ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.221
Committed: Wed Jun 5 16:00:55 2013 UTC (10 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.220: +4 -0 lines
Log Message:
add missing @since 1.8

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.208 import java.io.Serializable;
9     import java.io.ObjectStreamField;
10     import java.lang.reflect.ParameterizedType;
11     import java.lang.reflect.Type;
12 dl 1.119 import java.util.Arrays;
13     import java.util.Collection;
14 dl 1.208 import java.util.Comparator;
15     import java.util.ConcurrentModificationException;
16     import java.util.Enumeration;
17     import java.util.HashMap;
18 dl 1.119 import java.util.Hashtable;
19     import java.util.Iterator;
20 dl 1.208 import java.util.Map;
21 dl 1.119 import java.util.NoSuchElementException;
22 dl 1.208 import java.util.Set;
23     import java.util.Spliterator;
24 dl 1.119 import java.util.concurrent.ConcurrentMap;
25 dl 1.208 import java.util.concurrent.ForkJoinPool;
26     import java.util.concurrent.atomic.AtomicReference;
27     import java.util.concurrent.locks.ReentrantLock;
28 dl 1.210 import java.util.concurrent.locks.StampedLock;
29 dl 1.208 import java.util.function.BiConsumer;
30     import java.util.function.BiFunction;
31     import java.util.function.BinaryOperator;
32     import java.util.function.Consumer;
33     import java.util.function.DoubleBinaryOperator;
34     import java.util.function.Function;
35     import java.util.function.IntBinaryOperator;
36     import java.util.function.LongBinaryOperator;
37     import java.util.function.ToDoubleBiFunction;
38     import java.util.function.ToDoubleFunction;
39     import java.util.function.ToIntBiFunction;
40     import java.util.function.ToIntFunction;
41     import java.util.function.ToLongBiFunction;
42     import java.util.function.ToLongFunction;
43 dl 1.210 import java.util.stream.Stream;
44 tim 1.1
45     /**
46 dl 1.4 * A hash table supporting full concurrency of retrievals and
47 dl 1.119 * high expected concurrency for updates. This class obeys the
48 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
49 dl 1.19 * includes versions of methods corresponding to each method of
50 dl 1.119 * {@code Hashtable}. However, even though all operations are
51 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
52     * and there is <em>not</em> any support for locking the entire table
53     * in a way that prevents all access. This class is fully
54 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
55 dl 1.4 * thread safety but not on its synchronization details.
56 tim 1.11 *
57 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
58 dl 1.119 * block, so may overlap with update operations (including {@code put}
59     * and {@code remove}). Retrievals reflect the results of the most
60     * recently <em>completed</em> update operations holding upon their
61 dl 1.126 * onset. (More formally, an update operation for a given key bears a
62     * <em>happens-before</em> relation with any (non-null) retrieval for
63     * that key reporting the updated value.) For aggregate operations
64     * such as {@code putAll} and {@code clear}, concurrent retrievals may
65     * reflect insertion or removal of only some entries. Similarly,
66     * Iterators and Enumerations return elements reflecting the state of
67     * the hash table at some point at or since the creation of the
68     * iterator/enumeration. They do <em>not</em> throw {@link
69     * ConcurrentModificationException}. However, iterators are designed
70     * to be used by only one thread at a time. Bear in mind that the
71     * results of aggregate status methods including {@code size}, {@code
72     * isEmpty}, and {@code containsValue} are typically useful only when
73     * a map is not undergoing concurrent updates in other threads.
74     * Otherwise the results of these methods reflect transient states
75     * that may be adequate for monitoring or estimation purposes, but not
76     * for program control.
77 tim 1.1 *
78 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
79 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
80     * the same slot modulo the table size), with the expected average
81     * effect of maintaining roughly two bins per mapping (corresponding
82     * to a 0.75 load factor threshold for resizing). There may be much
83     * variance around this average as mappings are added and removed, but
84     * overall, this maintains a commonly accepted time/space tradeoff for
85     * hash tables. However, resizing this or any other kind of hash
86     * table may be a relatively slow operation. When possible, it is a
87     * good idea to provide a size estimate as an optional {@code
88     * initialCapacity} constructor argument. An additional optional
89     * {@code loadFactor} constructor argument provides a further means of
90     * customizing initial table capacity by specifying the table density
91     * to be used in calculating the amount of space to allocate for the
92     * given number of elements. Also, for compatibility with previous
93     * versions of this class, constructors may optionally specify an
94     * expected {@code concurrencyLevel} as an additional hint for
95     * internal sizing. Note that using many keys with exactly the same
96     * {@code hashCode()} is a sure way to slow down performance of any
97 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
98     * this class may use comparison order among keys to help break ties.
99 tim 1.1 *
100 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
101 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
102     * (using {@link #keySet(Object)} when only keys are of interest, and the
103     * mapped values are (perhaps transiently) not used or all take the
104     * same mapping value.
105     *
106 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
107 dl 1.153 * form of histogram or multiset) by using {@link
108     * java.util.concurrent.atomic.LongAdder} values and initializing via
109 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
110     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
111     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
112 dl 1.137 *
113 dl 1.45 * <p>This class and its views and iterators implement all of the
114     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
115     * interfaces.
116 dl 1.23 *
117 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
118 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
119 tim 1.1 *
120 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
121     * operations that, unlike most {@link Stream} methods, are designed
122     * to be safely, and often sensibly, applied even with maps that are
123     * being concurrently updated by other threads; for example, when
124     * computing a snapshot summary of the values in a shared registry.
125     * There are three kinds of operation, each with four forms, accepting
126     * functions with Keys, Values, Entries, and (Key, Value) arguments
127     * and/or return values. Because the elements of a ConcurrentHashMap
128     * are not ordered in any particular way, and may be processed in
129     * different orders in different parallel executions, the correctness
130     * of supplied functions should not depend on any ordering, or on any
131     * other objects or values that may transiently change while
132     * computation is in progress; and except for forEach actions, should
133     * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
134     * objects do not support method {@code setValue}.
135 dl 1.137 *
136     * <ul>
137     * <li> forEach: Perform a given action on each element.
138     * A variant form applies a given transformation on each element
139     * before performing the action.</li>
140     *
141     * <li> search: Return the first available non-null result of
142     * applying a given function on each element; skipping further
143     * search when a result is found.</li>
144     *
145     * <li> reduce: Accumulate each element. The supplied reduction
146     * function cannot rely on ordering (more formally, it should be
147     * both associative and commutative). There are five variants:
148     *
149     * <ul>
150     *
151     * <li> Plain reductions. (There is not a form of this method for
152     * (key, value) function arguments since there is no corresponding
153     * return type.)</li>
154     *
155     * <li> Mapped reductions that accumulate the results of a given
156     * function applied to each element.</li>
157     *
158     * <li> Reductions to scalar doubles, longs, and ints, using a
159     * given basis value.</li>
160     *
161 jsr166 1.178 * </ul>
162 dl 1.137 * </li>
163     * </ul>
164     *
165 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
166     * argument. Methods proceed sequentially if the current map size is
167     * estimated to be less than the given threshold. Using a value of
168     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
169 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
170 dl 1.219 * enough subtasks to fully utilize the {@link
171     * ForkJoinPool#commonPool()} that is used for all parallel
172     * computations. Normally, you would initially choose one of these
173     * extreme values, and then measure performance of using in-between
174     * values that trade off overhead versus throughput.
175 dl 1.210 *
176 dl 1.137 * <p>The concurrency properties of bulk operations follow
177     * from those of ConcurrentHashMap: Any non-null result returned
178     * from {@code get(key)} and related access methods bears a
179     * happens-before relation with the associated insertion or
180     * update. The result of any bulk operation reflects the
181     * composition of these per-element relations (but is not
182     * necessarily atomic with respect to the map as a whole unless it
183     * is somehow known to be quiescent). Conversely, because keys
184     * and values in the map are never null, null serves as a reliable
185     * atomic indicator of the current lack of any result. To
186     * maintain this property, null serves as an implicit basis for
187     * all non-scalar reduction operations. For the double, long, and
188     * int versions, the basis should be one that, when combined with
189     * any other value, returns that other value (more formally, it
190     * should be the identity element for the reduction). Most common
191     * reductions have these properties; for example, computing a sum
192     * with basis 0 or a minimum with basis MAX_VALUE.
193     *
194     * <p>Search and transformation functions provided as arguments
195     * should similarly return null to indicate the lack of any result
196     * (in which case it is not used). In the case of mapped
197     * reductions, this also enables transformations to serve as
198     * filters, returning null (or, in the case of primitive
199     * specializations, the identity basis) if the element should not
200     * be combined. You can create compound transformations and
201     * filterings by composing them yourself under this "null means
202     * there is nothing there now" rule before using them in search or
203     * reduce operations.
204     *
205     * <p>Methods accepting and/or returning Entry arguments maintain
206     * key-value associations. They may be useful for example when
207     * finding the key for the greatest value. Note that "plain" Entry
208     * arguments can be supplied using {@code new
209     * AbstractMap.SimpleEntry(k,v)}.
210     *
211 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
212 dl 1.137 * exception encountered in the application of a supplied
213     * function. Bear in mind when handling such exceptions that other
214     * concurrently executing functions could also have thrown
215     * exceptions, or would have done so if the first exception had
216     * not occurred.
217     *
218 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
219     * but not guaranteed. Parallel operations involving brief functions
220     * on small maps may execute more slowly than sequential forms if the
221     * underlying work to parallelize the computation is more expensive
222     * than the computation itself. Similarly, parallelization may not
223     * lead to much actual parallelism if all processors are busy
224     * performing unrelated tasks.
225 dl 1.137 *
226 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
227 dl 1.137 *
228 dl 1.42 * <p>This class is a member of the
229 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
230 dl 1.42 * Java Collections Framework</a>.
231     *
232 dl 1.8 * @since 1.5
233     * @author Doug Lea
234 dl 1.27 * @param <K> the type of keys maintained by this map
235 jsr166 1.64 * @param <V> the type of mapped values
236 dl 1.8 */
237 dl 1.210 @SuppressWarnings({"unchecked", "rawtypes", "serial"})
238     public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
240 tim 1.1
241     /*
242 dl 1.119 * Overview:
243     *
244     * The primary design goal of this hash table is to maintain
245     * concurrent readability (typically method get(), but also
246     * iterators and related methods) while minimizing update
247     * contention. Secondary goals are to keep space consumption about
248     * the same or better than java.util.HashMap, and to support high
249     * initial insertion rates on an empty table by many threads.
250     *
251 dl 1.151 * Each key-value mapping is held in a Node. Because Node key
252     * fields can contain special values, they are defined using plain
253     * Object types (not type "K"). This leads to a lot of explicit
254 dl 1.210 * casting (and the use of class-wide warning suppressions). It
255     * also allows some of the public methods to be factored into a
256     * smaller number of internal methods (although sadly not so for
257     * the five variants of put-related operations). The
258     * validation-based approach explained below leads to a lot of
259     * code sprawl because retry-control precludes factoring into
260     * smaller methods.
261 dl 1.119 *
262     * The table is lazily initialized to a power-of-two size upon the
263     * first insertion. Each bin in the table normally contains a
264     * list of Nodes (most often, the list has only zero or one Node).
265     * Table accesses require volatile/atomic reads, writes, and
266     * CASes. Because there is no other way to arrange this without
267     * adding further indirections, we use intrinsics
268 dl 1.210 * (sun.misc.Unsafe) operations.
269 dl 1.119 *
270 dl 1.149 * We use the top (sign) bit of Node hash fields for control
271     * purposes -- it is available anyway because of addressing
272     * constraints. Nodes with negative hash fields are forwarding
273     * nodes to either TreeBins or resized tables. The lower 31 bits
274     * of each normal Node's hash field contain a transformation of
275     * the key's hash code.
276 dl 1.119 *
277     * Insertion (via put or its variants) of the first node in an
278     * empty bin is performed by just CASing it to the bin. This is
279     * by far the most common case for put operations under most
280     * key/hash distributions. Other update operations (insert,
281     * delete, and replace) require locks. We do not want to waste
282     * the space required to associate a distinct lock object with
283     * each bin, so instead use the first node of a bin list itself as
284 dl 1.149 * a lock. Locking support for these locks relies on builtin
285     * "synchronized" monitors.
286 dl 1.119 *
287     * Using the first node of a list as a lock does not by itself
288     * suffice though: When a node is locked, any update must first
289     * validate that it is still the first node after locking it, and
290     * retry if not. Because new nodes are always appended to lists,
291     * once a node is first in a bin, it remains first until deleted
292 dl 1.210 * or the bin becomes invalidated (upon resizing).
293 dl 1.119 *
294     * The main disadvantage of per-bin locks is that other update
295     * operations on other nodes in a bin list protected by the same
296     * lock can stall, for example when user equals() or mapping
297     * functions take a long time. However, statistically, under
298     * random hash codes, this is not a common problem. Ideally, the
299     * frequency of nodes in bins follows a Poisson distribution
300     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301     * parameter of about 0.5 on average, given the resizing threshold
302     * of 0.75, although with a large variance because of resizing
303     * granularity. Ignoring variance, the expected occurrences of
304     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305     * first values are:
306     *
307     * 0: 0.60653066
308     * 1: 0.30326533
309     * 2: 0.07581633
310     * 3: 0.01263606
311     * 4: 0.00157952
312     * 5: 0.00015795
313     * 6: 0.00001316
314     * 7: 0.00000094
315     * 8: 0.00000006
316     * more: less than 1 in ten million
317     *
318     * Lock contention probability for two threads accessing distinct
319     * elements is roughly 1 / (8 * #elements) under random hashes.
320     *
321     * Actual hash code distributions encountered in practice
322     * sometimes deviate significantly from uniform randomness. This
323     * includes the case when N > (1<<30), so some keys MUST collide.
324     * Similarly for dumb or hostile usages in which multiple keys are
325     * designed to have identical hash codes. Also, although we guard
326     * against the worst effects of this (see method spread), sets of
327     * hashes may differ only in bits that do not impact their bin
328     * index for a given power-of-two mask. So we use a secondary
329     * strategy that applies when the number of nodes in a bin exceeds
330     * a threshold, and at least one of the keys implements
331     * Comparable. These TreeBins use a balanced tree to hold nodes
332     * (a specialized form of red-black trees), bounding search time
333 dl 1.206 * to O(log N). Each search step in a TreeBin is at least twice as
334 dl 1.119 * slow as in a regular list, but given that N cannot exceed
335     * (1<<64) (before running out of addresses) this bounds search
336     * steps, lock hold times, etc, to reasonable constants (roughly
337     * 100 nodes inspected per operation worst case) so long as keys
338     * are Comparable (which is very common -- String, Long, etc).
339     * TreeBin nodes (TreeNodes) also maintain the same "next"
340     * traversal pointers as regular nodes, so can be traversed in
341     * iterators in the same way.
342     *
343     * The table is resized when occupancy exceeds a percentage
344 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
345     * noticing an overfull bin may assist in resizing after the
346     * initiating thread allocates and sets up the replacement
347     * array. However, rather than stalling, these other threads may
348     * proceed with insertions etc. The use of TreeBins shields us
349     * from the worst case effects of overfilling while resizes are in
350     * progress. Resizing proceeds by transferring bins, one by one,
351     * from the table to the next table. To enable concurrency, the
352     * next table must be (incrementally) prefilled with place-holders
353     * serving as reverse forwarders to the old table. Because we are
354     * using power-of-two expansion, the elements from each bin must
355     * either stay at same index, or move with a power of two
356     * offset. We eliminate unnecessary node creation by catching
357     * cases where old nodes can be reused because their next fields
358     * won't change. On average, only about one-sixth of them need
359     * cloning when a table doubles. The nodes they replace will be
360     * garbage collectable as soon as they are no longer referenced by
361     * any reader thread that may be in the midst of concurrently
362     * traversing table. Upon transfer, the old table bin contains
363     * only a special forwarding node (with hash field "MOVED") that
364     * contains the next table as its key. On encountering a
365     * forwarding node, access and update operations restart, using
366     * the new table.
367     *
368     * Each bin transfer requires its bin lock, which can stall
369     * waiting for locks while resizing. However, because other
370     * threads can join in and help resize rather than contend for
371     * locks, average aggregate waits become shorter as resizing
372     * progresses. The transfer operation must also ensure that all
373     * accessible bins in both the old and new table are usable by any
374     * traversal. This is arranged by proceeding from the last bin
375     * (table.length - 1) up towards the first. Upon seeing a
376     * forwarding node, traversals (see class Traverser) arrange to
377     * move to the new table without revisiting nodes. However, to
378     * ensure that no intervening nodes are skipped, bin splitting can
379     * only begin after the associated reverse-forwarders are in
380     * place.
381 dl 1.119 *
382     * The traversal scheme also applies to partial traversals of
383     * ranges of bins (via an alternate Traverser constructor)
384     * to support partitioned aggregate operations. Also, read-only
385     * operations give up if ever forwarded to a null table, which
386     * provides support for shutdown-style clearing, which is also not
387     * currently implemented.
388     *
389     * Lazy table initialization minimizes footprint until first use,
390     * and also avoids resizings when the first operation is from a
391     * putAll, constructor with map argument, or deserialization.
392     * These cases attempt to override the initial capacity settings,
393     * but harmlessly fail to take effect in cases of races.
394     *
395 dl 1.149 * The element count is maintained using a specialization of
396     * LongAdder. We need to incorporate a specialization rather than
397     * just use a LongAdder in order to access implicit
398     * contention-sensing that leads to creation of multiple
399 dl 1.153 * Cells. The counter mechanics avoid contention on
400 dl 1.149 * updates but can encounter cache thrashing if read too
401     * frequently during concurrent access. To avoid reading so often,
402     * resizing under contention is attempted only upon adding to a
403     * bin already holding two or more nodes. Under uniform hash
404     * distributions, the probability of this occurring at threshold
405     * is around 13%, meaning that only about 1 in 8 puts check
406     * threshold (and after resizing, many fewer do so). The bulk
407     * putAll operation further reduces contention by only committing
408     * count updates upon these size checks.
409 dl 1.119 *
410     * Maintaining API and serialization compatibility with previous
411     * versions of this class introduces several oddities. Mainly: We
412     * leave untouched but unused constructor arguments refering to
413     * concurrencyLevel. We accept a loadFactor constructor argument,
414     * but apply it only to initial table capacity (which is the only
415     * time that we can guarantee to honor it.) We also declare an
416     * unused "Segment" class that is instantiated in minimal form
417     * only when serializing.
418 dl 1.4 */
419 tim 1.1
420 dl 1.4 /* ---------------- Constants -------------- */
421 tim 1.11
422 dl 1.4 /**
423 dl 1.119 * The largest possible table capacity. This value must be
424     * exactly 1<<30 to stay within Java array allocation and indexing
425     * bounds for power of two table sizes, and is further required
426     * because the top two bits of 32bit hash fields are used for
427     * control purposes.
428 dl 1.4 */
429 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
430 dl 1.56
431     /**
432 dl 1.119 * The default initial table capacity. Must be a power of 2
433     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
434 dl 1.56 */
435 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
436 dl 1.56
437     /**
438 dl 1.119 * The largest possible (non-power of two) array size.
439     * Needed by toArray and related methods.
440 jsr166 1.59 */
441 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
442 tim 1.1
443     /**
444 dl 1.119 * The default concurrency level for this table. Unused but
445     * defined for compatibility with previous versions of this class.
446 dl 1.4 */
447 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
448 tim 1.11
449 tim 1.1 /**
450 dl 1.119 * The load factor for this table. Overrides of this value in
451     * constructors affect only the initial table capacity. The
452     * actual floating point value isn't normally used -- it is
453     * simpler to use expressions such as {@code n - (n >>> 2)} for
454     * the associated resizing threshold.
455 dl 1.99 */
456 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
457 dl 1.99
458     /**
459 dl 1.119 * The bin count threshold for using a tree rather than list for a
460     * bin. The value reflects the approximate break-even point for
461     * using tree-based operations.
462     */
463 dl 1.210 private static final int TREE_THRESHOLD = 8;
464 dl 1.119
465 dl 1.149 /**
466     * Minimum number of rebinnings per transfer step. Ranges are
467     * subdivided to allow multiple resizer threads. This value
468     * serves as a lower bound to avoid resizers encountering
469     * excessive memory contention. The value should be at least
470     * DEFAULT_CAPACITY.
471     */
472     private static final int MIN_TRANSFER_STRIDE = 16;
473    
474 dl 1.119 /*
475 dl 1.149 * Encodings for Node hash fields. See above for explanation.
476 dl 1.46 */
477 dl 1.119 static final int MOVED = 0x80000000; // hash field for forwarding nodes
478 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
479    
480     /** Number of CPUS, to place bounds on some sizings */
481     static final int NCPU = Runtime.getRuntime().availableProcessors();
482    
483 dl 1.208 /** For serialization compatibility. */
484     private static final ObjectStreamField[] serialPersistentFields = {
485 dl 1.209 new ObjectStreamField("segments", Segment[].class),
486     new ObjectStreamField("segmentMask", Integer.TYPE),
487     new ObjectStreamField("segmentShift", Integer.TYPE)
488 dl 1.208 };
489    
490 dl 1.210 /**
491     * A padded cell for distributing counts. Adapted from LongAdder
492     * and Striped64. See their internal docs for explanation.
493     */
494     @sun.misc.Contended static final class Cell {
495 dl 1.149 volatile long value;
496 dl 1.153 Cell(long x) { value = x; }
497 dl 1.149 }
498    
499 dl 1.4 /* ---------------- Fields -------------- */
500 tim 1.1
501     /**
502 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
503     * Size is always a power of two. Accessed directly by iterators.
504 jsr166 1.59 */
505 dl 1.210 transient volatile Node<K,V>[] table;
506 tim 1.1
507     /**
508 dl 1.149 * The next table to use; non-null only while resizing.
509 jsr166 1.59 */
510 dl 1.210 private transient volatile Node<K,V>[] nextTable;
511 dl 1.149
512     /**
513     * Base counter value, used mainly when there is no contention,
514     * but also as a fallback during table initialization
515     * races. Updated via CAS.
516     */
517     private transient volatile long baseCount;
518 tim 1.1
519     /**
520 dl 1.119 * Table initialization and resizing control. When negative, the
521 dl 1.149 * table is being initialized or resized: -1 for initialization,
522     * else -(1 + the number of active resizing threads). Otherwise,
523     * when table is null, holds the initial table size to use upon
524     * creation, or 0 for default. After initialization, holds the
525     * next element count value upon which to resize the table.
526 tim 1.1 */
527 dl 1.119 private transient volatile int sizeCtl;
528 dl 1.4
529 dl 1.149 /**
530     * The next table index (plus one) to split while resizing.
531     */
532     private transient volatile int transferIndex;
533    
534     /**
535     * The least available table index to split while resizing.
536     */
537     private transient volatile int transferOrigin;
538    
539     /**
540     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
541     */
542 dl 1.153 private transient volatile int cellsBusy;
543 dl 1.149
544     /**
545     * Table of counter cells. When non-null, size is a power of 2.
546     */
547 dl 1.153 private transient volatile Cell[] counterCells;
548 dl 1.149
549 dl 1.119 // views
550 dl 1.137 private transient KeySetView<K,V> keySet;
551 dl 1.142 private transient ValuesView<K,V> values;
552     private transient EntrySetView<K,V> entrySet;
553 dl 1.119
554     /* ---------------- Table element access -------------- */
555    
556     /*
557     * Volatile access methods are used for table elements as well as
558     * elements of in-progress next table while resizing. Uses are
559     * null checked by callers, and implicitly bounds-checked, relying
560     * on the invariants that tab arrays have non-zero size, and all
561     * indices are masked with (tab.length - 1) which is never
562     * negative and always less than length. Note that, to be correct
563     * wrt arbitrary concurrency errors by users, bounds checks must
564     * operate on local variables, which accounts for some odd-looking
565     * inline assignments below.
566     */
567    
568 dl 1.210 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
569     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
570 dl 1.119 }
571    
572 dl 1.210 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
573     Node<K,V> c, Node<K,V> v) {
574 dl 1.149 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
575 dl 1.119 }
576    
577 dl 1.210 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
578 dl 1.149 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
579 dl 1.119 }
580    
581     /* ---------------- Nodes -------------- */
582 dl 1.4
583 dl 1.99 /**
584 dl 1.210 * Key-value entry. This class is never exported out as a
585     * user-mutable Map.Entry (i.e., one supporting setValue; see
586     * MapEntry below), but can be used for read-only traversals used
587 dl 1.215 * in bulk tasks. Nodes with a hash field of MOVED are special,
588     * and do not contain user keys or values (and are never
589 dl 1.210 * exported). Otherwise, keys and vals are never null.
590 dl 1.99 */
591 dl 1.210 static class Node<K,V> implements Map.Entry<K,V> {
592 dl 1.149 final int hash;
593 dl 1.119 final Object key;
594 dl 1.151 volatile V val;
595 dl 1.210 Node<K,V> next;
596 dl 1.99
597 dl 1.210 Node(int hash, Object key, V val, Node<K,V> next) {
598 dl 1.99 this.hash = hash;
599     this.key = key;
600 dl 1.119 this.val = val;
601 dl 1.99 this.next = next;
602     }
603 dl 1.210
604     public final K getKey() { return (K)key; }
605     public final V getValue() { return val; }
606     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
607     public final String toString(){ return key + "=" + val; }
608     public final V setValue(V value) {
609     throw new UnsupportedOperationException();
610     }
611    
612     public final boolean equals(Object o) {
613     Object k, v, u; Map.Entry<?,?> e;
614     return ((o instanceof Map.Entry) &&
615     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
616     (v = e.getValue()) != null &&
617     (k == key || k.equals(key)) &&
618     (v == (u = val) || v.equals(u)));
619     }
620     }
621    
622     /**
623     * Exported Entry for EntryIterator
624     */
625     static final class MapEntry<K,V> implements Map.Entry<K,V> {
626     final K key; // non-null
627     V val; // non-null
628     final ConcurrentHashMap<K,V> map;
629     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
630     this.key = key;
631     this.val = val;
632     this.map = map;
633     }
634     public K getKey() { return key; }
635     public V getValue() { return val; }
636     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
637     public String toString() { return key + "=" + val; }
638    
639     public boolean equals(Object o) {
640     Object k, v; Map.Entry<?,?> e;
641     return ((o instanceof Map.Entry) &&
642     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
643     (v = e.getValue()) != null &&
644     (k == key || k.equals(key)) &&
645     (v == val || v.equals(val)));
646     }
647    
648     /**
649     * Sets our entry's value and writes through to the map. The
650     * value to return is somewhat arbitrary here. Since we do not
651     * necessarily track asynchronous changes, the most recent
652     * "previous" value could be different from what we return (or
653 jsr166 1.214 * could even have been removed, in which case the put will
654 dl 1.210 * re-establish). We do not and cannot guarantee more.
655     */
656     public V setValue(V value) {
657     if (value == null) throw new NullPointerException();
658     V v = val;
659     val = value;
660     map.put(key, value);
661     return v;
662     }
663 dl 1.99 }
664    
665 dl 1.210
666 dl 1.119 /* ---------------- TreeBins -------------- */
667    
668 dl 1.99 /**
669 dl 1.119 * Nodes for use in TreeBins
670 dl 1.99 */
671 dl 1.210 static final class TreeNode<K,V> extends Node<K,V> {
672     TreeNode<K,V> parent; // red-black tree links
673     TreeNode<K,V> left;
674     TreeNode<K,V> right;
675     TreeNode<K,V> prev; // needed to unlink next upon deletion
676 dl 1.119 boolean red;
677 dl 1.99
678 dl 1.210 TreeNode(int hash, Object key, V val, Node<K,V> next,
679     TreeNode<K,V> parent) {
680 dl 1.119 super(hash, key, val, next);
681     this.parent = parent;
682     }
683 dl 1.99 }
684 tim 1.1
685 dl 1.201 /**
686 dl 1.219 * Returns a Class for the given type of the form "class C
687 dl 1.201 * implements Comparable<C>", if one exists, else null. See below
688     * for explanation.
689     */
690 dl 1.219 static Class<?> comparableClassFor(Class<?> c) {
691     Class<?> s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
692     if (c == String.class) // bypass checks
693 dl 1.201 return c;
694 dl 1.219 if (c != null && (cmpc = Comparable.class).isAssignableFrom(c)) {
695 dl 1.201 while (cmpc.isAssignableFrom(s = c.getSuperclass()))
696     c = s; // find topmost comparable class
697 jsr166 1.207 if ((ts = c.getGenericInterfaces()) != null) {
698 dl 1.201 for (int i = 0; i < ts.length; ++i) {
699     if (((t = ts[i]) instanceof ParameterizedType) &&
700     ((p = (ParameterizedType)t).getRawType() == cmpc) &&
701     (as = p.getActualTypeArguments()) != null &&
702     as.length == 1 && as[0] == c) // type arg is c
703     return c;
704     }
705     }
706     }
707     return null;
708     }
709    
710 tim 1.1 /**
711 dl 1.119 * A specialized form of red-black tree for use in bins
712     * whose size exceeds a threshold.
713     *
714     * TreeBins use a special form of comparison for search and
715     * related operations (which is the main reason we cannot use
716     * existing collections such as TreeMaps). TreeBins contain
717     * Comparable elements, but may contain others, as well as
718 dl 1.210 * elements that are Comparable but not necessarily Comparable
719 dl 1.119 * for the same T, so we cannot invoke compareTo among them. To
720     * handle this, the tree is ordered primarily by hash value, then
721 dl 1.205 * by Comparable.compareTo order if applicable. On lookup at a
722 dl 1.201 * node, if elements are not comparable or compare as 0 then both
723     * left and right children may need to be searched in the case of
724     * tied hash values. (This corresponds to the full list search
725     * that would be necessary if all elements were non-Comparable and
726     * had tied hashes.) The red-black balancing code is updated from
727 dl 1.119 * pre-jdk-collections
728     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
729     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
730     * Algorithms" (CLR).
731     *
732     * TreeBins also maintain a separate locking discipline than
733     * regular bins. Because they are forwarded via special MOVED
734     * nodes at bin heads (which can never change once established),
735 dl 1.210 * we cannot use those nodes as locks. Instead, TreeBin extends
736     * StampedLock to support a form of read-write lock. For update
737     * operations and table validation, the exclusive form of lock
738     * behaves in the same way as bin-head locks. However, lookups use
739     * shared read-lock mechanics to allow multiple readers in the
740     * absence of writers. Additionally, these lookups do not ever
741     * block: While the lock is not available, they proceed along the
742     * slow traversal path (via next-pointers) until the lock becomes
743     * available or the list is exhausted, whichever comes
744     * first. These cases are not fast, but maximize aggregate
745     * expected throughput.
746 dl 1.119 */
747 dl 1.210 static final class TreeBin<K,V> extends StampedLock {
748 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
749 dl 1.210 transient TreeNode<K,V> root; // root of tree
750     transient TreeNode<K,V> first; // head of next-pointer list
751 dl 1.119
752     /** From CLR */
753 dl 1.210 private void rotateLeft(TreeNode<K,V> p) {
754 dl 1.119 if (p != null) {
755 dl 1.210 TreeNode<K,V> r = p.right, pp, rl;
756 dl 1.119 if ((rl = p.right = r.left) != null)
757     rl.parent = p;
758     if ((pp = r.parent = p.parent) == null)
759     root = r;
760     else if (pp.left == p)
761     pp.left = r;
762     else
763     pp.right = r;
764     r.left = p;
765     p.parent = r;
766     }
767     }
768 dl 1.4
769 dl 1.119 /** From CLR */
770 dl 1.210 private void rotateRight(TreeNode<K,V> p) {
771 dl 1.119 if (p != null) {
772 dl 1.210 TreeNode<K,V> l = p.left, pp, lr;
773 dl 1.119 if ((lr = p.left = l.right) != null)
774     lr.parent = p;
775     if ((pp = l.parent = p.parent) == null)
776     root = l;
777     else if (pp.right == p)
778     pp.right = l;
779     else
780     pp.left = l;
781     l.right = p;
782     p.parent = l;
783     }
784     }
785 dl 1.4
786     /**
787 jsr166 1.123 * Returns the TreeNode (or null if not found) for the given key
788 dl 1.119 * starting at given root.
789 dl 1.4 */
790 dl 1.210 final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
791     Class<?> cc) {
792 dl 1.119 while (p != null) {
793 dl 1.219 int dir, ph; Object pk; Class<?> pc;
794 dl 1.201 if ((ph = p.hash) != h)
795     dir = (h < ph) ? -1 : 1;
796     else if ((pk = p.key) == k || k.equals(pk))
797     return p;
798 dl 1.219 else if (cc == null || pk == null ||
799     ((pc = pk.getClass()) != cc &&
800     comparableClassFor(pc) != cc) ||
801 dl 1.205 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
802 dl 1.210 TreeNode<K,V> r, pr; // check both sides
803 dl 1.217 if ((pr = p.right) != null &&
804 dl 1.201 (r = getTreeNode(h, k, pr, cc)) != null)
805     return r;
806 dl 1.206 else // continue left
807 dl 1.201 dir = -1;
808 dl 1.45 }
809 dl 1.119 p = (dir > 0) ? p.right : p.left;
810 dl 1.33 }
811 dl 1.119 return null;
812 dl 1.33 }
813    
814 dl 1.99 /**
815 dl 1.119 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
816     * read-lock to call getTreeNode, but during failure to get
817     * lock, searches along next links.
818 dl 1.99 */
819 dl 1.151 final V getValue(int h, Object k) {
820 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
821 dl 1.210 Node<K,V> r = null;
822     for (Node<K,V> e = first; e != null; e = e.next) {
823     long s;
824     if ((s = tryReadLock()) != 0L) {
825 dl 1.119 try {
826 dl 1.210 r = getTreeNode(h, k, root, cc);
827 dl 1.119 } finally {
828 dl 1.210 unlockRead(s);
829 dl 1.99 }
830     break;
831     }
832 dl 1.149 else if (e.hash == h && k.equals(e.key)) {
833 dl 1.119 r = e;
834 dl 1.99 break;
835     }
836     }
837 dl 1.119 return r == null ? null : r.val;
838 dl 1.99 }
839    
840     /**
841 dl 1.203 * Finds or adds a node.
842 dl 1.119 * @return null if added
843 dl 1.6 */
844 dl 1.210 final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
845 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
846 dl 1.210 TreeNode<K,V> pp = root, p = null;
847 dl 1.119 int dir = 0;
848     while (pp != null) { // find existing node or leaf to insert at
849 dl 1.219 int ph; Object pk; Class<?> pc;
850 dl 1.119 p = pp;
851 dl 1.201 if ((ph = p.hash) != h)
852     dir = (h < ph) ? -1 : 1;
853     else if ((pk = p.key) == k || k.equals(pk))
854     return p;
855 dl 1.219 else if (cc == null || pk == null ||
856     ((pc = pk.getClass()) != cc &&
857     comparableClassFor(pc) != cc) ||
858 dl 1.205 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
859 dl 1.210 TreeNode<K,V> r, pr;
860 dl 1.217 if ((pr = p.right) != null &&
861 dl 1.201 (r = getTreeNode(h, k, pr, cc)) != null)
862     return r;
863     else // continue left
864     dir = -1;
865 dl 1.99 }
866 dl 1.119 pp = (dir > 0) ? p.right : p.left;
867 dl 1.99 }
868    
869 dl 1.210 TreeNode<K,V> f = first;
870     TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
871 dl 1.119 if (p == null)
872     root = x;
873     else { // attach and rebalance; adapted from CLR
874     if (f != null)
875     f.prev = x;
876     if (dir <= 0)
877     p.left = x;
878     else
879     p.right = x;
880     x.red = true;
881 dl 1.217 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
882     if ((xp = x.parent) == null) {
883     (root = x).red = false;
884     break;
885     }
886     else if (!xp.red || (xpp = xp.parent) == null) {
887     TreeNode<K,V> r = root;
888     if (r != null && r.red)
889     r.red = false;
890     break;
891     }
892     else if ((xppl = xpp.left) == xp) {
893     if ((xppr = xpp.right) != null && xppr.red) {
894     xppr.red = false;
895 dl 1.119 xp.red = false;
896     xpp.red = true;
897     x = xpp;
898     }
899     else {
900     if (x == xp.right) {
901     rotateLeft(x = xp);
902     xpp = (xp = x.parent) == null ? null : xp.parent;
903     }
904     if (xp != null) {
905     xp.red = false;
906     if (xpp != null) {
907     xpp.red = true;
908     rotateRight(xpp);
909     }
910     }
911     }
912     }
913     else {
914 dl 1.217 if (xppl != null && xppl.red) {
915     xppl.red = false;
916 dl 1.119 xp.red = false;
917     xpp.red = true;
918     x = xpp;
919     }
920     else {
921     if (x == xp.left) {
922     rotateRight(x = xp);
923     xpp = (xp = x.parent) == null ? null : xp.parent;
924     }
925     if (xp != null) {
926     xp.red = false;
927     if (xpp != null) {
928     xpp.red = true;
929     rotateLeft(xpp);
930     }
931     }
932 dl 1.99 }
933     }
934     }
935     }
936 dl 1.217 assert checkInvariants();
937 dl 1.119 return null;
938 dl 1.99 }
939 dl 1.45
940 dl 1.119 /**
941     * Removes the given node, that must be present before this
942     * call. This is messier than typical red-black deletion code
943     * because we cannot swap the contents of an interior node
944     * with a leaf successor that is pinned by "next" pointers
945     * that are accessible independently of lock. So instead we
946     * swap the tree linkages.
947     */
948 dl 1.210 final void deleteTreeNode(TreeNode<K,V> p) {
949     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
950     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
951 dl 1.119 if (pred == null)
952     first = next;
953     else
954     pred.next = next;
955     if (next != null)
956     next.prev = pred;
957 dl 1.217 else if (pred == null) {
958     root = null;
959     return;
960     }
961 dl 1.210 TreeNode<K,V> replacement;
962     TreeNode<K,V> pl = p.left;
963     TreeNode<K,V> pr = p.right;
964 dl 1.119 if (pl != null && pr != null) {
965 dl 1.210 TreeNode<K,V> s = pr, sl;
966 dl 1.119 while ((sl = s.left) != null) // find successor
967     s = sl;
968     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
969 dl 1.210 TreeNode<K,V> sr = s.right;
970     TreeNode<K,V> pp = p.parent;
971 dl 1.119 if (s == pr) { // p was s's direct parent
972     p.parent = s;
973     s.right = p;
974     }
975     else {
976 dl 1.210 TreeNode<K,V> sp = s.parent;
977 dl 1.119 if ((p.parent = sp) != null) {
978     if (s == sp.left)
979     sp.left = p;
980     else
981     sp.right = p;
982 dl 1.45 }
983 dl 1.119 if ((s.right = pr) != null)
984     pr.parent = s;
985 dl 1.4 }
986 dl 1.119 p.left = null;
987     if ((p.right = sr) != null)
988     sr.parent = p;
989     if ((s.left = pl) != null)
990     pl.parent = s;
991     if ((s.parent = pp) == null)
992     root = s;
993     else if (p == pp.left)
994     pp.left = s;
995     else
996     pp.right = s;
997 dl 1.217 if (sr != null)
998     replacement = sr;
999     else
1000     replacement = p;
1001 dl 1.119 }
1002 dl 1.217 else if (pl != null)
1003     replacement = pl;
1004     else if (pr != null)
1005     replacement = pr;
1006 dl 1.119 else
1007     replacement = p;
1008 dl 1.217 if (replacement != p) {
1009     TreeNode<K,V> pp = replacement.parent = p.parent;
1010 dl 1.119 if (pp == null)
1011     root = replacement;
1012     else if (p == pp.left)
1013     pp.left = replacement;
1014     else
1015     pp.right = replacement;
1016     p.left = p.right = p.parent = null;
1017 dl 1.4 }
1018 dl 1.119 if (!p.red) { // rebalance, from CLR
1019 dl 1.217 for (TreeNode<K,V> x = replacement; x != null; ) {
1020     TreeNode<K,V> xp, xpl, xpr;
1021 dl 1.119 if (x.red || (xp = x.parent) == null) {
1022     x.red = false;
1023 dl 1.99 break;
1024 dl 1.119 }
1025 dl 1.217 else if ((xpl = xp.left) == x) {
1026     if ((xpr = xp.right) != null && xpr.red) {
1027     xpr.red = false;
1028 dl 1.119 xp.red = true;
1029     rotateLeft(xp);
1030 dl 1.217 xpr = (xp = x.parent) == null ? null : xp.right;
1031 dl 1.119 }
1032 dl 1.217 if (xpr == null)
1033 dl 1.119 x = xp;
1034     else {
1035 dl 1.217 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
1036 dl 1.119 if ((sr == null || !sr.red) &&
1037     (sl == null || !sl.red)) {
1038 dl 1.217 xpr.red = true;
1039 dl 1.119 x = xp;
1040     }
1041     else {
1042     if (sr == null || !sr.red) {
1043     if (sl != null)
1044     sl.red = false;
1045 dl 1.217 xpr.red = true;
1046     rotateRight(xpr);
1047     xpr = (xp = x.parent) == null ?
1048 dl 1.149 null : xp.right;
1049 dl 1.119 }
1050 dl 1.217 if (xpr != null) {
1051     xpr.red = (xp == null) ? false : xp.red;
1052     if ((sr = xpr.right) != null)
1053 dl 1.119 sr.red = false;
1054     }
1055     if (xp != null) {
1056     xp.red = false;
1057     rotateLeft(xp);
1058     }
1059     x = root;
1060     }
1061     }
1062     }
1063     else { // symmetric
1064 dl 1.217 if (xpl != null && xpl.red) {
1065     xpl.red = false;
1066 dl 1.119 xp.red = true;
1067     rotateRight(xp);
1068 dl 1.217 xpl = (xp = x.parent) == null ? null : xp.left;
1069 dl 1.119 }
1070 dl 1.217 if (xpl == null)
1071 dl 1.119 x = xp;
1072     else {
1073 dl 1.217 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
1074 dl 1.119 if ((sl == null || !sl.red) &&
1075     (sr == null || !sr.red)) {
1076 dl 1.217 xpl.red = true;
1077 dl 1.119 x = xp;
1078     }
1079     else {
1080     if (sl == null || !sl.red) {
1081     if (sr != null)
1082     sr.red = false;
1083 dl 1.217 xpl.red = true;
1084     rotateLeft(xpl);
1085     xpl = (xp = x.parent) == null ?
1086 dl 1.149 null : xp.left;
1087 dl 1.119 }
1088 dl 1.217 if (xpl != null) {
1089     xpl.red = (xp == null) ? false : xp.red;
1090     if ((sl = xpl.left) != null)
1091 dl 1.119 sl.red = false;
1092     }
1093     if (xp != null) {
1094     xp.red = false;
1095     rotateRight(xp);
1096     }
1097     x = root;
1098     }
1099     }
1100     }
1101 dl 1.45 }
1102 dl 1.4 }
1103 dl 1.217 if (p == replacement) { // detach pointers
1104     TreeNode<K,V> pp;
1105     if ((pp = p.parent) != null) {
1106     if (p == pp.left)
1107     pp.left = null;
1108     else if (p == pp.right)
1109     pp.right = null;
1110     p.parent = null;
1111     }
1112 dl 1.119 }
1113 dl 1.217 assert checkInvariants();
1114     }
1115    
1116     /**
1117     * Checks linkage and balance invariants at root
1118     */
1119     final boolean checkInvariants() {
1120     TreeNode<K,V> r = root;
1121     if (r == null)
1122     return (first == null);
1123     else
1124     return (first != null) && checkTreeNode(r);
1125     }
1126    
1127     /**
1128     * Recursive invariant check
1129     */
1130     final boolean checkTreeNode(TreeNode<K,V> t) {
1131     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
1132     tb = t.prev, tn = (TreeNode<K,V>)t.next;
1133     if (tb != null && tb.next != t)
1134     return false;
1135     if (tn != null && tn.prev != t)
1136     return false;
1137     if (tp != null && t != tp.left && t != tp.right)
1138     return false;
1139     if (tl != null && (tl.parent != t || tl.hash > t.hash))
1140     return false;
1141     if (tr != null && (tr.parent != t || tr.hash < t.hash))
1142     return false;
1143     if (t.red && tl != null && tl.red && tr != null && tr.red)
1144     return false;
1145     if (tl != null && !checkTreeNode(tl))
1146     return false;
1147     if (tr != null && !checkTreeNode(tr))
1148     return false;
1149     return true;
1150 dl 1.4 }
1151 tim 1.1 }
1152    
1153 dl 1.119 /* ---------------- Collision reduction methods -------------- */
1154 tim 1.1
1155 dl 1.99 /**
1156 dl 1.149 * Spreads higher bits to lower, and also forces top bit to 0.
1157 dl 1.119 * Because the table uses power-of-two masking, sets of hashes
1158     * that vary only in bits above the current mask will always
1159     * collide. (Among known examples are sets of Float keys holding
1160     * consecutive whole numbers in small tables.) To counter this,
1161     * we apply a transform that spreads the impact of higher bits
1162     * downward. There is a tradeoff between speed, utility, and
1163     * quality of bit-spreading. Because many common sets of hashes
1164     * are already reasonably distributed across bits (so don't benefit
1165     * from spreading), and because we use trees to handle large sets
1166     * of collisions in bins, we don't need excessively high quality.
1167     */
1168     private static final int spread(int h) {
1169     h ^= (h >>> 18) ^ (h >>> 12);
1170     return (h ^ (h >>> 10)) & HASH_BITS;
1171 dl 1.99 }
1172    
1173     /**
1174 dl 1.149 * Replaces a list bin with a tree bin if key is comparable. Call
1175     * only when locked.
1176 dl 1.119 */
1177 dl 1.210 private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1178 dl 1.219 if (tab != null && comparableClassFor(key.getClass()) != null) {
1179 dl 1.210 TreeBin<K,V> t = new TreeBin<K,V>();
1180     for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1181 dl 1.149 t.putTreeNode(e.hash, e.key, e.val);
1182 dl 1.210 setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1183 dl 1.119 }
1184 dl 1.99 }
1185 tim 1.11
1186 dl 1.119 /* ---------------- Internal access and update methods -------------- */
1187    
1188     /** Implementation for get and containsKey */
1189 dl 1.210 private final V internalGet(Object k) {
1190 dl 1.119 int h = spread(k.hashCode());
1191 dl 1.210 V v = null;
1192     Node<K,V>[] tab; Node<K,V> e;
1193     if ((tab = table) != null &&
1194     (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1195     for (;;) {
1196     int eh; Object ek;
1197 dl 1.149 if ((eh = e.hash) < 0) {
1198 dl 1.210 if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1199     v = ((TreeBin<K,V>)ek).getValue(h, k);
1200     break;
1201 dl 1.119 }
1202 dl 1.210 else if (!(ek instanceof Node[]) || // try new table
1203     (e = tabAt(tab = (Node<K,V>[])ek,
1204     (tab.length - 1) & h)) == null)
1205     break;
1206     }
1207     else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1208     v = e.val;
1209     break;
1210 dl 1.119 }
1211 dl 1.210 else if ((e = e.next) == null)
1212     break;
1213 dl 1.119 }
1214     }
1215 dl 1.210 return v;
1216 tim 1.1 }
1217    
1218     /**
1219 dl 1.119 * Implementation for the four public remove/replace methods:
1220     * Replaces node value with v, conditional upon match of cv if
1221     * non-null. If resulting value is null, delete.
1222     */
1223 dl 1.210 private final V internalReplace(Object k, V v, Object cv) {
1224 dl 1.119 int h = spread(k.hashCode());
1225 dl 1.151 V oldVal = null;
1226 dl 1.210 for (Node<K,V>[] tab = table;;) {
1227     Node<K,V> f; int i, fh; Object fk;
1228 dl 1.119 if (tab == null ||
1229     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1230     break;
1231 dl 1.149 else if ((fh = f.hash) < 0) {
1232 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1233 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1234     long stamp = t.writeLock();
1235 dl 1.119 boolean validated = false;
1236     boolean deleted = false;
1237     try {
1238     if (tabAt(tab, i) == f) {
1239     validated = true;
1240 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
1241 dl 1.210 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1242 dl 1.119 if (p != null) {
1243 dl 1.151 V pv = p.val;
1244 dl 1.119 if (cv == null || cv == pv || cv.equals(pv)) {
1245     oldVal = pv;
1246 dl 1.210 if (v != null)
1247     p.val = v;
1248     else {
1249 dl 1.119 deleted = true;
1250     t.deleteTreeNode(p);
1251     }
1252     }
1253     }
1254     }
1255     } finally {
1256 dl 1.210 t.unlockWrite(stamp);
1257 dl 1.119 }
1258     if (validated) {
1259     if (deleted)
1260 dl 1.149 addCount(-1L, -1);
1261 dl 1.119 break;
1262     }
1263     }
1264     else
1265 dl 1.210 tab = (Node<K,V>[])fk;
1266 dl 1.119 }
1267 dl 1.149 else {
1268 dl 1.119 boolean validated = false;
1269     boolean deleted = false;
1270 jsr166 1.150 synchronized (f) {
1271 dl 1.119 if (tabAt(tab, i) == f) {
1272     validated = true;
1273 dl 1.210 for (Node<K,V> e = f, pred = null;;) {
1274     Object ek;
1275 dl 1.149 if (e.hash == h &&
1276 dl 1.119 ((ek = e.key) == k || k.equals(ek))) {
1277 dl 1.210 V ev = e.val;
1278 dl 1.119 if (cv == null || cv == ev || cv.equals(ev)) {
1279     oldVal = ev;
1280 dl 1.210 if (v != null)
1281     e.val = v;
1282     else {
1283 dl 1.119 deleted = true;
1284 dl 1.210 Node<K,V> en = e.next;
1285 dl 1.119 if (pred != null)
1286     pred.next = en;
1287     else
1288     setTabAt(tab, i, en);
1289     }
1290     }
1291     break;
1292     }
1293     pred = e;
1294     if ((e = e.next) == null)
1295     break;
1296     }
1297     }
1298     }
1299     if (validated) {
1300     if (deleted)
1301 dl 1.149 addCount(-1L, -1);
1302 dl 1.119 break;
1303     }
1304     }
1305     }
1306 dl 1.151 return oldVal;
1307 dl 1.55 }
1308    
1309 dl 1.119 /*
1310 dl 1.149 * Internal versions of insertion methods
1311     * All have the same basic structure as the first (internalPut):
1312 dl 1.119 * 1. If table uninitialized, create
1313     * 2. If bin empty, try to CAS new node
1314     * 3. If bin stale, use new table
1315     * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1316     * 5. Lock and validate; if valid, scan and add or update
1317 tim 1.1 *
1318 dl 1.149 * The putAll method differs mainly in attempting to pre-allocate
1319     * enough table space, and also more lazily performs count updates
1320     * and checks.
1321     *
1322     * Most of the function-accepting methods can't be factored nicely
1323     * because they require different functional forms, so instead
1324     * sprawl out similar mechanics.
1325 tim 1.1 */
1326    
1327 dl 1.149 /** Implementation for put and putIfAbsent */
1328 dl 1.210 private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1329 dl 1.149 if (k == null || v == null) throw new NullPointerException();
1330 dl 1.119 int h = spread(k.hashCode());
1331 dl 1.149 int len = 0;
1332 dl 1.210 for (Node<K,V>[] tab = table;;) {
1333     int i, fh; Node<K,V> f; Object fk;
1334 dl 1.119 if (tab == null)
1335     tab = initTable();
1336     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1337 dl 1.210 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1338 dl 1.119 break; // no lock when adding to empty bin
1339 dl 1.99 }
1340 dl 1.149 else if ((fh = f.hash) < 0) {
1341 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1342 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1343     long stamp = t.writeLock();
1344 dl 1.151 V oldVal = null;
1345 dl 1.119 try {
1346     if (tabAt(tab, i) == f) {
1347 dl 1.149 len = 2;
1348 dl 1.210 TreeNode<K,V> p = t.putTreeNode(h, k, v);
1349 dl 1.119 if (p != null) {
1350     oldVal = p.val;
1351 dl 1.149 if (!onlyIfAbsent)
1352     p.val = v;
1353 dl 1.119 }
1354     }
1355     } finally {
1356 dl 1.210 t.unlockWrite(stamp);
1357 dl 1.119 }
1358 dl 1.149 if (len != 0) {
1359 dl 1.119 if (oldVal != null)
1360 dl 1.151 return oldVal;
1361 dl 1.119 break;
1362     }
1363     }
1364     else
1365 dl 1.210 tab = (Node<K,V>[])fk;
1366 dl 1.119 }
1367 dl 1.149 else {
1368 dl 1.151 V oldVal = null;
1369 jsr166 1.150 synchronized (f) {
1370 dl 1.119 if (tabAt(tab, i) == f) {
1371 dl 1.149 len = 1;
1372 dl 1.210 for (Node<K,V> e = f;; ++len) {
1373     Object ek;
1374 dl 1.149 if (e.hash == h &&
1375 dl 1.119 ((ek = e.key) == k || k.equals(ek))) {
1376 dl 1.210 oldVal = e.val;
1377 dl 1.149 if (!onlyIfAbsent)
1378     e.val = v;
1379 dl 1.119 break;
1380     }
1381 dl 1.210 Node<K,V> last = e;
1382 dl 1.119 if ((e = e.next) == null) {
1383 dl 1.210 last.next = new Node<K,V>(h, k, v, null);
1384     if (len > TREE_THRESHOLD)
1385 dl 1.119 replaceWithTreeBin(tab, i, k);
1386     break;
1387     }
1388     }
1389     }
1390     }
1391 dl 1.149 if (len != 0) {
1392 dl 1.119 if (oldVal != null)
1393 dl 1.151 return oldVal;
1394 dl 1.119 break;
1395     }
1396     }
1397 dl 1.45 }
1398 dl 1.149 addCount(1L, len);
1399 dl 1.119 return null;
1400 dl 1.21 }
1401    
1402 dl 1.119 /** Implementation for computeIfAbsent */
1403 dl 1.210 private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1404 dl 1.149 if (k == null || mf == null)
1405     throw new NullPointerException();
1406 dl 1.119 int h = spread(k.hashCode());
1407 dl 1.151 V val = null;
1408 dl 1.149 int len = 0;
1409 dl 1.210 for (Node<K,V>[] tab = table;;) {
1410     Node<K,V> f; int i; Object fk;
1411 dl 1.119 if (tab == null)
1412     tab = initTable();
1413     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1414 dl 1.210 Node<K,V> node = new Node<K,V>(h, k, null, null);
1415 jsr166 1.150 synchronized (node) {
1416 dl 1.149 if (casTabAt(tab, i, null, node)) {
1417     len = 1;
1418     try {
1419     if ((val = mf.apply(k)) != null)
1420     node.val = val;
1421     } finally {
1422     if (val == null)
1423     setTabAt(tab, i, null);
1424 dl 1.119 }
1425     }
1426     }
1427 dl 1.149 if (len != 0)
1428 dl 1.119 break;
1429     }
1430 dl 1.149 else if (f.hash < 0) {
1431 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1432 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1433     long stamp = t.writeLock();
1434 dl 1.119 boolean added = false;
1435     try {
1436     if (tabAt(tab, i) == f) {
1437 dl 1.210 len = 2;
1438 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
1439 dl 1.210 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1440 dl 1.119 if (p != null)
1441     val = p.val;
1442     else if ((val = mf.apply(k)) != null) {
1443     added = true;
1444     t.putTreeNode(h, k, val);
1445     }
1446     }
1447     } finally {
1448 dl 1.210 t.unlockWrite(stamp);
1449 dl 1.119 }
1450 dl 1.149 if (len != 0) {
1451 dl 1.119 if (!added)
1452 dl 1.151 return val;
1453 dl 1.119 break;
1454     }
1455     }
1456     else
1457 dl 1.210 tab = (Node<K,V>[])fk;
1458 dl 1.119 }
1459     else {
1460 dl 1.149 boolean added = false;
1461 jsr166 1.150 synchronized (f) {
1462 dl 1.149 if (tabAt(tab, i) == f) {
1463     len = 1;
1464 dl 1.210 for (Node<K,V> e = f;; ++len) {
1465 dl 1.151 Object ek; V ev;
1466 dl 1.149 if (e.hash == h &&
1467     ((ek = e.key) == k || k.equals(ek))) {
1468 dl 1.210 val = e.val;
1469 dl 1.149 break;
1470     }
1471 dl 1.210 Node<K,V> last = e;
1472 dl 1.149 if ((e = e.next) == null) {
1473     if ((val = mf.apply(k)) != null) {
1474     added = true;
1475 dl 1.210 last.next = new Node<K,V>(h, k, val, null);
1476     if (len > TREE_THRESHOLD)
1477 dl 1.149 replaceWithTreeBin(tab, i, k);
1478 dl 1.119 }
1479 dl 1.149 break;
1480 dl 1.119 }
1481     }
1482     }
1483 dl 1.149 }
1484     if (len != 0) {
1485     if (!added)
1486 dl 1.151 return val;
1487 dl 1.149 break;
1488 dl 1.119 }
1489 dl 1.105 }
1490 dl 1.99 }
1491 dl 1.149 if (val != null)
1492     addCount(1L, len);
1493 dl 1.151 return val;
1494 tim 1.1 }
1495    
1496 dl 1.119 /** Implementation for compute */
1497 dl 1.210 private final V internalCompute(K k, boolean onlyIfPresent,
1498     BiFunction<? super K, ? super V, ? extends V> mf) {
1499 dl 1.149 if (k == null || mf == null)
1500     throw new NullPointerException();
1501 dl 1.119 int h = spread(k.hashCode());
1502 dl 1.151 V val = null;
1503 dl 1.119 int delta = 0;
1504 dl 1.149 int len = 0;
1505 dl 1.210 for (Node<K,V>[] tab = table;;) {
1506     Node<K,V> f; int i, fh; Object fk;
1507 dl 1.119 if (tab == null)
1508     tab = initTable();
1509     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1510     if (onlyIfPresent)
1511     break;
1512 dl 1.210 Node<K,V> node = new Node<K,V>(h, k, null, null);
1513 jsr166 1.150 synchronized (node) {
1514 dl 1.149 if (casTabAt(tab, i, null, node)) {
1515     try {
1516     len = 1;
1517     if ((val = mf.apply(k, null)) != null) {
1518     node.val = val;
1519     delta = 1;
1520     }
1521     } finally {
1522     if (delta == 0)
1523     setTabAt(tab, i, null);
1524 dl 1.119 }
1525     }
1526     }
1527 dl 1.149 if (len != 0)
1528 dl 1.119 break;
1529     }
1530 dl 1.149 else if ((fh = f.hash) < 0) {
1531 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1532 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1533     long stamp = t.writeLock();
1534 dl 1.119 try {
1535     if (tabAt(tab, i) == f) {
1536 dl 1.210 len = 2;
1537 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
1538 dl 1.210 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1539     if (p != null || !onlyIfPresent) {
1540     V pv = (p == null) ? null : p.val;
1541     if ((val = mf.apply(k, pv)) != null) {
1542     if (p != null)
1543     p.val = val;
1544     else {
1545     delta = 1;
1546     t.putTreeNode(h, k, val);
1547     }
1548     }
1549     else if (p != null) {
1550     delta = -1;
1551     t.deleteTreeNode(p);
1552 dl 1.119 }
1553     }
1554     }
1555     } finally {
1556 dl 1.210 t.unlockWrite(stamp);
1557 dl 1.119 }
1558 dl 1.149 if (len != 0)
1559 dl 1.119 break;
1560     }
1561     else
1562 dl 1.210 tab = (Node<K,V>[])fk;
1563 dl 1.119 }
1564 dl 1.149 else {
1565 jsr166 1.150 synchronized (f) {
1566 dl 1.119 if (tabAt(tab, i) == f) {
1567 dl 1.149 len = 1;
1568 dl 1.210 for (Node<K,V> e = f, pred = null;; ++len) {
1569     Object ek;
1570 dl 1.149 if (e.hash == h &&
1571 dl 1.119 ((ek = e.key) == k || k.equals(ek))) {
1572 dl 1.210 val = mf.apply(k, e.val);
1573 dl 1.119 if (val != null)
1574     e.val = val;
1575     else {
1576     delta = -1;
1577 dl 1.210 Node<K,V> en = e.next;
1578 dl 1.119 if (pred != null)
1579     pred.next = en;
1580     else
1581     setTabAt(tab, i, en);
1582     }
1583     break;
1584     }
1585     pred = e;
1586     if ((e = e.next) == null) {
1587 dl 1.149 if (!onlyIfPresent &&
1588     (val = mf.apply(k, null)) != null) {
1589 dl 1.210 pred.next = new Node<K,V>(h, k, val, null);
1590 dl 1.119 delta = 1;
1591 dl 1.210 if (len > TREE_THRESHOLD)
1592 dl 1.119 replaceWithTreeBin(tab, i, k);
1593     }
1594     break;
1595     }
1596     }
1597     }
1598     }
1599 dl 1.149 if (len != 0)
1600 dl 1.119 break;
1601     }
1602     }
1603 dl 1.149 if (delta != 0)
1604     addCount((long)delta, len);
1605 dl 1.151 return val;
1606 dl 1.119 }
1607    
1608 dl 1.126 /** Implementation for merge */
1609 dl 1.210 private final V internalMerge(K k, V v,
1610     BiFunction<? super V, ? super V, ? extends V> mf) {
1611 dl 1.149 if (k == null || v == null || mf == null)
1612     throw new NullPointerException();
1613 dl 1.119 int h = spread(k.hashCode());
1614 dl 1.151 V val = null;
1615 dl 1.119 int delta = 0;
1616 dl 1.149 int len = 0;
1617 dl 1.210 for (Node<K,V>[] tab = table;;) {
1618     int i; Node<K,V> f; Object fk;
1619 dl 1.119 if (tab == null)
1620     tab = initTable();
1621     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1622 dl 1.210 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1623 dl 1.119 delta = 1;
1624     val = v;
1625     break;
1626     }
1627     }
1628 dl 1.149 else if (f.hash < 0) {
1629 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1630 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1631     long stamp = t.writeLock();
1632 dl 1.119 try {
1633     if (tabAt(tab, i) == f) {
1634 dl 1.210 len = 2;
1635 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
1636 dl 1.210 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1637 dl 1.151 val = (p == null) ? v : mf.apply(p.val, v);
1638 dl 1.119 if (val != null) {
1639     if (p != null)
1640     p.val = val;
1641     else {
1642     delta = 1;
1643     t.putTreeNode(h, k, val);
1644     }
1645     }
1646     else if (p != null) {
1647     delta = -1;
1648     t.deleteTreeNode(p);
1649     }
1650     }
1651     } finally {
1652 dl 1.210 t.unlockWrite(stamp);
1653 dl 1.119 }
1654 dl 1.149 if (len != 0)
1655 dl 1.119 break;
1656     }
1657     else
1658 dl 1.210 tab = (Node<K,V>[])fk;
1659 dl 1.119 }
1660 dl 1.149 else {
1661 jsr166 1.150 synchronized (f) {
1662 dl 1.119 if (tabAt(tab, i) == f) {
1663 dl 1.149 len = 1;
1664 dl 1.210 for (Node<K,V> e = f, pred = null;; ++len) {
1665     Object ek;
1666 dl 1.149 if (e.hash == h &&
1667 dl 1.119 ((ek = e.key) == k || k.equals(ek))) {
1668 dl 1.210 val = mf.apply(e.val, v);
1669 dl 1.119 if (val != null)
1670     e.val = val;
1671     else {
1672     delta = -1;
1673 dl 1.210 Node<K,V> en = e.next;
1674 dl 1.119 if (pred != null)
1675     pred.next = en;
1676     else
1677     setTabAt(tab, i, en);
1678     }
1679     break;
1680     }
1681     pred = e;
1682     if ((e = e.next) == null) {
1683 dl 1.210 delta = 1;
1684 dl 1.119 val = v;
1685 dl 1.210 pred.next = new Node<K,V>(h, k, val, null);
1686     if (len > TREE_THRESHOLD)
1687 dl 1.119 replaceWithTreeBin(tab, i, k);
1688     break;
1689     }
1690     }
1691     }
1692     }
1693 dl 1.149 if (len != 0)
1694 dl 1.119 break;
1695 dl 1.105 }
1696 dl 1.99 }
1697 dl 1.149 if (delta != 0)
1698     addCount((long)delta, len);
1699 dl 1.151 return val;
1700 dl 1.119 }
1701    
1702     /** Implementation for putAll */
1703 dl 1.210 private final void internalPutAll(Map<? extends K, ? extends V> m) {
1704 dl 1.119 tryPresize(m.size());
1705     long delta = 0L; // number of uncommitted additions
1706     boolean npe = false; // to throw exception on exit for nulls
1707     try { // to clean up counts on other exceptions
1708 dl 1.151 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1709     Object k; V v;
1710 dl 1.119 if (entry == null || (k = entry.getKey()) == null ||
1711     (v = entry.getValue()) == null) {
1712     npe = true;
1713     break;
1714     }
1715     int h = spread(k.hashCode());
1716 dl 1.210 for (Node<K,V>[] tab = table;;) {
1717     int i; Node<K,V> f; int fh; Object fk;
1718 dl 1.119 if (tab == null)
1719     tab = initTable();
1720     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1721 dl 1.210 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1722 dl 1.119 ++delta;
1723     break;
1724     }
1725     }
1726 dl 1.149 else if ((fh = f.hash) < 0) {
1727 dl 1.119 if ((fk = f.key) instanceof TreeBin) {
1728 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1729     long stamp = t.writeLock();
1730 dl 1.119 boolean validated = false;
1731     try {
1732     if (tabAt(tab, i) == f) {
1733     validated = true;
1734 dl 1.219 Class<?> cc = comparableClassFor(k.getClass());
1735 dl 1.210 TreeNode<K,V> p = t.getTreeNode(h, k,
1736     t.root, cc);
1737 dl 1.119 if (p != null)
1738     p.val = v;
1739     else {
1740 dl 1.210 ++delta;
1741 dl 1.119 t.putTreeNode(h, k, v);
1742     }
1743     }
1744     } finally {
1745 dl 1.210 t.unlockWrite(stamp);
1746 dl 1.119 }
1747     if (validated)
1748     break;
1749     }
1750     else
1751 dl 1.210 tab = (Node<K,V>[])fk;
1752 dl 1.119 }
1753 dl 1.149 else {
1754     int len = 0;
1755 jsr166 1.150 synchronized (f) {
1756 dl 1.119 if (tabAt(tab, i) == f) {
1757 dl 1.149 len = 1;
1758 dl 1.210 for (Node<K,V> e = f;; ++len) {
1759     Object ek;
1760 dl 1.149 if (e.hash == h &&
1761 dl 1.119 ((ek = e.key) == k || k.equals(ek))) {
1762     e.val = v;
1763     break;
1764     }
1765 dl 1.210 Node<K,V> last = e;
1766 dl 1.119 if ((e = e.next) == null) {
1767     ++delta;
1768 dl 1.210 last.next = new Node<K,V>(h, k, v, null);
1769     if (len > TREE_THRESHOLD)
1770 dl 1.119 replaceWithTreeBin(tab, i, k);
1771     break;
1772     }
1773     }
1774     }
1775     }
1776 dl 1.149 if (len != 0) {
1777 dl 1.164 if (len > 1) {
1778 dl 1.149 addCount(delta, len);
1779 dl 1.164 delta = 0L;
1780     }
1781 dl 1.119 break;
1782 dl 1.99 }
1783 dl 1.21 }
1784     }
1785 dl 1.45 }
1786     } finally {
1787 dl 1.149 if (delta != 0L)
1788     addCount(delta, 2);
1789 dl 1.45 }
1790 dl 1.119 if (npe)
1791     throw new NullPointerException();
1792 tim 1.1 }
1793 dl 1.19
1794 dl 1.149 /**
1795     * Implementation for clear. Steps through each bin, removing all
1796     * nodes.
1797     */
1798 dl 1.210 private final void internalClear() {
1799 dl 1.149 long delta = 0L; // negative number of deletions
1800     int i = 0;
1801 dl 1.210 Node<K,V>[] tab = table;
1802 dl 1.149 while (tab != null && i < tab.length) {
1803 dl 1.210 Node<K,V> f = tabAt(tab, i);
1804 dl 1.149 if (f == null)
1805     ++i;
1806     else if (f.hash < 0) {
1807     Object fk;
1808     if ((fk = f.key) instanceof TreeBin) {
1809 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1810     long stamp = t.writeLock();
1811 dl 1.149 try {
1812     if (tabAt(tab, i) == f) {
1813 dl 1.210 for (Node<K,V> p = t.first; p != null; p = p.next)
1814     --delta;
1815 dl 1.149 t.first = null;
1816     t.root = null;
1817     ++i;
1818     }
1819     } finally {
1820 dl 1.210 t.unlockWrite(stamp);
1821 dl 1.149 }
1822     }
1823     else
1824 dl 1.210 tab = (Node<K,V>[])fk;
1825 dl 1.149 }
1826     else {
1827 jsr166 1.150 synchronized (f) {
1828 dl 1.149 if (tabAt(tab, i) == f) {
1829 dl 1.210 for (Node<K,V> e = f; e != null; e = e.next)
1830     --delta;
1831 dl 1.149 setTabAt(tab, i, null);
1832     ++i;
1833     }
1834     }
1835     }
1836     }
1837     if (delta != 0L)
1838     addCount(delta, -1);
1839     }
1840    
1841 dl 1.119 /* ---------------- Table Initialization and Resizing -------------- */
1842    
1843 tim 1.1 /**
1844 dl 1.119 * Returns a power of two table size for the given desired capacity.
1845     * See Hackers Delight, sec 3.2
1846 tim 1.1 */
1847 dl 1.119 private static final int tableSizeFor(int c) {
1848     int n = c - 1;
1849     n |= n >>> 1;
1850     n |= n >>> 2;
1851     n |= n >>> 4;
1852     n |= n >>> 8;
1853     n |= n >>> 16;
1854     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1855 tim 1.1 }
1856    
1857     /**
1858 dl 1.119 * Initializes table, using the size recorded in sizeCtl.
1859     */
1860 dl 1.210 private final Node<K,V>[] initTable() {
1861     Node<K,V>[] tab; int sc;
1862 dl 1.119 while ((tab = table) == null) {
1863     if ((sc = sizeCtl) < 0)
1864     Thread.yield(); // lost initialization race; just spin
1865 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1866 dl 1.119 try {
1867     if ((tab = table) == null) {
1868     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1869 dl 1.210 table = tab = (Node<K,V>[])new Node[n];
1870 dl 1.119 sc = n - (n >>> 2);
1871     }
1872     } finally {
1873     sizeCtl = sc;
1874     }
1875     break;
1876     }
1877     }
1878     return tab;
1879 dl 1.4 }
1880    
1881     /**
1882 dl 1.149 * Adds to count, and if table is too small and not already
1883     * resizing, initiates transfer. If already resizing, helps
1884     * perform transfer if work is available. Rechecks occupancy
1885     * after a transfer to see if another resize is already needed
1886     * because resizings are lagging additions.
1887     *
1888     * @param x the count to add
1889     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1890     */
1891     private final void addCount(long x, int check) {
1892 dl 1.153 Cell[] as; long b, s;
1893 dl 1.149 if ((as = counterCells) != null ||
1894     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1895 dl 1.160 Cell a; long v; int m;
1896 dl 1.149 boolean uncontended = true;
1897 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
1898     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1899 dl 1.149 !(uncontended =
1900     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1901 dl 1.160 fullAddCount(x, uncontended);
1902 dl 1.149 return;
1903     }
1904     if (check <= 1)
1905     return;
1906     s = sumCount();
1907     }
1908     if (check >= 0) {
1909 dl 1.210 Node<K,V>[] tab, nt; int sc;
1910 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1911     tab.length < MAXIMUM_CAPACITY) {
1912     if (sc < 0) {
1913     if (sc == -1 || transferIndex <= transferOrigin ||
1914     (nt = nextTable) == null)
1915     break;
1916     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1917     transfer(tab, nt);
1918 dl 1.119 }
1919 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1920     transfer(tab, null);
1921     s = sumCount();
1922 dl 1.119 }
1923     }
1924 dl 1.4 }
1925    
1926     /**
1927 dl 1.119 * Tries to presize table to accommodate the given number of elements.
1928 tim 1.1 *
1929 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
1930 tim 1.1 */
1931 dl 1.210 private final void tryPresize(int size) {
1932 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1933     tableSizeFor(size + (size >>> 1) + 1);
1934     int sc;
1935     while ((sc = sizeCtl) >= 0) {
1936 dl 1.210 Node<K,V>[] tab = table; int n;
1937 dl 1.119 if (tab == null || (n = tab.length) == 0) {
1938     n = (sc > c) ? sc : c;
1939 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1940 dl 1.119 try {
1941     if (table == tab) {
1942 dl 1.210 table = (Node<K,V>[])new Node[n];
1943 dl 1.119 sc = n - (n >>> 2);
1944     }
1945     } finally {
1946     sizeCtl = sc;
1947     }
1948     }
1949     }
1950     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1951     break;
1952 dl 1.149 else if (tab == table &&
1953     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1954     transfer(tab, null);
1955 dl 1.119 }
1956 dl 1.4 }
1957    
1958 jsr166 1.170 /**
1959 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
1960     * above for explanation.
1961 dl 1.4 */
1962 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1963 dl 1.149 int n = tab.length, stride;
1964     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1965     stride = MIN_TRANSFER_STRIDE; // subdivide range
1966     if (nextTab == null) { // initiating
1967     try {
1968 dl 1.210 nextTab = (Node<K,V>[])new Node[n << 1];
1969 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
1970 dl 1.149 sizeCtl = Integer.MAX_VALUE;
1971     return;
1972     }
1973     nextTable = nextTab;
1974     transferOrigin = n;
1975     transferIndex = n;
1976 dl 1.210 Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
1977 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
1978 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
1979 dl 1.149 for (int m = nextk; m < k; ++m)
1980     nextTab[m] = rev;
1981     for (int m = n + nextk; m < n + k; ++m)
1982     nextTab[m] = rev;
1983     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1984     }
1985     }
1986     int nextn = nextTab.length;
1987 dl 1.210 Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
1988 dl 1.149 boolean advance = true;
1989     for (int i = 0, bound = 0;;) {
1990 dl 1.210 int nextIndex, nextBound; Node<K,V> f; Object fk;
1991 dl 1.149 while (advance) {
1992     if (--i >= bound)
1993     advance = false;
1994     else if ((nextIndex = transferIndex) <= transferOrigin) {
1995     i = -1;
1996     advance = false;
1997     }
1998     else if (U.compareAndSwapInt
1999     (this, TRANSFERINDEX, nextIndex,
2000 jsr166 1.150 nextBound = (nextIndex > stride ?
2001 dl 1.149 nextIndex - stride : 0))) {
2002     bound = nextBound;
2003     i = nextIndex - 1;
2004     advance = false;
2005     }
2006     }
2007     if (i < 0 || i >= n || i + n >= nextn) {
2008     for (int sc;;) {
2009     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2010     if (sc == -1) {
2011     nextTable = null;
2012     table = nextTab;
2013     sizeCtl = (n << 1) - (n >>> 1);
2014     }
2015     return;
2016     }
2017     }
2018     }
2019     else if ((f = tabAt(tab, i)) == null) {
2020     if (casTabAt(tab, i, null, fwd)) {
2021 dl 1.119 setTabAt(nextTab, i, null);
2022     setTabAt(nextTab, i + n, null);
2023 dl 1.149 advance = true;
2024     }
2025     }
2026     else if (f.hash >= 0) {
2027 jsr166 1.150 synchronized (f) {
2028 dl 1.149 if (tabAt(tab, i) == f) {
2029     int runBit = f.hash & n;
2030 dl 1.210 Node<K,V> lastRun = f, lo = null, hi = null;
2031     for (Node<K,V> p = f.next; p != null; p = p.next) {
2032 dl 1.149 int b = p.hash & n;
2033     if (b != runBit) {
2034     runBit = b;
2035     lastRun = p;
2036     }
2037     }
2038     if (runBit == 0)
2039     lo = lastRun;
2040     else
2041     hi = lastRun;
2042 dl 1.210 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2043     int ph = p.hash; Object pk = p.key; V pv = p.val;
2044 dl 1.149 if ((ph & n) == 0)
2045 dl 1.210 lo = new Node<K,V>(ph, pk, pv, lo);
2046 dl 1.149 else
2047 dl 1.210 hi = new Node<K,V>(ph, pk, pv, hi);
2048 dl 1.149 }
2049     setTabAt(nextTab, i, lo);
2050     setTabAt(nextTab, i + n, hi);
2051     setTabAt(tab, i, fwd);
2052     advance = true;
2053 dl 1.119 }
2054     }
2055     }
2056 dl 1.149 else if ((fk = f.key) instanceof TreeBin) {
2057 dl 1.210 TreeBin<K,V> t = (TreeBin<K,V>)fk;
2058     long stamp = t.writeLock();
2059 dl 1.149 try {
2060     if (tabAt(tab, i) == f) {
2061 dl 1.210 TreeNode<K,V> root;
2062     Node<K,V> ln = null, hn = null;
2063     if ((root = t.root) != null) {
2064     Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2065     TreeBin<K,V> lt = null, ht = null;
2066     for (lr = root; lr.left != null; lr = lr.left);
2067     for (rr = root; rr.right != null; rr = rr.right);
2068     if ((lh = lr.hash) == rr.hash) { // move entire tree
2069     if ((lh & n) == 0)
2070     lt = t;
2071     else
2072     ht = t;
2073 dl 1.149 }
2074     else {
2075 dl 1.210 lt = new TreeBin<K,V>();
2076     ht = new TreeBin<K,V>();
2077     int lc = 0, hc = 0;
2078     for (e = t.first; e != null; e = e.next) {
2079     int h = e.hash;
2080     Object k = e.key; V v = e.val;
2081     if ((h & n) == 0) {
2082     ++lc;
2083     lt.putTreeNode(h, k, v);
2084     }
2085     else {
2086     ++hc;
2087     ht.putTreeNode(h, k, v);
2088     }
2089     }
2090     if (lc < TREE_THRESHOLD) { // throw away
2091     for (p = lt.first; p != null; p = p.next)
2092     ln = new Node<K,V>(p.hash, p.key,
2093     p.val, ln);
2094     lt = null;
2095     }
2096     if (hc < TREE_THRESHOLD) {
2097     for (p = ht.first; p != null; p = p.next)
2098     hn = new Node<K,V>(p.hash, p.key,
2099     p.val, hn);
2100     ht = null;
2101     }
2102 dl 1.149 }
2103 dl 1.210 if (ln == null && lt != null)
2104     ln = new Node<K,V>(MOVED, lt, null, null);
2105     if (hn == null && ht != null)
2106     hn = new Node<K,V>(MOVED, ht, null, null);
2107 dl 1.149 }
2108     setTabAt(nextTab, i, ln);
2109     setTabAt(nextTab, i + n, hn);
2110 dl 1.119 setTabAt(tab, i, fwd);
2111 dl 1.149 advance = true;
2112 dl 1.119 }
2113     } finally {
2114 dl 1.210 t.unlockWrite(stamp);
2115 dl 1.119 }
2116     }
2117     else
2118 dl 1.149 advance = true; // already processed
2119 dl 1.119 }
2120 dl 1.4 }
2121 tim 1.1
2122 dl 1.149 /* ---------------- Counter support -------------- */
2123    
2124     final long sumCount() {
2125 dl 1.153 Cell[] as = counterCells; Cell a;
2126 dl 1.149 long sum = baseCount;
2127     if (as != null) {
2128     for (int i = 0; i < as.length; ++i) {
2129     if ((a = as[i]) != null)
2130     sum += a.value;
2131 dl 1.119 }
2132     }
2133 dl 1.149 return sum;
2134 dl 1.119 }
2135    
2136 dl 1.149 // See LongAdder version for explanation
2137 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2138 dl 1.149 int h;
2139 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2140     ThreadLocalRandom.localInit(); // force initialization
2141     h = ThreadLocalRandom.getProbe();
2142     wasUncontended = true;
2143 dl 1.119 }
2144 dl 1.149 boolean collide = false; // True if last slot nonempty
2145     for (;;) {
2146 dl 1.153 Cell[] as; Cell a; int n; long v;
2147 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2148     if ((a = as[(n - 1) & h]) == null) {
2149 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2150     Cell r = new Cell(x); // Optimistic create
2151     if (cellsBusy == 0 &&
2152     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2153 dl 1.149 boolean created = false;
2154     try { // Recheck under lock
2155 dl 1.153 Cell[] rs; int m, j;
2156 dl 1.149 if ((rs = counterCells) != null &&
2157     (m = rs.length) > 0 &&
2158     rs[j = (m - 1) & h] == null) {
2159     rs[j] = r;
2160     created = true;
2161 dl 1.128 }
2162 dl 1.149 } finally {
2163 dl 1.153 cellsBusy = 0;
2164 dl 1.119 }
2165 dl 1.149 if (created)
2166     break;
2167     continue; // Slot is now non-empty
2168     }
2169     }
2170     collide = false;
2171     }
2172     else if (!wasUncontended) // CAS already known to fail
2173     wasUncontended = true; // Continue after rehash
2174     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2175     break;
2176     else if (counterCells != as || n >= NCPU)
2177     collide = false; // At max size or stale
2178     else if (!collide)
2179     collide = true;
2180 dl 1.153 else if (cellsBusy == 0 &&
2181     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2182 dl 1.149 try {
2183     if (counterCells == as) {// Expand table unless stale
2184 dl 1.153 Cell[] rs = new Cell[n << 1];
2185 dl 1.149 for (int i = 0; i < n; ++i)
2186     rs[i] = as[i];
2187     counterCells = rs;
2188 dl 1.119 }
2189     } finally {
2190 dl 1.153 cellsBusy = 0;
2191 dl 1.119 }
2192 dl 1.149 collide = false;
2193     continue; // Retry with expanded table
2194 dl 1.119 }
2195 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2196 dl 1.149 }
2197 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2198     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2199 dl 1.149 boolean init = false;
2200     try { // Initialize table
2201     if (counterCells == as) {
2202 dl 1.153 Cell[] rs = new Cell[2];
2203     rs[h & 1] = new Cell(x);
2204 dl 1.149 counterCells = rs;
2205     init = true;
2206 dl 1.119 }
2207     } finally {
2208 dl 1.153 cellsBusy = 0;
2209 dl 1.119 }
2210 dl 1.149 if (init)
2211     break;
2212 dl 1.119 }
2213 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2214     break; // Fall back on using base
2215 dl 1.119 }
2216     }
2217    
2218     /* ----------------Table Traversal -------------- */
2219    
2220     /**
2221     * Encapsulates traversal for methods such as containsValue; also
2222 dl 1.210 * serves as a base class for other iterators and spliterators.
2223 dl 1.119 *
2224 dl 1.192 * Method advance visits once each still-valid node that was
2225 dl 1.119 * reachable upon iterator construction. It might miss some that
2226     * were added to a bin after the bin was visited, which is OK wrt
2227     * consistency guarantees. Maintaining this property in the face
2228     * of possible ongoing resizes requires a fair amount of
2229     * bookkeeping state that is difficult to optimize away amidst
2230     * volatile accesses. Even so, traversal maintains reasonable
2231     * throughput.
2232     *
2233     * Normally, iteration proceeds bin-by-bin traversing lists.
2234     * However, if the table has been resized, then all future steps
2235     * must traverse both the bin at the current index as well as at
2236     * (index + baseSize); and so on for further resizings. To
2237     * paranoically cope with potential sharing by users of iterators
2238     * across threads, iteration terminates if a bounds checks fails
2239     * for a table read.
2240     */
2241 dl 1.210 static class Traverser<K,V> {
2242     Node<K,V>[] tab; // current table; updated if resized
2243     Node<K,V> next; // the next entry to use
2244     int index; // index of bin to use next
2245     int baseIndex; // current index of initial table
2246     int baseLimit; // index bound for initial table
2247     final int baseSize; // initial table size
2248    
2249     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2250     this.tab = tab;
2251     this.baseSize = size;
2252     this.baseIndex = this.index = index;
2253     this.baseLimit = limit;
2254     this.next = null;
2255     }
2256    
2257     /**
2258     * Advances if possible, returning next valid node, or null if none.
2259     */
2260     final Node<K,V> advance() {
2261     Node<K,V> e;
2262     if ((e = next) != null)
2263     e = e.next;
2264     for (;;) {
2265     Node<K,V>[] t; int i, n; Object ek; // must use locals in checks
2266     if (e != null)
2267     return next = e;
2268     if (baseIndex >= baseLimit || (t = tab) == null ||
2269     (n = t.length) <= (i = index) || i < 0)
2270     return next = null;
2271     if ((e = tabAt(t, index)) != null && e.hash < 0) {
2272     if ((ek = e.key) instanceof TreeBin)
2273     e = ((TreeBin<K,V>)ek).first;
2274     else {
2275     tab = (Node<K,V>[])ek;
2276     e = null;
2277     continue;
2278     }
2279     }
2280     if ((index += baseSize) >= n)
2281     index = ++baseIndex; // visit upper slots if present
2282     }
2283     }
2284     }
2285    
2286     /**
2287     * Base of key, value, and entry Iterators. Adds fields to
2288     * Traverser to support iterator.remove
2289     */
2290     static class BaseIterator<K,V> extends Traverser<K,V> {
2291 jsr166 1.186 final ConcurrentHashMap<K,V> map;
2292 dl 1.210 Node<K,V> lastReturned;
2293     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2294     ConcurrentHashMap<K,V> map) {
2295     super(tab, size, index, limit);
2296     this.map = map;
2297     advance();
2298     }
2299    
2300     public final boolean hasNext() { return next != null; }
2301     public final boolean hasMoreElements() { return next != null; }
2302    
2303     public final void remove() {
2304     Node<K,V> p;
2305     if ((p = lastReturned) == null)
2306     throw new IllegalStateException();
2307     lastReturned = null;
2308     map.internalReplace((K)p.key, null, null);
2309     }
2310     }
2311    
2312     static final class KeyIterator<K,V> extends BaseIterator<K,V>
2313     implements Iterator<K>, Enumeration<K> {
2314     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2315     ConcurrentHashMap<K,V> map) {
2316     super(tab, index, size, limit, map);
2317     }
2318    
2319     public final K next() {
2320     Node<K,V> p;
2321     if ((p = next) == null)
2322     throw new NoSuchElementException();
2323     K k = (K)p.key;
2324     lastReturned = p;
2325     advance();
2326     return k;
2327     }
2328    
2329     public final K nextElement() { return next(); }
2330     }
2331 dl 1.192
2332 dl 1.210 static final class ValueIterator<K,V> extends BaseIterator<K,V>
2333     implements Iterator<V>, Enumeration<V> {
2334     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2335     ConcurrentHashMap<K,V> map) {
2336     super(tab, index, size, limit, map);
2337 dl 1.119 }
2338    
2339 dl 1.210 public final V next() {
2340     Node<K,V> p;
2341     if ((p = next) == null)
2342     throw new NoSuchElementException();
2343     V v = p.val;
2344     lastReturned = p;
2345     advance();
2346     return v;
2347 dl 1.119 }
2348    
2349 dl 1.210 public final V nextElement() { return next(); }
2350     }
2351    
2352     static final class EntryIterator<K,V> extends BaseIterator<K,V>
2353     implements Iterator<Map.Entry<K,V>> {
2354     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2355     ConcurrentHashMap<K,V> map) {
2356     super(tab, index, size, limit, map);
2357 dl 1.153 }
2358    
2359 dl 1.210 public final Map.Entry<K,V> next() {
2360     Node<K,V> p;
2361     if ((p = next) == null)
2362     throw new NoSuchElementException();
2363     K k = (K)p.key;
2364     V v = p.val;
2365     lastReturned = p;
2366     advance();
2367     return new MapEntry<K,V>(k, v, map);
2368 dl 1.191 }
2369 dl 1.210 }
2370 dl 1.191
2371 dl 1.210 static final class KeySpliterator<K,V> extends Traverser<K,V>
2372     implements Spliterator<K> {
2373     long est; // size estimate
2374     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2375     long est) {
2376     super(tab, size, index, limit);
2377     this.est = est;
2378 dl 1.192 }
2379    
2380 dl 1.210 public Spliterator<K> trySplit() {
2381     int i, f, h;
2382     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2383     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
2384     f, est >>>= 1);
2385 dl 1.192 }
2386    
2387 dl 1.210 public void forEachRemaining(Consumer<? super K> action) {
2388 dl 1.192 if (action == null) throw new NullPointerException();
2389 dl 1.210 for (Node<K,V> p; (p = advance()) != null;)
2390     action.accept((K)p.key);
2391 dl 1.192 }
2392    
2393 dl 1.210 public boolean tryAdvance(Consumer<? super K> action) {
2394 dl 1.192 if (action == null) throw new NullPointerException();
2395 dl 1.210 Node<K,V> p;
2396     if ((p = advance()) == null)
2397     return false;
2398     action.accept((K)p.key);
2399     return true;
2400     }
2401    
2402     public long estimateSize() { return est; }
2403    
2404     public int characteristics() {
2405     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2406     Spliterator.NONNULL;
2407 dl 1.119 }
2408 dl 1.210 }
2409 dl 1.119
2410 dl 1.210 static final class ValueSpliterator<K,V> extends Traverser<K,V>
2411     implements Spliterator<V> {
2412     long est; // size estimate
2413     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
2414     long est) {
2415     super(tab, size, index, limit);
2416     this.est = est;
2417 dl 1.119 }
2418    
2419 dl 1.210 public Spliterator<V> trySplit() {
2420     int i, f, h;
2421     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2422     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
2423     f, est >>>= 1);
2424 dl 1.119 }
2425    
2426 dl 1.210 public void forEachRemaining(Consumer<? super V> action) {
2427     if (action == null) throw new NullPointerException();
2428     for (Node<K,V> p; (p = advance()) != null;)
2429     action.accept(p.val);
2430     }
2431 dl 1.146
2432 dl 1.210 public boolean tryAdvance(Consumer<? super V> action) {
2433     if (action == null) throw new NullPointerException();
2434     Node<K,V> p;
2435     if ((p = advance()) == null)
2436     return false;
2437     action.accept(p.val);
2438     return true;
2439     }
2440 dl 1.146
2441 dl 1.210 public long estimateSize() { return est; }
2442 dl 1.192
2443 dl 1.210 public int characteristics() {
2444     return Spliterator.CONCURRENT | Spliterator.NONNULL;
2445 dl 1.146 }
2446 dl 1.119 }
2447    
2448 dl 1.210 static final class EntrySpliterator<K,V> extends Traverser<K,V>
2449     implements Spliterator<Map.Entry<K,V>> {
2450     final ConcurrentHashMap<K,V> map; // To export MapEntry
2451     long est; // size estimate
2452     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2453     long est, ConcurrentHashMap<K,V> map) {
2454     super(tab, size, index, limit);
2455     this.map = map;
2456     this.est = est;
2457     }
2458    
2459     public Spliterator<Map.Entry<K,V>> trySplit() {
2460     int i, f, h;
2461     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2462     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
2463     f, est >>>= 1, map);
2464     }
2465    
2466     public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
2467     if (action == null) throw new NullPointerException();
2468     for (Node<K,V> p; (p = advance()) != null; )
2469     action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2470     }
2471    
2472     public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
2473     if (action == null) throw new NullPointerException();
2474     Node<K,V> p;
2475     if ((p = advance()) == null)
2476     return false;
2477     action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2478     return true;
2479     }
2480    
2481     public long estimateSize() { return est; }
2482    
2483     public int characteristics() {
2484     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2485     Spliterator.NONNULL;
2486     }
2487     }
2488    
2489    
2490 dl 1.119 /* ---------------- Public operations -------------- */
2491    
2492     /**
2493     * Creates a new, empty map with the default initial table size (16).
2494     */
2495     public ConcurrentHashMap() {
2496     }
2497    
2498     /**
2499     * Creates a new, empty map with an initial table size
2500     * accommodating the specified number of elements without the need
2501     * to dynamically resize.
2502     *
2503     * @param initialCapacity The implementation performs internal
2504     * sizing to accommodate this many elements.
2505     * @throws IllegalArgumentException if the initial capacity of
2506     * elements is negative
2507     */
2508     public ConcurrentHashMap(int initialCapacity) {
2509     if (initialCapacity < 0)
2510     throw new IllegalArgumentException();
2511     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2512     MAXIMUM_CAPACITY :
2513     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2514     this.sizeCtl = cap;
2515     }
2516    
2517     /**
2518     * Creates a new map with the same mappings as the given map.
2519     *
2520     * @param m the map
2521     */
2522     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2523     this.sizeCtl = DEFAULT_CAPACITY;
2524     internalPutAll(m);
2525     }
2526    
2527     /**
2528     * Creates a new, empty map with an initial table size based on
2529     * the given number of elements ({@code initialCapacity}) and
2530     * initial table density ({@code loadFactor}).
2531     *
2532     * @param initialCapacity the initial capacity. The implementation
2533     * performs internal sizing to accommodate this many elements,
2534     * given the specified load factor.
2535     * @param loadFactor the load factor (table density) for
2536     * establishing the initial table size
2537     * @throws IllegalArgumentException if the initial capacity of
2538     * elements is negative or the load factor is nonpositive
2539     *
2540     * @since 1.6
2541     */
2542     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2543     this(initialCapacity, loadFactor, 1);
2544     }
2545    
2546     /**
2547     * Creates a new, empty map with an initial table size based on
2548     * the given number of elements ({@code initialCapacity}), table
2549     * density ({@code loadFactor}), and number of concurrently
2550     * updating threads ({@code concurrencyLevel}).
2551     *
2552     * @param initialCapacity the initial capacity. The implementation
2553     * performs internal sizing to accommodate this many elements,
2554     * given the specified load factor.
2555     * @param loadFactor the load factor (table density) for
2556     * establishing the initial table size
2557     * @param concurrencyLevel the estimated number of concurrently
2558     * updating threads. The implementation may use this value as
2559     * a sizing hint.
2560     * @throws IllegalArgumentException if the initial capacity is
2561     * negative or the load factor or concurrencyLevel are
2562     * nonpositive
2563     */
2564     public ConcurrentHashMap(int initialCapacity,
2565 dl 1.210 float loadFactor, int concurrencyLevel) {
2566 dl 1.119 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2567     throw new IllegalArgumentException();
2568     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2569     initialCapacity = concurrencyLevel; // as estimated threads
2570     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2571     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2572     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2573     this.sizeCtl = cap;
2574     }
2575    
2576     /**
2577 dl 1.137 * Creates a new {@link Set} backed by a ConcurrentHashMap
2578     * from the given type to {@code Boolean.TRUE}.
2579     *
2580     * @return the new set
2581 jsr166 1.220 * @since 1.8
2582 dl 1.137 */
2583     public static <K> KeySetView<K,Boolean> newKeySet() {
2584 jsr166 1.184 return new KeySetView<K,Boolean>
2585     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2586 dl 1.137 }
2587    
2588     /**
2589     * Creates a new {@link Set} backed by a ConcurrentHashMap
2590     * from the given type to {@code Boolean.TRUE}.
2591     *
2592     * @param initialCapacity The implementation performs internal
2593     * sizing to accommodate this many elements.
2594     * @throws IllegalArgumentException if the initial capacity of
2595     * elements is negative
2596     * @return the new set
2597 jsr166 1.220 * @since 1.8
2598 dl 1.137 */
2599     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2600 dl 1.149 return new KeySetView<K,Boolean>
2601     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2602 dl 1.137 }
2603    
2604     /**
2605 dl 1.119 * {@inheritDoc}
2606     */
2607     public boolean isEmpty() {
2608 dl 1.149 return sumCount() <= 0L; // ignore transient negative values
2609 dl 1.119 }
2610    
2611     /**
2612     * {@inheritDoc}
2613     */
2614     public int size() {
2615 dl 1.149 long n = sumCount();
2616 dl 1.119 return ((n < 0L) ? 0 :
2617     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2618     (int)n);
2619     }
2620    
2621     /**
2622     * Returns the number of mappings. This method should be used
2623     * instead of {@link #size} because a ConcurrentHashMap may
2624     * contain more mappings than can be represented as an int. The
2625 dl 1.146 * value returned is an estimate; the actual count may differ if
2626     * there are concurrent insertions or removals.
2627 dl 1.119 *
2628     * @return the number of mappings
2629 jsr166 1.220 * @since 1.8
2630 dl 1.119 */
2631     public long mappingCount() {
2632 dl 1.149 long n = sumCount();
2633 dl 1.126 return (n < 0L) ? 0L : n; // ignore transient negative values
2634 dl 1.119 }
2635    
2636     /**
2637     * Returns the value to which the specified key is mapped,
2638     * or {@code null} if this map contains no mapping for the key.
2639     *
2640     * <p>More formally, if this map contains a mapping from a key
2641     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2642     * then this method returns {@code v}; otherwise it returns
2643     * {@code null}. (There can be at most one such mapping.)
2644     *
2645     * @throws NullPointerException if the specified key is null
2646     */
2647 dl 1.149 public V get(Object key) {
2648     return internalGet(key);
2649 dl 1.119 }
2650    
2651     /**
2652 dl 1.217 * Returns the value to which the specified key is mapped, or the
2653     * given default value if this map contains no mapping for the
2654     * key.
2655 dl 1.129 *
2656 jsr166 1.218 * @param key the key whose associated value is to be returned
2657 dl 1.129 * @param defaultValue the value to return if this map contains
2658 jsr166 1.134 * no mapping for the given key
2659 dl 1.217 * @return the mapping for the key, if present; else the default value
2660 dl 1.129 * @throws NullPointerException if the specified key is null
2661     */
2662 dl 1.195 public V getOrDefault(Object key, V defaultValue) {
2663 dl 1.149 V v;
2664     return (v = internalGet(key)) == null ? defaultValue : v;
2665 dl 1.129 }
2666    
2667     /**
2668 dl 1.119 * Tests if the specified object is a key in this table.
2669     *
2670 jsr166 1.190 * @param key possible key
2671 dl 1.119 * @return {@code true} if and only if the specified object
2672     * is a key in this table, as determined by the
2673     * {@code equals} method; {@code false} otherwise
2674     * @throws NullPointerException if the specified key is null
2675     */
2676     public boolean containsKey(Object key) {
2677     return internalGet(key) != null;
2678     }
2679    
2680     /**
2681     * Returns {@code true} if this map maps one or more keys to the
2682     * specified value. Note: This method may require a full traversal
2683     * of the map, and is much slower than method {@code containsKey}.
2684     *
2685     * @param value value whose presence in this map is to be tested
2686     * @return {@code true} if this map maps one or more keys to the
2687     * specified value
2688     * @throws NullPointerException if the specified value is null
2689     */
2690     public boolean containsValue(Object value) {
2691     if (value == null)
2692     throw new NullPointerException();
2693 dl 1.210 Node<K,V>[] t;
2694     if ((t = table) != null) {
2695     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2696     for (Node<K,V> p; (p = it.advance()) != null; ) {
2697     V v;
2698     if ((v = p.val) == value || value.equals(v))
2699     return true;
2700     }
2701 dl 1.119 }
2702     return false;
2703     }
2704    
2705     /**
2706     * Legacy method testing if some key maps into the specified value
2707     * in this table. This method is identical in functionality to
2708 jsr166 1.176 * {@link #containsValue(Object)}, and exists solely to ensure
2709 dl 1.119 * full compatibility with class {@link java.util.Hashtable},
2710     * which supported this method prior to introduction of the
2711     * Java Collections framework.
2712     *
2713     * @param value a value to search for
2714     * @return {@code true} if and only if some key maps to the
2715     * {@code value} argument in this table as
2716     * determined by the {@code equals} method;
2717     * {@code false} otherwise
2718     * @throws NullPointerException if the specified value is null
2719     */
2720 dl 1.151 @Deprecated public boolean contains(Object value) {
2721 dl 1.119 return containsValue(value);
2722     }
2723    
2724     /**
2725     * Maps the specified key to the specified value in this table.
2726     * Neither the key nor the value can be null.
2727     *
2728 jsr166 1.145 * <p>The value can be retrieved by calling the {@code get} method
2729 dl 1.119 * with a key that is equal to the original key.
2730     *
2731     * @param key key with which the specified value is to be associated
2732     * @param value value to be associated with the specified key
2733     * @return the previous value associated with {@code key}, or
2734     * {@code null} if there was no mapping for {@code key}
2735     * @throws NullPointerException if the specified key or value is null
2736     */
2737 dl 1.149 public V put(K key, V value) {
2738     return internalPut(key, value, false);
2739 dl 1.119 }
2740    
2741     /**
2742     * {@inheritDoc}
2743     *
2744     * @return the previous value associated with the specified key,
2745     * or {@code null} if there was no mapping for the key
2746     * @throws NullPointerException if the specified key or value is null
2747     */
2748 dl 1.149 public V putIfAbsent(K key, V value) {
2749     return internalPut(key, value, true);
2750 dl 1.119 }
2751    
2752     /**
2753     * Copies all of the mappings from the specified map to this one.
2754     * These mappings replace any mappings that this map had for any of the
2755     * keys currently in the specified map.
2756     *
2757     * @param m mappings to be stored in this map
2758     */
2759     public void putAll(Map<? extends K, ? extends V> m) {
2760     internalPutAll(m);
2761     }
2762    
2763     /**
2764 jsr166 1.216 * If the specified key is not already associated with a value,
2765     * attempts to compute its value using the given mapping function
2766     * and enters it into this map unless {@code null}. The entire
2767     * method invocation is performed atomically, so the function is
2768     * applied at most once per key. Some attempted update operations
2769     * on this map by other threads may be blocked while computation
2770     * is in progress, so the computation should be short and simple,
2771     * and must not attempt to update any other mappings of this map.
2772 dl 1.119 *
2773     * @param key key with which the specified value is to be associated
2774     * @param mappingFunction the function to compute a value
2775     * @return the current (existing or computed) value associated with
2776 jsr166 1.134 * the specified key, or null if the computed value is null
2777 dl 1.119 * @throws NullPointerException if the specified key or mappingFunction
2778     * is null
2779     * @throws IllegalStateException if the computation detectably
2780     * attempts a recursive update to this map that would
2781     * otherwise never complete
2782     * @throws RuntimeException or Error if the mappingFunction does so,
2783     * in which case the mapping is left unestablished
2784     */
2785 dl 1.210 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2786 dl 1.149 return internalComputeIfAbsent(key, mappingFunction);
2787 dl 1.119 }
2788    
2789     /**
2790 jsr166 1.216 * If the value for the specified key is present, attempts to
2791     * compute a new mapping given the key and its current mapped
2792     * value. The entire method invocation is performed atomically.
2793     * Some attempted update operations on this map by other threads
2794     * may be blocked while computation is in progress, so the
2795     * computation should be short and simple, and must not attempt to
2796     * update any other mappings of this map.
2797 dl 1.119 *
2798 dl 1.197 * @param key key with which a value may be associated
2799 dl 1.119 * @param remappingFunction the function to compute a value
2800 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2801 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2802     * is null
2803     * @throws IllegalStateException if the computation detectably
2804     * attempts a recursive update to this map that would
2805     * otherwise never complete
2806     * @throws RuntimeException or Error if the remappingFunction does so,
2807     * in which case the mapping is unchanged
2808     */
2809 dl 1.210 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2810 dl 1.149 return internalCompute(key, true, remappingFunction);
2811 dl 1.119 }
2812    
2813     /**
2814 dl 1.153 * Attempts to compute a mapping for the specified key and its
2815     * current mapped value (or {@code null} if there is no current
2816     * mapping). The entire method invocation is performed atomically.
2817     * Some attempted update operations on this map by other threads
2818     * may be blocked while computation is in progress, so the
2819     * computation should be short and simple, and must not attempt to
2820     * update any other mappings of this Map.
2821 dl 1.119 *
2822     * @param key key with which the specified value is to be associated
2823     * @param remappingFunction the function to compute a value
2824 jsr166 1.123 * @return the new value associated with the specified key, or null if none
2825 dl 1.119 * @throws NullPointerException if the specified key or remappingFunction
2826     * is null
2827     * @throws IllegalStateException if the computation detectably
2828     * attempts a recursive update to this map that would
2829     * otherwise never complete
2830     * @throws RuntimeException or Error if the remappingFunction does so,
2831     * in which case the mapping is unchanged
2832     */
2833 dl 1.210 public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2834 dl 1.149 return internalCompute(key, false, remappingFunction);
2835 dl 1.119 }
2836    
2837     /**
2838 dl 1.153 * If the specified key is not already associated with a
2839     * (non-null) value, associates it with the given value.
2840     * Otherwise, replaces the value with the results of the given
2841     * remapping function, or removes if {@code null}. The entire
2842     * method invocation is performed atomically. Some attempted
2843     * update operations on this map by other threads may be blocked
2844     * while computation is in progress, so the computation should be
2845     * short and simple, and must not attempt to update any other
2846     * mappings of this Map.
2847     *
2848     * @param key key with which the specified value is to be associated
2849     * @param value the value to use if absent
2850     * @param remappingFunction the function to recompute a value if present
2851     * @return the new value associated with the specified key, or null if none
2852     * @throws NullPointerException if the specified key or the
2853     * remappingFunction is null
2854     * @throws RuntimeException or Error if the remappingFunction does so,
2855     * in which case the mapping is unchanged
2856 dl 1.119 */
2857 dl 1.210 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2858 dl 1.149 return internalMerge(key, value, remappingFunction);
2859 dl 1.119 }
2860    
2861     /**
2862     * Removes the key (and its corresponding value) from this map.
2863     * This method does nothing if the key is not in the map.
2864     *
2865     * @param key the key that needs to be removed
2866     * @return the previous value associated with {@code key}, or
2867     * {@code null} if there was no mapping for {@code key}
2868     * @throws NullPointerException if the specified key is null
2869     */
2870 dl 1.149 public V remove(Object key) {
2871     return internalReplace(key, null, null);
2872 dl 1.119 }
2873    
2874     /**
2875     * {@inheritDoc}
2876     *
2877     * @throws NullPointerException if the specified key is null
2878     */
2879     public boolean remove(Object key, Object value) {
2880 dl 1.163 if (key == null)
2881     throw new NullPointerException();
2882 dl 1.149 return value != null && internalReplace(key, null, value) != null;
2883 tim 1.1 }
2884 dl 1.31
2885     /**
2886 jsr166 1.68 * {@inheritDoc}
2887     *
2888     * @throws NullPointerException if any of the arguments are null
2889 dl 1.31 */
2890     public boolean replace(K key, V oldValue, V newValue) {
2891 dl 1.119 if (key == null || oldValue == null || newValue == null)
2892 dl 1.31 throw new NullPointerException();
2893 dl 1.119 return internalReplace(key, newValue, oldValue) != null;
2894 dl 1.32 }
2895    
2896     /**
2897 jsr166 1.68 * {@inheritDoc}
2898     *
2899     * @return the previous value associated with the specified key,
2900 dl 1.119 * or {@code null} if there was no mapping for the key
2901 jsr166 1.68 * @throws NullPointerException if the specified key or value is null
2902 dl 1.32 */
2903 dl 1.149 public V replace(K key, V value) {
2904 dl 1.119 if (key == null || value == null)
2905 dl 1.32 throw new NullPointerException();
2906 dl 1.149 return internalReplace(key, value, null);
2907 dl 1.31 }
2908    
2909 tim 1.1 /**
2910 jsr166 1.68 * Removes all of the mappings from this map.
2911 tim 1.1 */
2912     public void clear() {
2913 dl 1.119 internalClear();
2914 tim 1.1 }
2915    
2916     /**
2917 jsr166 1.68 * Returns a {@link Set} view of the keys contained in this map.
2918     * The set is backed by the map, so changes to the map are
2919 dl 1.210 * reflected in the set, and vice-versa. The set supports element
2920     * removal, which removes the corresponding mapping from this map,
2921 jsr166 1.212 * via the {@code Iterator.remove}, {@code Set.remove},
2922     * {@code removeAll}, {@code retainAll}, and {@code clear}
2923     * operations. It does not support the {@code add} or
2924     * {@code addAll} operations.
2925 dl 1.210 *
2926 jsr166 1.212 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2927 dl 1.210 * that will never throw {@link ConcurrentModificationException},
2928     * and guarantees to traverse elements as they existed upon
2929     * construction of the iterator, and may (but is not guaranteed to)
2930     * reflect any modifications subsequent to construction.
2931 dl 1.137 *
2932     * @return the set view
2933     */
2934     public KeySetView<K,V> keySet() {
2935     KeySetView<K,V> ks = keySet;
2936     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2937     }
2938    
2939     /**
2940     * Returns a {@link Set} view of the keys in this map, using the
2941     * given common mapped value for any additions (i.e., {@link
2942 jsr166 1.174 * Collection#add} and {@link Collection#addAll(Collection)}).
2943     * This is of course only appropriate if it is acceptable to use
2944     * the same value for all additions from this view.
2945 jsr166 1.68 *
2946 jsr166 1.172 * @param mappedValue the mapped value to use for any additions
2947 dl 1.137 * @return the set view
2948     * @throws NullPointerException if the mappedValue is null
2949 tim 1.1 */
2950 dl 1.137 public KeySetView<K,V> keySet(V mappedValue) {
2951     if (mappedValue == null)
2952     throw new NullPointerException();
2953     return new KeySetView<K,V>(this, mappedValue);
2954 tim 1.1 }
2955    
2956     /**
2957 jsr166 1.68 * Returns a {@link Collection} view of the values contained in this map.
2958     * The collection is backed by the map, so changes to the map are
2959 dl 1.210 * reflected in the collection, and vice-versa. The collection
2960     * supports element removal, which removes the corresponding
2961 jsr166 1.212 * mapping from this map, via the {@code Iterator.remove},
2962     * {@code Collection.remove}, {@code removeAll},
2963     * {@code retainAll}, and {@code clear} operations. It does not
2964     * support the {@code add} or {@code addAll} operations.
2965 dl 1.210 *
2966 jsr166 1.212 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2967 dl 1.210 * that will never throw {@link ConcurrentModificationException},
2968     * and guarantees to traverse elements as they existed upon
2969     * construction of the iterator, and may (but is not guaranteed to)
2970     * reflect any modifications subsequent to construction.
2971 jsr166 1.184 *
2972     * @return the collection view
2973 tim 1.1 */
2974 dl 1.210 public Collection<V> values() {
2975 dl 1.142 ValuesView<K,V> vs = values;
2976     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2977 dl 1.119 }
2978    
2979     /**
2980     * Returns a {@link Set} view of the mappings contained in this map.
2981     * The set is backed by the map, so changes to the map are
2982     * reflected in the set, and vice-versa. The set supports element
2983     * removal, which removes the corresponding mapping from the map,
2984     * via the {@code Iterator.remove}, {@code Set.remove},
2985     * {@code removeAll}, {@code retainAll}, and {@code clear}
2986 dl 1.210 * operations.
2987 dl 1.119 *
2988     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2989     * that will never throw {@link ConcurrentModificationException},
2990     * and guarantees to traverse elements as they existed upon
2991     * construction of the iterator, and may (but is not guaranteed to)
2992     * reflect any modifications subsequent to construction.
2993 jsr166 1.184 *
2994     * @return the set view
2995 dl 1.119 */
2996     public Set<Map.Entry<K,V>> entrySet() {
2997 dl 1.142 EntrySetView<K,V> es = entrySet;
2998     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2999 dl 1.119 }
3000    
3001     /**
3002     * Returns an enumeration of the keys in this table.
3003     *
3004     * @return an enumeration of the keys in this table
3005     * @see #keySet()
3006     */
3007     public Enumeration<K> keys() {
3008 dl 1.210 Node<K,V>[] t;
3009     int f = (t = table) == null ? 0 : t.length;
3010     return new KeyIterator<K,V>(t, f, 0, f, this);
3011 dl 1.119 }
3012    
3013     /**
3014     * Returns an enumeration of the values in this table.
3015     *
3016     * @return an enumeration of the values in this table
3017     * @see #values()
3018     */
3019     public Enumeration<V> elements() {
3020 dl 1.210 Node<K,V>[] t;
3021     int f = (t = table) == null ? 0 : t.length;
3022     return new ValueIterator<K,V>(t, f, 0, f, this);
3023 dl 1.119 }
3024    
3025     /**
3026     * Returns the hash code value for this {@link Map}, i.e.,
3027     * the sum of, for each key-value pair in the map,
3028     * {@code key.hashCode() ^ value.hashCode()}.
3029     *
3030     * @return the hash code value for this map
3031     */
3032     public int hashCode() {
3033     int h = 0;
3034 dl 1.210 Node<K,V>[] t;
3035     if ((t = table) != null) {
3036     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3037     for (Node<K,V> p; (p = it.advance()) != null; )
3038     h += p.key.hashCode() ^ p.val.hashCode();
3039 dl 1.119 }
3040     return h;
3041     }
3042    
3043     /**
3044     * Returns a string representation of this map. The string
3045     * representation consists of a list of key-value mappings (in no
3046     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3047     * mappings are separated by the characters {@code ", "} (comma
3048     * and space). Each key-value mapping is rendered as the key
3049     * followed by an equals sign ("{@code =}") followed by the
3050     * associated value.
3051     *
3052     * @return a string representation of this map
3053     */
3054     public String toString() {
3055 dl 1.210 Node<K,V>[] t;
3056     int f = (t = table) == null ? 0 : t.length;
3057     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3058 dl 1.119 StringBuilder sb = new StringBuilder();
3059     sb.append('{');
3060 dl 1.210 Node<K,V> p;
3061     if ((p = it.advance()) != null) {
3062 dl 1.119 for (;;) {
3063 dl 1.210 K k = (K)p.key;
3064     V v = p.val;
3065 dl 1.119 sb.append(k == this ? "(this Map)" : k);
3066     sb.append('=');
3067     sb.append(v == this ? "(this Map)" : v);
3068 dl 1.210 if ((p = it.advance()) == null)
3069 dl 1.119 break;
3070     sb.append(',').append(' ');
3071     }
3072     }
3073     return sb.append('}').toString();
3074     }
3075    
3076     /**
3077     * Compares the specified object with this map for equality.
3078     * Returns {@code true} if the given object is a map with the same
3079     * mappings as this map. This operation may return misleading
3080     * results if either map is concurrently modified during execution
3081     * of this method.
3082     *
3083     * @param o object to be compared for equality with this map
3084     * @return {@code true} if the specified object is equal to this map
3085     */
3086     public boolean equals(Object o) {
3087     if (o != this) {
3088     if (!(o instanceof Map))
3089     return false;
3090     Map<?,?> m = (Map<?,?>) o;
3091 dl 1.210 Node<K,V>[] t;
3092     int f = (t = table) == null ? 0 : t.length;
3093     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3094     for (Node<K,V> p; (p = it.advance()) != null; ) {
3095     V val = p.val;
3096     Object v = m.get(p.key);
3097 dl 1.119 if (v == null || (v != val && !v.equals(val)))
3098     return false;
3099     }
3100     for (Map.Entry<?,?> e : m.entrySet()) {
3101     Object mk, mv, v;
3102     if ((mk = e.getKey()) == null ||
3103     (mv = e.getValue()) == null ||
3104     (v = internalGet(mk)) == null ||
3105     (mv != v && !mv.equals(v)))
3106     return false;
3107     }
3108     }
3109     return true;
3110     }
3111    
3112 dl 1.142 /* ---------------- Serialization Support -------------- */
3113 dl 1.119
3114     /**
3115 dl 1.142 * Stripped-down version of helper class used in previous version,
3116     * declared for the sake of serialization compatibility
3117 dl 1.119 */
3118 dl 1.208 static class Segment<K,V> extends ReentrantLock implements Serializable {
3119 dl 1.142 private static final long serialVersionUID = 2249069246763182397L;
3120     final float loadFactor;
3121     Segment(float lf) { this.loadFactor = lf; }
3122     }
3123 dl 1.119
3124 dl 1.142 /**
3125     * Saves the state of the {@code ConcurrentHashMap} instance to a
3126     * stream (i.e., serializes it).
3127     * @param s the stream
3128     * @serialData
3129     * the key (Object) and value (Object)
3130     * for each key-value mapping, followed by a null pair.
3131     * The key-value mappings are emitted in no particular order.
3132     */
3133 dl 1.210 private void writeObject(java.io.ObjectOutputStream s)
3134 dl 1.142 throws java.io.IOException {
3135 dl 1.208 // For serialization compatibility
3136 dl 1.209 // Emulate segment calculation from previous version of this class
3137     int sshift = 0;
3138     int ssize = 1;
3139     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3140     ++sshift;
3141     ssize <<= 1;
3142     }
3143     int segmentShift = 32 - sshift;
3144     int segmentMask = ssize - 1;
3145 dl 1.208 Segment<K,V>[] segments = (Segment<K,V>[])
3146     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3147     for (int i = 0; i < segments.length; ++i)
3148     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3149     s.putFields().put("segments", segments);
3150 dl 1.209 s.putFields().put("segmentShift", segmentShift);
3151     s.putFields().put("segmentMask", segmentMask);
3152 dl 1.210 s.writeFields();
3153 dl 1.209
3154 dl 1.210 Node<K,V>[] t;
3155     if ((t = table) != null) {
3156     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3157     for (Node<K,V> p; (p = it.advance()) != null; ) {
3158     s.writeObject(p.key);
3159     s.writeObject(p.val);
3160     }
3161 dl 1.142 }
3162     s.writeObject(null);
3163     s.writeObject(null);
3164     segments = null; // throw away
3165     }
3166 dl 1.119
3167 dl 1.142 /**
3168     * Reconstitutes the instance from a stream (that is, deserializes it).
3169     * @param s the stream
3170     */
3171 dl 1.210 private void readObject(java.io.ObjectInputStream s)
3172 dl 1.142 throws java.io.IOException, ClassNotFoundException {
3173     s.defaultReadObject();
3174 dl 1.119
3175 dl 1.142 // Create all nodes, then place in table once size is known
3176     long size = 0L;
3177 dl 1.210 Node<K,V> p = null;
3178 dl 1.142 for (;;) {
3179     K k = (K) s.readObject();
3180     V v = (V) s.readObject();
3181     if (k != null && v != null) {
3182     int h = spread(k.hashCode());
3183 dl 1.210 p = new Node<K,V>(h, k, v, p);
3184 dl 1.142 ++size;
3185 dl 1.119 }
3186 dl 1.142 else
3187     break;
3188 dl 1.119 }
3189 dl 1.142 if (p != null) {
3190     boolean init = false;
3191     int n;
3192     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3193     n = MAXIMUM_CAPACITY;
3194     else {
3195     int sz = (int)size;
3196     n = tableSizeFor(sz + (sz >>> 1) + 1);
3197     }
3198     int sc = sizeCtl;
3199     boolean collide = false;
3200     if (n > sc &&
3201 dl 1.149 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3202 dl 1.142 try {
3203     if (table == null) {
3204     init = true;
3205 dl 1.210 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3206 dl 1.142 int mask = n - 1;
3207     while (p != null) {
3208     int j = p.hash & mask;
3209 dl 1.210 Node<K,V> next = p.next;
3210     Node<K,V> q = p.next = tabAt(tab, j);
3211 dl 1.142 setTabAt(tab, j, p);
3212     if (!collide && q != null && q.hash == p.hash)
3213     collide = true;
3214     p = next;
3215     }
3216     table = tab;
3217 dl 1.149 addCount(size, -1);
3218 dl 1.142 sc = n - (n >>> 2);
3219     }
3220     } finally {
3221     sizeCtl = sc;
3222     }
3223     if (collide) { // rescan and convert to TreeBins
3224 dl 1.210 Node<K,V>[] tab = table;
3225 dl 1.142 for (int i = 0; i < tab.length; ++i) {
3226     int c = 0;
3227 dl 1.210 for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3228 dl 1.142 if (++c > TREE_THRESHOLD &&
3229     (e.key instanceof Comparable)) {
3230     replaceWithTreeBin(tab, i, e.key);
3231     break;
3232     }
3233     }
3234     }
3235 dl 1.119 }
3236     }
3237 dl 1.142 if (!init) { // Can only happen if unsafely published.
3238     while (p != null) {
3239 dl 1.151 internalPut((K)p.key, p.val, false);
3240 dl 1.142 p = p.next;
3241     }
3242 dl 1.119 }
3243     }
3244 dl 1.142 }
3245 dl 1.119
3246 dl 1.142 // -------------------------------------------------------
3247    
3248 dl 1.210 // Overrides of other default Map methods
3249    
3250     public void forEach(BiConsumer<? super K, ? super V> action) {
3251     if (action == null) throw new NullPointerException();
3252     Node<K,V>[] t;
3253     if ((t = table) != null) {
3254     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3255     for (Node<K,V> p; (p = it.advance()) != null; ) {
3256     action.accept((K)p.key, p.val);
3257     }
3258     }
3259     }
3260    
3261     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3262     if (function == null) throw new NullPointerException();
3263     Node<K,V>[] t;
3264     if ((t = table) != null) {
3265     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3266     for (Node<K,V> p; (p = it.advance()) != null; ) {
3267     K k = (K)p.key;
3268     internalPut(k, function.apply(k, p.val), false);
3269     }
3270     }
3271     }
3272    
3273     // -------------------------------------------------------
3274    
3275     // Parallel bulk operations
3276    
3277     /**
3278     * Computes initial batch value for bulk tasks. The returned value
3279     * is approximately exp2 of the number of times (minus one) to
3280     * split task by two before executing leaf action. This value is
3281     * faster to compute and more convenient to use as a guide to
3282     * splitting than is the depth, since it is used while dividing by
3283     * two anyway.
3284     */
3285     final int batchFor(long b) {
3286     long n;
3287     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3288     return 0;
3289     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3290     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3291     }
3292 dl 1.151
3293 dl 1.119 /**
3294 dl 1.137 * Performs the given action for each (key, value).
3295 dl 1.119 *
3296 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3297 jsr166 1.213 * needed for this operation to be executed in parallel
3298 dl 1.137 * @param action the action
3299 jsr166 1.220 * @since 1.8
3300 dl 1.119 */
3301 dl 1.210 public void forEach(long parallelismThreshold,
3302     BiConsumer<? super K,? super V> action) {
3303 dl 1.151 if (action == null) throw new NullPointerException();
3304 dl 1.210 new ForEachMappingTask<K,V>
3305     (null, batchFor(parallelismThreshold), 0, 0, table,
3306     action).invoke();
3307 dl 1.119 }
3308    
3309     /**
3310 dl 1.137 * Performs the given action for each non-null transformation
3311     * of each (key, value).
3312     *
3313 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3314 jsr166 1.213 * needed for this operation to be executed in parallel
3315 dl 1.137 * @param transformer a function returning the transformation
3316 jsr166 1.169 * for an element, or null if there is no transformation (in
3317 jsr166 1.172 * which case the action is not applied)
3318 dl 1.137 * @param action the action
3319 jsr166 1.220 * @since 1.8
3320 dl 1.119 */
3321 dl 1.210 public <U> void forEach(long parallelismThreshold,
3322     BiFunction<? super K, ? super V, ? extends U> transformer,
3323     Consumer<? super U> action) {
3324 dl 1.151 if (transformer == null || action == null)
3325     throw new NullPointerException();
3326 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3327     (null, batchFor(parallelismThreshold), 0, 0, table,
3328     transformer, action).invoke();
3329 dl 1.137 }
3330    
3331     /**
3332     * Returns a non-null result from applying the given search
3333 dl 1.210 * function on each (key, value), or null if none. Upon
3334     * success, further element processing is suppressed and the
3335     * results of any other parallel invocations of the search
3336     * function are ignored.
3337 dl 1.137 *
3338 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3339 jsr166 1.213 * needed for this operation to be executed in parallel
3340 dl 1.137 * @param searchFunction a function returning a non-null
3341     * result on success, else null
3342     * @return a non-null result from applying the given search
3343     * function on each (key, value), or null if none
3344 jsr166 1.220 * @since 1.8
3345 dl 1.137 */
3346 dl 1.210 public <U> U search(long parallelismThreshold,
3347     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3348 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3349 dl 1.210 return new SearchMappingsTask<K,V,U>
3350     (null, batchFor(parallelismThreshold), 0, 0, table,
3351     searchFunction, new AtomicReference<U>()).invoke();
3352 dl 1.137 }
3353    
3354     /**
3355     * Returns the result of accumulating the given transformation
3356     * of all (key, value) pairs using the given reducer to
3357     * combine values, or null if none.
3358     *
3359 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3360 jsr166 1.213 * needed for this operation to be executed in parallel
3361 dl 1.137 * @param transformer a function returning the transformation
3362 jsr166 1.169 * for an element, or null if there is no transformation (in
3363 jsr166 1.172 * which case it is not combined)
3364 dl 1.137 * @param reducer a commutative associative combining function
3365     * @return the result of accumulating the given transformation
3366     * of all (key, value) pairs
3367 jsr166 1.220 * @since 1.8
3368 dl 1.137 */
3369 dl 1.210 public <U> U reduce(long parallelismThreshold,
3370     BiFunction<? super K, ? super V, ? extends U> transformer,
3371     BiFunction<? super U, ? super U, ? extends U> reducer) {
3372 dl 1.151 if (transformer == null || reducer == null)
3373     throw new NullPointerException();
3374 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3375     (null, batchFor(parallelismThreshold), 0, 0, table,
3376     null, transformer, reducer).invoke();
3377 dl 1.137 }
3378    
3379     /**
3380     * Returns the result of accumulating the given transformation
3381     * of all (key, value) pairs using the given reducer to
3382     * combine values, and the given basis as an identity value.
3383     *
3384 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3385 jsr166 1.213 * needed for this operation to be executed in parallel
3386 dl 1.137 * @param transformer a function returning the transformation
3387     * for an element
3388     * @param basis the identity (initial default value) for the reduction
3389     * @param reducer a commutative associative combining function
3390     * @return the result of accumulating the given transformation
3391     * of all (key, value) pairs
3392 jsr166 1.220 * @since 1.8
3393 dl 1.137 */
3394 dl 1.210 public double reduceToDoubleIn(long parallelismThreshold,
3395     ToDoubleBiFunction<? super K, ? super V> transformer,
3396     double basis,
3397     DoubleBinaryOperator reducer) {
3398 dl 1.151 if (transformer == null || reducer == null)
3399     throw new NullPointerException();
3400 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3401     (null, batchFor(parallelismThreshold), 0, 0, table,
3402     null, transformer, basis, reducer).invoke();
3403 dl 1.137 }
3404 dl 1.119
3405 dl 1.137 /**
3406     * Returns the result of accumulating the given transformation
3407     * of all (key, value) pairs using the given reducer to
3408     * combine values, and the given basis as an identity value.
3409     *
3410 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3411 jsr166 1.213 * needed for this operation to be executed in parallel
3412 dl 1.137 * @param transformer a function returning the transformation
3413     * for an element
3414     * @param basis the identity (initial default value) for the reduction
3415     * @param reducer a commutative associative combining function
3416     * @return the result of accumulating the given transformation
3417     * of all (key, value) pairs
3418 jsr166 1.220 * @since 1.8
3419 dl 1.137 */
3420 dl 1.210 public long reduceToLong(long parallelismThreshold,
3421     ToLongBiFunction<? super K, ? super V> transformer,
3422     long basis,
3423     LongBinaryOperator reducer) {
3424 dl 1.151 if (transformer == null || reducer == null)
3425     throw new NullPointerException();
3426 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3427     (null, batchFor(parallelismThreshold), 0, 0, table,
3428     null, transformer, basis, reducer).invoke();
3429 dl 1.137 }
3430    
3431     /**
3432     * Returns the result of accumulating the given transformation
3433     * of all (key, value) pairs using the given reducer to
3434     * combine values, and the given basis as an identity value.
3435     *
3436 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3437 jsr166 1.213 * needed for this operation to be executed in parallel
3438 dl 1.137 * @param transformer a function returning the transformation
3439     * for an element
3440     * @param basis the identity (initial default value) for the reduction
3441     * @param reducer a commutative associative combining function
3442     * @return the result of accumulating the given transformation
3443     * of all (key, value) pairs
3444 jsr166 1.220 * @since 1.8
3445 dl 1.137 */
3446 dl 1.210 public int reduceToInt(long parallelismThreshold,
3447     ToIntBiFunction<? super K, ? super V> transformer,
3448     int basis,
3449     IntBinaryOperator reducer) {
3450 dl 1.151 if (transformer == null || reducer == null)
3451     throw new NullPointerException();
3452 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3453     (null, batchFor(parallelismThreshold), 0, 0, table,
3454     null, transformer, basis, reducer).invoke();
3455 dl 1.137 }
3456    
3457     /**
3458     * Performs the given action for each key.
3459     *
3460 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3461 jsr166 1.213 * needed for this operation to be executed in parallel
3462 dl 1.137 * @param action the action
3463 jsr166 1.220 * @since 1.8
3464 dl 1.137 */
3465 dl 1.210 public void forEachKey(long parallelismThreshold,
3466     Consumer<? super K> action) {
3467     if (action == null) throw new NullPointerException();
3468     new ForEachKeyTask<K,V>
3469     (null, batchFor(parallelismThreshold), 0, 0, table,
3470     action).invoke();
3471 dl 1.137 }
3472 dl 1.119
3473 dl 1.137 /**
3474     * Performs the given action for each non-null transformation
3475     * of each key.
3476     *
3477 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3478 jsr166 1.213 * needed for this operation to be executed in parallel
3479 dl 1.137 * @param transformer a function returning the transformation
3480 jsr166 1.169 * for an element, or null if there is no transformation (in
3481 jsr166 1.172 * which case the action is not applied)
3482 dl 1.137 * @param action the action
3483 jsr166 1.220 * @since 1.8
3484 dl 1.137 */
3485 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3486     Function<? super K, ? extends U> transformer,
3487     Consumer<? super U> action) {
3488 dl 1.151 if (transformer == null || action == null)
3489     throw new NullPointerException();
3490 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3491     (null, batchFor(parallelismThreshold), 0, 0, table,
3492     transformer, action).invoke();
3493 dl 1.137 }
3494 dl 1.119
3495 dl 1.137 /**
3496     * Returns a non-null result from applying the given search
3497 dl 1.210 * function on each key, or null if none. Upon success,
3498     * further element processing is suppressed and the results of
3499     * any other parallel invocations of the search function are
3500     * ignored.
3501 dl 1.137 *
3502 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3503 jsr166 1.213 * needed for this operation to be executed in parallel
3504 dl 1.137 * @param searchFunction a function returning a non-null
3505     * result on success, else null
3506     * @return a non-null result from applying the given search
3507     * function on each key, or null if none
3508 jsr166 1.220 * @since 1.8
3509 dl 1.137 */
3510 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3511     Function<? super K, ? extends U> searchFunction) {
3512     if (searchFunction == null) throw new NullPointerException();
3513     return new SearchKeysTask<K,V,U>
3514     (null, batchFor(parallelismThreshold), 0, 0, table,
3515     searchFunction, new AtomicReference<U>()).invoke();
3516 dl 1.137 }
3517 dl 1.119
3518 dl 1.137 /**
3519     * Returns the result of accumulating all keys using the given
3520     * reducer to combine values, or null if none.
3521     *
3522 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3523 jsr166 1.213 * needed for this operation to be executed in parallel
3524 dl 1.137 * @param reducer a commutative associative combining function
3525     * @return the result of accumulating all keys using the given
3526     * reducer to combine values, or null if none
3527 jsr166 1.220 * @since 1.8
3528 dl 1.137 */
3529 dl 1.210 public K reduceKeys(long parallelismThreshold,
3530     BiFunction<? super K, ? super K, ? extends K> reducer) {
3531 dl 1.151 if (reducer == null) throw new NullPointerException();
3532 dl 1.210 return new ReduceKeysTask<K,V>
3533     (null, batchFor(parallelismThreshold), 0, 0, table,
3534     null, reducer).invoke();
3535 dl 1.137 }
3536 dl 1.119
3537 dl 1.137 /**
3538     * Returns the result of accumulating the given transformation
3539     * of all keys using the given reducer to combine values, or
3540     * null if none.
3541     *
3542 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3543 jsr166 1.213 * needed for this operation to be executed in parallel
3544 dl 1.137 * @param transformer a function returning the transformation
3545 jsr166 1.169 * for an element, or null if there is no transformation (in
3546 jsr166 1.172 * which case it is not combined)
3547 dl 1.137 * @param reducer a commutative associative combining function
3548     * @return the result of accumulating the given transformation
3549     * of all keys
3550 jsr166 1.220 * @since 1.8
3551 dl 1.137 */
3552 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3553     Function<? super K, ? extends U> transformer,
3554 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3555 dl 1.151 if (transformer == null || reducer == null)
3556     throw new NullPointerException();
3557 dl 1.210 return new MapReduceKeysTask<K,V,U>
3558     (null, batchFor(parallelismThreshold), 0, 0, table,
3559     null, transformer, reducer).invoke();
3560 dl 1.137 }
3561 dl 1.119
3562 dl 1.137 /**
3563     * Returns the result of accumulating the given transformation
3564     * of all keys using the given reducer to combine values, and
3565     * the given basis as an identity value.
3566     *
3567 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3568 jsr166 1.213 * needed for this operation to be executed in parallel
3569 dl 1.137 * @param transformer a function returning the transformation
3570     * for an element
3571     * @param basis the identity (initial default value) for the reduction
3572     * @param reducer a commutative associative combining function
3573 jsr166 1.157 * @return the result of accumulating the given transformation
3574 dl 1.137 * of all keys
3575 jsr166 1.220 * @since 1.8
3576 dl 1.137 */
3577 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3578     ToDoubleFunction<? super K> transformer,
3579     double basis,
3580     DoubleBinaryOperator reducer) {
3581 dl 1.151 if (transformer == null || reducer == null)
3582     throw new NullPointerException();
3583 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3584     (null, batchFor(parallelismThreshold), 0, 0, table,
3585     null, transformer, basis, reducer).invoke();
3586 dl 1.137 }
3587 dl 1.119
3588 dl 1.137 /**
3589     * Returns the result of accumulating the given transformation
3590     * of all keys using the given reducer to combine values, and
3591     * the given basis as an identity value.
3592     *
3593 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3594 jsr166 1.213 * needed for this operation to be executed in parallel
3595 dl 1.137 * @param transformer a function returning the transformation
3596     * for an element
3597     * @param basis the identity (initial default value) for the reduction
3598     * @param reducer a commutative associative combining function
3599     * @return the result of accumulating the given transformation
3600     * of all keys
3601 jsr166 1.220 * @since 1.8
3602 dl 1.137 */
3603 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3604     ToLongFunction<? super K> transformer,
3605     long basis,
3606     LongBinaryOperator reducer) {
3607 dl 1.151 if (transformer == null || reducer == null)
3608     throw new NullPointerException();
3609 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3610     (null, batchFor(parallelismThreshold), 0, 0, table,
3611     null, transformer, basis, reducer).invoke();
3612 dl 1.137 }
3613 dl 1.119
3614 dl 1.137 /**
3615     * Returns the result of accumulating the given transformation
3616     * of all keys using the given reducer to combine values, and
3617     * the given basis as an identity value.
3618     *
3619 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3620 jsr166 1.213 * needed for this operation to be executed in parallel
3621 dl 1.137 * @param transformer a function returning the transformation
3622     * for an element
3623     * @param basis the identity (initial default value) for the reduction
3624     * @param reducer a commutative associative combining function
3625     * @return the result of accumulating the given transformation
3626     * of all keys
3627 jsr166 1.220 * @since 1.8
3628 dl 1.137 */
3629 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
3630     ToIntFunction<? super K> transformer,
3631     int basis,
3632     IntBinaryOperator reducer) {
3633 dl 1.151 if (transformer == null || reducer == null)
3634     throw new NullPointerException();
3635 dl 1.210 return new MapReduceKeysToIntTask<K,V>
3636     (null, batchFor(parallelismThreshold), 0, 0, table,
3637     null, transformer, basis, reducer).invoke();
3638 dl 1.137 }
3639 dl 1.119
3640 dl 1.137 /**
3641     * Performs the given action for each value.
3642     *
3643 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3644 jsr166 1.213 * needed for this operation to be executed in parallel
3645 dl 1.137 * @param action the action
3646 jsr166 1.220 * @since 1.8
3647 dl 1.137 */
3648 dl 1.210 public void forEachValue(long parallelismThreshold,
3649     Consumer<? super V> action) {
3650     if (action == null)
3651     throw new NullPointerException();
3652     new ForEachValueTask<K,V>
3653     (null, batchFor(parallelismThreshold), 0, 0, table,
3654     action).invoke();
3655 dl 1.137 }
3656 dl 1.119
3657 dl 1.137 /**
3658     * Performs the given action for each non-null transformation
3659     * of each value.
3660     *
3661 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3662 jsr166 1.213 * needed for this operation to be executed in parallel
3663 dl 1.137 * @param transformer a function returning the transformation
3664 jsr166 1.169 * for an element, or null if there is no transformation (in
3665 jsr166 1.172 * which case the action is not applied)
3666 jsr166 1.179 * @param action the action
3667 jsr166 1.220 * @since 1.8
3668 dl 1.137 */
3669 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
3670     Function<? super V, ? extends U> transformer,
3671     Consumer<? super U> action) {
3672 dl 1.151 if (transformer == null || action == null)
3673     throw new NullPointerException();
3674 dl 1.210 new ForEachTransformedValueTask<K,V,U>
3675     (null, batchFor(parallelismThreshold), 0, 0, table,
3676     transformer, action).invoke();
3677 dl 1.137 }
3678 dl 1.119
3679 dl 1.137 /**
3680     * Returns a non-null result from applying the given search
3681 dl 1.210 * function on each value, or null if none. Upon success,
3682     * further element processing is suppressed and the results of
3683     * any other parallel invocations of the search function are
3684     * ignored.
3685 dl 1.137 *
3686 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3687 jsr166 1.213 * needed for this operation to be executed in parallel
3688 dl 1.137 * @param searchFunction a function returning a non-null
3689     * result on success, else null
3690     * @return a non-null result from applying the given search
3691     * function on each value, or null if none
3692 jsr166 1.220 * @since 1.8
3693 dl 1.137 */
3694 dl 1.210 public <U> U searchValues(long parallelismThreshold,
3695     Function<? super V, ? extends U> searchFunction) {
3696 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3697 dl 1.210 return new SearchValuesTask<K,V,U>
3698     (null, batchFor(parallelismThreshold), 0, 0, table,
3699     searchFunction, new AtomicReference<U>()).invoke();
3700 dl 1.137 }
3701 dl 1.119
3702 dl 1.137 /**
3703     * Returns the result of accumulating all values using the
3704     * given reducer to combine values, or null if none.
3705     *
3706 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3707 jsr166 1.213 * needed for this operation to be executed in parallel
3708 dl 1.137 * @param reducer a commutative associative combining function
3709 jsr166 1.157 * @return the result of accumulating all values
3710 jsr166 1.220 * @since 1.8
3711 dl 1.137 */
3712 dl 1.210 public V reduceValues(long parallelismThreshold,
3713     BiFunction<? super V, ? super V, ? extends V> reducer) {
3714 dl 1.151 if (reducer == null) throw new NullPointerException();
3715 dl 1.210 return new ReduceValuesTask<K,V>
3716     (null, batchFor(parallelismThreshold), 0, 0, table,
3717     null, reducer).invoke();
3718 dl 1.137 }
3719 dl 1.119
3720 dl 1.137 /**
3721     * Returns the result of accumulating the given transformation
3722     * of all values using the given reducer to combine values, or
3723     * null if none.
3724     *
3725 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3726 jsr166 1.213 * needed for this operation to be executed in parallel
3727 dl 1.137 * @param transformer a function returning the transformation
3728 jsr166 1.169 * for an element, or null if there is no transformation (in
3729 jsr166 1.172 * which case it is not combined)
3730 dl 1.137 * @param reducer a commutative associative combining function
3731     * @return the result of accumulating the given transformation
3732     * of all values
3733 jsr166 1.220 * @since 1.8
3734 dl 1.137 */
3735 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
3736     Function<? super V, ? extends U> transformer,
3737     BiFunction<? super U, ? super U, ? extends U> reducer) {
3738 dl 1.151 if (transformer == null || reducer == null)
3739     throw new NullPointerException();
3740 dl 1.210 return new MapReduceValuesTask<K,V,U>
3741     (null, batchFor(parallelismThreshold), 0, 0, table,
3742     null, transformer, reducer).invoke();
3743 dl 1.137 }
3744 dl 1.119
3745 dl 1.137 /**
3746     * Returns the result of accumulating the given transformation
3747     * of all values using the given reducer to combine values,
3748     * and the given basis as an identity value.
3749     *
3750 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3751 jsr166 1.213 * needed for this operation to be executed in parallel
3752 dl 1.137 * @param transformer a function returning the transformation
3753     * for an element
3754     * @param basis the identity (initial default value) for the reduction
3755     * @param reducer a commutative associative combining function
3756     * @return the result of accumulating the given transformation
3757     * of all values
3758 jsr166 1.220 * @since 1.8
3759 dl 1.137 */
3760 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
3761     ToDoubleFunction<? super V> transformer,
3762     double basis,
3763     DoubleBinaryOperator reducer) {
3764 dl 1.151 if (transformer == null || reducer == null)
3765     throw new NullPointerException();
3766 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
3767     (null, batchFor(parallelismThreshold), 0, 0, table,
3768     null, transformer, basis, reducer).invoke();
3769 dl 1.137 }
3770 dl 1.119
3771 dl 1.137 /**
3772     * Returns the result of accumulating the given transformation
3773     * of all values using the given reducer to combine values,
3774     * and the given basis as an identity value.
3775     *
3776 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3777 jsr166 1.213 * needed for this operation to be executed in parallel
3778 dl 1.137 * @param transformer a function returning the transformation
3779     * for an element
3780     * @param basis the identity (initial default value) for the reduction
3781     * @param reducer a commutative associative combining function
3782     * @return the result of accumulating the given transformation
3783     * of all values
3784 jsr166 1.220 * @since 1.8
3785 dl 1.137 */
3786 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
3787     ToLongFunction<? super V> transformer,
3788     long basis,
3789     LongBinaryOperator reducer) {
3790 dl 1.151 if (transformer == null || reducer == null)
3791     throw new NullPointerException();
3792 dl 1.210 return new MapReduceValuesToLongTask<K,V>
3793     (null, batchFor(parallelismThreshold), 0, 0, table,
3794     null, transformer, basis, reducer).invoke();
3795 dl 1.137 }
3796 dl 1.119
3797 dl 1.137 /**
3798     * Returns the result of accumulating the given transformation
3799     * of all values using the given reducer to combine values,
3800     * and the given basis as an identity value.
3801     *
3802 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3803 jsr166 1.213 * needed for this operation to be executed in parallel
3804 dl 1.137 * @param transformer a function returning the transformation
3805     * for an element
3806     * @param basis the identity (initial default value) for the reduction
3807     * @param reducer a commutative associative combining function
3808     * @return the result of accumulating the given transformation
3809     * of all values
3810 jsr166 1.220 * @since 1.8
3811 dl 1.137 */
3812 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
3813     ToIntFunction<? super V> transformer,
3814     int basis,
3815     IntBinaryOperator reducer) {
3816 dl 1.151 if (transformer == null || reducer == null)
3817     throw new NullPointerException();
3818 dl 1.210 return new MapReduceValuesToIntTask<K,V>
3819     (null, batchFor(parallelismThreshold), 0, 0, table,
3820     null, transformer, basis, reducer).invoke();
3821 dl 1.137 }
3822 dl 1.119
3823 dl 1.137 /**
3824     * Performs the given action for each entry.
3825     *
3826 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3827 jsr166 1.213 * needed for this operation to be executed in parallel
3828 dl 1.137 * @param action the action
3829 jsr166 1.220 * @since 1.8
3830 dl 1.137 */
3831 dl 1.210 public void forEachEntry(long parallelismThreshold,
3832     Consumer<? super Map.Entry<K,V>> action) {
3833 dl 1.151 if (action == null) throw new NullPointerException();
3834 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3835     action).invoke();
3836 dl 1.137 }
3837 dl 1.119
3838 dl 1.137 /**
3839     * Performs the given action for each non-null transformation
3840     * of each entry.
3841     *
3842 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3843 jsr166 1.213 * needed for this operation to be executed in parallel
3844 dl 1.137 * @param transformer a function returning the transformation
3845 jsr166 1.169 * for an element, or null if there is no transformation (in
3846 jsr166 1.172 * which case the action is not applied)
3847 dl 1.137 * @param action the action
3848 jsr166 1.220 * @since 1.8
3849 dl 1.137 */
3850 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
3851     Function<Map.Entry<K,V>, ? extends U> transformer,
3852     Consumer<? super U> action) {
3853 dl 1.151 if (transformer == null || action == null)
3854     throw new NullPointerException();
3855 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
3856     (null, batchFor(parallelismThreshold), 0, 0, table,
3857     transformer, action).invoke();
3858 dl 1.137 }
3859 dl 1.119
3860 dl 1.137 /**
3861     * Returns a non-null result from applying the given search
3862 dl 1.210 * function on each entry, or null if none. Upon success,
3863     * further element processing is suppressed and the results of
3864     * any other parallel invocations of the search function are
3865     * ignored.
3866 dl 1.137 *
3867 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3868 jsr166 1.213 * needed for this operation to be executed in parallel
3869 dl 1.137 * @param searchFunction a function returning a non-null
3870     * result on success, else null
3871     * @return a non-null result from applying the given search
3872     * function on each entry, or null if none
3873 jsr166 1.220 * @since 1.8
3874 dl 1.137 */
3875 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
3876     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3877 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3878 dl 1.210 return new SearchEntriesTask<K,V,U>
3879     (null, batchFor(parallelismThreshold), 0, 0, table,
3880     searchFunction, new AtomicReference<U>()).invoke();
3881 dl 1.137 }
3882 dl 1.119
3883 dl 1.137 /**
3884     * Returns the result of accumulating all entries using the
3885     * given reducer to combine values, or null if none.
3886     *
3887 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3888 jsr166 1.213 * needed for this operation to be executed in parallel
3889 dl 1.137 * @param reducer a commutative associative combining function
3890     * @return the result of accumulating all entries
3891 jsr166 1.220 * @since 1.8
3892 dl 1.137 */
3893 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
3894     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3895 dl 1.151 if (reducer == null) throw new NullPointerException();
3896 dl 1.210 return new ReduceEntriesTask<K,V>
3897     (null, batchFor(parallelismThreshold), 0, 0, table,
3898     null, reducer).invoke();
3899 dl 1.137 }
3900 dl 1.119
3901 dl 1.137 /**
3902     * Returns the result of accumulating the given transformation
3903     * of all entries using the given reducer to combine values,
3904     * or null if none.
3905     *
3906 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3907 jsr166 1.213 * needed for this operation to be executed in parallel
3908 dl 1.137 * @param transformer a function returning the transformation
3909 jsr166 1.169 * for an element, or null if there is no transformation (in
3910 jsr166 1.172 * which case it is not combined)
3911 dl 1.137 * @param reducer a commutative associative combining function
3912     * @return the result of accumulating the given transformation
3913     * of all entries
3914 jsr166 1.220 * @since 1.8
3915 dl 1.137 */
3916 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
3917     Function<Map.Entry<K,V>, ? extends U> transformer,
3918     BiFunction<? super U, ? super U, ? extends U> reducer) {
3919 dl 1.151 if (transformer == null || reducer == null)
3920     throw new NullPointerException();
3921 dl 1.210 return new MapReduceEntriesTask<K,V,U>
3922     (null, batchFor(parallelismThreshold), 0, 0, table,
3923     null, transformer, reducer).invoke();
3924 dl 1.137 }
3925 dl 1.119
3926 dl 1.137 /**
3927     * Returns the result of accumulating the given transformation
3928     * of all entries using the given reducer to combine values,
3929     * and the given basis as an identity value.
3930     *
3931 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3932 jsr166 1.213 * needed for this operation to be executed in parallel
3933 dl 1.137 * @param transformer a function returning the transformation
3934     * for an element
3935     * @param basis the identity (initial default value) for the reduction
3936     * @param reducer a commutative associative combining function
3937     * @return the result of accumulating the given transformation
3938     * of all entries
3939 jsr166 1.220 * @since 1.8
3940 dl 1.137 */
3941 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
3942     ToDoubleFunction<Map.Entry<K,V>> transformer,
3943     double basis,
3944     DoubleBinaryOperator reducer) {
3945 dl 1.151 if (transformer == null || reducer == null)
3946     throw new NullPointerException();
3947 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
3948     (null, batchFor(parallelismThreshold), 0, 0, table,
3949     null, transformer, basis, reducer).invoke();
3950 dl 1.137 }
3951 dl 1.119
3952 dl 1.137 /**
3953     * Returns the result of accumulating the given transformation
3954     * of all entries using the given reducer to combine values,
3955     * and the given basis as an identity value.
3956     *
3957 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3958 jsr166 1.213 * needed for this operation to be executed in parallel
3959 dl 1.137 * @param transformer a function returning the transformation
3960     * for an element
3961     * @param basis the identity (initial default value) for the reduction
3962     * @param reducer a commutative associative combining function
3963 jsr166 1.157 * @return the result of accumulating the given transformation
3964 dl 1.137 * of all entries
3965 jsr166 1.221 * @since 1.8
3966 dl 1.137 */
3967 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
3968     ToLongFunction<Map.Entry<K,V>> transformer,
3969     long basis,
3970     LongBinaryOperator reducer) {
3971 dl 1.151 if (transformer == null || reducer == null)
3972     throw new NullPointerException();
3973 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
3974     (null, batchFor(parallelismThreshold), 0, 0, table,
3975     null, transformer, basis, reducer).invoke();
3976 dl 1.137 }
3977 dl 1.119
3978 dl 1.137 /**
3979     * Returns the result of accumulating the given transformation
3980     * of all entries using the given reducer to combine values,
3981     * and the given basis as an identity value.
3982     *
3983 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3984 jsr166 1.213 * needed for this operation to be executed in parallel
3985 dl 1.137 * @param transformer a function returning the transformation
3986     * for an element
3987     * @param basis the identity (initial default value) for the reduction
3988     * @param reducer a commutative associative combining function
3989     * @return the result of accumulating the given transformation
3990     * of all entries
3991 jsr166 1.221 * @since 1.8
3992 dl 1.137 */
3993 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
3994     ToIntFunction<Map.Entry<K,V>> transformer,
3995     int basis,
3996     IntBinaryOperator reducer) {
3997 dl 1.151 if (transformer == null || reducer == null)
3998     throw new NullPointerException();
3999 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4000     (null, batchFor(parallelismThreshold), 0, 0, table,
4001     null, transformer, basis, reducer).invoke();
4002 dl 1.119 }
4003    
4004 dl 1.209
4005 dl 1.210 /* ----------------Views -------------- */
4006 dl 1.142
4007     /**
4008 dl 1.210 * Base class for views.
4009 dl 1.142 */
4010 dl 1.210 abstract static class CollectionView<K,V,E>
4011     implements Collection<E>, java.io.Serializable {
4012     private static final long serialVersionUID = 7249069246763182397L;
4013     final ConcurrentHashMap<K,V> map;
4014     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4015    
4016     /**
4017     * Returns the map backing this view.
4018     *
4019     * @return the map backing this view
4020     */
4021     public ConcurrentHashMap<K,V> getMap() { return map; }
4022 dl 1.142
4023 dl 1.210 /**
4024     * Removes all of the elements from this view, by removing all
4025     * the mappings from the map backing this view.
4026 jsr166 1.184 */
4027     public final void clear() { map.clear(); }
4028     public final int size() { return map.size(); }
4029     public final boolean isEmpty() { return map.isEmpty(); }
4030 dl 1.151
4031     // implementations below rely on concrete classes supplying these
4032 jsr166 1.184 // abstract methods
4033     /**
4034     * Returns a "weakly consistent" iterator that will never
4035     * throw {@link ConcurrentModificationException}, and
4036     * guarantees to traverse elements as they existed upon
4037     * construction of the iterator, and may (but is not
4038     * guaranteed to) reflect any modifications subsequent to
4039     * construction.
4040     */
4041     public abstract Iterator<E> iterator();
4042 jsr166 1.165 public abstract boolean contains(Object o);
4043     public abstract boolean remove(Object o);
4044 dl 1.151
4045     private static final String oomeMsg = "Required array size too large";
4046 dl 1.142
4047     public final Object[] toArray() {
4048     long sz = map.mappingCount();
4049 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4050 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4051     int n = (int)sz;
4052     Object[] r = new Object[n];
4053     int i = 0;
4054 jsr166 1.184 for (E e : this) {
4055 dl 1.142 if (i == n) {
4056     if (n >= MAX_ARRAY_SIZE)
4057     throw new OutOfMemoryError(oomeMsg);
4058     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4059     n = MAX_ARRAY_SIZE;
4060     else
4061     n += (n >>> 1) + 1;
4062     r = Arrays.copyOf(r, n);
4063     }
4064 jsr166 1.184 r[i++] = e;
4065 dl 1.142 }
4066     return (i == n) ? r : Arrays.copyOf(r, i);
4067     }
4068    
4069 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4070 dl 1.142 long sz = map.mappingCount();
4071 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4072 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4073     int m = (int)sz;
4074     T[] r = (a.length >= m) ? a :
4075     (T[])java.lang.reflect.Array
4076     .newInstance(a.getClass().getComponentType(), m);
4077     int n = r.length;
4078     int i = 0;
4079 jsr166 1.184 for (E e : this) {
4080 dl 1.142 if (i == n) {
4081     if (n >= MAX_ARRAY_SIZE)
4082     throw new OutOfMemoryError(oomeMsg);
4083     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4084     n = MAX_ARRAY_SIZE;
4085     else
4086     n += (n >>> 1) + 1;
4087     r = Arrays.copyOf(r, n);
4088     }
4089 jsr166 1.184 r[i++] = (T)e;
4090 dl 1.142 }
4091     if (a == r && i < n) {
4092     r[i] = null; // null-terminate
4093     return r;
4094     }
4095     return (i == n) ? r : Arrays.copyOf(r, i);
4096     }
4097    
4098 jsr166 1.184 /**
4099     * Returns a string representation of this collection.
4100     * The string representation consists of the string representations
4101     * of the collection's elements in the order they are returned by
4102     * its iterator, enclosed in square brackets ({@code "[]"}).
4103     * Adjacent elements are separated by the characters {@code ", "}
4104     * (comma and space). Elements are converted to strings as by
4105     * {@link String#valueOf(Object)}.
4106     *
4107     * @return a string representation of this collection
4108     */
4109 dl 1.142 public final String toString() {
4110     StringBuilder sb = new StringBuilder();
4111     sb.append('[');
4112 jsr166 1.184 Iterator<E> it = iterator();
4113 dl 1.142 if (it.hasNext()) {
4114     for (;;) {
4115     Object e = it.next();
4116     sb.append(e == this ? "(this Collection)" : e);
4117     if (!it.hasNext())
4118     break;
4119     sb.append(',').append(' ');
4120     }
4121     }
4122     return sb.append(']').toString();
4123     }
4124    
4125     public final boolean containsAll(Collection<?> c) {
4126     if (c != this) {
4127 jsr166 1.184 for (Object e : c) {
4128 dl 1.142 if (e == null || !contains(e))
4129     return false;
4130     }
4131     }
4132     return true;
4133     }
4134    
4135     public final boolean removeAll(Collection<?> c) {
4136     boolean modified = false;
4137 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4138 dl 1.142 if (c.contains(it.next())) {
4139     it.remove();
4140     modified = true;
4141     }
4142     }
4143     return modified;
4144     }
4145    
4146     public final boolean retainAll(Collection<?> c) {
4147     boolean modified = false;
4148 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4149 dl 1.142 if (!c.contains(it.next())) {
4150     it.remove();
4151     modified = true;
4152     }
4153     }
4154     return modified;
4155     }
4156    
4157     }
4158    
4159     /**
4160     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4161     * which additions may optionally be enabled by mapping to a
4162 jsr166 1.185 * common value. This class cannot be directly instantiated.
4163     * See {@link #keySet() keySet()},
4164     * {@link #keySet(Object) keySet(V)},
4165     * {@link #newKeySet() newKeySet()},
4166     * {@link #newKeySet(int) newKeySet(int)}.
4167 jsr166 1.221 *
4168     * @since 1.8
4169 dl 1.142 */
4170 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4171     implements Set<K>, java.io.Serializable {
4172 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4173     private final V value;
4174 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4175 dl 1.142 super(map);
4176     this.value = value;
4177     }
4178    
4179     /**
4180     * Returns the default mapped value for additions,
4181     * or {@code null} if additions are not supported.
4182     *
4183     * @return the default mapped value for additions, or {@code null}
4184 jsr166 1.172 * if not supported
4185 dl 1.142 */
4186     public V getMappedValue() { return value; }
4187    
4188 jsr166 1.184 /**
4189     * {@inheritDoc}
4190     * @throws NullPointerException if the specified key is null
4191     */
4192     public boolean contains(Object o) { return map.containsKey(o); }
4193 dl 1.142
4194 jsr166 1.184 /**
4195     * Removes the key from this map view, by removing the key (and its
4196     * corresponding value) from the backing map. This method does
4197     * nothing if the key is not in the map.
4198     *
4199     * @param o the key to be removed from the backing map
4200     * @return {@code true} if the backing map contained the specified key
4201     * @throws NullPointerException if the specified key is null
4202     */
4203     public boolean remove(Object o) { return map.remove(o) != null; }
4204    
4205     /**
4206     * @return an iterator over the keys of the backing map
4207     */
4208 dl 1.210 public Iterator<K> iterator() {
4209     Node<K,V>[] t;
4210     ConcurrentHashMap<K,V> m = map;
4211     int f = (t = m.table) == null ? 0 : t.length;
4212     return new KeyIterator<K,V>(t, f, 0, f, m);
4213     }
4214 dl 1.142
4215     /**
4216 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4217     * the default mapped value in the backing map, if defined.
4218 dl 1.142 *
4219 jsr166 1.184 * @param e key to be added
4220     * @return {@code true} if this set changed as a result of the call
4221     * @throws NullPointerException if the specified key is null
4222     * @throws UnsupportedOperationException if no default mapped value
4223     * for additions was provided
4224 dl 1.142 */
4225     public boolean add(K e) {
4226     V v;
4227     if ((v = value) == null)
4228     throw new UnsupportedOperationException();
4229 dl 1.149 return map.internalPut(e, v, true) == null;
4230 dl 1.142 }
4231 jsr166 1.184
4232     /**
4233     * Adds all of the elements in the specified collection to this set,
4234     * as if by calling {@link #add} on each one.
4235     *
4236     * @param c the elements to be inserted into this set
4237     * @return {@code true} if this set changed as a result of the call
4238     * @throws NullPointerException if the collection or any of its
4239     * elements are {@code null}
4240     * @throws UnsupportedOperationException if no default mapped value
4241     * for additions was provided
4242     */
4243 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4244     boolean added = false;
4245     V v;
4246     if ((v = value) == null)
4247     throw new UnsupportedOperationException();
4248     for (K e : c) {
4249 dl 1.149 if (map.internalPut(e, v, true) == null)
4250 dl 1.142 added = true;
4251     }
4252     return added;
4253     }
4254 dl 1.153
4255 dl 1.210 public int hashCode() {
4256     int h = 0;
4257     for (K e : this)
4258     h += e.hashCode();
4259     return h;
4260 dl 1.191 }
4261    
4262 dl 1.210 public boolean equals(Object o) {
4263     Set<?> c;
4264     return ((o instanceof Set) &&
4265     ((c = (Set<?>)o) == this ||
4266     (containsAll(c) && c.containsAll(this))));
4267 dl 1.119 }
4268 jsr166 1.125
4269 dl 1.210 public Spliterator<K> spliterator() {
4270     Node<K,V>[] t;
4271     ConcurrentHashMap<K,V> m = map;
4272     long n = m.sumCount();
4273     int f = (t = m.table) == null ? 0 : t.length;
4274     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4275 dl 1.119 }
4276    
4277 dl 1.210 public void forEach(Consumer<? super K> action) {
4278     if (action == null) throw new NullPointerException();
4279     Node<K,V>[] t;
4280     if ((t = map.table) != null) {
4281     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4282     for (Node<K,V> p; (p = it.advance()) != null; )
4283     action.accept((K)p.key);
4284     }
4285 dl 1.119 }
4286 dl 1.210 }
4287 dl 1.119
4288 dl 1.210 /**
4289     * A view of a ConcurrentHashMap as a {@link Collection} of
4290     * values, in which additions are disabled. This class cannot be
4291     * directly instantiated. See {@link #values()}.
4292     */
4293     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4294     implements Collection<V>, java.io.Serializable {
4295     private static final long serialVersionUID = 2249069246763182397L;
4296     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4297     public final boolean contains(Object o) {
4298     return map.containsValue(o);
4299 dl 1.119 }
4300    
4301 dl 1.210 public final boolean remove(Object o) {
4302     if (o != null) {
4303     for (Iterator<V> it = iterator(); it.hasNext();) {
4304     if (o.equals(it.next())) {
4305     it.remove();
4306     return true;
4307     }
4308     }
4309     }
4310     return false;
4311 dl 1.119 }
4312    
4313 dl 1.210 public final Iterator<V> iterator() {
4314     ConcurrentHashMap<K,V> m = map;
4315     Node<K,V>[] t;
4316     int f = (t = m.table) == null ? 0 : t.length;
4317     return new ValueIterator<K,V>(t, f, 0, f, m);
4318 dl 1.119 }
4319    
4320 dl 1.210 public final boolean add(V e) {
4321     throw new UnsupportedOperationException();
4322     }
4323     public final boolean addAll(Collection<? extends V> c) {
4324     throw new UnsupportedOperationException();
4325 dl 1.119 }
4326    
4327 dl 1.210 public Spliterator<V> spliterator() {
4328     Node<K,V>[] t;
4329     ConcurrentHashMap<K,V> m = map;
4330     long n = m.sumCount();
4331     int f = (t = m.table) == null ? 0 : t.length;
4332     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4333 dl 1.119 }
4334    
4335 dl 1.210 public void forEach(Consumer<? super V> action) {
4336     if (action == null) throw new NullPointerException();
4337     Node<K,V>[] t;
4338     if ((t = map.table) != null) {
4339     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4340     for (Node<K,V> p; (p = it.advance()) != null; )
4341     action.accept(p.val);
4342     }
4343 dl 1.119 }
4344 dl 1.210 }
4345    
4346     /**
4347     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4348     * entries. This class cannot be directly instantiated. See
4349     * {@link #entrySet()}.
4350     */
4351     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4352     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4353     private static final long serialVersionUID = 2249069246763182397L;
4354     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4355 dl 1.119
4356 dl 1.210 public boolean contains(Object o) {
4357     Object k, v, r; Map.Entry<?,?> e;
4358     return ((o instanceof Map.Entry) &&
4359     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4360     (r = map.get(k)) != null &&
4361     (v = e.getValue()) != null &&
4362     (v == r || v.equals(r)));
4363 dl 1.119 }
4364    
4365 dl 1.210 public boolean remove(Object o) {
4366     Object k, v; Map.Entry<?,?> e;
4367     return ((o instanceof Map.Entry) &&
4368     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4369     (v = e.getValue()) != null &&
4370     map.remove(k, v));
4371 dl 1.119 }
4372    
4373     /**
4374 dl 1.210 * @return an iterator over the entries of the backing map
4375 dl 1.119 */
4376 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4377     ConcurrentHashMap<K,V> m = map;
4378     Node<K,V>[] t;
4379     int f = (t = m.table) == null ? 0 : t.length;
4380     return new EntryIterator<K,V>(t, f, 0, f, m);
4381 dl 1.119 }
4382    
4383 dl 1.210 public boolean add(Entry<K,V> e) {
4384     return map.internalPut(e.getKey(), e.getValue(), false) == null;
4385 dl 1.119 }
4386    
4387 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4388     boolean added = false;
4389     for (Entry<K,V> e : c) {
4390     if (add(e))
4391     added = true;
4392     }
4393     return added;
4394 dl 1.119 }
4395    
4396 dl 1.210 public final int hashCode() {
4397     int h = 0;
4398     Node<K,V>[] t;
4399     if ((t = map.table) != null) {
4400     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4401     for (Node<K,V> p; (p = it.advance()) != null; ) {
4402     h += p.hashCode();
4403     }
4404     }
4405     return h;
4406 dl 1.119 }
4407    
4408 dl 1.210 public final boolean equals(Object o) {
4409     Set<?> c;
4410     return ((o instanceof Set) &&
4411     ((c = (Set<?>)o) == this ||
4412     (containsAll(c) && c.containsAll(this))));
4413 dl 1.119 }
4414    
4415 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4416     Node<K,V>[] t;
4417     ConcurrentHashMap<K,V> m = map;
4418     long n = m.sumCount();
4419     int f = (t = m.table) == null ? 0 : t.length;
4420     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4421 dl 1.119 }
4422    
4423 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4424     if (action == null) throw new NullPointerException();
4425     Node<K,V>[] t;
4426     if ((t = map.table) != null) {
4427     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4428     for (Node<K,V> p; (p = it.advance()) != null; )
4429     action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4430     }
4431 dl 1.119 }
4432    
4433 dl 1.210 }
4434    
4435     // -------------------------------------------------------
4436 dl 1.119
4437 dl 1.210 /**
4438     * Base class for bulk tasks. Repeats some fields and code from
4439     * class Traverser, because we need to subclass CountedCompleter.
4440     */
4441 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4442 dl 1.210 Node<K,V>[] tab; // same as Traverser
4443     Node<K,V> next;
4444     int index;
4445     int baseIndex;
4446     int baseLimit;
4447     final int baseSize;
4448     int batch; // split control
4449    
4450     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4451     super(par);
4452     this.batch = b;
4453     this.index = this.baseIndex = i;
4454     if ((this.tab = t) == null)
4455     this.baseSize = this.baseLimit = 0;
4456     else if (par == null)
4457     this.baseSize = this.baseLimit = t.length;
4458     else {
4459     this.baseLimit = f;
4460     this.baseSize = par.baseSize;
4461     }
4462 dl 1.119 }
4463    
4464     /**
4465 dl 1.210 * Same as Traverser version
4466 dl 1.119 */
4467 dl 1.210 final Node<K,V> advance() {
4468     Node<K,V> e;
4469     if ((e = next) != null)
4470     e = e.next;
4471     for (;;) {
4472     Node<K,V>[] t; int i, n; Object ek;
4473     if (e != null)
4474     return next = e;
4475     if (baseIndex >= baseLimit || (t = tab) == null ||
4476     (n = t.length) <= (i = index) || i < 0)
4477     return next = null;
4478     if ((e = tabAt(t, index)) != null && e.hash < 0) {
4479     if ((ek = e.key) instanceof TreeBin)
4480     e = ((TreeBin<K,V>)ek).first;
4481     else {
4482     tab = (Node<K,V>[])ek;
4483     e = null;
4484     continue;
4485     }
4486     }
4487     if ((index += baseSize) >= n)
4488     index = ++baseIndex;
4489     }
4490 dl 1.119 }
4491     }
4492    
4493     /*
4494     * Task classes. Coded in a regular but ugly format/style to
4495     * simplify checks that each variant differs in the right way from
4496 dl 1.149 * others. The null screenings exist because compilers cannot tell
4497     * that we've already null-checked task arguments, so we force
4498     * simplest hoisted bypass to help avoid convoluted traps.
4499 dl 1.119 */
4500    
4501 dl 1.210 static final class ForEachKeyTask<K,V>
4502     extends BulkTask<K,V,Void> {
4503 dl 1.171 final Consumer<? super K> action;
4504 dl 1.119 ForEachKeyTask
4505 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4506 dl 1.171 Consumer<? super K> action) {
4507 dl 1.210 super(p, b, i, f, t);
4508 dl 1.119 this.action = action;
4509     }
4510 jsr166 1.168 public final void compute() {
4511 dl 1.171 final Consumer<? super K> action;
4512 dl 1.149 if ((action = this.action) != null) {
4513 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4514     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4515     addToPendingCount(1);
4516     new ForEachKeyTask<K,V>
4517     (this, batch >>>= 1, baseLimit = h, f, tab,
4518     action).fork();
4519     }
4520     for (Node<K,V> p; (p = advance()) != null;)
4521     action.accept((K)p.key);
4522 dl 1.149 propagateCompletion();
4523     }
4524 dl 1.119 }
4525     }
4526    
4527 dl 1.210 static final class ForEachValueTask<K,V>
4528     extends BulkTask<K,V,Void> {
4529 dl 1.171 final Consumer<? super V> action;
4530 dl 1.119 ForEachValueTask
4531 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4532 dl 1.171 Consumer<? super V> action) {
4533 dl 1.210 super(p, b, i, f, t);
4534 dl 1.119 this.action = action;
4535     }
4536 jsr166 1.168 public final void compute() {
4537 dl 1.171 final Consumer<? super V> action;
4538 dl 1.149 if ((action = this.action) != null) {
4539 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4540     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4541     addToPendingCount(1);
4542     new ForEachValueTask<K,V>
4543     (this, batch >>>= 1, baseLimit = h, f, tab,
4544     action).fork();
4545     }
4546     for (Node<K,V> p; (p = advance()) != null;)
4547     action.accept(p.val);
4548 dl 1.149 propagateCompletion();
4549     }
4550 dl 1.119 }
4551     }
4552    
4553 dl 1.210 static final class ForEachEntryTask<K,V>
4554     extends BulkTask<K,V,Void> {
4555 dl 1.171 final Consumer<? super Entry<K,V>> action;
4556 dl 1.119 ForEachEntryTask
4557 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4558 dl 1.171 Consumer<? super Entry<K,V>> action) {
4559 dl 1.210 super(p, b, i, f, t);
4560 dl 1.119 this.action = action;
4561     }
4562 jsr166 1.168 public final void compute() {
4563 dl 1.171 final Consumer<? super Entry<K,V>> action;
4564 dl 1.149 if ((action = this.action) != null) {
4565 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4566     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4567     addToPendingCount(1);
4568     new ForEachEntryTask<K,V>
4569     (this, batch >>>= 1, baseLimit = h, f, tab,
4570     action).fork();
4571     }
4572     for (Node<K,V> p; (p = advance()) != null; )
4573     action.accept(p);
4574 dl 1.149 propagateCompletion();
4575     }
4576 dl 1.119 }
4577     }
4578    
4579 dl 1.210 static final class ForEachMappingTask<K,V>
4580     extends BulkTask<K,V,Void> {
4581 dl 1.171 final BiConsumer<? super K, ? super V> action;
4582 dl 1.119 ForEachMappingTask
4583 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4584 dl 1.171 BiConsumer<? super K,? super V> action) {
4585 dl 1.210 super(p, b, i, f, t);
4586 dl 1.119 this.action = action;
4587     }
4588 jsr166 1.168 public final void compute() {
4589 dl 1.171 final BiConsumer<? super K, ? super V> action;
4590 dl 1.149 if ((action = this.action) != null) {
4591 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4592     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4593     addToPendingCount(1);
4594     new ForEachMappingTask<K,V>
4595     (this, batch >>>= 1, baseLimit = h, f, tab,
4596     action).fork();
4597     }
4598     for (Node<K,V> p; (p = advance()) != null; )
4599     action.accept((K)p.key, p.val);
4600 dl 1.149 propagateCompletion();
4601     }
4602 dl 1.119 }
4603     }
4604    
4605 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
4606     extends BulkTask<K,V,Void> {
4607 dl 1.153 final Function<? super K, ? extends U> transformer;
4608 dl 1.171 final Consumer<? super U> action;
4609 dl 1.119 ForEachTransformedKeyTask
4610 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4611 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4612 dl 1.210 super(p, b, i, f, t);
4613 dl 1.146 this.transformer = transformer; this.action = action;
4614     }
4615 jsr166 1.168 public final void compute() {
4616 dl 1.153 final Function<? super K, ? extends U> transformer;
4617 dl 1.171 final Consumer<? super U> action;
4618 dl 1.149 if ((transformer = this.transformer) != null &&
4619     (action = this.action) != null) {
4620 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4621     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4622     addToPendingCount(1);
4623 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
4624 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4625     transformer, action).fork();
4626     }
4627     for (Node<K,V> p; (p = advance()) != null; ) {
4628     U u;
4629     if ((u = transformer.apply((K)p.key)) != null)
4630 dl 1.153 action.accept(u);
4631 dl 1.149 }
4632     propagateCompletion();
4633 dl 1.119 }
4634     }
4635     }
4636    
4637 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
4638     extends BulkTask<K,V,Void> {
4639 dl 1.153 final Function<? super V, ? extends U> transformer;
4640 dl 1.171 final Consumer<? super U> action;
4641 dl 1.119 ForEachTransformedValueTask
4642 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4643 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4644 dl 1.210 super(p, b, i, f, t);
4645 dl 1.146 this.transformer = transformer; this.action = action;
4646     }
4647 jsr166 1.168 public final void compute() {
4648 dl 1.153 final Function<? super V, ? extends U> transformer;
4649 dl 1.171 final Consumer<? super U> action;
4650 dl 1.149 if ((transformer = this.transformer) != null &&
4651     (action = this.action) != null) {
4652 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4653     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4654     addToPendingCount(1);
4655 dl 1.149 new ForEachTransformedValueTask<K,V,U>
4656 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4657     transformer, action).fork();
4658     }
4659     for (Node<K,V> p; (p = advance()) != null; ) {
4660     U u;
4661     if ((u = transformer.apply(p.val)) != null)
4662 dl 1.153 action.accept(u);
4663 dl 1.149 }
4664     propagateCompletion();
4665 dl 1.119 }
4666     }
4667 tim 1.1 }
4668    
4669 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
4670     extends BulkTask<K,V,Void> {
4671 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
4672 dl 1.171 final Consumer<? super U> action;
4673 dl 1.119 ForEachTransformedEntryTask
4674 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4675 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4676 dl 1.210 super(p, b, i, f, t);
4677 dl 1.146 this.transformer = transformer; this.action = action;
4678     }
4679 jsr166 1.168 public final void compute() {
4680 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
4681 dl 1.171 final Consumer<? super U> action;
4682 dl 1.149 if ((transformer = this.transformer) != null &&
4683     (action = this.action) != null) {
4684 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4685     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4686     addToPendingCount(1);
4687 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
4688 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4689     transformer, action).fork();
4690     }
4691     for (Node<K,V> p; (p = advance()) != null; ) {
4692     U u;
4693     if ((u = transformer.apply(p)) != null)
4694 dl 1.153 action.accept(u);
4695 dl 1.149 }
4696     propagateCompletion();
4697 dl 1.119 }
4698     }
4699 tim 1.1 }
4700    
4701 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
4702     extends BulkTask<K,V,Void> {
4703 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
4704 dl 1.171 final Consumer<? super U> action;
4705 dl 1.119 ForEachTransformedMappingTask
4706 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4707 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4708 dl 1.171 Consumer<? super U> action) {
4709 dl 1.210 super(p, b, i, f, t);
4710 dl 1.146 this.transformer = transformer; this.action = action;
4711 dl 1.119 }
4712 jsr166 1.168 public final void compute() {
4713 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
4714 dl 1.171 final Consumer<? super U> action;
4715 dl 1.149 if ((transformer = this.transformer) != null &&
4716     (action = this.action) != null) {
4717 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4718     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4719     addToPendingCount(1);
4720 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
4721 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4722     transformer, action).fork();
4723     }
4724     for (Node<K,V> p; (p = advance()) != null; ) {
4725     U u;
4726     if ((u = transformer.apply((K)p.key, p.val)) != null)
4727 dl 1.153 action.accept(u);
4728 dl 1.149 }
4729     propagateCompletion();
4730 dl 1.119 }
4731     }
4732 tim 1.1 }
4733    
4734 dl 1.210 static final class SearchKeysTask<K,V,U>
4735     extends BulkTask<K,V,U> {
4736 dl 1.153 final Function<? super K, ? extends U> searchFunction;
4737 dl 1.119 final AtomicReference<U> result;
4738     SearchKeysTask
4739 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4740 dl 1.153 Function<? super K, ? extends U> searchFunction,
4741 dl 1.119 AtomicReference<U> result) {
4742 dl 1.210 super(p, b, i, f, t);
4743 dl 1.119 this.searchFunction = searchFunction; this.result = result;
4744     }
4745 dl 1.146 public final U getRawResult() { return result.get(); }
4746 jsr166 1.168 public final void compute() {
4747 dl 1.153 final Function<? super K, ? extends U> searchFunction;
4748 dl 1.146 final AtomicReference<U> result;
4749 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
4750     (result = this.result) != null) {
4751 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4752     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753 dl 1.149 if (result.get() != null)
4754     return;
4755 dl 1.210 addToPendingCount(1);
4756 dl 1.149 new SearchKeysTask<K,V,U>
4757 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4758     searchFunction, result).fork();
4759 dl 1.128 }
4760 dl 1.149 while (result.get() == null) {
4761 dl 1.210 U u;
4762     Node<K,V> p;
4763     if ((p = advance()) == null) {
4764 dl 1.149 propagateCompletion();
4765     break;
4766     }
4767 dl 1.210 if ((u = searchFunction.apply((K)p.key)) != null) {
4768 dl 1.149 if (result.compareAndSet(null, u))
4769     quietlyCompleteRoot();
4770     break;
4771     }
4772 dl 1.119 }
4773     }
4774     }
4775 tim 1.1 }
4776    
4777 dl 1.210 static final class SearchValuesTask<K,V,U>
4778     extends BulkTask<K,V,U> {
4779 dl 1.153 final Function<? super V, ? extends U> searchFunction;
4780 dl 1.119 final AtomicReference<U> result;
4781     SearchValuesTask
4782 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4783 dl 1.153 Function<? super V, ? extends U> searchFunction,
4784 dl 1.119 AtomicReference<U> result) {
4785 dl 1.210 super(p, b, i, f, t);
4786 dl 1.119 this.searchFunction = searchFunction; this.result = result;
4787     }
4788 dl 1.146 public final U getRawResult() { return result.get(); }
4789 jsr166 1.168 public final void compute() {
4790 dl 1.153 final Function<? super V, ? extends U> searchFunction;
4791 dl 1.146 final AtomicReference<U> result;
4792 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
4793     (result = this.result) != null) {
4794 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4795     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4796 dl 1.149 if (result.get() != null)
4797     return;
4798 dl 1.210 addToPendingCount(1);
4799 dl 1.149 new SearchValuesTask<K,V,U>
4800 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4801     searchFunction, result).fork();
4802 dl 1.128 }
4803 dl 1.149 while (result.get() == null) {
4804 dl 1.210 U u;
4805     Node<K,V> p;
4806     if ((p = advance()) == null) {
4807 dl 1.149 propagateCompletion();
4808     break;
4809     }
4810 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
4811 dl 1.149 if (result.compareAndSet(null, u))
4812     quietlyCompleteRoot();
4813     break;
4814     }
4815 dl 1.119 }
4816     }
4817     }
4818     }
4819 tim 1.11
4820 dl 1.210 static final class SearchEntriesTask<K,V,U>
4821     extends BulkTask<K,V,U> {
4822 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
4823 dl 1.119 final AtomicReference<U> result;
4824     SearchEntriesTask
4825 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4826 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
4827 dl 1.119 AtomicReference<U> result) {
4828 dl 1.210 super(p, b, i, f, t);
4829 dl 1.119 this.searchFunction = searchFunction; this.result = result;
4830     }
4831 dl 1.146 public final U getRawResult() { return result.get(); }
4832 jsr166 1.168 public final void compute() {
4833 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
4834 dl 1.146 final AtomicReference<U> result;
4835 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
4836     (result = this.result) != null) {
4837 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4838     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4839 dl 1.149 if (result.get() != null)
4840     return;
4841 dl 1.210 addToPendingCount(1);
4842 dl 1.149 new SearchEntriesTask<K,V,U>
4843 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4844     searchFunction, result).fork();
4845 dl 1.128 }
4846 dl 1.149 while (result.get() == null) {
4847 dl 1.210 U u;
4848     Node<K,V> p;
4849     if ((p = advance()) == null) {
4850 dl 1.149 propagateCompletion();
4851     break;
4852     }
4853 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
4854 dl 1.149 if (result.compareAndSet(null, u))
4855     quietlyCompleteRoot();
4856     return;
4857     }
4858 dl 1.119 }
4859     }
4860     }
4861     }
4862 tim 1.1
4863 dl 1.210 static final class SearchMappingsTask<K,V,U>
4864     extends BulkTask<K,V,U> {
4865 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4866 dl 1.119 final AtomicReference<U> result;
4867     SearchMappingsTask
4868 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4869 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
4870 dl 1.119 AtomicReference<U> result) {
4871 dl 1.210 super(p, b, i, f, t);
4872 dl 1.119 this.searchFunction = searchFunction; this.result = result;
4873     }
4874 dl 1.146 public final U getRawResult() { return result.get(); }
4875 jsr166 1.168 public final void compute() {
4876 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4877 dl 1.146 final AtomicReference<U> result;
4878 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
4879     (result = this.result) != null) {
4880 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4881     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4882 dl 1.149 if (result.get() != null)
4883     return;
4884 dl 1.210 addToPendingCount(1);
4885 dl 1.149 new SearchMappingsTask<K,V,U>
4886 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4887     searchFunction, result).fork();
4888 dl 1.128 }
4889 dl 1.149 while (result.get() == null) {
4890 dl 1.210 U u;
4891     Node<K,V> p;
4892     if ((p = advance()) == null) {
4893 dl 1.149 propagateCompletion();
4894     break;
4895     }
4896 dl 1.210 if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
4897 dl 1.149 if (result.compareAndSet(null, u))
4898     quietlyCompleteRoot();
4899     break;
4900     }
4901 dl 1.119 }
4902     }
4903 tim 1.1 }
4904 dl 1.119 }
4905 tim 1.1
4906 dl 1.210 static final class ReduceKeysTask<K,V>
4907     extends BulkTask<K,V,K> {
4908 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
4909 dl 1.119 K result;
4910 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
4911 dl 1.119 ReduceKeysTask
4912 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4913 dl 1.128 ReduceKeysTask<K,V> nextRight,
4914 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
4915 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
4916 dl 1.119 this.reducer = reducer;
4917     }
4918 dl 1.146 public final K getRawResult() { return result; }
4919 dl 1.210 public final void compute() {
4920 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
4921 dl 1.149 if ((reducer = this.reducer) != null) {
4922 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4923     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4924     addToPendingCount(1);
4925 dl 1.149 (rights = new ReduceKeysTask<K,V>
4926 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4927     rights, reducer)).fork();
4928     }
4929     K r = null;
4930     for (Node<K,V> p; (p = advance()) != null; ) {
4931     K u = (K)p.key;
4932 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
4933 dl 1.149 }
4934     result = r;
4935     CountedCompleter<?> c;
4936     for (c = firstComplete(); c != null; c = c.nextComplete()) {
4937     ReduceKeysTask<K,V>
4938     t = (ReduceKeysTask<K,V>)c,
4939     s = t.rights;
4940     while (s != null) {
4941     K tr, sr;
4942     if ((sr = s.result) != null)
4943     t.result = (((tr = t.result) == null) ? sr :
4944     reducer.apply(tr, sr));
4945     s = t.rights = s.nextRight;
4946     }
4947 dl 1.99 }
4948 dl 1.138 }
4949 tim 1.1 }
4950 dl 1.119 }
4951 tim 1.1
4952 dl 1.210 static final class ReduceValuesTask<K,V>
4953     extends BulkTask<K,V,V> {
4954 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
4955 dl 1.119 V result;
4956 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
4957 dl 1.119 ReduceValuesTask
4958 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4959 dl 1.128 ReduceValuesTask<K,V> nextRight,
4960 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
4961 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
4962 dl 1.119 this.reducer = reducer;
4963     }
4964 dl 1.146 public final V getRawResult() { return result; }
4965 dl 1.210 public final void compute() {
4966 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
4967 dl 1.149 if ((reducer = this.reducer) != null) {
4968 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4969     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970     addToPendingCount(1);
4971 dl 1.149 (rights = new ReduceValuesTask<K,V>
4972 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4973     rights, reducer)).fork();
4974     }
4975     V r = null;
4976     for (Node<K,V> p; (p = advance()) != null; ) {
4977     V v = p.val;
4978 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
4979 dl 1.210 }
4980 dl 1.149 result = r;
4981     CountedCompleter<?> c;
4982     for (c = firstComplete(); c != null; c = c.nextComplete()) {
4983     ReduceValuesTask<K,V>
4984     t = (ReduceValuesTask<K,V>)c,
4985     s = t.rights;
4986     while (s != null) {
4987     V tr, sr;
4988     if ((sr = s.result) != null)
4989     t.result = (((tr = t.result) == null) ? sr :
4990     reducer.apply(tr, sr));
4991     s = t.rights = s.nextRight;
4992     }
4993 dl 1.119 }
4994     }
4995 tim 1.1 }
4996 dl 1.119 }
4997 tim 1.1
4998 dl 1.210 static final class ReduceEntriesTask<K,V>
4999     extends BulkTask<K,V,Map.Entry<K,V>> {
5000 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5001 dl 1.119 Map.Entry<K,V> result;
5002 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5003 dl 1.119 ReduceEntriesTask
5004 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5005 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5006 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5007 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5008 dl 1.119 this.reducer = reducer;
5009     }
5010 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5011 dl 1.210 public final void compute() {
5012 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5013 dl 1.149 if ((reducer = this.reducer) != null) {
5014 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5015     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5016     addToPendingCount(1);
5017 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5018 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5019     rights, reducer)).fork();
5020     }
5021 dl 1.149 Map.Entry<K,V> r = null;
5022 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5023     r = (r == null) ? p : reducer.apply(r, p);
5024 dl 1.149 result = r;
5025     CountedCompleter<?> c;
5026     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5027     ReduceEntriesTask<K,V>
5028     t = (ReduceEntriesTask<K,V>)c,
5029     s = t.rights;
5030     while (s != null) {
5031     Map.Entry<K,V> tr, sr;
5032     if ((sr = s.result) != null)
5033     t.result = (((tr = t.result) == null) ? sr :
5034     reducer.apply(tr, sr));
5035     s = t.rights = s.nextRight;
5036     }
5037 dl 1.119 }
5038 dl 1.138 }
5039 dl 1.119 }
5040     }
5041 dl 1.99
5042 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5043     extends BulkTask<K,V,U> {
5044 dl 1.153 final Function<? super K, ? extends U> transformer;
5045     final BiFunction<? super U, ? super U, ? extends U> reducer;
5046 dl 1.119 U result;
5047 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5048 dl 1.119 MapReduceKeysTask
5049 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5050 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5051 dl 1.153 Function<? super K, ? extends U> transformer,
5052     BiFunction<? super U, ? super U, ? extends U> reducer) {
5053 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5054 dl 1.119 this.transformer = transformer;
5055     this.reducer = reducer;
5056     }
5057 dl 1.146 public final U getRawResult() { return result; }
5058 dl 1.210 public final void compute() {
5059 dl 1.153 final Function<? super K, ? extends U> transformer;
5060     final BiFunction<? super U, ? super U, ? extends U> reducer;
5061 dl 1.149 if ((transformer = this.transformer) != null &&
5062     (reducer = this.reducer) != null) {
5063 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5064     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5065     addToPendingCount(1);
5066 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5067 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5068     rights, transformer, reducer)).fork();
5069     }
5070     U r = null;
5071     for (Node<K,V> p; (p = advance()) != null; ) {
5072     U u;
5073     if ((u = transformer.apply((K)p.key)) != null)
5074 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5075     }
5076     result = r;
5077     CountedCompleter<?> c;
5078     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5079     MapReduceKeysTask<K,V,U>
5080     t = (MapReduceKeysTask<K,V,U>)c,
5081     s = t.rights;
5082     while (s != null) {
5083     U tr, sr;
5084     if ((sr = s.result) != null)
5085     t.result = (((tr = t.result) == null) ? sr :
5086     reducer.apply(tr, sr));
5087     s = t.rights = s.nextRight;
5088     }
5089 dl 1.119 }
5090 dl 1.138 }
5091 tim 1.1 }
5092 dl 1.4 }
5093    
5094 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5095     extends BulkTask<K,V,U> {
5096 dl 1.153 final Function<? super V, ? extends U> transformer;
5097     final BiFunction<? super U, ? super U, ? extends U> reducer;
5098 dl 1.119 U result;
5099 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5100 dl 1.119 MapReduceValuesTask
5101 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5102 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5103 dl 1.153 Function<? super V, ? extends U> transformer,
5104     BiFunction<? super U, ? super U, ? extends U> reducer) {
5105 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5106 dl 1.119 this.transformer = transformer;
5107     this.reducer = reducer;
5108     }
5109 dl 1.146 public final U getRawResult() { return result; }
5110 dl 1.210 public final void compute() {
5111 dl 1.153 final Function<? super V, ? extends U> transformer;
5112     final BiFunction<? super U, ? super U, ? extends U> reducer;
5113 dl 1.149 if ((transformer = this.transformer) != null &&
5114     (reducer = this.reducer) != null) {
5115 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5116     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5117     addToPendingCount(1);
5118 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5119 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5120     rights, transformer, reducer)).fork();
5121     }
5122     U r = null;
5123     for (Node<K,V> p; (p = advance()) != null; ) {
5124     U u;
5125     if ((u = transformer.apply(p.val)) != null)
5126 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5127     }
5128     result = r;
5129     CountedCompleter<?> c;
5130     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5131     MapReduceValuesTask<K,V,U>
5132     t = (MapReduceValuesTask<K,V,U>)c,
5133     s = t.rights;
5134     while (s != null) {
5135     U tr, sr;
5136     if ((sr = s.result) != null)
5137     t.result = (((tr = t.result) == null) ? sr :
5138     reducer.apply(tr, sr));
5139     s = t.rights = s.nextRight;
5140     }
5141 dl 1.119 }
5142     }
5143     }
5144 dl 1.4 }
5145    
5146 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5147     extends BulkTask<K,V,U> {
5148 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5149     final BiFunction<? super U, ? super U, ? extends U> reducer;
5150 dl 1.119 U result;
5151 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5152 dl 1.119 MapReduceEntriesTask
5153 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5154 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5155 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5156     BiFunction<? super U, ? super U, ? extends U> reducer) {
5157 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5158 dl 1.119 this.transformer = transformer;
5159     this.reducer = reducer;
5160     }
5161 dl 1.146 public final U getRawResult() { return result; }
5162 dl 1.210 public final void compute() {
5163 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5164     final BiFunction<? super U, ? super U, ? extends U> reducer;
5165 dl 1.149 if ((transformer = this.transformer) != null &&
5166     (reducer = this.reducer) != null) {
5167 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5168     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5169     addToPendingCount(1);
5170 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5171 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5172     rights, transformer, reducer)).fork();
5173     }
5174     U r = null;
5175     for (Node<K,V> p; (p = advance()) != null; ) {
5176     U u;
5177     if ((u = transformer.apply(p)) != null)
5178 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5179     }
5180     result = r;
5181     CountedCompleter<?> c;
5182     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5183     MapReduceEntriesTask<K,V,U>
5184     t = (MapReduceEntriesTask<K,V,U>)c,
5185     s = t.rights;
5186     while (s != null) {
5187     U tr, sr;
5188     if ((sr = s.result) != null)
5189     t.result = (((tr = t.result) == null) ? sr :
5190     reducer.apply(tr, sr));
5191     s = t.rights = s.nextRight;
5192     }
5193 dl 1.119 }
5194 dl 1.138 }
5195 dl 1.119 }
5196 dl 1.4 }
5197 tim 1.1
5198 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5199     extends BulkTask<K,V,U> {
5200 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5201     final BiFunction<? super U, ? super U, ? extends U> reducer;
5202 dl 1.119 U result;
5203 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5204 dl 1.119 MapReduceMappingsTask
5205 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5206 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5207 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5208     BiFunction<? super U, ? super U, ? extends U> reducer) {
5209 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5210 dl 1.119 this.transformer = transformer;
5211     this.reducer = reducer;
5212     }
5213 dl 1.146 public final U getRawResult() { return result; }
5214 dl 1.210 public final void compute() {
5215 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5216     final BiFunction<? super U, ? super U, ? extends U> reducer;
5217 dl 1.149 if ((transformer = this.transformer) != null &&
5218     (reducer = this.reducer) != null) {
5219 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5220     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5221     addToPendingCount(1);
5222 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5223 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5224     rights, transformer, reducer)).fork();
5225     }
5226     U r = null;
5227     for (Node<K,V> p; (p = advance()) != null; ) {
5228     U u;
5229     if ((u = transformer.apply((K)p.key, p.val)) != null)
5230 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5231     }
5232     result = r;
5233     CountedCompleter<?> c;
5234     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5235     MapReduceMappingsTask<K,V,U>
5236     t = (MapReduceMappingsTask<K,V,U>)c,
5237     s = t.rights;
5238     while (s != null) {
5239     U tr, sr;
5240     if ((sr = s.result) != null)
5241     t.result = (((tr = t.result) == null) ? sr :
5242     reducer.apply(tr, sr));
5243     s = t.rights = s.nextRight;
5244     }
5245 dl 1.119 }
5246     }
5247     }
5248     }
5249 jsr166 1.114
5250 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5251     extends BulkTask<K,V,Double> {
5252 dl 1.171 final ToDoubleFunction<? super K> transformer;
5253 dl 1.153 final DoubleBinaryOperator reducer;
5254 dl 1.119 final double basis;
5255     double result;
5256 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5257 dl 1.119 MapReduceKeysToDoubleTask
5258 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5259 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5260 dl 1.171 ToDoubleFunction<? super K> transformer,
5261 dl 1.119 double basis,
5262 dl 1.153 DoubleBinaryOperator reducer) {
5263 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5264 dl 1.119 this.transformer = transformer;
5265     this.basis = basis; this.reducer = reducer;
5266     }
5267 dl 1.146 public final Double getRawResult() { return result; }
5268 dl 1.210 public final void compute() {
5269 dl 1.171 final ToDoubleFunction<? super K> transformer;
5270 dl 1.153 final DoubleBinaryOperator reducer;
5271 dl 1.149 if ((transformer = this.transformer) != null &&
5272     (reducer = this.reducer) != null) {
5273     double r = this.basis;
5274 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5275     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5276     addToPendingCount(1);
5277 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5278 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5279     rights, transformer, r, reducer)).fork();
5280     }
5281     for (Node<K,V> p; (p = advance()) != null; )
5282     r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5283 dl 1.149 result = r;
5284     CountedCompleter<?> c;
5285     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5286     MapReduceKeysToDoubleTask<K,V>
5287     t = (MapReduceKeysToDoubleTask<K,V>)c,
5288     s = t.rights;
5289     while (s != null) {
5290 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5291 dl 1.149 s = t.rights = s.nextRight;
5292     }
5293 dl 1.119 }
5294 dl 1.138 }
5295 dl 1.79 }
5296 dl 1.119 }
5297 dl 1.79
5298 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5299     extends BulkTask<K,V,Double> {
5300 dl 1.171 final ToDoubleFunction<? super V> transformer;
5301 dl 1.153 final DoubleBinaryOperator reducer;
5302 dl 1.119 final double basis;
5303     double result;
5304 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5305 dl 1.119 MapReduceValuesToDoubleTask
5306 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5307 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5308 dl 1.171 ToDoubleFunction<? super V> transformer,
5309 dl 1.119 double basis,
5310 dl 1.153 DoubleBinaryOperator reducer) {
5311 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5312 dl 1.119 this.transformer = transformer;
5313     this.basis = basis; this.reducer = reducer;
5314     }
5315 dl 1.146 public final Double getRawResult() { return result; }
5316 dl 1.210 public final void compute() {
5317 dl 1.171 final ToDoubleFunction<? super V> transformer;
5318 dl 1.153 final DoubleBinaryOperator reducer;
5319 dl 1.149 if ((transformer = this.transformer) != null &&
5320     (reducer = this.reducer) != null) {
5321     double r = this.basis;
5322 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5323     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5324     addToPendingCount(1);
5325 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5326 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5327     rights, transformer, r, reducer)).fork();
5328     }
5329     for (Node<K,V> p; (p = advance()) != null; )
5330     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5331 dl 1.149 result = r;
5332     CountedCompleter<?> c;
5333     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5334     MapReduceValuesToDoubleTask<K,V>
5335     t = (MapReduceValuesToDoubleTask<K,V>)c,
5336     s = t.rights;
5337     while (s != null) {
5338 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5339 dl 1.149 s = t.rights = s.nextRight;
5340     }
5341 dl 1.119 }
5342     }
5343 dl 1.30 }
5344 dl 1.79 }
5345 dl 1.30
5346 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5347     extends BulkTask<K,V,Double> {
5348 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5349 dl 1.153 final DoubleBinaryOperator reducer;
5350 dl 1.119 final double basis;
5351     double result;
5352 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5353 dl 1.119 MapReduceEntriesToDoubleTask
5354 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5355 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5356 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5357 dl 1.119 double basis,
5358 dl 1.153 DoubleBinaryOperator reducer) {
5359 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5360 dl 1.119 this.transformer = transformer;
5361     this.basis = basis; this.reducer = reducer;
5362     }
5363 dl 1.146 public final Double getRawResult() { return result; }
5364 dl 1.210 public final void compute() {
5365 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5366 dl 1.153 final DoubleBinaryOperator reducer;
5367 dl 1.149 if ((transformer = this.transformer) != null &&
5368     (reducer = this.reducer) != null) {
5369     double r = this.basis;
5370 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5371     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5372     addToPendingCount(1);
5373 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5374 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5375     rights, transformer, r, reducer)).fork();
5376     }
5377     for (Node<K,V> p; (p = advance()) != null; )
5378     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5379 dl 1.149 result = r;
5380     CountedCompleter<?> c;
5381     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5382     MapReduceEntriesToDoubleTask<K,V>
5383     t = (MapReduceEntriesToDoubleTask<K,V>)c,
5384     s = t.rights;
5385     while (s != null) {
5386 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5387 dl 1.149 s = t.rights = s.nextRight;
5388     }
5389 dl 1.119 }
5390 dl 1.138 }
5391 dl 1.30 }
5392 tim 1.1 }
5393    
5394 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5395     extends BulkTask<K,V,Double> {
5396 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5397 dl 1.153 final DoubleBinaryOperator reducer;
5398 dl 1.119 final double basis;
5399     double result;
5400 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5401 dl 1.119 MapReduceMappingsToDoubleTask
5402 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5403 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5404 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5405 dl 1.119 double basis,
5406 dl 1.153 DoubleBinaryOperator reducer) {
5407 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5408 dl 1.119 this.transformer = transformer;
5409     this.basis = basis; this.reducer = reducer;
5410     }
5411 dl 1.146 public final Double getRawResult() { return result; }
5412 dl 1.210 public final void compute() {
5413 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5414 dl 1.153 final DoubleBinaryOperator reducer;
5415 dl 1.149 if ((transformer = this.transformer) != null &&
5416     (reducer = this.reducer) != null) {
5417     double r = this.basis;
5418 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5419     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5420     addToPendingCount(1);
5421 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5422 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5423     rights, transformer, r, reducer)).fork();
5424     }
5425     for (Node<K,V> p; (p = advance()) != null; )
5426     r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5427 dl 1.149 result = r;
5428     CountedCompleter<?> c;
5429     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5430     MapReduceMappingsToDoubleTask<K,V>
5431     t = (MapReduceMappingsToDoubleTask<K,V>)c,
5432     s = t.rights;
5433     while (s != null) {
5434 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5435 dl 1.149 s = t.rights = s.nextRight;
5436     }
5437 dl 1.119 }
5438     }
5439 dl 1.4 }
5440 dl 1.119 }
5441    
5442 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5443     extends BulkTask<K,V,Long> {
5444 dl 1.171 final ToLongFunction<? super K> transformer;
5445 dl 1.153 final LongBinaryOperator reducer;
5446 dl 1.119 final long basis;
5447     long result;
5448 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5449 dl 1.119 MapReduceKeysToLongTask
5450 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5451 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5452 dl 1.171 ToLongFunction<? super K> transformer,
5453 dl 1.119 long basis,
5454 dl 1.153 LongBinaryOperator reducer) {
5455 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5456 dl 1.119 this.transformer = transformer;
5457     this.basis = basis; this.reducer = reducer;
5458     }
5459 dl 1.146 public final Long getRawResult() { return result; }
5460 dl 1.210 public final void compute() {
5461 dl 1.171 final ToLongFunction<? super K> transformer;
5462 dl 1.153 final LongBinaryOperator reducer;
5463 dl 1.149 if ((transformer = this.transformer) != null &&
5464     (reducer = this.reducer) != null) {
5465     long r = this.basis;
5466 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5467     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5468     addToPendingCount(1);
5469 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5470 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5471     rights, transformer, r, reducer)).fork();
5472     }
5473     for (Node<K,V> p; (p = advance()) != null; )
5474     r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5475 dl 1.149 result = r;
5476     CountedCompleter<?> c;
5477     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5478     MapReduceKeysToLongTask<K,V>
5479     t = (MapReduceKeysToLongTask<K,V>)c,
5480     s = t.rights;
5481     while (s != null) {
5482 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5483 dl 1.149 s = t.rights = s.nextRight;
5484     }
5485 dl 1.119 }
5486 dl 1.138 }
5487 dl 1.4 }
5488 dl 1.119 }
5489    
5490 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5491     extends BulkTask<K,V,Long> {
5492 dl 1.171 final ToLongFunction<? super V> transformer;
5493 dl 1.153 final LongBinaryOperator reducer;
5494 dl 1.119 final long basis;
5495     long result;
5496 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5497 dl 1.119 MapReduceValuesToLongTask
5498 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5499 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5500 dl 1.171 ToLongFunction<? super V> transformer,
5501 dl 1.119 long basis,
5502 dl 1.153 LongBinaryOperator reducer) {
5503 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5504 dl 1.119 this.transformer = transformer;
5505     this.basis = basis; this.reducer = reducer;
5506     }
5507 dl 1.146 public final Long getRawResult() { return result; }
5508 dl 1.210 public final void compute() {
5509 dl 1.171 final ToLongFunction<? super V> transformer;
5510 dl 1.153 final LongBinaryOperator reducer;
5511 dl 1.149 if ((transformer = this.transformer) != null &&
5512     (reducer = this.reducer) != null) {
5513     long r = this.basis;
5514 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5515     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5516     addToPendingCount(1);
5517 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5518 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5519     rights, transformer, r, reducer)).fork();
5520     }
5521     for (Node<K,V> p; (p = advance()) != null; )
5522     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5523 dl 1.149 result = r;
5524     CountedCompleter<?> c;
5525     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526     MapReduceValuesToLongTask<K,V>
5527     t = (MapReduceValuesToLongTask<K,V>)c,
5528     s = t.rights;
5529     while (s != null) {
5530 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5531 dl 1.149 s = t.rights = s.nextRight;
5532     }
5533 dl 1.119 }
5534     }
5535 jsr166 1.95 }
5536 dl 1.119 }
5537    
5538 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
5539     extends BulkTask<K,V,Long> {
5540 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5541 dl 1.153 final LongBinaryOperator reducer;
5542 dl 1.119 final long basis;
5543     long result;
5544 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5545 dl 1.119 MapReduceEntriesToLongTask
5546 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5547 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
5548 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5549 dl 1.119 long basis,
5550 dl 1.153 LongBinaryOperator reducer) {
5551 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5552 dl 1.119 this.transformer = transformer;
5553     this.basis = basis; this.reducer = reducer;
5554     }
5555 dl 1.146 public final Long getRawResult() { return result; }
5556 dl 1.210 public final void compute() {
5557 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5558 dl 1.153 final LongBinaryOperator reducer;
5559 dl 1.149 if ((transformer = this.transformer) != null &&
5560     (reducer = this.reducer) != null) {
5561     long r = this.basis;
5562 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5563     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5564     addToPendingCount(1);
5565 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
5566 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5567     rights, transformer, r, reducer)).fork();
5568     }
5569     for (Node<K,V> p; (p = advance()) != null; )
5570     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5571 dl 1.149 result = r;
5572     CountedCompleter<?> c;
5573     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5574     MapReduceEntriesToLongTask<K,V>
5575     t = (MapReduceEntriesToLongTask<K,V>)c,
5576     s = t.rights;
5577     while (s != null) {
5578 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5579 dl 1.149 s = t.rights = s.nextRight;
5580     }
5581 dl 1.119 }
5582 dl 1.138 }
5583 dl 1.4 }
5584 tim 1.1 }
5585    
5586 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
5587     extends BulkTask<K,V,Long> {
5588 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5589 dl 1.153 final LongBinaryOperator reducer;
5590 dl 1.119 final long basis;
5591     long result;
5592 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5593 dl 1.119 MapReduceMappingsToLongTask
5594 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5595 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
5596 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5597 dl 1.119 long basis,
5598 dl 1.153 LongBinaryOperator reducer) {
5599 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5600 dl 1.119 this.transformer = transformer;
5601     this.basis = basis; this.reducer = reducer;
5602     }
5603 dl 1.146 public final Long getRawResult() { return result; }
5604 dl 1.210 public final void compute() {
5605 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5606 dl 1.153 final LongBinaryOperator reducer;
5607 dl 1.149 if ((transformer = this.transformer) != null &&
5608     (reducer = this.reducer) != null) {
5609     long r = this.basis;
5610 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5611     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5612     addToPendingCount(1);
5613 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
5614 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5615     rights, transformer, r, reducer)).fork();
5616     }
5617     for (Node<K,V> p; (p = advance()) != null; )
5618     r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
5619 dl 1.149 result = r;
5620     CountedCompleter<?> c;
5621     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5622     MapReduceMappingsToLongTask<K,V>
5623     t = (MapReduceMappingsToLongTask<K,V>)c,
5624     s = t.rights;
5625     while (s != null) {
5626 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5627 dl 1.149 s = t.rights = s.nextRight;
5628     }
5629 dl 1.119 }
5630     }
5631 dl 1.4 }
5632 tim 1.1 }
5633    
5634 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
5635     extends BulkTask<K,V,Integer> {
5636 dl 1.171 final ToIntFunction<? super K> transformer;
5637 dl 1.153 final IntBinaryOperator reducer;
5638 dl 1.119 final int basis;
5639     int result;
5640 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
5641 dl 1.119 MapReduceKeysToIntTask
5642 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5643 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
5644 dl 1.171 ToIntFunction<? super K> transformer,
5645 dl 1.119 int basis,
5646 dl 1.153 IntBinaryOperator reducer) {
5647 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5648 dl 1.119 this.transformer = transformer;
5649     this.basis = basis; this.reducer = reducer;
5650     }
5651 dl 1.146 public final Integer getRawResult() { return result; }
5652 dl 1.210 public final void compute() {
5653 dl 1.171 final ToIntFunction<? super K> transformer;
5654 dl 1.153 final IntBinaryOperator reducer;
5655 dl 1.149 if ((transformer = this.transformer) != null &&
5656     (reducer = this.reducer) != null) {
5657     int r = this.basis;
5658 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5659     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5660     addToPendingCount(1);
5661 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
5662 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5663     rights, transformer, r, reducer)).fork();
5664     }
5665     for (Node<K,V> p; (p = advance()) != null; )
5666     r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
5667 dl 1.149 result = r;
5668     CountedCompleter<?> c;
5669     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5670     MapReduceKeysToIntTask<K,V>
5671     t = (MapReduceKeysToIntTask<K,V>)c,
5672     s = t.rights;
5673     while (s != null) {
5674 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5675 dl 1.149 s = t.rights = s.nextRight;
5676     }
5677 dl 1.119 }
5678 dl 1.138 }
5679 dl 1.30 }
5680     }
5681    
5682 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
5683     extends BulkTask<K,V,Integer> {
5684 dl 1.171 final ToIntFunction<? super V> transformer;
5685 dl 1.153 final IntBinaryOperator reducer;
5686 dl 1.119 final int basis;
5687     int result;
5688 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
5689 dl 1.119 MapReduceValuesToIntTask
5690 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5691 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
5692 dl 1.171 ToIntFunction<? super V> transformer,
5693 dl 1.119 int basis,
5694 dl 1.153 IntBinaryOperator reducer) {
5695 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5696 dl 1.119 this.transformer = transformer;
5697     this.basis = basis; this.reducer = reducer;
5698     }
5699 dl 1.146 public final Integer getRawResult() { return result; }
5700 dl 1.210 public final void compute() {
5701 dl 1.171 final ToIntFunction<? super V> transformer;
5702 dl 1.153 final IntBinaryOperator reducer;
5703 dl 1.149 if ((transformer = this.transformer) != null &&
5704     (reducer = this.reducer) != null) {
5705     int r = this.basis;
5706 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5707     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5708     addToPendingCount(1);
5709 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
5710 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5711     rights, transformer, r, reducer)).fork();
5712     }
5713     for (Node<K,V> p; (p = advance()) != null; )
5714     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5715 dl 1.149 result = r;
5716     CountedCompleter<?> c;
5717     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5718     MapReduceValuesToIntTask<K,V>
5719     t = (MapReduceValuesToIntTask<K,V>)c,
5720     s = t.rights;
5721     while (s != null) {
5722 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5723 dl 1.149 s = t.rights = s.nextRight;
5724     }
5725 dl 1.119 }
5726 dl 1.2 }
5727 tim 1.1 }
5728     }
5729    
5730 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
5731     extends BulkTask<K,V,Integer> {
5732 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
5733 dl 1.153 final IntBinaryOperator reducer;
5734 dl 1.119 final int basis;
5735     int result;
5736 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5737 dl 1.119 MapReduceEntriesToIntTask
5738 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5739 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
5740 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5741 dl 1.119 int basis,
5742 dl 1.153 IntBinaryOperator reducer) {
5743 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5744 dl 1.119 this.transformer = transformer;
5745     this.basis = basis; this.reducer = reducer;
5746     }
5747 dl 1.146 public final Integer getRawResult() { return result; }
5748 dl 1.210 public final void compute() {
5749 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
5750 dl 1.153 final IntBinaryOperator reducer;
5751 dl 1.149 if ((transformer = this.transformer) != null &&
5752     (reducer = this.reducer) != null) {
5753     int r = this.basis;
5754 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5755     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5756     addToPendingCount(1);
5757 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
5758 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5759     rights, transformer, r, reducer)).fork();
5760     }
5761     for (Node<K,V> p; (p = advance()) != null; )
5762     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5763 dl 1.149 result = r;
5764     CountedCompleter<?> c;
5765     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5766     MapReduceEntriesToIntTask<K,V>
5767     t = (MapReduceEntriesToIntTask<K,V>)c,
5768     s = t.rights;
5769     while (s != null) {
5770 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5771 dl 1.149 s = t.rights = s.nextRight;
5772     }
5773 dl 1.119 }
5774 dl 1.138 }
5775 dl 1.4 }
5776 dl 1.119 }
5777 tim 1.1
5778 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
5779     extends BulkTask<K,V,Integer> {
5780 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
5781 dl 1.153 final IntBinaryOperator reducer;
5782 dl 1.119 final int basis;
5783     int result;
5784 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5785 dl 1.119 MapReduceMappingsToIntTask
5786 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5787 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
5788 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
5789 dl 1.119 int basis,
5790 dl 1.153 IntBinaryOperator reducer) {
5791 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5792 dl 1.119 this.transformer = transformer;
5793     this.basis = basis; this.reducer = reducer;
5794     }
5795 dl 1.146 public final Integer getRawResult() { return result; }
5796 dl 1.210 public final void compute() {
5797 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
5798 dl 1.153 final IntBinaryOperator reducer;
5799 dl 1.149 if ((transformer = this.transformer) != null &&
5800     (reducer = this.reducer) != null) {
5801     int r = this.basis;
5802 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5803     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5804     addToPendingCount(1);
5805 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
5806 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5807     rights, transformer, r, reducer)).fork();
5808     }
5809     for (Node<K,V> p; (p = advance()) != null; )
5810     r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
5811 dl 1.149 result = r;
5812     CountedCompleter<?> c;
5813     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5814     MapReduceMappingsToIntTask<K,V>
5815     t = (MapReduceMappingsToIntTask<K,V>)c,
5816     s = t.rights;
5817     while (s != null) {
5818 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5819 dl 1.149 s = t.rights = s.nextRight;
5820     }
5821 dl 1.119 }
5822 dl 1.138 }
5823 tim 1.1 }
5824     }
5825 dl 1.99
5826     // Unsafe mechanics
5827 dl 1.149 private static final sun.misc.Unsafe U;
5828     private static final long SIZECTL;
5829     private static final long TRANSFERINDEX;
5830     private static final long TRANSFERORIGIN;
5831     private static final long BASECOUNT;
5832 dl 1.153 private static final long CELLSBUSY;
5833 dl 1.149 private static final long CELLVALUE;
5834 dl 1.119 private static final long ABASE;
5835     private static final int ASHIFT;
5836 dl 1.99
5837     static {
5838     try {
5839 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
5840 dl 1.119 Class<?> k = ConcurrentHashMap.class;
5841 dl 1.149 SIZECTL = U.objectFieldOffset
5842 dl 1.119 (k.getDeclaredField("sizeCtl"));
5843 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
5844     (k.getDeclaredField("transferIndex"));
5845     TRANSFERORIGIN = U.objectFieldOffset
5846     (k.getDeclaredField("transferOrigin"));
5847     BASECOUNT = U.objectFieldOffset
5848     (k.getDeclaredField("baseCount"));
5849 dl 1.153 CELLSBUSY = U.objectFieldOffset
5850     (k.getDeclaredField("cellsBusy"));
5851     Class<?> ck = Cell.class;
5852 dl 1.149 CELLVALUE = U.objectFieldOffset
5853     (ck.getDeclaredField("value"));
5854 dl 1.119 Class<?> sc = Node[].class;
5855 dl 1.149 ABASE = U.arrayBaseOffset(sc);
5856 jsr166 1.167 int scale = U.arrayIndexScale(sc);
5857     if ((scale & (scale - 1)) != 0)
5858     throw new Error("data type scale not a power of two");
5859     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
5860 dl 1.99 } catch (Exception e) {
5861     throw new Error(e);
5862     }
5863     }
5864 jsr166 1.152 }