ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.184
Committed: Fri Feb 15 21:45:40 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.183: +156 -78 lines
Log Message:
refactor and fix javadocs for map views

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152 jsr166 1.178 * </ul>
153 dl 1.137 * </li>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 dl 1.119 public class ConcurrentHashMap<K, V>
218     implements ConcurrentMap<K, V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695 dl 1.164 if (len > 1) {
1696 dl 1.149 addCount(delta, len);
1697 dl 1.164 delta = 0L;
1698     }
1699 dl 1.119 break;
1700 dl 1.99 }
1701 dl 1.21 }
1702     }
1703 dl 1.45 }
1704     } finally {
1705 dl 1.149 if (delta != 0L)
1706     addCount(delta, 2);
1707 dl 1.45 }
1708 dl 1.119 if (npe)
1709     throw new NullPointerException();
1710 tim 1.1 }
1711 dl 1.19
1712 dl 1.149 /**
1713     * Implementation for clear. Steps through each bin, removing all
1714     * nodes.
1715     */
1716 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1717 dl 1.149 long delta = 0L; // negative number of deletions
1718     int i = 0;
1719 dl 1.151 Node<V>[] tab = table;
1720 dl 1.149 while (tab != null && i < tab.length) {
1721 dl 1.151 Node<V> f = tabAt(tab, i);
1722 dl 1.149 if (f == null)
1723     ++i;
1724     else if (f.hash < 0) {
1725     Object fk;
1726     if ((fk = f.key) instanceof TreeBin) {
1727 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1728 dl 1.149 t.acquire(0);
1729     try {
1730     if (tabAt(tab, i) == f) {
1731 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1732 dl 1.149 if (p.val != null) { // (currently always true)
1733     p.val = null;
1734     --delta;
1735     }
1736     }
1737     t.first = null;
1738     t.root = null;
1739     ++i;
1740     }
1741     } finally {
1742     t.release(0);
1743     }
1744     }
1745     else
1746 dl 1.151 tab = (Node<V>[])fk;
1747 dl 1.149 }
1748     else {
1749 jsr166 1.150 synchronized (f) {
1750 dl 1.149 if (tabAt(tab, i) == f) {
1751 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1752 dl 1.149 if (e.val != null) { // (currently always true)
1753     e.val = null;
1754     --delta;
1755     }
1756     }
1757     setTabAt(tab, i, null);
1758     ++i;
1759     }
1760     }
1761     }
1762     }
1763     if (delta != 0L)
1764     addCount(delta, -1);
1765     }
1766    
1767 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1768    
1769 tim 1.1 /**
1770 dl 1.119 * Returns a power of two table size for the given desired capacity.
1771     * See Hackers Delight, sec 3.2
1772 tim 1.1 */
1773 dl 1.119 private static final int tableSizeFor(int c) {
1774     int n = c - 1;
1775     n |= n >>> 1;
1776     n |= n >>> 2;
1777     n |= n >>> 4;
1778     n |= n >>> 8;
1779     n |= n >>> 16;
1780     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 tim 1.1 }
1782    
1783     /**
1784 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1785     */
1786 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787     Node<V>[] tab; int sc;
1788 dl 1.119 while ((tab = table) == null) {
1789     if ((sc = sizeCtl) < 0)
1790     Thread.yield(); // lost initialization race; just spin
1791 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 dl 1.119 try {
1793     if ((tab = table) == null) {
1794     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796     table = tab = (Node<V>[])tb;
1797 dl 1.119 sc = n - (n >>> 2);
1798     }
1799     } finally {
1800     sizeCtl = sc;
1801     }
1802     break;
1803     }
1804     }
1805     return tab;
1806 dl 1.4 }
1807    
1808     /**
1809 dl 1.149 * Adds to count, and if table is too small and not already
1810     * resizing, initiates transfer. If already resizing, helps
1811     * perform transfer if work is available. Rechecks occupancy
1812     * after a transfer to see if another resize is already needed
1813     * because resizings are lagging additions.
1814     *
1815     * @param x the count to add
1816     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817     */
1818     private final void addCount(long x, int check) {
1819 dl 1.153 Cell[] as; long b, s;
1820 dl 1.149 if ((as = counterCells) != null ||
1821     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 dl 1.160 Cell a; long v; int m;
1823 dl 1.149 boolean uncontended = true;
1824 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1825     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 dl 1.149 !(uncontended =
1827     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 dl 1.160 fullAddCount(x, uncontended);
1829 dl 1.149 return;
1830     }
1831     if (check <= 1)
1832     return;
1833     s = sumCount();
1834     }
1835     if (check >= 0) {
1836 dl 1.151 Node<V>[] tab, nt; int sc;
1837 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838     tab.length < MAXIMUM_CAPACITY) {
1839     if (sc < 0) {
1840     if (sc == -1 || transferIndex <= transferOrigin ||
1841     (nt = nextTable) == null)
1842     break;
1843     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844     transfer(tab, nt);
1845 dl 1.119 }
1846 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847     transfer(tab, null);
1848     s = sumCount();
1849 dl 1.119 }
1850     }
1851 dl 1.4 }
1852    
1853     /**
1854 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1855 tim 1.1 *
1856 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1857 tim 1.1 */
1858 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860     tableSizeFor(size + (size >>> 1) + 1);
1861     int sc;
1862     while ((sc = sizeCtl) >= 0) {
1863 dl 1.151 Node<V>[] tab = table; int n;
1864 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1865     n = (sc > c) ? sc : c;
1866 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 dl 1.119 try {
1868     if (table == tab) {
1869 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870     table = (Node<V>[])tb;
1871 dl 1.119 sc = n - (n >>> 2);
1872     }
1873     } finally {
1874     sizeCtl = sc;
1875     }
1876     }
1877     }
1878     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879     break;
1880 dl 1.149 else if (tab == table &&
1881     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882     transfer(tab, null);
1883 dl 1.119 }
1884 dl 1.4 }
1885    
1886 jsr166 1.170 /**
1887 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
1888     * above for explanation.
1889 dl 1.4 */
1890 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1891     (Node<V>[] tab, Node<V>[] nextTab) {
1892 dl 1.149 int n = tab.length, stride;
1893     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894     stride = MIN_TRANSFER_STRIDE; // subdivide range
1895     if (nextTab == null) { // initiating
1896     try {
1897 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898     nextTab = (Node<V>[])tb;
1899 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1900 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1901     return;
1902     }
1903     nextTable = nextTab;
1904     transferOrigin = n;
1905     transferIndex = n;
1906 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1909 dl 1.149 for (int m = nextk; m < k; ++m)
1910     nextTab[m] = rev;
1911     for (int m = n + nextk; m < n + k; ++m)
1912     nextTab[m] = rev;
1913     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914     }
1915     }
1916     int nextn = nextTab.length;
1917 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 dl 1.149 boolean advance = true;
1919     for (int i = 0, bound = 0;;) {
1920 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1921 dl 1.149 while (advance) {
1922     if (--i >= bound)
1923     advance = false;
1924     else if ((nextIndex = transferIndex) <= transferOrigin) {
1925     i = -1;
1926     advance = false;
1927     }
1928     else if (U.compareAndSwapInt
1929     (this, TRANSFERINDEX, nextIndex,
1930 jsr166 1.150 nextBound = (nextIndex > stride ?
1931 dl 1.149 nextIndex - stride : 0))) {
1932     bound = nextBound;
1933     i = nextIndex - 1;
1934     advance = false;
1935     }
1936     }
1937     if (i < 0 || i >= n || i + n >= nextn) {
1938     for (int sc;;) {
1939     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940     if (sc == -1) {
1941     nextTable = null;
1942     table = nextTab;
1943     sizeCtl = (n << 1) - (n >>> 1);
1944     }
1945     return;
1946     }
1947     }
1948     }
1949     else if ((f = tabAt(tab, i)) == null) {
1950     if (casTabAt(tab, i, null, fwd)) {
1951 dl 1.119 setTabAt(nextTab, i, null);
1952     setTabAt(nextTab, i + n, null);
1953 dl 1.149 advance = true;
1954     }
1955     }
1956     else if (f.hash >= 0) {
1957 jsr166 1.150 synchronized (f) {
1958 dl 1.149 if (tabAt(tab, i) == f) {
1959     int runBit = f.hash & n;
1960 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1961     for (Node<V> p = f.next; p != null; p = p.next) {
1962 dl 1.149 int b = p.hash & n;
1963     if (b != runBit) {
1964     runBit = b;
1965     lastRun = p;
1966     }
1967     }
1968     if (runBit == 0)
1969     lo = lastRun;
1970     else
1971     hi = lastRun;
1972 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 dl 1.149 int ph = p.hash;
1974 dl 1.151 Object pk = p.key; V pv = p.val;
1975 dl 1.149 if ((ph & n) == 0)
1976 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1977 dl 1.149 else
1978 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1979 dl 1.149 }
1980     setTabAt(nextTab, i, lo);
1981     setTabAt(nextTab, i + n, hi);
1982     setTabAt(tab, i, fwd);
1983     advance = true;
1984 dl 1.119 }
1985     }
1986     }
1987 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1988 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1989 dl 1.149 t.acquire(0);
1990     try {
1991     if (tabAt(tab, i) == f) {
1992 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1993     TreeBin<V> ht = new TreeBin<V>();
1994 dl 1.149 int lc = 0, hc = 0;
1995 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1996 dl 1.149 int h = e.hash;
1997 dl 1.151 Object k = e.key; V v = e.val;
1998 dl 1.149 if ((h & n) == 0) {
1999     ++lc;
2000     lt.putTreeNode(h, k, v);
2001     }
2002     else {
2003     ++hc;
2004     ht.putTreeNode(h, k, v);
2005     }
2006     }
2007 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2008 dl 1.149 if (lc < TREE_THRESHOLD) {
2009     ln = null;
2010 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2011     ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 dl 1.149 }
2013     else
2014 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2015 dl 1.149 setTabAt(nextTab, i, ln);
2016     if (hc < TREE_THRESHOLD) {
2017     hn = null;
2018 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2019     hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 dl 1.119 }
2021 dl 1.149 else
2022 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2023 dl 1.149 setTabAt(nextTab, i + n, hn);
2024 dl 1.119 setTabAt(tab, i, fwd);
2025 dl 1.149 advance = true;
2026 dl 1.119 }
2027     } finally {
2028 dl 1.149 t.release(0);
2029 dl 1.119 }
2030     }
2031     else
2032 dl 1.149 advance = true; // already processed
2033 dl 1.119 }
2034 dl 1.4 }
2035 tim 1.1
2036 dl 1.149 /* ---------------- Counter support -------------- */
2037    
2038     final long sumCount() {
2039 dl 1.153 Cell[] as = counterCells; Cell a;
2040 dl 1.149 long sum = baseCount;
2041     if (as != null) {
2042     for (int i = 0; i < as.length; ++i) {
2043     if ((a = as[i]) != null)
2044     sum += a.value;
2045 dl 1.119 }
2046     }
2047 dl 1.149 return sum;
2048 dl 1.119 }
2049    
2050 dl 1.149 // See LongAdder version for explanation
2051 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2052 dl 1.149 int h;
2053 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054     ThreadLocalRandom.localInit(); // force initialization
2055     h = ThreadLocalRandom.getProbe();
2056     wasUncontended = true;
2057 dl 1.119 }
2058 dl 1.149 boolean collide = false; // True if last slot nonempty
2059     for (;;) {
2060 dl 1.153 Cell[] as; Cell a; int n; long v;
2061 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2062     if ((a = as[(n - 1) & h]) == null) {
2063 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2064     Cell r = new Cell(x); // Optimistic create
2065     if (cellsBusy == 0 &&
2066     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 dl 1.149 boolean created = false;
2068     try { // Recheck under lock
2069 dl 1.153 Cell[] rs; int m, j;
2070 dl 1.149 if ((rs = counterCells) != null &&
2071     (m = rs.length) > 0 &&
2072     rs[j = (m - 1) & h] == null) {
2073     rs[j] = r;
2074     created = true;
2075 dl 1.128 }
2076 dl 1.149 } finally {
2077 dl 1.153 cellsBusy = 0;
2078 dl 1.119 }
2079 dl 1.149 if (created)
2080     break;
2081     continue; // Slot is now non-empty
2082     }
2083     }
2084     collide = false;
2085     }
2086     else if (!wasUncontended) // CAS already known to fail
2087     wasUncontended = true; // Continue after rehash
2088     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089     break;
2090     else if (counterCells != as || n >= NCPU)
2091     collide = false; // At max size or stale
2092     else if (!collide)
2093     collide = true;
2094 dl 1.153 else if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 try {
2097     if (counterCells == as) {// Expand table unless stale
2098 dl 1.153 Cell[] rs = new Cell[n << 1];
2099 dl 1.149 for (int i = 0; i < n; ++i)
2100     rs[i] = as[i];
2101     counterCells = rs;
2102 dl 1.119 }
2103     } finally {
2104 dl 1.153 cellsBusy = 0;
2105 dl 1.119 }
2106 dl 1.149 collide = false;
2107     continue; // Retry with expanded table
2108 dl 1.119 }
2109 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2110 dl 1.149 }
2111 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 dl 1.149 boolean init = false;
2114     try { // Initialize table
2115     if (counterCells == as) {
2116 dl 1.153 Cell[] rs = new Cell[2];
2117     rs[h & 1] = new Cell(x);
2118 dl 1.149 counterCells = rs;
2119     init = true;
2120 dl 1.119 }
2121     } finally {
2122 dl 1.153 cellsBusy = 0;
2123 dl 1.119 }
2124 dl 1.149 if (init)
2125     break;
2126 dl 1.119 }
2127 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128     break; // Fall back on using base
2129 dl 1.119 }
2130     }
2131    
2132     /* ----------------Table Traversal -------------- */
2133    
2134     /**
2135     * Encapsulates traversal for methods such as containsValue; also
2136 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2137 dl 1.119 *
2138     * At each step, the iterator snapshots the key ("nextKey") and
2139     * value ("nextVal") of a valid node (i.e., one that, at point of
2140     * snapshot, has a non-null user value). Because val fields can
2141     * change (including to null, indicating deletion), field nextVal
2142     * might not be accurate at point of use, but still maintains the
2143     * weak consistency property of holding a value that was once
2144 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2145     * updated (nulled out) when the iterator cannot advance.
2146 dl 1.119 *
2147     * Internal traversals directly access these fields, as in:
2148     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149     *
2150     * Exported iterators must track whether the iterator has advanced
2151     * (in hasNext vs next) (by setting/checking/nulling field
2152     * nextVal), and then extract key, value, or key-value pairs as
2153     * return values of next().
2154     *
2155     * The iterator visits once each still-valid node that was
2156     * reachable upon iterator construction. It might miss some that
2157     * were added to a bin after the bin was visited, which is OK wrt
2158     * consistency guarantees. Maintaining this property in the face
2159     * of possible ongoing resizes requires a fair amount of
2160     * bookkeeping state that is difficult to optimize away amidst
2161     * volatile accesses. Even so, traversal maintains reasonable
2162     * throughput.
2163     *
2164     * Normally, iteration proceeds bin-by-bin traversing lists.
2165     * However, if the table has been resized, then all future steps
2166     * must traverse both the bin at the current index as well as at
2167     * (index + baseSize); and so on for further resizings. To
2168     * paranoically cope with potential sharing by users of iterators
2169     * across threads, iteration terminates if a bounds checks fails
2170     * for a table read.
2171     *
2172 dl 1.153 * This class supports both Spliterator-based traversal and
2173     * CountedCompleter-based bulk tasks. The same "batch" field is
2174     * used, but in slightly different ways, in the two cases. For
2175     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177     * size that halves down to zero for leaf tasks, that is only
2178     * computed upon execution of the task. (Tasks can be submitted to
2179     * any pool, of any size, so we don't know scale factors until
2180     * running.)
2181     *
2182 dl 1.146 * This class extends CountedCompleter to streamline parallel
2183     * iteration in bulk operations. This adds only a few fields of
2184     * space overhead, which is small enough in cases where it is not
2185     * needed to not worry about it. Because CountedCompleter is
2186     * Serializable, but iterators need not be, we need to add warning
2187     * suppressions.
2188 dl 1.119 */
2189 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190     extends CountedCompleter<R> {
2191 dl 1.119 final ConcurrentHashMap<K, V> map;
2192 dl 1.151 Node<V> next; // the next entry to use
2193 jsr166 1.168 K nextKey; // cached key field of next
2194 dl 1.151 V nextVal; // cached val field of next
2195     Node<V>[] tab; // current table; updated if resized
2196 dl 1.119 int index; // index of bin to use next
2197     int baseIndex; // current index of initial table
2198     int baseLimit; // index bound for initial table
2199 dl 1.130 int baseSize; // initial table size
2200 dl 1.146 int batch; // split control
2201 dl 1.119 /** Creates iterator for all entries in the table. */
2202     Traverser(ConcurrentHashMap<K, V> map) {
2203 dl 1.130 this.map = map;
2204 dl 1.153 Node<V>[] t;
2205     if ((t = tab = map.table) != null)
2206     baseLimit = baseSize = t.length;
2207 dl 1.119 }
2208    
2209 dl 1.153 /** Task constructor */
2210 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211     super(it);
2212 dl 1.153 this.map = map;
2213     this.batch = batch; // -1 if unknown
2214     if (it == null) {
2215 dl 1.151 Node<V>[] t;
2216 dl 1.153 if ((t = tab = map.table) != null)
2217     baseLimit = baseSize = t.length;
2218     }
2219     else { // split parent
2220     this.tab = it.tab;
2221 dl 1.146 this.baseSize = it.baseSize;
2222     int hi = this.baseLimit = it.baseLimit;
2223     it.baseLimit = this.index = this.baseIndex =
2224     (hi + it.baseIndex + 1) >>> 1;
2225     }
2226 dl 1.119 }
2227    
2228 dl 1.153 /** Spliterator constructor */
2229     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230     super(it);
2231     this.map = map;
2232     if (it == null) {
2233     Node<V>[] t;
2234     if ((t = tab = map.table) != null)
2235     baseLimit = baseSize = t.length;
2236     long n = map.sumCount();
2237     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238     (int)n);
2239     }
2240     else {
2241     this.tab = it.tab;
2242     this.baseSize = it.baseSize;
2243     int hi = this.baseLimit = it.baseLimit;
2244     it.baseLimit = this.index = this.baseIndex =
2245     (hi + it.baseIndex + 1) >>> 1;
2246     this.batch = it.batch >>>= 1;
2247     }
2248     }
2249    
2250 dl 1.119 /**
2251     * Advances next; returns nextVal or null if terminated.
2252     * See above for explanation.
2253     */
2254 dl 1.151 @SuppressWarnings("unchecked") final V advance() {
2255     Node<V> e = next;
2256     V ev = null;
2257 dl 1.119 outer: do {
2258     if (e != null) // advance past used/skipped node
2259     e = e.next;
2260     while (e == null) { // get to next non-null bin
2261 dl 1.130 ConcurrentHashMap<K, V> m;
2262 dl 1.151 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 dl 1.130 if ((t = tab) != null)
2264     n = t.length;
2265     else if ((m = map) != null && (t = tab = m.table) != null)
2266     n = baseLimit = baseSize = t.length;
2267     else
2268 dl 1.119 break outer;
2269 dl 1.130 if ((b = baseIndex) >= baseLimit ||
2270     (i = index) < 0 || i >= n)
2271     break outer;
2272 dl 1.149 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2274 dl 1.151 e = ((TreeBin<V>)ek).first;
2275 dl 1.119 else {
2276 dl 1.151 tab = (Node<V>[])ek;
2277 dl 1.119 continue; // restarts due to null val
2278     }
2279     } // visit upper slots if present
2280     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281     }
2282 jsr166 1.168 nextKey = (K)e.key;
2283 dl 1.119 } while ((ev = e.val) == null); // skip deleted or special nodes
2284     next = e;
2285     return nextVal = ev;
2286     }
2287    
2288     public final void remove() {
2289 jsr166 1.168 K k = nextKey;
2290 dl 1.137 if (k == null && (advance() == null || (k = nextKey) == null))
2291 dl 1.119 throw new IllegalStateException();
2292 dl 1.137 map.internalReplace(k, null, null);
2293 dl 1.119 }
2294    
2295     public final boolean hasNext() {
2296     return nextVal != null || advance() != null;
2297     }
2298    
2299     public final boolean hasMoreElements() { return hasNext(); }
2300 dl 1.146
2301     public void compute() { } // default no-op CountedCompleter body
2302    
2303     /**
2304     * Returns a batch value > 0 if this task should (and must) be
2305     * split, if so, adding to pending count, and in any case
2306     * updating batch value. The initial batch value is approx
2307     * exp2 of the number of times (minus one) to split task by
2308     * two before executing leaf action. This value is faster to
2309     * compute and more convenient to use as a guide to splitting
2310     * than is the depth, since it is used while dividing by two
2311     * anyway.
2312     */
2313     final int preSplit() {
2314 dl 1.153 int b; ForkJoinPool pool;
2315     if ((b = batch) < 0) { // force initialization
2316     int sp = (((pool = getPool()) == null) ?
2317     ForkJoinPool.getCommonPoolParallelism() :
2318     pool.getParallelism()) << 3; // slack of 8
2319     long n = map.sumCount();
2320     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 dl 1.146 }
2322 jsr166 1.147 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 dl 1.146 if ((batch = b) > 0)
2324     addToPendingCount(1);
2325     return b;
2326     }
2327    
2328 dl 1.153 // spliterator support
2329    
2330 dl 1.160 public boolean hasExactSize() {
2331     return false;
2332 dl 1.153 }
2333    
2334     public boolean hasExactSplits() {
2335     return false;
2336     }
2337    
2338     public long estimateSize() {
2339     return batch;
2340     }
2341 dl 1.119 }
2342    
2343     /* ---------------- Public operations -------------- */
2344    
2345     /**
2346     * Creates a new, empty map with the default initial table size (16).
2347     */
2348     public ConcurrentHashMap() {
2349     }
2350    
2351     /**
2352     * Creates a new, empty map with an initial table size
2353     * accommodating the specified number of elements without the need
2354     * to dynamically resize.
2355     *
2356     * @param initialCapacity The implementation performs internal
2357     * sizing to accommodate this many elements.
2358     * @throws IllegalArgumentException if the initial capacity of
2359     * elements is negative
2360     */
2361     public ConcurrentHashMap(int initialCapacity) {
2362     if (initialCapacity < 0)
2363     throw new IllegalArgumentException();
2364     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365     MAXIMUM_CAPACITY :
2366     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367     this.sizeCtl = cap;
2368     }
2369    
2370     /**
2371     * Creates a new map with the same mappings as the given map.
2372     *
2373     * @param m the map
2374     */
2375     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376     this.sizeCtl = DEFAULT_CAPACITY;
2377     internalPutAll(m);
2378     }
2379    
2380     /**
2381     * Creates a new, empty map with an initial table size based on
2382     * the given number of elements ({@code initialCapacity}) and
2383     * initial table density ({@code loadFactor}).
2384     *
2385     * @param initialCapacity the initial capacity. The implementation
2386     * performs internal sizing to accommodate this many elements,
2387     * given the specified load factor.
2388     * @param loadFactor the load factor (table density) for
2389     * establishing the initial table size
2390     * @throws IllegalArgumentException if the initial capacity of
2391     * elements is negative or the load factor is nonpositive
2392     *
2393     * @since 1.6
2394     */
2395     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396     this(initialCapacity, loadFactor, 1);
2397     }
2398    
2399     /**
2400     * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}), table
2402     * density ({@code loadFactor}), and number of concurrently
2403     * updating threads ({@code concurrencyLevel}).
2404     *
2405     * @param initialCapacity the initial capacity. The implementation
2406     * performs internal sizing to accommodate this many elements,
2407     * given the specified load factor.
2408     * @param loadFactor the load factor (table density) for
2409     * establishing the initial table size
2410     * @param concurrencyLevel the estimated number of concurrently
2411     * updating threads. The implementation may use this value as
2412     * a sizing hint.
2413     * @throws IllegalArgumentException if the initial capacity is
2414     * negative or the load factor or concurrencyLevel are
2415     * nonpositive
2416     */
2417     public ConcurrentHashMap(int initialCapacity,
2418     float loadFactor, int concurrencyLevel) {
2419     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420     throw new IllegalArgumentException();
2421     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2422     initialCapacity = concurrencyLevel; // as estimated threads
2423     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426     this.sizeCtl = cap;
2427     }
2428    
2429     /**
2430 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2431     * from the given type to {@code Boolean.TRUE}.
2432     *
2433     * @return the new set
2434     */
2435     public static <K> KeySetView<K,Boolean> newKeySet() {
2436 jsr166 1.184 return new KeySetView<K,Boolean>
2437     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2438 dl 1.137 }
2439    
2440     /**
2441     * Creates a new {@link Set} backed by a ConcurrentHashMap
2442     * from the given type to {@code Boolean.TRUE}.
2443     *
2444     * @param initialCapacity The implementation performs internal
2445     * sizing to accommodate this many elements.
2446     * @throws IllegalArgumentException if the initial capacity of
2447     * elements is negative
2448     * @return the new set
2449     */
2450     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 dl 1.149 return new KeySetView<K,Boolean>
2452     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 dl 1.137 }
2454    
2455     /**
2456 dl 1.119 * {@inheritDoc}
2457     */
2458     public boolean isEmpty() {
2459 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2460 dl 1.119 }
2461    
2462     /**
2463     * {@inheritDoc}
2464     */
2465     public int size() {
2466 dl 1.149 long n = sumCount();
2467 dl 1.119 return ((n < 0L) ? 0 :
2468     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469     (int)n);
2470     }
2471    
2472     /**
2473     * Returns the number of mappings. This method should be used
2474     * instead of {@link #size} because a ConcurrentHashMap may
2475     * contain more mappings than can be represented as an int. The
2476 dl 1.146 * value returned is an estimate; the actual count may differ if
2477     * there are concurrent insertions or removals.
2478 dl 1.119 *
2479     * @return the number of mappings
2480     */
2481     public long mappingCount() {
2482 dl 1.149 long n = sumCount();
2483 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2484 dl 1.119 }
2485    
2486     /**
2487     * Returns the value to which the specified key is mapped,
2488     * or {@code null} if this map contains no mapping for the key.
2489     *
2490     * <p>More formally, if this map contains a mapping from a key
2491     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492     * then this method returns {@code v}; otherwise it returns
2493     * {@code null}. (There can be at most one such mapping.)
2494     *
2495     * @throws NullPointerException if the specified key is null
2496     */
2497 dl 1.149 public V get(Object key) {
2498     return internalGet(key);
2499 dl 1.119 }
2500    
2501     /**
2502 dl 1.129 * Returns the value to which the specified key is mapped,
2503 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2504 dl 1.129 *
2505     * @param key the key
2506     * @param defaultValue the value to return if this map contains
2507 jsr166 1.134 * no mapping for the given key
2508 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2509     * @throws NullPointerException if the specified key is null
2510     */
2511 dl 1.149 public V getValueOrDefault(Object key, V defaultValue) {
2512     V v;
2513     return (v = internalGet(key)) == null ? defaultValue : v;
2514 dl 1.129 }
2515    
2516     /**
2517 dl 1.119 * Tests if the specified object is a key in this table.
2518     *
2519     * @param key possible key
2520     * @return {@code true} if and only if the specified object
2521     * is a key in this table, as determined by the
2522     * {@code equals} method; {@code false} otherwise
2523     * @throws NullPointerException if the specified key is null
2524     */
2525     public boolean containsKey(Object key) {
2526     return internalGet(key) != null;
2527     }
2528    
2529     /**
2530     * Returns {@code true} if this map maps one or more keys to the
2531     * specified value. Note: This method may require a full traversal
2532     * of the map, and is much slower than method {@code containsKey}.
2533     *
2534     * @param value value whose presence in this map is to be tested
2535     * @return {@code true} if this map maps one or more keys to the
2536     * specified value
2537     * @throws NullPointerException if the specified value is null
2538     */
2539     public boolean containsValue(Object value) {
2540     if (value == null)
2541     throw new NullPointerException();
2542 dl 1.151 V v;
2543 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544     while ((v = it.advance()) != null) {
2545     if (v == value || value.equals(v))
2546     return true;
2547     }
2548     return false;
2549     }
2550    
2551     /**
2552     * Legacy method testing if some key maps into the specified value
2553     * in this table. This method is identical in functionality to
2554 jsr166 1.176 * {@link #containsValue(Object)}, and exists solely to ensure
2555 dl 1.119 * full compatibility with class {@link java.util.Hashtable},
2556     * which supported this method prior to introduction of the
2557     * Java Collections framework.
2558     *
2559     * @param value a value to search for
2560     * @return {@code true} if and only if some key maps to the
2561     * {@code value} argument in this table as
2562     * determined by the {@code equals} method;
2563     * {@code false} otherwise
2564     * @throws NullPointerException if the specified value is null
2565     */
2566 dl 1.151 @Deprecated public boolean contains(Object value) {
2567 dl 1.119 return containsValue(value);
2568     }
2569    
2570     /**
2571     * Maps the specified key to the specified value in this table.
2572     * Neither the key nor the value can be null.
2573     *
2574 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2575 dl 1.119 * with a key that is equal to the original key.
2576     *
2577     * @param key key with which the specified value is to be associated
2578     * @param value value to be associated with the specified key
2579     * @return the previous value associated with {@code key}, or
2580     * {@code null} if there was no mapping for {@code key}
2581     * @throws NullPointerException if the specified key or value is null
2582     */
2583 dl 1.149 public V put(K key, V value) {
2584     return internalPut(key, value, false);
2585 dl 1.119 }
2586    
2587     /**
2588     * {@inheritDoc}
2589     *
2590     * @return the previous value associated with the specified key,
2591     * or {@code null} if there was no mapping for the key
2592     * @throws NullPointerException if the specified key or value is null
2593     */
2594 dl 1.149 public V putIfAbsent(K key, V value) {
2595     return internalPut(key, value, true);
2596 dl 1.119 }
2597    
2598     /**
2599     * Copies all of the mappings from the specified map to this one.
2600     * These mappings replace any mappings that this map had for any of the
2601     * keys currently in the specified map.
2602     *
2603     * @param m mappings to be stored in this map
2604     */
2605     public void putAll(Map<? extends K, ? extends V> m) {
2606     internalPutAll(m);
2607     }
2608    
2609     /**
2610 dl 1.153 * If the specified key is not already associated with a value (or
2611     * is mapped to {@code null}), attempts to compute its value using
2612     * the given mapping function and enters it into this map unless
2613     * {@code null}. The entire method invocation is performed
2614     * atomically, so the function is applied at most once per key.
2615     * Some attempted update operations on this map by other threads
2616     * may be blocked while computation is in progress, so the
2617     * computation should be short and simple, and must not attempt to
2618     * update any other mappings of this Map.
2619 dl 1.119 *
2620     * @param key key with which the specified value is to be associated
2621     * @param mappingFunction the function to compute a value
2622     * @return the current (existing or computed) value associated with
2623 jsr166 1.134 * the specified key, or null if the computed value is null
2624 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2625     * is null
2626     * @throws IllegalStateException if the computation detectably
2627     * attempts a recursive update to this map that would
2628     * otherwise never complete
2629     * @throws RuntimeException or Error if the mappingFunction does so,
2630     * in which case the mapping is left unestablished
2631     */
2632 dl 1.149 public V computeIfAbsent
2633 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2634 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2635 dl 1.119 }
2636    
2637     /**
2638 dl 1.153 * If the value for the specified key is present and non-null,
2639     * attempts to compute a new mapping given the key and its current
2640     * mapped value. The entire method invocation is performed
2641     * atomically. Some attempted update operations on this map by
2642 dl 1.119 * other threads may be blocked while computation is in progress,
2643     * so the computation should be short and simple, and must not
2644 dl 1.153 * attempt to update any other mappings of this Map.
2645 dl 1.119 *
2646     * @param key key with which the specified value is to be associated
2647     * @param remappingFunction the function to compute a value
2648 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2649 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2650     * is null
2651     * @throws IllegalStateException if the computation detectably
2652     * attempts a recursive update to this map that would
2653     * otherwise never complete
2654     * @throws RuntimeException or Error if the remappingFunction does so,
2655     * in which case the mapping is unchanged
2656     */
2657 dl 1.149 public V computeIfPresent
2658 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 dl 1.149 return internalCompute(key, true, remappingFunction);
2660 dl 1.119 }
2661    
2662     /**
2663 dl 1.153 * Attempts to compute a mapping for the specified key and its
2664     * current mapped value (or {@code null} if there is no current
2665     * mapping). The entire method invocation is performed atomically.
2666     * Some attempted update operations on this map by other threads
2667     * may be blocked while computation is in progress, so the
2668     * computation should be short and simple, and must not attempt to
2669     * update any other mappings of this Map.
2670 dl 1.119 *
2671     * @param key key with which the specified value is to be associated
2672     * @param remappingFunction the function to compute a value
2673 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2674 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2675     * is null
2676     * @throws IllegalStateException if the computation detectably
2677     * attempts a recursive update to this map that would
2678     * otherwise never complete
2679     * @throws RuntimeException or Error if the remappingFunction does so,
2680     * in which case the mapping is unchanged
2681     */
2682 dl 1.149 public V compute
2683 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 dl 1.149 return internalCompute(key, false, remappingFunction);
2685 dl 1.119 }
2686    
2687     /**
2688 dl 1.153 * If the specified key is not already associated with a
2689     * (non-null) value, associates it with the given value.
2690     * Otherwise, replaces the value with the results of the given
2691     * remapping function, or removes if {@code null}. The entire
2692     * method invocation is performed atomically. Some attempted
2693     * update operations on this map by other threads may be blocked
2694     * while computation is in progress, so the computation should be
2695     * short and simple, and must not attempt to update any other
2696     * mappings of this Map.
2697     *
2698     * @param key key with which the specified value is to be associated
2699     * @param value the value to use if absent
2700     * @param remappingFunction the function to recompute a value if present
2701     * @return the new value associated with the specified key, or null if none
2702     * @throws NullPointerException if the specified key or the
2703     * remappingFunction is null
2704     * @throws RuntimeException or Error if the remappingFunction does so,
2705     * in which case the mapping is unchanged
2706 dl 1.119 */
2707 dl 1.149 public V merge
2708     (K key, V value,
2709 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 dl 1.149 return internalMerge(key, value, remappingFunction);
2711 dl 1.119 }
2712    
2713     /**
2714     * Removes the key (and its corresponding value) from this map.
2715     * This method does nothing if the key is not in the map.
2716     *
2717     * @param key the key that needs to be removed
2718     * @return the previous value associated with {@code key}, or
2719     * {@code null} if there was no mapping for {@code key}
2720     * @throws NullPointerException if the specified key is null
2721     */
2722 dl 1.149 public V remove(Object key) {
2723     return internalReplace(key, null, null);
2724 dl 1.119 }
2725    
2726     /**
2727     * {@inheritDoc}
2728     *
2729     * @throws NullPointerException if the specified key is null
2730     */
2731     public boolean remove(Object key, Object value) {
2732 dl 1.163 if (key == null)
2733     throw new NullPointerException();
2734 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2735 tim 1.1 }
2736 dl 1.31
2737     /**
2738 jsr166 1.68 * {@inheritDoc}
2739     *
2740     * @throws NullPointerException if any of the arguments are null
2741 dl 1.31 */
2742     public boolean replace(K key, V oldValue, V newValue) {
2743 dl 1.119 if (key == null || oldValue == null || newValue == null)
2744 dl 1.31 throw new NullPointerException();
2745 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2746 dl 1.32 }
2747    
2748     /**
2749 jsr166 1.68 * {@inheritDoc}
2750     *
2751     * @return the previous value associated with the specified key,
2752 dl 1.119 * or {@code null} if there was no mapping for the key
2753 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2754 dl 1.32 */
2755 dl 1.149 public V replace(K key, V value) {
2756 dl 1.119 if (key == null || value == null)
2757 dl 1.32 throw new NullPointerException();
2758 dl 1.149 return internalReplace(key, value, null);
2759 dl 1.31 }
2760    
2761 tim 1.1 /**
2762 jsr166 1.68 * Removes all of the mappings from this map.
2763 tim 1.1 */
2764     public void clear() {
2765 dl 1.119 internalClear();
2766 tim 1.1 }
2767    
2768     /**
2769 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2770     * The set is backed by the map, so changes to the map are
2771 dl 1.137 * reflected in the set, and vice-versa.
2772     *
2773     * @return the set view
2774     */
2775     public KeySetView<K,V> keySet() {
2776     KeySetView<K,V> ks = keySet;
2777     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778     }
2779    
2780     /**
2781     * Returns a {@link Set} view of the keys in this map, using the
2782     * given common mapped value for any additions (i.e., {@link
2783 jsr166 1.174 * Collection#add} and {@link Collection#addAll(Collection)}).
2784     * This is of course only appropriate if it is acceptable to use
2785     * the same value for all additions from this view.
2786 jsr166 1.68 *
2787 jsr166 1.172 * @param mappedValue the mapped value to use for any additions
2788 dl 1.137 * @return the set view
2789     * @throws NullPointerException if the mappedValue is null
2790 tim 1.1 */
2791 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2792     if (mappedValue == null)
2793     throw new NullPointerException();
2794     return new KeySetView<K,V>(this, mappedValue);
2795 tim 1.1 }
2796    
2797     /**
2798 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2799     * The collection is backed by the map, so changes to the map are
2800 jsr166 1.143 * reflected in the collection, and vice-versa.
2801 jsr166 1.184 *
2802     * @return the collection view
2803 tim 1.1 */
2804 dl 1.142 public ValuesView<K,V> values() {
2805     ValuesView<K,V> vs = values;
2806     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2807 dl 1.119 }
2808    
2809     /**
2810     * Returns a {@link Set} view of the mappings contained in this map.
2811     * The set is backed by the map, so changes to the map are
2812     * reflected in the set, and vice-versa. The set supports element
2813     * removal, which removes the corresponding mapping from the map,
2814     * via the {@code Iterator.remove}, {@code Set.remove},
2815     * {@code removeAll}, {@code retainAll}, and {@code clear}
2816     * operations. It does not support the {@code add} or
2817     * {@code addAll} operations.
2818     *
2819     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2820     * that will never throw {@link ConcurrentModificationException},
2821     * and guarantees to traverse elements as they existed upon
2822     * construction of the iterator, and may (but is not guaranteed to)
2823     * reflect any modifications subsequent to construction.
2824 jsr166 1.184 *
2825     * @return the set view
2826 dl 1.119 */
2827     public Set<Map.Entry<K,V>> entrySet() {
2828 dl 1.142 EntrySetView<K,V> es = entrySet;
2829     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2830 dl 1.119 }
2831    
2832     /**
2833     * Returns an enumeration of the keys in this table.
2834     *
2835     * @return an enumeration of the keys in this table
2836     * @see #keySet()
2837     */
2838     public Enumeration<K> keys() {
2839     return new KeyIterator<K,V>(this);
2840     }
2841    
2842     /**
2843     * Returns an enumeration of the values in this table.
2844     *
2845     * @return an enumeration of the values in this table
2846     * @see #values()
2847     */
2848     public Enumeration<V> elements() {
2849     return new ValueIterator<K,V>(this);
2850     }
2851    
2852     /**
2853     * Returns the hash code value for this {@link Map}, i.e.,
2854     * the sum of, for each key-value pair in the map,
2855     * {@code key.hashCode() ^ value.hashCode()}.
2856     *
2857     * @return the hash code value for this map
2858     */
2859     public int hashCode() {
2860     int h = 0;
2861     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2862 dl 1.151 V v;
2863 dl 1.119 while ((v = it.advance()) != null) {
2864     h += it.nextKey.hashCode() ^ v.hashCode();
2865     }
2866     return h;
2867     }
2868    
2869     /**
2870     * Returns a string representation of this map. The string
2871     * representation consists of a list of key-value mappings (in no
2872     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2873     * mappings are separated by the characters {@code ", "} (comma
2874     * and space). Each key-value mapping is rendered as the key
2875     * followed by an equals sign ("{@code =}") followed by the
2876     * associated value.
2877     *
2878     * @return a string representation of this map
2879     */
2880     public String toString() {
2881     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2882     StringBuilder sb = new StringBuilder();
2883     sb.append('{');
2884 dl 1.151 V v;
2885 dl 1.119 if ((v = it.advance()) != null) {
2886     for (;;) {
2887 jsr166 1.168 K k = it.nextKey;
2888 dl 1.119 sb.append(k == this ? "(this Map)" : k);
2889     sb.append('=');
2890     sb.append(v == this ? "(this Map)" : v);
2891     if ((v = it.advance()) == null)
2892     break;
2893     sb.append(',').append(' ');
2894     }
2895     }
2896     return sb.append('}').toString();
2897     }
2898    
2899     /**
2900     * Compares the specified object with this map for equality.
2901     * Returns {@code true} if the given object is a map with the same
2902     * mappings as this map. This operation may return misleading
2903     * results if either map is concurrently modified during execution
2904     * of this method.
2905     *
2906     * @param o object to be compared for equality with this map
2907     * @return {@code true} if the specified object is equal to this map
2908     */
2909     public boolean equals(Object o) {
2910     if (o != this) {
2911     if (!(o instanceof Map))
2912     return false;
2913     Map<?,?> m = (Map<?,?>) o;
2914     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2915 dl 1.151 V val;
2916 dl 1.119 while ((val = it.advance()) != null) {
2917     Object v = m.get(it.nextKey);
2918     if (v == null || (v != val && !v.equals(val)))
2919     return false;
2920     }
2921     for (Map.Entry<?,?> e : m.entrySet()) {
2922     Object mk, mv, v;
2923     if ((mk = e.getKey()) == null ||
2924     (mv = e.getValue()) == null ||
2925     (v = internalGet(mk)) == null ||
2926     (mv != v && !mv.equals(v)))
2927     return false;
2928     }
2929     }
2930     return true;
2931     }
2932    
2933     /* ----------------Iterators -------------- */
2934    
2935 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2936     extends Traverser<K,V,Object>
2937 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2938 dl 1.119 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2939 dl 1.146 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2940 dl 1.153 super(map, it);
2941 dl 1.119 }
2942 dl 1.155 public KeyIterator<K,V> trySplit() {
2943     if (tab != null && baseIndex == baseLimit)
2944     return null;
2945 dl 1.146 return new KeyIterator<K,V>(map, this);
2946 dl 1.119 }
2947 jsr166 1.168 public final K next() {
2948 dl 1.119 if (nextVal == null && advance() == null)
2949     throw new NoSuchElementException();
2950 jsr166 1.168 K k = nextKey;
2951 dl 1.119 nextVal = null;
2952 jsr166 1.168 return k;
2953 dl 1.119 }
2954    
2955     public final K nextElement() { return next(); }
2956 dl 1.153
2957 dl 1.162 public Iterator<K> iterator() { return this; }
2958 dl 1.153
2959 dl 1.171 public void forEach(Consumer<? super K> action) {
2960 dl 1.153 if (action == null) throw new NullPointerException();
2961     while (advance() != null)
2962 jsr166 1.168 action.accept(nextKey);
2963 dl 1.153 }
2964 dl 1.160
2965 dl 1.171 public boolean tryAdvance(Consumer<? super K> block) {
2966 dl 1.160 if (block == null) throw new NullPointerException();
2967     if (advance() == null)
2968     return false;
2969 jsr166 1.168 block.accept(nextKey);
2970 dl 1.160 return true;
2971     }
2972 dl 1.119 }
2973    
2974 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2975     extends Traverser<K,V,Object>
2976 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2977 dl 1.119 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2978 dl 1.146 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2979 dl 1.153 super(map, it);
2980 dl 1.119 }
2981 dl 1.155 public ValueIterator<K,V> trySplit() {
2982     if (tab != null && baseIndex == baseLimit)
2983     return null;
2984 dl 1.146 return new ValueIterator<K,V>(map, this);
2985 dl 1.119 }
2986    
2987 dl 1.151 public final V next() {
2988     V v;
2989 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
2990     throw new NoSuchElementException();
2991     nextVal = null;
2992 dl 1.151 return v;
2993 dl 1.119 }
2994    
2995     public final V nextElement() { return next(); }
2996 dl 1.153
2997 dl 1.162 public Iterator<V> iterator() { return this; }
2998 dl 1.153
2999 dl 1.171 public void forEach(Consumer<? super V> action) {
3000 dl 1.153 if (action == null) throw new NullPointerException();
3001     V v;
3002     while ((v = advance()) != null)
3003     action.accept(v);
3004     }
3005 dl 1.160
3006 dl 1.171 public boolean tryAdvance(Consumer<? super V> block) {
3007 dl 1.160 V v;
3008     if (block == null) throw new NullPointerException();
3009     if ((v = advance()) == null)
3010     return false;
3011     block.accept(v);
3012     return true;
3013     }
3014 jsr166 1.161
3015 dl 1.119 }
3016    
3017 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3018     extends Traverser<K,V,Object>
3019 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3020 dl 1.119 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3021 dl 1.146 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3022 dl 1.153 super(map, it);
3023 dl 1.119 }
3024 dl 1.155 public EntryIterator<K,V> trySplit() {
3025     if (tab != null && baseIndex == baseLimit)
3026     return null;
3027 dl 1.146 return new EntryIterator<K,V>(map, this);
3028 dl 1.119 }
3029    
3030 jsr166 1.168 public final Map.Entry<K,V> next() {
3031 dl 1.151 V v;
3032 dl 1.119 if ((v = nextVal) == null && (v = advance()) == null)
3033     throw new NoSuchElementException();
3034 jsr166 1.168 K k = nextKey;
3035 dl 1.119 nextVal = null;
3036 jsr166 1.168 return new MapEntry<K,V>(k, v, map);
3037 dl 1.119 }
3038 dl 1.153
3039 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3040 dl 1.153
3041 dl 1.171 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3042 dl 1.153 if (action == null) throw new NullPointerException();
3043     V v;
3044     while ((v = advance()) != null)
3045 jsr166 1.168 action.accept(entryFor(nextKey, v));
3046 dl 1.153 }
3047 dl 1.160
3048 dl 1.171 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3049 dl 1.160 V v;
3050     if (block == null) throw new NullPointerException();
3051     if ((v = advance()) == null)
3052     return false;
3053 jsr166 1.168 block.accept(entryFor(nextKey, v));
3054 dl 1.160 return true;
3055     }
3056    
3057 dl 1.119 }
3058    
3059     /**
3060     * Exported Entry for iterators
3061     */
3062     static final class MapEntry<K,V> implements Map.Entry<K, V> {
3063     final K key; // non-null
3064     V val; // non-null
3065     final ConcurrentHashMap<K, V> map;
3066     MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3067     this.key = key;
3068     this.val = val;
3069     this.map = map;
3070     }
3071     public final K getKey() { return key; }
3072     public final V getValue() { return val; }
3073     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3074     public final String toString(){ return key + "=" + val; }
3075    
3076     public final boolean equals(Object o) {
3077     Object k, v; Map.Entry<?,?> e;
3078     return ((o instanceof Map.Entry) &&
3079     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3080     (v = e.getValue()) != null &&
3081     (k == key || k.equals(key)) &&
3082     (v == val || v.equals(val)));
3083     }
3084    
3085     /**
3086     * Sets our entry's value and writes through to the map. The
3087     * value to return is somewhat arbitrary here. Since we do not
3088     * necessarily track asynchronous changes, the most recent
3089     * "previous" value could be different from what we return (or
3090     * could even have been removed in which case the put will
3091     * re-establish). We do not and cannot guarantee more.
3092     */
3093     public final V setValue(V value) {
3094     if (value == null) throw new NullPointerException();
3095     V v = val;
3096     val = value;
3097     map.put(key, value);
3098     return v;
3099     }
3100     }
3101    
3102 dl 1.146 /**
3103     * Returns exportable snapshot entry for the given key and value
3104     * when write-through can't or shouldn't be used.
3105     */
3106     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3107     return new AbstractMap.SimpleEntry<K,V>(k, v);
3108     }
3109    
3110 dl 1.142 /* ---------------- Serialization Support -------------- */
3111 dl 1.119
3112     /**
3113 dl 1.142 * Stripped-down version of helper class used in previous version,
3114     * declared for the sake of serialization compatibility
3115 dl 1.119 */
3116 dl 1.142 static class Segment<K,V> implements Serializable {
3117     private static final long serialVersionUID = 2249069246763182397L;
3118     final float loadFactor;
3119     Segment(float lf) { this.loadFactor = lf; }
3120     }
3121 dl 1.119
3122 dl 1.142 /**
3123     * Saves the state of the {@code ConcurrentHashMap} instance to a
3124     * stream (i.e., serializes it).
3125     * @param s the stream
3126     * @serialData
3127     * the key (Object) and value (Object)
3128     * for each key-value mapping, followed by a null pair.
3129     * The key-value mappings are emitted in no particular order.
3130     */
3131 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3132     (java.io.ObjectOutputStream s)
3133 dl 1.142 throws java.io.IOException {
3134     if (segments == null) { // for serialization compatibility
3135     segments = (Segment<K,V>[])
3136     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3137     for (int i = 0; i < segments.length; ++i)
3138     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3139     }
3140     s.defaultWriteObject();
3141     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3142 dl 1.151 V v;
3143 dl 1.142 while ((v = it.advance()) != null) {
3144     s.writeObject(it.nextKey);
3145     s.writeObject(v);
3146     }
3147     s.writeObject(null);
3148     s.writeObject(null);
3149     segments = null; // throw away
3150     }
3151 dl 1.119
3152 dl 1.142 /**
3153     * Reconstitutes the instance from a stream (that is, deserializes it).
3154     * @param s the stream
3155     */
3156 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3157     (java.io.ObjectInputStream s)
3158 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3159     s.defaultReadObject();
3160     this.segments = null; // unneeded
3161 dl 1.119
3162 dl 1.142 // Create all nodes, then place in table once size is known
3163     long size = 0L;
3164 dl 1.151 Node<V> p = null;
3165 dl 1.142 for (;;) {
3166     K k = (K) s.readObject();
3167     V v = (V) s.readObject();
3168     if (k != null && v != null) {
3169     int h = spread(k.hashCode());
3170 dl 1.151 p = new Node<V>(h, k, v, p);
3171 dl 1.142 ++size;
3172 dl 1.119 }
3173 dl 1.142 else
3174     break;
3175 dl 1.119 }
3176 dl 1.142 if (p != null) {
3177     boolean init = false;
3178     int n;
3179     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3180     n = MAXIMUM_CAPACITY;
3181     else {
3182     int sz = (int)size;
3183     n = tableSizeFor(sz + (sz >>> 1) + 1);
3184     }
3185     int sc = sizeCtl;
3186     boolean collide = false;
3187     if (n > sc &&
3188 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3189 dl 1.142 try {
3190     if (table == null) {
3191     init = true;
3192 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3193     Node<V>[] tab = (Node<V>[])rt;
3194 dl 1.142 int mask = n - 1;
3195     while (p != null) {
3196     int j = p.hash & mask;
3197 dl 1.151 Node<V> next = p.next;
3198     Node<V> q = p.next = tabAt(tab, j);
3199 dl 1.142 setTabAt(tab, j, p);
3200     if (!collide && q != null && q.hash == p.hash)
3201     collide = true;
3202     p = next;
3203     }
3204     table = tab;
3205 dl 1.149 addCount(size, -1);
3206 dl 1.142 sc = n - (n >>> 2);
3207     }
3208     } finally {
3209     sizeCtl = sc;
3210     }
3211     if (collide) { // rescan and convert to TreeBins
3212 dl 1.151 Node<V>[] tab = table;
3213 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3214     int c = 0;
3215 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3216 dl 1.142 if (++c > TREE_THRESHOLD &&
3217     (e.key instanceof Comparable)) {
3218     replaceWithTreeBin(tab, i, e.key);
3219     break;
3220     }
3221     }
3222     }
3223 dl 1.119 }
3224     }
3225 dl 1.142 if (!init) { // Can only happen if unsafely published.
3226     while (p != null) {
3227 dl 1.151 internalPut((K)p.key, p.val, false);
3228 dl 1.142 p = p.next;
3229     }
3230 dl 1.119 }
3231     }
3232 dl 1.142 }
3233 dl 1.119
3234 dl 1.142 // -------------------------------------------------------
3235    
3236 dl 1.151 // Sequential bulk operations
3237    
3238 dl 1.119 /**
3239 dl 1.137 * Performs the given action for each (key, value).
3240 dl 1.119 *
3241 dl 1.137 * @param action the action
3242 dl 1.119 */
3243 jsr166 1.168 public void forEachSequentially
3244 dl 1.171 (BiConsumer<? super K, ? super V> action) {
3245 dl 1.151 if (action == null) throw new NullPointerException();
3246     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3247     V v;
3248     while ((v = it.advance()) != null)
3249 jsr166 1.168 action.accept(it.nextKey, v);
3250 dl 1.119 }
3251    
3252     /**
3253 dl 1.137 * Performs the given action for each non-null transformation
3254     * of each (key, value).
3255     *
3256     * @param transformer a function returning the transformation
3257 jsr166 1.169 * for an element, or null if there is no transformation (in
3258 jsr166 1.172 * which case the action is not applied)
3259 dl 1.137 * @param action the action
3260 dl 1.119 */
3261 jsr166 1.168 public <U> void forEachSequentially
3262 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3263 dl 1.171 Consumer<? super U> action) {
3264 dl 1.151 if (transformer == null || action == null)
3265     throw new NullPointerException();
3266     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3267     V v; U u;
3268     while ((v = it.advance()) != null) {
3269 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3270 dl 1.153 action.accept(u);
3271 dl 1.151 }
3272 dl 1.137 }
3273    
3274     /**
3275     * Returns a non-null result from applying the given search
3276 dl 1.151 * function on each (key, value), or null if none.
3277 dl 1.137 *
3278     * @param searchFunction a function returning a non-null
3279     * result on success, else null
3280     * @return a non-null result from applying the given search
3281     * function on each (key, value), or null if none
3282     */
3283 jsr166 1.168 public <U> U searchSequentially
3284 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3285 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3286     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3287     V v; U u;
3288     while ((v = it.advance()) != null) {
3289 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3290 dl 1.151 return u;
3291     }
3292     return null;
3293 dl 1.137 }
3294    
3295     /**
3296     * Returns the result of accumulating the given transformation
3297     * of all (key, value) pairs using the given reducer to
3298     * combine values, or null if none.
3299     *
3300     * @param transformer a function returning the transformation
3301 jsr166 1.169 * for an element, or null if there is no transformation (in
3302 jsr166 1.172 * which case it is not combined)
3303 dl 1.137 * @param reducer a commutative associative combining function
3304     * @return the result of accumulating the given transformation
3305     * of all (key, value) pairs
3306     */
3307 jsr166 1.168 public <U> U reduceSequentially
3308 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3309     BiFunction<? super U, ? super U, ? extends U> reducer) {
3310 dl 1.151 if (transformer == null || reducer == null)
3311     throw new NullPointerException();
3312     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3313     U r = null, u; V v;
3314     while ((v = it.advance()) != null) {
3315 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3316 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3317     }
3318     return r;
3319 dl 1.137 }
3320    
3321     /**
3322     * Returns the result of accumulating the given transformation
3323     * of all (key, value) pairs using the given reducer to
3324     * combine values, and the given basis as an identity value.
3325     *
3326     * @param transformer a function returning the transformation
3327     * for an element
3328     * @param basis the identity (initial default value) for the reduction
3329     * @param reducer a commutative associative combining function
3330     * @return the result of accumulating the given transformation
3331     * of all (key, value) pairs
3332     */
3333 jsr166 1.168 public double reduceToDoubleSequentially
3334 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
3335 dl 1.151 double basis,
3336 dl 1.153 DoubleBinaryOperator reducer) {
3337 dl 1.151 if (transformer == null || reducer == null)
3338     throw new NullPointerException();
3339     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3340     double r = basis; V v;
3341     while ((v = it.advance()) != null)
3342 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3343 dl 1.151 return r;
3344 dl 1.137 }
3345 dl 1.119
3346 dl 1.137 /**
3347     * Returns the result of accumulating the given transformation
3348     * of all (key, value) pairs using the given reducer to
3349     * combine values, and the given basis as an identity value.
3350     *
3351     * @param transformer a function returning the transformation
3352     * for an element
3353     * @param basis the identity (initial default value) for the reduction
3354     * @param reducer a commutative associative combining function
3355     * @return the result of accumulating the given transformation
3356     * of all (key, value) pairs
3357     */
3358 jsr166 1.168 public long reduceToLongSequentially
3359 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
3360 dl 1.151 long basis,
3361 dl 1.153 LongBinaryOperator reducer) {
3362 dl 1.151 if (transformer == null || reducer == null)
3363     throw new NullPointerException();
3364     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3365     long r = basis; V v;
3366     while ((v = it.advance()) != null)
3367 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3368 dl 1.151 return r;
3369 dl 1.137 }
3370    
3371     /**
3372     * Returns the result of accumulating the given transformation
3373     * of all (key, value) pairs using the given reducer to
3374     * combine values, and the given basis as an identity value.
3375     *
3376     * @param transformer a function returning the transformation
3377     * for an element
3378     * @param basis the identity (initial default value) for the reduction
3379     * @param reducer a commutative associative combining function
3380     * @return the result of accumulating the given transformation
3381     * of all (key, value) pairs
3382     */
3383 jsr166 1.168 public int reduceToIntSequentially
3384 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
3385 dl 1.151 int basis,
3386 dl 1.153 IntBinaryOperator reducer) {
3387 dl 1.151 if (transformer == null || reducer == null)
3388     throw new NullPointerException();
3389     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3390     int r = basis; V v;
3391     while ((v = it.advance()) != null)
3392 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3393 dl 1.151 return r;
3394 dl 1.137 }
3395    
3396     /**
3397     * Performs the given action for each key.
3398     *
3399     * @param action the action
3400     */
3401 jsr166 1.168 public void forEachKeySequentially
3402 dl 1.171 (Consumer<? super K> action) {
3403 dl 1.151 if (action == null) throw new NullPointerException();
3404     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3405     while (it.advance() != null)
3406 jsr166 1.168 action.accept(it.nextKey);
3407 dl 1.137 }
3408 dl 1.119
3409 dl 1.137 /**
3410     * Performs the given action for each non-null transformation
3411     * of each key.
3412     *
3413     * @param transformer a function returning the transformation
3414 jsr166 1.169 * for an element, or null if there is no transformation (in
3415 jsr166 1.172 * which case the action is not applied)
3416 dl 1.137 * @param action the action
3417     */
3418 jsr166 1.168 public <U> void forEachKeySequentially
3419 dl 1.153 (Function<? super K, ? extends U> transformer,
3420 dl 1.171 Consumer<? super U> action) {
3421 dl 1.151 if (transformer == null || action == null)
3422     throw new NullPointerException();
3423     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3424     U u;
3425     while (it.advance() != null) {
3426 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3427 dl 1.153 action.accept(u);
3428 dl 1.151 }
3429 dl 1.137 ForkJoinTasks.forEachKey
3430     (this, transformer, action).invoke();
3431     }
3432 dl 1.119
3433 dl 1.137 /**
3434     * Returns a non-null result from applying the given search
3435 dl 1.151 * function on each key, or null if none.
3436 dl 1.137 *
3437     * @param searchFunction a function returning a non-null
3438     * result on success, else null
3439     * @return a non-null result from applying the given search
3440     * function on each key, or null if none
3441     */
3442 jsr166 1.168 public <U> U searchKeysSequentially
3443 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3444 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3445     U u;
3446     while (it.advance() != null) {
3447 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey)) != null)
3448 dl 1.151 return u;
3449     }
3450     return null;
3451 dl 1.137 }
3452 dl 1.119
3453 dl 1.137 /**
3454     * Returns the result of accumulating all keys using the given
3455     * reducer to combine values, or null if none.
3456     *
3457     * @param reducer a commutative associative combining function
3458     * @return the result of accumulating all keys using the given
3459     * reducer to combine values, or null if none
3460     */
3461 jsr166 1.168 public K reduceKeysSequentially
3462 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3463 dl 1.151 if (reducer == null) throw new NullPointerException();
3464     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3465     K r = null;
3466     while (it.advance() != null) {
3467 jsr166 1.168 K u = it.nextKey;
3468 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3469     }
3470     return r;
3471 dl 1.137 }
3472 dl 1.119
3473 dl 1.137 /**
3474     * Returns the result of accumulating the given transformation
3475     * of all keys using the given reducer to combine values, or
3476     * null if none.
3477     *
3478     * @param transformer a function returning the transformation
3479 jsr166 1.169 * for an element, or null if there is no transformation (in
3480 jsr166 1.172 * which case it is not combined)
3481 dl 1.137 * @param reducer a commutative associative combining function
3482     * @return the result of accumulating the given transformation
3483     * of all keys
3484     */
3485 jsr166 1.168 public <U> U reduceKeysSequentially
3486 dl 1.153 (Function<? super K, ? extends U> transformer,
3487     BiFunction<? super U, ? super U, ? extends U> reducer) {
3488 dl 1.151 if (transformer == null || reducer == null)
3489     throw new NullPointerException();
3490     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3491     U r = null, u;
3492     while (it.advance() != null) {
3493 jsr166 1.168 if ((u = transformer.apply(it.nextKey)) != null)
3494 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3495     }
3496     return r;
3497 dl 1.137 }
3498 dl 1.119
3499 dl 1.137 /**
3500     * Returns the result of accumulating the given transformation
3501     * of all keys using the given reducer to combine values, and
3502     * the given basis as an identity value.
3503     *
3504     * @param transformer a function returning the transformation
3505     * for an element
3506     * @param basis the identity (initial default value) for the reduction
3507     * @param reducer a commutative associative combining function
3508 jsr166 1.157 * @return the result of accumulating the given transformation
3509 dl 1.137 * of all keys
3510     */
3511 jsr166 1.168 public double reduceKeysToDoubleSequentially
3512 dl 1.171 (ToDoubleFunction<? super K> transformer,
3513 dl 1.151 double basis,
3514 dl 1.153 DoubleBinaryOperator reducer) {
3515 dl 1.151 if (transformer == null || reducer == null)
3516     throw new NullPointerException();
3517     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3518     double r = basis;
3519     while (it.advance() != null)
3520 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3521 dl 1.151 return r;
3522 dl 1.137 }
3523 dl 1.119
3524 dl 1.137 /**
3525     * Returns the result of accumulating the given transformation
3526     * of all keys using the given reducer to combine values, and
3527     * the given basis as an identity value.
3528     *
3529     * @param transformer a function returning the transformation
3530     * for an element
3531     * @param basis the identity (initial default value) for the reduction
3532     * @param reducer a commutative associative combining function
3533     * @return the result of accumulating the given transformation
3534     * of all keys
3535     */
3536 jsr166 1.168 public long reduceKeysToLongSequentially
3537 dl 1.171 (ToLongFunction<? super K> transformer,
3538 dl 1.151 long basis,
3539 dl 1.153 LongBinaryOperator reducer) {
3540 dl 1.151 if (transformer == null || reducer == null)
3541     throw new NullPointerException();
3542     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3543     long r = basis;
3544     while (it.advance() != null)
3545 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3546 dl 1.151 return r;
3547 dl 1.137 }
3548 dl 1.119
3549 dl 1.137 /**
3550     * Returns the result of accumulating the given transformation
3551     * of all keys using the given reducer to combine values, and
3552     * the given basis as an identity value.
3553     *
3554     * @param transformer a function returning the transformation
3555     * for an element
3556     * @param basis the identity (initial default value) for the reduction
3557     * @param reducer a commutative associative combining function
3558     * @return the result of accumulating the given transformation
3559     * of all keys
3560     */
3561 jsr166 1.168 public int reduceKeysToIntSequentially
3562 dl 1.171 (ToIntFunction<? super K> transformer,
3563 dl 1.151 int basis,
3564 dl 1.153 IntBinaryOperator reducer) {
3565 dl 1.151 if (transformer == null || reducer == null)
3566     throw new NullPointerException();
3567     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3568     int r = basis;
3569     while (it.advance() != null)
3570 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3571 dl 1.151 return r;
3572 dl 1.137 }
3573 dl 1.119
3574 dl 1.137 /**
3575     * Performs the given action for each value.
3576     *
3577     * @param action the action
3578     */
3579 dl 1.171 public void forEachValueSequentially(Consumer<? super V> action) {
3580 dl 1.151 if (action == null) throw new NullPointerException();
3581     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582     V v;
3583     while ((v = it.advance()) != null)
3584 dl 1.153 action.accept(v);
3585 dl 1.137 }
3586 dl 1.119
3587 dl 1.137 /**
3588     * Performs the given action for each non-null transformation
3589     * of each value.
3590     *
3591     * @param transformer a function returning the transformation
3592 jsr166 1.169 * for an element, or null if there is no transformation (in
3593 jsr166 1.172 * which case the action is not applied)
3594 jsr166 1.179 * @param action the action
3595 dl 1.137 */
3596 dl 1.151 public <U> void forEachValueSequentially
3597 dl 1.153 (Function<? super V, ? extends U> transformer,
3598 dl 1.171 Consumer<? super U> action) {
3599 dl 1.151 if (transformer == null || action == null)
3600     throw new NullPointerException();
3601     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3602     V v; U u;
3603     while ((v = it.advance()) != null) {
3604     if ((u = transformer.apply(v)) != null)
3605 dl 1.153 action.accept(u);
3606 dl 1.151 }
3607 dl 1.137 }
3608 dl 1.119
3609 dl 1.137 /**
3610     * Returns a non-null result from applying the given search
3611 dl 1.151 * function on each value, or null if none.
3612 dl 1.137 *
3613     * @param searchFunction a function returning a non-null
3614     * result on success, else null
3615     * @return a non-null result from applying the given search
3616     * function on each value, or null if none
3617     */
3618 dl 1.151 public <U> U searchValuesSequentially
3619 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3620 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3621     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3622     V v; U u;
3623     while ((v = it.advance()) != null) {
3624     if ((u = searchFunction.apply(v)) != null)
3625     return u;
3626     }
3627     return null;
3628 dl 1.137 }
3629 dl 1.119
3630 dl 1.137 /**
3631     * Returns the result of accumulating all values using the
3632     * given reducer to combine values, or null if none.
3633     *
3634     * @param reducer a commutative associative combining function
3635 jsr166 1.157 * @return the result of accumulating all values
3636 dl 1.137 */
3637 dl 1.151 public V reduceValuesSequentially
3638 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3639 dl 1.151 if (reducer == null) throw new NullPointerException();
3640     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3641     V r = null; V v;
3642     while ((v = it.advance()) != null)
3643     r = (r == null) ? v : reducer.apply(r, v);
3644     return r;
3645 dl 1.137 }
3646 dl 1.119
3647 dl 1.137 /**
3648     * Returns the result of accumulating the given transformation
3649     * of all values using the given reducer to combine values, or
3650     * null if none.
3651     *
3652     * @param transformer a function returning the transformation
3653 jsr166 1.169 * for an element, or null if there is no transformation (in
3654 jsr166 1.172 * which case it is not combined)
3655 dl 1.137 * @param reducer a commutative associative combining function
3656     * @return the result of accumulating the given transformation
3657     * of all values
3658     */
3659 dl 1.151 public <U> U reduceValuesSequentially
3660 dl 1.153 (Function<? super V, ? extends U> transformer,
3661     BiFunction<? super U, ? super U, ? extends U> reducer) {
3662 dl 1.151 if (transformer == null || reducer == null)
3663     throw new NullPointerException();
3664     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3665     U r = null, u; V v;
3666     while ((v = it.advance()) != null) {
3667     if ((u = transformer.apply(v)) != null)
3668     r = (r == null) ? u : reducer.apply(r, u);
3669     }
3670     return r;
3671 dl 1.137 }
3672 dl 1.119
3673 dl 1.137 /**
3674     * Returns the result of accumulating the given transformation
3675     * of all values using the given reducer to combine values,
3676     * and the given basis as an identity value.
3677     *
3678     * @param transformer a function returning the transformation
3679     * for an element
3680     * @param basis the identity (initial default value) for the reduction
3681     * @param reducer a commutative associative combining function
3682     * @return the result of accumulating the given transformation
3683     * of all values
3684     */
3685 dl 1.151 public double reduceValuesToDoubleSequentially
3686 dl 1.171 (ToDoubleFunction<? super V> transformer,
3687 dl 1.151 double basis,
3688 dl 1.153 DoubleBinaryOperator reducer) {
3689 dl 1.151 if (transformer == null || reducer == null)
3690     throw new NullPointerException();
3691     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3692     double r = basis; V v;
3693     while ((v = it.advance()) != null)
3694 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3695 dl 1.151 return r;
3696 dl 1.137 }
3697 dl 1.119
3698 dl 1.137 /**
3699     * Returns the result of accumulating the given transformation
3700     * of all values using the given reducer to combine values,
3701     * and the given basis as an identity value.
3702     *
3703     * @param transformer a function returning the transformation
3704     * for an element
3705     * @param basis the identity (initial default value) for the reduction
3706     * @param reducer a commutative associative combining function
3707     * @return the result of accumulating the given transformation
3708     * of all values
3709     */
3710 dl 1.151 public long reduceValuesToLongSequentially
3711 dl 1.171 (ToLongFunction<? super V> transformer,
3712 dl 1.151 long basis,
3713 dl 1.153 LongBinaryOperator reducer) {
3714 dl 1.151 if (transformer == null || reducer == null)
3715     throw new NullPointerException();
3716     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3717     long r = basis; V v;
3718     while ((v = it.advance()) != null)
3719 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3720 dl 1.151 return r;
3721 dl 1.137 }
3722 dl 1.119
3723 dl 1.137 /**
3724     * Returns the result of accumulating the given transformation
3725     * of all values using the given reducer to combine values,
3726     * and the given basis as an identity value.
3727     *
3728     * @param transformer a function returning the transformation
3729     * for an element
3730     * @param basis the identity (initial default value) for the reduction
3731     * @param reducer a commutative associative combining function
3732     * @return the result of accumulating the given transformation
3733     * of all values
3734     */
3735 dl 1.151 public int reduceValuesToIntSequentially
3736 dl 1.171 (ToIntFunction<? super V> transformer,
3737 dl 1.151 int basis,
3738 dl 1.153 IntBinaryOperator reducer) {
3739 dl 1.151 if (transformer == null || reducer == null)
3740     throw new NullPointerException();
3741     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3742     int r = basis; V v;
3743     while ((v = it.advance()) != null)
3744 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3745 dl 1.151 return r;
3746 dl 1.137 }
3747 dl 1.119
3748 dl 1.137 /**
3749     * Performs the given action for each entry.
3750     *
3751     * @param action the action
3752     */
3753 jsr166 1.168 public void forEachEntrySequentially
3754 dl 1.171 (Consumer<? super Map.Entry<K,V>> action) {
3755 dl 1.151 if (action == null) throw new NullPointerException();
3756     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757     V v;
3758     while ((v = it.advance()) != null)
3759 jsr166 1.168 action.accept(entryFor(it.nextKey, v));
3760 dl 1.137 }
3761 dl 1.119
3762 dl 1.137 /**
3763     * Performs the given action for each non-null transformation
3764     * of each entry.
3765     *
3766     * @param transformer a function returning the transformation
3767 jsr166 1.169 * for an element, or null if there is no transformation (in
3768 jsr166 1.172 * which case the action is not applied)
3769 dl 1.137 * @param action the action
3770     */
3771 jsr166 1.168 public <U> void forEachEntrySequentially
3772 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3773 dl 1.171 Consumer<? super U> action) {
3774 dl 1.151 if (transformer == null || action == null)
3775     throw new NullPointerException();
3776     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3777     V v; U u;
3778     while ((v = it.advance()) != null) {
3779 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3780 dl 1.153 action.accept(u);
3781 dl 1.151 }
3782 dl 1.137 }
3783 dl 1.119
3784 dl 1.137 /**
3785     * Returns a non-null result from applying the given search
3786 dl 1.151 * function on each entry, or null if none.
3787 dl 1.137 *
3788     * @param searchFunction a function returning a non-null
3789     * result on success, else null
3790     * @return a non-null result from applying the given search
3791     * function on each entry, or null if none
3792     */
3793 jsr166 1.168 public <U> U searchEntriesSequentially
3794 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3795 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3796     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3797     V v; U u;
3798     while ((v = it.advance()) != null) {
3799 jsr166 1.168 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3800 dl 1.151 return u;
3801     }
3802     return null;
3803 dl 1.137 }
3804 dl 1.119
3805 dl 1.137 /**
3806     * Returns the result of accumulating all entries using the
3807     * given reducer to combine values, or null if none.
3808     *
3809     * @param reducer a commutative associative combining function
3810     * @return the result of accumulating all entries
3811     */
3812 jsr166 1.168 public Map.Entry<K,V> reduceEntriesSequentially
3813 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3814 dl 1.151 if (reducer == null) throw new NullPointerException();
3815     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3816     Map.Entry<K,V> r = null; V v;
3817     while ((v = it.advance()) != null) {
3818 jsr166 1.168 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3819 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3820     }
3821     return r;
3822 dl 1.137 }
3823 dl 1.119
3824 dl 1.137 /**
3825     * Returns the result of accumulating the given transformation
3826     * of all entries using the given reducer to combine values,
3827     * or null if none.
3828     *
3829     * @param transformer a function returning the transformation
3830 jsr166 1.169 * for an element, or null if there is no transformation (in
3831 jsr166 1.172 * which case it is not combined)
3832 dl 1.137 * @param reducer a commutative associative combining function
3833     * @return the result of accumulating the given transformation
3834     * of all entries
3835     */
3836 jsr166 1.168 public <U> U reduceEntriesSequentially
3837 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3838     BiFunction<? super U, ? super U, ? extends U> reducer) {
3839 dl 1.151 if (transformer == null || reducer == null)
3840     throw new NullPointerException();
3841     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3842     U r = null, u; V v;
3843     while ((v = it.advance()) != null) {
3844 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3845 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3846     }
3847     return r;
3848 dl 1.137 }
3849 dl 1.119
3850 dl 1.137 /**
3851     * Returns the result of accumulating the given transformation
3852     * of all entries using the given reducer to combine values,
3853     * and the given basis as an identity value.
3854     *
3855     * @param transformer a function returning the transformation
3856     * for an element
3857     * @param basis the identity (initial default value) for the reduction
3858     * @param reducer a commutative associative combining function
3859     * @return the result of accumulating the given transformation
3860     * of all entries
3861     */
3862 jsr166 1.168 public double reduceEntriesToDoubleSequentially
3863 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3864 dl 1.151 double basis,
3865 dl 1.153 DoubleBinaryOperator reducer) {
3866 dl 1.151 if (transformer == null || reducer == null)
3867     throw new NullPointerException();
3868     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3869     double r = basis; V v;
3870     while ((v = it.advance()) != null)
3871 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3872 dl 1.151 return r;
3873 dl 1.137 }
3874 dl 1.119
3875 dl 1.137 /**
3876     * Returns the result of accumulating the given transformation
3877     * of all entries using the given reducer to combine values,
3878     * and the given basis as an identity value.
3879     *
3880     * @param transformer a function returning the transformation
3881     * for an element
3882     * @param basis the identity (initial default value) for the reduction
3883     * @param reducer a commutative associative combining function
3884 jsr166 1.157 * @return the result of accumulating the given transformation
3885 dl 1.137 * of all entries
3886     */
3887 jsr166 1.168 public long reduceEntriesToLongSequentially
3888 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
3889 dl 1.151 long basis,
3890 dl 1.153 LongBinaryOperator reducer) {
3891 dl 1.151 if (transformer == null || reducer == null)
3892     throw new NullPointerException();
3893     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3894     long r = basis; V v;
3895     while ((v = it.advance()) != null)
3896 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3897 dl 1.151 return r;
3898 dl 1.137 }
3899 dl 1.119
3900 dl 1.137 /**
3901     * Returns the result of accumulating the given transformation
3902     * of all entries using the given reducer to combine values,
3903     * and the given basis as an identity value.
3904     *
3905     * @param transformer a function returning the transformation
3906     * for an element
3907     * @param basis the identity (initial default value) for the reduction
3908     * @param reducer a commutative associative combining function
3909     * @return the result of accumulating the given transformation
3910     * of all entries
3911     */
3912 jsr166 1.168 public int reduceEntriesToIntSequentially
3913 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
3914 dl 1.151 int basis,
3915 dl 1.153 IntBinaryOperator reducer) {
3916 dl 1.151 if (transformer == null || reducer == null)
3917     throw new NullPointerException();
3918     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3919     int r = basis; V v;
3920     while ((v = it.advance()) != null)
3921 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3922 dl 1.151 return r;
3923 dl 1.119 }
3924    
3925 dl 1.151 // Parallel bulk operations
3926 dl 1.142
3927     /**
3928 dl 1.151 * Performs the given action for each (key, value).
3929     *
3930     * @param action the action
3931 dl 1.142 */
3932 dl 1.171 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3933 dl 1.151 ForkJoinTasks.forEach
3934     (this, action).invoke();
3935     }
3936 dl 1.142
3937 dl 1.151 /**
3938     * Performs the given action for each non-null transformation
3939     * of each (key, value).
3940     *
3941     * @param transformer a function returning the transformation
3942 jsr166 1.169 * for an element, or null if there is no transformation (in
3943 jsr166 1.172 * which case the action is not applied)
3944 dl 1.151 * @param action the action
3945     */
3946     public <U> void forEachInParallel
3947 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3948 dl 1.171 Consumer<? super U> action) {
3949 dl 1.151 ForkJoinTasks.forEach
3950     (this, transformer, action).invoke();
3951     }
3952 dl 1.142
3953 dl 1.151 /**
3954     * Returns a non-null result from applying the given search
3955     * function on each (key, value), or null if none. Upon
3956     * success, further element processing is suppressed and the
3957     * results of any other parallel invocations of the search
3958     * function are ignored.
3959     *
3960     * @param searchFunction a function returning a non-null
3961     * result on success, else null
3962     * @return a non-null result from applying the given search
3963     * function on each (key, value), or null if none
3964     */
3965     public <U> U searchInParallel
3966 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3967 dl 1.151 return ForkJoinTasks.search
3968     (this, searchFunction).invoke();
3969     }
3970 dl 1.142
3971 dl 1.151 /**
3972     * Returns the result of accumulating the given transformation
3973     * of all (key, value) pairs using the given reducer to
3974     * combine values, or null if none.
3975     *
3976     * @param transformer a function returning the transformation
3977 jsr166 1.169 * for an element, or null if there is no transformation (in
3978 jsr166 1.172 * which case it is not combined)
3979 dl 1.151 * @param reducer a commutative associative combining function
3980     * @return the result of accumulating the given transformation
3981     * of all (key, value) pairs
3982     */
3983     public <U> U reduceInParallel
3984 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3985     BiFunction<? super U, ? super U, ? extends U> reducer) {
3986 dl 1.151 return ForkJoinTasks.reduce
3987     (this, transformer, reducer).invoke();
3988     }
3989 dl 1.142
3990 dl 1.151 /**
3991     * Returns the result of accumulating the given transformation
3992     * of all (key, value) pairs using the given reducer to
3993     * combine values, and the given basis as an identity value.
3994     *
3995     * @param transformer a function returning the transformation
3996     * for an element
3997     * @param basis the identity (initial default value) for the reduction
3998     * @param reducer a commutative associative combining function
3999     * @return the result of accumulating the given transformation
4000     * of all (key, value) pairs
4001     */
4002     public double reduceToDoubleInParallel
4003 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
4004 dl 1.151 double basis,
4005 dl 1.153 DoubleBinaryOperator reducer) {
4006 dl 1.151 return ForkJoinTasks.reduceToDouble
4007     (this, transformer, basis, reducer).invoke();
4008     }
4009    
4010     /**
4011     * Returns the result of accumulating the given transformation
4012     * of all (key, value) pairs using the given reducer to
4013     * combine values, and the given basis as an identity value.
4014     *
4015     * @param transformer a function returning the transformation
4016     * for an element
4017     * @param basis the identity (initial default value) for the reduction
4018     * @param reducer a commutative associative combining function
4019     * @return the result of accumulating the given transformation
4020     * of all (key, value) pairs
4021     */
4022     public long reduceToLongInParallel
4023 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
4024 dl 1.151 long basis,
4025 dl 1.153 LongBinaryOperator reducer) {
4026 dl 1.151 return ForkJoinTasks.reduceToLong
4027     (this, transformer, basis, reducer).invoke();
4028     }
4029    
4030     /**
4031     * Returns the result of accumulating the given transformation
4032     * of all (key, value) pairs using the given reducer to
4033     * combine values, and the given basis as an identity value.
4034     *
4035     * @param transformer a function returning the transformation
4036     * for an element
4037     * @param basis the identity (initial default value) for the reduction
4038     * @param reducer a commutative associative combining function
4039     * @return the result of accumulating the given transformation
4040     * of all (key, value) pairs
4041     */
4042     public int reduceToIntInParallel
4043 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
4044 dl 1.151 int basis,
4045 dl 1.153 IntBinaryOperator reducer) {
4046 dl 1.151 return ForkJoinTasks.reduceToInt
4047     (this, transformer, basis, reducer).invoke();
4048     }
4049    
4050     /**
4051     * Performs the given action for each key.
4052     *
4053     * @param action the action
4054     */
4055 dl 1.171 public void forEachKeyInParallel(Consumer<? super K> action) {
4056 dl 1.151 ForkJoinTasks.forEachKey
4057     (this, action).invoke();
4058     }
4059    
4060     /**
4061     * Performs the given action for each non-null transformation
4062     * of each key.
4063     *
4064     * @param transformer a function returning the transformation
4065 jsr166 1.169 * for an element, or null if there is no transformation (in
4066 jsr166 1.172 * which case the action is not applied)
4067 dl 1.151 * @param action the action
4068     */
4069     public <U> void forEachKeyInParallel
4070 dl 1.153 (Function<? super K, ? extends U> transformer,
4071 dl 1.171 Consumer<? super U> action) {
4072 dl 1.151 ForkJoinTasks.forEachKey
4073     (this, transformer, action).invoke();
4074     }
4075    
4076     /**
4077     * Returns a non-null result from applying the given search
4078     * function on each key, or null if none. Upon success,
4079     * further element processing is suppressed and the results of
4080     * any other parallel invocations of the search function are
4081     * ignored.
4082     *
4083     * @param searchFunction a function returning a non-null
4084     * result on success, else null
4085     * @return a non-null result from applying the given search
4086     * function on each key, or null if none
4087     */
4088     public <U> U searchKeysInParallel
4089 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4090 dl 1.151 return ForkJoinTasks.searchKeys
4091     (this, searchFunction).invoke();
4092     }
4093    
4094     /**
4095     * Returns the result of accumulating all keys using the given
4096     * reducer to combine values, or null if none.
4097     *
4098     * @param reducer a commutative associative combining function
4099     * @return the result of accumulating all keys using the given
4100     * reducer to combine values, or null if none
4101     */
4102     public K reduceKeysInParallel
4103 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4104 dl 1.151 return ForkJoinTasks.reduceKeys
4105     (this, reducer).invoke();
4106     }
4107    
4108     /**
4109     * Returns the result of accumulating the given transformation
4110     * of all keys using the given reducer to combine values, or
4111     * null if none.
4112     *
4113     * @param transformer a function returning the transformation
4114 jsr166 1.169 * for an element, or null if there is no transformation (in
4115 jsr166 1.172 * which case it is not combined)
4116 dl 1.151 * @param reducer a commutative associative combining function
4117     * @return the result of accumulating the given transformation
4118     * of all keys
4119     */
4120     public <U> U reduceKeysInParallel
4121 dl 1.153 (Function<? super K, ? extends U> transformer,
4122     BiFunction<? super U, ? super U, ? extends U> reducer) {
4123 dl 1.151 return ForkJoinTasks.reduceKeys
4124     (this, transformer, reducer).invoke();
4125     }
4126    
4127     /**
4128     * Returns the result of accumulating the given transformation
4129     * of all keys using the given reducer to combine values, and
4130     * the given basis as an identity value.
4131     *
4132     * @param transformer a function returning the transformation
4133     * for an element
4134     * @param basis the identity (initial default value) for the reduction
4135     * @param reducer a commutative associative combining function
4136 jsr166 1.157 * @return the result of accumulating the given transformation
4137 dl 1.151 * of all keys
4138     */
4139     public double reduceKeysToDoubleInParallel
4140 dl 1.171 (ToDoubleFunction<? super K> transformer,
4141 dl 1.151 double basis,
4142 dl 1.153 DoubleBinaryOperator reducer) {
4143 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4144     (this, transformer, basis, reducer).invoke();
4145     }
4146    
4147     /**
4148     * Returns the result of accumulating the given transformation
4149     * of all keys using the given reducer to combine values, and
4150     * the given basis as an identity value.
4151     *
4152     * @param transformer a function returning the transformation
4153     * for an element
4154     * @param basis the identity (initial default value) for the reduction
4155     * @param reducer a commutative associative combining function
4156     * @return the result of accumulating the given transformation
4157     * of all keys
4158     */
4159     public long reduceKeysToLongInParallel
4160 dl 1.171 (ToLongFunction<? super K> transformer,
4161 dl 1.151 long basis,
4162 dl 1.153 LongBinaryOperator reducer) {
4163 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4164     (this, transformer, basis, reducer).invoke();
4165     }
4166    
4167     /**
4168     * Returns the result of accumulating the given transformation
4169     * of all keys using the given reducer to combine values, and
4170     * the given basis as an identity value.
4171     *
4172     * @param transformer a function returning the transformation
4173     * for an element
4174     * @param basis the identity (initial default value) for the reduction
4175     * @param reducer a commutative associative combining function
4176     * @return the result of accumulating the given transformation
4177     * of all keys
4178     */
4179     public int reduceKeysToIntInParallel
4180 dl 1.171 (ToIntFunction<? super K> transformer,
4181 dl 1.151 int basis,
4182 dl 1.153 IntBinaryOperator reducer) {
4183 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4184     (this, transformer, basis, reducer).invoke();
4185     }
4186    
4187     /**
4188     * Performs the given action for each value.
4189     *
4190     * @param action the action
4191     */
4192 dl 1.171 public void forEachValueInParallel(Consumer<? super V> action) {
4193 dl 1.151 ForkJoinTasks.forEachValue
4194     (this, action).invoke();
4195     }
4196    
4197     /**
4198     * Performs the given action for each non-null transformation
4199     * of each value.
4200     *
4201     * @param transformer a function returning the transformation
4202 jsr166 1.169 * for an element, or null if there is no transformation (in
4203 jsr166 1.172 * which case the action is not applied)
4204 jsr166 1.179 * @param action the action
4205 dl 1.151 */
4206     public <U> void forEachValueInParallel
4207 dl 1.153 (Function<? super V, ? extends U> transformer,
4208 dl 1.171 Consumer<? super U> action) {
4209 dl 1.151 ForkJoinTasks.forEachValue
4210     (this, transformer, action).invoke();
4211     }
4212    
4213     /**
4214     * Returns a non-null result from applying the given search
4215     * function on each value, or null if none. Upon success,
4216     * further element processing is suppressed and the results of
4217     * any other parallel invocations of the search function are
4218     * ignored.
4219     *
4220     * @param searchFunction a function returning a non-null
4221     * result on success, else null
4222     * @return a non-null result from applying the given search
4223     * function on each value, or null if none
4224     */
4225     public <U> U searchValuesInParallel
4226 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4227 dl 1.151 return ForkJoinTasks.searchValues
4228     (this, searchFunction).invoke();
4229     }
4230    
4231     /**
4232     * Returns the result of accumulating all values using the
4233     * given reducer to combine values, or null if none.
4234     *
4235     * @param reducer a commutative associative combining function
4236 jsr166 1.157 * @return the result of accumulating all values
4237 dl 1.151 */
4238     public V reduceValuesInParallel
4239 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4240 dl 1.151 return ForkJoinTasks.reduceValues
4241     (this, reducer).invoke();
4242     }
4243    
4244     /**
4245     * Returns the result of accumulating the given transformation
4246     * of all values using the given reducer to combine values, or
4247     * null if none.
4248     *
4249     * @param transformer a function returning the transformation
4250 jsr166 1.169 * for an element, or null if there is no transformation (in
4251 jsr166 1.172 * which case it is not combined)
4252 dl 1.151 * @param reducer a commutative associative combining function
4253     * @return the result of accumulating the given transformation
4254     * of all values
4255     */
4256     public <U> U reduceValuesInParallel
4257 dl 1.153 (Function<? super V, ? extends U> transformer,
4258     BiFunction<? super U, ? super U, ? extends U> reducer) {
4259 dl 1.151 return ForkJoinTasks.reduceValues
4260     (this, transformer, reducer).invoke();
4261     }
4262    
4263     /**
4264     * Returns the result of accumulating the given transformation
4265     * of all values using the given reducer to combine values,
4266     * and the given basis as an identity value.
4267     *
4268     * @param transformer a function returning the transformation
4269     * for an element
4270     * @param basis the identity (initial default value) for the reduction
4271     * @param reducer a commutative associative combining function
4272     * @return the result of accumulating the given transformation
4273     * of all values
4274     */
4275     public double reduceValuesToDoubleInParallel
4276 dl 1.171 (ToDoubleFunction<? super V> transformer,
4277 dl 1.151 double basis,
4278 dl 1.153 DoubleBinaryOperator reducer) {
4279 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4280     (this, transformer, basis, reducer).invoke();
4281     }
4282    
4283     /**
4284     * Returns the result of accumulating the given transformation
4285     * of all values using the given reducer to combine values,
4286     * and the given basis as an identity value.
4287     *
4288     * @param transformer a function returning the transformation
4289     * for an element
4290     * @param basis the identity (initial default value) for the reduction
4291     * @param reducer a commutative associative combining function
4292     * @return the result of accumulating the given transformation
4293     * of all values
4294     */
4295     public long reduceValuesToLongInParallel
4296 dl 1.171 (ToLongFunction<? super V> transformer,
4297 dl 1.151 long basis,
4298 dl 1.153 LongBinaryOperator reducer) {
4299 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4300     (this, transformer, basis, reducer).invoke();
4301     }
4302    
4303     /**
4304     * Returns the result of accumulating the given transformation
4305     * of all values using the given reducer to combine values,
4306     * and the given basis as an identity value.
4307     *
4308     * @param transformer a function returning the transformation
4309     * for an element
4310     * @param basis the identity (initial default value) for the reduction
4311     * @param reducer a commutative associative combining function
4312     * @return the result of accumulating the given transformation
4313     * of all values
4314     */
4315     public int reduceValuesToIntInParallel
4316 dl 1.171 (ToIntFunction<? super V> transformer,
4317 dl 1.151 int basis,
4318 dl 1.153 IntBinaryOperator reducer) {
4319 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4320     (this, transformer, basis, reducer).invoke();
4321     }
4322    
4323     /**
4324     * Performs the given action for each entry.
4325     *
4326     * @param action the action
4327     */
4328 dl 1.171 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4329 dl 1.151 ForkJoinTasks.forEachEntry
4330     (this, action).invoke();
4331     }
4332    
4333     /**
4334     * Performs the given action for each non-null transformation
4335     * of each entry.
4336     *
4337     * @param transformer a function returning the transformation
4338 jsr166 1.169 * for an element, or null if there is no transformation (in
4339 jsr166 1.172 * which case the action is not applied)
4340 dl 1.151 * @param action the action
4341     */
4342     public <U> void forEachEntryInParallel
4343 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4344 dl 1.171 Consumer<? super U> action) {
4345 dl 1.151 ForkJoinTasks.forEachEntry
4346     (this, transformer, action).invoke();
4347     }
4348    
4349     /**
4350     * Returns a non-null result from applying the given search
4351     * function on each entry, or null if none. Upon success,
4352     * further element processing is suppressed and the results of
4353     * any other parallel invocations of the search function are
4354     * ignored.
4355     *
4356     * @param searchFunction a function returning a non-null
4357     * result on success, else null
4358     * @return a non-null result from applying the given search
4359     * function on each entry, or null if none
4360     */
4361     public <U> U searchEntriesInParallel
4362 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4363 dl 1.151 return ForkJoinTasks.searchEntries
4364     (this, searchFunction).invoke();
4365     }
4366    
4367     /**
4368     * Returns the result of accumulating all entries using the
4369     * given reducer to combine values, or null if none.
4370     *
4371     * @param reducer a commutative associative combining function
4372     * @return the result of accumulating all entries
4373     */
4374     public Map.Entry<K,V> reduceEntriesInParallel
4375 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4376 dl 1.151 return ForkJoinTasks.reduceEntries
4377     (this, reducer).invoke();
4378     }
4379    
4380     /**
4381     * Returns the result of accumulating the given transformation
4382     * of all entries using the given reducer to combine values,
4383     * or null if none.
4384     *
4385     * @param transformer a function returning the transformation
4386 jsr166 1.169 * for an element, or null if there is no transformation (in
4387 jsr166 1.172 * which case it is not combined)
4388 dl 1.151 * @param reducer a commutative associative combining function
4389     * @return the result of accumulating the given transformation
4390     * of all entries
4391     */
4392     public <U> U reduceEntriesInParallel
4393 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4394     BiFunction<? super U, ? super U, ? extends U> reducer) {
4395 dl 1.151 return ForkJoinTasks.reduceEntries
4396     (this, transformer, reducer).invoke();
4397     }
4398    
4399     /**
4400     * Returns the result of accumulating the given transformation
4401     * of all entries using the given reducer to combine values,
4402     * and the given basis as an identity value.
4403     *
4404     * @param transformer a function returning the transformation
4405     * for an element
4406     * @param basis the identity (initial default value) for the reduction
4407     * @param reducer a commutative associative combining function
4408     * @return the result of accumulating the given transformation
4409     * of all entries
4410     */
4411     public double reduceEntriesToDoubleInParallel
4412 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4413 dl 1.151 double basis,
4414 dl 1.153 DoubleBinaryOperator reducer) {
4415 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4416     (this, transformer, basis, reducer).invoke();
4417     }
4418    
4419     /**
4420     * Returns the result of accumulating the given transformation
4421     * of all entries using the given reducer to combine values,
4422     * and the given basis as an identity value.
4423     *
4424     * @param transformer a function returning the transformation
4425     * for an element
4426     * @param basis the identity (initial default value) for the reduction
4427     * @param reducer a commutative associative combining function
4428 jsr166 1.157 * @return the result of accumulating the given transformation
4429 dl 1.151 * of all entries
4430     */
4431     public long reduceEntriesToLongInParallel
4432 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
4433 dl 1.151 long basis,
4434 dl 1.153 LongBinaryOperator reducer) {
4435 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4436     (this, transformer, basis, reducer).invoke();
4437     }
4438    
4439     /**
4440     * Returns the result of accumulating the given transformation
4441     * of all entries using the given reducer to combine values,
4442     * and the given basis as an identity value.
4443     *
4444     * @param transformer a function returning the transformation
4445     * for an element
4446     * @param basis the identity (initial default value) for the reduction
4447     * @param reducer a commutative associative combining function
4448     * @return the result of accumulating the given transformation
4449     * of all entries
4450     */
4451     public int reduceEntriesToIntInParallel
4452 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
4453 dl 1.151 int basis,
4454 dl 1.153 IntBinaryOperator reducer) {
4455 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4456     (this, transformer, basis, reducer).invoke();
4457     }
4458    
4459    
4460     /* ----------------Views -------------- */
4461    
4462     /**
4463     * Base class for views.
4464     */
4465 jsr166 1.184 abstract static class CHMCollectionView<K, V, E>
4466     implements Collection<E>, java.io.Serializable {
4467 dl 1.163 private static final long serialVersionUID = 7249069246763182397L;
4468 dl 1.151 final ConcurrentHashMap<K, V> map;
4469 jsr166 1.184 CHMCollectionView(ConcurrentHashMap<K, V> map) { this.map = map; }
4470 dl 1.151
4471     /**
4472     * Returns the map backing this view.
4473     *
4474     * @return the map backing this view
4475     */
4476     public ConcurrentHashMap<K,V> getMap() { return map; }
4477    
4478 jsr166 1.184 /**
4479     * Removes all of the elements from this view, by removing all
4480     * the mappings from the map backing this view.
4481     */
4482     public final void clear() { map.clear(); }
4483     public final int size() { return map.size(); }
4484     public final boolean isEmpty() { return map.isEmpty(); }
4485 dl 1.151
4486     // implementations below rely on concrete classes supplying these
4487 jsr166 1.184 // abstract methods
4488     /**
4489     * Returns a "weakly consistent" iterator that will never
4490     * throw {@link ConcurrentModificationException}, and
4491     * guarantees to traverse elements as they existed upon
4492     * construction of the iterator, and may (but is not
4493     * guaranteed to) reflect any modifications subsequent to
4494     * construction.
4495     */
4496     public abstract Iterator<E> iterator();
4497 jsr166 1.165 public abstract boolean contains(Object o);
4498     public abstract boolean remove(Object o);
4499 dl 1.151
4500     private static final String oomeMsg = "Required array size too large";
4501 dl 1.142
4502     public final Object[] toArray() {
4503     long sz = map.mappingCount();
4504 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4505 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4506     int n = (int)sz;
4507     Object[] r = new Object[n];
4508     int i = 0;
4509 jsr166 1.184 for (E e : this) {
4510 dl 1.142 if (i == n) {
4511     if (n >= MAX_ARRAY_SIZE)
4512     throw new OutOfMemoryError(oomeMsg);
4513     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4514     n = MAX_ARRAY_SIZE;
4515     else
4516     n += (n >>> 1) + 1;
4517     r = Arrays.copyOf(r, n);
4518     }
4519 jsr166 1.184 r[i++] = e;
4520 dl 1.142 }
4521     return (i == n) ? r : Arrays.copyOf(r, i);
4522     }
4523    
4524 jsr166 1.184 @SuppressWarnings("unchecked")
4525     public final <T> T[] toArray(T[] a) {
4526 dl 1.142 long sz = map.mappingCount();
4527 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4528 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4529     int m = (int)sz;
4530     T[] r = (a.length >= m) ? a :
4531     (T[])java.lang.reflect.Array
4532     .newInstance(a.getClass().getComponentType(), m);
4533     int n = r.length;
4534     int i = 0;
4535 jsr166 1.184 for (E e : this) {
4536 dl 1.142 if (i == n) {
4537     if (n >= MAX_ARRAY_SIZE)
4538     throw new OutOfMemoryError(oomeMsg);
4539     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4540     n = MAX_ARRAY_SIZE;
4541     else
4542     n += (n >>> 1) + 1;
4543     r = Arrays.copyOf(r, n);
4544     }
4545 jsr166 1.184 r[i++] = (T)e;
4546 dl 1.142 }
4547     if (a == r && i < n) {
4548     r[i] = null; // null-terminate
4549     return r;
4550     }
4551     return (i == n) ? r : Arrays.copyOf(r, i);
4552     }
4553    
4554 jsr166 1.184 /**
4555     * Returns a string representation of this collection.
4556     * The string representation consists of the string representations
4557     * of the collection's elements in the order they are returned by
4558     * its iterator, enclosed in square brackets ({@code "[]"}).
4559     * Adjacent elements are separated by the characters {@code ", "}
4560     * (comma and space). Elements are converted to strings as by
4561     * {@link String#valueOf(Object)}.
4562     *
4563     * @return a string representation of this collection
4564     */
4565 dl 1.142 public final String toString() {
4566     StringBuilder sb = new StringBuilder();
4567     sb.append('[');
4568 jsr166 1.184 Iterator<E> it = iterator();
4569 dl 1.142 if (it.hasNext()) {
4570     for (;;) {
4571     Object e = it.next();
4572     sb.append(e == this ? "(this Collection)" : e);
4573     if (!it.hasNext())
4574     break;
4575     sb.append(',').append(' ');
4576     }
4577     }
4578     return sb.append(']').toString();
4579     }
4580    
4581     public final boolean containsAll(Collection<?> c) {
4582     if (c != this) {
4583 jsr166 1.184 for (Object e : c) {
4584 dl 1.142 if (e == null || !contains(e))
4585     return false;
4586     }
4587     }
4588     return true;
4589     }
4590    
4591     public final boolean removeAll(Collection<?> c) {
4592     boolean modified = false;
4593 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4594 dl 1.142 if (c.contains(it.next())) {
4595     it.remove();
4596     modified = true;
4597     }
4598     }
4599     return modified;
4600     }
4601    
4602     public final boolean retainAll(Collection<?> c) {
4603     boolean modified = false;
4604 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4605 dl 1.142 if (!c.contains(it.next())) {
4606     it.remove();
4607     modified = true;
4608     }
4609     }
4610     return modified;
4611     }
4612    
4613     }
4614    
4615 jsr166 1.184 abstract static class CHMSetView<K, V, E>
4616     extends CHMCollectionView<K, V, E>
4617     implements Set<E>, java.io.Serializable {
4618     private static final long serialVersionUID = 7249069246763182397L;
4619     CHMSetView(ConcurrentHashMap<K, V> map) { super(map); }
4620    
4621     // Implement Set API
4622    
4623     /**
4624     * Implements {@link Set#hashCode()}.
4625     * @return the hash code value for this set
4626     */
4627     public final int hashCode() {
4628     int h = 0;
4629     for (E e : this)
4630     h += e.hashCode();
4631     return h;
4632     }
4633    
4634     /**
4635     * Implements {@link Set#equals(Object)}.
4636     * @param o object to be compared for equality with this set
4637     * @return {@code true} if the specified object is equal to this set
4638     */
4639     public final boolean equals(Object o) {
4640     Set<?> c;
4641     return ((o instanceof Set) &&
4642     ((c = (Set<?>)o) == this ||
4643     (containsAll(c) && c.containsAll(this))));
4644     }
4645     }
4646    
4647 dl 1.142 /**
4648     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4649     * which additions may optionally be enabled by mapping to a
4650     * common value. This class cannot be directly instantiated. See
4651 jsr166 1.177 * {@link #keySet()}, {@link #keySet(Object)}, {@link #newKeySet()},
4652 dl 1.142 * {@link #newKeySet(int)}.
4653     */
4654 jsr166 1.184 public static class KeySetView<K,V>
4655     extends CHMSetView<K,V,K>
4656     implements Set<K>, java.io.Serializable {
4657 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4658     private final V value;
4659     KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4660     super(map);
4661     this.value = value;
4662     }
4663    
4664     /**
4665     * Returns the default mapped value for additions,
4666     * or {@code null} if additions are not supported.
4667     *
4668     * @return the default mapped value for additions, or {@code null}
4669 jsr166 1.172 * if not supported
4670 dl 1.142 */
4671     public V getMappedValue() { return value; }
4672    
4673 jsr166 1.184 /**
4674     * {@inheritDoc}
4675     * @throws NullPointerException if the specified key is null
4676     */
4677     public boolean contains(Object o) { return map.containsKey(o); }
4678 dl 1.142
4679 jsr166 1.184 /**
4680     * Removes the key from this map view, by removing the key (and its
4681     * corresponding value) from the backing map. This method does
4682     * nothing if the key is not in the map.
4683     *
4684     * @param o the key to be removed from the backing map
4685     * @return {@code true} if the backing map contained the specified key
4686     * @throws NullPointerException if the specified key is null
4687     */
4688     public boolean remove(Object o) { return map.remove(o) != null; }
4689    
4690     /**
4691     * @return an iterator over the keys of the backing map
4692     */
4693     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4694 dl 1.142
4695     /**
4696 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4697     * the default mapped value in the backing map, if defined.
4698 dl 1.142 *
4699 jsr166 1.184 * @param e key to be added
4700     * @return {@code true} if this set changed as a result of the call
4701     * @throws NullPointerException if the specified key is null
4702     * @throws UnsupportedOperationException if no default mapped value
4703     * for additions was provided
4704 dl 1.142 */
4705     public boolean add(K e) {
4706     V v;
4707     if ((v = value) == null)
4708     throw new UnsupportedOperationException();
4709 dl 1.149 return map.internalPut(e, v, true) == null;
4710 dl 1.142 }
4711 jsr166 1.184
4712     /**
4713     * Adds all of the elements in the specified collection to this set,
4714     * as if by calling {@link #add} on each one.
4715     *
4716     * @param c the elements to be inserted into this set
4717     * @return {@code true} if this set changed as a result of the call
4718     * @throws NullPointerException if the collection or any of its
4719     * elements are {@code null}
4720     * @throws UnsupportedOperationException if no default mapped value
4721     * for additions was provided
4722     */
4723 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4724     boolean added = false;
4725     V v;
4726     if ((v = value) == null)
4727     throw new UnsupportedOperationException();
4728     for (K e : c) {
4729 dl 1.149 if (map.internalPut(e, v, true) == null)
4730 dl 1.142 added = true;
4731     }
4732     return added;
4733     }
4734 dl 1.153
4735     public Stream<K> stream() {
4736     return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4737     }
4738     public Stream<K> parallelStream() {
4739     return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4740     0);
4741     }
4742 dl 1.142 }
4743    
4744     /**
4745     * A view of a ConcurrentHashMap as a {@link Collection} of
4746     * values, in which additions are disabled. This class cannot be
4747 jsr166 1.181 * directly instantiated. See {@link #values()}.
4748 dl 1.142 *
4749     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4750     * that will never throw {@link ConcurrentModificationException},
4751     * and guarantees to traverse elements as they existed upon
4752     * construction of the iterator, and may (but is not guaranteed to)
4753     * reflect any modifications subsequent to construction.
4754     */
4755 jsr166 1.184 public static final class ValuesView<K,V>
4756     extends CHMCollectionView<K,V,V>
4757     implements Collection<V>, java.io.Serializable {
4758 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4759 jsr166 1.184 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4760     public final boolean contains(Object o) {
4761     return map.containsValue(o);
4762     }
4763 dl 1.142 public final boolean remove(Object o) {
4764     if (o != null) {
4765 jsr166 1.184 for (Iterator<V> it = iterator(); it.hasNext();) {
4766 dl 1.142 if (o.equals(it.next())) {
4767     it.remove();
4768     return true;
4769     }
4770     }
4771     }
4772     return false;
4773     }
4774    
4775     /**
4776 jsr166 1.184 * @return an iterator over the values of the backing map
4777 dl 1.142 */
4778     public final Iterator<V> iterator() {
4779     return new ValueIterator<K,V>(map);
4780     }
4781 jsr166 1.184
4782     /** Always throws {@link UnsupportedOperationException}. */
4783 dl 1.142 public final boolean add(V e) {
4784     throw new UnsupportedOperationException();
4785     }
4786 jsr166 1.184 /** Always throws {@link UnsupportedOperationException}. */
4787 dl 1.142 public final boolean addAll(Collection<? extends V> c) {
4788     throw new UnsupportedOperationException();
4789     }
4790    
4791 dl 1.153 public Stream<V> stream() {
4792     return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4793     }
4794    
4795     public Stream<V> parallelStream() {
4796     return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4797     0);
4798     }
4799    
4800 dl 1.142 }
4801    
4802     /**
4803     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4804     * entries. This class cannot be directly instantiated. See
4805 jsr166 1.180 * {@link #entrySet()}.
4806 dl 1.142 */
4807 jsr166 1.184 public static final class EntrySetView<K,V>
4808     extends CHMSetView<K,V,Map.Entry<K,V>>
4809     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4810 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4811 dl 1.142 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4812 jsr166 1.184
4813 dl 1.142 public final boolean contains(Object o) {
4814     Object k, v, r; Map.Entry<?,?> e;
4815     return ((o instanceof Map.Entry) &&
4816     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4817     (r = map.get(k)) != null &&
4818     (v = e.getValue()) != null &&
4819     (v == r || v.equals(r)));
4820     }
4821     public final boolean remove(Object o) {
4822     Object k, v; Map.Entry<?,?> e;
4823     return ((o instanceof Map.Entry) &&
4824     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4825     (v = e.getValue()) != null &&
4826     map.remove(k, v));
4827     }
4828    
4829     /**
4830 jsr166 1.184 * @return an iterator over the entries of the backing map
4831 dl 1.142 */
4832     public final Iterator<Map.Entry<K,V>> iterator() {
4833     return new EntryIterator<K,V>(map);
4834     }
4835    
4836 jsr166 1.184 /**
4837     * Adds the specified mapping to this view.
4838     *
4839     * @param e mapping to be added
4840     * @return {@code true} if this set changed as a result of the call
4841     * @throws NullPointerException if the entry, its key, or its
4842     * value is null
4843     */
4844 dl 1.142 public final boolean add(Entry<K,V> e) {
4845 jsr166 1.182 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4846 dl 1.142 }
4847 jsr166 1.184 /**
4848     * Adds all of the mappings in the specified collection to this
4849     * set, as if by calling {@link #add(Map.Entry)} on each one.
4850     * @param c the mappings to be inserted into this set
4851     * @return {@code true} if this set changed as a result of the call
4852     * @throws NullPointerException if the collection or any of its
4853     * entries, keys, or values are null
4854     */
4855 dl 1.142 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4856     boolean added = false;
4857     for (Entry<K,V> e : c) {
4858     if (add(e))
4859     added = true;
4860     }
4861     return added;
4862     }
4863 dl 1.153
4864     public Stream<Map.Entry<K,V>> stream() {
4865     return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4866     }
4867    
4868     public Stream<Map.Entry<K,V>> parallelStream() {
4869     return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4870     0);
4871     }
4872 dl 1.142 }
4873    
4874 dl 1.119 // ---------------------------------------------------------------------
4875    
4876     /**
4877     * Predefined tasks for performing bulk parallel operations on
4878     * ConcurrentHashMaps. These tasks follow the forms and rules used
4879 dl 1.137 * for bulk operations. Each method has the same name, but returns
4880     * a task rather than invoking it. These methods may be useful in
4881     * custom applications such as submitting a task without waiting
4882     * for completion, using a custom pool, or combining with other
4883     * tasks.
4884 dl 1.119 */
4885     public static class ForkJoinTasks {
4886     private ForkJoinTasks() {}
4887    
4888     /**
4889     * Returns a task that when invoked, performs the given
4890     * action for each (key, value)
4891     *
4892     * @param map the map
4893     * @param action the action
4894     * @return the task
4895     */
4896 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
4897 dl 1.119 (ConcurrentHashMap<K,V> map,
4898 dl 1.171 BiConsumer<? super K, ? super V> action) {
4899 dl 1.119 if (action == null) throw new NullPointerException();
4900 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
4901 dl 1.119 }
4902    
4903     /**
4904     * Returns a task that when invoked, performs the given
4905     * action for each non-null transformation of each (key, value)
4906     *
4907     * @param map the map
4908     * @param transformer a function returning the transformation
4909 jsr166 1.135 * for an element, or null if there is no transformation (in
4910 jsr166 1.134 * which case the action is not applied)
4911 dl 1.119 * @param action the action
4912     * @return the task
4913     */
4914 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
4915 dl 1.119 (ConcurrentHashMap<K,V> map,
4916 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4917 dl 1.171 Consumer<? super U> action) {
4918 dl 1.119 if (transformer == null || action == null)
4919     throw new NullPointerException();
4920     return new ForEachTransformedMappingTask<K,V,U>
4921 dl 1.146 (map, null, -1, transformer, action);
4922 dl 1.119 }
4923    
4924     /**
4925 dl 1.126 * Returns a task that when invoked, returns a non-null result
4926     * from applying the given search function on each (key,
4927     * value), or null if none. Upon success, further element
4928     * processing is suppressed and the results of any other
4929     * parallel invocations of the search function are ignored.
4930 dl 1.119 *
4931     * @param map the map
4932     * @param searchFunction a function returning a non-null
4933     * result on success, else null
4934     * @return the task
4935     */
4936     public static <K,V,U> ForkJoinTask<U> search
4937     (ConcurrentHashMap<K,V> map,
4938 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4939 dl 1.119 if (searchFunction == null) throw new NullPointerException();
4940     return new SearchMappingsTask<K,V,U>
4941 dl 1.146 (map, null, -1, searchFunction,
4942 dl 1.119 new AtomicReference<U>());
4943     }
4944    
4945     /**
4946     * Returns a task that when invoked, returns the result of
4947     * accumulating the given transformation of all (key, value) pairs
4948     * using the given reducer to combine values, or null if none.
4949     *
4950     * @param map the map
4951     * @param transformer a function returning the transformation
4952 jsr166 1.135 * for an element, or null if there is no transformation (in
4953 jsr166 1.172 * which case it is not combined)
4954 dl 1.119 * @param reducer a commutative associative combining function
4955     * @return the task
4956     */
4957     public static <K,V,U> ForkJoinTask<U> reduce
4958     (ConcurrentHashMap<K,V> map,
4959 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4960     BiFunction<? super U, ? super U, ? extends U> reducer) {
4961 dl 1.119 if (transformer == null || reducer == null)
4962     throw new NullPointerException();
4963     return new MapReduceMappingsTask<K,V,U>
4964 dl 1.130 (map, null, -1, null, transformer, reducer);
4965 dl 1.119 }
4966    
4967     /**
4968     * Returns a task that when invoked, returns the result of
4969     * accumulating the given transformation of all (key, value) pairs
4970     * using the given reducer to combine values, and the given
4971     * basis as an identity value.
4972     *
4973     * @param map the map
4974     * @param transformer a function returning the transformation
4975     * for an element
4976     * @param basis the identity (initial default value) for the reduction
4977     * @param reducer a commutative associative combining function
4978     * @return the task
4979     */
4980     public static <K,V> ForkJoinTask<Double> reduceToDouble
4981     (ConcurrentHashMap<K,V> map,
4982 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
4983 dl 1.119 double basis,
4984 dl 1.153 DoubleBinaryOperator reducer) {
4985 dl 1.119 if (transformer == null || reducer == null)
4986     throw new NullPointerException();
4987     return new MapReduceMappingsToDoubleTask<K,V>
4988 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
4989 dl 1.119 }
4990    
4991     /**
4992     * Returns a task that when invoked, returns the result of
4993     * accumulating the given transformation of all (key, value) pairs
4994     * using the given reducer to combine values, and the given
4995     * basis as an identity value.
4996     *
4997     * @param map the map
4998     * @param transformer a function returning the transformation
4999     * for an element
5000     * @param basis the identity (initial default value) for the reduction
5001     * @param reducer a commutative associative combining function
5002     * @return the task
5003     */
5004     public static <K,V> ForkJoinTask<Long> reduceToLong
5005     (ConcurrentHashMap<K,V> map,
5006 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5007 dl 1.119 long basis,
5008 dl 1.153 LongBinaryOperator reducer) {
5009 dl 1.119 if (transformer == null || reducer == null)
5010     throw new NullPointerException();
5011     return new MapReduceMappingsToLongTask<K,V>
5012 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5013 dl 1.119 }
5014    
5015     /**
5016     * Returns a task that when invoked, returns the result of
5017     * accumulating the given transformation of all (key, value) pairs
5018     * using the given reducer to combine values, and the given
5019     * basis as an identity value.
5020     *
5021 jsr166 1.179 * @param map the map
5022 dl 1.119 * @param transformer a function returning the transformation
5023     * for an element
5024     * @param basis the identity (initial default value) for the reduction
5025     * @param reducer a commutative associative combining function
5026     * @return the task
5027     */
5028     public static <K,V> ForkJoinTask<Integer> reduceToInt
5029     (ConcurrentHashMap<K,V> map,
5030 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
5031 dl 1.119 int basis,
5032 dl 1.153 IntBinaryOperator reducer) {
5033 dl 1.119 if (transformer == null || reducer == null)
5034     throw new NullPointerException();
5035     return new MapReduceMappingsToIntTask<K,V>
5036 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5037 dl 1.119 }
5038    
5039     /**
5040     * Returns a task that when invoked, performs the given action
5041 jsr166 1.123 * for each key.
5042 dl 1.119 *
5043     * @param map the map
5044     * @param action the action
5045     * @return the task
5046     */
5047 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
5048 dl 1.119 (ConcurrentHashMap<K,V> map,
5049 dl 1.171 Consumer<? super K> action) {
5050 dl 1.119 if (action == null) throw new NullPointerException();
5051 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
5052 dl 1.119 }
5053    
5054     /**
5055     * Returns a task that when invoked, performs the given action
5056 jsr166 1.123 * for each non-null transformation of each key.
5057 dl 1.119 *
5058     * @param map the map
5059     * @param transformer a function returning the transformation
5060 jsr166 1.135 * for an element, or null if there is no transformation (in
5061 jsr166 1.134 * which case the action is not applied)
5062 dl 1.119 * @param action the action
5063     * @return the task
5064     */
5065 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
5066 dl 1.119 (ConcurrentHashMap<K,V> map,
5067 dl 1.153 Function<? super K, ? extends U> transformer,
5068 dl 1.171 Consumer<? super U> action) {
5069 dl 1.119 if (transformer == null || action == null)
5070     throw new NullPointerException();
5071     return new ForEachTransformedKeyTask<K,V,U>
5072 dl 1.146 (map, null, -1, transformer, action);
5073 dl 1.119 }
5074    
5075     /**
5076     * Returns a task that when invoked, returns a non-null result
5077     * from applying the given search function on each key, or
5078 dl 1.126 * null if none. Upon success, further element processing is
5079     * suppressed and the results of any other parallel
5080     * invocations of the search function are ignored.
5081 dl 1.119 *
5082     * @param map the map
5083     * @param searchFunction a function returning a non-null
5084     * result on success, else null
5085     * @return the task
5086     */
5087     public static <K,V,U> ForkJoinTask<U> searchKeys
5088     (ConcurrentHashMap<K,V> map,
5089 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5090 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5091     return new SearchKeysTask<K,V,U>
5092 dl 1.146 (map, null, -1, searchFunction,
5093 dl 1.119 new AtomicReference<U>());
5094     }
5095    
5096     /**
5097     * Returns a task that when invoked, returns the result of
5098     * accumulating all keys using the given reducer to combine
5099     * values, or null if none.
5100     *
5101     * @param map the map
5102     * @param reducer a commutative associative combining function
5103     * @return the task
5104     */
5105     public static <K,V> ForkJoinTask<K> reduceKeys
5106     (ConcurrentHashMap<K,V> map,
5107 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5108 dl 1.119 if (reducer == null) throw new NullPointerException();
5109     return new ReduceKeysTask<K,V>
5110 dl 1.130 (map, null, -1, null, reducer);
5111 dl 1.119 }
5112 jsr166 1.125
5113 dl 1.119 /**
5114     * Returns a task that when invoked, returns the result of
5115     * accumulating the given transformation of all keys using the given
5116     * reducer to combine values, or null if none.
5117     *
5118     * @param map the map
5119     * @param transformer a function returning the transformation
5120 jsr166 1.135 * for an element, or null if there is no transformation (in
5121 jsr166 1.172 * which case it is not combined)
5122 dl 1.119 * @param reducer a commutative associative combining function
5123     * @return the task
5124     */
5125     public static <K,V,U> ForkJoinTask<U> reduceKeys
5126     (ConcurrentHashMap<K,V> map,
5127 dl 1.153 Function<? super K, ? extends U> transformer,
5128     BiFunction<? super U, ? super U, ? extends U> reducer) {
5129 dl 1.119 if (transformer == null || reducer == null)
5130     throw new NullPointerException();
5131     return new MapReduceKeysTask<K,V,U>
5132 dl 1.130 (map, null, -1, null, transformer, reducer);
5133 dl 1.119 }
5134    
5135     /**
5136     * Returns a task that when invoked, returns the result of
5137     * accumulating the given transformation of all keys using the given
5138     * reducer to combine values, and the given basis as an
5139     * identity value.
5140     *
5141     * @param map the map
5142     * @param transformer a function returning the transformation
5143     * for an element
5144     * @param basis the identity (initial default value) for the reduction
5145     * @param reducer a commutative associative combining function
5146     * @return the task
5147     */
5148     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5149     (ConcurrentHashMap<K,V> map,
5150 dl 1.171 ToDoubleFunction<? super K> transformer,
5151 dl 1.119 double basis,
5152 dl 1.153 DoubleBinaryOperator reducer) {
5153 dl 1.119 if (transformer == null || reducer == null)
5154     throw new NullPointerException();
5155     return new MapReduceKeysToDoubleTask<K,V>
5156 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5157 dl 1.119 }
5158    
5159     /**
5160     * Returns a task that when invoked, returns the result of
5161     * accumulating the given transformation of all keys using the given
5162     * reducer to combine values, and the given basis as an
5163     * identity value.
5164     *
5165     * @param map the map
5166     * @param transformer a function returning the transformation
5167     * for an element
5168     * @param basis the identity (initial default value) for the reduction
5169     * @param reducer a commutative associative combining function
5170     * @return the task
5171     */
5172     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5173     (ConcurrentHashMap<K,V> map,
5174 dl 1.171 ToLongFunction<? super K> transformer,
5175 dl 1.119 long basis,
5176 dl 1.153 LongBinaryOperator reducer) {
5177 dl 1.119 if (transformer == null || reducer == null)
5178     throw new NullPointerException();
5179     return new MapReduceKeysToLongTask<K,V>
5180 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5181 dl 1.119 }
5182    
5183     /**
5184     * Returns a task that when invoked, returns the result of
5185     * accumulating the given transformation of all keys using the given
5186     * reducer to combine values, and the given basis as an
5187     * identity value.
5188     *
5189     * @param map the map
5190     * @param transformer a function returning the transformation
5191     * for an element
5192     * @param basis the identity (initial default value) for the reduction
5193     * @param reducer a commutative associative combining function
5194     * @return the task
5195     */
5196     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5197     (ConcurrentHashMap<K,V> map,
5198 dl 1.171 ToIntFunction<? super K> transformer,
5199 dl 1.119 int basis,
5200 dl 1.153 IntBinaryOperator reducer) {
5201 dl 1.119 if (transformer == null || reducer == null)
5202     throw new NullPointerException();
5203     return new MapReduceKeysToIntTask<K,V>
5204 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5205 dl 1.119 }
5206    
5207     /**
5208     * Returns a task that when invoked, performs the given action
5209 jsr166 1.123 * for each value.
5210 dl 1.119 *
5211     * @param map the map
5212     * @param action the action
5213 jsr166 1.173 * @return the task
5214 dl 1.119 */
5215 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5216 dl 1.119 (ConcurrentHashMap<K,V> map,
5217 dl 1.171 Consumer<? super V> action) {
5218 dl 1.119 if (action == null) throw new NullPointerException();
5219 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5220 dl 1.119 }
5221    
5222     /**
5223     * Returns a task that when invoked, performs the given action
5224 jsr166 1.123 * for each non-null transformation of each value.
5225 dl 1.119 *
5226     * @param map the map
5227     * @param transformer a function returning the transformation
5228 jsr166 1.135 * for an element, or null if there is no transformation (in
5229 jsr166 1.134 * which case the action is not applied)
5230 dl 1.119 * @param action the action
5231 jsr166 1.173 * @return the task
5232 dl 1.119 */
5233 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5234 dl 1.119 (ConcurrentHashMap<K,V> map,
5235 dl 1.153 Function<? super V, ? extends U> transformer,
5236 dl 1.171 Consumer<? super U> action) {
5237 dl 1.119 if (transformer == null || action == null)
5238     throw new NullPointerException();
5239     return new ForEachTransformedValueTask<K,V,U>
5240 dl 1.146 (map, null, -1, transformer, action);
5241 dl 1.119 }
5242    
5243     /**
5244     * Returns a task that when invoked, returns a non-null result
5245     * from applying the given search function on each value, or
5246 dl 1.126 * null if none. Upon success, further element processing is
5247     * suppressed and the results of any other parallel
5248     * invocations of the search function are ignored.
5249 dl 1.119 *
5250     * @param map the map
5251     * @param searchFunction a function returning a non-null
5252     * result on success, else null
5253     * @return the task
5254     */
5255     public static <K,V,U> ForkJoinTask<U> searchValues
5256     (ConcurrentHashMap<K,V> map,
5257 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5258 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5259     return new SearchValuesTask<K,V,U>
5260 dl 1.146 (map, null, -1, searchFunction,
5261 dl 1.119 new AtomicReference<U>());
5262     }
5263    
5264     /**
5265     * Returns a task that when invoked, returns the result of
5266     * accumulating all values using the given reducer to combine
5267     * values, or null if none.
5268     *
5269     * @param map the map
5270     * @param reducer a commutative associative combining function
5271     * @return the task
5272     */
5273     public static <K,V> ForkJoinTask<V> reduceValues
5274     (ConcurrentHashMap<K,V> map,
5275 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5276 dl 1.119 if (reducer == null) throw new NullPointerException();
5277     return new ReduceValuesTask<K,V>
5278 dl 1.130 (map, null, -1, null, reducer);
5279 dl 1.119 }
5280    
5281     /**
5282     * Returns a task that when invoked, returns the result of
5283     * accumulating the given transformation of all values using the
5284     * given reducer to combine values, or null if none.
5285     *
5286     * @param map the map
5287     * @param transformer a function returning the transformation
5288 jsr166 1.135 * for an element, or null if there is no transformation (in
5289 jsr166 1.172 * which case it is not combined)
5290 dl 1.119 * @param reducer a commutative associative combining function
5291     * @return the task
5292     */
5293     public static <K,V,U> ForkJoinTask<U> reduceValues
5294     (ConcurrentHashMap<K,V> map,
5295 dl 1.153 Function<? super V, ? extends U> transformer,
5296     BiFunction<? super U, ? super U, ? extends U> reducer) {
5297 dl 1.119 if (transformer == null || reducer == null)
5298     throw new NullPointerException();
5299     return new MapReduceValuesTask<K,V,U>
5300 dl 1.130 (map, null, -1, null, transformer, reducer);
5301 dl 1.119 }
5302    
5303     /**
5304     * Returns a task that when invoked, returns the result of
5305     * accumulating the given transformation of all values using the
5306     * given reducer to combine values, and the given basis as an
5307     * identity value.
5308     *
5309     * @param map the map
5310     * @param transformer a function returning the transformation
5311     * for an element
5312     * @param basis the identity (initial default value) for the reduction
5313     * @param reducer a commutative associative combining function
5314     * @return the task
5315     */
5316     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5317     (ConcurrentHashMap<K,V> map,
5318 dl 1.171 ToDoubleFunction<? super V> transformer,
5319 dl 1.119 double basis,
5320 dl 1.153 DoubleBinaryOperator reducer) {
5321 dl 1.119 if (transformer == null || reducer == null)
5322     throw new NullPointerException();
5323     return new MapReduceValuesToDoubleTask<K,V>
5324 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5325 dl 1.119 }
5326    
5327     /**
5328     * Returns a task that when invoked, returns the result of
5329     * accumulating the given transformation of all values using the
5330     * given reducer to combine values, and the given basis as an
5331     * identity value.
5332     *
5333     * @param map the map
5334     * @param transformer a function returning the transformation
5335     * for an element
5336     * @param basis the identity (initial default value) for the reduction
5337     * @param reducer a commutative associative combining function
5338     * @return the task
5339     */
5340     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5341     (ConcurrentHashMap<K,V> map,
5342 dl 1.171 ToLongFunction<? super V> transformer,
5343 dl 1.119 long basis,
5344 dl 1.153 LongBinaryOperator reducer) {
5345 dl 1.119 if (transformer == null || reducer == null)
5346     throw new NullPointerException();
5347     return new MapReduceValuesToLongTask<K,V>
5348 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5349 dl 1.119 }
5350    
5351     /**
5352     * Returns a task that when invoked, returns the result of
5353     * accumulating the given transformation of all values using the
5354     * given reducer to combine values, and the given basis as an
5355     * identity value.
5356     *
5357     * @param map the map
5358     * @param transformer a function returning the transformation
5359     * for an element
5360     * @param basis the identity (initial default value) for the reduction
5361     * @param reducer a commutative associative combining function
5362     * @return the task
5363     */
5364     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5365     (ConcurrentHashMap<K,V> map,
5366 dl 1.171 ToIntFunction<? super V> transformer,
5367 dl 1.119 int basis,
5368 dl 1.153 IntBinaryOperator reducer) {
5369 dl 1.119 if (transformer == null || reducer == null)
5370     throw new NullPointerException();
5371     return new MapReduceValuesToIntTask<K,V>
5372 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5373 dl 1.119 }
5374    
5375     /**
5376     * Returns a task that when invoked, perform the given action
5377 jsr166 1.123 * for each entry.
5378 dl 1.119 *
5379     * @param map the map
5380     * @param action the action
5381 jsr166 1.173 * @return the task
5382 dl 1.119 */
5383 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5384 dl 1.119 (ConcurrentHashMap<K,V> map,
5385 dl 1.171 Consumer<? super Map.Entry<K,V>> action) {
5386 dl 1.119 if (action == null) throw new NullPointerException();
5387 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5388 dl 1.119 }
5389    
5390     /**
5391     * Returns a task that when invoked, perform the given action
5392 jsr166 1.123 * for each non-null transformation of each entry.
5393 dl 1.119 *
5394     * @param map the map
5395     * @param transformer a function returning the transformation
5396 jsr166 1.135 * for an element, or null if there is no transformation (in
5397 jsr166 1.134 * which case the action is not applied)
5398 dl 1.119 * @param action the action
5399 jsr166 1.173 * @return the task
5400 dl 1.119 */
5401 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5402 dl 1.119 (ConcurrentHashMap<K,V> map,
5403 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5404 dl 1.171 Consumer<? super U> action) {
5405 dl 1.119 if (transformer == null || action == null)
5406     throw new NullPointerException();
5407     return new ForEachTransformedEntryTask<K,V,U>
5408 dl 1.146 (map, null, -1, transformer, action);
5409 dl 1.119 }
5410    
5411     /**
5412     * Returns a task that when invoked, returns a non-null result
5413     * from applying the given search function on each entry, or
5414 dl 1.126 * null if none. Upon success, further element processing is
5415     * suppressed and the results of any other parallel
5416     * invocations of the search function are ignored.
5417 dl 1.119 *
5418     * @param map the map
5419     * @param searchFunction a function returning a non-null
5420     * result on success, else null
5421     * @return the task
5422     */
5423     public static <K,V,U> ForkJoinTask<U> searchEntries
5424     (ConcurrentHashMap<K,V> map,
5425 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5426 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5427     return new SearchEntriesTask<K,V,U>
5428 dl 1.146 (map, null, -1, searchFunction,
5429 dl 1.119 new AtomicReference<U>());
5430     }
5431    
5432     /**
5433     * Returns a task that when invoked, returns the result of
5434     * accumulating all entries using the given reducer to combine
5435     * values, or null if none.
5436     *
5437     * @param map the map
5438     * @param reducer a commutative associative combining function
5439     * @return the task
5440     */
5441     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5442     (ConcurrentHashMap<K,V> map,
5443 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5444 dl 1.119 if (reducer == null) throw new NullPointerException();
5445     return new ReduceEntriesTask<K,V>
5446 dl 1.130 (map, null, -1, null, reducer);
5447 dl 1.119 }
5448    
5449     /**
5450     * Returns a task that when invoked, returns the result of
5451     * accumulating the given transformation of all entries using the
5452     * given reducer to combine values, or null if none.
5453     *
5454     * @param map the map
5455     * @param transformer a function returning the transformation
5456 jsr166 1.135 * for an element, or null if there is no transformation (in
5457 jsr166 1.172 * which case it is not combined)
5458 dl 1.119 * @param reducer a commutative associative combining function
5459     * @return the task
5460     */
5461     public static <K,V,U> ForkJoinTask<U> reduceEntries
5462     (ConcurrentHashMap<K,V> map,
5463 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5464     BiFunction<? super U, ? super U, ? extends U> reducer) {
5465 dl 1.119 if (transformer == null || reducer == null)
5466     throw new NullPointerException();
5467     return new MapReduceEntriesTask<K,V,U>
5468 dl 1.130 (map, null, -1, null, transformer, reducer);
5469 dl 1.119 }
5470    
5471     /**
5472     * Returns a task that when invoked, returns the result of
5473     * accumulating the given transformation of all entries using the
5474     * given reducer to combine values, and the given basis as an
5475     * identity value.
5476     *
5477     * @param map the map
5478     * @param transformer a function returning the transformation
5479     * for an element
5480     * @param basis the identity (initial default value) for the reduction
5481     * @param reducer a commutative associative combining function
5482     * @return the task
5483     */
5484     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5485     (ConcurrentHashMap<K,V> map,
5486 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5487 dl 1.119 double basis,
5488 dl 1.153 DoubleBinaryOperator reducer) {
5489 dl 1.119 if (transformer == null || reducer == null)
5490     throw new NullPointerException();
5491     return new MapReduceEntriesToDoubleTask<K,V>
5492 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5493 dl 1.119 }
5494    
5495     /**
5496     * Returns a task that when invoked, returns the result of
5497     * accumulating the given transformation of all entries using the
5498     * given reducer to combine values, and the given basis as an
5499     * identity value.
5500     *
5501     * @param map the map
5502     * @param transformer a function returning the transformation
5503     * for an element
5504     * @param basis the identity (initial default value) for the reduction
5505     * @param reducer a commutative associative combining function
5506     * @return the task
5507     */
5508     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5509     (ConcurrentHashMap<K,V> map,
5510 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5511 dl 1.119 long basis,
5512 dl 1.153 LongBinaryOperator reducer) {
5513 dl 1.119 if (transformer == null || reducer == null)
5514     throw new NullPointerException();
5515     return new MapReduceEntriesToLongTask<K,V>
5516 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5517 dl 1.119 }
5518    
5519     /**
5520     * Returns a task that when invoked, returns the result of
5521     * accumulating the given transformation of all entries using the
5522     * given reducer to combine values, and the given basis as an
5523     * identity value.
5524     *
5525     * @param map the map
5526     * @param transformer a function returning the transformation
5527     * for an element
5528     * @param basis the identity (initial default value) for the reduction
5529     * @param reducer a commutative associative combining function
5530     * @return the task
5531     */
5532     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5533     (ConcurrentHashMap<K,V> map,
5534 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5535 dl 1.119 int basis,
5536 dl 1.153 IntBinaryOperator reducer) {
5537 dl 1.119 if (transformer == null || reducer == null)
5538     throw new NullPointerException();
5539     return new MapReduceEntriesToIntTask<K,V>
5540 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5541 dl 1.119 }
5542     }
5543    
5544     // -------------------------------------------------------
5545    
5546     /*
5547     * Task classes. Coded in a regular but ugly format/style to
5548     * simplify checks that each variant differs in the right way from
5549 dl 1.149 * others. The null screenings exist because compilers cannot tell
5550     * that we've already null-checked task arguments, so we force
5551     * simplest hoisted bypass to help avoid convoluted traps.
5552 dl 1.119 */
5553    
5554 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5555 dl 1.146 extends Traverser<K,V,Void> {
5556 dl 1.171 final Consumer<? super K> action;
5557 dl 1.119 ForEachKeyTask
5558 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5559 dl 1.171 Consumer<? super K> action) {
5560 dl 1.146 super(m, p, b);
5561 dl 1.119 this.action = action;
5562     }
5563 jsr166 1.168 public final void compute() {
5564 dl 1.171 final Consumer<? super K> action;
5565 dl 1.149 if ((action = this.action) != null) {
5566     for (int b; (b = preSplit()) > 0;)
5567     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5568     while (advance() != null)
5569 jsr166 1.168 action.accept(nextKey);
5570 dl 1.149 propagateCompletion();
5571     }
5572 dl 1.119 }
5573     }
5574    
5575 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5576 dl 1.146 extends Traverser<K,V,Void> {
5577 dl 1.171 final Consumer<? super V> action;
5578 dl 1.119 ForEachValueTask
5579 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5580 dl 1.171 Consumer<? super V> action) {
5581 dl 1.146 super(m, p, b);
5582 dl 1.119 this.action = action;
5583     }
5584 jsr166 1.168 public final void compute() {
5585 dl 1.171 final Consumer<? super V> action;
5586 dl 1.149 if ((action = this.action) != null) {
5587     for (int b; (b = preSplit()) > 0;)
5588     new ForEachValueTask<K,V>(map, this, b, action).fork();
5589 dl 1.151 V v;
5590 dl 1.149 while ((v = advance()) != null)
5591 dl 1.153 action.accept(v);
5592 dl 1.149 propagateCompletion();
5593     }
5594 dl 1.119 }
5595     }
5596    
5597 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5598 dl 1.146 extends Traverser<K,V,Void> {
5599 dl 1.171 final Consumer<? super Entry<K,V>> action;
5600 dl 1.119 ForEachEntryTask
5601 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5602 dl 1.171 Consumer<? super Entry<K,V>> action) {
5603 dl 1.146 super(m, p, b);
5604 dl 1.119 this.action = action;
5605     }
5606 jsr166 1.168 public final void compute() {
5607 dl 1.171 final Consumer<? super Entry<K,V>> action;
5608 dl 1.149 if ((action = this.action) != null) {
5609     for (int b; (b = preSplit()) > 0;)
5610     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5611 dl 1.151 V v;
5612 dl 1.149 while ((v = advance()) != null)
5613 jsr166 1.168 action.accept(entryFor(nextKey, v));
5614 dl 1.149 propagateCompletion();
5615     }
5616 dl 1.119 }
5617     }
5618    
5619 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5620 dl 1.146 extends Traverser<K,V,Void> {
5621 dl 1.171 final BiConsumer<? super K, ? super V> action;
5622 dl 1.119 ForEachMappingTask
5623 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5624 dl 1.171 BiConsumer<? super K,? super V> action) {
5625 dl 1.146 super(m, p, b);
5626 dl 1.119 this.action = action;
5627     }
5628 jsr166 1.168 public final void compute() {
5629 dl 1.171 final BiConsumer<? super K, ? super V> action;
5630 dl 1.149 if ((action = this.action) != null) {
5631     for (int b; (b = preSplit()) > 0;)
5632     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5633 dl 1.151 V v;
5634 dl 1.149 while ((v = advance()) != null)
5635 jsr166 1.168 action.accept(nextKey, v);
5636 dl 1.149 propagateCompletion();
5637     }
5638 dl 1.119 }
5639     }
5640    
5641 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5642 dl 1.146 extends Traverser<K,V,Void> {
5643 dl 1.153 final Function<? super K, ? extends U> transformer;
5644 dl 1.171 final Consumer<? super U> action;
5645 dl 1.119 ForEachTransformedKeyTask
5646 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5647 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5648 dl 1.146 super(m, p, b);
5649     this.transformer = transformer; this.action = action;
5650     }
5651 jsr166 1.168 public final void compute() {
5652 dl 1.153 final Function<? super K, ? extends U> transformer;
5653 dl 1.171 final Consumer<? super U> action;
5654 dl 1.149 if ((transformer = this.transformer) != null &&
5655     (action = this.action) != null) {
5656     for (int b; (b = preSplit()) > 0;)
5657     new ForEachTransformedKeyTask<K,V,U>
5658     (map, this, b, transformer, action).fork();
5659     U u;
5660     while (advance() != null) {
5661 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
5662 dl 1.153 action.accept(u);
5663 dl 1.149 }
5664     propagateCompletion();
5665 dl 1.119 }
5666     }
5667     }
5668    
5669 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5670 dl 1.146 extends Traverser<K,V,Void> {
5671 dl 1.153 final Function<? super V, ? extends U> transformer;
5672 dl 1.171 final Consumer<? super U> action;
5673 dl 1.119 ForEachTransformedValueTask
5674 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5675 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5676 dl 1.146 super(m, p, b);
5677     this.transformer = transformer; this.action = action;
5678     }
5679 jsr166 1.168 public final void compute() {
5680 dl 1.153 final Function<? super V, ? extends U> transformer;
5681 dl 1.171 final Consumer<? super U> action;
5682 dl 1.149 if ((transformer = this.transformer) != null &&
5683     (action = this.action) != null) {
5684     for (int b; (b = preSplit()) > 0;)
5685     new ForEachTransformedValueTask<K,V,U>
5686     (map, this, b, transformer, action).fork();
5687 dl 1.151 V v; U u;
5688 dl 1.149 while ((v = advance()) != null) {
5689 dl 1.151 if ((u = transformer.apply(v)) != null)
5690 dl 1.153 action.accept(u);
5691 dl 1.149 }
5692     propagateCompletion();
5693 dl 1.119 }
5694     }
5695 tim 1.1 }
5696    
5697 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5698 dl 1.146 extends Traverser<K,V,Void> {
5699 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5700 dl 1.171 final Consumer<? super U> action;
5701 dl 1.119 ForEachTransformedEntryTask
5702 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5703 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5704 dl 1.146 super(m, p, b);
5705     this.transformer = transformer; this.action = action;
5706     }
5707 jsr166 1.168 public final void compute() {
5708 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5709 dl 1.171 final Consumer<? super U> action;
5710 dl 1.149 if ((transformer = this.transformer) != null &&
5711     (action = this.action) != null) {
5712     for (int b; (b = preSplit()) > 0;)
5713     new ForEachTransformedEntryTask<K,V,U>
5714     (map, this, b, transformer, action).fork();
5715 dl 1.151 V v; U u;
5716 dl 1.149 while ((v = advance()) != null) {
5717 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
5718 dl 1.151 v))) != null)
5719 dl 1.153 action.accept(u);
5720 dl 1.149 }
5721     propagateCompletion();
5722 dl 1.119 }
5723     }
5724 tim 1.1 }
5725    
5726 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5727 dl 1.146 extends Traverser<K,V,Void> {
5728 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5729 dl 1.171 final Consumer<? super U> action;
5730 dl 1.119 ForEachTransformedMappingTask
5731 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5732 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5733 dl 1.171 Consumer<? super U> action) {
5734 dl 1.146 super(m, p, b);
5735     this.transformer = transformer; this.action = action;
5736 dl 1.119 }
5737 jsr166 1.168 public final void compute() {
5738 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5739 dl 1.171 final Consumer<? super U> action;
5740 dl 1.149 if ((transformer = this.transformer) != null &&
5741     (action = this.action) != null) {
5742     for (int b; (b = preSplit()) > 0;)
5743     new ForEachTransformedMappingTask<K,V,U>
5744     (map, this, b, transformer, action).fork();
5745 dl 1.151 V v; U u;
5746 dl 1.149 while ((v = advance()) != null) {
5747 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
5748 dl 1.153 action.accept(u);
5749 dl 1.149 }
5750     propagateCompletion();
5751 dl 1.119 }
5752     }
5753 tim 1.1 }
5754    
5755 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5756 dl 1.146 extends Traverser<K,V,U> {
5757 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5758 dl 1.119 final AtomicReference<U> result;
5759     SearchKeysTask
5760 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5761 dl 1.153 Function<? super K, ? extends U> searchFunction,
5762 dl 1.119 AtomicReference<U> result) {
5763 dl 1.146 super(m, p, b);
5764 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5765     }
5766 dl 1.146 public final U getRawResult() { return result.get(); }
5767 jsr166 1.168 public final void compute() {
5768 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5769 dl 1.146 final AtomicReference<U> result;
5770 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5771     (result = this.result) != null) {
5772     for (int b;;) {
5773     if (result.get() != null)
5774     return;
5775     if ((b = preSplit()) <= 0)
5776     break;
5777     new SearchKeysTask<K,V,U>
5778     (map, this, b, searchFunction, result).fork();
5779 dl 1.128 }
5780 dl 1.149 while (result.get() == null) {
5781     U u;
5782     if (advance() == null) {
5783     propagateCompletion();
5784     break;
5785     }
5786 jsr166 1.168 if ((u = searchFunction.apply(nextKey)) != null) {
5787 dl 1.149 if (result.compareAndSet(null, u))
5788     quietlyCompleteRoot();
5789     break;
5790     }
5791 dl 1.119 }
5792     }
5793     }
5794 tim 1.1 }
5795    
5796 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5797 dl 1.146 extends Traverser<K,V,U> {
5798 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5799 dl 1.119 final AtomicReference<U> result;
5800     SearchValuesTask
5801 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5802 dl 1.153 Function<? super V, ? extends U> searchFunction,
5803 dl 1.119 AtomicReference<U> result) {
5804 dl 1.146 super(m, p, b);
5805 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5806     }
5807 dl 1.146 public final U getRawResult() { return result.get(); }
5808 jsr166 1.168 public final void compute() {
5809 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5810 dl 1.146 final AtomicReference<U> result;
5811 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5812     (result = this.result) != null) {
5813     for (int b;;) {
5814     if (result.get() != null)
5815     return;
5816     if ((b = preSplit()) <= 0)
5817     break;
5818     new SearchValuesTask<K,V,U>
5819     (map, this, b, searchFunction, result).fork();
5820 dl 1.128 }
5821 dl 1.149 while (result.get() == null) {
5822 dl 1.151 V v; U u;
5823 dl 1.149 if ((v = advance()) == null) {
5824     propagateCompletion();
5825     break;
5826     }
5827 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5828 dl 1.149 if (result.compareAndSet(null, u))
5829     quietlyCompleteRoot();
5830     break;
5831     }
5832 dl 1.119 }
5833     }
5834     }
5835     }
5836 tim 1.11
5837 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5838 dl 1.146 extends Traverser<K,V,U> {
5839 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5840 dl 1.119 final AtomicReference<U> result;
5841     SearchEntriesTask
5842 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5843 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5844 dl 1.119 AtomicReference<U> result) {
5845 dl 1.146 super(m, p, b);
5846 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5847     }
5848 dl 1.146 public final U getRawResult() { return result.get(); }
5849 jsr166 1.168 public final void compute() {
5850 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5851 dl 1.146 final AtomicReference<U> result;
5852 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5853     (result = this.result) != null) {
5854     for (int b;;) {
5855     if (result.get() != null)
5856     return;
5857     if ((b = preSplit()) <= 0)
5858     break;
5859     new SearchEntriesTask<K,V,U>
5860     (map, this, b, searchFunction, result).fork();
5861 dl 1.128 }
5862 dl 1.149 while (result.get() == null) {
5863 dl 1.151 V v; U u;
5864 dl 1.149 if ((v = advance()) == null) {
5865     propagateCompletion();
5866     break;
5867     }
5868 jsr166 1.168 if ((u = searchFunction.apply(entryFor(nextKey,
5869 dl 1.151 v))) != null) {
5870 dl 1.149 if (result.compareAndSet(null, u))
5871     quietlyCompleteRoot();
5872     return;
5873     }
5874 dl 1.119 }
5875     }
5876     }
5877     }
5878 tim 1.1
5879 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5880 dl 1.146 extends Traverser<K,V,U> {
5881 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5882 dl 1.119 final AtomicReference<U> result;
5883     SearchMappingsTask
5884 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5885 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5886 dl 1.119 AtomicReference<U> result) {
5887 dl 1.146 super(m, p, b);
5888 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5889     }
5890 dl 1.146 public final U getRawResult() { return result.get(); }
5891 jsr166 1.168 public final void compute() {
5892 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5893 dl 1.146 final AtomicReference<U> result;
5894 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5895     (result = this.result) != null) {
5896     for (int b;;) {
5897     if (result.get() != null)
5898     return;
5899     if ((b = preSplit()) <= 0)
5900     break;
5901     new SearchMappingsTask<K,V,U>
5902     (map, this, b, searchFunction, result).fork();
5903 dl 1.128 }
5904 dl 1.149 while (result.get() == null) {
5905 dl 1.151 V v; U u;
5906 dl 1.149 if ((v = advance()) == null) {
5907     propagateCompletion();
5908     break;
5909     }
5910 jsr166 1.168 if ((u = searchFunction.apply(nextKey, v)) != null) {
5911 dl 1.149 if (result.compareAndSet(null, u))
5912     quietlyCompleteRoot();
5913     break;
5914     }
5915 dl 1.119 }
5916     }
5917 tim 1.1 }
5918 dl 1.119 }
5919 tim 1.1
5920 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5921 dl 1.146 extends Traverser<K,V,K> {
5922 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5923 dl 1.119 K result;
5924 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5925 dl 1.119 ReduceKeysTask
5926 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5927 dl 1.128 ReduceKeysTask<K,V> nextRight,
5928 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5929 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5930 dl 1.119 this.reducer = reducer;
5931     }
5932 dl 1.146 public final K getRawResult() { return result; }
5933     @SuppressWarnings("unchecked") public final void compute() {
5934 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5935 dl 1.149 if ((reducer = this.reducer) != null) {
5936     for (int b; (b = preSplit()) > 0;)
5937     (rights = new ReduceKeysTask<K,V>
5938     (map, this, b, rights, reducer)).fork();
5939     K r = null;
5940     while (advance() != null) {
5941 jsr166 1.168 K u = nextKey;
5942 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5943 dl 1.149 }
5944     result = r;
5945     CountedCompleter<?> c;
5946     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5947     ReduceKeysTask<K,V>
5948     t = (ReduceKeysTask<K,V>)c,
5949     s = t.rights;
5950     while (s != null) {
5951     K tr, sr;
5952     if ((sr = s.result) != null)
5953     t.result = (((tr = t.result) == null) ? sr :
5954     reducer.apply(tr, sr));
5955     s = t.rights = s.nextRight;
5956     }
5957 dl 1.99 }
5958 dl 1.138 }
5959 tim 1.1 }
5960 dl 1.119 }
5961 tim 1.1
5962 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5963 dl 1.146 extends Traverser<K,V,V> {
5964 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5965 dl 1.119 V result;
5966 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5967 dl 1.119 ReduceValuesTask
5968 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5969 dl 1.128 ReduceValuesTask<K,V> nextRight,
5970 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5971 dl 1.130 super(m, p, b); this.nextRight = nextRight;
5972 dl 1.119 this.reducer = reducer;
5973     }
5974 dl 1.146 public final V getRawResult() { return result; }
5975     @SuppressWarnings("unchecked") public final void compute() {
5976 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5977 dl 1.149 if ((reducer = this.reducer) != null) {
5978     for (int b; (b = preSplit()) > 0;)
5979     (rights = new ReduceValuesTask<K,V>
5980     (map, this, b, rights, reducer)).fork();
5981 dl 1.153 V r = null, v;
5982     while ((v = advance()) != null)
5983 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5984 dl 1.149 result = r;
5985     CountedCompleter<?> c;
5986     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5987     ReduceValuesTask<K,V>
5988     t = (ReduceValuesTask<K,V>)c,
5989     s = t.rights;
5990     while (s != null) {
5991     V tr, sr;
5992     if ((sr = s.result) != null)
5993     t.result = (((tr = t.result) == null) ? sr :
5994     reducer.apply(tr, sr));
5995     s = t.rights = s.nextRight;
5996     }
5997 dl 1.119 }
5998     }
5999 tim 1.1 }
6000 dl 1.119 }
6001 tim 1.1
6002 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6003 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
6004 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6005 dl 1.119 Map.Entry<K,V> result;
6006 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
6007 dl 1.119 ReduceEntriesTask
6008 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6009 dl 1.130 ReduceEntriesTask<K,V> nextRight,
6010 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6011 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6012 dl 1.119 this.reducer = reducer;
6013     }
6014 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
6015     @SuppressWarnings("unchecked") public final void compute() {
6016 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6017 dl 1.149 if ((reducer = this.reducer) != null) {
6018     for (int b; (b = preSplit()) > 0;)
6019     (rights = new ReduceEntriesTask<K,V>
6020     (map, this, b, rights, reducer)).fork();
6021     Map.Entry<K,V> r = null;
6022 dl 1.151 V v;
6023 dl 1.149 while ((v = advance()) != null) {
6024 jsr166 1.168 Map.Entry<K,V> u = entryFor(nextKey, v);
6025 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6026     }
6027     result = r;
6028     CountedCompleter<?> c;
6029     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6030     ReduceEntriesTask<K,V>
6031     t = (ReduceEntriesTask<K,V>)c,
6032     s = t.rights;
6033     while (s != null) {
6034     Map.Entry<K,V> tr, sr;
6035     if ((sr = s.result) != null)
6036     t.result = (((tr = t.result) == null) ? sr :
6037     reducer.apply(tr, sr));
6038     s = t.rights = s.nextRight;
6039     }
6040 dl 1.119 }
6041 dl 1.138 }
6042 dl 1.119 }
6043     }
6044 dl 1.99
6045 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6046 dl 1.146 extends Traverser<K,V,U> {
6047 dl 1.153 final Function<? super K, ? extends U> transformer;
6048     final BiFunction<? super U, ? super U, ? extends U> reducer;
6049 dl 1.119 U result;
6050 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
6051 dl 1.119 MapReduceKeysTask
6052 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6053 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
6054 dl 1.153 Function<? super K, ? extends U> transformer,
6055     BiFunction<? super U, ? super U, ? extends U> reducer) {
6056 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6057 dl 1.119 this.transformer = transformer;
6058     this.reducer = reducer;
6059     }
6060 dl 1.146 public final U getRawResult() { return result; }
6061     @SuppressWarnings("unchecked") public final void compute() {
6062 dl 1.153 final Function<? super K, ? extends U> transformer;
6063     final BiFunction<? super U, ? super U, ? extends U> reducer;
6064 dl 1.149 if ((transformer = this.transformer) != null &&
6065     (reducer = this.reducer) != null) {
6066     for (int b; (b = preSplit()) > 0;)
6067     (rights = new MapReduceKeysTask<K,V,U>
6068     (map, this, b, rights, transformer, reducer)).fork();
6069     U r = null, u;
6070     while (advance() != null) {
6071 jsr166 1.168 if ((u = transformer.apply(nextKey)) != null)
6072 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6073     }
6074     result = r;
6075     CountedCompleter<?> c;
6076     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6077     MapReduceKeysTask<K,V,U>
6078     t = (MapReduceKeysTask<K,V,U>)c,
6079     s = t.rights;
6080     while (s != null) {
6081     U tr, sr;
6082     if ((sr = s.result) != null)
6083     t.result = (((tr = t.result) == null) ? sr :
6084     reducer.apply(tr, sr));
6085     s = t.rights = s.nextRight;
6086     }
6087 dl 1.119 }
6088 dl 1.138 }
6089 tim 1.1 }
6090 dl 1.4 }
6091    
6092 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6093 dl 1.146 extends Traverser<K,V,U> {
6094 dl 1.153 final Function<? super V, ? extends U> transformer;
6095     final BiFunction<? super U, ? super U, ? extends U> reducer;
6096 dl 1.119 U result;
6097 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6098 dl 1.119 MapReduceValuesTask
6099 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6100 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6101 dl 1.153 Function<? super V, ? extends U> transformer,
6102     BiFunction<? super U, ? super U, ? extends U> reducer) {
6103 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6104 dl 1.119 this.transformer = transformer;
6105     this.reducer = reducer;
6106     }
6107 dl 1.146 public final U getRawResult() { return result; }
6108     @SuppressWarnings("unchecked") public final void compute() {
6109 dl 1.153 final Function<? super V, ? extends U> transformer;
6110     final BiFunction<? super U, ? super U, ? extends U> reducer;
6111 dl 1.149 if ((transformer = this.transformer) != null &&
6112     (reducer = this.reducer) != null) {
6113     for (int b; (b = preSplit()) > 0;)
6114     (rights = new MapReduceValuesTask<K,V,U>
6115     (map, this, b, rights, transformer, reducer)).fork();
6116     U r = null, u;
6117 dl 1.151 V v;
6118 dl 1.149 while ((v = advance()) != null) {
6119 dl 1.151 if ((u = transformer.apply(v)) != null)
6120 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6121     }
6122     result = r;
6123     CountedCompleter<?> c;
6124     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6125     MapReduceValuesTask<K,V,U>
6126     t = (MapReduceValuesTask<K,V,U>)c,
6127     s = t.rights;
6128     while (s != null) {
6129     U tr, sr;
6130     if ((sr = s.result) != null)
6131     t.result = (((tr = t.result) == null) ? sr :
6132     reducer.apply(tr, sr));
6133     s = t.rights = s.nextRight;
6134     }
6135 dl 1.119 }
6136     }
6137     }
6138 dl 1.4 }
6139    
6140 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6141 dl 1.146 extends Traverser<K,V,U> {
6142 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6143     final BiFunction<? super U, ? super U, ? extends U> reducer;
6144 dl 1.119 U result;
6145 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6146 dl 1.119 MapReduceEntriesTask
6147 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6148 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6149 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6150     BiFunction<? super U, ? super U, ? extends U> reducer) {
6151 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6152 dl 1.119 this.transformer = transformer;
6153     this.reducer = reducer;
6154     }
6155 dl 1.146 public final U getRawResult() { return result; }
6156     @SuppressWarnings("unchecked") public final void compute() {
6157 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6158     final BiFunction<? super U, ? super U, ? extends U> reducer;
6159 dl 1.149 if ((transformer = this.transformer) != null &&
6160     (reducer = this.reducer) != null) {
6161     for (int b; (b = preSplit()) > 0;)
6162     (rights = new MapReduceEntriesTask<K,V,U>
6163     (map, this, b, rights, transformer, reducer)).fork();
6164     U r = null, u;
6165 dl 1.151 V v;
6166 dl 1.149 while ((v = advance()) != null) {
6167 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
6168 dl 1.151 v))) != null)
6169 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6170     }
6171     result = r;
6172     CountedCompleter<?> c;
6173     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6174     MapReduceEntriesTask<K,V,U>
6175     t = (MapReduceEntriesTask<K,V,U>)c,
6176     s = t.rights;
6177     while (s != null) {
6178     U tr, sr;
6179     if ((sr = s.result) != null)
6180     t.result = (((tr = t.result) == null) ? sr :
6181     reducer.apply(tr, sr));
6182     s = t.rights = s.nextRight;
6183     }
6184 dl 1.119 }
6185 dl 1.138 }
6186 dl 1.119 }
6187 dl 1.4 }
6188 tim 1.1
6189 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6190 dl 1.146 extends Traverser<K,V,U> {
6191 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6192     final BiFunction<? super U, ? super U, ? extends U> reducer;
6193 dl 1.119 U result;
6194 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6195 dl 1.119 MapReduceMappingsTask
6196 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6197 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6198 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6199     BiFunction<? super U, ? super U, ? extends U> reducer) {
6200 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6201 dl 1.119 this.transformer = transformer;
6202     this.reducer = reducer;
6203     }
6204 dl 1.146 public final U getRawResult() { return result; }
6205     @SuppressWarnings("unchecked") public final void compute() {
6206 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6207     final BiFunction<? super U, ? super U, ? extends U> reducer;
6208 dl 1.149 if ((transformer = this.transformer) != null &&
6209     (reducer = this.reducer) != null) {
6210     for (int b; (b = preSplit()) > 0;)
6211     (rights = new MapReduceMappingsTask<K,V,U>
6212     (map, this, b, rights, transformer, reducer)).fork();
6213     U r = null, u;
6214 dl 1.151 V v;
6215 dl 1.149 while ((v = advance()) != null) {
6216 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
6217 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6218     }
6219     result = r;
6220     CountedCompleter<?> c;
6221     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6222     MapReduceMappingsTask<K,V,U>
6223     t = (MapReduceMappingsTask<K,V,U>)c,
6224     s = t.rights;
6225     while (s != null) {
6226     U tr, sr;
6227     if ((sr = s.result) != null)
6228     t.result = (((tr = t.result) == null) ? sr :
6229     reducer.apply(tr, sr));
6230     s = t.rights = s.nextRight;
6231     }
6232 dl 1.119 }
6233     }
6234     }
6235     }
6236 jsr166 1.114
6237 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6238 dl 1.146 extends Traverser<K,V,Double> {
6239 dl 1.171 final ToDoubleFunction<? super K> transformer;
6240 dl 1.153 final DoubleBinaryOperator reducer;
6241 dl 1.119 final double basis;
6242     double result;
6243 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6244 dl 1.119 MapReduceKeysToDoubleTask
6245 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6246 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6247 dl 1.171 ToDoubleFunction<? super K> transformer,
6248 dl 1.119 double basis,
6249 dl 1.153 DoubleBinaryOperator reducer) {
6250 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6251 dl 1.119 this.transformer = transformer;
6252     this.basis = basis; this.reducer = reducer;
6253     }
6254 dl 1.146 public final Double getRawResult() { return result; }
6255     @SuppressWarnings("unchecked") public final void compute() {
6256 dl 1.171 final ToDoubleFunction<? super K> transformer;
6257 dl 1.153 final DoubleBinaryOperator reducer;
6258 dl 1.149 if ((transformer = this.transformer) != null &&
6259     (reducer = this.reducer) != null) {
6260     double r = this.basis;
6261     for (int b; (b = preSplit()) > 0;)
6262     (rights = new MapReduceKeysToDoubleTask<K,V>
6263     (map, this, b, rights, transformer, r, reducer)).fork();
6264     while (advance() != null)
6265 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6266 dl 1.149 result = r;
6267     CountedCompleter<?> c;
6268     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6269     MapReduceKeysToDoubleTask<K,V>
6270     t = (MapReduceKeysToDoubleTask<K,V>)c,
6271     s = t.rights;
6272     while (s != null) {
6273 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6274 dl 1.149 s = t.rights = s.nextRight;
6275     }
6276 dl 1.119 }
6277 dl 1.138 }
6278 dl 1.79 }
6279 dl 1.119 }
6280 dl 1.79
6281 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6282 dl 1.146 extends Traverser<K,V,Double> {
6283 dl 1.171 final ToDoubleFunction<? super V> transformer;
6284 dl 1.153 final DoubleBinaryOperator reducer;
6285 dl 1.119 final double basis;
6286     double result;
6287 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6288 dl 1.119 MapReduceValuesToDoubleTask
6289 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6290 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6291 dl 1.171 ToDoubleFunction<? super V> transformer,
6292 dl 1.119 double basis,
6293 dl 1.153 DoubleBinaryOperator reducer) {
6294 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6295 dl 1.119 this.transformer = transformer;
6296     this.basis = basis; this.reducer = reducer;
6297     }
6298 dl 1.146 public final Double getRawResult() { return result; }
6299     @SuppressWarnings("unchecked") public final void compute() {
6300 dl 1.171 final ToDoubleFunction<? super V> transformer;
6301 dl 1.153 final DoubleBinaryOperator reducer;
6302 dl 1.149 if ((transformer = this.transformer) != null &&
6303     (reducer = this.reducer) != null) {
6304     double r = this.basis;
6305     for (int b; (b = preSplit()) > 0;)
6306     (rights = new MapReduceValuesToDoubleTask<K,V>
6307     (map, this, b, rights, transformer, r, reducer)).fork();
6308 dl 1.151 V v;
6309 dl 1.149 while ((v = advance()) != null)
6310 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6311 dl 1.149 result = r;
6312     CountedCompleter<?> c;
6313     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6314     MapReduceValuesToDoubleTask<K,V>
6315     t = (MapReduceValuesToDoubleTask<K,V>)c,
6316     s = t.rights;
6317     while (s != null) {
6318 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6319 dl 1.149 s = t.rights = s.nextRight;
6320     }
6321 dl 1.119 }
6322     }
6323 dl 1.30 }
6324 dl 1.79 }
6325 dl 1.30
6326 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6327 dl 1.146 extends Traverser<K,V,Double> {
6328 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6329 dl 1.153 final DoubleBinaryOperator reducer;
6330 dl 1.119 final double basis;
6331     double result;
6332 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6333 dl 1.119 MapReduceEntriesToDoubleTask
6334 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6335 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6336 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
6337 dl 1.119 double basis,
6338 dl 1.153 DoubleBinaryOperator reducer) {
6339 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6340 dl 1.119 this.transformer = transformer;
6341     this.basis = basis; this.reducer = reducer;
6342     }
6343 dl 1.146 public final Double getRawResult() { return result; }
6344     @SuppressWarnings("unchecked") public final void compute() {
6345 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6346 dl 1.153 final DoubleBinaryOperator reducer;
6347 dl 1.149 if ((transformer = this.transformer) != null &&
6348     (reducer = this.reducer) != null) {
6349     double r = this.basis;
6350     for (int b; (b = preSplit()) > 0;)
6351     (rights = new MapReduceEntriesToDoubleTask<K,V>
6352     (map, this, b, rights, transformer, r, reducer)).fork();
6353 dl 1.151 V v;
6354 dl 1.149 while ((v = advance()) != null)
6355 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6356 dl 1.151 v)));
6357 dl 1.149 result = r;
6358     CountedCompleter<?> c;
6359     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6360     MapReduceEntriesToDoubleTask<K,V>
6361     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6362     s = t.rights;
6363     while (s != null) {
6364 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6365 dl 1.149 s = t.rights = s.nextRight;
6366     }
6367 dl 1.119 }
6368 dl 1.138 }
6369 dl 1.30 }
6370 tim 1.1 }
6371    
6372 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6373 dl 1.146 extends Traverser<K,V,Double> {
6374 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6375 dl 1.153 final DoubleBinaryOperator reducer;
6376 dl 1.119 final double basis;
6377     double result;
6378 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6379 dl 1.119 MapReduceMappingsToDoubleTask
6380 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6381 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6382 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
6383 dl 1.119 double basis,
6384 dl 1.153 DoubleBinaryOperator reducer) {
6385 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6386 dl 1.119 this.transformer = transformer;
6387     this.basis = basis; this.reducer = reducer;
6388     }
6389 dl 1.146 public final Double getRawResult() { return result; }
6390     @SuppressWarnings("unchecked") public final void compute() {
6391 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6392 dl 1.153 final DoubleBinaryOperator reducer;
6393 dl 1.149 if ((transformer = this.transformer) != null &&
6394     (reducer = this.reducer) != null) {
6395     double r = this.basis;
6396     for (int b; (b = preSplit()) > 0;)
6397     (rights = new MapReduceMappingsToDoubleTask<K,V>
6398     (map, this, b, rights, transformer, r, reducer)).fork();
6399 dl 1.151 V v;
6400 dl 1.149 while ((v = advance()) != null)
6401 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6402 dl 1.149 result = r;
6403     CountedCompleter<?> c;
6404     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6405     MapReduceMappingsToDoubleTask<K,V>
6406     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6407     s = t.rights;
6408     while (s != null) {
6409 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6410 dl 1.149 s = t.rights = s.nextRight;
6411     }
6412 dl 1.119 }
6413     }
6414 dl 1.4 }
6415 dl 1.119 }
6416    
6417 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6418 dl 1.146 extends Traverser<K,V,Long> {
6419 dl 1.171 final ToLongFunction<? super K> transformer;
6420 dl 1.153 final LongBinaryOperator reducer;
6421 dl 1.119 final long basis;
6422     long result;
6423 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6424 dl 1.119 MapReduceKeysToLongTask
6425 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6426 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6427 dl 1.171 ToLongFunction<? super K> transformer,
6428 dl 1.119 long basis,
6429 dl 1.153 LongBinaryOperator reducer) {
6430 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6431 dl 1.119 this.transformer = transformer;
6432     this.basis = basis; this.reducer = reducer;
6433     }
6434 dl 1.146 public final Long getRawResult() { return result; }
6435     @SuppressWarnings("unchecked") public final void compute() {
6436 dl 1.171 final ToLongFunction<? super K> transformer;
6437 dl 1.153 final LongBinaryOperator reducer;
6438 dl 1.149 if ((transformer = this.transformer) != null &&
6439     (reducer = this.reducer) != null) {
6440     long r = this.basis;
6441     for (int b; (b = preSplit()) > 0;)
6442     (rights = new MapReduceKeysToLongTask<K,V>
6443     (map, this, b, rights, transformer, r, reducer)).fork();
6444     while (advance() != null)
6445 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6446 dl 1.149 result = r;
6447     CountedCompleter<?> c;
6448     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6449     MapReduceKeysToLongTask<K,V>
6450     t = (MapReduceKeysToLongTask<K,V>)c,
6451     s = t.rights;
6452     while (s != null) {
6453 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6454 dl 1.149 s = t.rights = s.nextRight;
6455     }
6456 dl 1.119 }
6457 dl 1.138 }
6458 dl 1.4 }
6459 dl 1.119 }
6460    
6461 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6462 dl 1.146 extends Traverser<K,V,Long> {
6463 dl 1.171 final ToLongFunction<? super V> transformer;
6464 dl 1.153 final LongBinaryOperator reducer;
6465 dl 1.119 final long basis;
6466     long result;
6467 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6468 dl 1.119 MapReduceValuesToLongTask
6469 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6470 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6471 dl 1.171 ToLongFunction<? super V> transformer,
6472 dl 1.119 long basis,
6473 dl 1.153 LongBinaryOperator reducer) {
6474 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6475 dl 1.119 this.transformer = transformer;
6476     this.basis = basis; this.reducer = reducer;
6477     }
6478 dl 1.146 public final Long getRawResult() { return result; }
6479     @SuppressWarnings("unchecked") public final void compute() {
6480 dl 1.171 final ToLongFunction<? super V> transformer;
6481 dl 1.153 final LongBinaryOperator reducer;
6482 dl 1.149 if ((transformer = this.transformer) != null &&
6483     (reducer = this.reducer) != null) {
6484     long r = this.basis;
6485     for (int b; (b = preSplit()) > 0;)
6486     (rights = new MapReduceValuesToLongTask<K,V>
6487     (map, this, b, rights, transformer, r, reducer)).fork();
6488 dl 1.151 V v;
6489 dl 1.149 while ((v = advance()) != null)
6490 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6491 dl 1.149 result = r;
6492     CountedCompleter<?> c;
6493     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6494     MapReduceValuesToLongTask<K,V>
6495     t = (MapReduceValuesToLongTask<K,V>)c,
6496     s = t.rights;
6497     while (s != null) {
6498 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6499 dl 1.149 s = t.rights = s.nextRight;
6500     }
6501 dl 1.119 }
6502     }
6503 jsr166 1.95 }
6504 dl 1.119 }
6505    
6506 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6507 dl 1.146 extends Traverser<K,V,Long> {
6508 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6509 dl 1.153 final LongBinaryOperator reducer;
6510 dl 1.119 final long basis;
6511     long result;
6512 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6513 dl 1.119 MapReduceEntriesToLongTask
6514 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6515 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6516 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6517 dl 1.119 long basis,
6518 dl 1.153 LongBinaryOperator reducer) {
6519 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6520 dl 1.119 this.transformer = transformer;
6521     this.basis = basis; this.reducer = reducer;
6522     }
6523 dl 1.146 public final Long getRawResult() { return result; }
6524     @SuppressWarnings("unchecked") public final void compute() {
6525 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6526 dl 1.153 final LongBinaryOperator reducer;
6527 dl 1.149 if ((transformer = this.transformer) != null &&
6528     (reducer = this.reducer) != null) {
6529     long r = this.basis;
6530     for (int b; (b = preSplit()) > 0;)
6531     (rights = new MapReduceEntriesToLongTask<K,V>
6532     (map, this, b, rights, transformer, r, reducer)).fork();
6533 dl 1.151 V v;
6534 dl 1.149 while ((v = advance()) != null)
6535 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6536 dl 1.149 result = r;
6537     CountedCompleter<?> c;
6538     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6539     MapReduceEntriesToLongTask<K,V>
6540     t = (MapReduceEntriesToLongTask<K,V>)c,
6541     s = t.rights;
6542     while (s != null) {
6543 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6544 dl 1.149 s = t.rights = s.nextRight;
6545     }
6546 dl 1.119 }
6547 dl 1.138 }
6548 dl 1.4 }
6549 tim 1.1 }
6550    
6551 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6552 dl 1.146 extends Traverser<K,V,Long> {
6553 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6554 dl 1.153 final LongBinaryOperator reducer;
6555 dl 1.119 final long basis;
6556     long result;
6557 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6558 dl 1.119 MapReduceMappingsToLongTask
6559 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6560 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6561 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6562 dl 1.119 long basis,
6563 dl 1.153 LongBinaryOperator reducer) {
6564 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6565 dl 1.119 this.transformer = transformer;
6566     this.basis = basis; this.reducer = reducer;
6567     }
6568 dl 1.146 public final Long getRawResult() { return result; }
6569     @SuppressWarnings("unchecked") public final void compute() {
6570 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6571 dl 1.153 final LongBinaryOperator reducer;
6572 dl 1.149 if ((transformer = this.transformer) != null &&
6573     (reducer = this.reducer) != null) {
6574     long r = this.basis;
6575     for (int b; (b = preSplit()) > 0;)
6576     (rights = new MapReduceMappingsToLongTask<K,V>
6577     (map, this, b, rights, transformer, r, reducer)).fork();
6578 dl 1.151 V v;
6579 dl 1.149 while ((v = advance()) != null)
6580 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6581 dl 1.149 result = r;
6582     CountedCompleter<?> c;
6583     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6584     MapReduceMappingsToLongTask<K,V>
6585     t = (MapReduceMappingsToLongTask<K,V>)c,
6586     s = t.rights;
6587     while (s != null) {
6588 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6589 dl 1.149 s = t.rights = s.nextRight;
6590     }
6591 dl 1.119 }
6592     }
6593 dl 1.4 }
6594 tim 1.1 }
6595    
6596 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6597 dl 1.146 extends Traverser<K,V,Integer> {
6598 dl 1.171 final ToIntFunction<? super K> transformer;
6599 dl 1.153 final IntBinaryOperator reducer;
6600 dl 1.119 final int basis;
6601     int result;
6602 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6603 dl 1.119 MapReduceKeysToIntTask
6604 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6605 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6606 dl 1.171 ToIntFunction<? super K> transformer,
6607 dl 1.119 int basis,
6608 dl 1.153 IntBinaryOperator reducer) {
6609 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6610 dl 1.119 this.transformer = transformer;
6611     this.basis = basis; this.reducer = reducer;
6612     }
6613 dl 1.146 public final Integer getRawResult() { return result; }
6614     @SuppressWarnings("unchecked") public final void compute() {
6615 dl 1.171 final ToIntFunction<? super K> transformer;
6616 dl 1.153 final IntBinaryOperator reducer;
6617 dl 1.149 if ((transformer = this.transformer) != null &&
6618     (reducer = this.reducer) != null) {
6619     int r = this.basis;
6620     for (int b; (b = preSplit()) > 0;)
6621     (rights = new MapReduceKeysToIntTask<K,V>
6622     (map, this, b, rights, transformer, r, reducer)).fork();
6623     while (advance() != null)
6624 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6625 dl 1.149 result = r;
6626     CountedCompleter<?> c;
6627     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6628     MapReduceKeysToIntTask<K,V>
6629     t = (MapReduceKeysToIntTask<K,V>)c,
6630     s = t.rights;
6631     while (s != null) {
6632 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6633 dl 1.149 s = t.rights = s.nextRight;
6634     }
6635 dl 1.119 }
6636 dl 1.138 }
6637 dl 1.30 }
6638     }
6639    
6640 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6641 dl 1.146 extends Traverser<K,V,Integer> {
6642 dl 1.171 final ToIntFunction<? super V> transformer;
6643 dl 1.153 final IntBinaryOperator reducer;
6644 dl 1.119 final int basis;
6645     int result;
6646 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6647 dl 1.119 MapReduceValuesToIntTask
6648 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6649 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6650 dl 1.171 ToIntFunction<? super V> transformer,
6651 dl 1.119 int basis,
6652 dl 1.153 IntBinaryOperator reducer) {
6653 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6654 dl 1.119 this.transformer = transformer;
6655     this.basis = basis; this.reducer = reducer;
6656     }
6657 dl 1.146 public final Integer getRawResult() { return result; }
6658     @SuppressWarnings("unchecked") public final void compute() {
6659 dl 1.171 final ToIntFunction<? super V> transformer;
6660 dl 1.153 final IntBinaryOperator reducer;
6661 dl 1.149 if ((transformer = this.transformer) != null &&
6662     (reducer = this.reducer) != null) {
6663     int r = this.basis;
6664     for (int b; (b = preSplit()) > 0;)
6665     (rights = new MapReduceValuesToIntTask<K,V>
6666     (map, this, b, rights, transformer, r, reducer)).fork();
6667 dl 1.151 V v;
6668 dl 1.149 while ((v = advance()) != null)
6669 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6670 dl 1.149 result = r;
6671     CountedCompleter<?> c;
6672     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6673     MapReduceValuesToIntTask<K,V>
6674     t = (MapReduceValuesToIntTask<K,V>)c,
6675     s = t.rights;
6676     while (s != null) {
6677 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6678 dl 1.149 s = t.rights = s.nextRight;
6679     }
6680 dl 1.119 }
6681 dl 1.2 }
6682 tim 1.1 }
6683     }
6684    
6685 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6686 dl 1.146 extends Traverser<K,V,Integer> {
6687 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6688 dl 1.153 final IntBinaryOperator reducer;
6689 dl 1.119 final int basis;
6690     int result;
6691 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6692 dl 1.119 MapReduceEntriesToIntTask
6693 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6694 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6695 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6696 dl 1.119 int basis,
6697 dl 1.153 IntBinaryOperator reducer) {
6698 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6699 dl 1.119 this.transformer = transformer;
6700     this.basis = basis; this.reducer = reducer;
6701     }
6702 dl 1.146 public final Integer getRawResult() { return result; }
6703     @SuppressWarnings("unchecked") public final void compute() {
6704 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6705 dl 1.153 final IntBinaryOperator reducer;
6706 dl 1.149 if ((transformer = this.transformer) != null &&
6707     (reducer = this.reducer) != null) {
6708     int r = this.basis;
6709     for (int b; (b = preSplit()) > 0;)
6710     (rights = new MapReduceEntriesToIntTask<K,V>
6711     (map, this, b, rights, transformer, r, reducer)).fork();
6712 dl 1.151 V v;
6713 dl 1.149 while ((v = advance()) != null)
6714 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6715 dl 1.151 v)));
6716 dl 1.149 result = r;
6717     CountedCompleter<?> c;
6718     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6719     MapReduceEntriesToIntTask<K,V>
6720     t = (MapReduceEntriesToIntTask<K,V>)c,
6721     s = t.rights;
6722     while (s != null) {
6723 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6724 dl 1.149 s = t.rights = s.nextRight;
6725     }
6726 dl 1.119 }
6727 dl 1.138 }
6728 dl 1.4 }
6729 dl 1.119 }
6730 tim 1.1
6731 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6732 dl 1.146 extends Traverser<K,V,Integer> {
6733 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6734 dl 1.153 final IntBinaryOperator reducer;
6735 dl 1.119 final int basis;
6736     int result;
6737 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6738 dl 1.119 MapReduceMappingsToIntTask
6739 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6740     MapReduceMappingsToIntTask<K,V> nextRight,
6741 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6742 dl 1.119 int basis,
6743 dl 1.153 IntBinaryOperator reducer) {
6744 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6745 dl 1.119 this.transformer = transformer;
6746     this.basis = basis; this.reducer = reducer;
6747     }
6748 dl 1.146 public final Integer getRawResult() { return result; }
6749     @SuppressWarnings("unchecked") public final void compute() {
6750 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6751 dl 1.153 final IntBinaryOperator reducer;
6752 dl 1.149 if ((transformer = this.transformer) != null &&
6753     (reducer = this.reducer) != null) {
6754     int r = this.basis;
6755     for (int b; (b = preSplit()) > 0;)
6756     (rights = new MapReduceMappingsToIntTask<K,V>
6757     (map, this, b, rights, transformer, r, reducer)).fork();
6758 dl 1.151 V v;
6759 dl 1.149 while ((v = advance()) != null)
6760 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6761 dl 1.149 result = r;
6762     CountedCompleter<?> c;
6763     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6764     MapReduceMappingsToIntTask<K,V>
6765     t = (MapReduceMappingsToIntTask<K,V>)c,
6766     s = t.rights;
6767     while (s != null) {
6768 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6769 dl 1.149 s = t.rights = s.nextRight;
6770     }
6771 dl 1.119 }
6772 dl 1.138 }
6773 tim 1.1 }
6774     }
6775 dl 1.99
6776     // Unsafe mechanics
6777 dl 1.149 private static final sun.misc.Unsafe U;
6778     private static final long SIZECTL;
6779     private static final long TRANSFERINDEX;
6780     private static final long TRANSFERORIGIN;
6781     private static final long BASECOUNT;
6782 dl 1.153 private static final long CELLSBUSY;
6783 dl 1.149 private static final long CELLVALUE;
6784 dl 1.119 private static final long ABASE;
6785     private static final int ASHIFT;
6786 dl 1.99
6787     static {
6788     try {
6789 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6790 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6791 dl 1.149 SIZECTL = U.objectFieldOffset
6792 dl 1.119 (k.getDeclaredField("sizeCtl"));
6793 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6794     (k.getDeclaredField("transferIndex"));
6795     TRANSFERORIGIN = U.objectFieldOffset
6796     (k.getDeclaredField("transferOrigin"));
6797     BASECOUNT = U.objectFieldOffset
6798     (k.getDeclaredField("baseCount"));
6799 dl 1.153 CELLSBUSY = U.objectFieldOffset
6800     (k.getDeclaredField("cellsBusy"));
6801     Class<?> ck = Cell.class;
6802 dl 1.149 CELLVALUE = U.objectFieldOffset
6803     (ck.getDeclaredField("value"));
6804 dl 1.119 Class<?> sc = Node[].class;
6805 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6806 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6807     if ((scale & (scale - 1)) != 0)
6808     throw new Error("data type scale not a power of two");
6809     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6810 dl 1.99 } catch (Exception e) {
6811     throw new Error(e);
6812     }
6813     }
6814 jsr166 1.152
6815     }