ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.195
Committed: Sat Mar 16 16:03:08 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.194: +14 -10 lines
Log Message:
Sync with lambda spliterator semantics

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.119 import java.util.concurrent.ForkJoinPool;
9 dl 1.146 import java.util.concurrent.CountedCompleter;
10 dl 1.153 import java.util.function.*;
11 dl 1.162 import java.util.Spliterator;
12 dl 1.153 import java.util.stream.Stream;
13     import java.util.stream.Streams;
14 dl 1.119
15     import java.util.Comparator;
16     import java.util.Arrays;
17     import java.util.Map;
18     import java.util.Set;
19     import java.util.Collection;
20     import java.util.AbstractMap;
21     import java.util.AbstractSet;
22     import java.util.AbstractCollection;
23     import java.util.Hashtable;
24     import java.util.HashMap;
25     import java.util.Iterator;
26     import java.util.Enumeration;
27     import java.util.ConcurrentModificationException;
28     import java.util.NoSuchElementException;
29     import java.util.concurrent.ConcurrentMap;
30     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 dl 1.149 import java.util.concurrent.atomic.AtomicInteger;
32 dl 1.119 import java.util.concurrent.atomic.AtomicReference;
33 tim 1.1 import java.io.Serializable;
34    
35     /**
36 dl 1.4 * A hash table supporting full concurrency of retrievals and
37 dl 1.119 * high expected concurrency for updates. This class obeys the
38 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
39 dl 1.19 * includes versions of methods corresponding to each method of
40 dl 1.119 * {@code Hashtable}. However, even though all operations are
41 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
42     * and there is <em>not</em> any support for locking the entire table
43     * in a way that prevents all access. This class is fully
44 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
45 dl 1.4 * thread safety but not on its synchronization details.
46 tim 1.11 *
47 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
48 dl 1.119 * block, so may overlap with update operations (including {@code put}
49     * and {@code remove}). Retrievals reflect the results of the most
50     * recently <em>completed</em> update operations holding upon their
51 dl 1.126 * onset. (More formally, an update operation for a given key bears a
52     * <em>happens-before</em> relation with any (non-null) retrieval for
53     * that key reporting the updated value.) For aggregate operations
54     * such as {@code putAll} and {@code clear}, concurrent retrievals may
55     * reflect insertion or removal of only some entries. Similarly,
56     * Iterators and Enumerations return elements reflecting the state of
57     * the hash table at some point at or since the creation of the
58     * iterator/enumeration. They do <em>not</em> throw {@link
59     * ConcurrentModificationException}. However, iterators are designed
60     * to be used by only one thread at a time. Bear in mind that the
61     * results of aggregate status methods including {@code size}, {@code
62     * isEmpty}, and {@code containsValue} are typically useful only when
63     * a map is not undergoing concurrent updates in other threads.
64     * Otherwise the results of these methods reflect transient states
65     * that may be adequate for monitoring or estimation purposes, but not
66     * for program control.
67 tim 1.1 *
68 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
69 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
70     * the same slot modulo the table size), with the expected average
71     * effect of maintaining roughly two bins per mapping (corresponding
72     * to a 0.75 load factor threshold for resizing). There may be much
73     * variance around this average as mappings are added and removed, but
74     * overall, this maintains a commonly accepted time/space tradeoff for
75     * hash tables. However, resizing this or any other kind of hash
76     * table may be a relatively slow operation. When possible, it is a
77     * good idea to provide a size estimate as an optional {@code
78     * initialCapacity} constructor argument. An additional optional
79     * {@code loadFactor} constructor argument provides a further means of
80     * customizing initial table capacity by specifying the table density
81     * to be used in calculating the amount of space to allocate for the
82     * given number of elements. Also, for compatibility with previous
83     * versions of this class, constructors may optionally specify an
84     * expected {@code concurrencyLevel} as an additional hint for
85     * internal sizing. Note that using many keys with exactly the same
86     * {@code hashCode()} is a sure way to slow down performance of any
87     * hash table.
88 tim 1.1 *
89 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91     * (using {@link #keySet(Object)} when only keys are of interest, and the
92     * mapped values are (perhaps transiently) not used or all take the
93     * same mapping value.
94     *
95 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 dl 1.153 * form of histogram or multiset) by using {@link
97     * java.util.concurrent.atomic.LongAdder} values and initializing via
98 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 dl 1.137 *
102 dl 1.45 * <p>This class and its views and iterators implement all of the
103     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104     * interfaces.
105 dl 1.23 *
106 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
108 tim 1.1 *
109 dl 1.151 * <p>ConcurrentHashMaps support sequential and parallel operations
110     * bulk operations. (Parallel forms use the {@link
111     * ForkJoinPool#commonPool()}). Tasks that may be used in other
112     * contexts are available in class {@link ForkJoinTasks}. These
113     * operations are designed to be safely, and often sensibly, applied
114     * even with maps that are being concurrently updated by other
115     * threads; for example, when computing a snapshot summary of the
116     * values in a shared registry. There are three kinds of operation,
117     * each with four forms, accepting functions with Keys, Values,
118     * Entries, and (Key, Value) arguments and/or return values. Because
119     * the elements of a ConcurrentHashMap are not ordered in any
120     * particular way, and may be processed in different orders in
121     * different parallel executions, the correctness of supplied
122     * functions should not depend on any ordering, or on any other
123     * objects or values that may transiently change while computation is
124     * in progress; and except for forEach actions, should ideally be
125     * side-effect-free.
126 dl 1.137 *
127     * <ul>
128     * <li> forEach: Perform a given action on each element.
129     * A variant form applies a given transformation on each element
130     * before performing the action.</li>
131     *
132     * <li> search: Return the first available non-null result of
133     * applying a given function on each element; skipping further
134     * search when a result is found.</li>
135     *
136     * <li> reduce: Accumulate each element. The supplied reduction
137     * function cannot rely on ordering (more formally, it should be
138     * both associative and commutative). There are five variants:
139     *
140     * <ul>
141     *
142     * <li> Plain reductions. (There is not a form of this method for
143     * (key, value) function arguments since there is no corresponding
144     * return type.)</li>
145     *
146     * <li> Mapped reductions that accumulate the results of a given
147     * function applied to each element.</li>
148     *
149     * <li> Reductions to scalar doubles, longs, and ints, using a
150     * given basis value.</li>
151     *
152 jsr166 1.178 * </ul>
153 dl 1.137 * </li>
154     * </ul>
155     *
156     * <p>The concurrency properties of bulk operations follow
157     * from those of ConcurrentHashMap: Any non-null result returned
158     * from {@code get(key)} and related access methods bears a
159     * happens-before relation with the associated insertion or
160     * update. The result of any bulk operation reflects the
161     * composition of these per-element relations (but is not
162     * necessarily atomic with respect to the map as a whole unless it
163     * is somehow known to be quiescent). Conversely, because keys
164     * and values in the map are never null, null serves as a reliable
165     * atomic indicator of the current lack of any result. To
166     * maintain this property, null serves as an implicit basis for
167     * all non-scalar reduction operations. For the double, long, and
168     * int versions, the basis should be one that, when combined with
169     * any other value, returns that other value (more formally, it
170     * should be the identity element for the reduction). Most common
171     * reductions have these properties; for example, computing a sum
172     * with basis 0 or a minimum with basis MAX_VALUE.
173     *
174     * <p>Search and transformation functions provided as arguments
175     * should similarly return null to indicate the lack of any result
176     * (in which case it is not used). In the case of mapped
177     * reductions, this also enables transformations to serve as
178     * filters, returning null (or, in the case of primitive
179     * specializations, the identity basis) if the element should not
180     * be combined. You can create compound transformations and
181     * filterings by composing them yourself under this "null means
182     * there is nothing there now" rule before using them in search or
183     * reduce operations.
184     *
185     * <p>Methods accepting and/or returning Entry arguments maintain
186     * key-value associations. They may be useful for example when
187     * finding the key for the greatest value. Note that "plain" Entry
188     * arguments can be supplied using {@code new
189     * AbstractMap.SimpleEntry(k,v)}.
190     *
191 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
192 dl 1.137 * exception encountered in the application of a supplied
193     * function. Bear in mind when handling such exceptions that other
194     * concurrently executing functions could also have thrown
195     * exceptions, or would have done so if the first exception had
196     * not occurred.
197     *
198 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
199     * but not guaranteed. Parallel operations involving brief functions
200     * on small maps may execute more slowly than sequential forms if the
201     * underlying work to parallelize the computation is more expensive
202     * than the computation itself. Similarly, parallelization may not
203     * lead to much actual parallelism if all processors are busy
204     * performing unrelated tasks.
205 dl 1.137 *
206 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
207 dl 1.137 *
208 dl 1.42 * <p>This class is a member of the
209 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 dl 1.42 * Java Collections Framework</a>.
211     *
212 dl 1.8 * @since 1.5
213     * @author Doug Lea
214 dl 1.27 * @param <K> the type of keys maintained by this map
215 jsr166 1.64 * @param <V> the type of mapped values
216 dl 1.8 */
217 jsr166 1.186 public class ConcurrentHashMap<K,V>
218     implements ConcurrentMap<K,V>, Serializable {
219 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
220 tim 1.1
221     /*
222 dl 1.119 * Overview:
223     *
224     * The primary design goal of this hash table is to maintain
225     * concurrent readability (typically method get(), but also
226     * iterators and related methods) while minimizing update
227     * contention. Secondary goals are to keep space consumption about
228     * the same or better than java.util.HashMap, and to support high
229     * initial insertion rates on an empty table by many threads.
230     *
231 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
232     * fields can contain special values, they are defined using plain
233     * Object types (not type "K"). This leads to a lot of explicit
234     * casting (and many explicit warning suppressions to tell
235     * compilers not to complain about it). It also allows some of the
236     * public methods to be factored into a smaller number of internal
237     * methods (although sadly not so for the five variants of
238     * put-related operations). The validation-based approach
239     * explained below leads to a lot of code sprawl because
240 dl 1.119 * retry-control precludes factoring into smaller methods.
241     *
242     * The table is lazily initialized to a power-of-two size upon the
243     * first insertion. Each bin in the table normally contains a
244     * list of Nodes (most often, the list has only zero or one Node).
245     * Table accesses require volatile/atomic reads, writes, and
246     * CASes. Because there is no other way to arrange this without
247     * adding further indirections, we use intrinsics
248     * (sun.misc.Unsafe) operations. The lists of nodes within bins
249     * are always accurately traversable under volatile reads, so long
250     * as lookups check hash code and non-nullness of value before
251     * checking key equality.
252     *
253 dl 1.149 * We use the top (sign) bit of Node hash fields for control
254     * purposes -- it is available anyway because of addressing
255     * constraints. Nodes with negative hash fields are forwarding
256     * nodes to either TreeBins or resized tables. The lower 31 bits
257     * of each normal Node's hash field contain a transformation of
258     * the key's hash code.
259 dl 1.119 *
260     * Insertion (via put or its variants) of the first node in an
261     * empty bin is performed by just CASing it to the bin. This is
262     * by far the most common case for put operations under most
263     * key/hash distributions. Other update operations (insert,
264     * delete, and replace) require locks. We do not want to waste
265     * the space required to associate a distinct lock object with
266     * each bin, so instead use the first node of a bin list itself as
267 dl 1.149 * a lock. Locking support for these locks relies on builtin
268     * "synchronized" monitors.
269 dl 1.119 *
270     * Using the first node of a list as a lock does not by itself
271     * suffice though: When a node is locked, any update must first
272     * validate that it is still the first node after locking it, and
273     * retry if not. Because new nodes are always appended to lists,
274     * once a node is first in a bin, it remains first until deleted
275     * or the bin becomes invalidated (upon resizing). However,
276     * operations that only conditionally update may inspect nodes
277     * until the point of update. This is a converse of sorts to the
278     * lazy locking technique described by Herlihy & Shavit.
279     *
280     * The main disadvantage of per-bin locks is that other update
281     * operations on other nodes in a bin list protected by the same
282     * lock can stall, for example when user equals() or mapping
283     * functions take a long time. However, statistically, under
284     * random hash codes, this is not a common problem. Ideally, the
285     * frequency of nodes in bins follows a Poisson distribution
286     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287     * parameter of about 0.5 on average, given the resizing threshold
288     * of 0.75, although with a large variance because of resizing
289     * granularity. Ignoring variance, the expected occurrences of
290     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291     * first values are:
292     *
293     * 0: 0.60653066
294     * 1: 0.30326533
295     * 2: 0.07581633
296     * 3: 0.01263606
297     * 4: 0.00157952
298     * 5: 0.00015795
299     * 6: 0.00001316
300     * 7: 0.00000094
301     * 8: 0.00000006
302     * more: less than 1 in ten million
303     *
304     * Lock contention probability for two threads accessing distinct
305     * elements is roughly 1 / (8 * #elements) under random hashes.
306     *
307     * Actual hash code distributions encountered in practice
308     * sometimes deviate significantly from uniform randomness. This
309     * includes the case when N > (1<<30), so some keys MUST collide.
310     * Similarly for dumb or hostile usages in which multiple keys are
311     * designed to have identical hash codes. Also, although we guard
312     * against the worst effects of this (see method spread), sets of
313     * hashes may differ only in bits that do not impact their bin
314     * index for a given power-of-two mask. So we use a secondary
315     * strategy that applies when the number of nodes in a bin exceeds
316     * a threshold, and at least one of the keys implements
317     * Comparable. These TreeBins use a balanced tree to hold nodes
318     * (a specialized form of red-black trees), bounding search time
319     * to O(log N). Each search step in a TreeBin is around twice as
320     * slow as in a regular list, but given that N cannot exceed
321     * (1<<64) (before running out of addresses) this bounds search
322     * steps, lock hold times, etc, to reasonable constants (roughly
323     * 100 nodes inspected per operation worst case) so long as keys
324     * are Comparable (which is very common -- String, Long, etc).
325     * TreeBin nodes (TreeNodes) also maintain the same "next"
326     * traversal pointers as regular nodes, so can be traversed in
327     * iterators in the same way.
328     *
329     * The table is resized when occupancy exceeds a percentage
330 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
331     * noticing an overfull bin may assist in resizing after the
332     * initiating thread allocates and sets up the replacement
333     * array. However, rather than stalling, these other threads may
334     * proceed with insertions etc. The use of TreeBins shields us
335     * from the worst case effects of overfilling while resizes are in
336     * progress. Resizing proceeds by transferring bins, one by one,
337     * from the table to the next table. To enable concurrency, the
338     * next table must be (incrementally) prefilled with place-holders
339     * serving as reverse forwarders to the old table. Because we are
340     * using power-of-two expansion, the elements from each bin must
341     * either stay at same index, or move with a power of two
342     * offset. We eliminate unnecessary node creation by catching
343     * cases where old nodes can be reused because their next fields
344     * won't change. On average, only about one-sixth of them need
345     * cloning when a table doubles. The nodes they replace will be
346     * garbage collectable as soon as they are no longer referenced by
347     * any reader thread that may be in the midst of concurrently
348     * traversing table. Upon transfer, the old table bin contains
349     * only a special forwarding node (with hash field "MOVED") that
350     * contains the next table as its key. On encountering a
351     * forwarding node, access and update operations restart, using
352     * the new table.
353     *
354     * Each bin transfer requires its bin lock, which can stall
355     * waiting for locks while resizing. However, because other
356     * threads can join in and help resize rather than contend for
357     * locks, average aggregate waits become shorter as resizing
358     * progresses. The transfer operation must also ensure that all
359     * accessible bins in both the old and new table are usable by any
360     * traversal. This is arranged by proceeding from the last bin
361     * (table.length - 1) up towards the first. Upon seeing a
362     * forwarding node, traversals (see class Traverser) arrange to
363     * move to the new table without revisiting nodes. However, to
364     * ensure that no intervening nodes are skipped, bin splitting can
365     * only begin after the associated reverse-forwarders are in
366     * place.
367 dl 1.119 *
368     * The traversal scheme also applies to partial traversals of
369     * ranges of bins (via an alternate Traverser constructor)
370     * to support partitioned aggregate operations. Also, read-only
371     * operations give up if ever forwarded to a null table, which
372     * provides support for shutdown-style clearing, which is also not
373     * currently implemented.
374     *
375     * Lazy table initialization minimizes footprint until first use,
376     * and also avoids resizings when the first operation is from a
377     * putAll, constructor with map argument, or deserialization.
378     * These cases attempt to override the initial capacity settings,
379     * but harmlessly fail to take effect in cases of races.
380     *
381 dl 1.149 * The element count is maintained using a specialization of
382     * LongAdder. We need to incorporate a specialization rather than
383     * just use a LongAdder in order to access implicit
384     * contention-sensing that leads to creation of multiple
385 dl 1.153 * Cells. The counter mechanics avoid contention on
386 dl 1.149 * updates but can encounter cache thrashing if read too
387     * frequently during concurrent access. To avoid reading so often,
388     * resizing under contention is attempted only upon adding to a
389     * bin already holding two or more nodes. Under uniform hash
390     * distributions, the probability of this occurring at threshold
391     * is around 13%, meaning that only about 1 in 8 puts check
392     * threshold (and after resizing, many fewer do so). The bulk
393     * putAll operation further reduces contention by only committing
394     * count updates upon these size checks.
395 dl 1.119 *
396     * Maintaining API and serialization compatibility with previous
397     * versions of this class introduces several oddities. Mainly: We
398     * leave untouched but unused constructor arguments refering to
399     * concurrencyLevel. We accept a loadFactor constructor argument,
400     * but apply it only to initial table capacity (which is the only
401     * time that we can guarantee to honor it.) We also declare an
402     * unused "Segment" class that is instantiated in minimal form
403     * only when serializing.
404 dl 1.4 */
405 tim 1.1
406 dl 1.4 /* ---------------- Constants -------------- */
407 tim 1.11
408 dl 1.4 /**
409 dl 1.119 * The largest possible table capacity. This value must be
410     * exactly 1<<30 to stay within Java array allocation and indexing
411     * bounds for power of two table sizes, and is further required
412     * because the top two bits of 32bit hash fields are used for
413     * control purposes.
414 dl 1.4 */
415 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
416 dl 1.56
417     /**
418 dl 1.119 * The default initial table capacity. Must be a power of 2
419     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 dl 1.56 */
421 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
422 dl 1.56
423     /**
424 dl 1.119 * The largest possible (non-power of two) array size.
425     * Needed by toArray and related methods.
426 jsr166 1.59 */
427 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428 tim 1.1
429     /**
430 dl 1.119 * The default concurrency level for this table. Unused but
431     * defined for compatibility with previous versions of this class.
432 dl 1.4 */
433 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434 tim 1.11
435 tim 1.1 /**
436 dl 1.119 * The load factor for this table. Overrides of this value in
437     * constructors affect only the initial table capacity. The
438     * actual floating point value isn't normally used -- it is
439     * simpler to use expressions such as {@code n - (n >>> 2)} for
440     * the associated resizing threshold.
441 dl 1.99 */
442 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
443 dl 1.99
444     /**
445 dl 1.119 * The bin count threshold for using a tree rather than list for a
446     * bin. The value reflects the approximate break-even point for
447     * using tree-based operations.
448     */
449     private static final int TREE_THRESHOLD = 8;
450    
451 dl 1.149 /**
452     * Minimum number of rebinnings per transfer step. Ranges are
453     * subdivided to allow multiple resizer threads. This value
454     * serves as a lower bound to avoid resizers encountering
455     * excessive memory contention. The value should be at least
456     * DEFAULT_CAPACITY.
457     */
458     private static final int MIN_TRANSFER_STRIDE = 16;
459    
460 dl 1.119 /*
461 dl 1.149 * Encodings for Node hash fields. See above for explanation.
462 dl 1.46 */
463 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465    
466     /** Number of CPUS, to place bounds on some sizings */
467     static final int NCPU = Runtime.getRuntime().availableProcessors();
468    
469     /* ---------------- Counters -------------- */
470    
471     // Adapted from LongAdder and Striped64.
472     // See their internal docs for explanation.
473    
474     // A padded cell for distributing counts
475 dl 1.153 static final class Cell {
476 dl 1.149 volatile long p0, p1, p2, p3, p4, p5, p6;
477     volatile long value;
478     volatile long q0, q1, q2, q3, q4, q5, q6;
479 dl 1.153 Cell(long x) { value = x; }
480 dl 1.149 }
481    
482 dl 1.4 /* ---------------- Fields -------------- */
483 tim 1.1
484     /**
485 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
486     * Size is always a power of two. Accessed directly by iterators.
487 jsr166 1.59 */
488 dl 1.151 transient volatile Node<V>[] table;
489 tim 1.1
490     /**
491 dl 1.149 * The next table to use; non-null only while resizing.
492 jsr166 1.59 */
493 dl 1.151 private transient volatile Node<V>[] nextTable;
494 dl 1.149
495     /**
496     * Base counter value, used mainly when there is no contention,
497     * but also as a fallback during table initialization
498     * races. Updated via CAS.
499     */
500     private transient volatile long baseCount;
501 tim 1.1
502     /**
503 dl 1.119 * Table initialization and resizing control. When negative, the
504 dl 1.149 * table is being initialized or resized: -1 for initialization,
505     * else -(1 + the number of active resizing threads). Otherwise,
506     * when table is null, holds the initial table size to use upon
507     * creation, or 0 for default. After initialization, holds the
508     * next element count value upon which to resize the table.
509 tim 1.1 */
510 dl 1.119 private transient volatile int sizeCtl;
511 dl 1.4
512 dl 1.149 /**
513     * The next table index (plus one) to split while resizing.
514     */
515     private transient volatile int transferIndex;
516    
517     /**
518     * The least available table index to split while resizing.
519     */
520     private transient volatile int transferOrigin;
521    
522     /**
523     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524     */
525 dl 1.153 private transient volatile int cellsBusy;
526 dl 1.149
527     /**
528     * Table of counter cells. When non-null, size is a power of 2.
529     */
530 dl 1.153 private transient volatile Cell[] counterCells;
531 dl 1.149
532 dl 1.119 // views
533 dl 1.137 private transient KeySetView<K,V> keySet;
534 dl 1.142 private transient ValuesView<K,V> values;
535     private transient EntrySetView<K,V> entrySet;
536 dl 1.119
537     /** For serialization compatibility. Null unless serialized; see below */
538     private Segment<K,V>[] segments;
539    
540     /* ---------------- Table element access -------------- */
541    
542     /*
543     * Volatile access methods are used for table elements as well as
544     * elements of in-progress next table while resizing. Uses are
545     * null checked by callers, and implicitly bounds-checked, relying
546     * on the invariants that tab arrays have non-zero size, and all
547     * indices are masked with (tab.length - 1) which is never
548     * negative and always less than length. Note that, to be correct
549     * wrt arbitrary concurrency errors by users, bounds checks must
550     * operate on local variables, which accounts for some odd-looking
551     * inline assignments below.
552     */
553    
554 dl 1.151 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555     (Node<V>[] tab, int i) { // used by Traverser
556     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 dl 1.119 }
558    
559 dl 1.151 private static final <V> boolean casTabAt
560     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 dl 1.119 }
563    
564 dl 1.151 private static final <V> void setTabAt
565     (Node<V>[] tab, int i, Node<V> v) {
566 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 dl 1.119 }
568    
569     /* ---------------- Nodes -------------- */
570 dl 1.4
571 dl 1.99 /**
572 dl 1.119 * Key-value entry. Note that this is never exported out as a
573     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574     * field of MOVED are special, and do not contain user keys or
575     * values. Otherwise, keys are never null, and null val fields
576     * indicate that a node is in the process of being deleted or
577     * created. For purposes of read-only access, a key may be read
578     * before a val, but can only be used after checking val to be
579     * non-null.
580 dl 1.99 */
581 dl 1.151 static class Node<V> {
582 dl 1.149 final int hash;
583 dl 1.119 final Object key;
584 dl 1.151 volatile V val;
585     volatile Node<V> next;
586 dl 1.99
587 dl 1.151 Node(int hash, Object key, V val, Node<V> next) {
588 dl 1.99 this.hash = hash;
589     this.key = key;
590 dl 1.119 this.val = val;
591 dl 1.99 this.next = next;
592     }
593     }
594    
595 dl 1.119 /* ---------------- TreeBins -------------- */
596    
597 dl 1.99 /**
598 dl 1.119 * Nodes for use in TreeBins
599 dl 1.99 */
600 dl 1.151 static final class TreeNode<V> extends Node<V> {
601     TreeNode<V> parent; // red-black tree links
602     TreeNode<V> left;
603     TreeNode<V> right;
604     TreeNode<V> prev; // needed to unlink next upon deletion
605 dl 1.119 boolean red;
606 dl 1.99
607 dl 1.151 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 dl 1.119 super(hash, key, val, next);
609     this.parent = parent;
610     }
611 dl 1.99 }
612 tim 1.1
613     /**
614 dl 1.119 * A specialized form of red-black tree for use in bins
615     * whose size exceeds a threshold.
616     *
617     * TreeBins use a special form of comparison for search and
618     * related operations (which is the main reason we cannot use
619     * existing collections such as TreeMaps). TreeBins contain
620     * Comparable elements, but may contain others, as well as
621     * elements that are Comparable but not necessarily Comparable<T>
622     * for the same T, so we cannot invoke compareTo among them. To
623     * handle this, the tree is ordered primarily by hash value, then
624     * by getClass().getName() order, and then by Comparator order
625     * among elements of the same class. On lookup at a node, if
626     * elements are not comparable or compare as 0, both left and
627     * right children may need to be searched in the case of tied hash
628     * values. (This corresponds to the full list search that would be
629     * necessary if all elements were non-Comparable and had tied
630     * hashes.) The red-black balancing code is updated from
631     * pre-jdk-collections
632     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634     * Algorithms" (CLR).
635     *
636     * TreeBins also maintain a separate locking discipline than
637     * regular bins. Because they are forwarded via special MOVED
638     * nodes at bin heads (which can never change once established),
639     * we cannot use those nodes as locks. Instead, TreeBin
640     * extends AbstractQueuedSynchronizer to support a simple form of
641     * read-write lock. For update operations and table validation,
642     * the exclusive form of lock behaves in the same way as bin-head
643     * locks. However, lookups use shared read-lock mechanics to allow
644     * multiple readers in the absence of writers. Additionally,
645     * these lookups do not ever block: While the lock is not
646     * available, they proceed along the slow traversal path (via
647     * next-pointers) until the lock becomes available or the list is
648     * exhausted, whichever comes first. (These cases are not fast,
649     * but maximize aggregate expected throughput.) The AQS mechanics
650     * for doing this are straightforward. The lock state is held as
651     * AQS getState(). Read counts are negative; the write count (1)
652     * is positive. There are no signalling preferences among readers
653     * and writers. Since we don't need to export full Lock API, we
654     * just override the minimal AQS methods and use them directly.
655     */
656 dl 1.151 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
658 dl 1.151 transient TreeNode<V> root; // root of tree
659     transient TreeNode<V> first; // head of next-pointer list
660 dl 1.24
661 dl 1.119 /* AQS overrides */
662     public final boolean isHeldExclusively() { return getState() > 0; }
663     public final boolean tryAcquire(int ignore) {
664     if (compareAndSetState(0, 1)) {
665     setExclusiveOwnerThread(Thread.currentThread());
666     return true;
667     }
668     return false;
669     }
670     public final boolean tryRelease(int ignore) {
671     setExclusiveOwnerThread(null);
672     setState(0);
673     return true;
674     }
675     public final int tryAcquireShared(int ignore) {
676     for (int c;;) {
677     if ((c = getState()) > 0)
678     return -1;
679     if (compareAndSetState(c, c -1))
680     return 1;
681     }
682     }
683     public final boolean tryReleaseShared(int ignore) {
684     int c;
685     do {} while (!compareAndSetState(c = getState(), c + 1));
686     return c == -1;
687     }
688    
689     /** From CLR */
690 dl 1.151 private void rotateLeft(TreeNode<V> p) {
691 dl 1.119 if (p != null) {
692 dl 1.151 TreeNode<V> r = p.right, pp, rl;
693 dl 1.119 if ((rl = p.right = r.left) != null)
694     rl.parent = p;
695     if ((pp = r.parent = p.parent) == null)
696     root = r;
697     else if (pp.left == p)
698     pp.left = r;
699     else
700     pp.right = r;
701     r.left = p;
702     p.parent = r;
703     }
704     }
705 dl 1.4
706 dl 1.119 /** From CLR */
707 dl 1.151 private void rotateRight(TreeNode<V> p) {
708 dl 1.119 if (p != null) {
709 dl 1.151 TreeNode<V> l = p.left, pp, lr;
710 dl 1.119 if ((lr = p.left = l.right) != null)
711     lr.parent = p;
712     if ((pp = l.parent = p.parent) == null)
713     root = l;
714     else if (pp.right == p)
715     pp.right = l;
716     else
717     pp.left = l;
718     l.right = p;
719     p.parent = l;
720     }
721     }
722 dl 1.4
723     /**
724 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
725 dl 1.119 * starting at given root.
726 dl 1.4 */
727 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728     (int h, Object k, TreeNode<V> p) {
729 dl 1.119 Class<?> c = k.getClass();
730     while (p != null) {
731     int dir, ph; Object pk; Class<?> pc;
732     if ((ph = p.hash) == h) {
733     if ((pk = p.key) == k || k.equals(pk))
734     return p;
735     if (c != (pc = pk.getClass()) ||
736     !(k instanceof Comparable) ||
737     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 dl 1.148 if ((dir = (c == pc) ? 0 :
739     c.getName().compareTo(pc.getName())) == 0) {
740 dl 1.151 TreeNode<V> r = null, pl, pr; // check both sides
741 dl 1.148 if ((pr = p.right) != null && h >= pr.hash &&
742     (r = getTreeNode(h, k, pr)) != null)
743     return r;
744     else if ((pl = p.left) != null && h <= pl.hash)
745     dir = -1;
746     else // nothing there
747     return null;
748 dl 1.99 }
749 dl 1.45 }
750     }
751 dl 1.119 else
752     dir = (h < ph) ? -1 : 1;
753     p = (dir > 0) ? p.right : p.left;
754 dl 1.33 }
755 dl 1.119 return null;
756 dl 1.33 }
757    
758 dl 1.99 /**
759 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760     * read-lock to call getTreeNode, but during failure to get
761     * lock, searches along next links.
762 dl 1.99 */
763 dl 1.151 final V getValue(int h, Object k) {
764     Node<V> r = null;
765 dl 1.119 int c = getState(); // Must read lock state first
766 dl 1.151 for (Node<V> e = first; e != null; e = e.next) {
767 dl 1.119 if (c <= 0 && compareAndSetState(c, c - 1)) {
768     try {
769     r = getTreeNode(h, k, root);
770     } finally {
771     releaseShared(0);
772 dl 1.99 }
773     break;
774     }
775 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
776 dl 1.119 r = e;
777 dl 1.99 break;
778     }
779 dl 1.119 else
780     c = getState();
781 dl 1.99 }
782 dl 1.119 return r == null ? null : r.val;
783 dl 1.99 }
784    
785     /**
786 dl 1.119 * Finds or adds a node.
787     * @return null if added
788 dl 1.6 */
789 dl 1.151 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790     (int h, Object k, V v) {
791 dl 1.119 Class<?> c = k.getClass();
792 dl 1.151 TreeNode<V> pp = root, p = null;
793 dl 1.119 int dir = 0;
794     while (pp != null) { // find existing node or leaf to insert at
795     int ph; Object pk; Class<?> pc;
796     p = pp;
797     if ((ph = p.hash) == h) {
798     if ((pk = p.key) == k || k.equals(pk))
799     return p;
800     if (c != (pc = pk.getClass()) ||
801     !(k instanceof Comparable) ||
802     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 dl 1.151 TreeNode<V> s = null, r = null, pr;
804 dl 1.148 if ((dir = (c == pc) ? 0 :
805     c.getName().compareTo(pc.getName())) == 0) {
806     if ((pr = p.right) != null && h >= pr.hash &&
807     (r = getTreeNode(h, k, pr)) != null)
808     return r;
809     else // continue left
810     dir = -1;
811 dl 1.99 }
812 dl 1.119 else if ((pr = p.right) != null && h >= pr.hash)
813     s = pr;
814     if (s != null && (r = getTreeNode(h, k, s)) != null)
815     return r;
816 dl 1.99 }
817     }
818 dl 1.119 else
819     dir = (h < ph) ? -1 : 1;
820     pp = (dir > 0) ? p.right : p.left;
821 dl 1.99 }
822    
823 dl 1.151 TreeNode<V> f = first;
824     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 dl 1.119 if (p == null)
826     root = x;
827     else { // attach and rebalance; adapted from CLR
828 dl 1.151 TreeNode<V> xp, xpp;
829 dl 1.119 if (f != null)
830     f.prev = x;
831     if (dir <= 0)
832     p.left = x;
833     else
834     p.right = x;
835     x.red = true;
836     while (x != null && (xp = x.parent) != null && xp.red &&
837     (xpp = xp.parent) != null) {
838 dl 1.151 TreeNode<V> xppl = xpp.left;
839 dl 1.119 if (xp == xppl) {
840 dl 1.151 TreeNode<V> y = xpp.right;
841 dl 1.119 if (y != null && y.red) {
842     y.red = false;
843     xp.red = false;
844     xpp.red = true;
845     x = xpp;
846     }
847     else {
848     if (x == xp.right) {
849     rotateLeft(x = xp);
850     xpp = (xp = x.parent) == null ? null : xp.parent;
851     }
852     if (xp != null) {
853     xp.red = false;
854     if (xpp != null) {
855     xpp.red = true;
856     rotateRight(xpp);
857     }
858     }
859     }
860     }
861     else {
862 dl 1.151 TreeNode<V> y = xppl;
863 dl 1.119 if (y != null && y.red) {
864     y.red = false;
865     xp.red = false;
866     xpp.red = true;
867     x = xpp;
868     }
869     else {
870     if (x == xp.left) {
871     rotateRight(x = xp);
872     xpp = (xp = x.parent) == null ? null : xp.parent;
873     }
874     if (xp != null) {
875     xp.red = false;
876     if (xpp != null) {
877     xpp.red = true;
878     rotateLeft(xpp);
879     }
880     }
881 dl 1.99 }
882     }
883     }
884 dl 1.151 TreeNode<V> r = root;
885 dl 1.119 if (r != null && r.red)
886     r.red = false;
887 dl 1.99 }
888 dl 1.119 return null;
889 dl 1.99 }
890 dl 1.45
891 dl 1.119 /**
892     * Removes the given node, that must be present before this
893     * call. This is messier than typical red-black deletion code
894     * because we cannot swap the contents of an interior node
895     * with a leaf successor that is pinned by "next" pointers
896     * that are accessible independently of lock. So instead we
897     * swap the tree linkages.
898     */
899 dl 1.151 final void deleteTreeNode(TreeNode<V> p) {
900     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901     TreeNode<V> pred = p.prev;
902 dl 1.119 if (pred == null)
903     first = next;
904     else
905     pred.next = next;
906     if (next != null)
907     next.prev = pred;
908 dl 1.151 TreeNode<V> replacement;
909     TreeNode<V> pl = p.left;
910     TreeNode<V> pr = p.right;
911 dl 1.119 if (pl != null && pr != null) {
912 dl 1.151 TreeNode<V> s = pr, sl;
913 dl 1.119 while ((sl = s.left) != null) // find successor
914     s = sl;
915     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 dl 1.151 TreeNode<V> sr = s.right;
917     TreeNode<V> pp = p.parent;
918 dl 1.119 if (s == pr) { // p was s's direct parent
919     p.parent = s;
920     s.right = p;
921     }
922     else {
923 dl 1.151 TreeNode<V> sp = s.parent;
924 dl 1.119 if ((p.parent = sp) != null) {
925     if (s == sp.left)
926     sp.left = p;
927     else
928     sp.right = p;
929 dl 1.45 }
930 dl 1.119 if ((s.right = pr) != null)
931     pr.parent = s;
932 dl 1.4 }
933 dl 1.119 p.left = null;
934     if ((p.right = sr) != null)
935     sr.parent = p;
936     if ((s.left = pl) != null)
937     pl.parent = s;
938     if ((s.parent = pp) == null)
939     root = s;
940     else if (p == pp.left)
941     pp.left = s;
942     else
943     pp.right = s;
944     replacement = sr;
945     }
946     else
947     replacement = (pl != null) ? pl : pr;
948 dl 1.151 TreeNode<V> pp = p.parent;
949 dl 1.119 if (replacement == null) {
950     if (pp == null) {
951     root = null;
952     return;
953     }
954     replacement = p;
955 dl 1.99 }
956 dl 1.119 else {
957     replacement.parent = pp;
958     if (pp == null)
959     root = replacement;
960     else if (p == pp.left)
961     pp.left = replacement;
962     else
963     pp.right = replacement;
964     p.left = p.right = p.parent = null;
965 dl 1.4 }
966 dl 1.119 if (!p.red) { // rebalance, from CLR
967 dl 1.151 TreeNode<V> x = replacement;
968 dl 1.119 while (x != null) {
969 dl 1.151 TreeNode<V> xp, xpl;
970 dl 1.119 if (x.red || (xp = x.parent) == null) {
971     x.red = false;
972 dl 1.99 break;
973 dl 1.119 }
974     if (x == (xpl = xp.left)) {
975 dl 1.151 TreeNode<V> sib = xp.right;
976 dl 1.119 if (sib != null && sib.red) {
977     sib.red = false;
978     xp.red = true;
979     rotateLeft(xp);
980     sib = (xp = x.parent) == null ? null : xp.right;
981     }
982     if (sib == null)
983     x = xp;
984     else {
985 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
986 dl 1.119 if ((sr == null || !sr.red) &&
987     (sl == null || !sl.red)) {
988     sib.red = true;
989     x = xp;
990     }
991     else {
992     if (sr == null || !sr.red) {
993     if (sl != null)
994     sl.red = false;
995     sib.red = true;
996     rotateRight(sib);
997 dl 1.149 sib = (xp = x.parent) == null ?
998     null : xp.right;
999 dl 1.119 }
1000     if (sib != null) {
1001     sib.red = (xp == null) ? false : xp.red;
1002     if ((sr = sib.right) != null)
1003     sr.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateLeft(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     else { // symmetric
1014 dl 1.151 TreeNode<V> sib = xpl;
1015 dl 1.119 if (sib != null && sib.red) {
1016     sib.red = false;
1017     xp.red = true;
1018     rotateRight(xp);
1019     sib = (xp = x.parent) == null ? null : xp.left;
1020     }
1021     if (sib == null)
1022     x = xp;
1023     else {
1024 dl 1.151 TreeNode<V> sl = sib.left, sr = sib.right;
1025 dl 1.119 if ((sl == null || !sl.red) &&
1026     (sr == null || !sr.red)) {
1027     sib.red = true;
1028     x = xp;
1029     }
1030     else {
1031     if (sl == null || !sl.red) {
1032     if (sr != null)
1033     sr.red = false;
1034     sib.red = true;
1035     rotateLeft(sib);
1036 dl 1.149 sib = (xp = x.parent) == null ?
1037     null : xp.left;
1038 dl 1.119 }
1039     if (sib != null) {
1040     sib.red = (xp == null) ? false : xp.red;
1041     if ((sl = sib.left) != null)
1042     sl.red = false;
1043     }
1044     if (xp != null) {
1045     xp.red = false;
1046     rotateRight(xp);
1047     }
1048     x = root;
1049     }
1050     }
1051     }
1052 dl 1.45 }
1053 dl 1.4 }
1054 dl 1.119 if (p == replacement && (pp = p.parent) != null) {
1055     if (p == pp.left) // detach pointers
1056     pp.left = null;
1057     else if (p == pp.right)
1058     pp.right = null;
1059     p.parent = null;
1060     }
1061 dl 1.4 }
1062 tim 1.1 }
1063    
1064 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1065 tim 1.1
1066 dl 1.99 /**
1067 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1068 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1069     * that vary only in bits above the current mask will always
1070     * collide. (Among known examples are sets of Float keys holding
1071     * consecutive whole numbers in small tables.) To counter this,
1072     * we apply a transform that spreads the impact of higher bits
1073     * downward. There is a tradeoff between speed, utility, and
1074     * quality of bit-spreading. Because many common sets of hashes
1075     * are already reasonably distributed across bits (so don't benefit
1076     * from spreading), and because we use trees to handle large sets
1077     * of collisions in bins, we don't need excessively high quality.
1078     */
1079     private static final int spread(int h) {
1080     h ^= (h >>> 18) ^ (h >>> 12);
1081     return (h ^ (h >>> 10)) & HASH_BITS;
1082 dl 1.99 }
1083    
1084     /**
1085 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1086     * only when locked.
1087 dl 1.119 */
1088 dl 1.151 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 dl 1.149 if (key instanceof Comparable) {
1090 dl 1.151 TreeBin<V> t = new TreeBin<V>();
1091     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1093 dl 1.151 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 dl 1.119 }
1095 dl 1.99 }
1096 tim 1.11
1097 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1098    
1099     /** Implementation for get and containsKey */
1100 dl 1.149 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 dl 1.119 int h = spread(k.hashCode());
1102 dl 1.151 retry: for (Node<V>[] tab = table; tab != null;) {
1103     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 dl 1.119 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 dl 1.149 if ((eh = e.hash) < 0) {
1106 dl 1.119 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 dl 1.151 return ((TreeBin<V>)ek).getValue(h, k);
1108     else { // restart with new table
1109     tab = (Node<V>[])ek;
1110 dl 1.119 continue retry;
1111     }
1112     }
1113 dl 1.149 else if (eh == h && (ev = e.val) != null &&
1114 dl 1.119 ((ek = e.key) == k || k.equals(ek)))
1115 dl 1.151 return ev;
1116 dl 1.119 }
1117     break;
1118     }
1119     return null;
1120 tim 1.1 }
1121    
1122     /**
1123 dl 1.119 * Implementation for the four public remove/replace methods:
1124     * Replaces node value with v, conditional upon match of cv if
1125     * non-null. If resulting value is null, delete.
1126     */
1127 dl 1.149 @SuppressWarnings("unchecked") private final V internalReplace
1128     (Object k, V v, Object cv) {
1129 dl 1.119 int h = spread(k.hashCode());
1130 dl 1.151 V oldVal = null;
1131     for (Node<V>[] tab = table;;) {
1132     Node<V> f; int i, fh; Object fk;
1133 dl 1.119 if (tab == null ||
1134     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135     break;
1136 dl 1.149 else if ((fh = f.hash) < 0) {
1137 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1138 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1139 dl 1.119 boolean validated = false;
1140     boolean deleted = false;
1141     t.acquire(0);
1142     try {
1143     if (tabAt(tab, i) == f) {
1144     validated = true;
1145 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 dl 1.119 if (p != null) {
1147 dl 1.151 V pv = p.val;
1148 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1149     oldVal = pv;
1150     if ((p.val = v) == null) {
1151     deleted = true;
1152     t.deleteTreeNode(p);
1153     }
1154     }
1155     }
1156     }
1157     } finally {
1158     t.release(0);
1159     }
1160     if (validated) {
1161     if (deleted)
1162 dl 1.149 addCount(-1L, -1);
1163 dl 1.119 break;
1164     }
1165     }
1166     else
1167 dl 1.151 tab = (Node<V>[])fk;
1168 dl 1.119 }
1169 dl 1.149 else if (fh != h && f.next == null) // precheck
1170 dl 1.119 break; // rules out possible existence
1171 dl 1.149 else {
1172 dl 1.119 boolean validated = false;
1173     boolean deleted = false;
1174 jsr166 1.150 synchronized (f) {
1175 dl 1.119 if (tabAt(tab, i) == f) {
1176     validated = true;
1177 dl 1.151 for (Node<V> e = f, pred = null;;) {
1178     Object ek; V ev;
1179 dl 1.149 if (e.hash == h &&
1180 dl 1.119 ((ev = e.val) != null) &&
1181     ((ek = e.key) == k || k.equals(ek))) {
1182     if (cv == null || cv == ev || cv.equals(ev)) {
1183     oldVal = ev;
1184     if ((e.val = v) == null) {
1185     deleted = true;
1186 dl 1.151 Node<V> en = e.next;
1187 dl 1.119 if (pred != null)
1188     pred.next = en;
1189     else
1190     setTabAt(tab, i, en);
1191     }
1192     }
1193     break;
1194     }
1195     pred = e;
1196     if ((e = e.next) == null)
1197     break;
1198     }
1199     }
1200     }
1201     if (validated) {
1202     if (deleted)
1203 dl 1.149 addCount(-1L, -1);
1204 dl 1.119 break;
1205     }
1206     }
1207     }
1208 dl 1.151 return oldVal;
1209 dl 1.55 }
1210    
1211 dl 1.119 /*
1212 dl 1.149 * Internal versions of insertion methods
1213     * All have the same basic structure as the first (internalPut):
1214 dl 1.119 * 1. If table uninitialized, create
1215     * 2. If bin empty, try to CAS new node
1216     * 3. If bin stale, use new table
1217     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218     * 5. Lock and validate; if valid, scan and add or update
1219 tim 1.1 *
1220 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1221     * enough table space, and also more lazily performs count updates
1222     * and checks.
1223     *
1224     * Most of the function-accepting methods can't be factored nicely
1225     * because they require different functional forms, so instead
1226     * sprawl out similar mechanics.
1227 tim 1.1 */
1228    
1229 dl 1.149 /** Implementation for put and putIfAbsent */
1230     @SuppressWarnings("unchecked") private final V internalPut
1231     (K k, V v, boolean onlyIfAbsent) {
1232     if (k == null || v == null) throw new NullPointerException();
1233 dl 1.119 int h = spread(k.hashCode());
1234 dl 1.149 int len = 0;
1235 dl 1.151 for (Node<V>[] tab = table;;) {
1236     int i, fh; Node<V> f; Object fk; V fv;
1237 dl 1.119 if (tab == null)
1238     tab = initTable();
1239     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 dl 1.119 break; // no lock when adding to empty bin
1242 dl 1.99 }
1243 dl 1.149 else if ((fh = f.hash) < 0) {
1244 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1245 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1246     V oldVal = null;
1247 dl 1.119 t.acquire(0);
1248     try {
1249     if (tabAt(tab, i) == f) {
1250 dl 1.149 len = 2;
1251 dl 1.151 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 dl 1.119 if (p != null) {
1253     oldVal = p.val;
1254 dl 1.149 if (!onlyIfAbsent)
1255     p.val = v;
1256 dl 1.119 }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261 dl 1.149 if (len != 0) {
1262 dl 1.119 if (oldVal != null)
1263 dl 1.151 return oldVal;
1264 dl 1.119 break;
1265     }
1266     }
1267     else
1268 dl 1.151 tab = (Node<V>[])fk;
1269 dl 1.119 }
1270 dl 1.149 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 dl 1.151 return fv;
1273 dl 1.149 else {
1274 dl 1.151 V oldVal = null;
1275 jsr166 1.150 synchronized (f) {
1276 dl 1.119 if (tabAt(tab, i) == f) {
1277 dl 1.149 len = 1;
1278 dl 1.151 for (Node<V> e = f;; ++len) {
1279     Object ek; V ev;
1280 dl 1.149 if (e.hash == h &&
1281 dl 1.119 (ev = e.val) != null &&
1282     ((ek = e.key) == k || k.equals(ek))) {
1283     oldVal = ev;
1284 dl 1.149 if (!onlyIfAbsent)
1285     e.val = v;
1286 dl 1.119 break;
1287     }
1288 dl 1.151 Node<V> last = e;
1289 dl 1.119 if ((e = e.next) == null) {
1290 dl 1.151 last.next = new Node<V>(h, k, v, null);
1291 dl 1.149 if (len >= TREE_THRESHOLD)
1292 dl 1.119 replaceWithTreeBin(tab, i, k);
1293     break;
1294     }
1295     }
1296     }
1297     }
1298 dl 1.149 if (len != 0) {
1299 dl 1.119 if (oldVal != null)
1300 dl 1.151 return oldVal;
1301 dl 1.119 break;
1302     }
1303     }
1304 dl 1.45 }
1305 dl 1.149 addCount(1L, len);
1306 dl 1.119 return null;
1307 dl 1.21 }
1308    
1309 dl 1.119 /** Implementation for computeIfAbsent */
1310 dl 1.149 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 dl 1.153 (K k, Function<? super K, ? extends V> mf) {
1312 dl 1.149 if (k == null || mf == null)
1313     throw new NullPointerException();
1314 dl 1.119 int h = spread(k.hashCode());
1315 dl 1.151 V val = null;
1316 dl 1.149 int len = 0;
1317 dl 1.151 for (Node<V>[] tab = table;;) {
1318     Node<V> f; int i; Object fk;
1319 dl 1.119 if (tab == null)
1320     tab = initTable();
1321     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1323 jsr166 1.150 synchronized (node) {
1324 dl 1.149 if (casTabAt(tab, i, null, node)) {
1325     len = 1;
1326     try {
1327     if ((val = mf.apply(k)) != null)
1328     node.val = val;
1329     } finally {
1330     if (val == null)
1331     setTabAt(tab, i, null);
1332 dl 1.119 }
1333     }
1334     }
1335 dl 1.149 if (len != 0)
1336 dl 1.119 break;
1337     }
1338 dl 1.149 else if (f.hash < 0) {
1339 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1340 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1341 dl 1.119 boolean added = false;
1342     t.acquire(0);
1343     try {
1344     if (tabAt(tab, i) == f) {
1345 dl 1.149 len = 1;
1346 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 dl 1.119 if (p != null)
1348     val = p.val;
1349     else if ((val = mf.apply(k)) != null) {
1350     added = true;
1351 dl 1.149 len = 2;
1352 dl 1.119 t.putTreeNode(h, k, val);
1353     }
1354     }
1355     } finally {
1356     t.release(0);
1357     }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (!added)
1360 dl 1.151 return val;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.151 tab = (Node<V>[])fk;
1366 dl 1.119 }
1367     else {
1368 dl 1.151 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369     Object ek; V ev;
1370 dl 1.149 if (e.hash == h && (ev = e.val) != null &&
1371     ((ek = e.key) == k || k.equals(ek)))
1372 dl 1.151 return ev;
1373 dl 1.119 }
1374 dl 1.149 boolean added = false;
1375 jsr166 1.150 synchronized (f) {
1376 dl 1.149 if (tabAt(tab, i) == f) {
1377     len = 1;
1378 dl 1.151 for (Node<V> e = f;; ++len) {
1379     Object ek; V ev;
1380 dl 1.149 if (e.hash == h &&
1381     (ev = e.val) != null &&
1382     ((ek = e.key) == k || k.equals(ek))) {
1383     val = ev;
1384     break;
1385     }
1386 dl 1.151 Node<V> last = e;
1387 dl 1.149 if ((e = e.next) == null) {
1388     if ((val = mf.apply(k)) != null) {
1389     added = true;
1390 dl 1.151 last.next = new Node<V>(h, k, val, null);
1391 dl 1.149 if (len >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.119 }
1394 dl 1.149 break;
1395 dl 1.119 }
1396     }
1397     }
1398 dl 1.149 }
1399     if (len != 0) {
1400     if (!added)
1401 dl 1.151 return val;
1402 dl 1.149 break;
1403 dl 1.119 }
1404 dl 1.105 }
1405 dl 1.99 }
1406 dl 1.149 if (val != null)
1407     addCount(1L, len);
1408 dl 1.151 return val;
1409 tim 1.1 }
1410    
1411 dl 1.119 /** Implementation for compute */
1412 dl 1.149 @SuppressWarnings("unchecked") private final V internalCompute
1413     (K k, boolean onlyIfPresent,
1414 dl 1.153 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 dl 1.149 if (k == null || mf == null)
1416     throw new NullPointerException();
1417 dl 1.119 int h = spread(k.hashCode());
1418 dl 1.151 V val = null;
1419 dl 1.119 int delta = 0;
1420 dl 1.149 int len = 0;
1421 dl 1.151 for (Node<V>[] tab = table;;) {
1422     Node<V> f; int i, fh; Object fk;
1423 dl 1.119 if (tab == null)
1424     tab = initTable();
1425     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426     if (onlyIfPresent)
1427     break;
1428 dl 1.151 Node<V> node = new Node<V>(h, k, null, null);
1429 jsr166 1.150 synchronized (node) {
1430 dl 1.149 if (casTabAt(tab, i, null, node)) {
1431     try {
1432     len = 1;
1433     if ((val = mf.apply(k, null)) != null) {
1434     node.val = val;
1435     delta = 1;
1436     }
1437     } finally {
1438     if (delta == 0)
1439     setTabAt(tab, i, null);
1440 dl 1.119 }
1441     }
1442     }
1443 dl 1.149 if (len != 0)
1444 dl 1.119 break;
1445     }
1446 dl 1.149 else if ((fh = f.hash) < 0) {
1447 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1448 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1449 dl 1.119 t.acquire(0);
1450     try {
1451     if (tabAt(tab, i) == f) {
1452 dl 1.149 len = 1;
1453 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 dl 1.149 if (p == null && onlyIfPresent)
1455     break;
1456 dl 1.151 V pv = (p == null) ? null : p.val;
1457     if ((val = mf.apply(k, pv)) != null) {
1458 dl 1.119 if (p != null)
1459     p.val = val;
1460     else {
1461 dl 1.149 len = 2;
1462 dl 1.119 delta = 1;
1463     t.putTreeNode(h, k, val);
1464     }
1465     }
1466     else if (p != null) {
1467     delta = -1;
1468     t.deleteTreeNode(p);
1469     }
1470     }
1471     } finally {
1472     t.release(0);
1473     }
1474 dl 1.149 if (len != 0)
1475 dl 1.119 break;
1476     }
1477     else
1478 dl 1.151 tab = (Node<V>[])fk;
1479 dl 1.119 }
1480 dl 1.149 else {
1481 jsr166 1.150 synchronized (f) {
1482 dl 1.119 if (tabAt(tab, i) == f) {
1483 dl 1.149 len = 1;
1484 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1485     Object ek; V ev;
1486 dl 1.149 if (e.hash == h &&
1487 dl 1.119 (ev = e.val) != null &&
1488     ((ek = e.key) == k || k.equals(ek))) {
1489 dl 1.151 val = mf.apply(k, ev);
1490 dl 1.119 if (val != null)
1491     e.val = val;
1492     else {
1493     delta = -1;
1494 dl 1.151 Node<V> en = e.next;
1495 dl 1.119 if (pred != null)
1496     pred.next = en;
1497     else
1498     setTabAt(tab, i, en);
1499     }
1500     break;
1501     }
1502     pred = e;
1503     if ((e = e.next) == null) {
1504 dl 1.149 if (!onlyIfPresent &&
1505     (val = mf.apply(k, null)) != null) {
1506 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1507 dl 1.119 delta = 1;
1508 dl 1.149 if (len >= TREE_THRESHOLD)
1509 dl 1.119 replaceWithTreeBin(tab, i, k);
1510     }
1511     break;
1512     }
1513     }
1514     }
1515     }
1516 dl 1.149 if (len != 0)
1517 dl 1.119 break;
1518     }
1519     }
1520 dl 1.149 if (delta != 0)
1521     addCount((long)delta, len);
1522 dl 1.151 return val;
1523 dl 1.119 }
1524    
1525 dl 1.126 /** Implementation for merge */
1526 dl 1.149 @SuppressWarnings("unchecked") private final V internalMerge
1527 dl 1.153 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 dl 1.149 if (k == null || v == null || mf == null)
1529     throw new NullPointerException();
1530 dl 1.119 int h = spread(k.hashCode());
1531 dl 1.151 V val = null;
1532 dl 1.119 int delta = 0;
1533 dl 1.149 int len = 0;
1534 dl 1.151 for (Node<V>[] tab = table;;) {
1535     int i; Node<V> f; Object fk; V fv;
1536 dl 1.119 if (tab == null)
1537     tab = initTable();
1538     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 dl 1.119 delta = 1;
1541     val = v;
1542     break;
1543     }
1544     }
1545 dl 1.149 else if (f.hash < 0) {
1546 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1547 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1548 dl 1.119 t.acquire(0);
1549     try {
1550     if (tabAt(tab, i) == f) {
1551 dl 1.149 len = 1;
1552 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553     val = (p == null) ? v : mf.apply(p.val, v);
1554 dl 1.119 if (val != null) {
1555     if (p != null)
1556     p.val = val;
1557     else {
1558 dl 1.149 len = 2;
1559 dl 1.119 delta = 1;
1560     t.putTreeNode(h, k, val);
1561     }
1562     }
1563     else if (p != null) {
1564     delta = -1;
1565     t.deleteTreeNode(p);
1566     }
1567     }
1568     } finally {
1569     t.release(0);
1570     }
1571 dl 1.149 if (len != 0)
1572 dl 1.119 break;
1573     }
1574     else
1575 dl 1.151 tab = (Node<V>[])fk;
1576 dl 1.119 }
1577 dl 1.149 else {
1578 jsr166 1.150 synchronized (f) {
1579 dl 1.119 if (tabAt(tab, i) == f) {
1580 dl 1.149 len = 1;
1581 dl 1.151 for (Node<V> e = f, pred = null;; ++len) {
1582     Object ek; V ev;
1583 dl 1.149 if (e.hash == h &&
1584 dl 1.119 (ev = e.val) != null &&
1585     ((ek = e.key) == k || k.equals(ek))) {
1586 dl 1.151 val = mf.apply(ev, v);
1587 dl 1.119 if (val != null)
1588     e.val = val;
1589     else {
1590     delta = -1;
1591 dl 1.151 Node<V> en = e.next;
1592 dl 1.119 if (pred != null)
1593     pred.next = en;
1594     else
1595     setTabAt(tab, i, en);
1596     }
1597     break;
1598     }
1599     pred = e;
1600     if ((e = e.next) == null) {
1601     val = v;
1602 dl 1.151 pred.next = new Node<V>(h, k, val, null);
1603 dl 1.119 delta = 1;
1604 dl 1.149 if (len >= TREE_THRESHOLD)
1605 dl 1.119 replaceWithTreeBin(tab, i, k);
1606     break;
1607     }
1608     }
1609     }
1610     }
1611 dl 1.149 if (len != 0)
1612 dl 1.119 break;
1613 dl 1.105 }
1614 dl 1.99 }
1615 dl 1.149 if (delta != 0)
1616     addCount((long)delta, len);
1617 dl 1.151 return val;
1618 dl 1.119 }
1619    
1620     /** Implementation for putAll */
1621 dl 1.151 @SuppressWarnings("unchecked") private final void internalPutAll
1622     (Map<? extends K, ? extends V> m) {
1623 dl 1.119 tryPresize(m.size());
1624     long delta = 0L; // number of uncommitted additions
1625     boolean npe = false; // to throw exception on exit for nulls
1626     try { // to clean up counts on other exceptions
1627 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628     Object k; V v;
1629 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1630     (v = entry.getValue()) == null) {
1631     npe = true;
1632     break;
1633     }
1634     int h = spread(k.hashCode());
1635 dl 1.151 for (Node<V>[] tab = table;;) {
1636     int i; Node<V> f; int fh; Object fk;
1637 dl 1.119 if (tab == null)
1638     tab = initTable();
1639     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 dl 1.151 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 dl 1.119 ++delta;
1642     break;
1643     }
1644     }
1645 dl 1.149 else if ((fh = f.hash) < 0) {
1646 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1647 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1648 dl 1.119 boolean validated = false;
1649     t.acquire(0);
1650     try {
1651     if (tabAt(tab, i) == f) {
1652     validated = true;
1653 dl 1.151 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 dl 1.119 if (p != null)
1655     p.val = v;
1656     else {
1657     t.putTreeNode(h, k, v);
1658     ++delta;
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664     if (validated)
1665     break;
1666     }
1667     else
1668 dl 1.151 tab = (Node<V>[])fk;
1669 dl 1.119 }
1670 dl 1.149 else {
1671     int len = 0;
1672 jsr166 1.150 synchronized (f) {
1673 dl 1.119 if (tabAt(tab, i) == f) {
1674 dl 1.149 len = 1;
1675 dl 1.151 for (Node<V> e = f;; ++len) {
1676     Object ek; V ev;
1677 dl 1.149 if (e.hash == h &&
1678 dl 1.119 (ev = e.val) != null &&
1679     ((ek = e.key) == k || k.equals(ek))) {
1680     e.val = v;
1681     break;
1682     }
1683 dl 1.151 Node<V> last = e;
1684 dl 1.119 if ((e = e.next) == null) {
1685     ++delta;
1686 dl 1.151 last.next = new Node<V>(h, k, v, null);
1687 dl 1.149 if (len >= TREE_THRESHOLD)
1688 dl 1.119 replaceWithTreeBin(tab, i, k);
1689     break;
1690     }
1691     }
1692     }
1693     }
1694 dl 1.149 if (len != 0) {
1695 dl 1.164 if (len > 1) {
1696 dl 1.149 addCount(delta, len);
1697 dl 1.164 delta = 0L;
1698     }
1699 dl 1.119 break;
1700 dl 1.99 }
1701 dl 1.21 }
1702     }
1703 dl 1.45 }
1704     } finally {
1705 dl 1.149 if (delta != 0L)
1706     addCount(delta, 2);
1707 dl 1.45 }
1708 dl 1.119 if (npe)
1709     throw new NullPointerException();
1710 tim 1.1 }
1711 dl 1.19
1712 dl 1.149 /**
1713     * Implementation for clear. Steps through each bin, removing all
1714     * nodes.
1715     */
1716 dl 1.151 @SuppressWarnings("unchecked") private final void internalClear() {
1717 dl 1.149 long delta = 0L; // negative number of deletions
1718     int i = 0;
1719 dl 1.151 Node<V>[] tab = table;
1720 dl 1.149 while (tab != null && i < tab.length) {
1721 dl 1.151 Node<V> f = tabAt(tab, i);
1722 dl 1.149 if (f == null)
1723     ++i;
1724     else if (f.hash < 0) {
1725     Object fk;
1726     if ((fk = f.key) instanceof TreeBin) {
1727 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1728 dl 1.149 t.acquire(0);
1729     try {
1730     if (tabAt(tab, i) == f) {
1731 dl 1.151 for (Node<V> p = t.first; p != null; p = p.next) {
1732 dl 1.149 if (p.val != null) { // (currently always true)
1733     p.val = null;
1734     --delta;
1735     }
1736     }
1737     t.first = null;
1738     t.root = null;
1739     ++i;
1740     }
1741     } finally {
1742     t.release(0);
1743     }
1744     }
1745     else
1746 dl 1.151 tab = (Node<V>[])fk;
1747 dl 1.149 }
1748     else {
1749 jsr166 1.150 synchronized (f) {
1750 dl 1.149 if (tabAt(tab, i) == f) {
1751 dl 1.151 for (Node<V> e = f; e != null; e = e.next) {
1752 dl 1.149 if (e.val != null) { // (currently always true)
1753     e.val = null;
1754     --delta;
1755     }
1756     }
1757     setTabAt(tab, i, null);
1758     ++i;
1759     }
1760     }
1761     }
1762     }
1763     if (delta != 0L)
1764     addCount(delta, -1);
1765     }
1766    
1767 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1768    
1769 tim 1.1 /**
1770 dl 1.119 * Returns a power of two table size for the given desired capacity.
1771     * See Hackers Delight, sec 3.2
1772 tim 1.1 */
1773 dl 1.119 private static final int tableSizeFor(int c) {
1774     int n = c - 1;
1775     n |= n >>> 1;
1776     n |= n >>> 2;
1777     n |= n >>> 4;
1778     n |= n >>> 8;
1779     n |= n >>> 16;
1780     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 tim 1.1 }
1782    
1783     /**
1784 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1785     */
1786 dl 1.151 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787     Node<V>[] tab; int sc;
1788 dl 1.119 while ((tab = table) == null) {
1789     if ((sc = sizeCtl) < 0)
1790     Thread.yield(); // lost initialization race; just spin
1791 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 dl 1.119 try {
1793     if ((tab = table) == null) {
1794     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796     table = tab = (Node<V>[])tb;
1797 dl 1.119 sc = n - (n >>> 2);
1798     }
1799     } finally {
1800     sizeCtl = sc;
1801     }
1802     break;
1803     }
1804     }
1805     return tab;
1806 dl 1.4 }
1807    
1808     /**
1809 dl 1.149 * Adds to count, and if table is too small and not already
1810     * resizing, initiates transfer. If already resizing, helps
1811     * perform transfer if work is available. Rechecks occupancy
1812     * after a transfer to see if another resize is already needed
1813     * because resizings are lagging additions.
1814     *
1815     * @param x the count to add
1816     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817     */
1818     private final void addCount(long x, int check) {
1819 dl 1.153 Cell[] as; long b, s;
1820 dl 1.149 if ((as = counterCells) != null ||
1821     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 dl 1.160 Cell a; long v; int m;
1823 dl 1.149 boolean uncontended = true;
1824 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1825     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 dl 1.149 !(uncontended =
1827     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 dl 1.160 fullAddCount(x, uncontended);
1829 dl 1.149 return;
1830     }
1831     if (check <= 1)
1832     return;
1833     s = sumCount();
1834     }
1835     if (check >= 0) {
1836 dl 1.151 Node<V>[] tab, nt; int sc;
1837 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838     tab.length < MAXIMUM_CAPACITY) {
1839     if (sc < 0) {
1840     if (sc == -1 || transferIndex <= transferOrigin ||
1841     (nt = nextTable) == null)
1842     break;
1843     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844     transfer(tab, nt);
1845 dl 1.119 }
1846 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847     transfer(tab, null);
1848     s = sumCount();
1849 dl 1.119 }
1850     }
1851 dl 1.4 }
1852    
1853     /**
1854 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1855 tim 1.1 *
1856 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1857 tim 1.1 */
1858 dl 1.151 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860     tableSizeFor(size + (size >>> 1) + 1);
1861     int sc;
1862     while ((sc = sizeCtl) >= 0) {
1863 dl 1.151 Node<V>[] tab = table; int n;
1864 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1865     n = (sc > c) ? sc : c;
1866 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 dl 1.119 try {
1868     if (table == tab) {
1869 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870     table = (Node<V>[])tb;
1871 dl 1.119 sc = n - (n >>> 2);
1872     }
1873     } finally {
1874     sizeCtl = sc;
1875     }
1876     }
1877     }
1878     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879     break;
1880 dl 1.149 else if (tab == table &&
1881     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882     transfer(tab, null);
1883 dl 1.119 }
1884 dl 1.4 }
1885    
1886 jsr166 1.170 /**
1887 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
1888     * above for explanation.
1889 dl 1.4 */
1890 dl 1.151 @SuppressWarnings("unchecked") private final void transfer
1891     (Node<V>[] tab, Node<V>[] nextTab) {
1892 dl 1.149 int n = tab.length, stride;
1893     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894     stride = MIN_TRANSFER_STRIDE; // subdivide range
1895     if (nextTab == null) { // initiating
1896     try {
1897 dl 1.151 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898     nextTab = (Node<V>[])tb;
1899 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1900 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1901     return;
1902     }
1903     nextTable = nextTab;
1904     transferOrigin = n;
1905     transferIndex = n;
1906 dl 1.151 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1909 dl 1.149 for (int m = nextk; m < k; ++m)
1910     nextTab[m] = rev;
1911     for (int m = n + nextk; m < n + k; ++m)
1912     nextTab[m] = rev;
1913     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914     }
1915     }
1916     int nextn = nextTab.length;
1917 dl 1.151 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 dl 1.149 boolean advance = true;
1919     for (int i = 0, bound = 0;;) {
1920 dl 1.151 int nextIndex, nextBound; Node<V> f; Object fk;
1921 dl 1.149 while (advance) {
1922     if (--i >= bound)
1923     advance = false;
1924     else if ((nextIndex = transferIndex) <= transferOrigin) {
1925     i = -1;
1926     advance = false;
1927     }
1928     else if (U.compareAndSwapInt
1929     (this, TRANSFERINDEX, nextIndex,
1930 jsr166 1.150 nextBound = (nextIndex > stride ?
1931 dl 1.149 nextIndex - stride : 0))) {
1932     bound = nextBound;
1933     i = nextIndex - 1;
1934     advance = false;
1935     }
1936     }
1937     if (i < 0 || i >= n || i + n >= nextn) {
1938     for (int sc;;) {
1939     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940     if (sc == -1) {
1941     nextTable = null;
1942     table = nextTab;
1943     sizeCtl = (n << 1) - (n >>> 1);
1944     }
1945     return;
1946     }
1947     }
1948     }
1949     else if ((f = tabAt(tab, i)) == null) {
1950     if (casTabAt(tab, i, null, fwd)) {
1951 dl 1.119 setTabAt(nextTab, i, null);
1952     setTabAt(nextTab, i + n, null);
1953 dl 1.149 advance = true;
1954     }
1955     }
1956     else if (f.hash >= 0) {
1957 jsr166 1.150 synchronized (f) {
1958 dl 1.149 if (tabAt(tab, i) == f) {
1959     int runBit = f.hash & n;
1960 dl 1.151 Node<V> lastRun = f, lo = null, hi = null;
1961     for (Node<V> p = f.next; p != null; p = p.next) {
1962 dl 1.149 int b = p.hash & n;
1963     if (b != runBit) {
1964     runBit = b;
1965     lastRun = p;
1966     }
1967     }
1968     if (runBit == 0)
1969     lo = lastRun;
1970     else
1971     hi = lastRun;
1972 dl 1.151 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 dl 1.149 int ph = p.hash;
1974 dl 1.151 Object pk = p.key; V pv = p.val;
1975 dl 1.149 if ((ph & n) == 0)
1976 dl 1.151 lo = new Node<V>(ph, pk, pv, lo);
1977 dl 1.149 else
1978 dl 1.151 hi = new Node<V>(ph, pk, pv, hi);
1979 dl 1.149 }
1980     setTabAt(nextTab, i, lo);
1981     setTabAt(nextTab, i + n, hi);
1982     setTabAt(tab, i, fwd);
1983     advance = true;
1984 dl 1.119 }
1985     }
1986     }
1987 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
1988 dl 1.151 TreeBin<V> t = (TreeBin<V>)fk;
1989 dl 1.149 t.acquire(0);
1990     try {
1991     if (tabAt(tab, i) == f) {
1992 dl 1.151 TreeBin<V> lt = new TreeBin<V>();
1993     TreeBin<V> ht = new TreeBin<V>();
1994 dl 1.149 int lc = 0, hc = 0;
1995 dl 1.151 for (Node<V> e = t.first; e != null; e = e.next) {
1996 dl 1.149 int h = e.hash;
1997 dl 1.151 Object k = e.key; V v = e.val;
1998 dl 1.149 if ((h & n) == 0) {
1999     ++lc;
2000     lt.putTreeNode(h, k, v);
2001     }
2002     else {
2003     ++hc;
2004     ht.putTreeNode(h, k, v);
2005     }
2006     }
2007 dl 1.151 Node<V> ln, hn; // throw away trees if too small
2008 dl 1.149 if (lc < TREE_THRESHOLD) {
2009     ln = null;
2010 dl 1.151 for (Node<V> p = lt.first; p != null; p = p.next)
2011     ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 dl 1.149 }
2013     else
2014 dl 1.151 ln = new Node<V>(MOVED, lt, null, null);
2015 dl 1.149 setTabAt(nextTab, i, ln);
2016     if (hc < TREE_THRESHOLD) {
2017     hn = null;
2018 dl 1.151 for (Node<V> p = ht.first; p != null; p = p.next)
2019     hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 dl 1.119 }
2021 dl 1.149 else
2022 dl 1.151 hn = new Node<V>(MOVED, ht, null, null);
2023 dl 1.149 setTabAt(nextTab, i + n, hn);
2024 dl 1.119 setTabAt(tab, i, fwd);
2025 dl 1.149 advance = true;
2026 dl 1.119 }
2027     } finally {
2028 dl 1.149 t.release(0);
2029 dl 1.119 }
2030     }
2031     else
2032 dl 1.149 advance = true; // already processed
2033 dl 1.119 }
2034 dl 1.4 }
2035 tim 1.1
2036 dl 1.149 /* ---------------- Counter support -------------- */
2037    
2038     final long sumCount() {
2039 dl 1.153 Cell[] as = counterCells; Cell a;
2040 dl 1.149 long sum = baseCount;
2041     if (as != null) {
2042     for (int i = 0; i < as.length; ++i) {
2043     if ((a = as[i]) != null)
2044     sum += a.value;
2045 dl 1.119 }
2046     }
2047 dl 1.149 return sum;
2048 dl 1.119 }
2049    
2050 dl 1.149 // See LongAdder version for explanation
2051 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2052 dl 1.149 int h;
2053 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054     ThreadLocalRandom.localInit(); // force initialization
2055     h = ThreadLocalRandom.getProbe();
2056     wasUncontended = true;
2057 dl 1.119 }
2058 dl 1.149 boolean collide = false; // True if last slot nonempty
2059     for (;;) {
2060 dl 1.153 Cell[] as; Cell a; int n; long v;
2061 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2062     if ((a = as[(n - 1) & h]) == null) {
2063 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2064     Cell r = new Cell(x); // Optimistic create
2065     if (cellsBusy == 0 &&
2066     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 dl 1.149 boolean created = false;
2068     try { // Recheck under lock
2069 dl 1.153 Cell[] rs; int m, j;
2070 dl 1.149 if ((rs = counterCells) != null &&
2071     (m = rs.length) > 0 &&
2072     rs[j = (m - 1) & h] == null) {
2073     rs[j] = r;
2074     created = true;
2075 dl 1.128 }
2076 dl 1.149 } finally {
2077 dl 1.153 cellsBusy = 0;
2078 dl 1.119 }
2079 dl 1.149 if (created)
2080     break;
2081     continue; // Slot is now non-empty
2082     }
2083     }
2084     collide = false;
2085     }
2086     else if (!wasUncontended) // CAS already known to fail
2087     wasUncontended = true; // Continue after rehash
2088     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089     break;
2090     else if (counterCells != as || n >= NCPU)
2091     collide = false; // At max size or stale
2092     else if (!collide)
2093     collide = true;
2094 dl 1.153 else if (cellsBusy == 0 &&
2095     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 dl 1.149 try {
2097     if (counterCells == as) {// Expand table unless stale
2098 dl 1.153 Cell[] rs = new Cell[n << 1];
2099 dl 1.149 for (int i = 0; i < n; ++i)
2100     rs[i] = as[i];
2101     counterCells = rs;
2102 dl 1.119 }
2103     } finally {
2104 dl 1.153 cellsBusy = 0;
2105 dl 1.119 }
2106 dl 1.149 collide = false;
2107     continue; // Retry with expanded table
2108 dl 1.119 }
2109 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2110 dl 1.149 }
2111 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 dl 1.149 boolean init = false;
2114     try { // Initialize table
2115     if (counterCells == as) {
2116 dl 1.153 Cell[] rs = new Cell[2];
2117     rs[h & 1] = new Cell(x);
2118 dl 1.149 counterCells = rs;
2119     init = true;
2120 dl 1.119 }
2121     } finally {
2122 dl 1.153 cellsBusy = 0;
2123 dl 1.119 }
2124 dl 1.149 if (init)
2125     break;
2126 dl 1.119 }
2127 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128     break; // Fall back on using base
2129 dl 1.119 }
2130     }
2131    
2132     /* ----------------Table Traversal -------------- */
2133    
2134     /**
2135     * Encapsulates traversal for methods such as containsValue; also
2136 dl 1.126 * serves as a base class for other iterators and bulk tasks.
2137 dl 1.119 *
2138     * At each step, the iterator snapshots the key ("nextKey") and
2139     * value ("nextVal") of a valid node (i.e., one that, at point of
2140     * snapshot, has a non-null user value). Because val fields can
2141     * change (including to null, indicating deletion), field nextVal
2142     * might not be accurate at point of use, but still maintains the
2143     * weak consistency property of holding a value that was once
2144 dl 1.137 * valid. To support iterator.remove, the nextKey field is not
2145     * updated (nulled out) when the iterator cannot advance.
2146 dl 1.119 *
2147     * Exported iterators must track whether the iterator has advanced
2148     * (in hasNext vs next) (by setting/checking/nulling field
2149     * nextVal), and then extract key, value, or key-value pairs as
2150     * return values of next().
2151     *
2152 dl 1.192 * Method advance visits once each still-valid node that was
2153 dl 1.119 * reachable upon iterator construction. It might miss some that
2154     * were added to a bin after the bin was visited, which is OK wrt
2155     * consistency guarantees. Maintaining this property in the face
2156     * of possible ongoing resizes requires a fair amount of
2157     * bookkeeping state that is difficult to optimize away amidst
2158     * volatile accesses. Even so, traversal maintains reasonable
2159     * throughput.
2160     *
2161     * Normally, iteration proceeds bin-by-bin traversing lists.
2162     * However, if the table has been resized, then all future steps
2163     * must traverse both the bin at the current index as well as at
2164     * (index + baseSize); and so on for further resizings. To
2165     * paranoically cope with potential sharing by users of iterators
2166     * across threads, iteration terminates if a bounds checks fails
2167     * for a table read.
2168     *
2169 dl 1.192 * Methods advanceKey and advanceValue are specializations of the
2170     * common cases of advance, relaying to the full version
2171     * otherwise. The forEachKey and forEachValue methods further
2172     * specialize, bypassing all incremental field updates in most cases.
2173     *
2174 dl 1.153 * This class supports both Spliterator-based traversal and
2175     * CountedCompleter-based bulk tasks. The same "batch" field is
2176     * used, but in slightly different ways, in the two cases. For
2177     * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2178     * estimate of element coverage. For CHM tasks, it is a pre-scaled
2179     * size that halves down to zero for leaf tasks, that is only
2180     * computed upon execution of the task. (Tasks can be submitted to
2181     * any pool, of any size, so we don't know scale factors until
2182     * running.)
2183     *
2184 dl 1.146 * This class extends CountedCompleter to streamline parallel
2185     * iteration in bulk operations. This adds only a few fields of
2186     * space overhead, which is small enough in cases where it is not
2187     * needed to not worry about it. Because CountedCompleter is
2188     * Serializable, but iterators need not be, we need to add warning
2189     * suppressions.
2190 dl 1.119 */
2191 dl 1.149 @SuppressWarnings("serial") static class Traverser<K,V,R>
2192     extends CountedCompleter<R> {
2193 jsr166 1.186 final ConcurrentHashMap<K,V> map;
2194 dl 1.151 Node<V> next; // the next entry to use
2195 jsr166 1.168 K nextKey; // cached key field of next
2196 dl 1.151 V nextVal; // cached val field of next
2197     Node<V>[] tab; // current table; updated if resized
2198 dl 1.119 int index; // index of bin to use next
2199     int baseIndex; // current index of initial table
2200     int baseLimit; // index bound for initial table
2201 dl 1.192 final int baseSize; // initial table size
2202 dl 1.146 int batch; // split control
2203 dl 1.192
2204 dl 1.119 /** Creates iterator for all entries in the table. */
2205 jsr166 1.186 Traverser(ConcurrentHashMap<K,V> map) {
2206 dl 1.130 this.map = map;
2207 dl 1.192 Node<V>[] t = this.tab = map.table;
2208     baseLimit = baseSize = (t == null) ? 0 : t.length;
2209 dl 1.119 }
2210    
2211 dl 1.153 /** Task constructor */
2212 dl 1.146 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2213     super(it);
2214 dl 1.153 this.map = map;
2215     this.batch = batch; // -1 if unknown
2216     if (it == null) {
2217 dl 1.192 Node<V>[] t = this.tab = map.table;
2218     baseLimit = baseSize = (t == null) ? 0 : t.length;
2219 dl 1.153 }
2220     else { // split parent
2221     this.tab = it.tab;
2222 dl 1.146 this.baseSize = it.baseSize;
2223     int hi = this.baseLimit = it.baseLimit;
2224     it.baseLimit = this.index = this.baseIndex =
2225 dl 1.195 (hi + it.baseIndex) >>> 1;
2226 dl 1.146 }
2227 dl 1.119 }
2228    
2229 dl 1.153 /** Spliterator constructor */
2230     Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2231     super(it);
2232     this.map = map;
2233     if (it == null) {
2234 dl 1.192 Node<V>[] t = this.tab = map.table;
2235     baseLimit = baseSize = (t == null) ? 0 : t.length;
2236 dl 1.153 long n = map.sumCount();
2237     batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238     (int)n);
2239     }
2240     else {
2241     this.tab = it.tab;
2242     this.baseSize = it.baseSize;
2243     int hi = this.baseLimit = it.baseLimit;
2244     it.baseLimit = this.index = this.baseIndex =
2245 dl 1.195 (hi + it.baseIndex) >>> 1;
2246 dl 1.153 this.batch = it.batch >>>= 1;
2247     }
2248     }
2249    
2250 jsr166 1.193 /**
2251     * Advances if possible, returning next valid value, or null if none.
2252 dl 1.119 */
2253 dl 1.192 @SuppressWarnings("unchecked") final V advance() {
2254     for (Node<V> e = next;;) {
2255 dl 1.119 if (e != null) // advance past used/skipped node
2256 dl 1.192 e = next = e.next;
2257 dl 1.119 while (e == null) { // get to next non-null bin
2258 dl 1.192 Node<V>[] t; int i, n; // must use locals in checks
2259     if (baseIndex >= baseLimit || (t = tab) == null ||
2260     (n = t.length) <= (i = index) || i < 0)
2261     return nextVal = null;
2262     if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2263     Object ek;
2264 dl 1.119 if ((ek = e.key) instanceof TreeBin)
2265 dl 1.151 e = ((TreeBin<V>)ek).first;
2266 dl 1.119 else {
2267 dl 1.151 tab = (Node<V>[])ek;
2268 dl 1.119 continue; // restarts due to null val
2269     }
2270 dl 1.192 }
2271     if ((index += baseSize) >= n)
2272     index = ++baseIndex; // visit upper slots if present
2273 dl 1.119 }
2274 dl 1.192 nextKey = (K)e.key;
2275     if ((nextVal = e.val) != null) // skip deleted or special nodes
2276     return nextVal;
2277     }
2278 dl 1.191 }
2279    
2280 dl 1.192 /**
2281     * Common case version for value traversal
2282     */
2283     @SuppressWarnings("unchecked") final V advanceValue() {
2284     outer: for (Node<V> e = next;;) {
2285     if (e == null || (e = e.next) == null) {
2286     Node<V>[] t; int i, len, n; Object ek;
2287     if ((t = tab) == null ||
2288     baseSize != (len = t.length) ||
2289     len < (n = baseLimit) ||
2290     baseIndex != (i = index))
2291     break;
2292     do {
2293     if (i < 0 || i >= n) {
2294     index = baseIndex = n;
2295     next = null;
2296     return nextVal = null;
2297     }
2298     if ((e = tabAt(t, i)) != null && e.hash < 0) {
2299     if ((ek = e.key) instanceof TreeBin)
2300     e = ((TreeBin<V>)ek).first;
2301     else {
2302     index = baseIndex = i;
2303     next = null;
2304     tab = (Node<V>[])ek;
2305     break outer;
2306     }
2307     }
2308     ++i;
2309     } while (e == null);
2310     index = baseIndex = i;
2311     }
2312     V v;
2313     K k = (K)e.key;
2314     if ((v = e.val) != null) {
2315     nextVal = v;
2316     nextKey = k;
2317     next = e;
2318     return v;
2319     }
2320     }
2321     return advance();
2322     }
2323    
2324     /**
2325     * Common case version for key traversal
2326     */
2327 dl 1.191 @SuppressWarnings("unchecked") final K advanceKey() {
2328 dl 1.192 outer: for (Node<V> e = next;;) {
2329     if (e == null || (e = e.next) == null) {
2330     Node<V>[] t; int i, len, n; Object ek;
2331     if ((t = tab) == null ||
2332     baseSize != (len = t.length) ||
2333     len < (n = baseLimit) ||
2334     baseIndex != (i = index))
2335     break;
2336     do {
2337     if (i < 0 || i >= n) {
2338     index = baseIndex = n;
2339     next = null;
2340     nextVal = null;
2341     return null;
2342     }
2343     if ((e = tabAt(t, i)) != null && e.hash < 0) {
2344     if ((ek = e.key) instanceof TreeBin)
2345     e = ((TreeBin<V>)ek).first;
2346     else {
2347     index = baseIndex = i;
2348     next = null;
2349     tab = (Node<V>[])ek;
2350     break outer;
2351     }
2352     }
2353     ++i;
2354     } while (e == null);
2355     index = baseIndex = i;
2356     }
2357     V v;
2358     K k = (K)e.key;
2359     if ((v = e.val) != null) {
2360     nextVal = v;
2361     nextKey = k;
2362     next = e;
2363     return k;
2364     }
2365     }
2366     return (advance() == null) ? null : nextKey;
2367     }
2368    
2369     @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2370     if (action == null) throw new NullPointerException();
2371     Node<V>[] t; int i, len, n;
2372     if ((t = tab) != null && baseSize == (len = t.length) &&
2373     len >= (n = baseLimit) && baseIndex == (i = index)) {
2374 dl 1.195 index = baseIndex = n;
2375     nextVal = null;
2376 dl 1.192 Node<V> e = next;
2377     next = null;
2378 dl 1.195 if (e != null)
2379     e = e.next;
2380 dl 1.192 outer: for (;; e = e.next) {
2381     V v; Object ek;
2382     for (; e == null; ++i) {
2383     if (i < 0 || i >= n)
2384     return;
2385     if ((e = tabAt(t, i)) != null && e.hash < 0) {
2386     if ((ek = e.key) instanceof TreeBin)
2387     e = ((TreeBin<V>)ek).first;
2388     else {
2389     index = baseIndex = i;
2390     tab = (Node<V>[])ek;
2391     break outer;
2392     }
2393     }
2394 dl 1.191 }
2395 dl 1.192 if ((v = e.val) != null)
2396     action.accept(v);
2397     }
2398     }
2399     V v;
2400     while ((v = advance()) != null)
2401     action.accept(v);
2402     }
2403    
2404     @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2405     if (action == null) throw new NullPointerException();
2406     Node<V>[] t; int i, len, n;
2407     if ((t = tab) != null && baseSize == (len = t.length) &&
2408     len >= (n = baseLimit) && baseIndex == (i = index)) {
2409 dl 1.195 index = baseIndex = n;
2410     nextVal = null;
2411 dl 1.192 Node<V> e = next;
2412     next = null;
2413 dl 1.195 if (e != null)
2414     e = e.next;
2415 dl 1.192 outer: for (;; e = e.next) {
2416     for (; e == null; ++i) {
2417     if (i < 0 || i >= n)
2418     return;
2419     if ((e = tabAt(t, i)) != null && e.hash < 0) {
2420     Object ek;
2421     if ((ek = e.key) instanceof TreeBin)
2422     e = ((TreeBin<V>)ek).first;
2423     else {
2424     index = baseIndex = i;
2425     tab = (Node<V>[])ek;
2426     break outer;
2427     }
2428 dl 1.191 }
2429     }
2430 dl 1.192 Object k = e.key;
2431     if (e.val != null)
2432     action.accept((K)k);
2433 dl 1.191 }
2434 dl 1.192 }
2435     while (advance() != null)
2436     action.accept(nextKey);
2437 dl 1.119 }
2438    
2439     public final void remove() {
2440 jsr166 1.168 K k = nextKey;
2441 dl 1.191 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2442 dl 1.119 throw new IllegalStateException();
2443 dl 1.137 map.internalReplace(k, null, null);
2444 dl 1.119 }
2445    
2446     public final boolean hasNext() {
2447 dl 1.191 return nextVal != null || advanceValue() != null;
2448 dl 1.119 }
2449    
2450     public final boolean hasMoreElements() { return hasNext(); }
2451 dl 1.146
2452     public void compute() { } // default no-op CountedCompleter body
2453    
2454 dl 1.192 public long estimateSize() { return batch; }
2455    
2456 dl 1.146 /**
2457     * Returns a batch value > 0 if this task should (and must) be
2458     * split, if so, adding to pending count, and in any case
2459     * updating batch value. The initial batch value is approx
2460     * exp2 of the number of times (minus one) to split task by
2461     * two before executing leaf action. This value is faster to
2462     * compute and more convenient to use as a guide to splitting
2463     * than is the depth, since it is used while dividing by two
2464     * anyway.
2465     */
2466     final int preSplit() {
2467 dl 1.153 int b; ForkJoinPool pool;
2468     if ((b = batch) < 0) { // force initialization
2469     int sp = (((pool = getPool()) == null) ?
2470     ForkJoinPool.getCommonPoolParallelism() :
2471     pool.getParallelism()) << 3; // slack of 8
2472     long n = map.sumCount();
2473     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2474 dl 1.146 }
2475 dl 1.192 b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
2476 dl 1.146 if ((batch = b) > 0)
2477     addToPendingCount(1);
2478     return b;
2479     }
2480 dl 1.119 }
2481    
2482     /* ---------------- Public operations -------------- */
2483    
2484     /**
2485     * Creates a new, empty map with the default initial table size (16).
2486     */
2487     public ConcurrentHashMap() {
2488     }
2489    
2490     /**
2491     * Creates a new, empty map with an initial table size
2492     * accommodating the specified number of elements without the need
2493     * to dynamically resize.
2494     *
2495     * @param initialCapacity The implementation performs internal
2496     * sizing to accommodate this many elements.
2497     * @throws IllegalArgumentException if the initial capacity of
2498     * elements is negative
2499     */
2500     public ConcurrentHashMap(int initialCapacity) {
2501     if (initialCapacity < 0)
2502     throw new IllegalArgumentException();
2503     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2504     MAXIMUM_CAPACITY :
2505     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506     this.sizeCtl = cap;
2507     }
2508    
2509     /**
2510     * Creates a new map with the same mappings as the given map.
2511     *
2512     * @param m the map
2513     */
2514     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2515     this.sizeCtl = DEFAULT_CAPACITY;
2516     internalPutAll(m);
2517     }
2518    
2519     /**
2520     * Creates a new, empty map with an initial table size based on
2521     * the given number of elements ({@code initialCapacity}) and
2522     * initial table density ({@code loadFactor}).
2523     *
2524     * @param initialCapacity the initial capacity. The implementation
2525     * performs internal sizing to accommodate this many elements,
2526     * given the specified load factor.
2527     * @param loadFactor the load factor (table density) for
2528     * establishing the initial table size
2529     * @throws IllegalArgumentException if the initial capacity of
2530     * elements is negative or the load factor is nonpositive
2531     *
2532     * @since 1.6
2533     */
2534     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2535     this(initialCapacity, loadFactor, 1);
2536     }
2537    
2538     /**
2539     * Creates a new, empty map with an initial table size based on
2540     * the given number of elements ({@code initialCapacity}), table
2541     * density ({@code loadFactor}), and number of concurrently
2542     * updating threads ({@code concurrencyLevel}).
2543     *
2544     * @param initialCapacity the initial capacity. The implementation
2545     * performs internal sizing to accommodate this many elements,
2546     * given the specified load factor.
2547     * @param loadFactor the load factor (table density) for
2548     * establishing the initial table size
2549     * @param concurrencyLevel the estimated number of concurrently
2550     * updating threads. The implementation may use this value as
2551     * a sizing hint.
2552     * @throws IllegalArgumentException if the initial capacity is
2553     * negative or the load factor or concurrencyLevel are
2554     * nonpositive
2555     */
2556     public ConcurrentHashMap(int initialCapacity,
2557     float loadFactor, int concurrencyLevel) {
2558     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2559     throw new IllegalArgumentException();
2560     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2561     initialCapacity = concurrencyLevel; // as estimated threads
2562     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2563     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2564     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2565     this.sizeCtl = cap;
2566     }
2567    
2568     /**
2569 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2570     * from the given type to {@code Boolean.TRUE}.
2571     *
2572     * @return the new set
2573     */
2574     public static <K> KeySetView<K,Boolean> newKeySet() {
2575 jsr166 1.184 return new KeySetView<K,Boolean>
2576     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2577 dl 1.137 }
2578    
2579     /**
2580     * Creates a new {@link Set} backed by a ConcurrentHashMap
2581     * from the given type to {@code Boolean.TRUE}.
2582     *
2583     * @param initialCapacity The implementation performs internal
2584     * sizing to accommodate this many elements.
2585     * @throws IllegalArgumentException if the initial capacity of
2586     * elements is negative
2587     * @return the new set
2588     */
2589     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2590 dl 1.149 return new KeySetView<K,Boolean>
2591     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2592 dl 1.137 }
2593    
2594     /**
2595 dl 1.119 * {@inheritDoc}
2596     */
2597     public boolean isEmpty() {
2598 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2599 dl 1.119 }
2600    
2601     /**
2602     * {@inheritDoc}
2603     */
2604     public int size() {
2605 dl 1.149 long n = sumCount();
2606 dl 1.119 return ((n < 0L) ? 0 :
2607     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2608     (int)n);
2609     }
2610    
2611     /**
2612     * Returns the number of mappings. This method should be used
2613     * instead of {@link #size} because a ConcurrentHashMap may
2614     * contain more mappings than can be represented as an int. The
2615 dl 1.146 * value returned is an estimate; the actual count may differ if
2616     * there are concurrent insertions or removals.
2617 dl 1.119 *
2618     * @return the number of mappings
2619     */
2620     public long mappingCount() {
2621 dl 1.149 long n = sumCount();
2622 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2623 dl 1.119 }
2624    
2625     /**
2626     * Returns the value to which the specified key is mapped,
2627     * or {@code null} if this map contains no mapping for the key.
2628     *
2629     * <p>More formally, if this map contains a mapping from a key
2630     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2631     * then this method returns {@code v}; otherwise it returns
2632     * {@code null}. (There can be at most one such mapping.)
2633     *
2634     * @throws NullPointerException if the specified key is null
2635     */
2636 dl 1.149 public V get(Object key) {
2637     return internalGet(key);
2638 dl 1.119 }
2639    
2640     /**
2641 dl 1.129 * Returns the value to which the specified key is mapped,
2642 jsr166 1.133 * or the given defaultValue if this map contains no mapping for the key.
2643 dl 1.129 *
2644     * @param key the key
2645     * @param defaultValue the value to return if this map contains
2646 jsr166 1.134 * no mapping for the given key
2647 dl 1.129 * @return the mapping for the key, if present; else the defaultValue
2648     * @throws NullPointerException if the specified key is null
2649     */
2650 dl 1.195 public V getOrDefault(Object key, V defaultValue) {
2651 dl 1.149 V v;
2652     return (v = internalGet(key)) == null ? defaultValue : v;
2653 dl 1.129 }
2654    
2655     /**
2656 dl 1.119 * Tests if the specified object is a key in this table.
2657     *
2658 jsr166 1.190 * @param key possible key
2659 dl 1.119 * @return {@code true} if and only if the specified object
2660     * is a key in this table, as determined by the
2661     * {@code equals} method; {@code false} otherwise
2662     * @throws NullPointerException if the specified key is null
2663     */
2664     public boolean containsKey(Object key) {
2665     return internalGet(key) != null;
2666     }
2667    
2668     /**
2669     * Returns {@code true} if this map maps one or more keys to the
2670     * specified value. Note: This method may require a full traversal
2671     * of the map, and is much slower than method {@code containsKey}.
2672     *
2673     * @param value value whose presence in this map is to be tested
2674     * @return {@code true} if this map maps one or more keys to the
2675     * specified value
2676     * @throws NullPointerException if the specified value is null
2677     */
2678     public boolean containsValue(Object value) {
2679     if (value == null)
2680     throw new NullPointerException();
2681 dl 1.151 V v;
2682 dl 1.119 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2683 dl 1.191 while ((v = it.advanceValue()) != null) {
2684 dl 1.119 if (v == value || value.equals(v))
2685     return true;
2686     }
2687     return false;
2688     }
2689    
2690     /**
2691     * Legacy method testing if some key maps into the specified value
2692     * in this table. This method is identical in functionality to
2693 jsr166 1.176 * {@link #containsValue(Object)}, and exists solely to ensure
2694 dl 1.119 * full compatibility with class {@link java.util.Hashtable},
2695     * which supported this method prior to introduction of the
2696     * Java Collections framework.
2697     *
2698     * @param value a value to search for
2699     * @return {@code true} if and only if some key maps to the
2700     * {@code value} argument in this table as
2701     * determined by the {@code equals} method;
2702     * {@code false} otherwise
2703     * @throws NullPointerException if the specified value is null
2704     */
2705 dl 1.151 @Deprecated public boolean contains(Object value) {
2706 dl 1.119 return containsValue(value);
2707     }
2708    
2709     /**
2710     * Maps the specified key to the specified value in this table.
2711     * Neither the key nor the value can be null.
2712     *
2713 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2714 dl 1.119 * with a key that is equal to the original key.
2715     *
2716     * @param key key with which the specified value is to be associated
2717     * @param value value to be associated with the specified key
2718     * @return the previous value associated with {@code key}, or
2719     * {@code null} if there was no mapping for {@code key}
2720     * @throws NullPointerException if the specified key or value is null
2721     */
2722 dl 1.149 public V put(K key, V value) {
2723     return internalPut(key, value, false);
2724 dl 1.119 }
2725    
2726     /**
2727     * {@inheritDoc}
2728     *
2729     * @return the previous value associated with the specified key,
2730     * or {@code null} if there was no mapping for the key
2731     * @throws NullPointerException if the specified key or value is null
2732     */
2733 dl 1.149 public V putIfAbsent(K key, V value) {
2734     return internalPut(key, value, true);
2735 dl 1.119 }
2736    
2737     /**
2738     * Copies all of the mappings from the specified map to this one.
2739     * These mappings replace any mappings that this map had for any of the
2740     * keys currently in the specified map.
2741     *
2742     * @param m mappings to be stored in this map
2743     */
2744     public void putAll(Map<? extends K, ? extends V> m) {
2745     internalPutAll(m);
2746     }
2747    
2748     /**
2749 dl 1.153 * If the specified key is not already associated with a value (or
2750     * is mapped to {@code null}), attempts to compute its value using
2751     * the given mapping function and enters it into this map unless
2752     * {@code null}. The entire method invocation is performed
2753     * atomically, so the function is applied at most once per key.
2754     * Some attempted update operations on this map by other threads
2755     * may be blocked while computation is in progress, so the
2756     * computation should be short and simple, and must not attempt to
2757     * update any other mappings of this Map.
2758 dl 1.119 *
2759     * @param key key with which the specified value is to be associated
2760     * @param mappingFunction the function to compute a value
2761     * @return the current (existing or computed) value associated with
2762 jsr166 1.134 * the specified key, or null if the computed value is null
2763 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2764     * is null
2765     * @throws IllegalStateException if the computation detectably
2766     * attempts a recursive update to this map that would
2767     * otherwise never complete
2768     * @throws RuntimeException or Error if the mappingFunction does so,
2769     * in which case the mapping is left unestablished
2770     */
2771 dl 1.149 public V computeIfAbsent
2772 dl 1.153 (K key, Function<? super K, ? extends V> mappingFunction) {
2773 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2774 dl 1.119 }
2775    
2776     /**
2777 dl 1.153 * If the value for the specified key is present and non-null,
2778     * attempts to compute a new mapping given the key and its current
2779     * mapped value. The entire method invocation is performed
2780     * atomically. Some attempted update operations on this map by
2781 dl 1.119 * other threads may be blocked while computation is in progress,
2782     * so the computation should be short and simple, and must not
2783 dl 1.153 * attempt to update any other mappings of this Map.
2784 dl 1.119 *
2785     * @param key key with which the specified value is to be associated
2786     * @param remappingFunction the function to compute a value
2787 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2788 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2789     * is null
2790     * @throws IllegalStateException if the computation detectably
2791     * attempts a recursive update to this map that would
2792     * otherwise never complete
2793     * @throws RuntimeException or Error if the remappingFunction does so,
2794     * in which case the mapping is unchanged
2795     */
2796 dl 1.149 public V computeIfPresent
2797 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2798 dl 1.149 return internalCompute(key, true, remappingFunction);
2799 dl 1.119 }
2800    
2801     /**
2802 dl 1.153 * Attempts to compute a mapping for the specified key and its
2803     * current mapped value (or {@code null} if there is no current
2804     * mapping). The entire method invocation is performed atomically.
2805     * Some attempted update operations on this map by other threads
2806     * may be blocked while computation is in progress, so the
2807     * computation should be short and simple, and must not attempt to
2808     * update any other mappings of this Map.
2809 dl 1.119 *
2810     * @param key key with which the specified value is to be associated
2811     * @param remappingFunction the function to compute a value
2812 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2813 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2814     * is null
2815     * @throws IllegalStateException if the computation detectably
2816     * attempts a recursive update to this map that would
2817     * otherwise never complete
2818     * @throws RuntimeException or Error if the remappingFunction does so,
2819     * in which case the mapping is unchanged
2820     */
2821 dl 1.149 public V compute
2822 dl 1.153 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2823 dl 1.149 return internalCompute(key, false, remappingFunction);
2824 dl 1.119 }
2825    
2826     /**
2827 dl 1.153 * If the specified key is not already associated with a
2828     * (non-null) value, associates it with the given value.
2829     * Otherwise, replaces the value with the results of the given
2830     * remapping function, or removes if {@code null}. The entire
2831     * method invocation is performed atomically. Some attempted
2832     * update operations on this map by other threads may be blocked
2833     * while computation is in progress, so the computation should be
2834     * short and simple, and must not attempt to update any other
2835     * mappings of this Map.
2836     *
2837     * @param key key with which the specified value is to be associated
2838     * @param value the value to use if absent
2839     * @param remappingFunction the function to recompute a value if present
2840     * @return the new value associated with the specified key, or null if none
2841     * @throws NullPointerException if the specified key or the
2842     * remappingFunction is null
2843     * @throws RuntimeException or Error if the remappingFunction does so,
2844     * in which case the mapping is unchanged
2845 dl 1.119 */
2846 dl 1.149 public V merge
2847     (K key, V value,
2848 dl 1.153 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2849 dl 1.149 return internalMerge(key, value, remappingFunction);
2850 dl 1.119 }
2851    
2852     /**
2853     * Removes the key (and its corresponding value) from this map.
2854     * This method does nothing if the key is not in the map.
2855     *
2856     * @param key the key that needs to be removed
2857     * @return the previous value associated with {@code key}, or
2858     * {@code null} if there was no mapping for {@code key}
2859     * @throws NullPointerException if the specified key is null
2860     */
2861 dl 1.149 public V remove(Object key) {
2862     return internalReplace(key, null, null);
2863 dl 1.119 }
2864    
2865     /**
2866     * {@inheritDoc}
2867     *
2868     * @throws NullPointerException if the specified key is null
2869     */
2870     public boolean remove(Object key, Object value) {
2871 dl 1.163 if (key == null)
2872     throw new NullPointerException();
2873 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2874 tim 1.1 }
2875 dl 1.31
2876     /**
2877 jsr166 1.68 * {@inheritDoc}
2878     *
2879     * @throws NullPointerException if any of the arguments are null
2880 dl 1.31 */
2881     public boolean replace(K key, V oldValue, V newValue) {
2882 dl 1.119 if (key == null || oldValue == null || newValue == null)
2883 dl 1.31 throw new NullPointerException();
2884 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2885 dl 1.32 }
2886    
2887     /**
2888 jsr166 1.68 * {@inheritDoc}
2889     *
2890     * @return the previous value associated with the specified key,
2891 dl 1.119 * or {@code null} if there was no mapping for the key
2892 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2893 dl 1.32 */
2894 dl 1.149 public V replace(K key, V value) {
2895 dl 1.119 if (key == null || value == null)
2896 dl 1.32 throw new NullPointerException();
2897 dl 1.149 return internalReplace(key, value, null);
2898 dl 1.31 }
2899    
2900 tim 1.1 /**
2901 jsr166 1.68 * Removes all of the mappings from this map.
2902 tim 1.1 */
2903     public void clear() {
2904 dl 1.119 internalClear();
2905 tim 1.1 }
2906    
2907     /**
2908 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2909     * The set is backed by the map, so changes to the map are
2910 dl 1.137 * reflected in the set, and vice-versa.
2911     *
2912     * @return the set view
2913     */
2914     public KeySetView<K,V> keySet() {
2915     KeySetView<K,V> ks = keySet;
2916     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2917     }
2918    
2919     /**
2920     * Returns a {@link Set} view of the keys in this map, using the
2921     * given common mapped value for any additions (i.e., {@link
2922 jsr166 1.174 * Collection#add} and {@link Collection#addAll(Collection)}).
2923     * This is of course only appropriate if it is acceptable to use
2924     * the same value for all additions from this view.
2925 jsr166 1.68 *
2926 jsr166 1.172 * @param mappedValue the mapped value to use for any additions
2927 dl 1.137 * @return the set view
2928     * @throws NullPointerException if the mappedValue is null
2929 tim 1.1 */
2930 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2931     if (mappedValue == null)
2932     throw new NullPointerException();
2933     return new KeySetView<K,V>(this, mappedValue);
2934 tim 1.1 }
2935    
2936     /**
2937 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2938     * The collection is backed by the map, so changes to the map are
2939 jsr166 1.143 * reflected in the collection, and vice-versa.
2940 jsr166 1.184 *
2941     * @return the collection view
2942 tim 1.1 */
2943 dl 1.142 public ValuesView<K,V> values() {
2944     ValuesView<K,V> vs = values;
2945     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2946 dl 1.119 }
2947    
2948     /**
2949     * Returns a {@link Set} view of the mappings contained in this map.
2950     * The set is backed by the map, so changes to the map are
2951     * reflected in the set, and vice-versa. The set supports element
2952     * removal, which removes the corresponding mapping from the map,
2953     * via the {@code Iterator.remove}, {@code Set.remove},
2954     * {@code removeAll}, {@code retainAll}, and {@code clear}
2955     * operations. It does not support the {@code add} or
2956     * {@code addAll} operations.
2957     *
2958     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2959     * that will never throw {@link ConcurrentModificationException},
2960     * and guarantees to traverse elements as they existed upon
2961     * construction of the iterator, and may (but is not guaranteed to)
2962     * reflect any modifications subsequent to construction.
2963 jsr166 1.184 *
2964     * @return the set view
2965 dl 1.119 */
2966     public Set<Map.Entry<K,V>> entrySet() {
2967 dl 1.142 EntrySetView<K,V> es = entrySet;
2968     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2969 dl 1.119 }
2970    
2971     /**
2972     * Returns an enumeration of the keys in this table.
2973     *
2974     * @return an enumeration of the keys in this table
2975     * @see #keySet()
2976     */
2977     public Enumeration<K> keys() {
2978     return new KeyIterator<K,V>(this);
2979     }
2980    
2981     /**
2982     * Returns an enumeration of the values in this table.
2983     *
2984     * @return an enumeration of the values in this table
2985     * @see #values()
2986     */
2987     public Enumeration<V> elements() {
2988     return new ValueIterator<K,V>(this);
2989     }
2990    
2991     /**
2992     * Returns the hash code value for this {@link Map}, i.e.,
2993     * the sum of, for each key-value pair in the map,
2994     * {@code key.hashCode() ^ value.hashCode()}.
2995     *
2996     * @return the hash code value for this map
2997     */
2998     public int hashCode() {
2999     int h = 0;
3000     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3001 dl 1.151 V v;
3002 dl 1.191 while ((v = it.advanceValue()) != null) {
3003 dl 1.119 h += it.nextKey.hashCode() ^ v.hashCode();
3004     }
3005     return h;
3006     }
3007    
3008     /**
3009     * Returns a string representation of this map. The string
3010     * representation consists of a list of key-value mappings (in no
3011     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3012     * mappings are separated by the characters {@code ", "} (comma
3013     * and space). Each key-value mapping is rendered as the key
3014     * followed by an equals sign ("{@code =}") followed by the
3015     * associated value.
3016     *
3017     * @return a string representation of this map
3018     */
3019     public String toString() {
3020     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3021     StringBuilder sb = new StringBuilder();
3022     sb.append('{');
3023 dl 1.151 V v;
3024 dl 1.191 if ((v = it.advanceValue()) != null) {
3025 dl 1.119 for (;;) {
3026 jsr166 1.168 K k = it.nextKey;
3027 dl 1.119 sb.append(k == this ? "(this Map)" : k);
3028     sb.append('=');
3029     sb.append(v == this ? "(this Map)" : v);
3030 dl 1.191 if ((v = it.advanceValue()) == null)
3031 dl 1.119 break;
3032     sb.append(',').append(' ');
3033     }
3034     }
3035     return sb.append('}').toString();
3036     }
3037    
3038     /**
3039     * Compares the specified object with this map for equality.
3040     * Returns {@code true} if the given object is a map with the same
3041     * mappings as this map. This operation may return misleading
3042     * results if either map is concurrently modified during execution
3043     * of this method.
3044     *
3045     * @param o object to be compared for equality with this map
3046     * @return {@code true} if the specified object is equal to this map
3047     */
3048     public boolean equals(Object o) {
3049     if (o != this) {
3050     if (!(o instanceof Map))
3051     return false;
3052     Map<?,?> m = (Map<?,?>) o;
3053     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3054 dl 1.151 V val;
3055 dl 1.191 while ((val = it.advanceValue()) != null) {
3056 dl 1.119 Object v = m.get(it.nextKey);
3057     if (v == null || (v != val && !v.equals(val)))
3058     return false;
3059     }
3060     for (Map.Entry<?,?> e : m.entrySet()) {
3061     Object mk, mv, v;
3062     if ((mk = e.getKey()) == null ||
3063     (mv = e.getValue()) == null ||
3064     (v = internalGet(mk)) == null ||
3065     (mv != v && !mv.equals(v)))
3066     return false;
3067     }
3068     }
3069     return true;
3070     }
3071    
3072     /* ----------------Iterators -------------- */
3073    
3074 dl 1.149 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3075     extends Traverser<K,V,Object>
3076 dl 1.153 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3077 jsr166 1.186 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3078     KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3079 dl 1.153 super(map, it);
3080 dl 1.119 }
3081 dl 1.192 public Spliterator<K> trySplit() {
3082 dl 1.195 return (baseLimit - baseIndex <= 1) ? null :
3083 dl 1.191 new KeyIterator<K,V>(map, this);
3084 dl 1.119 }
3085 jsr166 1.168 public final K next() {
3086 dl 1.191 K k;
3087     if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3088 dl 1.119 throw new NoSuchElementException();
3089     nextVal = null;
3090 jsr166 1.168 return k;
3091 dl 1.119 }
3092    
3093     public final K nextElement() { return next(); }
3094 dl 1.153
3095 dl 1.162 public Iterator<K> iterator() { return this; }
3096 dl 1.153
3097 dl 1.171 public void forEach(Consumer<? super K> action) {
3098 dl 1.192 forEachKey(action);
3099 dl 1.153 }
3100 dl 1.160
3101 dl 1.171 public boolean tryAdvance(Consumer<? super K> block) {
3102 dl 1.160 if (block == null) throw new NullPointerException();
3103 dl 1.191 K k;
3104     if ((k = advanceKey()) == null)
3105 dl 1.160 return false;
3106 dl 1.191 block.accept(k);
3107 dl 1.160 return true;
3108     }
3109 dl 1.188
3110     public int characteristics() {
3111 jsr166 1.189 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3112 dl 1.188 Spliterator.NONNULL;
3113     }
3114    
3115 dl 1.119 }
3116    
3117 dl 1.149 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3118     extends Traverser<K,V,Object>
3119 dl 1.153 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3120 jsr166 1.186 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3121     ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3122 dl 1.153 super(map, it);
3123 dl 1.119 }
3124 dl 1.192 public Spliterator<V> trySplit() {
3125 dl 1.195 return (baseLimit - baseIndex <= 1) ? null :
3126 dl 1.191 new ValueIterator<K,V>(map, this);
3127 dl 1.119 }
3128    
3129 dl 1.151 public final V next() {
3130     V v;
3131 dl 1.191 if ((v = nextVal) == null && (v = advanceValue()) == null)
3132 dl 1.119 throw new NoSuchElementException();
3133     nextVal = null;
3134 dl 1.151 return v;
3135 dl 1.119 }
3136    
3137     public final V nextElement() { return next(); }
3138 dl 1.153
3139 dl 1.162 public Iterator<V> iterator() { return this; }
3140 dl 1.153
3141 dl 1.171 public void forEach(Consumer<? super V> action) {
3142 dl 1.192 forEachValue(action);
3143 dl 1.153 }
3144 dl 1.160
3145 dl 1.171 public boolean tryAdvance(Consumer<? super V> block) {
3146 dl 1.160 V v;
3147     if (block == null) throw new NullPointerException();
3148 dl 1.191 if ((v = advanceValue()) == null)
3149 dl 1.160 return false;
3150     block.accept(v);
3151     return true;
3152     }
3153 jsr166 1.161
3154 dl 1.188 public int characteristics() {
3155     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3156     }
3157 dl 1.119 }
3158    
3159 dl 1.149 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3160     extends Traverser<K,V,Object>
3161 dl 1.153 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3162 jsr166 1.186 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3163     EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3164 dl 1.153 super(map, it);
3165 dl 1.119 }
3166 dl 1.192 public Spliterator<Map.Entry<K,V>> trySplit() {
3167 dl 1.195 return (baseLimit - baseIndex <= 1) ? null :
3168 dl 1.191 new EntryIterator<K,V>(map, this);
3169 dl 1.119 }
3170    
3171 jsr166 1.168 public final Map.Entry<K,V> next() {
3172 dl 1.151 V v;
3173 dl 1.191 if ((v = nextVal) == null && (v = advanceValue()) == null)
3174 dl 1.119 throw new NoSuchElementException();
3175 jsr166 1.168 K k = nextKey;
3176 dl 1.119 nextVal = null;
3177 jsr166 1.168 return new MapEntry<K,V>(k, v, map);
3178 dl 1.119 }
3179 dl 1.153
3180 dl 1.162 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3181 dl 1.153
3182 dl 1.171 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3183 dl 1.153 if (action == null) throw new NullPointerException();
3184     V v;
3185 dl 1.191 while ((v = advanceValue()) != null)
3186 jsr166 1.168 action.accept(entryFor(nextKey, v));
3187 dl 1.153 }
3188 dl 1.160
3189 dl 1.171 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3190 dl 1.160 V v;
3191     if (block == null) throw new NullPointerException();
3192 dl 1.191 if ((v = advanceValue()) == null)
3193 dl 1.160 return false;
3194 jsr166 1.168 block.accept(entryFor(nextKey, v));
3195 dl 1.160 return true;
3196     }
3197    
3198 dl 1.188 public int characteristics() {
3199 jsr166 1.189 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3200 dl 1.188 Spliterator.NONNULL;
3201     }
3202 dl 1.119 }
3203    
3204     /**
3205     * Exported Entry for iterators
3206     */
3207 jsr166 1.186 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3208 dl 1.119 final K key; // non-null
3209     V val; // non-null
3210 jsr166 1.186 final ConcurrentHashMap<K,V> map;
3211     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3212 dl 1.119 this.key = key;
3213     this.val = val;
3214     this.map = map;
3215     }
3216     public final K getKey() { return key; }
3217     public final V getValue() { return val; }
3218     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3219     public final String toString(){ return key + "=" + val; }
3220    
3221     public final boolean equals(Object o) {
3222     Object k, v; Map.Entry<?,?> e;
3223     return ((o instanceof Map.Entry) &&
3224     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3225     (v = e.getValue()) != null &&
3226     (k == key || k.equals(key)) &&
3227     (v == val || v.equals(val)));
3228     }
3229    
3230     /**
3231     * Sets our entry's value and writes through to the map. The
3232     * value to return is somewhat arbitrary here. Since we do not
3233     * necessarily track asynchronous changes, the most recent
3234     * "previous" value could be different from what we return (or
3235     * could even have been removed in which case the put will
3236     * re-establish). We do not and cannot guarantee more.
3237     */
3238     public final V setValue(V value) {
3239     if (value == null) throw new NullPointerException();
3240     V v = val;
3241     val = value;
3242     map.put(key, value);
3243     return v;
3244     }
3245     }
3246    
3247 dl 1.146 /**
3248     * Returns exportable snapshot entry for the given key and value
3249     * when write-through can't or shouldn't be used.
3250     */
3251     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3252     return new AbstractMap.SimpleEntry<K,V>(k, v);
3253     }
3254    
3255 dl 1.142 /* ---------------- Serialization Support -------------- */
3256 dl 1.119
3257     /**
3258 dl 1.142 * Stripped-down version of helper class used in previous version,
3259     * declared for the sake of serialization compatibility
3260 dl 1.119 */
3261 dl 1.142 static class Segment<K,V> implements Serializable {
3262     private static final long serialVersionUID = 2249069246763182397L;
3263     final float loadFactor;
3264     Segment(float lf) { this.loadFactor = lf; }
3265     }
3266 dl 1.119
3267 dl 1.142 /**
3268     * Saves the state of the {@code ConcurrentHashMap} instance to a
3269     * stream (i.e., serializes it).
3270     * @param s the stream
3271     * @serialData
3272     * the key (Object) and value (Object)
3273     * for each key-value mapping, followed by a null pair.
3274     * The key-value mappings are emitted in no particular order.
3275     */
3276 dl 1.149 @SuppressWarnings("unchecked") private void writeObject
3277     (java.io.ObjectOutputStream s)
3278 dl 1.142 throws java.io.IOException {
3279     if (segments == null) { // for serialization compatibility
3280     segments = (Segment<K,V>[])
3281     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3282     for (int i = 0; i < segments.length; ++i)
3283     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3284     }
3285     s.defaultWriteObject();
3286     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3287 dl 1.151 V v;
3288 dl 1.191 while ((v = it.advanceValue()) != null) {
3289 dl 1.142 s.writeObject(it.nextKey);
3290     s.writeObject(v);
3291     }
3292     s.writeObject(null);
3293     s.writeObject(null);
3294     segments = null; // throw away
3295     }
3296 dl 1.119
3297 dl 1.142 /**
3298     * Reconstitutes the instance from a stream (that is, deserializes it).
3299     * @param s the stream
3300     */
3301 dl 1.149 @SuppressWarnings("unchecked") private void readObject
3302     (java.io.ObjectInputStream s)
3303 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3304     s.defaultReadObject();
3305     this.segments = null; // unneeded
3306 dl 1.119
3307 dl 1.142 // Create all nodes, then place in table once size is known
3308     long size = 0L;
3309 dl 1.151 Node<V> p = null;
3310 dl 1.142 for (;;) {
3311     K k = (K) s.readObject();
3312     V v = (V) s.readObject();
3313     if (k != null && v != null) {
3314     int h = spread(k.hashCode());
3315 dl 1.151 p = new Node<V>(h, k, v, p);
3316 dl 1.142 ++size;
3317 dl 1.119 }
3318 dl 1.142 else
3319     break;
3320 dl 1.119 }
3321 dl 1.142 if (p != null) {
3322     boolean init = false;
3323     int n;
3324     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3325     n = MAXIMUM_CAPACITY;
3326     else {
3327     int sz = (int)size;
3328     n = tableSizeFor(sz + (sz >>> 1) + 1);
3329     }
3330     int sc = sizeCtl;
3331     boolean collide = false;
3332     if (n > sc &&
3333 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3334 dl 1.142 try {
3335     if (table == null) {
3336     init = true;
3337 dl 1.151 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3338     Node<V>[] tab = (Node<V>[])rt;
3339 dl 1.142 int mask = n - 1;
3340     while (p != null) {
3341     int j = p.hash & mask;
3342 dl 1.151 Node<V> next = p.next;
3343     Node<V> q = p.next = tabAt(tab, j);
3344 dl 1.142 setTabAt(tab, j, p);
3345     if (!collide && q != null && q.hash == p.hash)
3346     collide = true;
3347     p = next;
3348     }
3349     table = tab;
3350 dl 1.149 addCount(size, -1);
3351 dl 1.142 sc = n - (n >>> 2);
3352     }
3353     } finally {
3354     sizeCtl = sc;
3355     }
3356     if (collide) { // rescan and convert to TreeBins
3357 dl 1.151 Node<V>[] tab = table;
3358 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3359     int c = 0;
3360 dl 1.151 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3361 dl 1.142 if (++c > TREE_THRESHOLD &&
3362     (e.key instanceof Comparable)) {
3363     replaceWithTreeBin(tab, i, e.key);
3364     break;
3365     }
3366     }
3367     }
3368 dl 1.119 }
3369     }
3370 dl 1.142 if (!init) { // Can only happen if unsafely published.
3371     while (p != null) {
3372 dl 1.151 internalPut((K)p.key, p.val, false);
3373 dl 1.142 p = p.next;
3374     }
3375 dl 1.119 }
3376     }
3377 dl 1.142 }
3378 dl 1.119
3379 dl 1.142 // -------------------------------------------------------
3380    
3381 dl 1.151 // Sequential bulk operations
3382    
3383 dl 1.119 /**
3384 dl 1.137 * Performs the given action for each (key, value).
3385 dl 1.119 *
3386 dl 1.137 * @param action the action
3387 dl 1.119 */
3388 jsr166 1.168 public void forEachSequentially
3389 dl 1.171 (BiConsumer<? super K, ? super V> action) {
3390 dl 1.151 if (action == null) throw new NullPointerException();
3391     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3392     V v;
3393 dl 1.191 while ((v = it.advanceValue()) != null)
3394 jsr166 1.168 action.accept(it.nextKey, v);
3395 dl 1.119 }
3396    
3397     /**
3398 dl 1.137 * Performs the given action for each non-null transformation
3399     * of each (key, value).
3400     *
3401     * @param transformer a function returning the transformation
3402 jsr166 1.169 * for an element, or null if there is no transformation (in
3403 jsr166 1.172 * which case the action is not applied)
3404 dl 1.137 * @param action the action
3405 dl 1.119 */
3406 jsr166 1.168 public <U> void forEachSequentially
3407 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3408 dl 1.171 Consumer<? super U> action) {
3409 dl 1.151 if (transformer == null || action == null)
3410     throw new NullPointerException();
3411     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3412     V v; U u;
3413 dl 1.191 while ((v = it.advanceValue()) != null) {
3414 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3415 dl 1.153 action.accept(u);
3416 dl 1.151 }
3417 dl 1.137 }
3418    
3419     /**
3420     * Returns a non-null result from applying the given search
3421 dl 1.151 * function on each (key, value), or null if none.
3422 dl 1.137 *
3423     * @param searchFunction a function returning a non-null
3424     * result on success, else null
3425     * @return a non-null result from applying the given search
3426     * function on each (key, value), or null if none
3427     */
3428 jsr166 1.168 public <U> U searchSequentially
3429 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3430 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3431     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3432     V v; U u;
3433 dl 1.191 while ((v = it.advanceValue()) != null) {
3434 jsr166 1.168 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3435 dl 1.151 return u;
3436     }
3437     return null;
3438 dl 1.137 }
3439    
3440     /**
3441     * Returns the result of accumulating the given transformation
3442     * of all (key, value) pairs using the given reducer to
3443     * combine values, or null if none.
3444     *
3445     * @param transformer a function returning the transformation
3446 jsr166 1.169 * for an element, or null if there is no transformation (in
3447 jsr166 1.172 * which case it is not combined)
3448 dl 1.137 * @param reducer a commutative associative combining function
3449     * @return the result of accumulating the given transformation
3450     * of all (key, value) pairs
3451     */
3452 jsr166 1.168 public <U> U reduceSequentially
3453 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
3454     BiFunction<? super U, ? super U, ? extends U> reducer) {
3455 dl 1.151 if (transformer == null || reducer == null)
3456     throw new NullPointerException();
3457     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3458     U r = null, u; V v;
3459 dl 1.191 while ((v = it.advanceValue()) != null) {
3460 jsr166 1.168 if ((u = transformer.apply(it.nextKey, v)) != null)
3461 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3462     }
3463     return r;
3464 dl 1.137 }
3465    
3466     /**
3467     * Returns the result of accumulating the given transformation
3468     * of all (key, value) pairs using the given reducer to
3469     * combine values, and the given basis as an identity value.
3470     *
3471     * @param transformer a function returning the transformation
3472     * for an element
3473     * @param basis the identity (initial default value) for the reduction
3474     * @param reducer a commutative associative combining function
3475     * @return the result of accumulating the given transformation
3476     * of all (key, value) pairs
3477     */
3478 jsr166 1.168 public double reduceToDoubleSequentially
3479 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
3480 dl 1.151 double basis,
3481 dl 1.153 DoubleBinaryOperator reducer) {
3482 dl 1.151 if (transformer == null || reducer == null)
3483     throw new NullPointerException();
3484     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3485     double r = basis; V v;
3486 dl 1.191 while ((v = it.advanceValue()) != null)
3487 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3488 dl 1.151 return r;
3489 dl 1.137 }
3490 dl 1.119
3491 dl 1.137 /**
3492     * Returns the result of accumulating the given transformation
3493     * of all (key, value) pairs using the given reducer to
3494     * combine values, and the given basis as an identity value.
3495     *
3496     * @param transformer a function returning the transformation
3497     * for an element
3498     * @param basis the identity (initial default value) for the reduction
3499     * @param reducer a commutative associative combining function
3500     * @return the result of accumulating the given transformation
3501     * of all (key, value) pairs
3502     */
3503 jsr166 1.168 public long reduceToLongSequentially
3504 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
3505 dl 1.151 long basis,
3506 dl 1.153 LongBinaryOperator reducer) {
3507 dl 1.151 if (transformer == null || reducer == null)
3508     throw new NullPointerException();
3509     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3510     long r = basis; V v;
3511 dl 1.191 while ((v = it.advanceValue()) != null)
3512 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3513 dl 1.151 return r;
3514 dl 1.137 }
3515    
3516     /**
3517     * Returns the result of accumulating the given transformation
3518     * of all (key, value) pairs using the given reducer to
3519     * combine values, and the given basis as an identity value.
3520     *
3521     * @param transformer a function returning the transformation
3522     * for an element
3523     * @param basis the identity (initial default value) for the reduction
3524     * @param reducer a commutative associative combining function
3525     * @return the result of accumulating the given transformation
3526     * of all (key, value) pairs
3527     */
3528 jsr166 1.168 public int reduceToIntSequentially
3529 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
3530 dl 1.151 int basis,
3531 dl 1.153 IntBinaryOperator reducer) {
3532 dl 1.151 if (transformer == null || reducer == null)
3533     throw new NullPointerException();
3534     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3535     int r = basis; V v;
3536 dl 1.191 while ((v = it.advanceValue()) != null)
3537 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3538 dl 1.151 return r;
3539 dl 1.137 }
3540    
3541     /**
3542     * Performs the given action for each key.
3543     *
3544     * @param action the action
3545     */
3546 jsr166 1.168 public void forEachKeySequentially
3547 dl 1.171 (Consumer<? super K> action) {
3548 dl 1.192 new Traverser<K,V,Object>(this).forEachKey(action);
3549 dl 1.137 }
3550 dl 1.119
3551 dl 1.137 /**
3552     * Performs the given action for each non-null transformation
3553     * of each key.
3554     *
3555     * @param transformer a function returning the transformation
3556 jsr166 1.169 * for an element, or null if there is no transformation (in
3557 jsr166 1.172 * which case the action is not applied)
3558 dl 1.137 * @param action the action
3559     */
3560 jsr166 1.168 public <U> void forEachKeySequentially
3561 dl 1.153 (Function<? super K, ? extends U> transformer,
3562 dl 1.171 Consumer<? super U> action) {
3563 dl 1.151 if (transformer == null || action == null)
3564     throw new NullPointerException();
3565     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3566 dl 1.191 K k; U u;
3567     while ((k = it.advanceKey()) != null) {
3568     if ((u = transformer.apply(k)) != null)
3569 dl 1.153 action.accept(u);
3570 dl 1.151 }
3571 dl 1.137 ForkJoinTasks.forEachKey
3572     (this, transformer, action).invoke();
3573     }
3574 dl 1.119
3575 dl 1.137 /**
3576     * Returns a non-null result from applying the given search
3577 dl 1.151 * function on each key, or null if none.
3578 dl 1.137 *
3579     * @param searchFunction a function returning a non-null
3580     * result on success, else null
3581     * @return a non-null result from applying the given search
3582     * function on each key, or null if none
3583     */
3584 jsr166 1.168 public <U> U searchKeysSequentially
3585 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
3586 dl 1.151 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3587 dl 1.191 K k; U u;
3588     while ((k = it.advanceKey()) != null) {
3589     if ((u = searchFunction.apply(k)) != null)
3590 dl 1.151 return u;
3591     }
3592     return null;
3593 dl 1.137 }
3594 dl 1.119
3595 dl 1.137 /**
3596     * Returns the result of accumulating all keys using the given
3597     * reducer to combine values, or null if none.
3598     *
3599     * @param reducer a commutative associative combining function
3600     * @return the result of accumulating all keys using the given
3601     * reducer to combine values, or null if none
3602     */
3603 jsr166 1.168 public K reduceKeysSequentially
3604 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3605 dl 1.151 if (reducer == null) throw new NullPointerException();
3606     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3607 dl 1.191 K u, r = null;
3608     while ((u = it.advanceKey()) != null) {
3609 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3610     }
3611     return r;
3612 dl 1.137 }
3613 dl 1.119
3614 dl 1.137 /**
3615     * Returns the result of accumulating the given transformation
3616     * of all keys using the given reducer to combine values, or
3617     * null if none.
3618     *
3619     * @param transformer a function returning the transformation
3620 jsr166 1.169 * for an element, or null if there is no transformation (in
3621 jsr166 1.172 * which case it is not combined)
3622 dl 1.137 * @param reducer a commutative associative combining function
3623     * @return the result of accumulating the given transformation
3624     * of all keys
3625     */
3626 jsr166 1.168 public <U> U reduceKeysSequentially
3627 dl 1.153 (Function<? super K, ? extends U> transformer,
3628     BiFunction<? super U, ? super U, ? extends U> reducer) {
3629 dl 1.151 if (transformer == null || reducer == null)
3630     throw new NullPointerException();
3631     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3632 dl 1.191 K k; U r = null, u;
3633     while ((k = it.advanceKey()) != null) {
3634     if ((u = transformer.apply(k)) != null)
3635 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3636     }
3637     return r;
3638 dl 1.137 }
3639 dl 1.119
3640 dl 1.137 /**
3641     * Returns the result of accumulating the given transformation
3642     * of all keys using the given reducer to combine values, and
3643     * the given basis as an identity value.
3644     *
3645     * @param transformer a function returning the transformation
3646     * for an element
3647     * @param basis the identity (initial default value) for the reduction
3648     * @param reducer a commutative associative combining function
3649 jsr166 1.157 * @return the result of accumulating the given transformation
3650 dl 1.137 * of all keys
3651     */
3652 jsr166 1.168 public double reduceKeysToDoubleSequentially
3653 dl 1.171 (ToDoubleFunction<? super K> transformer,
3654 dl 1.151 double basis,
3655 dl 1.153 DoubleBinaryOperator reducer) {
3656 dl 1.151 if (transformer == null || reducer == null)
3657     throw new NullPointerException();
3658     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3659     double r = basis;
3660 dl 1.191 K k;
3661     while ((k = it.advanceKey()) != null)
3662     r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3663 dl 1.151 return r;
3664 dl 1.137 }
3665 dl 1.119
3666 dl 1.137 /**
3667     * Returns the result of accumulating the given transformation
3668     * of all keys using the given reducer to combine values, and
3669     * the given basis as an identity value.
3670     *
3671     * @param transformer a function returning the transformation
3672     * for an element
3673     * @param basis the identity (initial default value) for the reduction
3674     * @param reducer a commutative associative combining function
3675     * @return the result of accumulating the given transformation
3676     * of all keys
3677     */
3678 jsr166 1.168 public long reduceKeysToLongSequentially
3679 dl 1.171 (ToLongFunction<? super K> transformer,
3680 dl 1.151 long basis,
3681 dl 1.153 LongBinaryOperator reducer) {
3682 dl 1.151 if (transformer == null || reducer == null)
3683     throw new NullPointerException();
3684     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685     long r = basis;
3686 dl 1.191 K k;
3687     while ((k = it.advanceKey()) != null)
3688     r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3689 dl 1.151 return r;
3690 dl 1.137 }
3691 dl 1.119
3692 dl 1.137 /**
3693     * Returns the result of accumulating the given transformation
3694     * of all keys using the given reducer to combine values, and
3695     * the given basis as an identity value.
3696     *
3697     * @param transformer a function returning the transformation
3698     * for an element
3699     * @param basis the identity (initial default value) for the reduction
3700     * @param reducer a commutative associative combining function
3701     * @return the result of accumulating the given transformation
3702     * of all keys
3703     */
3704 jsr166 1.168 public int reduceKeysToIntSequentially
3705 dl 1.171 (ToIntFunction<? super K> transformer,
3706 dl 1.151 int basis,
3707 dl 1.153 IntBinaryOperator reducer) {
3708 dl 1.151 if (transformer == null || reducer == null)
3709     throw new NullPointerException();
3710     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3711     int r = basis;
3712 dl 1.191 K k;
3713     while ((k = it.advanceKey()) != null)
3714     r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3715 dl 1.151 return r;
3716 dl 1.137 }
3717 dl 1.119
3718 dl 1.137 /**
3719     * Performs the given action for each value.
3720     *
3721     * @param action the action
3722     */
3723 dl 1.171 public void forEachValueSequentially(Consumer<? super V> action) {
3724 dl 1.192 new Traverser<K,V,Object>(this).forEachValue(action);
3725 dl 1.137 }
3726 dl 1.119
3727 dl 1.137 /**
3728     * Performs the given action for each non-null transformation
3729     * of each value.
3730     *
3731     * @param transformer a function returning the transformation
3732 jsr166 1.169 * for an element, or null if there is no transformation (in
3733 jsr166 1.172 * which case the action is not applied)
3734 jsr166 1.179 * @param action the action
3735 dl 1.137 */
3736 dl 1.151 public <U> void forEachValueSequentially
3737 dl 1.153 (Function<? super V, ? extends U> transformer,
3738 dl 1.171 Consumer<? super U> action) {
3739 dl 1.151 if (transformer == null || action == null)
3740     throw new NullPointerException();
3741     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3742     V v; U u;
3743 dl 1.191 while ((v = it.advanceValue()) != null) {
3744 dl 1.151 if ((u = transformer.apply(v)) != null)
3745 dl 1.153 action.accept(u);
3746 dl 1.151 }
3747 dl 1.137 }
3748 dl 1.119
3749 dl 1.137 /**
3750     * Returns a non-null result from applying the given search
3751 dl 1.151 * function on each value, or null if none.
3752 dl 1.137 *
3753     * @param searchFunction a function returning a non-null
3754     * result on success, else null
3755     * @return a non-null result from applying the given search
3756     * function on each value, or null if none
3757     */
3758 dl 1.151 public <U> U searchValuesSequentially
3759 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
3760 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3761     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3762     V v; U u;
3763 dl 1.191 while ((v = it.advanceValue()) != null) {
3764 dl 1.151 if ((u = searchFunction.apply(v)) != null)
3765     return u;
3766     }
3767     return null;
3768 dl 1.137 }
3769 dl 1.119
3770 dl 1.137 /**
3771     * Returns the result of accumulating all values using the
3772     * given reducer to combine values, or null if none.
3773     *
3774     * @param reducer a commutative associative combining function
3775 jsr166 1.157 * @return the result of accumulating all values
3776 dl 1.137 */
3777 dl 1.151 public V reduceValuesSequentially
3778 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3779 dl 1.151 if (reducer == null) throw new NullPointerException();
3780     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781     V r = null; V v;
3782 dl 1.191 while ((v = it.advanceValue()) != null)
3783 dl 1.151 r = (r == null) ? v : reducer.apply(r, v);
3784     return r;
3785 dl 1.137 }
3786 dl 1.119
3787 dl 1.137 /**
3788     * Returns the result of accumulating the given transformation
3789     * of all values using the given reducer to combine values, or
3790     * null if none.
3791     *
3792     * @param transformer a function returning the transformation
3793 jsr166 1.169 * for an element, or null if there is no transformation (in
3794 jsr166 1.172 * which case it is not combined)
3795 dl 1.137 * @param reducer a commutative associative combining function
3796     * @return the result of accumulating the given transformation
3797     * of all values
3798     */
3799 dl 1.151 public <U> U reduceValuesSequentially
3800 dl 1.153 (Function<? super V, ? extends U> transformer,
3801     BiFunction<? super U, ? super U, ? extends U> reducer) {
3802 dl 1.151 if (transformer == null || reducer == null)
3803     throw new NullPointerException();
3804     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3805     U r = null, u; V v;
3806 dl 1.191 while ((v = it.advanceValue()) != null) {
3807 dl 1.151 if ((u = transformer.apply(v)) != null)
3808     r = (r == null) ? u : reducer.apply(r, u);
3809     }
3810     return r;
3811 dl 1.137 }
3812 dl 1.119
3813 dl 1.137 /**
3814     * Returns the result of accumulating the given transformation
3815     * of all values using the given reducer to combine values,
3816     * and the given basis as an identity value.
3817     *
3818     * @param transformer a function returning the transformation
3819     * for an element
3820     * @param basis the identity (initial default value) for the reduction
3821     * @param reducer a commutative associative combining function
3822     * @return the result of accumulating the given transformation
3823     * of all values
3824     */
3825 dl 1.151 public double reduceValuesToDoubleSequentially
3826 dl 1.171 (ToDoubleFunction<? super V> transformer,
3827 dl 1.151 double basis,
3828 dl 1.153 DoubleBinaryOperator reducer) {
3829 dl 1.151 if (transformer == null || reducer == null)
3830     throw new NullPointerException();
3831     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3832     double r = basis; V v;
3833 dl 1.191 while ((v = it.advanceValue()) != null)
3834 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3835 dl 1.151 return r;
3836 dl 1.137 }
3837 dl 1.119
3838 dl 1.137 /**
3839     * Returns the result of accumulating the given transformation
3840     * of all values using the given reducer to combine values,
3841     * and the given basis as an identity value.
3842     *
3843     * @param transformer a function returning the transformation
3844     * for an element
3845     * @param basis the identity (initial default value) for the reduction
3846     * @param reducer a commutative associative combining function
3847     * @return the result of accumulating the given transformation
3848     * of all values
3849     */
3850 dl 1.151 public long reduceValuesToLongSequentially
3851 dl 1.171 (ToLongFunction<? super V> transformer,
3852 dl 1.151 long basis,
3853 dl 1.153 LongBinaryOperator reducer) {
3854 dl 1.151 if (transformer == null || reducer == null)
3855     throw new NullPointerException();
3856     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3857     long r = basis; V v;
3858 dl 1.191 while ((v = it.advanceValue()) != null)
3859 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3860 dl 1.151 return r;
3861 dl 1.137 }
3862 dl 1.119
3863 dl 1.137 /**
3864     * Returns the result of accumulating the given transformation
3865     * of all values using the given reducer to combine values,
3866     * and the given basis as an identity value.
3867     *
3868     * @param transformer a function returning the transformation
3869     * for an element
3870     * @param basis the identity (initial default value) for the reduction
3871     * @param reducer a commutative associative combining function
3872     * @return the result of accumulating the given transformation
3873     * of all values
3874     */
3875 dl 1.151 public int reduceValuesToIntSequentially
3876 dl 1.171 (ToIntFunction<? super V> transformer,
3877 dl 1.151 int basis,
3878 dl 1.153 IntBinaryOperator reducer) {
3879 dl 1.151 if (transformer == null || reducer == null)
3880     throw new NullPointerException();
3881     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3882     int r = basis; V v;
3883 dl 1.191 while ((v = it.advanceValue()) != null)
3884 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3885 dl 1.151 return r;
3886 dl 1.137 }
3887 dl 1.119
3888 dl 1.137 /**
3889     * Performs the given action for each entry.
3890     *
3891     * @param action the action
3892     */
3893 jsr166 1.168 public void forEachEntrySequentially
3894 dl 1.171 (Consumer<? super Map.Entry<K,V>> action) {
3895 dl 1.151 if (action == null) throw new NullPointerException();
3896     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3897     V v;
3898 dl 1.191 while ((v = it.advanceValue()) != null)
3899 jsr166 1.168 action.accept(entryFor(it.nextKey, v));
3900 dl 1.137 }
3901 dl 1.119
3902 dl 1.137 /**
3903     * Performs the given action for each non-null transformation
3904     * of each entry.
3905     *
3906     * @param transformer a function returning the transformation
3907 jsr166 1.169 * for an element, or null if there is no transformation (in
3908 jsr166 1.172 * which case the action is not applied)
3909 dl 1.137 * @param action the action
3910     */
3911 jsr166 1.168 public <U> void forEachEntrySequentially
3912 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3913 dl 1.171 Consumer<? super U> action) {
3914 dl 1.151 if (transformer == null || action == null)
3915     throw new NullPointerException();
3916     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3917     V v; U u;
3918 dl 1.191 while ((v = it.advanceValue()) != null) {
3919 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3920 dl 1.153 action.accept(u);
3921 dl 1.151 }
3922 dl 1.137 }
3923 dl 1.119
3924 dl 1.137 /**
3925     * Returns a non-null result from applying the given search
3926 dl 1.151 * function on each entry, or null if none.
3927 dl 1.137 *
3928     * @param searchFunction a function returning a non-null
3929     * result on success, else null
3930     * @return a non-null result from applying the given search
3931     * function on each entry, or null if none
3932     */
3933 jsr166 1.168 public <U> U searchEntriesSequentially
3934 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3935 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3936     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3937     V v; U u;
3938 dl 1.191 while ((v = it.advanceValue()) != null) {
3939 jsr166 1.168 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3940 dl 1.151 return u;
3941     }
3942     return null;
3943 dl 1.137 }
3944 dl 1.119
3945 dl 1.137 /**
3946     * Returns the result of accumulating all entries using the
3947     * given reducer to combine values, or null if none.
3948     *
3949     * @param reducer a commutative associative combining function
3950     * @return the result of accumulating all entries
3951     */
3952 jsr166 1.168 public Map.Entry<K,V> reduceEntriesSequentially
3953 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3954 dl 1.151 if (reducer == null) throw new NullPointerException();
3955     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3956     Map.Entry<K,V> r = null; V v;
3957 dl 1.191 while ((v = it.advanceValue()) != null) {
3958 jsr166 1.168 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3959 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3960     }
3961     return r;
3962 dl 1.137 }
3963 dl 1.119
3964 dl 1.137 /**
3965     * Returns the result of accumulating the given transformation
3966     * of all entries using the given reducer to combine values,
3967     * or null if none.
3968     *
3969     * @param transformer a function returning the transformation
3970 jsr166 1.169 * for an element, or null if there is no transformation (in
3971 jsr166 1.172 * which case it is not combined)
3972 dl 1.137 * @param reducer a commutative associative combining function
3973     * @return the result of accumulating the given transformation
3974     * of all entries
3975     */
3976 jsr166 1.168 public <U> U reduceEntriesSequentially
3977 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
3978     BiFunction<? super U, ? super U, ? extends U> reducer) {
3979 dl 1.151 if (transformer == null || reducer == null)
3980     throw new NullPointerException();
3981     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3982     U r = null, u; V v;
3983 dl 1.191 while ((v = it.advanceValue()) != null) {
3984 jsr166 1.168 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3985 dl 1.151 r = (r == null) ? u : reducer.apply(r, u);
3986     }
3987     return r;
3988 dl 1.137 }
3989 dl 1.119
3990 dl 1.137 /**
3991     * Returns the result of accumulating the given transformation
3992     * of all entries using the given reducer to combine values,
3993     * and the given basis as an identity value.
3994     *
3995     * @param transformer a function returning the transformation
3996     * for an element
3997     * @param basis the identity (initial default value) for the reduction
3998     * @param reducer a commutative associative combining function
3999     * @return the result of accumulating the given transformation
4000     * of all entries
4001     */
4002 jsr166 1.168 public double reduceEntriesToDoubleSequentially
4003 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4004 dl 1.151 double basis,
4005 dl 1.153 DoubleBinaryOperator reducer) {
4006 dl 1.151 if (transformer == null || reducer == null)
4007     throw new NullPointerException();
4008     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4009     double r = basis; V v;
4010 dl 1.191 while ((v = it.advanceValue()) != null)
4011 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4012 dl 1.151 return r;
4013 dl 1.137 }
4014 dl 1.119
4015 dl 1.137 /**
4016     * Returns the result of accumulating the given transformation
4017     * of all entries using the given reducer to combine values,
4018     * and the given basis as an identity value.
4019     *
4020     * @param transformer a function returning the transformation
4021     * for an element
4022     * @param basis the identity (initial default value) for the reduction
4023     * @param reducer a commutative associative combining function
4024 jsr166 1.157 * @return the result of accumulating the given transformation
4025 dl 1.137 * of all entries
4026     */
4027 jsr166 1.168 public long reduceEntriesToLongSequentially
4028 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
4029 dl 1.151 long basis,
4030 dl 1.153 LongBinaryOperator reducer) {
4031 dl 1.151 if (transformer == null || reducer == null)
4032     throw new NullPointerException();
4033     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4034     long r = basis; V v;
4035 dl 1.191 while ((v = it.advanceValue()) != null)
4036 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4037 dl 1.151 return r;
4038 dl 1.137 }
4039 dl 1.119
4040 dl 1.137 /**
4041     * Returns the result of accumulating the given transformation
4042     * of all entries using the given reducer to combine values,
4043     * and the given basis as an identity value.
4044     *
4045     * @param transformer a function returning the transformation
4046     * for an element
4047     * @param basis the identity (initial default value) for the reduction
4048     * @param reducer a commutative associative combining function
4049     * @return the result of accumulating the given transformation
4050     * of all entries
4051     */
4052 jsr166 1.168 public int reduceEntriesToIntSequentially
4053 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
4054 dl 1.151 int basis,
4055 dl 1.153 IntBinaryOperator reducer) {
4056 dl 1.151 if (transformer == null || reducer == null)
4057     throw new NullPointerException();
4058     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4059     int r = basis; V v;
4060 dl 1.191 while ((v = it.advanceValue()) != null)
4061 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4062 dl 1.151 return r;
4063 dl 1.119 }
4064    
4065 dl 1.151 // Parallel bulk operations
4066 dl 1.142
4067     /**
4068 dl 1.151 * Performs the given action for each (key, value).
4069     *
4070     * @param action the action
4071 dl 1.142 */
4072 dl 1.171 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4073 dl 1.151 ForkJoinTasks.forEach
4074     (this, action).invoke();
4075     }
4076 dl 1.142
4077 dl 1.151 /**
4078     * Performs the given action for each non-null transformation
4079     * of each (key, value).
4080     *
4081     * @param transformer a function returning the transformation
4082 jsr166 1.169 * for an element, or null if there is no transformation (in
4083 jsr166 1.172 * which case the action is not applied)
4084 dl 1.151 * @param action the action
4085     */
4086     public <U> void forEachInParallel
4087 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
4088 dl 1.171 Consumer<? super U> action) {
4089 dl 1.151 ForkJoinTasks.forEach
4090     (this, transformer, action).invoke();
4091     }
4092 dl 1.142
4093 dl 1.151 /**
4094     * Returns a non-null result from applying the given search
4095     * function on each (key, value), or null if none. Upon
4096     * success, further element processing is suppressed and the
4097     * results of any other parallel invocations of the search
4098     * function are ignored.
4099     *
4100     * @param searchFunction a function returning a non-null
4101     * result on success, else null
4102     * @return a non-null result from applying the given search
4103     * function on each (key, value), or null if none
4104     */
4105     public <U> U searchInParallel
4106 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4107 dl 1.151 return ForkJoinTasks.search
4108     (this, searchFunction).invoke();
4109     }
4110 dl 1.142
4111 dl 1.151 /**
4112     * Returns the result of accumulating the given transformation
4113     * of all (key, value) pairs using the given reducer to
4114     * combine values, or null if none.
4115     *
4116     * @param transformer a function returning the transformation
4117 jsr166 1.169 * for an element, or null if there is no transformation (in
4118 jsr166 1.172 * which case it is not combined)
4119 dl 1.151 * @param reducer a commutative associative combining function
4120     * @return the result of accumulating the given transformation
4121     * of all (key, value) pairs
4122     */
4123     public <U> U reduceInParallel
4124 dl 1.153 (BiFunction<? super K, ? super V, ? extends U> transformer,
4125     BiFunction<? super U, ? super U, ? extends U> reducer) {
4126 dl 1.151 return ForkJoinTasks.reduce
4127     (this, transformer, reducer).invoke();
4128     }
4129 dl 1.142
4130 dl 1.151 /**
4131     * Returns the result of accumulating the given transformation
4132     * of all (key, value) pairs using the given reducer to
4133     * combine values, and the given basis as an identity value.
4134     *
4135     * @param transformer a function returning the transformation
4136     * for an element
4137     * @param basis the identity (initial default value) for the reduction
4138     * @param reducer a commutative associative combining function
4139     * @return the result of accumulating the given transformation
4140     * of all (key, value) pairs
4141     */
4142     public double reduceToDoubleInParallel
4143 dl 1.171 (ToDoubleBiFunction<? super K, ? super V> transformer,
4144 dl 1.151 double basis,
4145 dl 1.153 DoubleBinaryOperator reducer) {
4146 dl 1.151 return ForkJoinTasks.reduceToDouble
4147     (this, transformer, basis, reducer).invoke();
4148     }
4149    
4150     /**
4151     * Returns the result of accumulating the given transformation
4152     * of all (key, value) pairs using the given reducer to
4153     * combine values, and the given basis as an identity value.
4154     *
4155     * @param transformer a function returning the transformation
4156     * for an element
4157     * @param basis the identity (initial default value) for the reduction
4158     * @param reducer a commutative associative combining function
4159     * @return the result of accumulating the given transformation
4160     * of all (key, value) pairs
4161     */
4162     public long reduceToLongInParallel
4163 dl 1.171 (ToLongBiFunction<? super K, ? super V> transformer,
4164 dl 1.151 long basis,
4165 dl 1.153 LongBinaryOperator reducer) {
4166 dl 1.151 return ForkJoinTasks.reduceToLong
4167     (this, transformer, basis, reducer).invoke();
4168     }
4169    
4170     /**
4171     * Returns the result of accumulating the given transformation
4172     * of all (key, value) pairs using the given reducer to
4173     * combine values, and the given basis as an identity value.
4174     *
4175     * @param transformer a function returning the transformation
4176     * for an element
4177     * @param basis the identity (initial default value) for the reduction
4178     * @param reducer a commutative associative combining function
4179     * @return the result of accumulating the given transformation
4180     * of all (key, value) pairs
4181     */
4182     public int reduceToIntInParallel
4183 dl 1.171 (ToIntBiFunction<? super K, ? super V> transformer,
4184 dl 1.151 int basis,
4185 dl 1.153 IntBinaryOperator reducer) {
4186 dl 1.151 return ForkJoinTasks.reduceToInt
4187     (this, transformer, basis, reducer).invoke();
4188     }
4189    
4190     /**
4191     * Performs the given action for each key.
4192     *
4193     * @param action the action
4194     */
4195 dl 1.171 public void forEachKeyInParallel(Consumer<? super K> action) {
4196 dl 1.151 ForkJoinTasks.forEachKey
4197     (this, action).invoke();
4198     }
4199    
4200     /**
4201     * Performs the given action for each non-null transformation
4202     * of each key.
4203     *
4204     * @param transformer a function returning the transformation
4205 jsr166 1.169 * for an element, or null if there is no transformation (in
4206 jsr166 1.172 * which case the action is not applied)
4207 dl 1.151 * @param action the action
4208     */
4209     public <U> void forEachKeyInParallel
4210 dl 1.153 (Function<? super K, ? extends U> transformer,
4211 dl 1.171 Consumer<? super U> action) {
4212 dl 1.151 ForkJoinTasks.forEachKey
4213     (this, transformer, action).invoke();
4214     }
4215    
4216     /**
4217     * Returns a non-null result from applying the given search
4218     * function on each key, or null if none. Upon success,
4219     * further element processing is suppressed and the results of
4220     * any other parallel invocations of the search function are
4221     * ignored.
4222     *
4223     * @param searchFunction a function returning a non-null
4224     * result on success, else null
4225     * @return a non-null result from applying the given search
4226     * function on each key, or null if none
4227     */
4228     public <U> U searchKeysInParallel
4229 dl 1.153 (Function<? super K, ? extends U> searchFunction) {
4230 dl 1.151 return ForkJoinTasks.searchKeys
4231     (this, searchFunction).invoke();
4232     }
4233    
4234     /**
4235     * Returns the result of accumulating all keys using the given
4236     * reducer to combine values, or null if none.
4237     *
4238     * @param reducer a commutative associative combining function
4239     * @return the result of accumulating all keys using the given
4240     * reducer to combine values, or null if none
4241     */
4242     public K reduceKeysInParallel
4243 dl 1.153 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4244 dl 1.151 return ForkJoinTasks.reduceKeys
4245     (this, reducer).invoke();
4246     }
4247    
4248     /**
4249     * Returns the result of accumulating the given transformation
4250     * of all keys using the given reducer to combine values, or
4251     * null if none.
4252     *
4253     * @param transformer a function returning the transformation
4254 jsr166 1.169 * for an element, or null if there is no transformation (in
4255 jsr166 1.172 * which case it is not combined)
4256 dl 1.151 * @param reducer a commutative associative combining function
4257     * @return the result of accumulating the given transformation
4258     * of all keys
4259     */
4260     public <U> U reduceKeysInParallel
4261 dl 1.153 (Function<? super K, ? extends U> transformer,
4262     BiFunction<? super U, ? super U, ? extends U> reducer) {
4263 dl 1.151 return ForkJoinTasks.reduceKeys
4264     (this, transformer, reducer).invoke();
4265     }
4266    
4267     /**
4268     * Returns the result of accumulating the given transformation
4269     * of all keys using the given reducer to combine values, and
4270     * the given basis as an identity value.
4271     *
4272     * @param transformer a function returning the transformation
4273     * for an element
4274     * @param basis the identity (initial default value) for the reduction
4275     * @param reducer a commutative associative combining function
4276 jsr166 1.157 * @return the result of accumulating the given transformation
4277 dl 1.151 * of all keys
4278     */
4279     public double reduceKeysToDoubleInParallel
4280 dl 1.171 (ToDoubleFunction<? super K> transformer,
4281 dl 1.151 double basis,
4282 dl 1.153 DoubleBinaryOperator reducer) {
4283 dl 1.151 return ForkJoinTasks.reduceKeysToDouble
4284     (this, transformer, basis, reducer).invoke();
4285     }
4286    
4287     /**
4288     * Returns the result of accumulating the given transformation
4289     * of all keys using the given reducer to combine values, and
4290     * the given basis as an identity value.
4291     *
4292     * @param transformer a function returning the transformation
4293     * for an element
4294     * @param basis the identity (initial default value) for the reduction
4295     * @param reducer a commutative associative combining function
4296     * @return the result of accumulating the given transformation
4297     * of all keys
4298     */
4299     public long reduceKeysToLongInParallel
4300 dl 1.171 (ToLongFunction<? super K> transformer,
4301 dl 1.151 long basis,
4302 dl 1.153 LongBinaryOperator reducer) {
4303 dl 1.151 return ForkJoinTasks.reduceKeysToLong
4304     (this, transformer, basis, reducer).invoke();
4305     }
4306    
4307     /**
4308     * Returns the result of accumulating the given transformation
4309     * of all keys using the given reducer to combine values, and
4310     * the given basis as an identity value.
4311     *
4312     * @param transformer a function returning the transformation
4313     * for an element
4314     * @param basis the identity (initial default value) for the reduction
4315     * @param reducer a commutative associative combining function
4316     * @return the result of accumulating the given transformation
4317     * of all keys
4318     */
4319     public int reduceKeysToIntInParallel
4320 dl 1.171 (ToIntFunction<? super K> transformer,
4321 dl 1.151 int basis,
4322 dl 1.153 IntBinaryOperator reducer) {
4323 dl 1.151 return ForkJoinTasks.reduceKeysToInt
4324     (this, transformer, basis, reducer).invoke();
4325     }
4326    
4327     /**
4328     * Performs the given action for each value.
4329     *
4330     * @param action the action
4331     */
4332 dl 1.171 public void forEachValueInParallel(Consumer<? super V> action) {
4333 dl 1.151 ForkJoinTasks.forEachValue
4334     (this, action).invoke();
4335     }
4336    
4337     /**
4338     * Performs the given action for each non-null transformation
4339     * of each value.
4340     *
4341     * @param transformer a function returning the transformation
4342 jsr166 1.169 * for an element, or null if there is no transformation (in
4343 jsr166 1.172 * which case the action is not applied)
4344 jsr166 1.179 * @param action the action
4345 dl 1.151 */
4346     public <U> void forEachValueInParallel
4347 dl 1.153 (Function<? super V, ? extends U> transformer,
4348 dl 1.171 Consumer<? super U> action) {
4349 dl 1.151 ForkJoinTasks.forEachValue
4350     (this, transformer, action).invoke();
4351     }
4352    
4353     /**
4354     * Returns a non-null result from applying the given search
4355     * function on each value, or null if none. Upon success,
4356     * further element processing is suppressed and the results of
4357     * any other parallel invocations of the search function are
4358     * ignored.
4359     *
4360     * @param searchFunction a function returning a non-null
4361     * result on success, else null
4362     * @return a non-null result from applying the given search
4363     * function on each value, or null if none
4364     */
4365     public <U> U searchValuesInParallel
4366 dl 1.153 (Function<? super V, ? extends U> searchFunction) {
4367 dl 1.151 return ForkJoinTasks.searchValues
4368     (this, searchFunction).invoke();
4369     }
4370    
4371     /**
4372     * Returns the result of accumulating all values using the
4373     * given reducer to combine values, or null if none.
4374     *
4375     * @param reducer a commutative associative combining function
4376 jsr166 1.157 * @return the result of accumulating all values
4377 dl 1.151 */
4378     public V reduceValuesInParallel
4379 dl 1.153 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4380 dl 1.151 return ForkJoinTasks.reduceValues
4381     (this, reducer).invoke();
4382     }
4383    
4384     /**
4385     * Returns the result of accumulating the given transformation
4386     * of all values using the given reducer to combine values, or
4387     * null if none.
4388     *
4389     * @param transformer a function returning the transformation
4390 jsr166 1.169 * for an element, or null if there is no transformation (in
4391 jsr166 1.172 * which case it is not combined)
4392 dl 1.151 * @param reducer a commutative associative combining function
4393     * @return the result of accumulating the given transformation
4394     * of all values
4395     */
4396     public <U> U reduceValuesInParallel
4397 dl 1.153 (Function<? super V, ? extends U> transformer,
4398     BiFunction<? super U, ? super U, ? extends U> reducer) {
4399 dl 1.151 return ForkJoinTasks.reduceValues
4400     (this, transformer, reducer).invoke();
4401     }
4402    
4403     /**
4404     * Returns the result of accumulating the given transformation
4405     * of all values using the given reducer to combine values,
4406     * and the given basis as an identity value.
4407     *
4408     * @param transformer a function returning the transformation
4409     * for an element
4410     * @param basis the identity (initial default value) for the reduction
4411     * @param reducer a commutative associative combining function
4412     * @return the result of accumulating the given transformation
4413     * of all values
4414     */
4415     public double reduceValuesToDoubleInParallel
4416 dl 1.171 (ToDoubleFunction<? super V> transformer,
4417 dl 1.151 double basis,
4418 dl 1.153 DoubleBinaryOperator reducer) {
4419 dl 1.151 return ForkJoinTasks.reduceValuesToDouble
4420     (this, transformer, basis, reducer).invoke();
4421     }
4422    
4423     /**
4424     * Returns the result of accumulating the given transformation
4425     * of all values using the given reducer to combine values,
4426     * and the given basis as an identity value.
4427     *
4428     * @param transformer a function returning the transformation
4429     * for an element
4430     * @param basis the identity (initial default value) for the reduction
4431     * @param reducer a commutative associative combining function
4432     * @return the result of accumulating the given transformation
4433     * of all values
4434     */
4435     public long reduceValuesToLongInParallel
4436 dl 1.171 (ToLongFunction<? super V> transformer,
4437 dl 1.151 long basis,
4438 dl 1.153 LongBinaryOperator reducer) {
4439 dl 1.151 return ForkJoinTasks.reduceValuesToLong
4440     (this, transformer, basis, reducer).invoke();
4441     }
4442    
4443     /**
4444     * Returns the result of accumulating the given transformation
4445     * of all values using the given reducer to combine values,
4446     * and the given basis as an identity value.
4447     *
4448     * @param transformer a function returning the transformation
4449     * for an element
4450     * @param basis the identity (initial default value) for the reduction
4451     * @param reducer a commutative associative combining function
4452     * @return the result of accumulating the given transformation
4453     * of all values
4454     */
4455     public int reduceValuesToIntInParallel
4456 dl 1.171 (ToIntFunction<? super V> transformer,
4457 dl 1.151 int basis,
4458 dl 1.153 IntBinaryOperator reducer) {
4459 dl 1.151 return ForkJoinTasks.reduceValuesToInt
4460     (this, transformer, basis, reducer).invoke();
4461     }
4462    
4463     /**
4464     * Performs the given action for each entry.
4465     *
4466     * @param action the action
4467     */
4468 dl 1.171 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4469 dl 1.151 ForkJoinTasks.forEachEntry
4470     (this, action).invoke();
4471     }
4472    
4473     /**
4474     * Performs the given action for each non-null transformation
4475     * of each entry.
4476     *
4477     * @param transformer a function returning the transformation
4478 jsr166 1.169 * for an element, or null if there is no transformation (in
4479 jsr166 1.172 * which case the action is not applied)
4480 dl 1.151 * @param action the action
4481     */
4482     public <U> void forEachEntryInParallel
4483 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4484 dl 1.171 Consumer<? super U> action) {
4485 dl 1.151 ForkJoinTasks.forEachEntry
4486     (this, transformer, action).invoke();
4487     }
4488    
4489     /**
4490     * Returns a non-null result from applying the given search
4491     * function on each entry, or null if none. Upon success,
4492     * further element processing is suppressed and the results of
4493     * any other parallel invocations of the search function are
4494     * ignored.
4495     *
4496     * @param searchFunction a function returning a non-null
4497     * result on success, else null
4498     * @return a non-null result from applying the given search
4499     * function on each entry, or null if none
4500     */
4501     public <U> U searchEntriesInParallel
4502 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4503 dl 1.151 return ForkJoinTasks.searchEntries
4504     (this, searchFunction).invoke();
4505     }
4506    
4507     /**
4508     * Returns the result of accumulating all entries using the
4509     * given reducer to combine values, or null if none.
4510     *
4511     * @param reducer a commutative associative combining function
4512     * @return the result of accumulating all entries
4513     */
4514     public Map.Entry<K,V> reduceEntriesInParallel
4515 dl 1.153 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4516 dl 1.151 return ForkJoinTasks.reduceEntries
4517     (this, reducer).invoke();
4518     }
4519    
4520     /**
4521     * Returns the result of accumulating the given transformation
4522     * of all entries using the given reducer to combine values,
4523     * or null if none.
4524     *
4525     * @param transformer a function returning the transformation
4526 jsr166 1.169 * for an element, or null if there is no transformation (in
4527 jsr166 1.172 * which case it is not combined)
4528 dl 1.151 * @param reducer a commutative associative combining function
4529     * @return the result of accumulating the given transformation
4530     * of all entries
4531     */
4532     public <U> U reduceEntriesInParallel
4533 dl 1.153 (Function<Map.Entry<K,V>, ? extends U> transformer,
4534     BiFunction<? super U, ? super U, ? extends U> reducer) {
4535 dl 1.151 return ForkJoinTasks.reduceEntries
4536     (this, transformer, reducer).invoke();
4537     }
4538    
4539     /**
4540     * Returns the result of accumulating the given transformation
4541     * of all entries using the given reducer to combine values,
4542     * and the given basis as an identity value.
4543     *
4544     * @param transformer a function returning the transformation
4545     * for an element
4546     * @param basis the identity (initial default value) for the reduction
4547     * @param reducer a commutative associative combining function
4548     * @return the result of accumulating the given transformation
4549     * of all entries
4550     */
4551     public double reduceEntriesToDoubleInParallel
4552 dl 1.171 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4553 dl 1.151 double basis,
4554 dl 1.153 DoubleBinaryOperator reducer) {
4555 dl 1.151 return ForkJoinTasks.reduceEntriesToDouble
4556     (this, transformer, basis, reducer).invoke();
4557     }
4558    
4559     /**
4560     * Returns the result of accumulating the given transformation
4561     * of all entries using the given reducer to combine values,
4562     * and the given basis as an identity value.
4563     *
4564     * @param transformer a function returning the transformation
4565     * for an element
4566     * @param basis the identity (initial default value) for the reduction
4567     * @param reducer a commutative associative combining function
4568 jsr166 1.157 * @return the result of accumulating the given transformation
4569 dl 1.151 * of all entries
4570     */
4571     public long reduceEntriesToLongInParallel
4572 dl 1.171 (ToLongFunction<Map.Entry<K,V>> transformer,
4573 dl 1.151 long basis,
4574 dl 1.153 LongBinaryOperator reducer) {
4575 dl 1.151 return ForkJoinTasks.reduceEntriesToLong
4576     (this, transformer, basis, reducer).invoke();
4577     }
4578    
4579     /**
4580     * Returns the result of accumulating the given transformation
4581     * of all entries using the given reducer to combine values,
4582     * and the given basis as an identity value.
4583     *
4584     * @param transformer a function returning the transformation
4585     * for an element
4586     * @param basis the identity (initial default value) for the reduction
4587     * @param reducer a commutative associative combining function
4588     * @return the result of accumulating the given transformation
4589     * of all entries
4590     */
4591     public int reduceEntriesToIntInParallel
4592 dl 1.171 (ToIntFunction<Map.Entry<K,V>> transformer,
4593 dl 1.151 int basis,
4594 dl 1.153 IntBinaryOperator reducer) {
4595 dl 1.151 return ForkJoinTasks.reduceEntriesToInt
4596     (this, transformer, basis, reducer).invoke();
4597     }
4598    
4599    
4600     /* ----------------Views -------------- */
4601    
4602     /**
4603     * Base class for views.
4604     */
4605 jsr166 1.187 abstract static class CHMCollectionView<K,V,E>
4606 jsr166 1.184 implements Collection<E>, java.io.Serializable {
4607 dl 1.163 private static final long serialVersionUID = 7249069246763182397L;
4608 jsr166 1.186 final ConcurrentHashMap<K,V> map;
4609     CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4610 dl 1.151
4611     /**
4612     * Returns the map backing this view.
4613     *
4614     * @return the map backing this view
4615     */
4616     public ConcurrentHashMap<K,V> getMap() { return map; }
4617    
4618 jsr166 1.184 /**
4619     * Removes all of the elements from this view, by removing all
4620     * the mappings from the map backing this view.
4621     */
4622     public final void clear() { map.clear(); }
4623     public final int size() { return map.size(); }
4624     public final boolean isEmpty() { return map.isEmpty(); }
4625 dl 1.151
4626     // implementations below rely on concrete classes supplying these
4627 jsr166 1.184 // abstract methods
4628     /**
4629     * Returns a "weakly consistent" iterator that will never
4630     * throw {@link ConcurrentModificationException}, and
4631     * guarantees to traverse elements as they existed upon
4632     * construction of the iterator, and may (but is not
4633     * guaranteed to) reflect any modifications subsequent to
4634     * construction.
4635     */
4636     public abstract Iterator<E> iterator();
4637 jsr166 1.165 public abstract boolean contains(Object o);
4638     public abstract boolean remove(Object o);
4639 dl 1.151
4640     private static final String oomeMsg = "Required array size too large";
4641 dl 1.142
4642     public final Object[] toArray() {
4643     long sz = map.mappingCount();
4644 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4645 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4646     int n = (int)sz;
4647     Object[] r = new Object[n];
4648     int i = 0;
4649 jsr166 1.184 for (E e : this) {
4650 dl 1.142 if (i == n) {
4651     if (n >= MAX_ARRAY_SIZE)
4652     throw new OutOfMemoryError(oomeMsg);
4653     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4654     n = MAX_ARRAY_SIZE;
4655     else
4656     n += (n >>> 1) + 1;
4657     r = Arrays.copyOf(r, n);
4658     }
4659 jsr166 1.184 r[i++] = e;
4660 dl 1.142 }
4661     return (i == n) ? r : Arrays.copyOf(r, i);
4662     }
4663    
4664 jsr166 1.184 @SuppressWarnings("unchecked")
4665     public final <T> T[] toArray(T[] a) {
4666 dl 1.142 long sz = map.mappingCount();
4667 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4668 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4669     int m = (int)sz;
4670     T[] r = (a.length >= m) ? a :
4671     (T[])java.lang.reflect.Array
4672     .newInstance(a.getClass().getComponentType(), m);
4673     int n = r.length;
4674     int i = 0;
4675 jsr166 1.184 for (E e : this) {
4676 dl 1.142 if (i == n) {
4677     if (n >= MAX_ARRAY_SIZE)
4678     throw new OutOfMemoryError(oomeMsg);
4679     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4680     n = MAX_ARRAY_SIZE;
4681     else
4682     n += (n >>> 1) + 1;
4683     r = Arrays.copyOf(r, n);
4684     }
4685 jsr166 1.184 r[i++] = (T)e;
4686 dl 1.142 }
4687     if (a == r && i < n) {
4688     r[i] = null; // null-terminate
4689     return r;
4690     }
4691     return (i == n) ? r : Arrays.copyOf(r, i);
4692     }
4693    
4694 jsr166 1.184 /**
4695     * Returns a string representation of this collection.
4696     * The string representation consists of the string representations
4697     * of the collection's elements in the order they are returned by
4698     * its iterator, enclosed in square brackets ({@code "[]"}).
4699     * Adjacent elements are separated by the characters {@code ", "}
4700     * (comma and space). Elements are converted to strings as by
4701     * {@link String#valueOf(Object)}.
4702     *
4703     * @return a string representation of this collection
4704     */
4705 dl 1.142 public final String toString() {
4706     StringBuilder sb = new StringBuilder();
4707     sb.append('[');
4708 jsr166 1.184 Iterator<E> it = iterator();
4709 dl 1.142 if (it.hasNext()) {
4710     for (;;) {
4711     Object e = it.next();
4712     sb.append(e == this ? "(this Collection)" : e);
4713     if (!it.hasNext())
4714     break;
4715     sb.append(',').append(' ');
4716     }
4717     }
4718     return sb.append(']').toString();
4719     }
4720    
4721     public final boolean containsAll(Collection<?> c) {
4722     if (c != this) {
4723 jsr166 1.184 for (Object e : c) {
4724 dl 1.142 if (e == null || !contains(e))
4725     return false;
4726     }
4727     }
4728     return true;
4729     }
4730    
4731     public final boolean removeAll(Collection<?> c) {
4732     boolean modified = false;
4733 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4734 dl 1.142 if (c.contains(it.next())) {
4735     it.remove();
4736     modified = true;
4737     }
4738     }
4739     return modified;
4740     }
4741    
4742     public final boolean retainAll(Collection<?> c) {
4743     boolean modified = false;
4744 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4745 dl 1.142 if (!c.contains(it.next())) {
4746     it.remove();
4747     modified = true;
4748     }
4749     }
4750     return modified;
4751     }
4752    
4753     }
4754    
4755 jsr166 1.187 abstract static class CHMSetView<K,V,E>
4756     extends CHMCollectionView<K,V,E>
4757 jsr166 1.184 implements Set<E>, java.io.Serializable {
4758     private static final long serialVersionUID = 7249069246763182397L;
4759 jsr166 1.186 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4760 jsr166 1.184
4761     // Implement Set API
4762    
4763     /**
4764     * Implements {@link Set#hashCode()}.
4765     * @return the hash code value for this set
4766     */
4767     public final int hashCode() {
4768     int h = 0;
4769     for (E e : this)
4770     h += e.hashCode();
4771     return h;
4772     }
4773    
4774     /**
4775     * Implements {@link Set#equals(Object)}.
4776     * @param o object to be compared for equality with this set
4777     * @return {@code true} if the specified object is equal to this set
4778     */
4779     public final boolean equals(Object o) {
4780     Set<?> c;
4781     return ((o instanceof Set) &&
4782     ((c = (Set<?>)o) == this ||
4783     (containsAll(c) && c.containsAll(this))));
4784     }
4785     }
4786    
4787 dl 1.142 /**
4788     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4789     * which additions may optionally be enabled by mapping to a
4790 jsr166 1.185 * common value. This class cannot be directly instantiated.
4791     * See {@link #keySet() keySet()},
4792     * {@link #keySet(Object) keySet(V)},
4793     * {@link #newKeySet() newKeySet()},
4794     * {@link #newKeySet(int) newKeySet(int)}.
4795 dl 1.142 */
4796 jsr166 1.184 public static class KeySetView<K,V>
4797     extends CHMSetView<K,V,K>
4798     implements Set<K>, java.io.Serializable {
4799 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4800     private final V value;
4801 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4802 dl 1.142 super(map);
4803     this.value = value;
4804     }
4805    
4806     /**
4807     * Returns the default mapped value for additions,
4808     * or {@code null} if additions are not supported.
4809     *
4810     * @return the default mapped value for additions, or {@code null}
4811 jsr166 1.172 * if not supported
4812 dl 1.142 */
4813     public V getMappedValue() { return value; }
4814    
4815 jsr166 1.184 /**
4816     * {@inheritDoc}
4817     * @throws NullPointerException if the specified key is null
4818     */
4819     public boolean contains(Object o) { return map.containsKey(o); }
4820 dl 1.142
4821 jsr166 1.184 /**
4822     * Removes the key from this map view, by removing the key (and its
4823     * corresponding value) from the backing map. This method does
4824     * nothing if the key is not in the map.
4825     *
4826     * @param o the key to be removed from the backing map
4827     * @return {@code true} if the backing map contained the specified key
4828     * @throws NullPointerException if the specified key is null
4829     */
4830     public boolean remove(Object o) { return map.remove(o) != null; }
4831    
4832     /**
4833     * @return an iterator over the keys of the backing map
4834     */
4835     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4836 dl 1.142
4837     /**
4838 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4839     * the default mapped value in the backing map, if defined.
4840 dl 1.142 *
4841 jsr166 1.184 * @param e key to be added
4842     * @return {@code true} if this set changed as a result of the call
4843     * @throws NullPointerException if the specified key is null
4844     * @throws UnsupportedOperationException if no default mapped value
4845     * for additions was provided
4846 dl 1.142 */
4847     public boolean add(K e) {
4848     V v;
4849     if ((v = value) == null)
4850     throw new UnsupportedOperationException();
4851 dl 1.149 return map.internalPut(e, v, true) == null;
4852 dl 1.142 }
4853 jsr166 1.184
4854     /**
4855     * Adds all of the elements in the specified collection to this set,
4856     * as if by calling {@link #add} on each one.
4857     *
4858     * @param c the elements to be inserted into this set
4859     * @return {@code true} if this set changed as a result of the call
4860     * @throws NullPointerException if the collection or any of its
4861     * elements are {@code null}
4862     * @throws UnsupportedOperationException if no default mapped value
4863     * for additions was provided
4864     */
4865 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4866     boolean added = false;
4867     V v;
4868     if ((v = value) == null)
4869     throw new UnsupportedOperationException();
4870     for (K e : c) {
4871 dl 1.149 if (map.internalPut(e, v, true) == null)
4872 dl 1.142 added = true;
4873     }
4874     return added;
4875     }
4876 dl 1.153
4877 dl 1.194 public Spliterator<K> spliterator() {
4878 dl 1.191 return new KeyIterator<>(map, null);
4879     }
4880    
4881 dl 1.142 }
4882    
4883     /**
4884     * A view of a ConcurrentHashMap as a {@link Collection} of
4885     * values, in which additions are disabled. This class cannot be
4886 jsr166 1.181 * directly instantiated. See {@link #values()}.
4887 dl 1.142 *
4888     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4889     * that will never throw {@link ConcurrentModificationException},
4890     * and guarantees to traverse elements as they existed upon
4891     * construction of the iterator, and may (but is not guaranteed to)
4892     * reflect any modifications subsequent to construction.
4893     */
4894 jsr166 1.184 public static final class ValuesView<K,V>
4895     extends CHMCollectionView<K,V,V>
4896     implements Collection<V>, java.io.Serializable {
4897 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4898 jsr166 1.186 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4899 jsr166 1.184 public final boolean contains(Object o) {
4900     return map.containsValue(o);
4901     }
4902 dl 1.142 public final boolean remove(Object o) {
4903     if (o != null) {
4904 jsr166 1.184 for (Iterator<V> it = iterator(); it.hasNext();) {
4905 dl 1.142 if (o.equals(it.next())) {
4906     it.remove();
4907     return true;
4908     }
4909     }
4910     }
4911     return false;
4912     }
4913    
4914     /**
4915 jsr166 1.184 * @return an iterator over the values of the backing map
4916 dl 1.142 */
4917     public final Iterator<V> iterator() {
4918     return new ValueIterator<K,V>(map);
4919     }
4920 jsr166 1.184
4921     /** Always throws {@link UnsupportedOperationException}. */
4922 dl 1.142 public final boolean add(V e) {
4923     throw new UnsupportedOperationException();
4924     }
4925 jsr166 1.184 /** Always throws {@link UnsupportedOperationException}. */
4926 dl 1.142 public final boolean addAll(Collection<? extends V> c) {
4927     throw new UnsupportedOperationException();
4928     }
4929    
4930 dl 1.194 public Spliterator<V> spliterator() {
4931 dl 1.191 return new ValueIterator<K,V>(map, null);
4932     }
4933    
4934 dl 1.142 }
4935    
4936     /**
4937     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4938     * entries. This class cannot be directly instantiated. See
4939 jsr166 1.180 * {@link #entrySet()}.
4940 dl 1.142 */
4941 jsr166 1.184 public static final class EntrySetView<K,V>
4942     extends CHMSetView<K,V,Map.Entry<K,V>>
4943     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4944 jsr166 1.166 private static final long serialVersionUID = 2249069246763182397L;
4945 jsr166 1.186 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4946 jsr166 1.184
4947 dl 1.142 public final boolean contains(Object o) {
4948     Object k, v, r; Map.Entry<?,?> e;
4949     return ((o instanceof Map.Entry) &&
4950     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4951     (r = map.get(k)) != null &&
4952     (v = e.getValue()) != null &&
4953     (v == r || v.equals(r)));
4954     }
4955     public final boolean remove(Object o) {
4956     Object k, v; Map.Entry<?,?> e;
4957     return ((o instanceof Map.Entry) &&
4958     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4959     (v = e.getValue()) != null &&
4960     map.remove(k, v));
4961     }
4962    
4963     /**
4964 jsr166 1.184 * @return an iterator over the entries of the backing map
4965 dl 1.142 */
4966     public final Iterator<Map.Entry<K,V>> iterator() {
4967     return new EntryIterator<K,V>(map);
4968     }
4969    
4970 jsr166 1.184 /**
4971     * Adds the specified mapping to this view.
4972     *
4973     * @param e mapping to be added
4974     * @return {@code true} if this set changed as a result of the call
4975     * @throws NullPointerException if the entry, its key, or its
4976     * value is null
4977     */
4978 dl 1.142 public final boolean add(Entry<K,V> e) {
4979 jsr166 1.182 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4980 dl 1.142 }
4981 jsr166 1.184 /**
4982     * Adds all of the mappings in the specified collection to this
4983     * set, as if by calling {@link #add(Map.Entry)} on each one.
4984     * @param c the mappings to be inserted into this set
4985     * @return {@code true} if this set changed as a result of the call
4986     * @throws NullPointerException if the collection or any of its
4987     * entries, keys, or values are null
4988     */
4989 dl 1.142 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4990     boolean added = false;
4991     for (Entry<K,V> e : c) {
4992     if (add(e))
4993     added = true;
4994     }
4995     return added;
4996     }
4997 dl 1.153
4998 dl 1.194 public Spliterator<Map.Entry<K,V>> spliterator() {
4999 dl 1.191 return new EntryIterator<K,V>(map, null);
5000     }
5001    
5002 dl 1.142 }
5003    
5004 dl 1.119 // ---------------------------------------------------------------------
5005    
5006     /**
5007     * Predefined tasks for performing bulk parallel operations on
5008     * ConcurrentHashMaps. These tasks follow the forms and rules used
5009 dl 1.137 * for bulk operations. Each method has the same name, but returns
5010     * a task rather than invoking it. These methods may be useful in
5011     * custom applications such as submitting a task without waiting
5012     * for completion, using a custom pool, or combining with other
5013     * tasks.
5014 dl 1.119 */
5015     public static class ForkJoinTasks {
5016     private ForkJoinTasks() {}
5017    
5018     /**
5019     * Returns a task that when invoked, performs the given
5020     * action for each (key, value)
5021     *
5022     * @param map the map
5023     * @param action the action
5024     * @return the task
5025     */
5026 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEach
5027 dl 1.119 (ConcurrentHashMap<K,V> map,
5028 dl 1.171 BiConsumer<? super K, ? super V> action) {
5029 dl 1.119 if (action == null) throw new NullPointerException();
5030 dl 1.146 return new ForEachMappingTask<K,V>(map, null, -1, action);
5031 dl 1.119 }
5032    
5033     /**
5034     * Returns a task that when invoked, performs the given
5035     * action for each non-null transformation of each (key, value)
5036     *
5037     * @param map the map
5038     * @param transformer a function returning the transformation
5039 jsr166 1.135 * for an element, or null if there is no transformation (in
5040 jsr166 1.134 * which case the action is not applied)
5041 dl 1.119 * @param action the action
5042     * @return the task
5043     */
5044 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEach
5045 dl 1.119 (ConcurrentHashMap<K,V> map,
5046 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5047 dl 1.171 Consumer<? super U> action) {
5048 dl 1.119 if (transformer == null || action == null)
5049     throw new NullPointerException();
5050     return new ForEachTransformedMappingTask<K,V,U>
5051 dl 1.146 (map, null, -1, transformer, action);
5052 dl 1.119 }
5053    
5054     /**
5055 dl 1.126 * Returns a task that when invoked, returns a non-null result
5056     * from applying the given search function on each (key,
5057     * value), or null if none. Upon success, further element
5058     * processing is suppressed and the results of any other
5059     * parallel invocations of the search function are ignored.
5060 dl 1.119 *
5061     * @param map the map
5062     * @param searchFunction a function returning a non-null
5063     * result on success, else null
5064     * @return the task
5065     */
5066     public static <K,V,U> ForkJoinTask<U> search
5067     (ConcurrentHashMap<K,V> map,
5068 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5069 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5070     return new SearchMappingsTask<K,V,U>
5071 dl 1.146 (map, null, -1, searchFunction,
5072 dl 1.119 new AtomicReference<U>());
5073     }
5074    
5075     /**
5076     * Returns a task that when invoked, returns the result of
5077     * accumulating the given transformation of all (key, value) pairs
5078     * using the given reducer to combine values, or null if none.
5079     *
5080     * @param map the map
5081     * @param transformer a function returning the transformation
5082 jsr166 1.135 * for an element, or null if there is no transformation (in
5083 jsr166 1.172 * which case it is not combined)
5084 dl 1.119 * @param reducer a commutative associative combining function
5085     * @return the task
5086     */
5087     public static <K,V,U> ForkJoinTask<U> reduce
5088     (ConcurrentHashMap<K,V> map,
5089 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5090     BiFunction<? super U, ? super U, ? extends U> reducer) {
5091 dl 1.119 if (transformer == null || reducer == null)
5092     throw new NullPointerException();
5093     return new MapReduceMappingsTask<K,V,U>
5094 dl 1.130 (map, null, -1, null, transformer, reducer);
5095 dl 1.119 }
5096    
5097     /**
5098     * Returns a task that when invoked, returns the result of
5099     * accumulating the given transformation of all (key, value) pairs
5100     * using the given reducer to combine values, and the given
5101     * basis as an identity value.
5102     *
5103     * @param map the map
5104     * @param transformer a function returning the transformation
5105     * for an element
5106     * @param basis the identity (initial default value) for the reduction
5107     * @param reducer a commutative associative combining function
5108     * @return the task
5109     */
5110     public static <K,V> ForkJoinTask<Double> reduceToDouble
5111     (ConcurrentHashMap<K,V> map,
5112 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5113 dl 1.119 double basis,
5114 dl 1.153 DoubleBinaryOperator reducer) {
5115 dl 1.119 if (transformer == null || reducer == null)
5116     throw new NullPointerException();
5117     return new MapReduceMappingsToDoubleTask<K,V>
5118 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5119 dl 1.119 }
5120    
5121     /**
5122     * Returns a task that when invoked, returns the result of
5123     * accumulating the given transformation of all (key, value) pairs
5124     * using the given reducer to combine values, and the given
5125     * basis as an identity value.
5126     *
5127     * @param map the map
5128     * @param transformer a function returning the transformation
5129     * for an element
5130     * @param basis the identity (initial default value) for the reduction
5131     * @param reducer a commutative associative combining function
5132     * @return the task
5133     */
5134     public static <K,V> ForkJoinTask<Long> reduceToLong
5135     (ConcurrentHashMap<K,V> map,
5136 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5137 dl 1.119 long basis,
5138 dl 1.153 LongBinaryOperator reducer) {
5139 dl 1.119 if (transformer == null || reducer == null)
5140     throw new NullPointerException();
5141     return new MapReduceMappingsToLongTask<K,V>
5142 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5143 dl 1.119 }
5144    
5145     /**
5146     * Returns a task that when invoked, returns the result of
5147     * accumulating the given transformation of all (key, value) pairs
5148     * using the given reducer to combine values, and the given
5149     * basis as an identity value.
5150     *
5151 jsr166 1.179 * @param map the map
5152 dl 1.119 * @param transformer a function returning the transformation
5153     * for an element
5154     * @param basis the identity (initial default value) for the reduction
5155     * @param reducer a commutative associative combining function
5156     * @return the task
5157     */
5158     public static <K,V> ForkJoinTask<Integer> reduceToInt
5159     (ConcurrentHashMap<K,V> map,
5160 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
5161 dl 1.119 int basis,
5162 dl 1.153 IntBinaryOperator reducer) {
5163 dl 1.119 if (transformer == null || reducer == null)
5164     throw new NullPointerException();
5165     return new MapReduceMappingsToIntTask<K,V>
5166 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5167 dl 1.119 }
5168    
5169     /**
5170     * Returns a task that when invoked, performs the given action
5171 jsr166 1.123 * for each key.
5172 dl 1.119 *
5173     * @param map the map
5174     * @param action the action
5175     * @return the task
5176     */
5177 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachKey
5178 dl 1.119 (ConcurrentHashMap<K,V> map,
5179 dl 1.171 Consumer<? super K> action) {
5180 dl 1.119 if (action == null) throw new NullPointerException();
5181 dl 1.146 return new ForEachKeyTask<K,V>(map, null, -1, action);
5182 dl 1.119 }
5183    
5184     /**
5185     * Returns a task that when invoked, performs the given action
5186 jsr166 1.123 * for each non-null transformation of each key.
5187 dl 1.119 *
5188     * @param map the map
5189     * @param transformer a function returning the transformation
5190 jsr166 1.135 * for an element, or null if there is no transformation (in
5191 jsr166 1.134 * which case the action is not applied)
5192 dl 1.119 * @param action the action
5193     * @return the task
5194     */
5195 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachKey
5196 dl 1.119 (ConcurrentHashMap<K,V> map,
5197 dl 1.153 Function<? super K, ? extends U> transformer,
5198 dl 1.171 Consumer<? super U> action) {
5199 dl 1.119 if (transformer == null || action == null)
5200     throw new NullPointerException();
5201     return new ForEachTransformedKeyTask<K,V,U>
5202 dl 1.146 (map, null, -1, transformer, action);
5203 dl 1.119 }
5204    
5205     /**
5206     * Returns a task that when invoked, returns a non-null result
5207     * from applying the given search function on each key, or
5208 dl 1.126 * null if none. Upon success, further element processing is
5209     * suppressed and the results of any other parallel
5210     * invocations of the search function are ignored.
5211 dl 1.119 *
5212     * @param map the map
5213     * @param searchFunction a function returning a non-null
5214     * result on success, else null
5215     * @return the task
5216     */
5217     public static <K,V,U> ForkJoinTask<U> searchKeys
5218     (ConcurrentHashMap<K,V> map,
5219 dl 1.153 Function<? super K, ? extends U> searchFunction) {
5220 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5221     return new SearchKeysTask<K,V,U>
5222 dl 1.146 (map, null, -1, searchFunction,
5223 dl 1.119 new AtomicReference<U>());
5224     }
5225    
5226     /**
5227     * Returns a task that when invoked, returns the result of
5228     * accumulating all keys using the given reducer to combine
5229     * values, or null if none.
5230     *
5231     * @param map the map
5232     * @param reducer a commutative associative combining function
5233     * @return the task
5234     */
5235     public static <K,V> ForkJoinTask<K> reduceKeys
5236     (ConcurrentHashMap<K,V> map,
5237 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5238 dl 1.119 if (reducer == null) throw new NullPointerException();
5239     return new ReduceKeysTask<K,V>
5240 dl 1.130 (map, null, -1, null, reducer);
5241 dl 1.119 }
5242 jsr166 1.125
5243 dl 1.119 /**
5244     * Returns a task that when invoked, returns the result of
5245     * accumulating the given transformation of all keys using the given
5246     * reducer to combine values, or null if none.
5247     *
5248     * @param map the map
5249     * @param transformer a function returning the transformation
5250 jsr166 1.135 * for an element, or null if there is no transformation (in
5251 jsr166 1.172 * which case it is not combined)
5252 dl 1.119 * @param reducer a commutative associative combining function
5253     * @return the task
5254     */
5255     public static <K,V,U> ForkJoinTask<U> reduceKeys
5256     (ConcurrentHashMap<K,V> map,
5257 dl 1.153 Function<? super K, ? extends U> transformer,
5258     BiFunction<? super U, ? super U, ? extends U> reducer) {
5259 dl 1.119 if (transformer == null || reducer == null)
5260     throw new NullPointerException();
5261     return new MapReduceKeysTask<K,V,U>
5262 dl 1.130 (map, null, -1, null, transformer, reducer);
5263 dl 1.119 }
5264    
5265     /**
5266     * Returns a task that when invoked, returns the result of
5267     * accumulating the given transformation of all keys using the given
5268     * reducer to combine values, and the given basis as an
5269     * identity value.
5270     *
5271     * @param map the map
5272     * @param transformer a function returning the transformation
5273     * for an element
5274     * @param basis the identity (initial default value) for the reduction
5275     * @param reducer a commutative associative combining function
5276     * @return the task
5277     */
5278     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5279     (ConcurrentHashMap<K,V> map,
5280 dl 1.171 ToDoubleFunction<? super K> transformer,
5281 dl 1.119 double basis,
5282 dl 1.153 DoubleBinaryOperator reducer) {
5283 dl 1.119 if (transformer == null || reducer == null)
5284     throw new NullPointerException();
5285     return new MapReduceKeysToDoubleTask<K,V>
5286 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5287 dl 1.119 }
5288    
5289     /**
5290     * Returns a task that when invoked, returns the result of
5291     * accumulating the given transformation of all keys using the given
5292     * reducer to combine values, and the given basis as an
5293     * identity value.
5294     *
5295     * @param map the map
5296     * @param transformer a function returning the transformation
5297     * for an element
5298     * @param basis the identity (initial default value) for the reduction
5299     * @param reducer a commutative associative combining function
5300     * @return the task
5301     */
5302     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5303     (ConcurrentHashMap<K,V> map,
5304 dl 1.171 ToLongFunction<? super K> transformer,
5305 dl 1.119 long basis,
5306 dl 1.153 LongBinaryOperator reducer) {
5307 dl 1.119 if (transformer == null || reducer == null)
5308     throw new NullPointerException();
5309     return new MapReduceKeysToLongTask<K,V>
5310 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5311 dl 1.119 }
5312    
5313     /**
5314     * Returns a task that when invoked, returns the result of
5315     * accumulating the given transformation of all keys using the given
5316     * reducer to combine values, and the given basis as an
5317     * identity value.
5318     *
5319     * @param map the map
5320     * @param transformer a function returning the transformation
5321     * for an element
5322     * @param basis the identity (initial default value) for the reduction
5323     * @param reducer a commutative associative combining function
5324     * @return the task
5325     */
5326     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5327     (ConcurrentHashMap<K,V> map,
5328 dl 1.171 ToIntFunction<? super K> transformer,
5329 dl 1.119 int basis,
5330 dl 1.153 IntBinaryOperator reducer) {
5331 dl 1.119 if (transformer == null || reducer == null)
5332     throw new NullPointerException();
5333     return new MapReduceKeysToIntTask<K,V>
5334 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5335 dl 1.119 }
5336    
5337     /**
5338     * Returns a task that when invoked, performs the given action
5339 jsr166 1.123 * for each value.
5340 dl 1.119 *
5341     * @param map the map
5342     * @param action the action
5343 jsr166 1.173 * @return the task
5344 dl 1.119 */
5345 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachValue
5346 dl 1.119 (ConcurrentHashMap<K,V> map,
5347 dl 1.171 Consumer<? super V> action) {
5348 dl 1.119 if (action == null) throw new NullPointerException();
5349 dl 1.146 return new ForEachValueTask<K,V>(map, null, -1, action);
5350 dl 1.119 }
5351    
5352     /**
5353     * Returns a task that when invoked, performs the given action
5354 jsr166 1.123 * for each non-null transformation of each value.
5355 dl 1.119 *
5356     * @param map the map
5357     * @param transformer a function returning the transformation
5358 jsr166 1.135 * for an element, or null if there is no transformation (in
5359 jsr166 1.134 * which case the action is not applied)
5360 dl 1.119 * @param action the action
5361 jsr166 1.173 * @return the task
5362 dl 1.119 */
5363 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachValue
5364 dl 1.119 (ConcurrentHashMap<K,V> map,
5365 dl 1.153 Function<? super V, ? extends U> transformer,
5366 dl 1.171 Consumer<? super U> action) {
5367 dl 1.119 if (transformer == null || action == null)
5368     throw new NullPointerException();
5369     return new ForEachTransformedValueTask<K,V,U>
5370 dl 1.146 (map, null, -1, transformer, action);
5371 dl 1.119 }
5372    
5373     /**
5374     * Returns a task that when invoked, returns a non-null result
5375     * from applying the given search function on each value, or
5376 dl 1.126 * null if none. Upon success, further element processing is
5377     * suppressed and the results of any other parallel
5378     * invocations of the search function are ignored.
5379 dl 1.119 *
5380     * @param map the map
5381     * @param searchFunction a function returning a non-null
5382     * result on success, else null
5383     * @return the task
5384     */
5385     public static <K,V,U> ForkJoinTask<U> searchValues
5386     (ConcurrentHashMap<K,V> map,
5387 dl 1.153 Function<? super V, ? extends U> searchFunction) {
5388 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5389     return new SearchValuesTask<K,V,U>
5390 dl 1.146 (map, null, -1, searchFunction,
5391 dl 1.119 new AtomicReference<U>());
5392     }
5393    
5394     /**
5395     * Returns a task that when invoked, returns the result of
5396     * accumulating all values using the given reducer to combine
5397     * values, or null if none.
5398     *
5399     * @param map the map
5400     * @param reducer a commutative associative combining function
5401     * @return the task
5402     */
5403     public static <K,V> ForkJoinTask<V> reduceValues
5404     (ConcurrentHashMap<K,V> map,
5405 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5406 dl 1.119 if (reducer == null) throw new NullPointerException();
5407     return new ReduceValuesTask<K,V>
5408 dl 1.130 (map, null, -1, null, reducer);
5409 dl 1.119 }
5410    
5411     /**
5412     * Returns a task that when invoked, returns the result of
5413     * accumulating the given transformation of all values using the
5414     * given reducer to combine values, or null if none.
5415     *
5416     * @param map the map
5417     * @param transformer a function returning the transformation
5418 jsr166 1.135 * for an element, or null if there is no transformation (in
5419 jsr166 1.172 * which case it is not combined)
5420 dl 1.119 * @param reducer a commutative associative combining function
5421     * @return the task
5422     */
5423     public static <K,V,U> ForkJoinTask<U> reduceValues
5424     (ConcurrentHashMap<K,V> map,
5425 dl 1.153 Function<? super V, ? extends U> transformer,
5426     BiFunction<? super U, ? super U, ? extends U> reducer) {
5427 dl 1.119 if (transformer == null || reducer == null)
5428     throw new NullPointerException();
5429     return new MapReduceValuesTask<K,V,U>
5430 dl 1.130 (map, null, -1, null, transformer, reducer);
5431 dl 1.119 }
5432    
5433     /**
5434     * Returns a task that when invoked, returns the result of
5435     * accumulating the given transformation of all values using the
5436     * given reducer to combine values, and the given basis as an
5437     * identity value.
5438     *
5439     * @param map the map
5440     * @param transformer a function returning the transformation
5441     * for an element
5442     * @param basis the identity (initial default value) for the reduction
5443     * @param reducer a commutative associative combining function
5444     * @return the task
5445     */
5446     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5447     (ConcurrentHashMap<K,V> map,
5448 dl 1.171 ToDoubleFunction<? super V> transformer,
5449 dl 1.119 double basis,
5450 dl 1.153 DoubleBinaryOperator reducer) {
5451 dl 1.119 if (transformer == null || reducer == null)
5452     throw new NullPointerException();
5453     return new MapReduceValuesToDoubleTask<K,V>
5454 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5455 dl 1.119 }
5456    
5457     /**
5458     * Returns a task that when invoked, returns the result of
5459     * accumulating the given transformation of all values using the
5460     * given reducer to combine values, and the given basis as an
5461     * identity value.
5462     *
5463     * @param map the map
5464     * @param transformer a function returning the transformation
5465     * for an element
5466     * @param basis the identity (initial default value) for the reduction
5467     * @param reducer a commutative associative combining function
5468     * @return the task
5469     */
5470     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5471     (ConcurrentHashMap<K,V> map,
5472 dl 1.171 ToLongFunction<? super V> transformer,
5473 dl 1.119 long basis,
5474 dl 1.153 LongBinaryOperator reducer) {
5475 dl 1.119 if (transformer == null || reducer == null)
5476     throw new NullPointerException();
5477     return new MapReduceValuesToLongTask<K,V>
5478 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5479 dl 1.119 }
5480    
5481     /**
5482     * Returns a task that when invoked, returns the result of
5483     * accumulating the given transformation of all values using the
5484     * given reducer to combine values, and the given basis as an
5485     * identity value.
5486     *
5487     * @param map the map
5488     * @param transformer a function returning the transformation
5489     * for an element
5490     * @param basis the identity (initial default value) for the reduction
5491     * @param reducer a commutative associative combining function
5492     * @return the task
5493     */
5494     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5495     (ConcurrentHashMap<K,V> map,
5496 dl 1.171 ToIntFunction<? super V> transformer,
5497 dl 1.119 int basis,
5498 dl 1.153 IntBinaryOperator reducer) {
5499 dl 1.119 if (transformer == null || reducer == null)
5500     throw new NullPointerException();
5501     return new MapReduceValuesToIntTask<K,V>
5502 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5503 dl 1.119 }
5504    
5505     /**
5506     * Returns a task that when invoked, perform the given action
5507 jsr166 1.123 * for each entry.
5508 dl 1.119 *
5509     * @param map the map
5510     * @param action the action
5511 jsr166 1.173 * @return the task
5512 dl 1.119 */
5513 jsr166 1.120 public static <K,V> ForkJoinTask<Void> forEachEntry
5514 dl 1.119 (ConcurrentHashMap<K,V> map,
5515 dl 1.171 Consumer<? super Map.Entry<K,V>> action) {
5516 dl 1.119 if (action == null) throw new NullPointerException();
5517 dl 1.146 return new ForEachEntryTask<K,V>(map, null, -1, action);
5518 dl 1.119 }
5519    
5520     /**
5521     * Returns a task that when invoked, perform the given action
5522 jsr166 1.123 * for each non-null transformation of each entry.
5523 dl 1.119 *
5524     * @param map the map
5525     * @param transformer a function returning the transformation
5526 jsr166 1.135 * for an element, or null if there is no transformation (in
5527 jsr166 1.134 * which case the action is not applied)
5528 dl 1.119 * @param action the action
5529 jsr166 1.173 * @return the task
5530 dl 1.119 */
5531 jsr166 1.120 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5532 dl 1.119 (ConcurrentHashMap<K,V> map,
5533 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5534 dl 1.171 Consumer<? super U> action) {
5535 dl 1.119 if (transformer == null || action == null)
5536     throw new NullPointerException();
5537     return new ForEachTransformedEntryTask<K,V,U>
5538 dl 1.146 (map, null, -1, transformer, action);
5539 dl 1.119 }
5540    
5541     /**
5542     * Returns a task that when invoked, returns a non-null result
5543     * from applying the given search function on each entry, or
5544 dl 1.126 * null if none. Upon success, further element processing is
5545     * suppressed and the results of any other parallel
5546     * invocations of the search function are ignored.
5547 dl 1.119 *
5548     * @param map the map
5549     * @param searchFunction a function returning a non-null
5550     * result on success, else null
5551     * @return the task
5552     */
5553     public static <K,V,U> ForkJoinTask<U> searchEntries
5554     (ConcurrentHashMap<K,V> map,
5555 dl 1.153 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5556 dl 1.119 if (searchFunction == null) throw new NullPointerException();
5557     return new SearchEntriesTask<K,V,U>
5558 dl 1.146 (map, null, -1, searchFunction,
5559 dl 1.119 new AtomicReference<U>());
5560     }
5561    
5562     /**
5563     * Returns a task that when invoked, returns the result of
5564     * accumulating all entries using the given reducer to combine
5565     * values, or null if none.
5566     *
5567     * @param map the map
5568     * @param reducer a commutative associative combining function
5569     * @return the task
5570     */
5571     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5572     (ConcurrentHashMap<K,V> map,
5573 dl 1.153 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5574 dl 1.119 if (reducer == null) throw new NullPointerException();
5575     return new ReduceEntriesTask<K,V>
5576 dl 1.130 (map, null, -1, null, reducer);
5577 dl 1.119 }
5578    
5579     /**
5580     * Returns a task that when invoked, returns the result of
5581     * accumulating the given transformation of all entries using the
5582     * given reducer to combine values, or null if none.
5583     *
5584     * @param map the map
5585     * @param transformer a function returning the transformation
5586 jsr166 1.135 * for an element, or null if there is no transformation (in
5587 jsr166 1.172 * which case it is not combined)
5588 dl 1.119 * @param reducer a commutative associative combining function
5589     * @return the task
5590     */
5591     public static <K,V,U> ForkJoinTask<U> reduceEntries
5592     (ConcurrentHashMap<K,V> map,
5593 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5594     BiFunction<? super U, ? super U, ? extends U> reducer) {
5595 dl 1.119 if (transformer == null || reducer == null)
5596     throw new NullPointerException();
5597     return new MapReduceEntriesTask<K,V,U>
5598 dl 1.130 (map, null, -1, null, transformer, reducer);
5599 dl 1.119 }
5600    
5601     /**
5602     * Returns a task that when invoked, returns the result of
5603     * accumulating the given transformation of all entries using the
5604     * given reducer to combine values, and the given basis as an
5605     * identity value.
5606     *
5607     * @param map the map
5608     * @param transformer a function returning the transformation
5609     * for an element
5610     * @param basis the identity (initial default value) for the reduction
5611     * @param reducer a commutative associative combining function
5612     * @return the task
5613     */
5614     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5615     (ConcurrentHashMap<K,V> map,
5616 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5617 dl 1.119 double basis,
5618 dl 1.153 DoubleBinaryOperator reducer) {
5619 dl 1.119 if (transformer == null || reducer == null)
5620     throw new NullPointerException();
5621     return new MapReduceEntriesToDoubleTask<K,V>
5622 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5623 dl 1.119 }
5624    
5625     /**
5626     * Returns a task that when invoked, returns the result of
5627     * accumulating the given transformation of all entries using the
5628     * given reducer to combine values, and the given basis as an
5629     * identity value.
5630     *
5631     * @param map the map
5632     * @param transformer a function returning the transformation
5633     * for an element
5634     * @param basis the identity (initial default value) for the reduction
5635     * @param reducer a commutative associative combining function
5636     * @return the task
5637     */
5638     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5639     (ConcurrentHashMap<K,V> map,
5640 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5641 dl 1.119 long basis,
5642 dl 1.153 LongBinaryOperator reducer) {
5643 dl 1.119 if (transformer == null || reducer == null)
5644     throw new NullPointerException();
5645     return new MapReduceEntriesToLongTask<K,V>
5646 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5647 dl 1.119 }
5648    
5649     /**
5650     * Returns a task that when invoked, returns the result of
5651     * accumulating the given transformation of all entries using the
5652     * given reducer to combine values, and the given basis as an
5653     * identity value.
5654     *
5655     * @param map the map
5656     * @param transformer a function returning the transformation
5657     * for an element
5658     * @param basis the identity (initial default value) for the reduction
5659     * @param reducer a commutative associative combining function
5660     * @return the task
5661     */
5662     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5663     (ConcurrentHashMap<K,V> map,
5664 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5665 dl 1.119 int basis,
5666 dl 1.153 IntBinaryOperator reducer) {
5667 dl 1.119 if (transformer == null || reducer == null)
5668     throw new NullPointerException();
5669     return new MapReduceEntriesToIntTask<K,V>
5670 dl 1.130 (map, null, -1, null, transformer, basis, reducer);
5671 dl 1.119 }
5672     }
5673    
5674     // -------------------------------------------------------
5675    
5676     /*
5677     * Task classes. Coded in a regular but ugly format/style to
5678     * simplify checks that each variant differs in the right way from
5679 dl 1.149 * others. The null screenings exist because compilers cannot tell
5680     * that we've already null-checked task arguments, so we force
5681     * simplest hoisted bypass to help avoid convoluted traps.
5682 dl 1.119 */
5683    
5684 dl 1.128 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5685 dl 1.146 extends Traverser<K,V,Void> {
5686 dl 1.171 final Consumer<? super K> action;
5687 dl 1.119 ForEachKeyTask
5688 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5689 dl 1.171 Consumer<? super K> action) {
5690 dl 1.146 super(m, p, b);
5691 dl 1.119 this.action = action;
5692     }
5693 jsr166 1.168 public final void compute() {
5694 dl 1.171 final Consumer<? super K> action;
5695 dl 1.149 if ((action = this.action) != null) {
5696     for (int b; (b = preSplit()) > 0;)
5697     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5698 dl 1.192 forEachKey(action);
5699 dl 1.149 propagateCompletion();
5700     }
5701 dl 1.119 }
5702     }
5703    
5704 dl 1.128 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5705 dl 1.146 extends Traverser<K,V,Void> {
5706 dl 1.171 final Consumer<? super V> action;
5707 dl 1.119 ForEachValueTask
5708 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5709 dl 1.171 Consumer<? super V> action) {
5710 dl 1.146 super(m, p, b);
5711 dl 1.119 this.action = action;
5712     }
5713 jsr166 1.168 public final void compute() {
5714 dl 1.171 final Consumer<? super V> action;
5715 dl 1.149 if ((action = this.action) != null) {
5716     for (int b; (b = preSplit()) > 0;)
5717     new ForEachValueTask<K,V>(map, this, b, action).fork();
5718 dl 1.192 forEachValue(action);
5719 dl 1.149 propagateCompletion();
5720     }
5721 dl 1.119 }
5722     }
5723    
5724 dl 1.128 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5725 dl 1.146 extends Traverser<K,V,Void> {
5726 dl 1.171 final Consumer<? super Entry<K,V>> action;
5727 dl 1.119 ForEachEntryTask
5728 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5729 dl 1.171 Consumer<? super Entry<K,V>> action) {
5730 dl 1.146 super(m, p, b);
5731 dl 1.119 this.action = action;
5732     }
5733 jsr166 1.168 public final void compute() {
5734 dl 1.171 final Consumer<? super Entry<K,V>> action;
5735 dl 1.149 if ((action = this.action) != null) {
5736     for (int b; (b = preSplit()) > 0;)
5737     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5738 dl 1.151 V v;
5739 dl 1.191 while ((v = advanceValue()) != null)
5740 jsr166 1.168 action.accept(entryFor(nextKey, v));
5741 dl 1.149 propagateCompletion();
5742     }
5743 dl 1.119 }
5744     }
5745    
5746 dl 1.128 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5747 dl 1.146 extends Traverser<K,V,Void> {
5748 dl 1.171 final BiConsumer<? super K, ? super V> action;
5749 dl 1.119 ForEachMappingTask
5750 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5751 dl 1.171 BiConsumer<? super K,? super V> action) {
5752 dl 1.146 super(m, p, b);
5753 dl 1.119 this.action = action;
5754     }
5755 jsr166 1.168 public final void compute() {
5756 dl 1.171 final BiConsumer<? super K, ? super V> action;
5757 dl 1.149 if ((action = this.action) != null) {
5758     for (int b; (b = preSplit()) > 0;)
5759     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5760 dl 1.151 V v;
5761 dl 1.191 while ((v = advanceValue()) != null)
5762 jsr166 1.168 action.accept(nextKey, v);
5763 dl 1.149 propagateCompletion();
5764     }
5765 dl 1.119 }
5766     }
5767    
5768 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5769 dl 1.146 extends Traverser<K,V,Void> {
5770 dl 1.153 final Function<? super K, ? extends U> transformer;
5771 dl 1.171 final Consumer<? super U> action;
5772 dl 1.119 ForEachTransformedKeyTask
5773 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5774 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5775 dl 1.146 super(m, p, b);
5776     this.transformer = transformer; this.action = action;
5777     }
5778 jsr166 1.168 public final void compute() {
5779 dl 1.153 final Function<? super K, ? extends U> transformer;
5780 dl 1.171 final Consumer<? super U> action;
5781 dl 1.149 if ((transformer = this.transformer) != null &&
5782     (action = this.action) != null) {
5783     for (int b; (b = preSplit()) > 0;)
5784     new ForEachTransformedKeyTask<K,V,U>
5785     (map, this, b, transformer, action).fork();
5786 dl 1.191 K k; U u;
5787     while ((k = advanceKey()) != null) {
5788     if ((u = transformer.apply(k)) != null)
5789 dl 1.153 action.accept(u);
5790 dl 1.149 }
5791     propagateCompletion();
5792 dl 1.119 }
5793     }
5794     }
5795    
5796 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5797 dl 1.146 extends Traverser<K,V,Void> {
5798 dl 1.153 final Function<? super V, ? extends U> transformer;
5799 dl 1.171 final Consumer<? super U> action;
5800 dl 1.119 ForEachTransformedValueTask
5801 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5802 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5803 dl 1.146 super(m, p, b);
5804     this.transformer = transformer; this.action = action;
5805     }
5806 jsr166 1.168 public final void compute() {
5807 dl 1.153 final Function<? super V, ? extends U> transformer;
5808 dl 1.171 final Consumer<? super U> action;
5809 dl 1.149 if ((transformer = this.transformer) != null &&
5810     (action = this.action) != null) {
5811     for (int b; (b = preSplit()) > 0;)
5812     new ForEachTransformedValueTask<K,V,U>
5813     (map, this, b, transformer, action).fork();
5814 dl 1.151 V v; U u;
5815 dl 1.191 while ((v = advanceValue()) != null) {
5816 dl 1.151 if ((u = transformer.apply(v)) != null)
5817 dl 1.153 action.accept(u);
5818 dl 1.149 }
5819     propagateCompletion();
5820 dl 1.119 }
5821     }
5822 tim 1.1 }
5823    
5824 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5825 dl 1.146 extends Traverser<K,V,Void> {
5826 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5827 dl 1.171 final Consumer<? super U> action;
5828 dl 1.119 ForEachTransformedEntryTask
5829 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5830 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5831 dl 1.146 super(m, p, b);
5832     this.transformer = transformer; this.action = action;
5833     }
5834 jsr166 1.168 public final void compute() {
5835 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5836 dl 1.171 final Consumer<? super U> action;
5837 dl 1.149 if ((transformer = this.transformer) != null &&
5838     (action = this.action) != null) {
5839     for (int b; (b = preSplit()) > 0;)
5840     new ForEachTransformedEntryTask<K,V,U>
5841     (map, this, b, transformer, action).fork();
5842 dl 1.151 V v; U u;
5843 dl 1.191 while ((v = advanceValue()) != null) {
5844 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
5845 dl 1.151 v))) != null)
5846 dl 1.153 action.accept(u);
5847 dl 1.149 }
5848     propagateCompletion();
5849 dl 1.119 }
5850     }
5851 tim 1.1 }
5852    
5853 dl 1.128 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5854 dl 1.146 extends Traverser<K,V,Void> {
5855 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5856 dl 1.171 final Consumer<? super U> action;
5857 dl 1.119 ForEachTransformedMappingTask
5858 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5859 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5860 dl 1.171 Consumer<? super U> action) {
5861 dl 1.146 super(m, p, b);
5862     this.transformer = transformer; this.action = action;
5863 dl 1.119 }
5864 jsr166 1.168 public final void compute() {
5865 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5866 dl 1.171 final Consumer<? super U> action;
5867 dl 1.149 if ((transformer = this.transformer) != null &&
5868     (action = this.action) != null) {
5869     for (int b; (b = preSplit()) > 0;)
5870     new ForEachTransformedMappingTask<K,V,U>
5871     (map, this, b, transformer, action).fork();
5872 dl 1.151 V v; U u;
5873 dl 1.191 while ((v = advanceValue()) != null) {
5874 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
5875 dl 1.153 action.accept(u);
5876 dl 1.149 }
5877     propagateCompletion();
5878 dl 1.119 }
5879     }
5880 tim 1.1 }
5881    
5882 dl 1.128 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5883 dl 1.146 extends Traverser<K,V,U> {
5884 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5885 dl 1.119 final AtomicReference<U> result;
5886     SearchKeysTask
5887 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5888 dl 1.153 Function<? super K, ? extends U> searchFunction,
5889 dl 1.119 AtomicReference<U> result) {
5890 dl 1.146 super(m, p, b);
5891 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5892     }
5893 dl 1.146 public final U getRawResult() { return result.get(); }
5894 jsr166 1.168 public final void compute() {
5895 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5896 dl 1.146 final AtomicReference<U> result;
5897 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5898     (result = this.result) != null) {
5899     for (int b;;) {
5900     if (result.get() != null)
5901     return;
5902     if ((b = preSplit()) <= 0)
5903     break;
5904     new SearchKeysTask<K,V,U>
5905     (map, this, b, searchFunction, result).fork();
5906 dl 1.128 }
5907 dl 1.149 while (result.get() == null) {
5908 dl 1.191 K k; U u;
5909     if ((k = advanceKey()) == null) {
5910 dl 1.149 propagateCompletion();
5911     break;
5912     }
5913 dl 1.191 if ((u = searchFunction.apply(k)) != null) {
5914 dl 1.149 if (result.compareAndSet(null, u))
5915     quietlyCompleteRoot();
5916     break;
5917     }
5918 dl 1.119 }
5919     }
5920     }
5921 tim 1.1 }
5922    
5923 dl 1.128 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5924 dl 1.146 extends Traverser<K,V,U> {
5925 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5926 dl 1.119 final AtomicReference<U> result;
5927     SearchValuesTask
5928 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5929 dl 1.153 Function<? super V, ? extends U> searchFunction,
5930 dl 1.119 AtomicReference<U> result) {
5931 dl 1.146 super(m, p, b);
5932 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5933     }
5934 dl 1.146 public final U getRawResult() { return result.get(); }
5935 jsr166 1.168 public final void compute() {
5936 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5937 dl 1.146 final AtomicReference<U> result;
5938 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5939     (result = this.result) != null) {
5940     for (int b;;) {
5941     if (result.get() != null)
5942     return;
5943     if ((b = preSplit()) <= 0)
5944     break;
5945     new SearchValuesTask<K,V,U>
5946     (map, this, b, searchFunction, result).fork();
5947 dl 1.128 }
5948 dl 1.149 while (result.get() == null) {
5949 dl 1.151 V v; U u;
5950 dl 1.191 if ((v = advanceValue()) == null) {
5951 dl 1.149 propagateCompletion();
5952     break;
5953     }
5954 dl 1.151 if ((u = searchFunction.apply(v)) != null) {
5955 dl 1.149 if (result.compareAndSet(null, u))
5956     quietlyCompleteRoot();
5957     break;
5958     }
5959 dl 1.119 }
5960     }
5961     }
5962     }
5963 tim 1.11
5964 dl 1.128 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5965 dl 1.146 extends Traverser<K,V,U> {
5966 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5967 dl 1.119 final AtomicReference<U> result;
5968     SearchEntriesTask
5969 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5970 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5971 dl 1.119 AtomicReference<U> result) {
5972 dl 1.146 super(m, p, b);
5973 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5974     }
5975 dl 1.146 public final U getRawResult() { return result.get(); }
5976 jsr166 1.168 public final void compute() {
5977 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5978 dl 1.146 final AtomicReference<U> result;
5979 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5980     (result = this.result) != null) {
5981     for (int b;;) {
5982     if (result.get() != null)
5983     return;
5984     if ((b = preSplit()) <= 0)
5985     break;
5986     new SearchEntriesTask<K,V,U>
5987     (map, this, b, searchFunction, result).fork();
5988 dl 1.128 }
5989 dl 1.149 while (result.get() == null) {
5990 dl 1.151 V v; U u;
5991 dl 1.191 if ((v = advanceValue()) == null) {
5992 dl 1.149 propagateCompletion();
5993     break;
5994     }
5995 jsr166 1.168 if ((u = searchFunction.apply(entryFor(nextKey,
5996 dl 1.151 v))) != null) {
5997 dl 1.149 if (result.compareAndSet(null, u))
5998     quietlyCompleteRoot();
5999     return;
6000     }
6001 dl 1.119 }
6002     }
6003     }
6004     }
6005 tim 1.1
6006 dl 1.128 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
6007 dl 1.146 extends Traverser<K,V,U> {
6008 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6009 dl 1.119 final AtomicReference<U> result;
6010     SearchMappingsTask
6011 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6012 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
6013 dl 1.119 AtomicReference<U> result) {
6014 dl 1.146 super(m, p, b);
6015 dl 1.119 this.searchFunction = searchFunction; this.result = result;
6016     }
6017 dl 1.146 public final U getRawResult() { return result.get(); }
6018 jsr166 1.168 public final void compute() {
6019 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6020 dl 1.146 final AtomicReference<U> result;
6021 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
6022     (result = this.result) != null) {
6023     for (int b;;) {
6024     if (result.get() != null)
6025     return;
6026     if ((b = preSplit()) <= 0)
6027     break;
6028     new SearchMappingsTask<K,V,U>
6029     (map, this, b, searchFunction, result).fork();
6030 dl 1.128 }
6031 dl 1.149 while (result.get() == null) {
6032 dl 1.151 V v; U u;
6033 dl 1.191 if ((v = advanceValue()) == null) {
6034 dl 1.149 propagateCompletion();
6035     break;
6036     }
6037 jsr166 1.168 if ((u = searchFunction.apply(nextKey, v)) != null) {
6038 dl 1.149 if (result.compareAndSet(null, u))
6039     quietlyCompleteRoot();
6040     break;
6041     }
6042 dl 1.119 }
6043     }
6044 tim 1.1 }
6045 dl 1.119 }
6046 tim 1.1
6047 dl 1.128 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
6048 dl 1.146 extends Traverser<K,V,K> {
6049 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
6050 dl 1.119 K result;
6051 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
6052 dl 1.119 ReduceKeysTask
6053 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6054 dl 1.128 ReduceKeysTask<K,V> nextRight,
6055 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
6056 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6057 dl 1.119 this.reducer = reducer;
6058     }
6059 dl 1.146 public final K getRawResult() { return result; }
6060     @SuppressWarnings("unchecked") public final void compute() {
6061 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
6062 dl 1.149 if ((reducer = this.reducer) != null) {
6063     for (int b; (b = preSplit()) > 0;)
6064     (rights = new ReduceKeysTask<K,V>
6065     (map, this, b, rights, reducer)).fork();
6066 dl 1.191 K u, r = null;
6067     while ((u = advanceKey()) != null) {
6068 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
6069 dl 1.149 }
6070     result = r;
6071     CountedCompleter<?> c;
6072     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6073     ReduceKeysTask<K,V>
6074     t = (ReduceKeysTask<K,V>)c,
6075     s = t.rights;
6076     while (s != null) {
6077     K tr, sr;
6078     if ((sr = s.result) != null)
6079     t.result = (((tr = t.result) == null) ? sr :
6080     reducer.apply(tr, sr));
6081     s = t.rights = s.nextRight;
6082     }
6083 dl 1.99 }
6084 dl 1.138 }
6085 tim 1.1 }
6086 dl 1.119 }
6087 tim 1.1
6088 dl 1.128 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6089 dl 1.146 extends Traverser<K,V,V> {
6090 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
6091 dl 1.119 V result;
6092 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
6093 dl 1.119 ReduceValuesTask
6094 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6095 dl 1.128 ReduceValuesTask<K,V> nextRight,
6096 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
6097 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6098 dl 1.119 this.reducer = reducer;
6099     }
6100 dl 1.146 public final V getRawResult() { return result; }
6101     @SuppressWarnings("unchecked") public final void compute() {
6102 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
6103 dl 1.149 if ((reducer = this.reducer) != null) {
6104     for (int b; (b = preSplit()) > 0;)
6105     (rights = new ReduceValuesTask<K,V>
6106     (map, this, b, rights, reducer)).fork();
6107 dl 1.153 V r = null, v;
6108 dl 1.191 while ((v = advanceValue()) != null)
6109 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
6110 dl 1.149 result = r;
6111     CountedCompleter<?> c;
6112     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113     ReduceValuesTask<K,V>
6114     t = (ReduceValuesTask<K,V>)c,
6115     s = t.rights;
6116     while (s != null) {
6117     V tr, sr;
6118     if ((sr = s.result) != null)
6119     t.result = (((tr = t.result) == null) ? sr :
6120     reducer.apply(tr, sr));
6121     s = t.rights = s.nextRight;
6122     }
6123 dl 1.119 }
6124     }
6125 tim 1.1 }
6126 dl 1.119 }
6127 tim 1.1
6128 dl 1.128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6129 dl 1.146 extends Traverser<K,V,Map.Entry<K,V>> {
6130 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6131 dl 1.119 Map.Entry<K,V> result;
6132 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
6133 dl 1.119 ReduceEntriesTask
6134 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6135 dl 1.130 ReduceEntriesTask<K,V> nextRight,
6136 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6137 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6138 dl 1.119 this.reducer = reducer;
6139     }
6140 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
6141     @SuppressWarnings("unchecked") public final void compute() {
6142 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6143 dl 1.149 if ((reducer = this.reducer) != null) {
6144     for (int b; (b = preSplit()) > 0;)
6145     (rights = new ReduceEntriesTask<K,V>
6146     (map, this, b, rights, reducer)).fork();
6147     Map.Entry<K,V> r = null;
6148 dl 1.151 V v;
6149 dl 1.191 while ((v = advanceValue()) != null) {
6150 jsr166 1.168 Map.Entry<K,V> u = entryFor(nextKey, v);
6151 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6152     }
6153     result = r;
6154     CountedCompleter<?> c;
6155     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6156     ReduceEntriesTask<K,V>
6157     t = (ReduceEntriesTask<K,V>)c,
6158     s = t.rights;
6159     while (s != null) {
6160     Map.Entry<K,V> tr, sr;
6161     if ((sr = s.result) != null)
6162     t.result = (((tr = t.result) == null) ? sr :
6163     reducer.apply(tr, sr));
6164     s = t.rights = s.nextRight;
6165     }
6166 dl 1.119 }
6167 dl 1.138 }
6168 dl 1.119 }
6169     }
6170 dl 1.99
6171 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6172 dl 1.146 extends Traverser<K,V,U> {
6173 dl 1.153 final Function<? super K, ? extends U> transformer;
6174     final BiFunction<? super U, ? super U, ? extends U> reducer;
6175 dl 1.119 U result;
6176 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
6177 dl 1.119 MapReduceKeysTask
6178 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6179 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
6180 dl 1.153 Function<? super K, ? extends U> transformer,
6181     BiFunction<? super U, ? super U, ? extends U> reducer) {
6182 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6183 dl 1.119 this.transformer = transformer;
6184     this.reducer = reducer;
6185     }
6186 dl 1.146 public final U getRawResult() { return result; }
6187     @SuppressWarnings("unchecked") public final void compute() {
6188 dl 1.153 final Function<? super K, ? extends U> transformer;
6189     final BiFunction<? super U, ? super U, ? extends U> reducer;
6190 dl 1.149 if ((transformer = this.transformer) != null &&
6191     (reducer = this.reducer) != null) {
6192     for (int b; (b = preSplit()) > 0;)
6193     (rights = new MapReduceKeysTask<K,V,U>
6194     (map, this, b, rights, transformer, reducer)).fork();
6195 dl 1.191 K k; U r = null, u;
6196     while ((k = advanceKey()) != null) {
6197     if ((u = transformer.apply(k)) != null)
6198 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6199     }
6200     result = r;
6201     CountedCompleter<?> c;
6202     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6203     MapReduceKeysTask<K,V,U>
6204     t = (MapReduceKeysTask<K,V,U>)c,
6205     s = t.rights;
6206     while (s != null) {
6207     U tr, sr;
6208     if ((sr = s.result) != null)
6209     t.result = (((tr = t.result) == null) ? sr :
6210     reducer.apply(tr, sr));
6211     s = t.rights = s.nextRight;
6212     }
6213 dl 1.119 }
6214 dl 1.138 }
6215 tim 1.1 }
6216 dl 1.4 }
6217    
6218 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6219 dl 1.146 extends Traverser<K,V,U> {
6220 dl 1.153 final Function<? super V, ? extends U> transformer;
6221     final BiFunction<? super U, ? super U, ? extends U> reducer;
6222 dl 1.119 U result;
6223 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
6224 dl 1.119 MapReduceValuesTask
6225 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6226 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
6227 dl 1.153 Function<? super V, ? extends U> transformer,
6228     BiFunction<? super U, ? super U, ? extends U> reducer) {
6229 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6230 dl 1.119 this.transformer = transformer;
6231     this.reducer = reducer;
6232     }
6233 dl 1.146 public final U getRawResult() { return result; }
6234     @SuppressWarnings("unchecked") public final void compute() {
6235 dl 1.153 final Function<? super V, ? extends U> transformer;
6236     final BiFunction<? super U, ? super U, ? extends U> reducer;
6237 dl 1.149 if ((transformer = this.transformer) != null &&
6238     (reducer = this.reducer) != null) {
6239     for (int b; (b = preSplit()) > 0;)
6240     (rights = new MapReduceValuesTask<K,V,U>
6241     (map, this, b, rights, transformer, reducer)).fork();
6242     U r = null, u;
6243 dl 1.151 V v;
6244 dl 1.191 while ((v = advanceValue()) != null) {
6245 dl 1.151 if ((u = transformer.apply(v)) != null)
6246 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6247     }
6248     result = r;
6249     CountedCompleter<?> c;
6250     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6251     MapReduceValuesTask<K,V,U>
6252     t = (MapReduceValuesTask<K,V,U>)c,
6253     s = t.rights;
6254     while (s != null) {
6255     U tr, sr;
6256     if ((sr = s.result) != null)
6257     t.result = (((tr = t.result) == null) ? sr :
6258     reducer.apply(tr, sr));
6259     s = t.rights = s.nextRight;
6260     }
6261 dl 1.119 }
6262     }
6263     }
6264 dl 1.4 }
6265    
6266 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6267 dl 1.146 extends Traverser<K,V,U> {
6268 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6269     final BiFunction<? super U, ? super U, ? extends U> reducer;
6270 dl 1.119 U result;
6271 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
6272 dl 1.119 MapReduceEntriesTask
6273 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6274 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
6275 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
6276     BiFunction<? super U, ? super U, ? extends U> reducer) {
6277 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6278 dl 1.119 this.transformer = transformer;
6279     this.reducer = reducer;
6280     }
6281 dl 1.146 public final U getRawResult() { return result; }
6282     @SuppressWarnings("unchecked") public final void compute() {
6283 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
6284     final BiFunction<? super U, ? super U, ? extends U> reducer;
6285 dl 1.149 if ((transformer = this.transformer) != null &&
6286     (reducer = this.reducer) != null) {
6287     for (int b; (b = preSplit()) > 0;)
6288     (rights = new MapReduceEntriesTask<K,V,U>
6289     (map, this, b, rights, transformer, reducer)).fork();
6290     U r = null, u;
6291 dl 1.151 V v;
6292 dl 1.191 while ((v = advanceValue()) != null) {
6293 jsr166 1.168 if ((u = transformer.apply(entryFor(nextKey,
6294 dl 1.151 v))) != null)
6295 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6296     }
6297     result = r;
6298     CountedCompleter<?> c;
6299     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6300     MapReduceEntriesTask<K,V,U>
6301     t = (MapReduceEntriesTask<K,V,U>)c,
6302     s = t.rights;
6303     while (s != null) {
6304     U tr, sr;
6305     if ((sr = s.result) != null)
6306     t.result = (((tr = t.result) == null) ? sr :
6307     reducer.apply(tr, sr));
6308     s = t.rights = s.nextRight;
6309     }
6310 dl 1.119 }
6311 dl 1.138 }
6312 dl 1.119 }
6313 dl 1.4 }
6314 tim 1.1
6315 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6316 dl 1.146 extends Traverser<K,V,U> {
6317 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6318     final BiFunction<? super U, ? super U, ? extends U> reducer;
6319 dl 1.119 U result;
6320 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
6321 dl 1.119 MapReduceMappingsTask
6322 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6323 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
6324 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
6325     BiFunction<? super U, ? super U, ? extends U> reducer) {
6326 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6327 dl 1.119 this.transformer = transformer;
6328     this.reducer = reducer;
6329     }
6330 dl 1.146 public final U getRawResult() { return result; }
6331     @SuppressWarnings("unchecked") public final void compute() {
6332 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
6333     final BiFunction<? super U, ? super U, ? extends U> reducer;
6334 dl 1.149 if ((transformer = this.transformer) != null &&
6335     (reducer = this.reducer) != null) {
6336     for (int b; (b = preSplit()) > 0;)
6337     (rights = new MapReduceMappingsTask<K,V,U>
6338     (map, this, b, rights, transformer, reducer)).fork();
6339     U r = null, u;
6340 dl 1.151 V v;
6341 dl 1.191 while ((v = advanceValue()) != null) {
6342 jsr166 1.168 if ((u = transformer.apply(nextKey, v)) != null)
6343 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
6344     }
6345     result = r;
6346     CountedCompleter<?> c;
6347     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6348     MapReduceMappingsTask<K,V,U>
6349     t = (MapReduceMappingsTask<K,V,U>)c,
6350     s = t.rights;
6351     while (s != null) {
6352     U tr, sr;
6353     if ((sr = s.result) != null)
6354     t.result = (((tr = t.result) == null) ? sr :
6355     reducer.apply(tr, sr));
6356     s = t.rights = s.nextRight;
6357     }
6358 dl 1.119 }
6359     }
6360     }
6361     }
6362 jsr166 1.114
6363 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6364 dl 1.146 extends Traverser<K,V,Double> {
6365 dl 1.171 final ToDoubleFunction<? super K> transformer;
6366 dl 1.153 final DoubleBinaryOperator reducer;
6367 dl 1.119 final double basis;
6368     double result;
6369 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6370 dl 1.119 MapReduceKeysToDoubleTask
6371 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6372 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
6373 dl 1.171 ToDoubleFunction<? super K> transformer,
6374 dl 1.119 double basis,
6375 dl 1.153 DoubleBinaryOperator reducer) {
6376 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6377 dl 1.119 this.transformer = transformer;
6378     this.basis = basis; this.reducer = reducer;
6379     }
6380 dl 1.146 public final Double getRawResult() { return result; }
6381     @SuppressWarnings("unchecked") public final void compute() {
6382 dl 1.171 final ToDoubleFunction<? super K> transformer;
6383 dl 1.153 final DoubleBinaryOperator reducer;
6384 dl 1.149 if ((transformer = this.transformer) != null &&
6385     (reducer = this.reducer) != null) {
6386     double r = this.basis;
6387     for (int b; (b = preSplit()) > 0;)
6388     (rights = new MapReduceKeysToDoubleTask<K,V>
6389     (map, this, b, rights, transformer, r, reducer)).fork();
6390 dl 1.191 K k;
6391     while ((k = advanceKey()) != null)
6392     r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6393 dl 1.149 result = r;
6394     CountedCompleter<?> c;
6395     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6396     MapReduceKeysToDoubleTask<K,V>
6397     t = (MapReduceKeysToDoubleTask<K,V>)c,
6398     s = t.rights;
6399     while (s != null) {
6400 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6401 dl 1.149 s = t.rights = s.nextRight;
6402     }
6403 dl 1.119 }
6404 dl 1.138 }
6405 dl 1.79 }
6406 dl 1.119 }
6407 dl 1.79
6408 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6409 dl 1.146 extends Traverser<K,V,Double> {
6410 dl 1.171 final ToDoubleFunction<? super V> transformer;
6411 dl 1.153 final DoubleBinaryOperator reducer;
6412 dl 1.119 final double basis;
6413     double result;
6414 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6415 dl 1.119 MapReduceValuesToDoubleTask
6416 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6417 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
6418 dl 1.171 ToDoubleFunction<? super V> transformer,
6419 dl 1.119 double basis,
6420 dl 1.153 DoubleBinaryOperator reducer) {
6421 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6422 dl 1.119 this.transformer = transformer;
6423     this.basis = basis; this.reducer = reducer;
6424     }
6425 dl 1.146 public final Double getRawResult() { return result; }
6426     @SuppressWarnings("unchecked") public final void compute() {
6427 dl 1.171 final ToDoubleFunction<? super V> transformer;
6428 dl 1.153 final DoubleBinaryOperator reducer;
6429 dl 1.149 if ((transformer = this.transformer) != null &&
6430     (reducer = this.reducer) != null) {
6431     double r = this.basis;
6432     for (int b; (b = preSplit()) > 0;)
6433     (rights = new MapReduceValuesToDoubleTask<K,V>
6434     (map, this, b, rights, transformer, r, reducer)).fork();
6435 dl 1.151 V v;
6436 dl 1.191 while ((v = advanceValue()) != null)
6437 dl 1.153 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6438 dl 1.149 result = r;
6439     CountedCompleter<?> c;
6440     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6441     MapReduceValuesToDoubleTask<K,V>
6442     t = (MapReduceValuesToDoubleTask<K,V>)c,
6443     s = t.rights;
6444     while (s != null) {
6445 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6446 dl 1.149 s = t.rights = s.nextRight;
6447     }
6448 dl 1.119 }
6449     }
6450 dl 1.30 }
6451 dl 1.79 }
6452 dl 1.30
6453 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6454 dl 1.146 extends Traverser<K,V,Double> {
6455 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6456 dl 1.153 final DoubleBinaryOperator reducer;
6457 dl 1.119 final double basis;
6458     double result;
6459 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6460 dl 1.119 MapReduceEntriesToDoubleTask
6461 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6462 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
6463 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
6464 dl 1.119 double basis,
6465 dl 1.153 DoubleBinaryOperator reducer) {
6466 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6467 dl 1.119 this.transformer = transformer;
6468     this.basis = basis; this.reducer = reducer;
6469     }
6470 dl 1.146 public final Double getRawResult() { return result; }
6471     @SuppressWarnings("unchecked") public final void compute() {
6472 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6473 dl 1.153 final DoubleBinaryOperator reducer;
6474 dl 1.149 if ((transformer = this.transformer) != null &&
6475     (reducer = this.reducer) != null) {
6476     double r = this.basis;
6477     for (int b; (b = preSplit()) > 0;)
6478     (rights = new MapReduceEntriesToDoubleTask<K,V>
6479     (map, this, b, rights, transformer, r, reducer)).fork();
6480 dl 1.151 V v;
6481 dl 1.191 while ((v = advanceValue()) != null)
6482 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6483 dl 1.151 v)));
6484 dl 1.149 result = r;
6485     CountedCompleter<?> c;
6486     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6487     MapReduceEntriesToDoubleTask<K,V>
6488     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6489     s = t.rights;
6490     while (s != null) {
6491 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6492 dl 1.149 s = t.rights = s.nextRight;
6493     }
6494 dl 1.119 }
6495 dl 1.138 }
6496 dl 1.30 }
6497 tim 1.1 }
6498    
6499 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6500 dl 1.146 extends Traverser<K,V,Double> {
6501 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6502 dl 1.153 final DoubleBinaryOperator reducer;
6503 dl 1.119 final double basis;
6504     double result;
6505 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6506 dl 1.119 MapReduceMappingsToDoubleTask
6507 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6508 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
6509 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
6510 dl 1.119 double basis,
6511 dl 1.153 DoubleBinaryOperator reducer) {
6512 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6513 dl 1.119 this.transformer = transformer;
6514     this.basis = basis; this.reducer = reducer;
6515     }
6516 dl 1.146 public final Double getRawResult() { return result; }
6517     @SuppressWarnings("unchecked") public final void compute() {
6518 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
6519 dl 1.153 final DoubleBinaryOperator reducer;
6520 dl 1.149 if ((transformer = this.transformer) != null &&
6521     (reducer = this.reducer) != null) {
6522     double r = this.basis;
6523     for (int b; (b = preSplit()) > 0;)
6524     (rights = new MapReduceMappingsToDoubleTask<K,V>
6525     (map, this, b, rights, transformer, r, reducer)).fork();
6526 dl 1.151 V v;
6527 dl 1.191 while ((v = advanceValue()) != null)
6528 jsr166 1.168 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6529 dl 1.149 result = r;
6530     CountedCompleter<?> c;
6531     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6532     MapReduceMappingsToDoubleTask<K,V>
6533     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6534     s = t.rights;
6535     while (s != null) {
6536 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
6537 dl 1.149 s = t.rights = s.nextRight;
6538     }
6539 dl 1.119 }
6540     }
6541 dl 1.4 }
6542 dl 1.119 }
6543    
6544 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6545 dl 1.146 extends Traverser<K,V,Long> {
6546 dl 1.171 final ToLongFunction<? super K> transformer;
6547 dl 1.153 final LongBinaryOperator reducer;
6548 dl 1.119 final long basis;
6549     long result;
6550 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
6551 dl 1.119 MapReduceKeysToLongTask
6552 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6553 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
6554 dl 1.171 ToLongFunction<? super K> transformer,
6555 dl 1.119 long basis,
6556 dl 1.153 LongBinaryOperator reducer) {
6557 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6558 dl 1.119 this.transformer = transformer;
6559     this.basis = basis; this.reducer = reducer;
6560     }
6561 dl 1.146 public final Long getRawResult() { return result; }
6562     @SuppressWarnings("unchecked") public final void compute() {
6563 dl 1.171 final ToLongFunction<? super K> transformer;
6564 dl 1.153 final LongBinaryOperator reducer;
6565 dl 1.149 if ((transformer = this.transformer) != null &&
6566     (reducer = this.reducer) != null) {
6567     long r = this.basis;
6568     for (int b; (b = preSplit()) > 0;)
6569     (rights = new MapReduceKeysToLongTask<K,V>
6570     (map, this, b, rights, transformer, r, reducer)).fork();
6571 dl 1.191 K k;
6572     while ((k = advanceKey()) != null)
6573     r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6574 dl 1.149 result = r;
6575     CountedCompleter<?> c;
6576     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6577     MapReduceKeysToLongTask<K,V>
6578     t = (MapReduceKeysToLongTask<K,V>)c,
6579     s = t.rights;
6580     while (s != null) {
6581 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6582 dl 1.149 s = t.rights = s.nextRight;
6583     }
6584 dl 1.119 }
6585 dl 1.138 }
6586 dl 1.4 }
6587 dl 1.119 }
6588    
6589 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6590 dl 1.146 extends Traverser<K,V,Long> {
6591 dl 1.171 final ToLongFunction<? super V> transformer;
6592 dl 1.153 final LongBinaryOperator reducer;
6593 dl 1.119 final long basis;
6594     long result;
6595 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
6596 dl 1.119 MapReduceValuesToLongTask
6597 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6598 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
6599 dl 1.171 ToLongFunction<? super V> transformer,
6600 dl 1.119 long basis,
6601 dl 1.153 LongBinaryOperator reducer) {
6602 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6603 dl 1.119 this.transformer = transformer;
6604     this.basis = basis; this.reducer = reducer;
6605     }
6606 dl 1.146 public final Long getRawResult() { return result; }
6607     @SuppressWarnings("unchecked") public final void compute() {
6608 dl 1.171 final ToLongFunction<? super V> transformer;
6609 dl 1.153 final LongBinaryOperator reducer;
6610 dl 1.149 if ((transformer = this.transformer) != null &&
6611     (reducer = this.reducer) != null) {
6612     long r = this.basis;
6613     for (int b; (b = preSplit()) > 0;)
6614     (rights = new MapReduceValuesToLongTask<K,V>
6615     (map, this, b, rights, transformer, r, reducer)).fork();
6616 dl 1.151 V v;
6617 dl 1.191 while ((v = advanceValue()) != null)
6618 dl 1.153 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6619 dl 1.149 result = r;
6620     CountedCompleter<?> c;
6621     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6622     MapReduceValuesToLongTask<K,V>
6623     t = (MapReduceValuesToLongTask<K,V>)c,
6624     s = t.rights;
6625     while (s != null) {
6626 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6627 dl 1.149 s = t.rights = s.nextRight;
6628     }
6629 dl 1.119 }
6630     }
6631 jsr166 1.95 }
6632 dl 1.119 }
6633    
6634 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6635 dl 1.146 extends Traverser<K,V,Long> {
6636 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6637 dl 1.153 final LongBinaryOperator reducer;
6638 dl 1.119 final long basis;
6639     long result;
6640 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6641 dl 1.119 MapReduceEntriesToLongTask
6642 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6643 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6644 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6645 dl 1.119 long basis,
6646 dl 1.153 LongBinaryOperator reducer) {
6647 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6648 dl 1.119 this.transformer = transformer;
6649     this.basis = basis; this.reducer = reducer;
6650     }
6651 dl 1.146 public final Long getRawResult() { return result; }
6652     @SuppressWarnings("unchecked") public final void compute() {
6653 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6654 dl 1.153 final LongBinaryOperator reducer;
6655 dl 1.149 if ((transformer = this.transformer) != null &&
6656     (reducer = this.reducer) != null) {
6657     long r = this.basis;
6658     for (int b; (b = preSplit()) > 0;)
6659     (rights = new MapReduceEntriesToLongTask<K,V>
6660     (map, this, b, rights, transformer, r, reducer)).fork();
6661 dl 1.151 V v;
6662 dl 1.191 while ((v = advanceValue()) != null)
6663 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6664 dl 1.149 result = r;
6665     CountedCompleter<?> c;
6666     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6667     MapReduceEntriesToLongTask<K,V>
6668     t = (MapReduceEntriesToLongTask<K,V>)c,
6669     s = t.rights;
6670     while (s != null) {
6671 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6672 dl 1.149 s = t.rights = s.nextRight;
6673     }
6674 dl 1.119 }
6675 dl 1.138 }
6676 dl 1.4 }
6677 tim 1.1 }
6678    
6679 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6680 dl 1.146 extends Traverser<K,V,Long> {
6681 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6682 dl 1.153 final LongBinaryOperator reducer;
6683 dl 1.119 final long basis;
6684     long result;
6685 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6686 dl 1.119 MapReduceMappingsToLongTask
6687 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6688 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6689 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6690 dl 1.119 long basis,
6691 dl 1.153 LongBinaryOperator reducer) {
6692 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6693 dl 1.119 this.transformer = transformer;
6694     this.basis = basis; this.reducer = reducer;
6695     }
6696 dl 1.146 public final Long getRawResult() { return result; }
6697     @SuppressWarnings("unchecked") public final void compute() {
6698 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6699 dl 1.153 final LongBinaryOperator reducer;
6700 dl 1.149 if ((transformer = this.transformer) != null &&
6701     (reducer = this.reducer) != null) {
6702     long r = this.basis;
6703     for (int b; (b = preSplit()) > 0;)
6704     (rights = new MapReduceMappingsToLongTask<K,V>
6705     (map, this, b, rights, transformer, r, reducer)).fork();
6706 dl 1.151 V v;
6707 dl 1.191 while ((v = advanceValue()) != null)
6708 jsr166 1.168 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6709 dl 1.149 result = r;
6710     CountedCompleter<?> c;
6711     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6712     MapReduceMappingsToLongTask<K,V>
6713     t = (MapReduceMappingsToLongTask<K,V>)c,
6714     s = t.rights;
6715     while (s != null) {
6716 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6717 dl 1.149 s = t.rights = s.nextRight;
6718     }
6719 dl 1.119 }
6720     }
6721 dl 1.4 }
6722 tim 1.1 }
6723    
6724 dl 1.128 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6725 dl 1.146 extends Traverser<K,V,Integer> {
6726 dl 1.171 final ToIntFunction<? super K> transformer;
6727 dl 1.153 final IntBinaryOperator reducer;
6728 dl 1.119 final int basis;
6729     int result;
6730 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6731 dl 1.119 MapReduceKeysToIntTask
6732 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6733 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6734 dl 1.171 ToIntFunction<? super K> transformer,
6735 dl 1.119 int basis,
6736 dl 1.153 IntBinaryOperator reducer) {
6737 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6738 dl 1.119 this.transformer = transformer;
6739     this.basis = basis; this.reducer = reducer;
6740     }
6741 dl 1.146 public final Integer getRawResult() { return result; }
6742     @SuppressWarnings("unchecked") public final void compute() {
6743 dl 1.171 final ToIntFunction<? super K> transformer;
6744 dl 1.153 final IntBinaryOperator reducer;
6745 dl 1.149 if ((transformer = this.transformer) != null &&
6746     (reducer = this.reducer) != null) {
6747     int r = this.basis;
6748     for (int b; (b = preSplit()) > 0;)
6749     (rights = new MapReduceKeysToIntTask<K,V>
6750     (map, this, b, rights, transformer, r, reducer)).fork();
6751 dl 1.191 K k;
6752     while ((k = advanceKey()) != null)
6753     r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6754 dl 1.149 result = r;
6755     CountedCompleter<?> c;
6756     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6757     MapReduceKeysToIntTask<K,V>
6758     t = (MapReduceKeysToIntTask<K,V>)c,
6759     s = t.rights;
6760     while (s != null) {
6761 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6762 dl 1.149 s = t.rights = s.nextRight;
6763     }
6764 dl 1.119 }
6765 dl 1.138 }
6766 dl 1.30 }
6767     }
6768    
6769 dl 1.128 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6770 dl 1.146 extends Traverser<K,V,Integer> {
6771 dl 1.171 final ToIntFunction<? super V> transformer;
6772 dl 1.153 final IntBinaryOperator reducer;
6773 dl 1.119 final int basis;
6774     int result;
6775 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6776 dl 1.119 MapReduceValuesToIntTask
6777 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6778 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6779 dl 1.171 ToIntFunction<? super V> transformer,
6780 dl 1.119 int basis,
6781 dl 1.153 IntBinaryOperator reducer) {
6782 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6783 dl 1.119 this.transformer = transformer;
6784     this.basis = basis; this.reducer = reducer;
6785     }
6786 dl 1.146 public final Integer getRawResult() { return result; }
6787     @SuppressWarnings("unchecked") public final void compute() {
6788 dl 1.171 final ToIntFunction<? super V> transformer;
6789 dl 1.153 final IntBinaryOperator reducer;
6790 dl 1.149 if ((transformer = this.transformer) != null &&
6791     (reducer = this.reducer) != null) {
6792     int r = this.basis;
6793     for (int b; (b = preSplit()) > 0;)
6794     (rights = new MapReduceValuesToIntTask<K,V>
6795     (map, this, b, rights, transformer, r, reducer)).fork();
6796 dl 1.151 V v;
6797 dl 1.191 while ((v = advanceValue()) != null)
6798 dl 1.153 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6799 dl 1.149 result = r;
6800     CountedCompleter<?> c;
6801     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6802     MapReduceValuesToIntTask<K,V>
6803     t = (MapReduceValuesToIntTask<K,V>)c,
6804     s = t.rights;
6805     while (s != null) {
6806 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6807 dl 1.149 s = t.rights = s.nextRight;
6808     }
6809 dl 1.119 }
6810 dl 1.2 }
6811 tim 1.1 }
6812     }
6813    
6814 dl 1.128 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6815 dl 1.146 extends Traverser<K,V,Integer> {
6816 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6817 dl 1.153 final IntBinaryOperator reducer;
6818 dl 1.119 final int basis;
6819     int result;
6820 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6821 dl 1.119 MapReduceEntriesToIntTask
6822 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6823 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6824 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6825 dl 1.119 int basis,
6826 dl 1.153 IntBinaryOperator reducer) {
6827 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6828 dl 1.119 this.transformer = transformer;
6829     this.basis = basis; this.reducer = reducer;
6830     }
6831 dl 1.146 public final Integer getRawResult() { return result; }
6832     @SuppressWarnings("unchecked") public final void compute() {
6833 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6834 dl 1.153 final IntBinaryOperator reducer;
6835 dl 1.149 if ((transformer = this.transformer) != null &&
6836     (reducer = this.reducer) != null) {
6837     int r = this.basis;
6838     for (int b; (b = preSplit()) > 0;)
6839     (rights = new MapReduceEntriesToIntTask<K,V>
6840     (map, this, b, rights, transformer, r, reducer)).fork();
6841 dl 1.151 V v;
6842 dl 1.191 while ((v = advanceValue()) != null)
6843 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6844 dl 1.151 v)));
6845 dl 1.149 result = r;
6846     CountedCompleter<?> c;
6847     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6848     MapReduceEntriesToIntTask<K,V>
6849     t = (MapReduceEntriesToIntTask<K,V>)c,
6850     s = t.rights;
6851     while (s != null) {
6852 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6853 dl 1.149 s = t.rights = s.nextRight;
6854     }
6855 dl 1.119 }
6856 dl 1.138 }
6857 dl 1.4 }
6858 dl 1.119 }
6859 tim 1.1
6860 dl 1.128 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6861 dl 1.146 extends Traverser<K,V,Integer> {
6862 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6863 dl 1.153 final IntBinaryOperator reducer;
6864 dl 1.119 final int basis;
6865     int result;
6866 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6867 dl 1.119 MapReduceMappingsToIntTask
6868 dl 1.146 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6869     MapReduceMappingsToIntTask<K,V> nextRight,
6870 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6871 dl 1.119 int basis,
6872 dl 1.153 IntBinaryOperator reducer) {
6873 dl 1.130 super(m, p, b); this.nextRight = nextRight;
6874 dl 1.119 this.transformer = transformer;
6875     this.basis = basis; this.reducer = reducer;
6876     }
6877 dl 1.146 public final Integer getRawResult() { return result; }
6878     @SuppressWarnings("unchecked") public final void compute() {
6879 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6880 dl 1.153 final IntBinaryOperator reducer;
6881 dl 1.149 if ((transformer = this.transformer) != null &&
6882     (reducer = this.reducer) != null) {
6883     int r = this.basis;
6884     for (int b; (b = preSplit()) > 0;)
6885     (rights = new MapReduceMappingsToIntTask<K,V>
6886     (map, this, b, rights, transformer, r, reducer)).fork();
6887 dl 1.151 V v;
6888 dl 1.191 while ((v = advanceValue()) != null)
6889 jsr166 1.168 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6890 dl 1.149 result = r;
6891     CountedCompleter<?> c;
6892     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6893     MapReduceMappingsToIntTask<K,V>
6894     t = (MapReduceMappingsToIntTask<K,V>)c,
6895     s = t.rights;
6896     while (s != null) {
6897 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6898 dl 1.149 s = t.rights = s.nextRight;
6899     }
6900 dl 1.119 }
6901 dl 1.138 }
6902 tim 1.1 }
6903     }
6904 dl 1.99
6905     // Unsafe mechanics
6906 dl 1.149 private static final sun.misc.Unsafe U;
6907     private static final long SIZECTL;
6908     private static final long TRANSFERINDEX;
6909     private static final long TRANSFERORIGIN;
6910     private static final long BASECOUNT;
6911 dl 1.153 private static final long CELLSBUSY;
6912 dl 1.149 private static final long CELLVALUE;
6913 dl 1.119 private static final long ABASE;
6914     private static final int ASHIFT;
6915 dl 1.99
6916     static {
6917     try {
6918 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6919 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6920 dl 1.149 SIZECTL = U.objectFieldOffset
6921 dl 1.119 (k.getDeclaredField("sizeCtl"));
6922 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6923     (k.getDeclaredField("transferIndex"));
6924     TRANSFERORIGIN = U.objectFieldOffset
6925     (k.getDeclaredField("transferOrigin"));
6926     BASECOUNT = U.objectFieldOffset
6927     (k.getDeclaredField("baseCount"));
6928 dl 1.153 CELLSBUSY = U.objectFieldOffset
6929     (k.getDeclaredField("cellsBusy"));
6930     Class<?> ck = Cell.class;
6931 dl 1.149 CELLVALUE = U.objectFieldOffset
6932     (ck.getDeclaredField("value"));
6933 dl 1.119 Class<?> sc = Node[].class;
6934 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6935 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6936     if ((scale & (scale - 1)) != 0)
6937     throw new Error("data type scale not a power of two");
6938     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6939 dl 1.99 } catch (Exception e) {
6940     throw new Error(e);
6941     }
6942     }
6943 jsr166 1.152
6944     }