified key
2579     * @return the previous value associated with {@code key}, or
2580     * {@code null} if there was no mapping for {@code key}
2581     * @throws NullPointerException if the specified key or value is null
2582     */
2583 dl 1.149 public V put(K key, V value) {
2584     return internalPut(key, value, false);
2585 dl 1.119 }
2586    
2587     /**
2588     * {@inheritDoc}
2589     *
2590     * @return the previous value associated with the specified key,
2591     * or {@code null} if there was no mapping for the key
2592     * @throws NullPointerException if the specified key or value is null
2593     */
2594 dl 1.149 public V putIfAbsent(K key, V value) {
2595     return internalPut(key, value, true);
2596 dl 1.119 }
2597    
2598     /**
2599     * Copies all of the mappings from the specified map to this one.
2600     * These mappings replace any mappings that this map had for any of the
2601     * keys currently in the specified map.
2602     *
2603     * @param m mappings to be stored in this map
2604     */
2605     public void putAll(Map<? extends K, ? extends V> m) {
2606     internalPutAll(m);
2607     }
2608    
2609     /**
2610 dl 1.153 * If the specified key is not already associated with a value (or
2611     * is mapped to {@code null}), attempts to compute its value using
2612     * the given mapping function and enters it into this map unless
2613     * {@code null}. The entire method invocation is performed
2614     * atomically, so the function is applied at most once per key.
2615     * Some attempted update operations on this map by other threads
2616     * may be blocked while computation is in progress, so the
2617     * computation should be short and simple, and must not attempt to
2618     * update any other mappings of this Map.
2619 dl 1.119 *
2620     * @param key key with which the specified value is to be associated
2621     * @param mappingFunction the function to compute a value
2622     * @return the current (existing or computed) value associated with
2623 jsr166 1.134 * the specified key, or null if the computed value is null
2624 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2625     * is null
2626     * @throws IllegalStateException if the computation detectably
2627     * attempts a recursive update to this map that would
2628     * otherwise never complete
2629     * @throws RuntimeException or Error if the mappingFunction does so,
2630     * in which case the mapping is left unestablished
2631     */
2632 dl 1.149 public V computeIfAbsent
2633 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2634 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2635 dl 1.119 }
2636    
2637     /**
2638 dl 1.153 * If the value for the specified key is present and non-null,
2639     * attempts to compute a new mapping given the key and its current
2640     * mapped value. The entire method invocation is performed
2641     * atomically. Some attempted update operations on this map by
2642 dl 1.119 * other threads may be blocked while computation is in progress,
2643     * so the computation should be short and simple, and must not
2644 dl 1.153 * attempt to update any other mappings of this Map.
2645 dl 1.119 *
2646     * @param key key with which the specified value is to be associated
2647     * @param remappingFunction the function to compute a value
2648 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2649 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2650     * is null
2651     * @throws IllegalStateException if the computation detectably
2652     * attempts a recursive update to this map that would
2653     * otherwise never complete
2654     * @throws RuntimeException or Error if the remappingFunction does so,
2655     * in which case the mapping is unchanged
2656     */
2657 dl 1.149 public V computeIfPresent
2658 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 dl 1.149 return internalCompute(key, true, remappingFunction);
2660 dl 1.119 }
2661    
2662     /**
2663 dl 1.153 * Attempts to compute a mapping for the specified key and its
2664     * current mapped value (or {@code null} if there is no current
2665     * mapping). The entire method invocation is performed atomically.
2666     * Some attempted update operations on this map by other threads
2667     * may be blocked while computation is in progress, so the
2668     * computation should be short and simple, and must not attempt to
2669     * update any other mappings of this Map.
2670 dl 1.119 *
2671     * @param key key with which the specified value is to be associated
2672     * @param remappingFunction the function to compute a value
2673 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2674 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2675     * is null
2676     * @throws IllegalStateException if the computation detectably
2677     * attempts a recursive update to this map that would
2678     * otherwise never complete
2679     * @throws RuntimeException or Error if the remappingFunction does so,
2680     * in which case the mapping is unchanged
2681     */
2682 dl 1.149 public V compute
2683 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 dl 1.149 return internalCompute(key, false, remappingFunction);
2685 dl 1.119 }
2686    
2687     /**
2688 dl 1.153 * If the specified key is not already associated with a
2689     * (non-null) value, associates it with the given value.
2690     * Otherwise, replaces the value with the results of the given
2691     * remapping function, or removes if {@code null}. The entire
2692     * method invocation is performed atomically. Some attempted
2693     * update operations on this map by other threads may be blocked
2694     * while computation is in progress, so the computation should be
2695     * short and simple, and must not attempt to update any other
2696     * mappings of this Map.
2697     *
2698     * @param key key with which the specified value is to be associated
2699     * @param value the value to use if absent
2700     * @param remappingFunction the function to recompute a value if present
2701     * @return the new value associated with the specified key, or null if none
2702     * @throws NullPointerException if the specified key or the
2703     * remappingFunction is null
2704     * @throws RuntimeException or Error if the remappingFunction does so,
2705     * in which case the mapping is unchanged
2706 dl 1.119 */
2707 dl 1.149 public V merge
2708     (K key, V value,
2709 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 dl 1.149 return internalMerge(key, value, remappingFunction);
2711 dl 1.119 }
2712    
2713     /**
2714     * Removes the key (and its corresponding value) from this map.
2715     * This method does nothing if the key is not in the map.
2716     *
2717     * @param key the key that needs to be removed
2718     * @return the previous value associated with {@code key}, or
2719     * {@code null} if there was no mapping for {@code key}
2720     * @throws NullPointerException if the specified key is null
2721     */
2722 dl 1.149 public V remove(Object key) {
2723     return internalReplace(key, null, null);
2724 dl 1.119 }
2725    
2726     /**
2727     * {@inheritDoc}
2728     *
2729     * @throws NullPointerException if the specified key is null
2730     */
2731     public boolean remove(Object key, Object value) {
2732 dl 1.163 if (key == null)
2733     throw new NullPointerException();
2734 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2735 tim 1.1 }
2736 dl 1.31
2737     /**
2738 jsr166 1.68 * {@inheritDoc}
2739     *
2740     * @throws NullPointerException if any of the arguments are null
2741 dl 1.31 */
2742     public boolean replace(K key, V oldValue, V newValue) {
2743 dl 1.119 if (key == null || oldValue == null || newValue == null)
2744 dl 1.31 throw new NullPointerException();
2745 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2746 dl 1.32 }
2747    
2748     /**
2749 jsr166 1.68 * {@inheritDoc}
2750     *
2751     * @return the previous value associated with the specified key,
2752 dl 1.119 * or {@code null} if there was no mapping for the key
2753 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2754 dl 1.32 */
2755 dl 1.149 public V replace(K key, V value) {
2756 dl 1.119 if (key == null || value == null)
2757 dl 1.32 throw new NullPointerException();
2758 dl 1.149 return internalReplace(key, value, null);
2759 dl 1.31 }
2760    
2761 tim 1.1 /**
2762 jsr166 1.68 * Removes all of the mappings from this map.
2763 tim 1.1 */
2764     public void clear() {
2765 dl 1.119 internalClear();
2766 tim 1.1 }
2767    
2768     /**
2769 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2770     * The set is backed by the map, so changes to the map are
2771 dl 1.137 * reflected in the set, and vice-versa.
2772     *
2773     * @return the set view
2774     */
2775     public KeySetView<K,V> keySet() {
2776     KeySetView<K,V> ks = keySet;
2777     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778     }
2779    
2780     /**
2781     * Returns a {@link Set} view of the keys in this map, using the
2782     * given common mapped value for any additions (i.e., {@link
2783 jsr166 1.174 * Collection#add} and {@link Collection#addAll(Collection)}).
2784     * This is of course only appropriate if it is acceptable to use
2785     * the same value for all additions from this view.
2786 jsr166 1.68 *
2787 jsr166 1.172 * @param mappedValue the mapped value to use for any additions
2788 dl 1.137 * @return the set view
2789     * @throws NullPointerException if the mappedValue is null
2790 tim 1.1 */
2791 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2792     if (mappedValue == null)
2793     throw new NullPointerException();
2794     return new KeySetView<K,V>(this, mappedValue);
2795 tim 1.1 }
2796    
2797     /**
2798 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2799     * The collection is backed by the map, so changes to the map are
2800 jsr166 1.143 * reflected in the collection, and vice-versa.
2801 tim 1.1 */
2802 dl 1.142 public ValuesView<K,V> values() {
2803     ValuesView<K,V> vs = values;
2804     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2805 dl 1.119 }
2806    
2807     /**
2808     * Returns a {@link Set} view of the mappings contained in this map.
2809     * The set is backed by the map, so changes to the map are
2810     * reflected in the set, and vice-versa. The set supports element
2811     * removal, which removes the corresponding mapping from the map,
2812     * via the {@code Iterator.remove}, {@code Set.remove},
2813     * {@code removeAll}, {@code retainAll}, and {@code clear}
2814     * operations. It does not support the {@code add} or
2815     * {@code addAll} operations.
2816     *
2817     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2818     * that will never throw {@link ConcurrentModificationException},
2819     * and guarantees to traverse elements as they existed upon
2820     * construction of the iterator, and may (but is not guaranteed to)
2821     * reflect any modifications subsequent to construction.
2822     */
2823     public Set<Map.Entry<K,V>> entrySet() {
2824 dl 1.142 EntrySetView<K,V> es = entrySet;
2825     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2826 dl 1.119 }
2827    
2828     /**
2829     * Returns an enumeration of the keys in this table.
2830     *
2831     * @return an enumeration of the keys in this table
2832     * @see #keySet()
2833     */
2834     public Enumeration<K> keys() {
2835     return new KeyIterator<K,V>(this);
2836     }
2837    
2838     /**
2839     * Returns an enumeration of the values in this table.
2840     *
2841     * @return an enumeration of the values in this table
2842     * @see #values()
2843     */
2844     public Enumeration<V> elements() {
2845     return new ValueIterator<K,V>(this);
2846     }
2847    
2848     /**
2849     * Returns the hash code value for this {@link Map}, i.e.,
2850     * the sum of, for each key-value pair in the map,
2851     * {@code key.hashCode() ^ value.hashCode()}.
2852     *
2853     * @return the hash code value for this map
2854     */
2855     public int hashCode() {
2856     int h = 0;
2857     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2858 dl 1.151 V v;
2859 dl 1.119 while ((v = it.advance()) != null) {
2860     h += it.nextKey.hashCode() ^ v.hashCode();
2861     }
2862     return h;
2863     }
2864    
2865     /**
2866     * Returns a string representation of this map. The string
2867     * representation consists of a list of key-value mappings (in no
2868     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2869     * mappings are separated by the characters {@code ", "} (comma
2870     * and space). Each key-value mapping is rendered as the key
2871     * followed by an equals sign ("{@code =}") followed by the
2872     * associated value.
2873     *
2874     * @return a string representation of this map
2875     */
2876     public String toString() {
2877     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2878     StringBuilder sb = new StringBuilder();
2879     sb.append('{');
2880 dl 1.151 V v;
2881 dl 1.119 if ((v = it.advance()) != null) {
2882     for (;;) {
2883 jsr166 1.168 K k = it.nextKey;
2884 dl 1.119 sb.append(k == this ? "(this Map)" : k);
2885     sb.append('=');
2886     sb.append(v == this ? "(this Map)" : v);
2887     if ((v = it.advance()) == null)
2888     break;
2889     sb.append(',').append(' ');
2890     }
2891     }
2892     return sb.append('}').toString();
2893     }
2894    
2895     /**
2896     * Compares the specified object with this map for equality.
2897     * Returns {@code true} if the given object is a map with the same
2898     * mappings as this map. This operation may return misleading
2899     * results if either map is concurrently modified during execution
2900     * of this method.
2901     *
2902     * @param o object to be compared for equality with this map
2903     * @return {@code true} if the specified object is equal to this map
2904     */
2905     public boolean equals(Object o) {
2906     if (o != this) {
2907     if (!(o instanceof Map))
2908     return false;
2909     Map<?,?> m = (Map<?,?>) o;
2910     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2911 dl 1.151 V val;
2912 dl 1.119 while ((val = it.advance()) != null) {
2913     Object v = m.get(it.nextKey);
2914     if (v == null || (v != val && !v.equals(val)))
2915     return false;
2916     }
2917     for (Map.Entry<?,?> e : m.entrySet()) {
2918     Object mk, mv, v;
2919     if ((mk = e.getKey()) == null ||
2920     (mv = e.getValue()) == null ||
2921     (v = internalGet(mk)) == null ||
2922     (mv != v && !mv.equals(v)))
2923     return false;
2924     }
2925     }
2926     return true;
2927     }
2928    
2929     /* ----------------Iterators -------------- */
2930    
2931 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2932     extends Traverser<K,V,Object>
2933 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2934 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2935 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2936 dl 1.153 super(map, it);
2937 dl 1.119 }
2938 dl 1.155 public KeyIterator<K,V> trySplit() {
2939     if (tab != null && baseIndex == baseLimit)
2940     return null;
2941 dl 1.146 return new KeyIterator<K,V>(map, this);
2942 dl 1.119 }
2943 jsr166 1.168 public final K next() {
2944 dl 1.119 if (nextVal == null && advance() == null)
2945     throw new NoSuchElementException();
2946 jsr166 1.168 K k = nextKey;
2947 dl 1.119 nextVal = null;
2948 jsr166 1.168 return k;
2949 dl 1.119 }
2950    
2951     public final K nextElement() { return next(); }
2952 dl 1.153
2953 dl 1.162 public Iterator<K> iterator() { return this; }
2954 dl 1.153
2955 dl 1.171 public void forEach(Consumer<? super K> action) {
2956 dl 1.153 if (action == null) throw new NullPointerException();
2957     while (advance() != null)
2958 jsr166 1.168 action.accept(nextKey);
2959 dl 1.153 }
2960 dl 1.160
2961 dl 1.171 public boolean tryAdvance(Consumer<? super K> block) {
2962 dl 1.160 if (block == null) throw new NullPointerException();
2963     if (advance() == null)
2964     return false;
2965 jsr166 1.168 block.accept(nextKey);
2966 dl 1.160 return true;
2967     }
2968 dl 1.119 }
2969    
2970 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2971     extends Traverser<K,V,Object>
2972 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2973 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2974 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2975 dl 1.153 super(map, it);
2976 dl 1.119 }
2977 dl 1.155 public ValueIterator<K,V> trySplit() {
2978     if (tab != null && baseIndex == baseLimit)
2979     return null;
2980 dl 1.146 return new ValueIterator<K,V>(map, this);
2981 dl 1.119 }
2982    
2983 dl 1.151 public final V next() {
2984     V v;
2985 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
2986     throw new NoSuchElementException();
2987     nextVal = null;
2988 dl 1.151 return v;
2989 dl 1.119 }
2990    
2991     public final V nextElement() { return next(); }
2992 dl 1.153
2993 dl 1.162 public Iterator<V> iterator() { return this; }
2994 dl 1.153
2995 dl 1.171 public void forEach(Consumer<? super V> action) {
2996 dl 1.153 if (action == null) throw new NullPointerException();
2997     V v;
2998     while ((v = advance()) != null)
2999     action.accept(v);
3000     }
3001 dl 1.160
3002 dl 1.171 public boolean tryAdvance(Consumer<? super V> block) {
3003 dl 1.160 V v;
3004     if (block == null) throw new NullPointerException();
3005     if ((v = advance()) == null)
3006     return false;
3007     block.accept(v);
3008     return true;
3009     }
3010 jsr166 1.161
3011 dl 1.119 }
3012    
3013 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3014     extends Traverser<K,V,Object>
3015 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3016 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3017 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3018 dl 1.153 super(map, it);
3019 dl 1.119 }
3020 dl 1.155 public EntryIterator<K,V> trySplit() {
3021     if (tab != null && baseIndex == baseLimit)
3022     return null;
3023 dl 1.146 return new EntryIterator<K,V>(map, this);
3024 dl 1.119 }
3025    
3026 jsr166 1.168 public final Map.Entry<K,V> next() {
3027 dl 1.151 V v;
3028 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3029     throw new NoSuchElementException();
3030 jsr166 1.168 K k = nextKey;
3031 dl 1.119 nextVal = null;
3032 jsr166 1.168 return new MapEntry<K,V>(k, v, map);
3033 dl 1.119 }
3034 dl 1.153
3035 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3036 dl 1.153
3037 dl 1.171 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3038 dl 1.153 if (action == null) throw new NullPointerException();
3039     V v;
3040     while ((v = advance()) != null)
3041 jsr166 1.168 action.accept(entryFor(nextKey, v));
3042 dl 1.153 }
3043 dl 1.160
3044 dl 1.171 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3045 dl 1.160 V v;
3046     if (block == null) throw new NullPointerException();
3047     if ((v = advance()) == null)
3048     return false;
3049 jsr166 1.168 block.accept(entryFor(nextKey, v));
3050 dl 1.160 return true;
3051     }
3052    
3053 dl 1.119 }
3054    
3055     /**
3056     * Exported Entry for iterators
3057     */
3058     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3059     final K key; // non-null
3060     V val; // non-null
3061     final ConcurrentHashMap<K, V> map;
3062     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3063     this.key = key;
3064     this.val = val;
3065     this.map = map;
3066     }
3067     public final K getKey() { return key; }
3068     public final V getValue() { return val; }
3069     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3070     public final String toString(){ return key + "=" + val; }
3071    
3072     public final boolean equals(Object o) {
3073     Object k, v; Map.Entry<?,?> e;
3074     return ((o instanceof Map.Entry) &&
3075     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3076     (v = e.getValue()) != null &&
3077     (k == key || k.equals(key)) &&
3078     (v == val || v.equals(val)));
3079     }
3080    
3081     /**
3082     * Sets our entry's value and writes through to the map. The
3083     * value to return is somewhat arbitrary here. Since we do not
3084     * necessarily track asynchronous changes, the most recent
3085     * "previous" value could be different from what we return (or
3086     * could even have been removed in which case the put will
3087     * re-establish). We do not and cannot guarantee more.
3088     */
3089     public final V setValue(V value) {
3090     if (value == null) throw new NullPointerException();
3091     V v = val;
3092     val = value;
3093     map.put(key, value);
3094     return v;
3095     }
3096     }
3097    
3098 dl 1.146 /**
3099     * Returns exportable snapshot entry for the given key and value
3100     * when write-through can't or shouldn't be used.
3101     */
3102     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3103     return new AbstractMap.SimpleEntry<K,V>(k, v);
3104     }
3105    
3106 dl 1.142 /* ---------------- Serialization Support -------------- */
3107 dl 1.119
3108     /**
3109 dl 1.142 * Stripped-down version of helper class used in previous version,
3110     * declared for the sake of serialization compatibility
3111 dl 1.119 */
3112 dl 1.142 static class Segment<K,V> implements Serializable {
3113     private static final long serialVersionUID = 2249069246763182397L;
3114     final float loadFactor;
3115     Segment(float lf) { this.loadFactor = lf; }
3116     }
3117 dl 1.119
3118 dl 1.142 /**
3119     * Saves the state of the {@code ConcurrentHashMap} instance to a
3120     * stream (i.e., serializes it).
3121     * @param s the stream
3122     * @serialData
3123     * the key (Object) and value (Object)
3124     * for each key-value mapping, followed by a null pair.
3125     * The key-value mappings are emitted in no particular order.
3126     */
3127 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3128     (java.io.ObjectOutputStream s)
3129 dl 1.142 throws java.io.IOException {
3130     if (segments == null) { // for serialization compatibility
3131     segments = (Segment<K,V>[])
3132     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3133     for (int i = 0; i < segments.length; ++i)
3134     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3135     }
3136     s.defaultWriteObject();
3137     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3138 dl 1.151 V v;
3139 dl 1.142 while ((v = it.advance()) != null) {
3140     s.writeObject(it.nextKey);
3141     s.writeObject(v);
3142     }
3143     s.writeObject(null);
3144     s.writeObject(null);
3145     segments = null; // throw away
3146     }
3147 dl 1.119
3148 dl 1.142 /**
3149     * Reconstitutes the instance from a stream (that is, deserializes it).
3150     * @param s the stream
3151     */
3152 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3153     (java.io.ObjectInputStream s)
3154 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3155     s.defaultReadObject();
3156     this.segments = null; // unneeded
3157 dl 1.119
3158 dl 1.142 // Create all nodes, then place in table once size is known
3159     long size = 0L;
3160 dl 1.151 Node<V> p = null;
3161 dl 1.142 for (;;) {
3162     K k = (K) s.readObject();
3163     V v = (V) s.readObject();
3164     if (k != null && v != null) {
3165     int h = spread(k.hashCode());
3166 dl 1.151 p = new Node<V>(h, k, v, p);
3167 dl 1.142 ++size;
3168 dl 1.119 }
3169 dl 1.142 else
3170     break;
3171 dl 1.119 }
3172 dl 1.142 if (p != null) {
3173     boolean init = false;
3174     int n;
3175     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3176     n = MAXIMUM_CAPACITY;
3177     else {
3178     int sz = (int)size;
3179     n = tableSizeFor(sz + (sz >>> 1) + 1);
3180     }
3181     int sc = sizeCtl;
3182     boolean collide = false;
3183     if (n > sc &&
3184 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3185 dl 1.142 try {
3186     if (table == null) {
3187     init = true;
3188 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3189     Node<V>[] tab = (Node<V>[])rt;
3190 dl 1.142 int mask = n - 1;
3191     while (p != null) {
3192     int j = p.hash & mask;
3193 dl 1.151 Node<V> next = p.next;
3194     Node<V> q = p.next = tabAt(tab, j);
3195 dl 1.142 setTabAt(tab, j, p);
3196     if (!collide && q != null && q.hash == p.hash)
3197     collide = true;
3198     p = next;
3199     }
3200     table = tab;
3201 dl 1.149 addCount(size, -1);
3202 dl 1.142 sc = n - (n >>> 2);
3203     }
3204     } finally {
3205     sizeCtl = sc;
3206     }
3207     if (collide) { // rescan and convert to TreeBins
3208 dl 1.151 Node<V>[] tab = table;
3209 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3210     int c = 0;
3211 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3212 dl 1.142 if (++c > TREE_THRESHOLD &&
3213     (e.key instanceof Comparable)) {
3214     replaceWithTreeBin(tab, i, e.key);
3215     break;
3216     }
3217     }
3218     }
3219 dl 1.119 }
3220     }
3221 dl 1.142 if (!init) { // Can only happen if unsafely published.
3222     while (p != null) {
3223 dl 1.151 internalPut((K)p.key, p.val, false);
3224 dl 1.142 p = p.next;
3225     }
3226 dl 1.119 }
3227     }
3228 dl 1.142 }
3229 dl 1.119
3230 dl 1.142 // -------------------------------------------------------
3231    
3232 dl 1.151 // Sequential bulk operations
3233    
3234 dl 1.119 /**
3235 dl 1.137 * Performs the given action for each (key, value).
3236 dl 1.119 *
3237 dl 1.137 * @param action the action
3238 dl 1.119 */
3239 jsr166 1.168 public void forEachSequentially
3240 dl 1.171 (BiConsumer<? super K, ? super V> action) {
3241 dl 1.151 if (action == null) throw new NullPointerException();
3242     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3243     V v;
3244     while ((v = it.advance()) != null)
3245 jsr166 1.168 action.accept(it.nextKey, v);
3246 dl 1.119 }
3247    
3248     /**
3249 dl 1.137 * Performs the given action for each non-null transformation
3250     * of each (key, value).
3251     *
3252     * @param transformer a function returning the transformation
3253 jsr166 1.169 * for an element, or null if there is no transformation (in
3254 jsr166 1.172 * which case the action is not applied)
3255 dl 1.137 * @param action the action
3256 dl 1.119 */
3257 jsr166 1.168 public <U> void forEachSequentially
3258 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3259 dl 1.171 Consumer<? super U> action) {
3260 dl 1.151 if (transformer == null || action == null)
3261     throw new NullPointerException();
3262     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3263     V v; U u;
3264     while ((v = it.advance()) != null) {
3265 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3266 dl 1.153 action.accept(u);
3267 dl 1.151 }
3268 dl 1.137 }
3269    
3270     /**
3271     * Returns a non-null result from applying the given search
3272 dl 1.151 * function on each (key, value), or null if none.
3273 dl 1.137 *
3274     * @param searchFunction a function returning a non-null
3275     * result on success, else null
3276     * @return a non-null result from applying the given search
3277     * function on each (key, value), or null if none
3278     */
3279 jsr166 1.168 public <U> U searchSequentially
3280 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3281 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3282     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3283     V v; U u;
3284     while ((v = it.advance()) != null) {
3285 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3286 dl 1.151 return u;
3287     }
3288     return null;
3289 dl 1.137 }
3290    
3291     /**
3292     * Returns the result of accumulating the given transformation
3293     * of all (key, value) pairs using the given reducer to
3294     * combine values, or null if none.
3295     *
3296     * @param transformer a function returning the transformation
3297 jsr166 1.169 * for an element, or null if there is no transformation (in
3298 jsr166 1.172 * which case it is not combined)
3299 dl 1.137 * @param reducer a commutative associative combining function
3300     * @return the result of accumulating the given transformation
3301     * of all (key, value) pairs
3302     */
3303 jsr166 1.168 public <U> U reduceSequentially
3304 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3305     BiFunction<? super U, ? super U, ? extends U> reducer) {
3306 dl 1.151 if (transformer == null || reducer == null)
3307     throw new NullPointerException();
3308     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3309     U r = null, u; V v;
3310     while ((v = it.advance()) != null) {
3311 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3312 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3313     }
3314     return r;
3315 dl 1.137 }
3316    
3317     /**
3318     * Returns the result of accumulating the given transformation
3319     * of all (key, value) pairs using the given reducer to
3320     * combine values, and the given basis as an identity value.
3321     *
3322     * @param transformer a function returning the transformation
3323     * for an element
3324     * @param basis the identity (initial default value) for the reduction
3325     * @param reducer a commutative associative combining function
3326     * @return the result of accumulating the given transformation
3327     * of all (key, value) pairs
3328     */
3329 jsr166 1.168 public double reduceToDoubleSequentially
3330 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
3331 dl 1.151 double basis,
3332 dl 1.153 DoubleBinaryOperator reducer) {
3333 dl 1.151 if (transformer == null || reducer == null)
3334     throw new NullPointerException();
3335     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3336     double r = basis; V v;
3337     while ((v = it.advance()) != null)
3338 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3339 dl 1.151 return r;
3340 dl 1.137 }
3341 dl 1.119
3342 dl 1.137 /**
3343     * Returns the result of accumulating the given transformation
3344     * of all (key, value) pairs using the given reducer to
3345     * combine values, and the given basis as an identity value.
3346     *
3347     * @param transformer a function returning the transformation
3348     * for an element
3349     * @param basis the identity (initial default value) for the reduction
3350     * @param reducer a commutative associative combining function
3351     * @return the result of accumulating the given transformation
3352     * of all (key, value) pairs
3353     */
3354 jsr166 1.168 public long reduceToLongSequentially
3355 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
3356 dl 1.151 long basis,
3357 dl 1.153 LongBinaryOperator reducer) {
3358 dl 1.151 if (transformer == null || reducer == null)
3359     throw new NullPointerException();
3360     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3361     long r = basis; V v;
3362     while ((v = it.advance()) != null)
3363 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3364 dl 1.151 return r;
3365 dl 1.137 }
3366    
3367     /**
3368     * Returns the result of accumulating the given transformation
3369     * of all (key, value) pairs using the given reducer to
3370     * combine values, and the given basis as an identity value.
3371     *
3372     * @param transformer a function returning the transformation
3373     * for an element
3374     * @param basis the identity (initial default value) for the reduction
3375     * @param reducer a commutative associative combining function
3376     * @return the result of accumulating the given transformation
3377     * of all (key, value) pairs
3378     */
3379 jsr166 1.168 public int reduceToIntSequentially
3380 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
3381 dl 1.151 int basis,
3382 dl 1.153 IntBinaryOperator reducer) {
3383 dl 1.151 if (transformer == null || reducer == null)
3384     throw new NullPointerException();
3385     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386     int r = basis; V v;
3387     while ((v = it.advance()) != null)
3388 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3389 dl 1.151 return r;
3390 dl 1.137 }
3391    
3392     /**
3393     * Performs the given action for each key.
3394     *
3395     * @param action the action
3396     */
3397 jsr166 1.168 public void forEachKeySequentially
3398 dl 1.171 (Consumer<? super K> action) {
3399 dl 1.151 if (action == null) throw new NullPointerException();
3400     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3401     while (it.advance() != null)
3402 jsr166 1.168 action.accept(it.nextKey);
3403 dl 1.137 }
3404 dl 1.119
3405 dl 1.137 /**
3406     * Performs the given action for each non-null transformation
3407     * of each key.
3408     *
3409     * @param transformer a function returning the transformation
3410 jsr166 1.169 * for an element, or null if there is no transformation (in
3411 jsr166 1.172 * which case the action is not applied)
3412 dl 1.137 * @param action the action
3413     */
3414 jsr166 1.168 public <U> void forEachKeySequentially
3415 dl 1.153 (Function<? super K, ? extends U> transformer,
3416 dl 1.171 Consumer<? super U> action) {
3417 dl 1.151 if (transformer == null || action == null)
3418     throw new NullPointerException();
3419     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3420     U u;
3421     while (it.advance() != null) {
3422 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3423 dl 1.153 action.accept(u);
3424 dl 1.151 }
3425 dl 1.137 ForkJoinTasks.forEachKey
3426     (this, transformer, action).invoke();
3427     }
3428 dl 1.119
3429 dl 1.137 /**
3430     * Returns a non-null result from applying the given search
3431 dl 1.151 * function on each key, or null if none.
3432 dl 1.137 *
3433     * @param searchFunction a function returning a non-null
3434     * result on success, else null
3435     * @return a non-null result from applying the given search
3436     * function on each key, or null if none
3437     */
3438 jsr166 1.168 public <U> U searchKeysSequentially
3439 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3440 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3441     U u;
3442     while (it.advance() != null) {
3443 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey)) != null)
3444 dl 1.151 return u;
3445     }
3446     return null;
3447 dl 1.137 }
3448 dl 1.119
3449 dl 1.137 /**
3450     * Returns the result of accumulating all keys using the given
3451     * reducer to combine values, or null if none.
3452     *
3453     * @param reducer a commutative associative combining function
3454     * @return the result of accumulating all keys using the given
3455     * reducer to combine values, or null if none
3456     */
3457 jsr166 1.168 public K reduceKeysSequentially
3458 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3459 dl 1.151 if (reducer == null) throw new NullPointerException();
3460     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3461     K r = null;
3462     while (it.advance() != null) {
3463 jsr166 1.168 K u = it.nextKey;
3464 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3465     }
3466     return r;
3467 dl 1.137 }
3468 dl 1.119
3469 dl 1.137 /**
3470     * Returns the result of accumulating the given transformation
3471     * of all keys using the given reducer to combine values, or
3472     * null if none.
3473     *
3474     * @param transformer a function returning the transformation
3475 jsr166 1.169 * for an element, or null if there is no transformation (in
3476 jsr166 1.172 * which case it is not combined)
3477 dl 1.137 * @param reducer a commutative associative combining function
3478     * @return the result of accumulating the given transformation
3479     * of all keys
3480     */
3481 jsr166 1.168 public <U> U reduceKeysSequentially
3482 dl 1.153 (Function<? super K, ? extends U> transformer,
3483     BiFunction<? super U, ? super U, ? extends U> reducer) {
3484 dl 1.151 if (transformer == null || reducer == null)
3485     throw new NullPointerException();
3486     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3487     U r = null, u;
3488     while (it.advance() != null) {
3489 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3490 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3491     }
3492     return r;
3493 dl 1.137 }
3494 dl 1.119
3495 dl 1.137 /**
3496     * Returns the result of accumulating the given transformation
3497     * of all keys using the given reducer to combine values, and
3498     * the given basis as an identity value.
3499     *
3500     * @param transformer a function returning the transformation
3501     * for an element
3502     * @param basis the identity (initial default value) for the reduction
3503     * @param reducer a commutative associative combining function
3504 jsr166 1.157 * @return the result of accumulating the given transformation
3505 dl 1.137 * of all keys
3506     */
3507 jsr166 1.168 public double reduceKeysToDoubleSequentially
3508 dl 1.171 (ToDoubleFunction<? super K> transformer,
3509 dl 1.151 double basis,
3510 dl 1.153 DoubleBinaryOperator reducer) {
3511 dl 1.151 if (transformer == null || reducer == null)
3512     throw new NullPointerException();
3513     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3514     double r = basis;
3515     while (it.advance() != null)
3516 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3517 dl 1.151 return r;
3518 dl 1.137 }
3519 dl 1.119
3520 dl 1.137 /**
3521     * Returns the result of accumulating the given transformation
3522     * of all keys using the given reducer to combine values, and
3523     * the given basis as an identity value.
3524     *
3525     * @param transformer a function returning the transformation
3526     * for an element
3527     * @param basis the identity (initial default value) for the reduction
3528     * @param reducer a commutative associative combining function
3529     * @return the result of accumulating the given transformation
3530     * of all keys
3531     */
3532 jsr166 1.168 public long reduceKeysToLongSequentially
3533 dl 1.171 (ToLongFunction<? super K> transformer,
3534 dl 1.151 long basis,
3535 dl 1.153 LongBinaryOperator reducer) {
3536 dl 1.151 if (transformer == null || reducer == null)
3537     throw new NullPointerException();
3538     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3539     long r = basis;
3540     while (it.advance() != null)
3541 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3542 dl 1.151 return r;
3543 dl 1.137 }
3544 dl 1.119
3545 dl 1.137 /**
3546     * Returns the result of accumulating the given transformation
3547     * of all keys using the given reducer to combine values, and
3548     * the given basis as an identity value.
3549     *
3550     * @param transformer a function returning the transformation
3551     * for an element
3552     * @param basis the identity (initial default value) for the reduction
3553     * @param reducer a commutative associative combining function
3554     * @return the result of accumulating the given transformation
3555     * of all keys
3556     */
3557 jsr166 1.168 public int reduceKeysToIntSequentially
3558 dl 1.171 (ToIntFunction<? super K> transformer,
3559 dl 1.151 int basis,
3560 dl 1.153 IntBinaryOperator reducer) {
3561 dl 1.151 if (transformer == null || reducer == null)
3562     throw new NullPointerException();
3563     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564     int r = basis;
3565     while (it.advance() != null)
3566 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3567 dl 1.151 return r;
3568 dl 1.137 }
3569 dl 1.119
3570 dl 1.137 /**
3571     * Performs the given action for each value.
3572     *
3573     * @param action the action
3574     */
3575 dl 1.171 public void forEachValueSequentially(Consumer<? super V> action) {
3576 dl 1.151 if (action == null) throw new NullPointerException();
3577     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3578     V v;
3579     while ((v = it.advance()) != null)
3580 dl 1.153 action.accept(v);
3581 dl 1.137 }
3582 dl 1.119
3583 dl 1.137 /**
3584     * Performs the given action for each non-null transformation
3585     * of each value.
3586     *
3587     * @param transformer a function returning the transformation
3588 jsr166 1.169 * for an element, or null if there is no transformation (in
3589 jsr166 1.172 * which case the action is not applied)
3590 jsr166 1.179 * @param action the action
3591 dl 1.137 */
3592 dl 1.151 public <U> void forEachValueSequentially
3593 dl 1.153 (Function<? super V, ? extends U> transformer,
3594 dl 1.171 Consumer<? super U> action) {
3595 dl 1.151 if (transformer == null || action == null)
3596     throw new NullPointerException();
3597     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3598     V v; U u;
3599     while ((v = it.advance()) != null) {
3600     if ((u = transformer.apply(v)) != null)
3601 dl 1.153 action.accept(u);
3602 dl 1.151 }
3603 dl 1.137 }
3604 dl 1.119
3605 dl 1.137 /**
3606     * Returns a non-null result from applying the given search
3607 dl 1.151 * function on each value, or null if none.
3608 dl 1.137 *
3609     * @param searchFunction a function returning a non-null
3610     * result on success, else null
3611     * @return a non-null result from applying the given search
3612     * function on each value, or null if none
3613     */
3614 dl 1.151 public <U> U searchValuesSequentially
3615 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3616 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3617     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3618     V v; U u;
3619     while ((v = it.advance()) != null) {
3620     if ((u = searchFunction.apply(v)) != null)
3621     return u;
3622     }
3623     return null;
3624 dl 1.137 }
3625 dl 1.119
3626 dl 1.137 /**
3627     * Returns the result of accumulating all values using the
3628     * given reducer to combine values, or null if none.
3629     *
3630     * @param reducer a commutative associative combining function
3631 jsr166 1.157 * @return the result of accumulating all values
3632 dl 1.137 */
3633 dl 1.151 public V reduceValuesSequentially
3634 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3635 dl 1.151 if (reducer == null) throw new NullPointerException();
3636     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637     V r = null; V v;
3638     while ((v = it.advance()) != null)
3639     r = (r == null) ? v : reducer.apply(r, v);
3640     return r;
3641 dl 1.137 }
3642 dl 1.119
3643 dl 1.137 /**
3644     * Returns the result of accumulating the given transformation
3645     * of all values using the given reducer to combine values, or
3646     * null if none.
3647     *
3648     * @param transformer a function returning the transformation
3649 jsr166 1.169 * for an element, or null if there is no transformation (in
3650 jsr166 1.172 * which case it is not combined)
3651 dl 1.137 * @param reducer a commutative associative combining function
3652     * @return the result of accumulating the given transformation
3653     * of all values
3654     */
3655 dl 1.151 public <U> U reduceValuesSequentially
3656 dl 1.153 (Function<? super V, ? extends U> transformer,
3657     BiFunction<? super U, ? super U, ? extends U> reducer) {
3658 dl 1.151 if (transformer == null || reducer == null)
3659     throw new NullPointerException();
3660     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3661     U r = null, u; V v;
3662     while ((v = it.advance()) != null) {
3663     if ((u = transformer.apply(v)) != null)
3664     r = (r == null) ? u : reducer.apply(r, u);
3665     }
3666     return r;
3667 dl 1.137 }
3668 dl 1.119
3669 dl 1.137 /**
3670     * Returns the result of accumulating the given transformation
3671     * of all values using the given reducer to combine values,
3672     * and the given basis as an identity value.
3673     *
3674     * @param transformer a function returning the transformation
3675     * for an element
3676     * @param basis the identity (initial default value) for the reduction
3677     * @param reducer a commutative associative combining function
3678     * @return the result of accumulating the given transformation
3679     * of all values
3680     */
3681 dl 1.151 public double reduceValuesToDoubleSequentially
3682 dl 1.171 (ToDoubleFunction<? super V> transformer,
3683 dl 1.151 double basis,
3684 dl 1.153 DoubleBinaryOperator reducer) {
3685 dl 1.151 if (transformer == null || reducer == null)
3686     throw new NullPointerException();
3687     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3688     double r = basis; V v;
3689     while ((v = it.advance()) != null)
3690 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3691 dl 1.151 return r;
3692 dl 1.137 }
3693 dl 1.119
3694 dl 1.137 /**
3695     * Returns the result of accumulating the given transformation
3696     * of all values using the given reducer to combine values,
3697     * and the given basis as an identity value.
3698     *
3699     * @param transformer a function returning the transformation
3700     * for an element
3701     * @param basis the identity (initial default value) for the reduction
3702     * @param reducer a commutative associative combining function
3703     * @return the result of accumulating the given transformation
3704     * of all values
3705     */
3706 dl 1.151 public long reduceValuesToLongSequentially
3707 dl 1.171 (ToLongFunction<? super V> transformer,
3708 dl 1.151 long basis,
3709 dl 1.153 LongBinaryOperator reducer) {
3710 dl 1.151 if (transformer == null || reducer == null)
3711     throw new NullPointerException();
3712     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3713     long r = basis; V v;
3714     while ((v = it.advance()) != null)
3715 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3716 dl 1.151 return r;
3717 dl 1.137 }
3718 dl 1.119
3719 dl 1.137 /**
3720     * Returns the result of accumulating the given transformation
3721     * of all values using the given reducer to combine values,
3722     * and the given basis as an identity value.
3723     *
3724     * @param transformer a function returning the transformation
3725     * for an element
3726     * @param basis the identity (initial default value) for the reduction
3727     * @param reducer a commutative associative combining function
3728     * @return the result of accumulating the given transformation
3729     * of all values
3730     */
3731 dl 1.151 public int reduceValuesToIntSequentially
3732 dl 1.171 (ToIntFunction<? super V> transformer,
3733 dl 1.151 int basis,
3734 dl 1.153 IntBinaryOperator reducer) {
3735 dl 1.151 if (transformer == null || reducer == null)
3736     throw new NullPointerException();
3737     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738     int r = basis; V v;
3739     while ((v = it.advance()) != null)
3740 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3741 dl 1.151 return r;
3742 dl 1.137 }
3743 dl 1.119
3744 dl 1.137 /**
3745     * Performs the given action for each entry.
3746     *
3747     * @param action the action
3748     */
3749 jsr166 1.168 public void forEachEntrySequentially
3750 dl 1.171 (Consumer<? super Map.Entry<K,V>> action) {
3751 dl 1.151 if (action == null) throw new NullPointerException();
3752     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3753     V v;
3754     while ((v = it.advance()) != null)
3755 jsr166 1.168 action.accept(entryFor(it.nextKey, v));
3756 dl 1.137 }
3757 dl 1.119
3758 dl 1.137 /**
3759     * Performs the given action for each non-null transformation
3760     * of each entry.
3761     *
3762     * @param transformer a function returning the transformation
3763 jsr166 1.169 * for an element, or null if there is no transformation (in
3764 jsr166 1.172 * which case the action is not applied)
3765 dl 1.137 * @param action the action
3766     */
3767 jsr166 1.168 public <U> void forEachEntrySequentially
3768 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3769 dl 1.171 Consumer<? super U> action) {
3770 dl 1.151 if (transformer == null || action == null)
3771     throw new NullPointerException();
3772     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3773     V v; U u;
3774     while ((v = it.advance()) != null) {
3775 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3776 dl 1.153 action.accept(u);
3777 dl 1.151 }
3778 dl 1.137 }
3779 dl 1.119
3780 dl 1.137 /**
3781     * Returns a non-null result from applying the given search
3782 dl 1.151 * function on each entry, or null if none.
3783 dl 1.137 *
3784     * @param searchFunction a function returning a non-null
3785     * result on success, else null
3786     * @return a non-null result from applying the given search
3787     * function on each entry, or null if none
3788     */
3789 jsr166 1.168 public <U> U searchEntriesSequentially
3790 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3791 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3792     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3793     V v; U u;
3794     while ((v = it.advance()) != null) {
3795 jsr166 1.168 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3796 dl 1.151 return u;
3797     }
3798     return null;
3799 dl 1.137 }
3800 dl 1.119
3801 dl 1.137 /**
3802     * Returns the result of accumulating all entries using the
3803     * given reducer to combine values, or null if none.
3804     *
3805     * @param reducer a commutative associative combining function
3806     * @return the result of accumulating all entries
3807     */
3808 jsr166 1.168 public Map.Entry<K,V> reduceEntriesSequentially
3809 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3810 dl 1.151 if (reducer == null) throw new NullPointerException();
3811     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3812     Map.Entry<K,V> r = null; V v;
3813     while ((v = it.advance()) != null) {
3814 jsr166 1.168 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3815 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3816     }
3817     return r;
3818 dl 1.137 }
3819 dl 1.119
3820 dl 1.137 /**
3821     * Returns the result of accumulating the given transformation
3822     * of all entries using the given reducer to combine values,
3823     * or null if none.
3824     *
3825     * @param transformer a function returning the transformation
3826 jsr166 1.169 * for an element, or null if there is no transformation (in
3827 jsr166 1.172 * which case it is not combined)
3828 dl 1.137 * @param reducer a commutative associative combining function
3829     * @return the result of accumulating the given transformation
3830     * of all entries
3831     */
3832 jsr166 1.168 public <U> U reduceEntriesSequentially
3833 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3834     BiFunction<? super U, ? super U, ? extends U> reducer) {
3835 dl 1.151 if (transformer == null || reducer == null)
3836     throw new NullPointerException();
3837     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3838     U r = null, u; V v;
3839     while ((v = it.advance()) != null) {
3840 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3841 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3842     }
3843     return r;
3844 dl 1.137 }
3845 dl 1.119
3846 dl 1.137 /**
3847     * Returns the result of accumulating the given transformation
3848     * of all entries using the given reducer to combine values,
3849     * and the given basis as an identity value.
3850     *
3851     * @param transformer a function returning the transformation
3852     * for an element
3853     * @param basis the identity (initial default value) for the reduction
3854     * @param reducer a commutative associative combining function
3855     * @return the result of accumulating the given transformation
3856     * of all entries
3857     */
3858 jsr166 1.168 public double reduceEntriesToDoubleSequentially
3859 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3860 dl 1.151 double basis,
3861 dl 1.153 DoubleBinaryOperator reducer) {
3862 dl 1.151 if (transformer == null || reducer == null)
3863     throw new NullPointerException();
3864     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3865     double r = basis; V v;
3866     while ((v = it.advance()) != null)
3867 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3868 dl 1.151 return r;
3869 dl 1.137 }
3870 dl 1.119
3871 dl 1.137 /**
3872     * Returns the result of accumulating the given transformation
3873     * of all entries using the given reducer to combine values,
3874     * and the given basis as an identity value.
3875     *
3876     * @param transformer a function returning the transformation
3877     * for an element
3878     * @param basis the identity (initial default value) for the reduction
3879     * @param reducer a commutative associative combining function
3880 jsr166 1.157 * @return the result of accumulating the given transformation
3881 dl 1.137 * of all entries
3882     */
3883 jsr166 1.168 public long reduceEntriesToLongSequentially
3884 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
3885 dl 1.151 long basis,
3886 dl 1.153 LongBinaryOperator reducer) {
3887 dl 1.151 if (transformer == null || reducer == null)
3888     throw new NullPointerException();
3889     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3890     long r = basis; V v;
3891     while ((v = it.advance()) != null)
3892 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3893 dl 1.151 return r;
3894 dl 1.137 }
3895 dl 1.119
3896 dl 1.137 /**
3897     * Returns the result of accumulating the given transformation
3898     * of all entries using the given reducer to combine values,
3899     * and the given basis as an identity value.
3900     *
3901     * @param transformer a function returning the transformation
3902     * for an element
3903     * @param basis the identity (initial default value) for the reduction
3904     * @param reducer a commutative associative combining function
3905     * @return the result of accumulating the given transformation
3906     * of all entries
3907     */
3908 jsr166 1.168 public int reduceEntriesToIntSequentially
3909 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
3910 dl 1.151 int basis,
3911 dl 1.153 IntBinaryOperator reducer) {
3912 dl 1.151 if (transformer == null || reducer == null)
3913     throw new NullPointerException();
3914     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915     int r = basis; V v;
3916     while ((v = it.advance()) != null)
3917 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3918 dl 1.151 return r;
3919 dl 1.119 }
3920    
3921 dl 1.151 // Parallel bulk operations
3922 dl 1.142
3923     /**
3924 dl 1.151 * Performs the given action for each (key, value).
3925     *
3926     * @param action the action
3927 dl 1.142 */
3928 dl 1.171 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3929 dl 1.151 ForkJoinTasks.forEach
3930     (this, action).invoke();
3931     }
3932 dl 1.142
3933 dl 1.151 /**
3934     * Performs the given action for each non-null transformation
3935     * of each (key, value).
3936     *
3937     * @param transformer a function returning the transformation
3938 jsr166 1.169 * for an element, or null if there is no transformation (in
3939 jsr166 1.172 * which case the action is not applied)
3940 dl 1.151 * @param action the action
3941     */
3942     public <U> void forEachInParallel
3943 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3944 dl 1.171 Consumer<? super U> action) {
3945 dl 1.151 ForkJoinTasks.forEach
3946     (this, transformer, action).invoke();
3947     }
3948 dl 1.142
3949 dl 1.151 /**
3950     * Returns a non-null result from applying the given search
3951     * function on each (key, value), or null if none. Upon
3952     * success, further element processing is suppressed and the
3953     * results of any other parallel invocations of the search
3954     * function are ignored.
3955     *
3956     * @param searchFunction a function returning a non-null
3957     * result on success, else null
3958     * @return a non-null result from applying the given search
3959     * function on each (key, value), or null if none
3960     */
3961     public <U> U searchInParallel
3962 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3963 dl 1.151 return ForkJoinTasks.search
3964     (this, searchFunction).invoke();
3965     }
3966 dl 1.142
3967 dl 1.151 /**
3968     * Returns the result of accumulating the given transformation
3969     * of all (key, value) pairs using the given reducer to
3970     * combine values, or null if none.
3971     *
3972     * @param transformer a function returning the transformation
3973 jsr166 1.169 * for an element, or null if there is no transformation (in
3974 jsr166 1.172 * which case it is not combined)
3975 dl 1.151 * @param reducer a commutative associative combining function
3976     * @return the result of accumulating the given transformation
3977     * of all (key, value) pairs
3978     */
3979     public <U> U reduceInParallel
3980 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3981     BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 dl 1.151 return ForkJoinTasks.reduce
3983     (this, transformer, reducer).invoke();
3984     }
3985 dl 1.142
3986 dl 1.151 /**
3987     * Returns the result of accumulating the given transformation
3988     * of all (key, value) pairs using the given reducer to
3989     * combine values, and the given basis as an identity value.
3990     *
3991     * @param transformer a function returning the transformation
3992     * for an element
3993     * @param basis the identity (initial default value) for the reduction
3994     * @param reducer a commutative associative combining function
3995     * @return the result of accumulating the given transformation
3996     * of all (key, value) pairs
3997     */
3998     public double reduceToDoubleInParallel
3999 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
4000 dl 1.151 double basis,
4001 dl 1.153 DoubleBinaryOperator reducer) {
4002 dl 1.151 return ForkJoinTasks.reduceToDouble
4003     (this, transformer, basis, reducer).invoke();
4004     }
4005    
4006     /**
4007     * Returns the result of accumulating the given transformation
4008     * of all (key, value) pairs using the given reducer to
4009     * combine values, and the given basis as an identity value.
4010     *
4011     * @param transformer a function returning the transformation
4012     * for an element
4013     * @param basis the identity (initial default value) for the reduction
4014     * @param reducer a commutative associative combining function
4015     * @return the result of accumulating the given transformation
4016     * of all (key, value) pairs
4017     */
4018     public long reduceToLongInParallel
4019 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
4020 dl 1.151 long basis,
4021 dl 1.153 LongBinaryOperator reducer) {
4022 dl 1.151 return ForkJoinTasks.reduceToLong
4023     (this, transformer, basis, reducer).invoke();
4024     }
4025    
4026     /**
4027     * Returns the result of accumulating the given transformation
4028     * of all (key, value) pairs using the given reducer to
4029     * combine values, and the given basis as an identity value.
4030     *
4031     * @param transformer a function returning the transformation
4032     * for an element
4033     * @param basis the identity (initial default value) for the reduction
4034     * @param reducer a commutative associative combining function
4035     * @return the result of accumulating the given transformation
4036     * of all (key, value) pairs
4037     */
4038     public int reduceToIntInParallel
4039 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
4040 dl 1.151 int basis,
4041 dl 1.153 IntBinaryOperator reducer) {
4042 dl 1.151 return ForkJoinTasks.reduceToInt
4043     (this, transformer, basis, reducer).invoke();
4044     }
4045    
4046     /**
4047     * Performs the given action for each key.
4048     *
4049     * @param action the action
4050     */
4051 dl 1.171 public void forEachKeyInParallel(Consumer<? super K> action) {
4052 dl 1.151 ForkJoinTasks.forEachKey
4053     (this, action).invoke();
4054     }
4055    
4056     /**
4057     * Performs the given action for each non-null transformation
4058     * of each key.
4059     *
4060     * @param transformer a function returning the transformation
4061 jsr166 1.169 * for an element, or null if there is no transformation (in
4062 jsr166 1.172 * which case the action is not applied)
4063 dl 1.151 * @param action the action
4064     */
4065     public <U> void forEachKeyInParallel
4066 dl 1.153 (Function<? super K, ? extends U> transformer,
4067 dl 1.171 Consumer<? super U> action) {
4068 dl 1.151 ForkJoinTasks.forEachKey
4069     (this, transformer, action).invoke();
4070     }
4071    
4072     /**
4073     * Returns a non-null result from applying the given search
4074     * function on each key, or null if none. Upon success,
4075     * further element processing is suppressed and the results of
4076     * any other parallel invocations of the search function are
4077     * ignored.
4078     *
4079     * @param searchFunction a function returning a non-null
4080     * result on success, else null
4081     * @return a non-null result from applying the given search
4082     * function on each key, or null if none
4083     */
4084     public <U> U searchKeysInParallel
4085 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4086 dl 1.151 return ForkJoinTasks.searchKeys
4087     (this, searchFunction).invoke();
4088     }
4089    
4090     /**
4091     * Returns the result of accumulating all keys using the given
4092     * reducer to combine values, or null if none.
4093     *
4094     * @param reducer a commutative associative combining function
4095     * @return the result of accumulating all keys using the given
4096     * reducer to combine values, or null if none
4097     */
4098     public K reduceKeysInParallel
4099 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4100 dl 1.151 return ForkJoinTasks.reduceKeys
4101     (this, reducer).invoke();
4102     }
4103    
4104     /**
4105     * Returns the result of accumulating the given transformation
4106     * of all keys using the given reducer to combine values, or
4107     * null if none.
4108     *
4109     * @param transformer a function returning the transformation
4110 jsr166 1.169 * for an element, or null if there is no transformation (in
4111 jsr166 1.172 * which case it is not combined)
4112 dl 1.151 * @param reducer a commutative associative combining function
4113     * @return the result of accumulating the given transformation
4114     * of all keys
4115     */
4116     public <U> U reduceKeysInParallel
4117 dl 1.153 (Function<? super K, ? extends U> transformer,
4118     BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 dl 1.151 return ForkJoinTasks.reduceKeys
4120     (this, transformer, reducer).invoke();
4121     }
4122    
4123     /**
4124     * Returns the result of accumulating the given transformation
4125     * of all keys using the given reducer to combine values, and
4126     * the given basis as an identity value.
4127     *
4128     * @param transformer a function returning the transformation
4129     * for an element
4130     * @param basis the identity (initial default value) for the reduction
4131     * @param reducer a commutative associative combining function
4132 jsr166 1.157 * @return the result of accumulating the given transformation
4133 dl 1.151 * of all keys
4134     */
4135     public double reduceKeysToDoubleInParallel
4136 dl 1.171 (ToDoubleFunction<? super K> transformer,
4137 dl 1.151 double basis,
4138 dl 1.153 DoubleBinaryOperator reducer) {
4139 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4140     (this, transformer, basis, reducer).invoke();
4141     }
4142    
4143     /**
4144     * Returns the result of accumulating the given transformation
4145     * of all keys using the given reducer to combine values, and
4146     * the given basis as an identity value.
4147     *
4148     * @param transformer a function returning the transformation
4149     * for an element
4150     * @param basis the identity (initial default value) for the reduction
4151     * @param reducer a commutative associative combining function
4152     * @return the result of accumulating the given transformation
4153     * of all keys
4154     */
4155     public long reduceKeysToLongInParallel
4156 dl 1.171 (ToLongFunction<? super K> transformer,
4157 dl 1.151 long basis,
4158 dl 1.153 LongBinaryOperator reducer) {
4159 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4160     (this, transformer, basis, reducer).invoke();
4161     }
4162    
4163     /**
4164     * Returns the result of accumulating the given transformation
4165     * of all keys using the given reducer to combine values, and
4166     * the given basis as an identity value.
4167     *
4168     * @param transformer a function returning the transformation
4169     * for an element
4170     * @param basis the identity (initial default value) for the reduction
4171     * @param reducer a commutative associative combining function
4172     * @return the result of accumulating the given transformation
4173     * of all keys
4174     */
4175     public int reduceKeysToIntInParallel
4176 dl 1.171 (ToIntFunction<? super K> transformer,
4177 dl 1.151 int basis,
4178 dl 1.153 IntBinaryOperator reducer) {
4179 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4180     (this, transformer, basis, reducer).invoke();
4181     }
4182    
4183     /**
4184     * Performs the given action for each value.
4185     *
4186     * @param action the action
4187     */
4188 dl 1.171 public void forEachValueInParallel(Consumer<? super V> action) {
4189 dl 1.151 ForkJoinTasks.forEachValue
4190     (this, action).invoke();
4191     }
4192    
4193     /**
4194     * Performs the given action for each non-null transformation
4195     * of each value.
4196     *
4197     * @param transformer a function returning the transformation
4198 jsr166 1.169 * for an element, or null if there is no transformation (in
4199 jsr166 1.172 * which case the action is not applied)
4200 jsr166 1.179 * @param action the action
4201 dl 1.151 */
4202     public <U> void forEachValueInParallel
4203 dl 1.153 (Function<? super V, ? extends U> transformer,
4204 dl 1.171 Consumer<? super U> action) {
4205 dl 1.151 ForkJoinTasks.forEachValue
4206     (this, transformer, action).invoke();
4207     }
4208    
4209     /**
4210     * Returns a non-null result from applying the given search
4211     * function on each value, or null if none. Upon success,
4212     * further element processing is suppressed and the results of
4213     * any other parallel invocations of the search function are
4214     * ignored.
4215     *
4216     * @param searchFunction a function returning a non-null
4217     * result on success, else null
4218     * @return a non-null result from applying the given search
4219     * function on each value, or null if none
4220     */
4221     public <U> U searchValuesInParallel
4222 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4223 dl 1.151 return ForkJoinTasks.searchValues
4224     (this, searchFunction).invoke();
4225     }
4226    
4227     /**
4228     * Returns the result of accumulating all values using the
4229     * given reducer to combine values, or null if none.
4230     *
4231     * @param reducer a commutative associative combining function
4232 jsr166 1.157 * @return the result of accumulating all values
4233 dl 1.151 */
4234     public V reduceValuesInParallel
4235 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4236 dl 1.151 return ForkJoinTasks.reduceValues
4237     (this, reducer).invoke();
4238     }
4239    
4240     /**
4241     * Returns the result of accumulating the given transformation
4242     * of all values using the given reducer to combine values, or
4243     * null if none.
4244     *
4245     * @param transformer a function returning the transformation
4246 jsr166 1.169 * for an element, or null if there is no transformation (in
4247 jsr166 1.172 * which case it is not combined)
4248 dl 1.151 * @param reducer a commutative associative combining function
4249     * @return the result of accumulating the given transformation
4250     * of all values
4251     */
4252     public <U> U reduceValuesInParallel
4253 dl 1.153 (Function<? super V, ? extends U> transformer,
4254     BiFunction<? super U, ? super U, ? extends U> reducer) {
4255 dl 1.151 return ForkJoinTasks.reduceValues
4256     (this, transformer, reducer).invoke();
4257     }
4258    
4259     /**
4260     * Returns the result of accumulating the given transformation
4261     * of all values using the given reducer to combine values,
4262     * and the given basis as an identity value.
4263     *
4264     * @param transformer a function returning the transformation
4265     * for an element
4266     * @param basis the identity (initial default value) for the reduction
4267     * @param reducer a commutative associative combining function
4268     * @return the result of accumulating the given transformation
4269     * of all values
4270     */
4271     public double reduceValuesToDoubleInParallel
4272 dl 1.171 (ToDoubleFunction<? super V> transformer,
4273 dl 1.151 double basis,
4274 dl 1.153 DoubleBinaryOperator reducer) {
4275 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4276     (this, transformer, basis, reducer).invoke();
4277     }
4278    
4279     /**
4280     * Returns the result of accumulating the given transformation
4281     * of all values using the given reducer to combine values,
4282     * and the given basis as an identity value.
4283     *
4284     * @param transformer a function returning the transformation
4285     * for an element
4286     * @param basis the identity (initial default value) for the reduction
4287     * @param reducer a commutative associative combining function
4288     * @return the result of accumulating the given transformation
4289     * of all values
4290     */
4291     public long reduceValuesToLongInParallel
4292 dl 1.171 (ToLongFunction<? super V> transformer,
4293 dl 1.151 long basis,
4294 dl 1.153 LongBinaryOperator reducer) {
4295 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4296     (this, transformer, basis, reducer).invoke();
4297     }
4298    
4299     /**
4300     * Returns the result of accumulating the given transformation
4301     * of all values using the given reducer to combine values,
4302     * and the given basis as an identity value.
4303     *
4304     * @param transformer a function returning the transformation
4305     * for an element
4306     * @param basis the identity (initial default value) for the reduction
4307     * @param reducer a commutative associative combining function
4308     * @return the result of accumulating the given transformation
4309     * of all values
4310     */
4311     public int reduceValuesToIntInParallel
4312 dl 1.171 (ToIntFunction<? super V> transformer,
4313 dl 1.151 int basis,
4314 dl 1.153 IntBinaryOperator reducer) {
4315 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4316     (this, transformer, basis, reducer).invoke();
4317     }
4318    
4319     /**
4320     * Performs the given action for each entry.
4321     *
4322     * @param action the action
4323     */
4324 dl 1.171 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4325 dl 1.151 ForkJoinTasks.forEachEntry
4326     (this, action).invoke();
4327     }
4328    
4329     /**
4330     * Performs the given action for each non-null transformation
4331     * of each entry.
4332     *
4333     * @param transformer a function returning the transformation
4334 jsr166 1.169 * for an element, or null if there is no transformation (in
4335 jsr166 1.172 * which case the action is not applied)
4336 dl 1.151 * @param action the action
4337     */
4338     public <U> void forEachEntryInParallel
4339 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4340 dl 1.171 Consumer<? super U> action) {
4341 dl 1.151 ForkJoinTasks.forEachEntry
4342     (this, transformer, action).invoke();
4343     }
4344    
4345     /**
4346     * Returns a non-null result from applying the given search
4347     * function on each entry, or null if none. Upon success,
4348     * further element processing is suppressed and the results of
4349     * any other parallel invocations of the search function are
4350     * ignored.
4351     *
4352     * @param searchFunction a function returning a non-null
4353     * result on success, else null
4354     * @return a non-null result from applying the given search
4355     * function on each entry, or null if none
4356     */
4357     public <U> U searchEntriesInParallel
4358 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4359 dl 1.151 return ForkJoinTasks.searchEntries
4360     (this, searchFunction).invoke();
4361     }
4362    
4363     /**
4364     * Returns the result of accumulating all entries using the
4365     * given reducer to combine values, or null if none.
4366     *
4367     * @param reducer a commutative associative combining function
4368     * @return the result of accumulating all entries
4369     */
4370     public Map.Entry<K,V> reduceEntriesInParallel
4371 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4372 dl 1.151 return ForkJoinTasks.reduceEntries
4373     (this, reducer).invoke();
4374     }
4375    
4376     /**
4377     * Returns the result of accumulating the given transformation
4378     * of all entries using the given reducer to combine values,
4379     * or null if none.
4380     *
4381     * @param transformer a function returning the transformation
4382 jsr166 1.169 * for an element, or null if there is no transformation (in
4383 jsr166 1.172 * which case it is not combined)
4384 dl 1.151 * @param reducer a commutative associative combining function
4385     * @return the result of accumulating the given transformation
4386     * of all entries
4387     */
4388     public <U> U reduceEntriesInParallel
4389 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4390     BiFunction<? super U, ? super U, ? extends U> reducer) {
4391 dl 1.151 return ForkJoinTasks.reduceEntries
4392     (this, transformer, reducer).invoke();
4393     }
4394    
4395     /**
4396     * Returns the result of accumulating the given transformation
4397     * of all entries using the given reducer to combine values,
4398     * and the given basis as an identity value.
4399     *
4400     * @param transformer a function returning the transformation
4401     * for an element
4402     * @param basis the identity (initial default value) for the reduction
4403     * @param reducer a commutative associative combining function
4404     * @return the result of accumulating the given transformation
4405     * of all entries
4406     */
4407     public double reduceEntriesToDoubleInParallel
4408 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4409 dl 1.151 double basis,
4410 dl 1.153 DoubleBinaryOperator reducer) {
4411 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4412     (this, transformer, basis, reducer).invoke();
4413     }
4414    
4415     /**
4416     * Returns the result of accumulating the given transformation
4417     * of all entries using the given reducer to combine values,
4418     * and the given basis as an identity value.
4419     *
4420     * @param transformer a function returning the transformation
4421     * for an element
4422     * @param basis the identity (initial default value) for the reduction
4423     * @param reducer a commutative associative combining function
4424 jsr166 1.157 * @return the result of accumulating the given transformation
4425 dl 1.151 * of all entries
4426     */
4427     public long reduceEntriesToLongInParallel
4428 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
4429 dl 1.151 long basis,
4430 dl 1.153 LongBinaryOperator reducer) {
4431 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4432     (this, transformer, basis, reducer).invoke();
4433     }
4434    
4435     /**
4436     * Returns the result of accumulating the given transformation
4437     * of all entries using the given reducer to combine values,
4438     * and the given basis as an identity value.
4439     *
4440     * @param transformer a function returning the transformation
4441     * for an element
4442     * @param basis the identity (initial default value) for the reduction
4443     * @param reducer a commutative associative combining function
4444     * @return the result of accumulating the given transformation
4445     * of all entries
4446     */
4447     public int reduceEntriesToIntInParallel
4448 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
4449 dl 1.151 int basis,
4450 dl 1.153 IntBinaryOperator reducer) {
4451 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4452     (this, transformer, basis, reducer).invoke();
4453     }
4454    
4455    
4456     /* ----------------Views -------------- */
4457    
4458     /**
4459     * Base class for views.
4460     */
4461 jsr166 1.165 abstract static class CHMView<K, V> implements java.io.Serializable {
4462 dl 1.163 private static final long serialVersionUID = 7249069246763182397L;
4463 dl 1.151 final ConcurrentHashMap<K, V> map;
4464     CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4465    
4466     /**
4467     * Returns the map backing this view.
4468     *
4469     * @return the map backing this view
4470     */
4471     public ConcurrentHashMap<K,V> getMap() { return map; }
4472    
4473     public final int size() { return map.size(); }
4474     public final boolean isEmpty() { return map.isEmpty(); }
4475     public final void clear() { map.clear(); }
4476    
4477     // implementations below rely on concrete classes supplying these
4478 jsr166 1.165 public abstract Iterator<?> iterator();
4479     public abstract boolean contains(Object o);
4480     public abstract boolean remove(Object o);
4481 dl 1.151
4482     private static final String oomeMsg = "Required array size too large";
4483 dl 1.142
4484     public final Object[] toArray() {
4485     long sz = map.mappingCount();
4486     if (sz > (long)(MAX_ARRAY_SIZE))
4487     throw new OutOfMemoryError(oomeMsg);
4488     int n = (int)sz;
4489     Object[] r = new Object[n];
4490     int i = 0;
4491     Iterator<?> it = iterator();
4492     while (it.hasNext()) {
4493     if (i == n) {
4494     if (n >= MAX_ARRAY_SIZE)
4495     throw new OutOfMemoryError(oomeMsg);
4496     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4497     n = MAX_ARRAY_SIZE;
4498     else
4499     n += (n >>> 1) + 1;
4500     r = Arrays.copyOf(r, n);
4501     }
4502     r[i++] = it.next();
4503     }
4504     return (i == n) ? r : Arrays.copyOf(r, i);
4505     }
4506    
4507     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4508     long sz = map.mappingCount();
4509     if (sz > (long)(MAX_ARRAY_SIZE))
4510     throw new OutOfMemoryError(oomeMsg);
4511     int m = (int)sz;
4512     T[] r = (a.length >= m) ? a :
4513     (T[])java.lang.reflect.Array
4514     .newInstance(a.getClass().getComponentType(), m);
4515     int n = r.length;
4516     int i = 0;
4517     Iterator<?> it = iterator();
4518     while (it.hasNext()) {
4519     if (i == n) {
4520     if (n >= MAX_ARRAY_SIZE)
4521     throw new OutOfMemoryError(oomeMsg);
4522     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4523     n = MAX_ARRAY_SIZE;
4524     else
4525     n += (n >>> 1) + 1;
4526     r = Arrays.copyOf(r, n);
4527     }
4528     r[i++] = (T)it.next();
4529     }
4530     if (a == r && i < n) {
4531     r[i] = null; // null-terminate
4532     return r;
4533     }
4534     return (i == n) ? r : Arrays.copyOf(r, i);
4535     }
4536    
4537     public final int hashCode() {
4538     int h = 0;
4539     for (Iterator<?> it = iterator(); it.hasNext();)
4540     h += it.next().hashCode();
4541     return h;
4542     }
4543    
4544     public final String toString() {
4545     StringBuilder sb = new StringBuilder();
4546     sb.append('[');
4547     Iterator<?> it = iterator();
4548     if (it.hasNext()) {
4549     for (;;) {
4550     Object e = it.next();
4551     sb.append(e == this ? "(this Collection)" : e);
4552     if (!it.hasNext())
4553     break;
4554     sb.append(',').append(' ');
4555     }
4556     }
4557     return sb.append(']').toString();
4558     }
4559    
4560     public final boolean containsAll(Collection<?> c) {
4561     if (c != this) {
4562     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4563     Object e = it.next();
4564     if (e == null || !contains(e))
4565     return false;
4566     }
4567     }
4568     return true;
4569     }
4570    
4571     public final boolean removeAll(Collection<?> c) {
4572     boolean modified = false;
4573     for (Iterator<?> it = iterator(); it.hasNext();) {
4574     if (c.contains(it.next())) {
4575     it.remove();
4576     modified = true;
4577     }
4578     }
4579     return modified;
4580     }
4581    
4582     public final boolean retainAll(Collection<?> c) {
4583     boolean modified = false;
4584     for (Iterator<?> it = iterator(); it.hasNext();) {
4585     if (!c.contains(it.next())) {
4586     it.remove();
4587     modified = true;
4588     }
4589     }
4590     return modified;
4591     }
4592    
4593     }
4594    
4595     /**
4596     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4597     * which additions may optionally be enabled by mapping to a
4598     * common value. This class cannot be directly instantiated. See
4599 jsr166 1.177 * {@link #keySet()}, {@link #keySet(Object)}, {@link #newKeySet()},
4600 dl 1.142 * {@link #newKeySet(int)}.
4601     */
4602 dl 1.149 public static class KeySetView<K,V> extends CHMView<K,V>
4603     implements Set<K>, java.io.Serializable {
4604 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4605     private final V value;
4606     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4607     super(map);
4608     this.value = value;
4609     }
4610    
4611     /**
4612     * Returns the default mapped value for additions,
4613     * or {@code null} if additions are not supported.
4614     *
4615     * @return the default mapped value for additions, or {@code null}
4616 jsr166 1.172 * if not supported
4617 dl 1.142 */
4618     public V getMappedValue() { return value; }
4619    
4620     // implement Set API
4621    
4622     public boolean contains(Object o) { return map.containsKey(o); }
4623     public boolean remove(Object o) { return map.remove(o) != null; }
4624    
4625     /**
4626     * Returns a "weakly consistent" iterator that will never
4627     * throw {@link ConcurrentModificationException}, and
4628     * guarantees to traverse elements as they existed upon
4629     * construction of the iterator, and may (but is not
4630     * guaranteed to) reflect any modifications subsequent to
4631     * construction.
4632     *
4633     * @return an iterator over the keys of this map
4634     */
4635     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4636     public boolean add(K e) {
4637     V v;
4638     if ((v = value) == null)
4639     throw new UnsupportedOperationException();
4640     if (e == null)
4641     throw new NullPointerException();
4642 dl 1.149 return map.internalPut(e, v, true) == null;
4643 dl 1.142 }
4644     public boolean addAll(Collection<? extends K> c) {
4645     boolean added = false;
4646     V v;
4647     if ((v = value) == null)
4648     throw new UnsupportedOperationException();
4649     for (K e : c) {
4650     if (e == null)
4651     throw new NullPointerException();
4652 dl 1.149 if (map.internalPut(e, v, true) == null)
4653 dl 1.142 added = true;
4654     }
4655     return added;
4656     }
4657     public boolean equals(Object o) {
4658     Set<?> c;
4659     return ((o instanceof Set) &&
4660     ((c = (Set<?>)o) == this ||
4661     (containsAll(c) && c.containsAll(this))));
4662     }
4663 dl 1.153
4664     public Stream<K> stream() {
4665     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4666     }
4667     public Stream<K> parallelStream() {
4668     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4669     0);
4670     }
4671 dl 1.142 }
4672    
4673     /**
4674     * A view of a ConcurrentHashMap as a {@link Collection} of
4675     * values, in which additions are disabled. This class cannot be
4676 jsr166 1.181 * directly instantiated. See {@link #values()}.
4677 dl 1.142 *
4678     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4679     * that will never throw {@link ConcurrentModificationException},
4680     * and guarantees to traverse elements as they existed upon
4681     * construction of the iterator, and may (but is not guaranteed to)
4682     * reflect any modifications subsequent to construction.
4683     */
4684     public static final class ValuesView<K,V> extends CHMView<K,V>
4685     implements Collection<V> {
4686 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4687 dl 1.142 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4688     public final boolean contains(Object o) { return map.containsValue(o); }
4689     public final boolean remove(Object o) {
4690     if (o != null) {
4691     Iterator<V> it = new ValueIterator<K,V>(map);
4692     while (it.hasNext()) {
4693     if (o.equals(it.next())) {
4694     it.remove();
4695     return true;
4696     }
4697     }
4698     }
4699     return false;
4700     }
4701    
4702     /**
4703     * Returns a "weakly consistent" iterator that will never
4704     * throw {@link ConcurrentModificationException}, and
4705     * guarantees to traverse elements as they existed upon
4706     * construction of the iterator, and may (but is not
4707     * guaranteed to) reflect any modifications subsequent to
4708     * construction.
4709     *
4710     * @return an iterator over the values of this map
4711     */
4712     public final Iterator<V> iterator() {
4713     return new ValueIterator<K,V>(map);
4714     }
4715     public final boolean add(V e) {
4716     throw new UnsupportedOperationException();
4717     }
4718     public final boolean addAll(Collection<? extends V> c) {
4719     throw new UnsupportedOperationException();
4720     }
4721    
4722 dl 1.153 public Stream<V> stream() {
4723     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4724     }
4725    
4726     public Stream<V> parallelStream() {
4727     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4728     0);
4729     }
4730    
4731 dl 1.142 }
4732    
4733     /**
4734     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4735     * entries. This class cannot be directly instantiated. See
4736 jsr166 1.180 * {@link #entrySet()}.
4737 dl 1.142 */
4738     public static final class EntrySetView<K,V> extends CHMView<K,V>
4739     implements Set<Map.Entry<K,V>> {
4740 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4741 dl 1.142 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4742     public final boolean contains(Object o) {
4743     Object k, v, r; Map.Entry<?,?> e;
4744     return ((o instanceof Map.Entry) &&
4745     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4746     (r = map.get(k)) != null &&
4747     (v = e.getValue()) != null &&
4748     (v == r || v.equals(r)));
4749     }
4750     public final boolean remove(Object o) {
4751     Object k, v; Map.Entry<?,?> e;
4752     return ((o instanceof Map.Entry) &&
4753     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4754     (v = e.getValue()) != null &&
4755     map.remove(k, v));
4756     }
4757    
4758     /**
4759     * Returns a "weakly consistent" iterator that will never
4760     * throw {@link ConcurrentModificationException}, and
4761     * guarantees to traverse elements as they existed upon
4762     * construction of the iterator, and may (but is not
4763     * guaranteed to) reflect any modifications subsequent to
4764     * construction.
4765     *
4766     * @return an iterator over the entries of this map
4767     */
4768     public final Iterator<Map.Entry<K,V>> iterator() {
4769     return new EntryIterator<K,V>(map);
4770     }
4771    
4772     public final boolean add(Entry<K,V> e) {
4773     K key = e.getKey();
4774     V value = e.getValue();
4775     if (key == null || value == null)
4776     throw new NullPointerException();
4777 dl 1.149 return map.internalPut(key, value, false) == null;
4778 dl 1.142 }
4779     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4780     boolean added = false;
4781     for (Entry<K,V> e : c) {
4782     if (add(e))
4783     added = true;
4784     }
4785     return added;
4786     }
4787     public boolean equals(Object o) {
4788     Set<?> c;
4789     return ((o instanceof Set) &&
4790     ((c = (Set<?>)o) == this ||
4791     (containsAll(c) && c.containsAll(this))));
4792     }
4793 dl 1.153
4794     public Stream<Map.Entry<K,V>> stream() {
4795     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4796     }
4797    
4798     public Stream<Map.Entry<K,V>> parallelStream() {
4799     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4800     0);
4801     }
4802 dl 1.142 }
4803    
4804 dl 1.119 // ---------------------------------------------------------------------
4805    
4806     /**
4807     * Predefined tasks for performing bulk parallel operations on
4808     * ConcurrentHashMaps. These tasks follow the forms and rules used
4809 dl 1.137 * for bulk operations. Each method has the same name, but returns
4810     * a task rather than invoking it. These methods may be useful in
4811     * custom applications such as submitting a task without waiting
4812     * for completion, using a custom pool, or combining with other
4813     * tasks.
4814 dl 1.119 */
4815     public static class ForkJoinTasks {
4816     private ForkJoinTasks() {}
4817    
4818     /**
4819     * Returns a task that when invoked, performs the given
4820     * action for each (key, value)
4821     *
4822     * @param map the map
4823     * @param action the action
4824     * @return the task
4825     */
4826 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4827 dl 1.119 (ConcurrentHashMap<K,V> map,
4828 dl 1.171 BiConsumer<? super K, ? super V> action) {
4829 dl 1.119 if (action == null) throw new NullPointerException();
4830 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4831 dl 1.119 }
4832    
4833     /**
4834     * Returns a task that when invoked, performs the given
4835     * action for each non-null transformation of each (key, value)
4836     *
4837     * @param map the map
4838     * @param transformer a function returning the transformation
4839 jsr166 1.135 * for an element, or null if there is no transformation (in
4840 jsr166 1.134 * which case the action is not applied)
4841 dl 1.119 * @param action the action
4842     * @return the task
4843     */
4844 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4845 dl 1.119 (ConcurrentHashMap<K,V> map,
4846 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4847 dl 1.171 Consumer<? super U> action) {
4848 dl 1.119 if (transformer == null || action == null)
4849     throw new NullPointerException();
4850     return new ForEachTransformedMappingTask<K,V,U>
4851 dl 1.146 (map, null, -1, transformer, action);
4852 dl 1.119 }
4853    
4854     /**
4855 dl 1.126 * Returns a task that when invoked, returns a non-null result
4856     * from applying the given search function on each (key,
4857     * value), or null if none. Upon success, further element
4858     * processing is suppressed and the results of any other
4859     * parallel invocations of the search function are ignored.
4860 dl 1.119 *
4861     * @param map the map
4862     * @param searchFunction a function returning a non-null
4863     * result on success, else null
4864     * @return the task
4865     */
4866     public static <K,V,U> ForkJoinTask<U> search
4867     (ConcurrentHashMap<K,V> map,
4868 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4869 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4870     return new SearchMappingsTask<K,V,U>
4871 dl 1.146 (map, null, -1, searchFunction,
4872 dl 1.119 new AtomicReference<U>());
4873     }
4874    
4875     /**
4876     * Returns a task that when invoked, returns the result of
4877     * accumulating the given transformation of all (key, value) pairs
4878     * using the given reducer to combine values, or null if none.
4879     *
4880     * @param map the map
4881     * @param transformer a function returning the transformation
4882 jsr166 1.135 * for an element, or null if there is no transformation (in
4883 jsr166 1.172 * which case it is not combined)
4884 dl 1.119 * @param reducer a commutative associative combining function
4885     * @return the task
4886     */
4887     public static <K,V,U> ForkJoinTask<U> reduce
4888     (ConcurrentHashMap<K,V> map,
4889 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4890     BiFunction<? super U, ? super U, ? extends U> reducer) {
4891 dl 1.119 if (transformer == null || reducer == null)
4892     throw new NullPointerException();
4893     return new MapReduceMappingsTask<K,V,U>
4894 dl 1.130 (map, null, -1, null, transformer, reducer);
4895 dl 1.119 }
4896    
4897     /**
4898     * Returns a task that when invoked, returns the result of
4899     * accumulating the given transformation of all (key, value) pairs
4900     * using the given reducer to combine values, and the given
4901     * basis as an identity value.
4902     *
4903     * @param map the map
4904     * @param transformer a function returning the transformation
4905     * for an element
4906     * @param basis the identity (initial default value) for the reduction
4907     * @param reducer a commutative associative combining function
4908     * @return the task
4909     */
4910     public static <K,V> ForkJoinTask<Double> reduceToDouble
4911     (ConcurrentHashMap<K,V> map,
4912 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
4913 dl 1.119 double basis,
4914 dl 1.153 DoubleBinaryOperator reducer) {
4915 dl 1.119 if (transformer == null || reducer == null)
4916     throw new NullPointerException();
4917     return new MapReduceMappingsToDoubleTask<K,V>
4918 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4919 dl 1.119 }
4920    
4921     /**
4922     * Returns a task that when invoked, returns the result of
4923     * accumulating the given transformation of all (key, value) pairs
4924     * using the given reducer to combine values, and the given
4925     * basis as an identity value.
4926     *
4927     * @param map the map
4928     * @param transformer a function returning the transformation
4929     * for an element
4930     * @param basis the identity (initial default value) for the reduction
4931     * @param reducer a commutative associative combining function
4932     * @return the task
4933     */
4934     public static <K,V> ForkJoinTask<Long> reduceToLong
4935     (ConcurrentHashMap<K,V> map,
4936 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
4937 dl 1.119 long basis,
4938 dl 1.153 LongBinaryOperator reducer) {
4939 dl 1.119 if (transformer == null || reducer == null)
4940     throw new NullPointerException();
4941     return new MapReduceMappingsToLongTask<K,V>
4942 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4943 dl 1.119 }
4944    
4945     /**
4946     * Returns a task that when invoked, returns the result of
4947     * accumulating the given transformation of all (key, value) pairs
4948     * using the given reducer to combine values, and the given
4949     * basis as an identity value.
4950     *
4951 jsr166 1.179 * @param map the map
4952 dl 1.119 * @param transformer a function returning the transformation
4953     * for an element
4954     * @param basis the identity (initial default value) for the reduction
4955     * @param reducer a commutative associative combining function
4956     * @return the task
4957     */
4958     public static <K,V> ForkJoinTask<Integer> reduceToInt
4959     (ConcurrentHashMap<K,V> map,
4960 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
4961 dl 1.119 int basis,
4962 dl 1.153 IntBinaryOperator reducer) {
4963 dl 1.119 if (transformer == null || reducer == null)
4964     throw new NullPointerException();
4965     return new MapReduceMappingsToIntTask<K,V>
4966 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4967 dl 1.119 }
4968    
4969     /**
4970     * Returns a task that when invoked, performs the given action
4971 jsr166 1.123 * for each key.
4972 dl 1.119 *
4973     * @param map the map
4974     * @param action the action
4975     * @return the task
4976     */
4977 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
4978 dl 1.119 (ConcurrentHashMap<K,V> map,
4979 dl 1.171 Consumer<? super K> action) {
4980 dl 1.119 if (action == null) throw new NullPointerException();
4981 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
4982 dl 1.119 }
4983    
4984     /**
4985     * Returns a task that when invoked, performs the given action
4986 jsr166 1.123 * for each non-null transformation of each key.
4987 dl 1.119 *
4988     * @param map the map
4989     * @param transformer a function returning the transformation
4990 jsr166 1.135 * for an element, or null if there is no transformation (in
4991 jsr166 1.134 * which case the action is not applied)
4992 dl 1.119 * @param action the action
4993     * @return the task
4994     */
4995 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
4996 dl 1.119 (ConcurrentHashMap<K,V> map,
4997 dl 1.153 Function<? super K, ? extends U> transformer,
4998 dl 1.171 Consumer<? super U> action) {
4999 dl 1.119 if (transformer == null || action == null)
5000     throw new NullPointerException();
5001     return new ForEachTransformedKeyTask<K,V,U>
5002 dl 1.146 (map, null, -1, transformer, action);
5003 dl 1.119 }
5004    
5005     /**
5006     * Returns a task that when invoked, returns a non-null result
5007     * from applying the given search function on each key, or
5008 dl 1.126 * null if none. Upon success, further element processing is
5009     * suppressed and the results of any other parallel
5010     * invocations of the search function are ignored.
5011 dl 1.119 *
5012     * @param map the map
5013     * @param searchFunction a function returning a non-null
5014     * result on success, else null
5015     * @return the task
5016     */
5017     public static <K,V,U> ForkJoinTask<U> searchKeys
5018     (ConcurrentHashMap<K,V> map,
5019 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5020 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5021     return new SearchKeysTask<K,V,U>
5022 dl 1.146 (map, null, -1, searchFunction,
5023 dl 1.119 new AtomicReference<U>());
5024     }
5025    
5026     /**
5027     * Returns a task that when invoked, returns the result of
5028     * accumulating all keys using the given reducer to combine
5029     * values, or null if none.
5030     *
5031     * @param map the map
5032     * @param reducer a commutative associative combining function
5033     * @return the task
5034     */
5035     public static <K,V> ForkJoinTask<K> reduceKeys
5036     (ConcurrentHashMap<K,V> map,
5037 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5038 dl 1.119 if (reducer == null) throw new NullPointerException();
5039     return new ReduceKeysTask<K,V>
5040 dl 1.130 (map, null, -1, null, reducer);
5041 dl 1.119 }
5042 jsr166 1.125
5043 dl 1.119 /**
5044     * Returns a task that when invoked, returns the result of
5045     * accumulating the given transformation of all keys using the given
5046     * reducer to combine values, or null if none.
5047     *
5048     * @param map the map
5049     * @param transformer a function returning the transformation
5050 jsr166 1.135 * for an element, or null if there is no transformation (in
5051 jsr166 1.172 * which case it is not combined)
5052 dl 1.119 * @param reducer a commutative associative combining function
5053     * @return the task
5054     */
5055     public static <K,V,U> ForkJoinTask<U> reduceKeys
5056     (ConcurrentHashMap<K,V> map,
5057 dl 1.153 Function<? super K, ? extends U> transformer,
5058     BiFunction<? super U, ? super U, ? extends U> reducer) {
5059 dl 1.119 if (transformer == null || reducer == null)
5060     throw new NullPointerException();
5061     return new MapReduceKeysTask<K,V,U>
5062 dl 1.130 (map, null, -1, null, transformer, reducer);
5063 dl 1.119 }
5064    
5065     /**
5066     * Returns a task that when invoked, returns the result of
5067     * accumulating the given transformation of all keys using the given
5068     * reducer to combine values, and the given basis as an
5069     * identity value.
5070     *
5071     * @param map the map
5072     * @param transformer a function returning the transformation
5073     * for an element
5074     * @param basis the identity (initial default value) for the reduction
5075     * @param reducer a commutative associative combining function
5076     * @return the task
5077     */
5078     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5079     (ConcurrentHashMap<K,V> map,
5080 dl 1.171 ToDoubleFunction<? super K> transformer,
5081 dl 1.119 double basis,
5082 dl 1.153 DoubleBinaryOperator reducer) {
5083 dl 1.119 if (transformer == null || reducer == null)
5084     throw new NullPointerException();
5085     return new MapReduceKeysToDoubleTask<K,V>
5086 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5087 dl 1.119 }
5088    
5089     /**
5090     * Returns a task that when invoked, returns the result of
5091     * accumulating the given transformation of all keys using the given
5092     * reducer to combine values, and the given basis as an
5093     * identity value.
5094     *
5095     * @param map the map
5096     * @param transformer a function returning the transformation
5097     * for an element
5098     * @param basis the identity (initial default value) for the reduction
5099     * @param reducer a commutative associative combining function
5100     * @return the task
5101     */
5102     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5103     (ConcurrentHashMap<K,V> map,
5104 dl 1.171 ToLongFunction<? super K> transformer,
5105 dl 1.119 long basis,
5106 dl 1.153 LongBinaryOperator reducer) {
5107 dl 1.119 if (transformer == null || reducer == null)
5108     throw new NullPointerException();
5109     return new MapReduceKeysToLongTask<K,V>
5110 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5111 dl 1.119 }
5112    
5113     /**
5114     * Returns a task that when invoked, returns the result of
5115     * accumulating the given transformation of all keys using the given
5116     * reducer to combine values, and the given basis as an
5117     * identity value.
5118     *
5119     * @param map the map
5120     * @param transformer a function returning the transformation
5121     * for an element
5122     * @param basis the identity (initial default value) for the reduction
5123     * @param reducer a commutative associative combining function
5124     * @return the task
5125     */
5126     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5127     (ConcurrentHashMap<K,V> map,
5128 dl 1.171 ToIntFunction<? super K> transformer,
5129 dl 1.119 int basis,
5130 dl 1.153 IntBinaryOperator reducer) {
5131 dl 1.119 if (transformer == null || reducer == null)
5132     throw new NullPointerException();
5133     return new MapReduceKeysToIntTask<K,V>
5134 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5135 dl 1.119 }
5136    
5137     /**
5138     * Returns a task that when invoked, performs the given action
5139 jsr166 1.123 * for each value.
5140 dl 1.119 *
5141     * @param map the map
5142     * @param action the action
5143 jsr166 1.173 * @return the task
5144 dl 1.119 */
5145 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5146 dl 1.119 (ConcurrentHashMap<K,V> map,
5147 dl 1.171 Consumer<? super V> action) {
5148 dl 1.119 if (action == null) throw new NullPointerException();
5149 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5150 dl 1.119 }
5151    
5152     /**
5153     * Returns a task that when invoked, performs the given action
5154 jsr166 1.123 * for each non-null transformation of each value.
5155 dl 1.119 *
5156     * @param map the map
5157     * @param transformer a function returning the transformation
5158 jsr166 1.135 * for an element, or null if there is no transformation (in
5159 jsr166 1.134 * which case the action is not applied)
5160 dl 1.119 * @param action the action
5161 jsr166 1.173 * @return the task
5162 dl 1.119 */
5163 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5164 dl 1.119 (ConcurrentHashMap<K,V> map,
5165 dl 1.153 Function<? super V, ? extends U> transformer,
5166 dl 1.171 Consumer<? super U> action) {
5167 dl 1.119 if (transformer == null || action == null)
5168     throw new NullPointerException();
5169     return new ForEachTransformedValueTask<K,V,U>
5170 dl 1.146 (map, null, -1, transformer, action);
5171 dl 1.119 }
5172    
5173     /**
5174     * Returns a task that when invoked, returns a non-null result
5175     * from applying the given search function on each value, or
5176 dl 1.126 * null if none. Upon success, further element processing is
5177     * suppressed and the results of any other parallel
5178     * invocations of the search function are ignored.
5179 dl 1.119 *
5180     * @param map the map
5181     * @param searchFunction a function returning a non-null
5182     * result on success, else null
5183     * @return the task
5184     */
5185     public static <K,V,U> ForkJoinTask<U> searchValues
5186     (ConcurrentHashMap<K,V> map,
5187 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5188 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5189     return new SearchValuesTask<K,V,U>
5190 dl 1.146 (map, null, -1, searchFunction,
5191 dl 1.119 new AtomicReference<U>());
5192     }
5193    
5194     /**
5195     * Returns a task that when invoked, returns the result of
5196     * accumulating all values using the given reducer to combine
5197     * values, or null if none.
5198     *
5199     * @param map the map
5200     * @param reducer a commutative associative combining function
5201     * @return the task
5202     */
5203     public static <K,V> ForkJoinTask<V> reduceValues
5204     (ConcurrentHashMap<K,V> map,
5205 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5206 dl 1.119 if (reducer == null) throw new NullPointerException();
5207     return new ReduceValuesTask<K,V>
5208 dl 1.130 (map, null, -1, null, reducer);
5209 dl 1.119 }
5210    
5211     /**
5212     * Returns a task that when invoked, returns the result of
5213     * accumulating the given transformation of all values using the
5214     * given reducer to combine values, or null if none.
5215     *
5216     * @param map the map
5217     * @param transformer a function returning the transformation
5218 jsr166 1.135 * for an element, or null if there is no transformation (in
5219 jsr166 1.172 * which case it is not combined)
5220 dl 1.119 * @param reducer a commutative associative combining function
5221     * @return the task
5222     */
5223     public static <K,V,U> ForkJoinTask<U> reduceValues
5224     (ConcurrentHashMap<K,V> map,
5225 dl 1.153 Function<? super V, ? extends U> transformer,
5226     BiFunction<? super U, ? super U, ? extends U> reducer) {
5227 dl 1.119 if (transformer == null || reducer == null)
5228     throw new NullPointerException();
5229     return new MapReduceValuesTask<K,V,U>
5230 dl 1.130 (map, null, -1, null, transformer, reducer);
5231 dl 1.119 }
5232    
5233     /**
5234     * Returns a task that when invoked, returns the result of
5235     * accumulating the given transformation of all values using the
5236     * given reducer to combine values, and the given basis as an
5237     * identity value.
5238     *
5239     * @param map the map
5240     * @param transformer a function returning the transformation
5241     * for an element
5242     * @param basis the identity (initial default value) for the reduction
5243     * @param reducer a commutative associative combining function
5244     * @return the task
5245     */
5246     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5247     (ConcurrentHashMap<K,V> map,
5248 dl 1.171 ToDoubleFunction<? super V> transformer,
5249 dl 1.119 double basis,
5250 dl 1.153 DoubleBinaryOperator reducer) {
5251 dl 1.119 if (transformer == null || reducer == null)
5252     throw new NullPointerException();
5253     return new MapReduceValuesToDoubleTask<K,V>
5254 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5255 dl 1.119 }
5256    
5257     /**
5258     * Returns a task that when invoked, returns the result of
5259     * accumulating the given transformation of all values using the
5260     * given reducer to combine values, and the given basis as an
5261     * identity value.
5262     *
5263     * @param map the map
5264     * @param transformer a function returning the transformation
5265     * for an element
5266     * @param basis the identity (initial default value) for the reduction
5267     * @param reducer a commutative associative combining function
5268     * @return the task
5269     */
5270     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5271     (ConcurrentHashMap<K,V> map,
5272 dl 1.171 ToLongFunction<? super V> transformer,
5273 dl 1.119 long basis,
5274 dl 1.153 LongBinaryOperator reducer) {
5275 dl 1.119 if (transformer == null || reducer == null)
5276     throw new NullPointerException();
5277     return new MapReduceValuesToLongTask<K,V>
5278 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5279 dl 1.119 }
5280    
5281     /**
5282     * Returns a task that when invoked, returns the result of
5283     * accumulating the given transformation of all values using the
5284     * given reducer to combine values, and the given basis as an
5285     * identity value.
5286     *
5287     * @param map the map
5288     * @param transformer a function returning the transformation
5289     * for an element
5290     * @param basis the identity (initial default value) for the reduction
5291     * @param reducer a commutative associative combining function
5292     * @return the task
5293     */
5294     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5295     (ConcurrentHashMap<K,V> map,
5296 dl 1.171 ToIntFunction<? super V> transformer,
5297 dl 1.119 int basis,
5298 dl 1.153 IntBinaryOperator reducer) {
5299 dl 1.119 if (transformer == null || reducer == null)
5300     throw new NullPointerException();
5301     return new MapReduceValuesToIntTask<K,V>
5302 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5303 dl 1.119 }
5304    
5305     /**
5306     * Returns a task that when invoked, perform the given action
5307 jsr166 1.123 * for each entry.
5308 dl 1.119 *
5309     * @param map the map
5310     * @param action the action
5311 jsr166 1.173 * @return the task
5312 dl 1.119 */
5313 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5314 dl 1.119 (ConcurrentHashMap<K,V> map,
5315 dl 1.171 Consumer<? super Map.Entry<K,V>> action) {
5316 dl 1.119 if (action == null) throw new NullPointerException();
5317 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5318 dl 1.119 }
5319    
5320     /**
5321     * Returns a task that when invoked, perform the given action
5322 jsr166 1.123 * for each non-null transformation of each entry.
5323 dl 1.119 *
5324     * @param map the map
5325     * @param transformer a function returning the transformation
5326 jsr166 1.135 * for an element, or null if there is no transformation (in
5327 jsr166 1.134 * which case the action is not applied)
5328 dl 1.119 * @param action the action
5329 jsr166 1.173 * @return the task
5330 dl 1.119 */
5331 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5332 dl 1.119 (ConcurrentHashMap<K,V> map,
5333 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5334 dl 1.171 Consumer<? super U> action) {
5335 dl 1.119 if (transformer == null || action == null)
5336     throw new NullPointerException();
5337     return new ForEachTransformedEntryTask<K,V,U>
5338 dl 1.146 (map, null, -1, transformer, action);
5339 dl 1.119 }
5340    
5341     /**
5342     * Returns a task that when invoked, returns a non-null result
5343     * from applying the given search function on each entry, or
5344 dl 1.126 * null if none. Upon success, further element processing is
5345     * suppressed and the results of any other parallel
5346     * invocations of the search function are ignored.
5347 dl 1.119 *
5348     * @param map the map
5349     * @param searchFunction a function returning a non-null
5350     * result on success, else null
5351     * @return the task
5352     */
5353     public static <K,V,U> ForkJoinTask<U> searchEntries
5354     (ConcurrentHashMap<K,V> map,
5355 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5356 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5357     return new SearchEntriesTask<K,V,U>
5358 dl 1.146 (map, null, -1, searchFunction,
5359 dl 1.119 new AtomicReference<U>());
5360     }
5361    
5362     /**
5363     * Returns a task that when invoked, returns the result of
5364     * accumulating all entries using the given reducer to combine
5365     * values, or null if none.
5366     *
5367     * @param map the map
5368     * @param reducer a commutative associative combining function
5369     * @return the task
5370     */
5371     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5372     (ConcurrentHashMap<K,V> map,
5373 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5374 dl 1.119 if (reducer == null) throw new NullPointerException();
5375     return new ReduceEntriesTask<K,V>
5376 dl 1.130 (map, null, -1, null, reducer);
5377 dl 1.119 }
5378    
5379     /**
5380     * Returns a task that when invoked, returns the result of
5381     * accumulating the given transformation of all entries using the
5382     * given reducer to combine values, or null if none.
5383     *
5384     * @param map the map
5385     * @param transformer a function returning the transformation
5386 jsr166 1.135 * for an element, or null if there is no transformation (in
5387 jsr166 1.172 * which case it is not combined)
5388 dl 1.119 * @param reducer a commutative associative combining function
5389     * @return the task
5390     */
5391     public static <K,V,U> ForkJoinTask<U> reduceEntries
5392     (ConcurrentHashMap<K,V> map,
5393 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5394     BiFunction<? super U, ? super U, ? extends U> reducer) {
5395 dl 1.119 if (transformer == null || reducer == null)
5396     throw new NullPointerException();
5397     return new MapReduceEntriesTask<K,V,U>
5398 dl 1.130 (map, null, -1, null, transformer, reducer);
5399 dl 1.119 }
5400    
5401     /**
5402     * Returns a task that when invoked, returns the result of
5403     * accumulating the given transformation of all entries using the
5404     * given reducer to combine values, and the given basis as an
5405     * identity value.
5406     *
5407     * @param map the map
5408     * @param transformer a function returning the transformation
5409     * for an element
5410     * @param basis the identity (initial default value) for the reduction
5411     * @param reducer a commutative associative combining function
5412     * @return the task
5413     */
5414     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5415     (ConcurrentHashMap<K,V> map,
5416 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5417 dl 1.119 double basis,
5418 dl 1.153 DoubleBinaryOperator reducer) {
5419 dl 1.119 if (transformer == null || reducer == null)
5420     throw new NullPointerException();
5421     return new MapReduceEntriesToDoubleTask<K,V>
5422 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5423 dl 1.119 }
5424    
5425     /**
5426     * Returns a task that when invoked, returns the result of
5427     * accumulating the given transformation of all entries using the
5428     * given reducer to combine values, and the given basis as an
5429     * identity value.
5430     *
5431     * @param map the map
5432     * @param transformer a function returning the transformation
5433     * for an element
5434     * @param basis the identity (initial default value) for the reduction
5435     * @param reducer a commutative associative combining function
5436     * @return the task
5437     */
5438     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5439     (ConcurrentHashMap<K,V> map,
5440 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5441 dl 1.119 long basis,
5442 dl 1.153 LongBinaryOperator reducer) {
5443 dl 1.119 if (transformer == null || reducer == null)
5444     throw new NullPointerException();
5445     return new MapReduceEntriesToLongTask<K,V>
5446 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5447 dl 1.119 }
5448    
5449     /**
5450     * Returns a task that when invoked, returns the result of
5451     * accumulating the given transformation of all entries using the
5452     * given reducer to combine values, and the given basis as an
5453     * identity value.
5454     *
5455     * @param map the map
5456     * @param transformer a function returning the transformation
5457     * for an element
5458     * @param basis the identity (initial default value) for the reduction
5459     * @param reducer a commutative associative combining function
5460     * @return the task
5461     */
5462     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5463     (ConcurrentHashMap<K,V> map,
5464 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5465 dl 1.119 int basis,
5466 dl 1.153 IntBinaryOperator reducer) {
5467 dl 1.119 if (transformer == null || reducer == null)
5468     throw new NullPointerException();
5469     return new MapReduceEntriesToIntTask<K,V>
5470 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5471 dl 1.119 }
5472     }
5473    
5474     // -------------------------------------------------------
5475    
5476     /*
5477     * Task classes. Coded in a regular but ugly format/style to
5478     * simplify checks that each variant differs in the right way from
5479 dl 1.149 * others. The null screenings exist because compilers cannot tell
5480     * that we've already null-checked task arguments, so we force
5481     * simplest hoisted bypass to help avoid convoluted traps.
5482 dl 1.119 */
5483    
5484 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5485 dl 1.146 extends Traverser<K,V,Void> {
5486 dl 1.171 final Consumer<? super K> action;
5487 dl 1.119 ForEachKeyTask
5488 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5489 dl 1.171 Consumer<? super K> action) {
5490 dl 1.146 super(m, p, b);
5491 dl 1.119 this.action = action;
5492     }
5493 jsr166 1.168 public final void compute() {
5494 dl 1.171 final Consumer<? super K> action;
5495 dl 1.149 if ((action = this.action) != null) {
5496     for (int b; (b = preSplit()) > 0;)
5497     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5498     while (advance() != null)
5499 jsr166 1.168 action.accept(nextKey);
5500 dl 1.149 propagateCompletion();
5501     }
5502 dl 1.119 }
5503     }
5504    
5505 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5506 dl 1.146 extends Traverser<K,V,Void> {
5507 dl 1.171 final Consumer<? super V> action;
5508 dl 1.119 ForEachValueTask
5509 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5510 dl 1.171 Consumer<? super V> action) {
5511 dl 1.146 super(m, p, b);
5512 dl 1.119 this.action = action;
5513     }
5514 jsr166 1.168 public final void compute() {
5515 dl 1.171 final Consumer<? super V> action;
5516 dl 1.149 if ((action = this.action) != null) {
5517     for (int b; (b = preSplit()) > 0;)
5518     new ForEachValueTask<K,V>(map, this, b, action).fork();
5519 dl 1.151 V v;
5520 dl 1.149 while ((v = advance()) != null)
5521 dl 1.153 action.accept(v);
5522 dl 1.149 propagateCompletion();
5523     }
5524 dl 1.119 }
5525     }
5526    
5527 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5528 dl 1.146 extends Traverser<K,V,Void> {
5529 dl 1.171 final Consumer<? super Entry<K,V>> action;
5530 dl 1.119 ForEachEntryTask
5531 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5532 dl 1.171 Consumer<? super Entry<K,V>> action) {
5533 dl 1.146 super(m, p, b);
5534 dl 1.119 this.action = action;
5535     }
5536 jsr166 1.168 public final void compute() {
5537 dl 1.171 final Consumer<? super Entry<K,V>> action;
5538 dl 1.149 if ((action = this.action) != null) {
5539     for (int b; (b = preSplit()) > 0;)
5540     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5541 dl 1.151 V v;
5542 dl 1.149 while ((v = advance()) != null)
5543 jsr166 1.168 action.accept(entryFor(nextKey, v));
5544 dl 1.149 propagateCompletion();
5545     }
5546 dl 1.119 }
5547     }
5548    
5549 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5550 dl 1.146 extends Traverser<K,V,Void> {
5551 dl 1.171 final BiConsumer<? super K, ? super V> action;
5552 dl 1.119 ForEachMappingTask
5553 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5554 dl 1.171 BiConsumer<? super K,? super V> action) {
5555 dl 1.146 super(m, p, b);
5556 dl 1.119 this.action = action;
5557     }
5558 jsr166 1.168 public final void compute() {
5559 dl 1.171 final BiConsumer<? super K, ? super V> action;
5560 dl 1.149 if ((action = this.action) != null) {
5561     for (int b; (b = preSplit()) > 0;)
5562     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5563 dl 1.151 V v;
5564 dl 1.149 while ((v = advance()) != null)
5565 jsr166 1.168 action.accept(nextKey, v);
5566 dl 1.149 propagateCompletion();
5567     }
5568 dl 1.119 }
5569     }
5570    
5571 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5572 dl 1.146 extends Traverser<K,V,Void> {
5573 dl 1.153 final Function<? super K, ? extends U> transformer;
5574 dl 1.171 final Consumer<? super U> action;
5575 dl 1.119 ForEachTransformedKeyTask
5576 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5577 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5578 dl 1.146 super(m, p, b);
5579     this.transformer = transformer; this.action = action;
5580     }
5581 jsr166 1.168 public final void compute() {
5582 dl 1.153 final Function<? super K, ? extends U> transformer;
5583 dl 1.171 final Consumer<? super U> action;
5584 dl 1.149 if ((transformer = this.transformer) != null &&
5585     (action = this.action) != null) {
5586     for (int b; (b = preSplit()) > 0;)
5587     new ForEachTransformedKeyTask<K,V,U>
5588     (map, this, b, transformer, action).fork();
5589     U u;
5590     while (advance() != null) {
5591 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
5592 dl 1.153 action.accept(u);
5593 dl 1.149 }
5594     propagateCompletion();
5595 dl 1.119 }
5596     }
5597     }
5598    
5599 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5600 dl 1.146 extends Traverser<K,V,Void> {
5601 dl 1.153 final Function<? super V, ? extends U> transformer;
5602 dl 1.171 final Consumer<? super U> action;
5603 dl 1.119 ForEachTransformedValueTask
5604 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5605 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5606 dl 1.146 super(m, p, b);
5607     this.transformer = transformer; this.action = action;
5608     }
5609 jsr166 1.168 public final void compute() {
5610 dl 1.153 final Function<? super V, ? extends U> transformer;
5611 dl 1.171 final Consumer<? super U> action;
5612 dl 1.149 if ((transformer = this.transformer) != null &&
5613     (action = this.action) != null) {
5614     for (int b; (b = preSplit()) > 0;)
5615     new ForEachTransformedValueTask<K,V,U>
5616     (map, this, b, transformer, action).fork();
5617 dl 1.151 V v; U u;
5618 dl 1.149 while ((v = advance()) != null) {
5619 dl 1.151 if ((u = transformer.apply(v)) != null)
5620 dl 1.153 action.accept(u);
5621 dl 1.149 }
5622     propagateCompletion();
5623 dl 1.119 }
5624     }
5625 tim 1.1 }
5626    
5627 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5628 dl 1.146 extends Traverser<K,V,Void> {
5629 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5630 dl 1.171 final Consumer<? super U> action;
5631 dl 1.119 ForEachTransformedEntryTask
5632 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5633 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5634 dl 1.146 super(m, p, b);
5635     this.transformer = transformer; this.action = action;
5636     }
5637 jsr166 1.168 public final void compute() {
5638 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5639 dl 1.171 final Consumer<? super U> action;
5640 dl 1.149 if ((transformer = this.transformer) != null &&
5641     (action = this.action) != null) {
5642     for (int b; (b = preSplit()) > 0;)
5643     new ForEachTransformedEntryTask<K,V,U>
5644     (map, this, b, transformer, action).fork();
5645 dl 1.151 V v; U u;
5646 dl 1.149 while ((v = advance()) != null) {
5647 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
5648 dl 1.151 v))) != null)
5649 dl 1.153 action.accept(u);
5650 dl 1.149 }
5651     propagateCompletion();
5652 dl 1.119 }
5653     }
5654 tim 1.1 }
5655    
5656 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5657 dl 1.146 extends Traverser<K,V,Void> {
5658 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5659 dl 1.171 final Consumer<? super U> action;
5660 dl 1.119 ForEachTransformedMappingTask
5661 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5662 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5663 dl 1.171 Consumer<? super U> action) {
5664 dl 1.146 super(m, p, b);
5665     this.transformer = transformer; this.action = action;
5666 dl 1.119 }
5667 jsr166 1.168 public final void compute() {
5668 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5669 dl 1.171 final Consumer<? super U> action;
5670 dl 1.149 if ((transformer = this.transformer) != null &&
5671     (action = this.action) != null) {
5672     for (int b; (b = preSplit()) > 0;)
5673     new ForEachTransformedMappingTask<K,V,U>
5674     (map, this, b, transformer, action).fork();
5675 dl 1.151 V v; U u;
5676 dl 1.149 while ((v = advance()) != null) {
5677 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
5678 dl 1.153 action.accept(u);
5679 dl 1.149 }
5680     propagateCompletion();
5681 dl 1.119 }
5682     }
5683 tim 1.1 }
5684    
5685 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5686 dl 1.146 extends Traverser<K,V,U> {
5687 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5688 dl 1.119 final AtomicReference<U> result;
5689     SearchKeysTask
5690 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5691 dl 1.153 Function<? super K, ? extends U> searchFunction,
5692 dl 1.119 AtomicReference<U> result) {
5693 dl 1.146 super(m, p, b);
5694 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5695     }
5696 dl 1.146 public final U getRawResult() { return result.get(); }
5697 jsr166 1.168 public final void compute() {
5698 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5699 dl 1.146 final AtomicReference<U> result;
5700 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5701     (result = this.result) != null) {
5702     for (int b;;) {
5703     if (result.get() != null)
5704     return;
5705     if ((b = preSplit()) <= 0)
5706     break;
5707     new SearchKeysTask<K,V,U>
5708     (map, this, b, searchFunction, result).fork();
5709 dl 1.128 }
5710 dl 1.149 while (result.get() == null) {
5711     U u;
5712     if (advance() == null) {
5713     propagateCompletion();
5714     break;
5715     }
5716 jsr166 1.168 if ((u = searchFunction.apply(nextKey)) != null) {
5717 dl 1.149 if (result.compareAndSet(null, u))
5718     quietlyCompleteRoot();
5719     break;
5720     }
5721 dl 1.119 }
5722     }
5723     }
5724 tim 1.1 }
5725    
5726 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5727 dl 1.146 extends Traverser<K,V,U> {
5728 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5729 dl 1.119 final AtomicReference<U> result;
5730     SearchValuesTask
5731 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5732 dl 1.153 Function<? super V, ? extends U> searchFunction,
5733 dl 1.119 AtomicReference<U> result) {
5734 dl 1.146 super(m, p, b);
5735 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5736     }
5737 dl 1.146 public final U getRawResult() { return result.get(); }
5738 jsr166 1.168 public final void compute() {
5739 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5740 dl 1.146 final AtomicReference<U> result;
5741 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5742     (result = this.result) != null) {
5743     for (int b;;) {
5744     if (result.get() != null)
5745     return;
5746     if ((b = preSplit()) <= 0)
5747     break;
5748     new SearchValuesTask<K,V,U>
5749     (map, this, b, searchFunction, result).fork();
5750 dl 1.128 }
5751 dl 1.149 while (result.get() == null) {
5752 dl 1.151 V v; U u;
5753 dl 1.149 if ((v = advance()) == null) {
5754     propagateCompletion();
5755     break;
5756     }
5757 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5758 dl 1.149 if (result.compareAndSet(null, u))
5759     quietlyCompleteRoot();
5760     break;
5761     }
5762 dl 1.119 }
5763     }
5764     }
5765     }
5766 tim 1.11
5767 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5768 dl 1.146 extends Traverser<K,V,U> {
5769 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5770 dl 1.119 final AtomicReference<U> result;
5771     SearchEntriesTask
5772 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5773 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5774 dl 1.119 AtomicReference<U> result) {
5775 dl 1.146 super(m, p, b);
5776 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5777     }
5778 dl 1.146 public final U getRawResult() { return result.get(); }
5779 jsr166 1.168 public final void compute() {
5780 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5781 dl 1.146 final AtomicReference<U> result;
5782 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5783     (result = this.result) != null) {
5784     for (int b;;) {
5785     if (result.get() != null)
5786     return;
5787     if ((b = preSplit()) <= 0)
5788     break;
5789     new SearchEntriesTask<K,V,U>
5790     (map, this, b, searchFunction, result).fork();
5791 dl 1.128 }
5792 dl 1.149 while (result.get() == null) {
5793 dl 1.151 V v; U u;
5794 dl 1.149 if ((v = advance()) == null) {
5795     propagateCompletion();
5796     break;
5797     }
5798 jsr166 1.168 if ((u = searchFunction.apply(entryFor(nextKey,
5799 dl 1.151 v))) != null) {
5800 dl 1.149 if (result.compareAndSet(null, u))
5801     quietlyCompleteRoot();
5802     return;
5803     }
5804 dl 1.119 }
5805     }
5806     }
5807     }
5808 tim 1.1
5809 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5810 dl 1.146 extends Traverser<K,V,U> {
5811 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5812 dl 1.119 final AtomicReference<U> result;
5813     SearchMappingsTask
5814 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5815 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5816 dl 1.119 AtomicReference<U> result) {
5817 dl 1.146 super(m, p, b);
5818 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5819     }
5820 dl 1.146 public final U getRawResult() { return result.get(); }
5821 jsr166 1.168 public final void compute() {
5822 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5823 dl 1.146 final AtomicReference<U> result;
5824 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5825     (result = this.result) != null) {
5826     for (int b;;) {
5827     if (result.get() != null)
5828     return;
5829     if ((b = preSplit()) <= 0)
5830     break;
5831     new SearchMappingsTask<K,V,U>
5832     (map, this, b, searchFunction, result).fork();
5833 dl 1.128 }
5834 dl 1.149 while (result.get() == null) {
5835 dl 1.151 V v; U u;
5836 dl 1.149 if ((v = advance()) == null) {
5837     propagateCompletion();
5838     break;
5839     }
5840 jsr166 1.168 if ((u = searchFunction.apply(nextKey, v)) != null) {
5841 dl 1.149 if (result.compareAndSet(null, u))
5842     quietlyCompleteRoot();
5843     break;
5844     }
5845 dl 1.119 }
5846     }
5847 tim 1.1 }
5848 dl 1.119 }
5849 tim 1.1
5850 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5851 dl 1.146 extends Traverser<K,V,K> {
5852 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5853 dl 1.119 K result;
5854 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5855 dl 1.119 ReduceKeysTask
5856 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5857 dl 1.128 ReduceKeysTask<K,V> nextRight,
5858 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5859 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5860 dl 1.119 this.reducer = reducer;
5861     }
5862 dl 1.146 public final K getRawResult() { return result; }
5863     @SuppressWarnings("unchecked") public final void compute() {
5864 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5865 dl 1.149 if ((reducer = this.reducer) != null) {
5866     for (int b; (b = preSplit()) > 0;)
5867     (rights = new ReduceKeysTask<K,V>
5868     (map, this, b, rights, reducer)).fork();
5869     K r = null;
5870     while (advance() != null) {
5871 jsr166 1.168 K u = nextKey;
5872 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5873 dl 1.149 }
5874     result = r;
5875     CountedCompleter<?> c;
5876     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5877     ReduceKeysTask<K,V>
5878     t = (ReduceKeysTask<K,V>)c,
5879     s = t.rights;
5880     while (s != null) {
5881     K tr, sr;
5882     if ((sr = s.result) != null)
5883     t.result = (((tr = t.result) == null) ? sr :
5884     reducer.apply(tr, sr));
5885     s = t.rights = s.nextRight;
5886     }
5887 dl 1.99 }
5888 dl 1.138 }
5889 tim 1.1 }
5890 dl 1.119 }
5891 tim 1.1
5892 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5893 dl 1.146 extends Traverser<K,V,V> {
5894 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5895 dl 1.119 V result;
5896 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5897 dl 1.119 ReduceValuesTask
5898 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5899 dl 1.128 ReduceValuesTask<K,V> nextRight,
5900 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5901 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5902 dl 1.119 this.reducer = reducer;
5903     }
5904 dl 1.146 public final V getRawResult() { return result; }
5905     @SuppressWarnings("unchecked") public final void compute() {
5906 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5907 dl 1.149 if ((reducer = this.reducer) != null) {
5908     for (int b; (b = preSplit()) > 0;)
5909     (rights = new ReduceValuesTask<K,V>
5910     (map, this, b, rights, reducer)).fork();
5911 dl 1.153 V r = null, v;
5912     while ((v = advance()) != null)
5913 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5914 dl 1.149 result = r;
5915     CountedCompleter<?> c;
5916     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5917     ReduceValuesTask<K,V>
5918     t = (ReduceValuesTask<K,V>)c,
5919     s = t.rights;
5920     while (s != null) {
5921     V tr, sr;
5922     if ((sr = s.result) != null)
5923     t.result = (((tr = t.result) == null) ? sr :
5924     reducer.apply(tr, sr));
5925     s = t.rights = s.nextRight;
5926     }
5927 dl 1.119 }
5928     }
5929 tim 1.1 }
5930 dl 1.119 }
5931 tim 1.1
5932 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5933 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
5934 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5935 dl 1.119 Map.Entry<K,V> result;
5936 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5937 dl 1.119 ReduceEntriesTask
5938 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5939 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5940 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5941 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5942 dl 1.119 this.reducer = reducer;
5943     }
5944 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5945     @SuppressWarnings("unchecked") public final void compute() {
5946 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5947 dl 1.149 if ((reducer = this.reducer) != null) {
5948     for (int b; (b = preSplit()) > 0;)
5949     (rights = new ReduceEntriesTask<K,V>
5950     (map, this, b, rights, reducer)).fork();
5951     Map.Entry<K,V> r = null;
5952 dl 1.151 V v;
5953 dl 1.149 while ((v = advance()) != null) {
5954 jsr166 1.168 Map.Entry<K,V> u = entryFor(nextKey, v);
5955 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5956     }
5957     result = r;
5958     CountedCompleter<?> c;
5959     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5960     ReduceEntriesTask<K,V>
5961     t = (ReduceEntriesTask<K,V>)c,
5962     s = t.rights;
5963     while (s != null) {
5964     Map.Entry<K,V> tr, sr;
5965     if ((sr = s.result) != null)
5966     t.result = (((tr = t.result) == null) ? sr :
5967     reducer.apply(tr, sr));
5968     s = t.rights = s.nextRight;
5969     }
5970 dl 1.119 }
5971 dl 1.138 }
5972 dl 1.119 }
5973     }
5974 dl 1.99
5975 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5976 dl 1.146 extends Traverser<K,V,U> {
5977 dl 1.153 final Function<? super K, ? extends U> transformer;
5978     final BiFunction<? super U, ? super U, ? extends U> reducer;
5979 dl 1.119 U result;
5980 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5981 dl 1.119 MapReduceKeysTask
5982 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5983 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5984 dl 1.153 Function<? super K, ? extends U> transformer,
5985     BiFunction<? super U, ? super U, ? extends U> reducer) {
5986 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5987 dl 1.119 this.transformer = transformer;
5988     this.reducer = reducer;
5989     }
5990 dl 1.146 public final U getRawResult() { return result; }
5991     @SuppressWarnings("unchecked") public final void compute() {
5992 dl 1.153 final Function<? super K, ? extends U> transformer;
5993     final BiFunction<? super U, ? super U, ? extends U> reducer;
5994 dl 1.149 if ((transformer = this.transformer) != null &&
5995     (reducer = this.reducer) != null) {
5996     for (int b; (b = preSplit()) > 0;)
5997     (rights = new MapReduceKeysTask<K,V,U>
5998     (map, this, b, rights, transformer, reducer)).fork();
5999     U r = null, u;
6000     while (advance() != null) {
6001 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
6002 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6003     }
6004     result = r;
6005     CountedCompleter<?> c;
6006     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6007     MapReduceKeysTask<K,V,U>
6008     t = (MapReduceKeysTask<K,V,U>)c,
6009     s = t.rights;
6010     while (s != null) {
6011     U tr, sr;
6012     if ((sr = s.result) != null)
6013     t.result = (((tr = t.result) == null) ? sr :
6014     reducer.apply(tr, sr));
6015     s = t.rights = s.nextRight;
6016     }
6017 dl 1.119 }
6018 dl 1.138 }
6019 tim 1.1 }
6020 dl 1.4 }
6021    
6022 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6023 dl 1.146 extends Traverser<K,V,U> {
6024 dl 1.153 final Function<? super V, ? extends U> transformer;
6025     final BiFunction<? super U, ? super U, ? extends U> reducer;
6026 dl 1.119 U result;
6027 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6028 dl 1.119 MapReduceValuesTask
6029 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6030 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6031 dl 1.153 Function<? super V, ? extends U> transformer,
6032     BiFunction<? super U, ? super U, ? extends U> reducer) {
6033 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6034 dl 1.119 this.transformer = transformer;
6035     this.reducer = reducer;
6036     }
6037 dl 1.146 public final U getRawResult() { return result; }
6038     @SuppressWarnings("unchecked") public final void compute() {
6039 dl 1.153 final Function<? super V, ? extends U> transformer;
6040     final BiFunction<? super U, ? super U, ? extends U> reducer;
6041 dl 1.149 if ((transformer = this.transformer) != null &&
6042     (reducer = this.reducer) != null) {
6043     for (int b; (b = preSplit()) > 0;)
6044     (rights = new MapReduceValuesTask<K,V,U>
6045     (map, this, b, rights, transformer, reducer)).fork();
6046     U r = null, u;
6047 dl 1.151 V v;
6048 dl 1.149 while ((v = advance()) != null) {
6049 dl 1.151 if ((u = transformer.apply(v)) != null)
6050 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6051     }
6052     result = r;
6053     CountedCompleter<?> c;
6054     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6055     MapReduceValuesTask<K,V,U>
6056     t = (MapReduceValuesTask<K,V,U>)c,
6057     s = t.rights;
6058     while (s != null) {
6059     U tr, sr;
6060     if ((sr = s.result) != null)
6061     t.result = (((tr = t.result) == null) ? sr :
6062     reducer.apply(tr, sr));
6063     s = t.rights = s.nextRight;
6064     }
6065 dl 1.119 }
6066     }
6067     }
6068 dl 1.4 }
6069    
6070 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6071 dl 1.146 extends Traverser<K,V,U> {
6072 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6073     final BiFunction<? super U, ? super U, ? extends U> reducer;
6074 dl 1.119 U result;
6075 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6076 dl 1.119 MapReduceEntriesTask
6077 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6078 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6079 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6080     BiFunction<? super U, ? super U, ? extends U> reducer) {
6081 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6082 dl 1.119 this.transformer = transformer;
6083     this.reducer = reducer;
6084     }
6085 dl 1.146 public final U getRawResult() { return result; }
6086     @SuppressWarnings("unchecked") public final void compute() {
6087 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6088     final BiFunction<? super U, ? super U, ? extends U> reducer;
6089 dl 1.149 if ((transformer = this.transformer) != null &&
6090     (reducer = this.reducer) != null) {
6091     for (int b; (b = preSplit()) > 0;)
6092     (rights = new MapReduceEntriesTask<K,V,U>
6093     (map, this, b, rights, transformer, reducer)).fork();
6094     U r = null, u;
6095 dl 1.151 V v;
6096 dl 1.149 while ((v = advance()) != null) {
6097 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
6098 dl 1.151 v))) != null)
6099 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6100     }
6101     result = r;
6102     CountedCompleter<?> c;
6103     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6104     MapReduceEntriesTask<K,V,U>
6105     t = (MapReduceEntriesTask<K,V,U>)c,
6106     s = t.rights;
6107     while (s != null) {
6108     U tr, sr;
6109     if ((sr = s.result) != null)
6110     t.result = (((tr = t.result) == null) ? sr :
6111     reducer.apply(tr, sr));
6112     s = t.rights = s.nextRight;
6113     }
6114 dl 1.119 }
6115 dl 1.138 }
6116 dl 1.119 }
6117 dl 1.4 }
6118 tim 1.1
6119 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6120 dl 1.146 extends Traverser<K,V,U> {
6121 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6122     final BiFunction<? super U, ? super U, ? extends U> reducer;
6123 dl 1.119 U result;
6124 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6125 dl 1.119 MapReduceMappingsTask
6126 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6127 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6128 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6129     BiFunction<? super U, ? super U, ? extends U> reducer) {
6130 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6131 dl 1.119 this.transformer = transformer;
6132     this.reducer = reducer;
6133     }
6134 dl 1.146 public final U getRawResult() { return result; }
6135     @SuppressWarnings("unchecked") public final void compute() {
6136 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6137     final BiFunction<? super U, ? super U, ? extends U> reducer;
6138 dl 1.149 if ((transformer = this.transformer) != null &&
6139     (reducer = this.reducer) != null) {
6140     for (int b; (b = preSplit()) > 0;)
6141     (rights = new MapReduceMappingsTask<K,V,U>
6142     (map, this, b, rights, transformer, reducer)).fork();
6143     U r = null, u;
6144 dl 1.151 V v;
6145 dl 1.149 while ((v = advance()) != null) {
6146 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
6147 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6148     }
6149     result = r;
6150     CountedCompleter<?> c;
6151     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6152     MapReduceMappingsTask<K,V,U>
6153     t = (MapReduceMappingsTask<K,V,U>)c,
6154     s = t.rights;
6155     while (s != null) {
6156     U tr, sr;
6157     if ((sr = s.result) != null)
6158     t.result = (((tr = t.result) == null) ? sr :
6159     reducer.apply(tr, sr));
6160     s = t.rights = s.nextRight;
6161     }
6162 dl 1.119 }
6163     }
6164     }
6165     }
6166 jsr166 1.114
6167 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6168 dl 1.146 extends Traverser<K,V,Double> {
6169 dl 1.171 final ToDoubleFunction<? super K> transformer;
6170 dl 1.153 final DoubleBinaryOperator reducer;
6171 dl 1.119 final double basis;
6172     double result;
6173 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6174 dl 1.119 MapReduceKeysToDoubleTask
6175 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6176 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6177 dl 1.171 ToDoubleFunction<? super K> transformer,
6178 dl 1.119 double basis,
6179 dl 1.153 DoubleBinaryOperator reducer) {
6180 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6181 dl 1.119 this.transformer = transformer;
6182     this.basis = basis; this.reducer = reducer;
6183     }
6184 dl 1.146 public final Double getRawResult() { return result; }
6185     @SuppressWarnings("unchecked") public final void compute() {
6186 dl 1.171 final ToDoubleFunction<? super K> transformer;
6187 dl 1.153 final DoubleBinaryOperator reducer;
6188 dl 1.149 if ((transformer = this.transformer) != null &&
6189     (reducer = this.reducer) != null) {
6190     double r = this.basis;
6191     for (int b; (b = preSplit()) > 0;)
6192     (rights = new MapReduceKeysToDoubleTask<K,V>
6193     (map, this, b, rights, transformer, r, reducer)).fork();
6194     while (advance() != null)
6195 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6196 dl 1.149 result = r;
6197     CountedCompleter<?> c;
6198     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6199     MapReduceKeysToDoubleTask<K,V>
6200     t = (MapReduceKeysToDoubleTask<K,V>)c,
6201     s = t.rights;
6202     while (s != null) {
6203 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6204 dl 1.149 s = t.rights = s.nextRight;
6205     }
6206 dl 1.119 }
6207 dl 1.138 }
6208 dl 1.79 }
6209 dl 1.119 }
6210 dl 1.79
6211 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6212 dl 1.146 extends Traverser<K,V,Double> {
6213 dl 1.171 final ToDoubleFunction<? super V> transformer;
6214 dl 1.153 final DoubleBinaryOperator reducer;
6215 dl 1.119 final double basis;
6216     double result;
6217 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6218 dl 1.119 MapReduceValuesToDoubleTask
6219 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6220 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6221 dl 1.171 ToDoubleFunction<? super V> transformer,
6222 dl 1.119 double basis,
6223 dl 1.153 DoubleBinaryOperator reducer) {
6224 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6225 dl 1.119 this.transformer = transformer;
6226     this.basis = basis; this.reducer = reducer;
6227     }
6228 dl 1.146 public final Double getRawResult() { return result; }
6229     @SuppressWarnings("unchecked") public final void compute() {
6230 dl 1.171 final ToDoubleFunction<? super V> transformer;
6231 dl 1.153 final DoubleBinaryOperator reducer;
6232 dl 1.149 if ((transformer = this.transformer) != null &&
6233     (reducer = this.reducer) != null) {
6234     double r = this.basis;
6235     for (int b; (b = preSplit()) > 0;)
6236     (rights = new MapReduceValuesToDoubleTask<K,V>
6237     (map, this, b, rights, transformer, r, reducer)).fork();
6238 dl 1.151 V v;
6239 dl 1.149 while ((v = advance()) != null)
6240 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6241 dl 1.149 result = r;
6242     CountedCompleter<?> c;
6243     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6244     MapReduceValuesToDoubleTask<K,V>
6245     t = (MapReduceValuesToDoubleTask<K,V>)c,
6246     s = t.rights;
6247     while (s != null) {
6248 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6249 dl 1.149 s = t.rights = s.nextRight;
6250     }
6251 dl 1.119 }
6252     }
6253 dl 1.30 }
6254 dl 1.79 }
6255 dl 1.30
6256 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6257 dl 1.146 extends Traverser<K,V,Double> {
6258 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6259 dl 1.153 final DoubleBinaryOperator reducer;
6260 dl 1.119 final double basis;
6261     double result;
6262 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6263 dl 1.119 MapReduceEntriesToDoubleTask
6264 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6265 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6266 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
6267 dl 1.119 double basis,
6268 dl 1.153 DoubleBinaryOperator reducer) {
6269 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6270 dl 1.119 this.transformer = transformer;
6271     this.basis = basis; this.reducer = reducer;
6272     }
6273 dl 1.146 public final Double getRawResult() { return result; }
6274     @SuppressWarnings("unchecked") public final void compute() {
6275 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6276 dl 1.153 final DoubleBinaryOperator reducer;
6277 dl 1.149 if ((transformer = this.transformer) != null &&
6278     (reducer = this.reducer) != null) {
6279     double r = this.basis;
6280     for (int b; (b = preSplit()) > 0;)
6281     (rights = new MapReduceEntriesToDoubleTask<K,V>
6282     (map, this, b, rights, transformer, r, reducer)).fork();
6283 dl 1.151 V v;
6284 dl 1.149 while ((v = advance()) != null)
6285 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6286 dl 1.151 v)));
6287 dl 1.149 result = r;
6288     CountedCompleter<?> c;
6289     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6290     MapReduceEntriesToDoubleTask<K,V>
6291     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6292     s = t.rights;
6293     while (s != null) {
6294 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6295 dl 1.149 s = t.rights = s.nextRight;
6296     }
6297 dl 1.119 }
6298 dl 1.138 }
6299 dl 1.30 }
6300 tim 1.1 }
6301    
6302 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6303 dl 1.146 extends Traverser<K,V,Double> {
6304 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6305 dl 1.153 final DoubleBinaryOperator reducer;
6306 dl 1.119 final double basis;
6307     double result;
6308 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6309 dl 1.119 MapReduceMappingsToDoubleTask
6310 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6311 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6312 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
6313 dl 1.119 double basis,
6314 dl 1.153 DoubleBinaryOperator reducer) {
6315 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6316 dl 1.119 this.transformer = transformer;
6317     this.basis = basis; this.reducer = reducer;
6318     }
6319 dl 1.146 public final Double getRawResult() { return result; }
6320     @SuppressWarnings("unchecked") public final void compute() {
6321 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6322 dl 1.153 final DoubleBinaryOperator reducer;
6323 dl 1.149 if ((transformer = this.transformer) != null &&
6324     (reducer = this.reducer) != null) {
6325     double r = this.basis;
6326     for (int b; (b = preSplit()) > 0;)
6327     (rights = new MapReduceMappingsToDoubleTask<K,V>
6328     (map, this, b, rights, transformer, r, reducer)).fork();
6329 dl 1.151 V v;
6330 dl 1.149 while ((v = advance()) != null)
6331 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6332 dl 1.149 result = r;
6333     CountedCompleter<?> c;
6334     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6335     MapReduceMappingsToDoubleTask<K,V>
6336     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6337     s = t.rights;
6338     while (s != null) {
6339 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6340 dl 1.149 s = t.rights = s.nextRight;
6341     }
6342 dl 1.119 }
6343     }
6344 dl 1.4 }
6345 dl 1.119 }
6346    
6347 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6348 dl 1.146 extends Traverser<K,V,Long> {
6349 dl 1.171 final ToLongFunction<? super K> transformer;
6350 dl 1.153 final LongBinaryOperator reducer;
6351 dl 1.119 final long basis;
6352     long result;
6353 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6354 dl 1.119 MapReduceKeysToLongTask
6355 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6356 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6357 dl 1.171 ToLongFunction<? super K> transformer,
6358 dl 1.119 long basis,
6359 dl 1.153 LongBinaryOperator reducer) {
6360 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6361 dl 1.119 this.transformer = transformer;
6362     this.basis = basis; this.reducer = reducer;
6363     }
6364 dl 1.146 public final Long getRawResult() { return result; }
6365     @SuppressWarnings("unchecked") public final void compute() {
6366 dl 1.171 final ToLongFunction<? super K> transformer;
6367 dl 1.153 final LongBinaryOperator reducer;
6368 dl 1.149 if ((transformer = this.transformer) != null &&
6369     (reducer = this.reducer) != null) {
6370     long r = this.basis;
6371     for (int b; (b = preSplit()) > 0;)
6372     (rights = new MapReduceKeysToLongTask<K,V>
6373     (map, this, b, rights, transformer, r, reducer)).fork();
6374     while (advance() != null)
6375 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6376 dl 1.149 result = r;
6377     CountedCompleter<?> c;
6378     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6379     MapReduceKeysToLongTask<K,V>
6380     t = (MapReduceKeysToLongTask<K,V>)c,
6381     s = t.rights;
6382     while (s != null) {
6383 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6384 dl 1.149 s = t.rights = s.nextRight;
6385     }
6386 dl 1.119 }
6387 dl 1.138 }
6388 dl 1.4 }
6389 dl 1.119 }
6390    
6391 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6392 dl 1.146 extends Traverser<K,V,Long> {
6393 dl 1.171 final ToLongFunction<? super V> transformer;
6394 dl 1.153 final LongBinaryOperator reducer;
6395 dl 1.119 final long basis;
6396     long result;
6397 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6398 dl 1.119 MapReduceValuesToLongTask
6399 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6400 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6401 dl 1.171 ToLongFunction<? super V> transformer,
6402 dl 1.119 long basis,
6403 dl 1.153 LongBinaryOperator reducer) {
6404 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6405 dl 1.119 this.transformer = transformer;
6406     this.basis = basis; this.reducer = reducer;
6407     }
6408 dl 1.146 public final Long getRawResult() { return result; }
6409     @SuppressWarnings("unchecked") public final void compute() {
6410 dl 1.171 final ToLongFunction<? super V> transformer;
6411 dl 1.153 final LongBinaryOperator reducer;
6412 dl 1.149 if ((transformer = this.transformer) != null &&
6413     (reducer = this.reducer) != null) {
6414     long r = this.basis;
6415     for (int b; (b = preSplit()) > 0;)
6416     (rights = new MapReduceValuesToLongTask<K,V>
6417     (map, this, b, rights, transformer, r, reducer)).fork();
6418 dl 1.151 V v;
6419 dl 1.149 while ((v = advance()) != null)
6420 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6421 dl 1.149 result = r;
6422     CountedCompleter<?> c;
6423     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6424     MapReduceValuesToLongTask<K,V>
6425     t = (MapReduceValuesToLongTask<K,V>)c,
6426     s = t.rights;
6427     while (s != null) {
6428 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6429 dl 1.149 s = t.rights = s.nextRight;
6430     }
6431 dl 1.119 }
6432     }
6433 jsr166 1.95 }
6434 dl 1.119 }
6435    
6436 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6437 dl 1.146 extends Traverser<K,V,Long> {
6438 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6439 dl 1.153 final LongBinaryOperator reducer;
6440 dl 1.119 final long basis;
6441     long result;
6442 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6443 dl 1.119 MapReduceEntriesToLongTask
6444 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6445 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6446 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6447 dl 1.119 long basis,
6448 dl 1.153 LongBinaryOperator reducer) {
6449 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6450 dl 1.119 this.transformer = transformer;
6451     this.basis = basis; this.reducer = reducer;
6452     }
6453 dl 1.146 public final Long getRawResult() { return result; }
6454     @SuppressWarnings("unchecked") public final void compute() {
6455 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6456 dl 1.153 final LongBinaryOperator reducer;
6457 dl 1.149 if ((transformer = this.transformer) != null &&
6458     (reducer = this.reducer) != null) {
6459     long r = this.basis;
6460     for (int b; (b = preSplit()) > 0;)
6461     (rights = new MapReduceEntriesToLongTask<K,V>
6462     (map, this, b, rights, transformer, r, reducer)).fork();
6463 dl 1.151 V v;
6464 dl 1.149 while ((v = advance()) != null)
6465 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6466 dl 1.149 result = r;
6467     CountedCompleter<?> c;
6468     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6469     MapReduceEntriesToLongTask<K,V>
6470     t = (MapReduceEntriesToLongTask<K,V>)c,
6471     s = t.rights;
6472     while (s != null) {
6473 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6474 dl 1.149 s = t.rights = s.nextRight;
6475     }
6476 dl 1.119 }
6477 dl 1.138 }
6478 dl 1.4 }
6479 tim 1.1 }
6480    
6481 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6482 dl 1.146 extends Traverser<K,V,Long> {
6483 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6484 dl 1.153 final LongBinaryOperator reducer;
6485 dl 1.119 final long basis;
6486     long result;
6487 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6488 dl 1.119 MapReduceMappingsToLongTask
6489 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6490 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6491 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6492 dl 1.119 long basis,
6493 dl 1.153 LongBinaryOperator reducer) {
6494 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6495 dl 1.119 this.transformer = transformer;
6496     this.basis = basis; this.reducer = reducer;
6497     }
6498 dl 1.146 public final Long getRawResult() { return result; }
6499     @SuppressWarnings("unchecked") public final void compute() {
6500 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6501 dl 1.153 final LongBinaryOperator reducer;
6502 dl 1.149 if ((transformer = this.transformer) != null &&
6503     (reducer = this.reducer) != null) {
6504     long r = this.basis;
6505     for (int b; (b = preSplit()) > 0;)
6506     (rights = new MapReduceMappingsToLongTask<K,V>
6507     (map, this, b, rights, transformer, r, reducer)).fork();
6508 dl 1.151 V v;
6509 dl 1.149 while ((v = advance()) != null)
6510 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6511 dl 1.149 result = r;
6512     CountedCompleter<?> c;
6513     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6514     MapReduceMappingsToLongTask<K,V>
6515     t = (MapReduceMappingsToLongTask<K,V>)c,
6516     s = t.rights;
6517     while (s != null) {
6518 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6519 dl 1.149 s = t.rights = s.nextRight;
6520     }
6521 dl 1.119 }
6522     }
6523 dl 1.4 }
6524 tim 1.1 }
6525    
6526 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6527 dl 1.146 extends Traverser<K,V,Integer> {
6528 dl 1.171 final ToIntFunction<? super K> transformer;
6529 dl 1.153 final IntBinaryOperator reducer;
6530 dl 1.119 final int basis;
6531     int result;
6532 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6533 dl 1.119 MapReduceKeysToIntTask
6534 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6535 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6536 dl 1.171 ToIntFunction<? super K> transformer,
6537 dl 1.119 int basis,
6538 dl 1.153 IntBinaryOperator reducer) {
6539 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6540 dl 1.119 this.transformer = transformer;
6541     this.basis = basis; this.reducer = reducer;
6542     }
6543 dl 1.146 public final Integer getRawResult() { return result; }
6544     @SuppressWarnings("unchecked") public final void compute() {
6545 dl 1.171 final ToIntFunction<? super K> transformer;
6546 dl 1.153 final IntBinaryOperator reducer;
6547 dl 1.149 if ((transformer = this.transformer) != null &&
6548     (reducer = this.reducer) != null) {
6549     int r = this.basis;
6550     for (int b; (b = preSplit()) > 0;)
6551     (rights = new MapReduceKeysToIntTask<K,V>
6552     (map, this, b, rights, transformer, r, reducer)).fork();
6553     while (advance() != null)
6554 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6555 dl 1.149 result = r;
6556     CountedCompleter<?> c;
6557     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558     MapReduceKeysToIntTask<K,V>
6559     t = (MapReduceKeysToIntTask<K,V>)c,
6560     s = t.rights;
6561     while (s != null) {
6562 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6563 dl 1.149 s = t.rights = s.nextRight;
6564     }
6565 dl 1.119 }
6566 dl 1.138 }
6567 dl 1.30 }
6568     }
6569    
6570 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6571 dl 1.146 extends Traverser<K,V,Integer> {
6572 dl 1.171 final ToIntFunction<? super V> transformer;
6573 dl 1.153 final IntBinaryOperator reducer;
6574 dl 1.119 final int basis;
6575     int result;
6576 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6577 dl 1.119 MapReduceValuesToIntTask
6578 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6579 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6580 dl 1.171 ToIntFunction<? super V> transformer,
6581 dl 1.119 int basis,
6582 dl 1.153 IntBinaryOperator reducer) {
6583 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6584 dl 1.119 this.transformer = transformer;
6585     this.basis = basis; this.reducer = reducer;
6586     }
6587 dl 1.146 public final Integer getRawResult() { return result; }
6588     @SuppressWarnings("unchecked") public final void compute() {
6589 dl 1.171 final ToIntFunction<? super V> transformer;
6590 dl 1.153 final IntBinaryOperator reducer;
6591 dl 1.149 if ((transformer = this.transformer) != null &&
6592     (reducer = this.reducer) != null) {
6593     int r = this.basis;
6594     for (int b; (b = preSplit()) > 0;)
6595     (rights = new MapReduceValuesToIntTask<K,V>
6596     (map, this, b, rights, transformer, r, reducer)).fork();
6597 dl 1.151 V v;
6598 dl 1.149 while ((v = advance()) != null)
6599 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6600 dl 1.149 result = r;
6601     CountedCompleter<?> c;
6602     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603     MapReduceValuesToIntTask<K,V>
6604     t = (MapReduceValuesToIntTask<K,V>)c,
6605     s = t.rights;
6606     while (s != null) {
6607 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6608 dl 1.149 s = t.rights = s.nextRight;
6609     }
6610 dl 1.119 }
6611 dl 1.2 }
6612 tim 1.1 }
6613     }
6614    
6615 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6616 dl 1.146 extends Traverser<K,V,Integer> {
6617 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6618 dl 1.153 final IntBinaryOperator reducer;
6619 dl 1.119 final int basis;
6620     int result;
6621 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6622 dl 1.119 MapReduceEntriesToIntTask
6623 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6624 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6625 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6626 dl 1.119 int basis,
6627 dl 1.153 IntBinaryOperator reducer) {
6628 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6629 dl 1.119 this.transformer = transformer;
6630     this.basis = basis; this.reducer = reducer;
6631     }
6632 dl 1.146 public final Integer getRawResult() { return result; }
6633     @SuppressWarnings("unchecked") public final void compute() {
6634 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6635 dl 1.153 final IntBinaryOperator reducer;
6636 dl 1.149 if ((transformer = this.transformer) != null &&
6637     (reducer = this.reducer) != null) {
6638     int r = this.basis;
6639     for (int b; (b = preSplit()) > 0;)
6640     (rights = new MapReduceEntriesToIntTask<K,V>
6641     (map, this, b, rights, transformer, r, reducer)).fork();
6642 dl 1.151 V v;
6643 dl 1.149 while ((v = advance()) != null)
6644 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6645 dl 1.151 v)));
6646 dl 1.149 result = r;
6647     CountedCompleter<?> c;
6648     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6649     MapReduceEntriesToIntTask<K,V>
6650     t = (MapReduceEntriesToIntTask<K,V>)c,
6651     s = t.rights;
6652     while (s != null) {
6653 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6654 dl 1.149 s = t.rights = s.nextRight;
6655     }
6656 dl 1.119 }
6657 dl 1.138 }
6658 dl 1.4 }
6659 dl 1.119 }
6660 tim 1.1
6661 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6662 dl 1.146 extends Traverser<K,V,Integer> {
6663 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6664 dl 1.153 final IntBinaryOperator reducer;
6665 dl 1.119 final int basis;
6666     int result;
6667 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6668 dl 1.119 MapReduceMappingsToIntTask
6669 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6670     MapReduceMappingsToIntTask<K,V> nextRight,
6671 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6672 dl 1.119 int basis,
6673 dl 1.153 IntBinaryOperator reducer) {
6674 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6675 dl 1.119 this.transformer = transformer;
6676     this.basis = basis; this.reducer = reducer;
6677     }
6678 dl 1.146 public final Integer getRawResult() { return result; }
6679     @SuppressWarnings("unchecked") public final void compute() {
6680 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6681 dl 1.153 final IntBinaryOperator reducer;
6682 dl 1.149 if ((transformer = this.transformer) != null &&
6683     (reducer = this.reducer) != null) {
6684     int r = this.basis;
6685     for (int b; (b = preSplit()) > 0;)
6686     (rights = new MapReduceMappingsToIntTask<K,V>
6687     (map, this, b, rights, transformer, r, reducer)).fork();
6688 dl 1.151 V v;
6689 dl 1.149 while ((v = advance()) != null)
6690 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6691 dl 1.149 result = r;
6692     CountedCompleter<?> c;
6693     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6694     MapReduceMappingsToIntTask<K,V>
6695     t = (MapReduceMappingsToIntTask<K,V>)c,
6696     s = t.rights;
6697     while (s != null) {
6698 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6699 dl 1.149 s = t.rights = s.nextRight;
6700     }
6701 dl 1.119 }
6702 dl 1.138 }
6703 tim 1.1 }
6704     }
6705 dl 1.99
6706     // Unsafe mechanics
6707 dl 1.149 private static final sun.misc.Unsafe U;
6708     private static final long SIZECTL;
6709     private static final long TRANSFERINDEX;
6710     private static final long TRANSFERORIGIN;
6711     private static final long BASECOUNT;
6712 dl 1.153 private static final long CELLSBUSY;
6713 dl 1.149 private static final long CELLVALUE;
6714 dl 1.119 private static final long ABASE;
6715     private static final int ASHIFT;
6716 dl 1.99
6717     static {
6718     try {
6719 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6720 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6721 dl 1.149 SIZECTL = U.objectFieldOffset
6722 dl 1.119 (k.getDeclaredField("sizeCtl"));
6723 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6724     (k.getDeclaredField("transferIndex"));
6725     TRANSFERORIGIN = U.objectFieldOffset
6726     (k.getDeclaredField("transferOrigin"));
6727     BASECOUNT = U.objectFieldOffset
6728     (k.getDeclaredField("baseCount"));
6729 dl 1.153 CELLSBUSY = U.objectFieldOffset
6730     (k.getDeclaredField("cellsBusy"));
6731     Class<?> ck = Cell.class;
6732 dl 1.149 CELLVALUE = U.objectFieldOffset
6733     (ck.getDeclaredField("value"));
6734 dl 1.119 Class<?> sc = Node[].class;
6735 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6736 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6737     if ((scale & (scale - 1)) != 0)
6738     throw new Error("data type scale not a power of two");
6739     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6740 dl 1.99 } catch (Exception e) {
6741     throw new Error(e);
6742     }
6743     }
6744 jsr166 1.152
6745     }