ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.224
Committed: Tue Jun 18 17:11:45 2013 UTC (10 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.223: +86 -79 lines
Log Message:
Copy-edit pass

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.119 import java.util.Arrays;
14     import java.util.Collection;
15 dl 1.208 import java.util.Comparator;
16     import java.util.ConcurrentModificationException;
17     import java.util.Enumeration;
18     import java.util.HashMap;
19 dl 1.119 import java.util.Hashtable;
20     import java.util.Iterator;
21 dl 1.208 import java.util.Map;
22 dl 1.119 import java.util.NoSuchElementException;
23 dl 1.208 import java.util.Set;
24     import java.util.Spliterator;
25 dl 1.119 import java.util.concurrent.ConcurrentMap;
26 dl 1.208 import java.util.concurrent.ForkJoinPool;
27     import java.util.concurrent.atomic.AtomicReference;
28 dl 1.222 import java.util.concurrent.locks.LockSupport;
29 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
30     import java.util.function.BiConsumer;
31     import java.util.function.BiFunction;
32     import java.util.function.BinaryOperator;
33     import java.util.function.Consumer;
34     import java.util.function.DoubleBinaryOperator;
35     import java.util.function.Function;
36     import java.util.function.IntBinaryOperator;
37     import java.util.function.LongBinaryOperator;
38     import java.util.function.ToDoubleBiFunction;
39     import java.util.function.ToDoubleFunction;
40     import java.util.function.ToIntBiFunction;
41     import java.util.function.ToIntFunction;
42     import java.util.function.ToLongBiFunction;
43     import java.util.function.ToLongFunction;
44 dl 1.210 import java.util.stream.Stream;
45 tim 1.1
46     /**
47 dl 1.4 * A hash table supporting full concurrency of retrievals and
48 dl 1.119 * high expected concurrency for updates. This class obeys the
49 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
50 dl 1.19 * includes versions of methods corresponding to each method of
51 dl 1.119 * {@code Hashtable}. However, even though all operations are
52 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
53     * and there is <em>not</em> any support for locking the entire table
54     * in a way that prevents all access. This class is fully
55 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
56 dl 1.4 * thread safety but not on its synchronization details.
57 tim 1.11 *
58 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
59 dl 1.119 * block, so may overlap with update operations (including {@code put}
60     * and {@code remove}). Retrievals reflect the results of the most
61     * recently <em>completed</em> update operations holding upon their
62 dl 1.126 * onset. (More formally, an update operation for a given key bears a
63     * <em>happens-before</em> relation with any (non-null) retrieval for
64     * that key reporting the updated value.) For aggregate operations
65     * such as {@code putAll} and {@code clear}, concurrent retrievals may
66     * reflect insertion or removal of only some entries. Similarly,
67     * Iterators and Enumerations return elements reflecting the state of
68     * the hash table at some point at or since the creation of the
69     * iterator/enumeration. They do <em>not</em> throw {@link
70     * ConcurrentModificationException}. However, iterators are designed
71     * to be used by only one thread at a time. Bear in mind that the
72     * results of aggregate status methods including {@code size}, {@code
73     * isEmpty}, and {@code containsValue} are typically useful only when
74     * a map is not undergoing concurrent updates in other threads.
75     * Otherwise the results of these methods reflect transient states
76     * that may be adequate for monitoring or estimation purposes, but not
77     * for program control.
78 tim 1.1 *
79 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
80 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
81     * the same slot modulo the table size), with the expected average
82     * effect of maintaining roughly two bins per mapping (corresponding
83     * to a 0.75 load factor threshold for resizing). There may be much
84     * variance around this average as mappings are added and removed, but
85     * overall, this maintains a commonly accepted time/space tradeoff for
86     * hash tables. However, resizing this or any other kind of hash
87     * table may be a relatively slow operation. When possible, it is a
88     * good idea to provide a size estimate as an optional {@code
89     * initialCapacity} constructor argument. An additional optional
90     * {@code loadFactor} constructor argument provides a further means of
91     * customizing initial table capacity by specifying the table density
92     * to be used in calculating the amount of space to allocate for the
93     * given number of elements. Also, for compatibility with previous
94     * versions of this class, constructors may optionally specify an
95     * expected {@code concurrencyLevel} as an additional hint for
96     * internal sizing. Note that using many keys with exactly the same
97     * {@code hashCode()} is a sure way to slow down performance of any
98 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
99     * this class may use comparison order among keys to help break ties.
100 tim 1.1 *
101 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103     * (using {@link #keySet(Object)} when only keys are of interest, and the
104     * mapped values are (perhaps transiently) not used or all take the
105     * same mapping value.
106     *
107 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 dl 1.153 * form of histogram or multiset) by using {@link
109     * java.util.concurrent.atomic.LongAdder} values and initializing via
110 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 dl 1.137 *
114 dl 1.45 * <p>This class and its views and iterators implement all of the
115     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116     * interfaces.
117 dl 1.23 *
118 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 tim 1.1 *
121 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122     * operations that, unlike most {@link Stream} methods, are designed
123     * to be safely, and often sensibly, applied even with maps that are
124     * being concurrently updated by other threads; for example, when
125     * computing a snapshot summary of the values in a shared registry.
126     * There are three kinds of operation, each with four forms, accepting
127     * functions with Keys, Values, Entries, and (Key, Value) arguments
128     * and/or return values. Because the elements of a ConcurrentHashMap
129     * are not ordered in any particular way, and may be processed in
130     * different orders in different parallel executions, the correctness
131     * of supplied functions should not depend on any ordering, or on any
132     * other objects or values that may transiently change while
133     * computation is in progress; and except for forEach actions, should
134     * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
135     * objects do not support method {@code setValue}.
136 dl 1.137 *
137     * <ul>
138     * <li> forEach: Perform a given action on each element.
139     * A variant form applies a given transformation on each element
140     * before performing the action.</li>
141     *
142     * <li> search: Return the first available non-null result of
143     * applying a given function on each element; skipping further
144     * search when a result is found.</li>
145     *
146     * <li> reduce: Accumulate each element. The supplied reduction
147     * function cannot rely on ordering (more formally, it should be
148     * both associative and commutative). There are five variants:
149     *
150     * <ul>
151     *
152     * <li> Plain reductions. (There is not a form of this method for
153     * (key, value) function arguments since there is no corresponding
154     * return type.)</li>
155     *
156     * <li> Mapped reductions that accumulate the results of a given
157     * function applied to each element.</li>
158     *
159     * <li> Reductions to scalar doubles, longs, and ints, using a
160     * given basis value.</li>
161     *
162 jsr166 1.178 * </ul>
163 dl 1.137 * </li>
164     * </ul>
165     *
166 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
167     * argument. Methods proceed sequentially if the current map size is
168     * estimated to be less than the given threshold. Using a value of
169     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
171 dl 1.219 * enough subtasks to fully utilize the {@link
172     * ForkJoinPool#commonPool()} that is used for all parallel
173     * computations. Normally, you would initially choose one of these
174     * extreme values, and then measure performance of using in-between
175     * values that trade off overhead versus throughput.
176 dl 1.210 *
177 dl 1.137 * <p>The concurrency properties of bulk operations follow
178     * from those of ConcurrentHashMap: Any non-null result returned
179     * from {@code get(key)} and related access methods bears a
180     * happens-before relation with the associated insertion or
181     * update. The result of any bulk operation reflects the
182     * composition of these per-element relations (but is not
183     * necessarily atomic with respect to the map as a whole unless it
184     * is somehow known to be quiescent). Conversely, because keys
185     * and values in the map are never null, null serves as a reliable
186     * atomic indicator of the current lack of any result. To
187     * maintain this property, null serves as an implicit basis for
188     * all non-scalar reduction operations. For the double, long, and
189     * int versions, the basis should be one that, when combined with
190     * any other value, returns that other value (more formally, it
191     * should be the identity element for the reduction). Most common
192     * reductions have these properties; for example, computing a sum
193     * with basis 0 or a minimum with basis MAX_VALUE.
194     *
195     * <p>Search and transformation functions provided as arguments
196     * should similarly return null to indicate the lack of any result
197     * (in which case it is not used). In the case of mapped
198     * reductions, this also enables transformations to serve as
199     * filters, returning null (or, in the case of primitive
200     * specializations, the identity basis) if the element should not
201     * be combined. You can create compound transformations and
202     * filterings by composing them yourself under this "null means
203     * there is nothing there now" rule before using them in search or
204     * reduce operations.
205     *
206     * <p>Methods accepting and/or returning Entry arguments maintain
207     * key-value associations. They may be useful for example when
208     * finding the key for the greatest value. Note that "plain" Entry
209     * arguments can be supplied using {@code new
210     * AbstractMap.SimpleEntry(k,v)}.
211     *
212 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
213 dl 1.137 * exception encountered in the application of a supplied
214     * function. Bear in mind when handling such exceptions that other
215     * concurrently executing functions could also have thrown
216     * exceptions, or would have done so if the first exception had
217     * not occurred.
218     *
219 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
220     * but not guaranteed. Parallel operations involving brief functions
221     * on small maps may execute more slowly than sequential forms if the
222     * underlying work to parallelize the computation is more expensive
223     * than the computation itself. Similarly, parallelization may not
224     * lead to much actual parallelism if all processors are busy
225     * performing unrelated tasks.
226 dl 1.137 *
227 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
228 dl 1.137 *
229 dl 1.42 * <p>This class is a member of the
230 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 dl 1.42 * Java Collections Framework</a>.
232     *
233 dl 1.8 * @since 1.5
234     * @author Doug Lea
235 dl 1.27 * @param <K> the type of keys maintained by this map
236 jsr166 1.64 * @param <V> the type of mapped values
237 dl 1.8 */
238 dl 1.210 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
240 tim 1.1
241     /*
242 dl 1.119 * Overview:
243     *
244     * The primary design goal of this hash table is to maintain
245     * concurrent readability (typically method get(), but also
246     * iterators and related methods) while minimizing update
247     * contention. Secondary goals are to keep space consumption about
248     * the same or better than java.util.HashMap, and to support high
249     * initial insertion rates on an empty table by many threads.
250     *
251 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
252     * key-value mapping is held in a Node. Most nodes are instances
253     * of the basic Node class with hash, key, value, and next
254     * fields. However, various subclasses exist: TreeNodes are
255 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
256     * of sets of TreeNodes. ForwardingNodes are placed at the heads
257     * of bins during resizing. ReservationNodes are used as
258     * placeholders while establishing values in computeIfAbsent and
259 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
260 dl 1.222 * ReservationNode do not hold normal user keys, values, or
261     * hashes, and are readily distinguishable during search etc
262     * because they have negative hash fields and null key and value
263     * fields. (These special nodes are either uncommon or transient,
264     * so the impact of carrying around some unused fields is
265     * insignficant.)
266 dl 1.119 *
267     * The table is lazily initialized to a power-of-two size upon the
268     * first insertion. Each bin in the table normally contains a
269     * list of Nodes (most often, the list has only zero or one Node).
270     * Table accesses require volatile/atomic reads, writes, and
271     * CASes. Because there is no other way to arrange this without
272     * adding further indirections, we use intrinsics
273 dl 1.210 * (sun.misc.Unsafe) operations.
274 dl 1.119 *
275 dl 1.149 * We use the top (sign) bit of Node hash fields for control
276     * purposes -- it is available anyway because of addressing
277 dl 1.222 * constraints. Nodes with negative hash fields are specially
278     * handled or ignored in map methods.
279 dl 1.119 *
280     * Insertion (via put or its variants) of the first node in an
281     * empty bin is performed by just CASing it to the bin. This is
282     * by far the most common case for put operations under most
283     * key/hash distributions. Other update operations (insert,
284     * delete, and replace) require locks. We do not want to waste
285     * the space required to associate a distinct lock object with
286     * each bin, so instead use the first node of a bin list itself as
287 dl 1.149 * a lock. Locking support for these locks relies on builtin
288     * "synchronized" monitors.
289 dl 1.119 *
290     * Using the first node of a list as a lock does not by itself
291     * suffice though: When a node is locked, any update must first
292     * validate that it is still the first node after locking it, and
293     * retry if not. Because new nodes are always appended to lists,
294     * once a node is first in a bin, it remains first until deleted
295 dl 1.210 * or the bin becomes invalidated (upon resizing).
296 dl 1.119 *
297     * The main disadvantage of per-bin locks is that other update
298     * operations on other nodes in a bin list protected by the same
299     * lock can stall, for example when user equals() or mapping
300     * functions take a long time. However, statistically, under
301     * random hash codes, this is not a common problem. Ideally, the
302     * frequency of nodes in bins follows a Poisson distribution
303     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
304     * parameter of about 0.5 on average, given the resizing threshold
305     * of 0.75, although with a large variance because of resizing
306     * granularity. Ignoring variance, the expected occurrences of
307     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
308     * first values are:
309     *
310     * 0: 0.60653066
311     * 1: 0.30326533
312     * 2: 0.07581633
313     * 3: 0.01263606
314     * 4: 0.00157952
315     * 5: 0.00015795
316     * 6: 0.00001316
317     * 7: 0.00000094
318     * 8: 0.00000006
319     * more: less than 1 in ten million
320     *
321     * Lock contention probability for two threads accessing distinct
322     * elements is roughly 1 / (8 * #elements) under random hashes.
323     *
324     * Actual hash code distributions encountered in practice
325     * sometimes deviate significantly from uniform randomness. This
326     * includes the case when N > (1<<30), so some keys MUST collide.
327     * Similarly for dumb or hostile usages in which multiple keys are
328 dl 1.222 * designed to have identical hash codes or ones that differs only
329 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
330     * applies when the number of nodes in a bin exceeds a
331     * threshold. These TreeBins use a balanced tree to hold nodes (a
332     * specialized form of red-black trees), bounding search time to
333     * O(log N). Each search step in a TreeBin is at least twice as
334     * slow as in a regular list, but given that N cannot exceed
335     * (1<<64) (before running out of addresses) this bounds search
336     * steps, lock hold times, etc, to reasonable constants (roughly
337     * 100 nodes inspected per operation worst case) so long as keys
338     * are Comparable (which is very common -- String, Long, etc).
339 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
340     * traversal pointers as regular nodes, so can be traversed in
341     * iterators in the same way.
342     *
343     * The table is resized when occupancy exceeds a percentage
344 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
345     * noticing an overfull bin may assist in resizing after the
346     * initiating thread allocates and sets up the replacement
347     * array. However, rather than stalling, these other threads may
348     * proceed with insertions etc. The use of TreeBins shields us
349     * from the worst case effects of overfilling while resizes are in
350     * progress. Resizing proceeds by transferring bins, one by one,
351     * from the table to the next table. To enable concurrency, the
352     * next table must be (incrementally) prefilled with place-holders
353     * serving as reverse forwarders to the old table. Because we are
354     * using power-of-two expansion, the elements from each bin must
355     * either stay at same index, or move with a power of two
356     * offset. We eliminate unnecessary node creation by catching
357     * cases where old nodes can be reused because their next fields
358     * won't change. On average, only about one-sixth of them need
359     * cloning when a table doubles. The nodes they replace will be
360     * garbage collectable as soon as they are no longer referenced by
361     * any reader thread that may be in the midst of concurrently
362     * traversing table. Upon transfer, the old table bin contains
363     * only a special forwarding node (with hash field "MOVED") that
364     * contains the next table as its key. On encountering a
365     * forwarding node, access and update operations restart, using
366     * the new table.
367     *
368     * Each bin transfer requires its bin lock, which can stall
369     * waiting for locks while resizing. However, because other
370     * threads can join in and help resize rather than contend for
371     * locks, average aggregate waits become shorter as resizing
372     * progresses. The transfer operation must also ensure that all
373     * accessible bins in both the old and new table are usable by any
374     * traversal. This is arranged by proceeding from the last bin
375     * (table.length - 1) up towards the first. Upon seeing a
376     * forwarding node, traversals (see class Traverser) arrange to
377     * move to the new table without revisiting nodes. However, to
378     * ensure that no intervening nodes are skipped, bin splitting can
379     * only begin after the associated reverse-forwarders are in
380     * place.
381 dl 1.119 *
382     * The traversal scheme also applies to partial traversals of
383     * ranges of bins (via an alternate Traverser constructor)
384     * to support partitioned aggregate operations. Also, read-only
385     * operations give up if ever forwarded to a null table, which
386     * provides support for shutdown-style clearing, which is also not
387     * currently implemented.
388     *
389     * Lazy table initialization minimizes footprint until first use,
390     * and also avoids resizings when the first operation is from a
391     * putAll, constructor with map argument, or deserialization.
392     * These cases attempt to override the initial capacity settings,
393     * but harmlessly fail to take effect in cases of races.
394     *
395 dl 1.149 * The element count is maintained using a specialization of
396     * LongAdder. We need to incorporate a specialization rather than
397     * just use a LongAdder in order to access implicit
398     * contention-sensing that leads to creation of multiple
399 dl 1.222 * CounterCells. The counter mechanics avoid contention on
400 dl 1.149 * updates but can encounter cache thrashing if read too
401     * frequently during concurrent access. To avoid reading so often,
402     * resizing under contention is attempted only upon adding to a
403     * bin already holding two or more nodes. Under uniform hash
404     * distributions, the probability of this occurring at threshold
405     * is around 13%, meaning that only about 1 in 8 puts check
406 dl 1.222 * threshold (and after resizing, many fewer do so).
407     *
408     * TreeBins use a special form of comparison for search and
409     * related operations (which is the main reason we cannot use
410     * existing collections such as TreeMaps). TreeBins contain
411     * Comparable elements, but may contain others, as well as
412     * elements that are Comparable but not necessarily Comparable
413     * for the same T, so we cannot invoke compareTo among them. To
414     * handle this, the tree is ordered primarily by hash value, then
415     * by Comparable.compareTo order if applicable. On lookup at a
416     * node, if elements are not comparable or compare as 0 then both
417     * left and right children may need to be searched in the case of
418     * tied hash values. (This corresponds to the full list search
419     * that would be necessary if all elements were non-Comparable and
420     * had tied hashes.) The red-black balancing code is updated from
421     * pre-jdk-collections
422     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424     * Algorithms" (CLR).
425     *
426     * TreeBins also require an additional locking mechanism. While
427 dl 1.224 * list traversal is always possible by readers even during
428 dl 1.222 * updates, tree traversal is not, mainly beause of tree-rotations
429     * that may change the root node and/or its linkages. TreeBins
430     * include a simple read-write lock mechanism parasitic on the
431     * main bin-synchronization strategy: Structural adjustments
432     * associated with an insertion or removal are already bin-locked
433     * (and so cannot conflict with other writers) but must wait for
434     * ongoing readers to finish. Since there can be only one such
435     * waiter, we use a simple scheme using a single "waiter" field to
436     * block writers. However, readers need never block. If the root
437     * lock is held, they proceed along the slow traversal path (via
438     * next-pointers) until the lock becomes available or the list is
439     * exhausted, whichever comes first. These cases are not fast, but
440     * maximize aggregate expected throughput.
441 dl 1.119 *
442     * Maintaining API and serialization compatibility with previous
443     * versions of this class introduces several oddities. Mainly: We
444     * leave untouched but unused constructor arguments refering to
445     * concurrencyLevel. We accept a loadFactor constructor argument,
446     * but apply it only to initial table capacity (which is the only
447     * time that we can guarantee to honor it.) We also declare an
448     * unused "Segment" class that is instantiated in minimal form
449     * only when serializing.
450 dl 1.222 *
451     * This file is organized to make things a little easier to follow
452 dl 1.224 * while reading than they might otherwise: First the main static
453 dl 1.222 * declarations and utilities, then fields, then main public
454     * methods (with a few factorings of multiple public methods into
455     * internal ones), then sizing methods, trees, traversers, and
456     * bulk operations.
457 dl 1.4 */
458 tim 1.1
459 dl 1.4 /* ---------------- Constants -------------- */
460 tim 1.11
461 dl 1.4 /**
462 dl 1.119 * The largest possible table capacity. This value must be
463     * exactly 1<<30 to stay within Java array allocation and indexing
464     * bounds for power of two table sizes, and is further required
465     * because the top two bits of 32bit hash fields are used for
466     * control purposes.
467 dl 1.4 */
468 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
469 dl 1.56
470     /**
471 dl 1.119 * The default initial table capacity. Must be a power of 2
472     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
473 dl 1.56 */
474 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
475 dl 1.56
476     /**
477 dl 1.119 * The largest possible (non-power of two) array size.
478     * Needed by toArray and related methods.
479 jsr166 1.59 */
480 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
481 tim 1.1
482     /**
483 dl 1.119 * The default concurrency level for this table. Unused but
484     * defined for compatibility with previous versions of this class.
485 dl 1.4 */
486 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
487 tim 1.11
488 tim 1.1 /**
489 dl 1.119 * The load factor for this table. Overrides of this value in
490     * constructors affect only the initial table capacity. The
491     * actual floating point value isn't normally used -- it is
492     * simpler to use expressions such as {@code n - (n >>> 2)} for
493     * the associated resizing threshold.
494 dl 1.99 */
495 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
496 dl 1.99
497     /**
498 dl 1.119 * The bin count threshold for using a tree rather than list for a
499 dl 1.222 * bin. Bins are converted to trees when adding an element to a
500 dl 1.224 * bin with at least this many nodes. The value must be greater
501     * than 2, and should be at least 8 to mesh with assumptions in
502     * tree removal about conversion back to plain bins upon
503     * shrinkage.
504 dl 1.222 */
505     static final int TREEIFY_THRESHOLD = 8;
506    
507     /**
508     * The bin count threshold for untreeifying a (split) bin during a
509     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510     * most 6 to mesh with shrinkage detection under removal.
511     */
512     static final int UNTREEIFY_THRESHOLD = 6;
513    
514     /**
515     * The smallest table capacity for which bins may be treeified.
516     * (Otherwise the table is resized if too many nodes in a bin.)
517 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518     * conflicts between resizing and treeification thresholds.
519 dl 1.119 */
520 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
521 dl 1.119
522 dl 1.149 /**
523     * Minimum number of rebinnings per transfer step. Ranges are
524     * subdivided to allow multiple resizer threads. This value
525     * serves as a lower bound to avoid resizers encountering
526     * excessive memory contention. The value should be at least
527     * DEFAULT_CAPACITY.
528     */
529     private static final int MIN_TRANSFER_STRIDE = 16;
530    
531 dl 1.119 /*
532 dl 1.149 * Encodings for Node hash fields. See above for explanation.
533 dl 1.46 */
534 dl 1.222 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
535     static final int TREEBIN = 0x80000000; // hash for heads of treea
536     static final int RESERVED = 0x80000001; // hash for transient reservations
537 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538    
539     /** Number of CPUS, to place bounds on some sizings */
540     static final int NCPU = Runtime.getRuntime().availableProcessors();
541    
542 dl 1.208 /** For serialization compatibility. */
543     private static final ObjectStreamField[] serialPersistentFields = {
544 dl 1.209 new ObjectStreamField("segments", Segment[].class),
545     new ObjectStreamField("segmentMask", Integer.TYPE),
546     new ObjectStreamField("segmentShift", Integer.TYPE)
547 dl 1.208 };
548    
549 dl 1.222 /* ---------------- Nodes -------------- */
550    
551     /**
552     * Key-value entry. This class is never exported out as a
553     * user-mutable Map.Entry (i.e., one supporting setValue; see
554     * MapEntry below), but can be used for read-only traversals used
555 dl 1.224 * in bulk tasks. Subclasses of Node with a negativehash field
556     * are special, and contain null keys and values (but are never
557     * exported). Otherwise, keys and vals are never null.
558 dl 1.222 */
559     static class Node<K,V> implements Map.Entry<K,V> {
560     final int hash;
561     final K key;
562     volatile V val;
563     Node<K,V> next;
564    
565     Node(int hash, K key, V val, Node<K,V> next) {
566     this.hash = hash;
567     this.key = key;
568     this.val = val;
569     this.next = next;
570     }
571    
572     public final K getKey() { return key; }
573     public final V getValue() { return val; }
574     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
575     public final String toString(){ return key + "=" + val; }
576     public final V setValue(V value) {
577     throw new UnsupportedOperationException();
578     }
579    
580     public final boolean equals(Object o) {
581     Object k, v, u; Map.Entry<?,?> e;
582     return ((o instanceof Map.Entry) &&
583     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584     (v = e.getValue()) != null &&
585     (k == key || k.equals(key)) &&
586     (v == (u = val) || v.equals(u)));
587     }
588    
589 dl 1.224 /**
590     * Virtualized support for map.get(); overridden in subclasses.
591     */
592 dl 1.222 Node<K,V> find(int h, Object k) {
593     Node<K,V> e = this;
594     if (k != null) {
595     do {
596     K ek;
597     if (e.hash == h &&
598     ((ek = e.key) == k || (ek != null && k.equals(ek))))
599     return e;
600     } while ((e = e.next) != null);
601     }
602     return null;
603     }
604     }
605    
606     /* ---------------- Static utilities -------------- */
607    
608     /**
609     * Spreads (XORs) higher bits of hash to lower and also forces top
610     * bit to 0. Because the table uses power-of-two masking, sets of
611     * hashes that vary only in bits above the current mask will
612     * always collide. (Among known examples are sets of Float keys
613     * holding consecutive whole numbers in small tables.) So we
614     * apply a transform that spreads the impact of higher bits
615     * downward. There is a tradeoff between speed, utility, and
616     * quality of bit-spreading. Because many common sets of hashes
617     * are already reasonably distributed (so don't benefit from
618     * spreading), and because we use trees to handle large sets of
619     * collisions in bins, we just XOR some shifted bits in the
620     * cheapest possible way to reduce systematic lossage, as well as
621     * to incorporate impact of the highest bits that would otherwise
622     * never be used in index calculations because of table bounds.
623     */
624     static final int spread(int h) {
625     return (h ^ (h >>> 16)) & HASH_BITS;
626     }
627    
628     /**
629     * Returns a power of two table size for the given desired capacity.
630     * See Hackers Delight, sec 3.2
631     */
632     private static final int tableSizeFor(int c) {
633     int n = c - 1;
634     n |= n >>> 1;
635     n |= n >>> 2;
636     n |= n >>> 4;
637     n |= n >>> 8;
638     n |= n >>> 16;
639     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640     }
641    
642     /**
643     * Returns x's Class if it is of the form "class C implements
644     * Comparable<C>", else null.
645     */
646     static Class<?> comparableClassFor(Object x) {
647     if (x instanceof Comparable) {
648     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649     if ((c = x.getClass()) == String.class) // bypass checks
650     return c;
651     if ((ts = c.getGenericInterfaces()) != null) {
652     for (int i = 0; i < ts.length; ++i) {
653     if (((t = ts[i]) instanceof ParameterizedType) &&
654     ((p = (ParameterizedType)t).getRawType() ==
655     Comparable.class) &&
656     (as = p.getActualTypeArguments()) != null &&
657     as.length == 1 && as[0] == c) // type arg is c
658     return c;
659     }
660     }
661     }
662     return null;
663     }
664    
665 dl 1.210 /**
666 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
667     * class), else 0.
668     */
669     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670     static int compareComparables(Class<?> kc, Object k, Object x) {
671     return (x == null || x.getClass() != kc ? 0 :
672     ((Comparable)k).compareTo(x));
673     }
674    
675     /* ---------------- Table element access -------------- */
676    
677     /*
678     * Volatile access methods are used for table elements as well as
679     * elements of in-progress next table while resizing. All uses of
680     * the tab arguments must be null checked by callers. All callers
681     * also paranoically precheck that tab's length is not zero (or an
682     * equivalent check), thus ensuring that any index argument taking
683     * the form of a hash value anded with (length - 1) is a valid
684     * index. Note that, to be correct wrt arbitrary concurrency
685     * errors by users, these checks must operate on local variables,
686     * which accounts for some odd-looking inline assignments below.
687     * Note that calls to setTabAt always occur within locked regions,
688     * and so do not need full volatile semantics, but still require
689     * ordering to maintain concurrent readability.
690 dl 1.210 */
691 dl 1.222
692     @SuppressWarnings("unchecked")
693     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
694     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
695     }
696    
697     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
698     Node<K,V> c, Node<K,V> v) {
699     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
700     }
701    
702     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
703     U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
704 dl 1.149 }
705    
706 dl 1.4 /* ---------------- Fields -------------- */
707 tim 1.1
708     /**
709 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
710     * Size is always a power of two. Accessed directly by iterators.
711 jsr166 1.59 */
712 dl 1.210 transient volatile Node<K,V>[] table;
713 tim 1.1
714     /**
715 dl 1.149 * The next table to use; non-null only while resizing.
716 jsr166 1.59 */
717 dl 1.210 private transient volatile Node<K,V>[] nextTable;
718 dl 1.149
719     /**
720     * Base counter value, used mainly when there is no contention,
721     * but also as a fallback during table initialization
722     * races. Updated via CAS.
723     */
724     private transient volatile long baseCount;
725 tim 1.1
726     /**
727 dl 1.119 * Table initialization and resizing control. When negative, the
728 dl 1.149 * table is being initialized or resized: -1 for initialization,
729     * else -(1 + the number of active resizing threads). Otherwise,
730     * when table is null, holds the initial table size to use upon
731     * creation, or 0 for default. After initialization, holds the
732     * next element count value upon which to resize the table.
733 tim 1.1 */
734 dl 1.119 private transient volatile int sizeCtl;
735 dl 1.4
736 dl 1.149 /**
737     * The next table index (plus one) to split while resizing.
738     */
739     private transient volatile int transferIndex;
740    
741     /**
742     * The least available table index to split while resizing.
743     */
744     private transient volatile int transferOrigin;
745    
746     /**
747 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
748 dl 1.149 */
749 dl 1.153 private transient volatile int cellsBusy;
750 dl 1.149
751     /**
752     * Table of counter cells. When non-null, size is a power of 2.
753     */
754 dl 1.222 private transient volatile CounterCell[] counterCells;
755 dl 1.149
756 dl 1.119 // views
757 dl 1.137 private transient KeySetView<K,V> keySet;
758 dl 1.142 private transient ValuesView<K,V> values;
759     private transient EntrySetView<K,V> entrySet;
760 dl 1.119
761    
762 dl 1.222 /* ---------------- Public operations -------------- */
763    
764     /**
765     * Creates a new, empty map with the default initial table size (16).
766 dl 1.119 */
767 dl 1.222 public ConcurrentHashMap() {
768     }
769 dl 1.119
770 dl 1.222 /**
771     * Creates a new, empty map with an initial table size
772     * accommodating the specified number of elements without the need
773     * to dynamically resize.
774     *
775     * @param initialCapacity The implementation performs internal
776     * sizing to accommodate this many elements.
777     * @throws IllegalArgumentException if the initial capacity of
778     * elements is negative
779     */
780     public ConcurrentHashMap(int initialCapacity) {
781     if (initialCapacity < 0)
782     throw new IllegalArgumentException();
783     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
784     MAXIMUM_CAPACITY :
785     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
786     this.sizeCtl = cap;
787 dl 1.119 }
788    
789 dl 1.222 /**
790     * Creates a new map with the same mappings as the given map.
791     *
792     * @param m the map
793     */
794     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
795     this.sizeCtl = DEFAULT_CAPACITY;
796     putAll(m);
797 dl 1.119 }
798    
799 dl 1.222 /**
800     * Creates a new, empty map with an initial table size based on
801     * the given number of elements ({@code initialCapacity}) and
802     * initial table density ({@code loadFactor}).
803     *
804     * @param initialCapacity the initial capacity. The implementation
805     * performs internal sizing to accommodate this many elements,
806     * given the specified load factor.
807     * @param loadFactor the load factor (table density) for
808     * establishing the initial table size
809     * @throws IllegalArgumentException if the initial capacity of
810     * elements is negative or the load factor is nonpositive
811     *
812     * @since 1.6
813     */
814     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
815     this(initialCapacity, loadFactor, 1);
816 dl 1.119 }
817    
818 dl 1.99 /**
819 dl 1.222 * Creates a new, empty map with an initial table size based on
820     * the given number of elements ({@code initialCapacity}), table
821     * density ({@code loadFactor}), and number of concurrently
822     * updating threads ({@code concurrencyLevel}).
823     *
824     * @param initialCapacity the initial capacity. The implementation
825     * performs internal sizing to accommodate this many elements,
826     * given the specified load factor.
827     * @param loadFactor the load factor (table density) for
828     * establishing the initial table size
829     * @param concurrencyLevel the estimated number of concurrently
830     * updating threads. The implementation may use this value as
831     * a sizing hint.
832     * @throws IllegalArgumentException if the initial capacity is
833     * negative or the load factor or concurrencyLevel are
834     * nonpositive
835 dl 1.99 */
836 dl 1.222 public ConcurrentHashMap(int initialCapacity,
837     float loadFactor, int concurrencyLevel) {
838     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
839     throw new IllegalArgumentException();
840     if (initialCapacity < concurrencyLevel) // Use at least as many bins
841     initialCapacity = concurrencyLevel; // as estimated threads
842     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
843     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
844     MAXIMUM_CAPACITY : tableSizeFor((int)size);
845     this.sizeCtl = cap;
846     }
847 dl 1.99
848 dl 1.222 // Original (since JDK1.2) Map methods
849 dl 1.210
850 dl 1.222 /**
851     * {@inheritDoc}
852     */
853     public int size() {
854     long n = sumCount();
855     return ((n < 0L) ? 0 :
856     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
857     (int)n);
858     }
859 dl 1.210
860 dl 1.222 /**
861     * {@inheritDoc}
862     */
863     public boolean isEmpty() {
864     return sumCount() <= 0L; // ignore transient negative values
865 dl 1.210 }
866    
867     /**
868 dl 1.222 * Returns the value to which the specified key is mapped,
869     * or {@code null} if this map contains no mapping for the key.
870     *
871     * <p>More formally, if this map contains a mapping from a key
872     * {@code k} to a value {@code v} such that {@code key.equals(k)},
873     * then this method returns {@code v}; otherwise it returns
874     * {@code null}. (There can be at most one such mapping.)
875     *
876     * @throws NullPointerException if the specified key is null
877 dl 1.210 */
878 dl 1.222 public V get(Object key) {
879     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
880     int h = spread(key.hashCode());
881     if ((tab = table) != null && (n = tab.length) > 0 &&
882     (e = tabAt(tab, (n - 1) & h)) != null) {
883     if ((eh = e.hash) == h) {
884     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
885     return e.val;
886     }
887     else if (eh < 0)
888     return (p = e.find(h, key)) != null ? p.val : null;
889     while ((e = e.next) != null) {
890     if (e.hash == h &&
891     ((ek = e.key) == key || (ek != null && key.equals(ek))))
892     return e.val;
893     }
894 dl 1.210 }
895 dl 1.222 return null;
896 dl 1.99 }
897    
898     /**
899 dl 1.222 * Tests if the specified object is a key in this table.
900     *
901     * @param key possible key
902     * @return {@code true} if and only if the specified object
903     * is a key in this table, as determined by the
904     * {@code equals} method; {@code false} otherwise
905     * @throws NullPointerException if the specified key is null
906 dl 1.99 */
907 dl 1.222 public boolean containsKey(Object key) {
908     return get(key) != null;
909 dl 1.99 }
910 tim 1.1
911 dl 1.201 /**
912 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
913     * specified value. Note: This method may require a full traversal
914     * of the map, and is much slower than method {@code containsKey}.
915     *
916     * @param value value whose presence in this map is to be tested
917     * @return {@code true} if this map maps one or more keys to the
918     * specified value
919     * @throws NullPointerException if the specified value is null
920     */
921     public boolean containsValue(Object value) {
922     if (value == null)
923     throw new NullPointerException();
924     Node<K,V>[] t;
925     if ((t = table) != null) {
926     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
927     for (Node<K,V> p; (p = it.advance()) != null; ) {
928     V v;
929     if ((v = p.val) == value || (v != null && value.equals(v)))
930     return true;
931 dl 1.201 }
932     }
933 dl 1.222 return false;
934 dl 1.201 }
935    
936 tim 1.1 /**
937 dl 1.222 * Maps the specified key to the specified value in this table.
938     * Neither the key nor the value can be null.
939 dl 1.119 *
940 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
941     * with a key that is equal to the original key.
942 dl 1.119 *
943 dl 1.222 * @param key key with which the specified value is to be associated
944     * @param value value to be associated with the specified key
945     * @return the previous value associated with {@code key}, or
946     * {@code null} if there was no mapping for {@code key}
947     * @throws NullPointerException if the specified key or value is null
948 dl 1.119 */
949 dl 1.222 public V put(K key, V value) {
950     return putVal(key, value, false);
951     }
952 dl 1.119
953 dl 1.222 /** Implementation for put and putIfAbsent */
954     final V putVal(K key, V value, boolean onlyIfAbsent) {
955     if (key == null || value == null) throw new NullPointerException();
956     int hash = spread(key.hashCode());
957     int binCount = 0;
958     for (Node<K,V>[] tab = table;;) {
959     Node<K,V> f; int n, i, fh;
960     if (tab == null || (n = tab.length) == 0)
961     tab = initTable();
962     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
963     if (casTabAt(tab, i, null,
964     new Node<K,V>(hash, key, value, null)))
965     break; // no lock when adding to empty bin
966 dl 1.119 }
967 dl 1.222 else if ((fh = f.hash) == MOVED)
968     tab = helpTransfer(tab, f);
969     else {
970     V oldVal = null;
971     synchronized (f) {
972     if (tabAt(tab, i) == f) {
973     if (fh >= 0) {
974     binCount = 1;
975     for (Node<K,V> e = f;; ++binCount) {
976     K ek;
977     if (e.hash == hash &&
978     ((ek = e.key) == key ||
979     (ek != null && key.equals(ek)))) {
980     oldVal = e.val;
981     if (!onlyIfAbsent)
982     e.val = value;
983     break;
984     }
985     Node<K,V> pred = e;
986     if ((e = e.next) == null) {
987     pred.next = new Node<K,V>(hash, key,
988     value, null);
989     break;
990     }
991     }
992     }
993     else if (f instanceof TreeBin) {
994     Node<K,V> p;
995     binCount = 2;
996     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
997     value)) != null) {
998     oldVal = p.val;
999     if (!onlyIfAbsent)
1000     p.val = value;
1001     }
1002     }
1003 dl 1.99 }
1004     }
1005 dl 1.222 if (binCount != 0) {
1006     if (binCount >= TREEIFY_THRESHOLD)
1007     treeifyBin(tab, i);
1008     if (oldVal != null)
1009     return oldVal;
1010 dl 1.99 break;
1011     }
1012     }
1013     }
1014 dl 1.222 addCount(1L, binCount);
1015     return null;
1016     }
1017    
1018     /**
1019     * Copies all of the mappings from the specified map to this one.
1020     * These mappings replace any mappings that this map had for any of the
1021     * keys currently in the specified map.
1022     *
1023     * @param m mappings to be stored in this map
1024     */
1025     public void putAll(Map<? extends K, ? extends V> m) {
1026     tryPresize(m.size());
1027     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1028     putVal(e.getKey(), e.getValue(), false);
1029     }
1030 dl 1.99
1031 dl 1.222 /**
1032     * Removes the key (and its corresponding value) from this map.
1033     * This method does nothing if the key is not in the map.
1034     *
1035     * @param key the key that needs to be removed
1036     * @return the previous value associated with {@code key}, or
1037     * {@code null} if there was no mapping for {@code key}
1038     * @throws NullPointerException if the specified key is null
1039     */
1040     public V remove(Object key) {
1041     return replaceNode(key, null, null);
1042     }
1043 dl 1.99
1044 dl 1.222 /**
1045     * Implementation for the four public remove/replace methods:
1046     * Replaces node value with v, conditional upon match of cv if
1047     * non-null. If resulting value is null, delete.
1048     */
1049     final V replaceNode(Object key, V value, Object cv) {
1050     int hash = spread(key.hashCode());
1051     for (Node<K,V>[] tab = table;;) {
1052     Node<K,V> f; int n, i, fh;
1053     if (tab == null || (n = tab.length) == 0 ||
1054     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1055     break;
1056     else if ((fh = f.hash) == MOVED)
1057     tab = helpTransfer(tab, f);
1058     else {
1059     V oldVal = null;
1060     boolean validated = false;
1061     synchronized (f) {
1062     if (tabAt(tab, i) == f) {
1063     if (fh >= 0) {
1064     validated = true;
1065     for (Node<K,V> e = f, pred = null;;) {
1066     K ek;
1067     if (e.hash == hash &&
1068     ((ek = e.key) == key ||
1069     (ek != null && key.equals(ek)))) {
1070     V ev = e.val;
1071     if (cv == null || cv == ev ||
1072     (ev != null && cv.equals(ev))) {
1073     oldVal = ev;
1074     if (value != null)
1075     e.val = value;
1076     else if (pred != null)
1077     pred.next = e.next;
1078     else
1079     setTabAt(tab, i, e.next);
1080     }
1081     break;
1082 dl 1.119 }
1083 dl 1.222 pred = e;
1084     if ((e = e.next) == null)
1085     break;
1086 dl 1.119 }
1087     }
1088 dl 1.222 else if (f instanceof TreeBin) {
1089     validated = true;
1090     TreeBin<K,V> t = (TreeBin<K,V>)f;
1091     TreeNode<K,V> r, p;
1092     if ((r = t.root) != null &&
1093     (p = r.findTreeNode(hash, key, null)) != null) {
1094     V pv = p.val;
1095     if (cv == null || cv == pv ||
1096     (pv != null && cv.equals(pv))) {
1097     oldVal = pv;
1098     if (value != null)
1099     p.val = value;
1100     else if (t.removeTreeNode(p))
1101     setTabAt(tab, i, untreeify(t.first));
1102 dl 1.119 }
1103     }
1104 dl 1.99 }
1105     }
1106     }
1107 dl 1.222 if (validated) {
1108     if (oldVal != null) {
1109     if (value == null)
1110     addCount(-1L, -1);
1111     return oldVal;
1112     }
1113     break;
1114     }
1115 dl 1.99 }
1116     }
1117 dl 1.222 return null;
1118     }
1119 dl 1.45
1120 dl 1.222 /**
1121     * Removes all of the mappings from this map.
1122     */
1123     public void clear() {
1124     long delta = 0L; // negative number of deletions
1125     int i = 0;
1126     Node<K,V>[] tab = table;
1127     while (tab != null && i < tab.length) {
1128     int fh;
1129     Node<K,V> f = tabAt(tab, i);
1130     if (f == null)
1131     ++i;
1132     else if ((fh = f.hash) == MOVED) {
1133     tab = helpTransfer(tab, f);
1134     i = 0; // restart
1135 dl 1.217 }
1136 dl 1.222 else {
1137     synchronized (f) {
1138     if (tabAt(tab, i) == f) {
1139     Node<K,V> p = (fh >= 0 ? f :
1140     (f instanceof TreeBin) ?
1141     ((TreeBin<K,V>)f).first : null);
1142     while (p != null) {
1143     --delta;
1144     p = p.next;
1145 dl 1.119 }
1146 dl 1.222 setTabAt(tab, i++, null);
1147 dl 1.119 }
1148 dl 1.45 }
1149 dl 1.4 }
1150 dl 1.217 }
1151 dl 1.222 if (delta != 0L)
1152     addCount(delta, -1);
1153     }
1154 dl 1.217
1155 dl 1.222 /**
1156     * Returns a {@link Set} view of the keys contained in this map.
1157     * The set is backed by the map, so changes to the map are
1158     * reflected in the set, and vice-versa. The set supports element
1159     * removal, which removes the corresponding mapping from this map,
1160     * via the {@code Iterator.remove}, {@code Set.remove},
1161     * {@code removeAll}, {@code retainAll}, and {@code clear}
1162     * operations. It does not support the {@code add} or
1163     * {@code addAll} operations.
1164     *
1165     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1166     * that will never throw {@link ConcurrentModificationException},
1167     * and guarantees to traverse elements as they existed upon
1168     * construction of the iterator, and may (but is not guaranteed to)
1169     * reflect any modifications subsequent to construction.
1170     *
1171     * @return the set view
1172     */
1173     public KeySetView<K,V> keySet() {
1174     KeySetView<K,V> ks;
1175     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1176     }
1177 dl 1.217
1178 dl 1.222 /**
1179     * Returns a {@link Collection} view of the values contained in this map.
1180     * The collection is backed by the map, so changes to the map are
1181     * reflected in the collection, and vice-versa. The collection
1182     * supports element removal, which removes the corresponding
1183     * mapping from this map, via the {@code Iterator.remove},
1184     * {@code Collection.remove}, {@code removeAll},
1185     * {@code retainAll}, and {@code clear} operations. It does not
1186     * support the {@code add} or {@code addAll} operations.
1187     *
1188     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1189     * that will never throw {@link ConcurrentModificationException},
1190     * and guarantees to traverse elements as they existed upon
1191     * construction of the iterator, and may (but is not guaranteed to)
1192     * reflect any modifications subsequent to construction.
1193     *
1194     * @return the collection view
1195     */
1196     public Collection<V> values() {
1197     ValuesView<K,V> vs;
1198     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1199 tim 1.1 }
1200    
1201 dl 1.99 /**
1202 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1203     * The set is backed by the map, so changes to the map are
1204     * reflected in the set, and vice-versa. The set supports element
1205     * removal, which removes the corresponding mapping from the map,
1206     * via the {@code Iterator.remove}, {@code Set.remove},
1207     * {@code removeAll}, {@code retainAll}, and {@code clear}
1208     * operations.
1209     *
1210     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211     * that will never throw {@link ConcurrentModificationException},
1212     * and guarantees to traverse elements as they existed upon
1213     * construction of the iterator, and may (but is not guaranteed to)
1214     * reflect any modifications subsequent to construction.
1215     *
1216     * @return the set view
1217 dl 1.119 */
1218 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1219     EntrySetView<K,V> es;
1220     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1221 dl 1.99 }
1222    
1223     /**
1224 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1225     * the sum of, for each key-value pair in the map,
1226     * {@code key.hashCode() ^ value.hashCode()}.
1227     *
1228     * @return the hash code value for this map
1229 dl 1.119 */
1230 dl 1.222 public int hashCode() {
1231     int h = 0;
1232     Node<K,V>[] t;
1233     if ((t = table) != null) {
1234     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1235     for (Node<K,V> p; (p = it.advance()) != null; )
1236     h += p.key.hashCode() ^ p.val.hashCode();
1237 dl 1.119 }
1238 dl 1.222 return h;
1239 dl 1.99 }
1240 tim 1.11
1241 dl 1.222 /**
1242     * Returns a string representation of this map. The string
1243     * representation consists of a list of key-value mappings (in no
1244     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1245     * mappings are separated by the characters {@code ", "} (comma
1246     * and space). Each key-value mapping is rendered as the key
1247     * followed by an equals sign ("{@code =}") followed by the
1248     * associated value.
1249     *
1250     * @return a string representation of this map
1251     */
1252     public String toString() {
1253     Node<K,V>[] t;
1254     int f = (t = table) == null ? 0 : t.length;
1255     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1256     StringBuilder sb = new StringBuilder();
1257     sb.append('{');
1258     Node<K,V> p;
1259     if ((p = it.advance()) != null) {
1260 dl 1.210 for (;;) {
1261 dl 1.222 K k = p.key;
1262     V v = p.val;
1263     sb.append(k == this ? "(this Map)" : k);
1264     sb.append('=');
1265     sb.append(v == this ? "(this Map)" : v);
1266     if ((p = it.advance()) == null)
1267 dl 1.210 break;
1268 dl 1.222 sb.append(',').append(' ');
1269 dl 1.119 }
1270     }
1271 dl 1.222 return sb.append('}').toString();
1272 tim 1.1 }
1273    
1274     /**
1275 dl 1.222 * Compares the specified object with this map for equality.
1276     * Returns {@code true} if the given object is a map with the same
1277     * mappings as this map. This operation may return misleading
1278     * results if either map is concurrently modified during execution
1279     * of this method.
1280     *
1281     * @param o object to be compared for equality with this map
1282     * @return {@code true} if the specified object is equal to this map
1283 dl 1.119 */
1284 dl 1.222 public boolean equals(Object o) {
1285     if (o != this) {
1286     if (!(o instanceof Map))
1287     return false;
1288     Map<?,?> m = (Map<?,?>) o;
1289     Node<K,V>[] t;
1290     int f = (t = table) == null ? 0 : t.length;
1291     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1292     for (Node<K,V> p; (p = it.advance()) != null; ) {
1293     V val = p.val;
1294     Object v = m.get(p.key);
1295     if (v == null || (v != val && !v.equals(val)))
1296     return false;
1297 dl 1.119 }
1298 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1299     Object mk, mv, v;
1300     if ((mk = e.getKey()) == null ||
1301     (mv = e.getValue()) == null ||
1302     (v = get(mk)) == null ||
1303     (mv != v && !mv.equals(v)))
1304     return false;
1305     }
1306     }
1307     return true;
1308     }
1309    
1310     /**
1311     * Stripped-down version of helper class used in previous version,
1312     * declared for the sake of serialization compatibility
1313     */
1314     static class Segment<K,V> extends ReentrantLock implements Serializable {
1315     private static final long serialVersionUID = 2249069246763182397L;
1316     final float loadFactor;
1317     Segment(float lf) { this.loadFactor = lf; }
1318     }
1319    
1320     /**
1321     * Saves the state of the {@code ConcurrentHashMap} instance to a
1322     * stream (i.e., serializes it).
1323     * @param s the stream
1324     * @serialData
1325     * the key (Object) and value (Object)
1326     * for each key-value mapping, followed by a null pair.
1327     * The key-value mappings are emitted in no particular order.
1328     */
1329     private void writeObject(java.io.ObjectOutputStream s)
1330     throws java.io.IOException {
1331     // For serialization compatibility
1332     // Emulate segment calculation from previous version of this class
1333     int sshift = 0;
1334     int ssize = 1;
1335     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1336     ++sshift;
1337     ssize <<= 1;
1338     }
1339     int segmentShift = 32 - sshift;
1340     int segmentMask = ssize - 1;
1341     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1342     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1343     for (int i = 0; i < segments.length; ++i)
1344     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1345     s.putFields().put("segments", segments);
1346     s.putFields().put("segmentShift", segmentShift);
1347     s.putFields().put("segmentMask", segmentMask);
1348     s.writeFields();
1349    
1350     Node<K,V>[] t;
1351     if ((t = table) != null) {
1352     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1353     for (Node<K,V> p; (p = it.advance()) != null; ) {
1354     s.writeObject(p.key);
1355     s.writeObject(p.val);
1356     }
1357     }
1358     s.writeObject(null);
1359     s.writeObject(null);
1360     segments = null; // throw away
1361     }
1362    
1363     /**
1364     * Reconstitutes the instance from a stream (that is, deserializes it).
1365     * @param s the stream
1366     */
1367     private void readObject(java.io.ObjectInputStream s)
1368     throws java.io.IOException, ClassNotFoundException {
1369     /*
1370     * To improve performance in typical cases, we create nodes
1371     * while reading, then place in table once size is known.
1372     * However, we must also validate uniqueness and deal with
1373     * overpopulated bins while doing so, which requires
1374     * specialized versions of putVal mechanics.
1375     */
1376     sizeCtl = -1; // force exclusion for table construction
1377     s.defaultReadObject();
1378     long size = 0L;
1379     Node<K,V> p = null;
1380     for (;;) {
1381     @SuppressWarnings("unchecked") K k = (K) s.readObject();
1382     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1383     if (k != null && v != null) {
1384     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1385     ++size;
1386     }
1387     else
1388     break;
1389     }
1390     if (size == 0L)
1391     sizeCtl = 0;
1392     else {
1393     int n;
1394     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1395     n = MAXIMUM_CAPACITY;
1396 dl 1.149 else {
1397 dl 1.222 int sz = (int)size;
1398     n = tableSizeFor(sz + (sz >>> 1) + 1);
1399     }
1400     @SuppressWarnings({"rawtypes","unchecked"})
1401     Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1402     int mask = n - 1;
1403     long added = 0L;
1404     while (p != null) {
1405     boolean insertAtFront;
1406     Node<K,V> next = p.next, first;
1407     int h = p.hash, j = h & mask;
1408     if ((first = tabAt(tab, j)) == null)
1409     insertAtFront = true;
1410     else {
1411     K k = p.key;
1412     if (first.hash < 0) {
1413     TreeBin<K,V> t = (TreeBin<K,V>)first;
1414     if (t.putTreeVal(h, k, p.val) == null)
1415     ++added;
1416     insertAtFront = false;
1417     }
1418     else {
1419     int binCount = 0;
1420     insertAtFront = true;
1421     Node<K,V> q; K qk;
1422     for (q = first; q != null; q = q.next) {
1423     if (q.hash == h &&
1424     ((qk = q.key) == k ||
1425     (qk != null && k.equals(qk)))) {
1426     insertAtFront = false;
1427 dl 1.119 break;
1428     }
1429 dl 1.222 ++binCount;
1430     }
1431     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1432     insertAtFront = false;
1433     ++added;
1434     p.next = first;
1435     TreeNode<K,V> hd = null, tl = null;
1436     for (q = p; q != null; q = q.next) {
1437     TreeNode<K,V> t = new TreeNode<K,V>
1438     (q.hash, q.key, q.val, null, null);
1439     if ((t.prev = tl) == null)
1440     hd = t;
1441     else
1442     tl.next = t;
1443     tl = t;
1444     }
1445     setTabAt(tab, j, new TreeBin<K,V>(hd));
1446 dl 1.119 }
1447     }
1448     }
1449 dl 1.222 if (insertAtFront) {
1450     ++added;
1451     p.next = first;
1452     setTabAt(tab, j, p);
1453 dl 1.119 }
1454 dl 1.222 p = next;
1455 dl 1.119 }
1456 dl 1.222 table = tab;
1457     sizeCtl = n - (n >>> 2);
1458     baseCount = added;
1459 dl 1.119 }
1460 dl 1.55 }
1461    
1462 dl 1.222 // ConcurrentMap methods
1463    
1464     /**
1465     * {@inheritDoc}
1466     *
1467     * @return the previous value associated with the specified key,
1468     * or {@code null} if there was no mapping for the key
1469     * @throws NullPointerException if the specified key or value is null
1470     */
1471     public V putIfAbsent(K key, V value) {
1472     return putVal(key, value, true);
1473     }
1474    
1475     /**
1476     * {@inheritDoc}
1477     *
1478     * @throws NullPointerException if the specified key is null
1479     */
1480     public boolean remove(Object key, Object value) {
1481     if (key == null)
1482     throw new NullPointerException();
1483     return value != null && replaceNode(key, null, value) != null;
1484     }
1485    
1486     /**
1487     * {@inheritDoc}
1488     *
1489     * @throws NullPointerException if any of the arguments are null
1490     */
1491     public boolean replace(K key, V oldValue, V newValue) {
1492     if (key == null || oldValue == null || newValue == null)
1493     throw new NullPointerException();
1494     return replaceNode(key, newValue, oldValue) != null;
1495     }
1496    
1497     /**
1498     * {@inheritDoc}
1499     *
1500     * @return the previous value associated with the specified key,
1501     * or {@code null} if there was no mapping for the key
1502     * @throws NullPointerException if the specified key or value is null
1503     */
1504     public V replace(K key, V value) {
1505     if (key == null || value == null)
1506     throw new NullPointerException();
1507     return replaceNode(key, value, null);
1508     }
1509    
1510     // Overrides of JDK8+ Map extension method defaults
1511    
1512     /**
1513     * Returns the value to which the specified key is mapped, or the
1514     * given default value if this map contains no mapping for the
1515     * key.
1516     *
1517     * @param key the key whose associated value is to be returned
1518     * @param defaultValue the value to return if this map contains
1519     * no mapping for the given key
1520     * @return the mapping for the key, if present; else the default value
1521     * @throws NullPointerException if the specified key is null
1522 tim 1.1 */
1523 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1524     V v;
1525     return (v = get(key)) == null ? defaultValue : v;
1526     }
1527 tim 1.1
1528 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1529     if (action == null) throw new NullPointerException();
1530     Node<K,V>[] t;
1531     if ((t = table) != null) {
1532     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1533     for (Node<K,V> p; (p = it.advance()) != null; ) {
1534     action.accept(p.key, p.val);
1535 dl 1.99 }
1536 dl 1.222 }
1537     }
1538    
1539     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1540     if (function == null) throw new NullPointerException();
1541     Node<K,V>[] t;
1542     if ((t = table) != null) {
1543     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1544     for (Node<K,V> p; (p = it.advance()) != null; ) {
1545     V oldValue = p.val;
1546     for (K key = p.key;;) {
1547     V newValue = function.apply(key, oldValue);
1548     if (newValue == null)
1549     throw new NullPointerException();
1550     if (replaceNode(key, newValue, oldValue) != null ||
1551     (oldValue = get(key)) == null)
1552 dl 1.119 break;
1553     }
1554     }
1555 dl 1.45 }
1556 dl 1.21 }
1557    
1558 dl 1.222 /**
1559     * If the specified key is not already associated with a value,
1560     * attempts to compute its value using the given mapping function
1561     * and enters it into this map unless {@code null}. The entire
1562     * method invocation is performed atomically, so the function is
1563     * applied at most once per key. Some attempted update operations
1564     * on this map by other threads may be blocked while computation
1565     * is in progress, so the computation should be short and simple,
1566     * and must not attempt to update any other mappings of this map.
1567     *
1568     * @param key key with which the specified value is to be associated
1569     * @param mappingFunction the function to compute a value
1570     * @return the current (existing or computed) value associated with
1571     * the specified key, or null if the computed value is null
1572     * @throws NullPointerException if the specified key or mappingFunction
1573     * is null
1574     * @throws IllegalStateException if the computation detectably
1575     * attempts a recursive update to this map that would
1576     * otherwise never complete
1577     * @throws RuntimeException or Error if the mappingFunction does so,
1578     * in which case the mapping is left unestablished
1579     */
1580     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1581     if (key == null || mappingFunction == null)
1582 dl 1.149 throw new NullPointerException();
1583 dl 1.222 int h = spread(key.hashCode());
1584 dl 1.151 V val = null;
1585 dl 1.222 int binCount = 0;
1586 dl 1.210 for (Node<K,V>[] tab = table;;) {
1587 dl 1.222 Node<K,V> f; int n, i, fh;
1588     if (tab == null || (n = tab.length) == 0)
1589 dl 1.119 tab = initTable();
1590 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1591     Node<K,V> r = new ReservationNode<K,V>();
1592     synchronized (r) {
1593     if (casTabAt(tab, i, null, r)) {
1594     binCount = 1;
1595     Node<K,V> node = null;
1596 dl 1.149 try {
1597 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1598     node = new Node<K,V>(h, key, val, null);
1599 dl 1.149 } finally {
1600 dl 1.222 setTabAt(tab, i, node);
1601 dl 1.119 }
1602     }
1603     }
1604 dl 1.222 if (binCount != 0)
1605 dl 1.119 break;
1606     }
1607 dl 1.222 else if ((fh = f.hash) == MOVED)
1608     tab = helpTransfer(tab, f);
1609 dl 1.119 else {
1610 dl 1.149 boolean added = false;
1611 jsr166 1.150 synchronized (f) {
1612 dl 1.149 if (tabAt(tab, i) == f) {
1613 dl 1.222 if (fh >= 0) {
1614     binCount = 1;
1615     for (Node<K,V> e = f;; ++binCount) {
1616     K ek; V ev;
1617     if (e.hash == h &&
1618     ((ek = e.key) == key ||
1619     (ek != null && key.equals(ek)))) {
1620     val = e.val;
1621     break;
1622     }
1623     Node<K,V> pred = e;
1624     if ((e = e.next) == null) {
1625     if ((val = mappingFunction.apply(key)) != null) {
1626     added = true;
1627     pred.next = new Node<K,V>(h, key, val, null);
1628     }
1629     break;
1630     }
1631 dl 1.149 }
1632 dl 1.222 }
1633     else if (f instanceof TreeBin) {
1634     binCount = 2;
1635     TreeBin<K,V> t = (TreeBin<K,V>)f;
1636     TreeNode<K,V> r, p;
1637     if ((r = t.root) != null &&
1638     (p = r.findTreeNode(h, key, null)) != null)
1639     val = p.val;
1640     else if ((val = mappingFunction.apply(key)) != null) {
1641     added = true;
1642     t.putTreeVal(h, key, val);
1643 dl 1.119 }
1644     }
1645     }
1646 dl 1.149 }
1647 dl 1.222 if (binCount != 0) {
1648     if (binCount >= TREEIFY_THRESHOLD)
1649     treeifyBin(tab, i);
1650 dl 1.149 if (!added)
1651 dl 1.151 return val;
1652 dl 1.149 break;
1653 dl 1.119 }
1654 dl 1.105 }
1655 dl 1.99 }
1656 dl 1.149 if (val != null)
1657 dl 1.222 addCount(1L, binCount);
1658 dl 1.151 return val;
1659 tim 1.1 }
1660    
1661 dl 1.222 /**
1662     * If the value for the specified key is present, attempts to
1663     * compute a new mapping given the key and its current mapped
1664     * value. The entire method invocation is performed atomically.
1665     * Some attempted update operations on this map by other threads
1666     * may be blocked while computation is in progress, so the
1667     * computation should be short and simple, and must not attempt to
1668     * update any other mappings of this map.
1669     *
1670     * @param key key with which a value may be associated
1671     * @param remappingFunction the function to compute a value
1672     * @return the new value associated with the specified key, or null if none
1673     * @throws NullPointerException if the specified key or remappingFunction
1674     * is null
1675     * @throws IllegalStateException if the computation detectably
1676     * attempts a recursive update to this map that would
1677     * otherwise never complete
1678     * @throws RuntimeException or Error if the remappingFunction does so,
1679     * in which case the mapping is unchanged
1680     */
1681     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1682     if (key == null || remappingFunction == null)
1683 dl 1.149 throw new NullPointerException();
1684 dl 1.222 int h = spread(key.hashCode());
1685 dl 1.151 V val = null;
1686 dl 1.119 int delta = 0;
1687 dl 1.222 int binCount = 0;
1688 dl 1.210 for (Node<K,V>[] tab = table;;) {
1689 dl 1.222 Node<K,V> f; int n, i, fh;
1690     if (tab == null || (n = tab.length) == 0)
1691 dl 1.119 tab = initTable();
1692 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1693     break;
1694     else if ((fh = f.hash) == MOVED)
1695     tab = helpTransfer(tab, f);
1696     else {
1697     synchronized (f) {
1698     if (tabAt(tab, i) == f) {
1699     if (fh >= 0) {
1700     binCount = 1;
1701     for (Node<K,V> e = f, pred = null;; ++binCount) {
1702     K ek;
1703     if (e.hash == h &&
1704     ((ek = e.key) == key ||
1705     (ek != null && key.equals(ek)))) {
1706     val = remappingFunction.apply(key, e.val);
1707     if (val != null)
1708     e.val = val;
1709 dl 1.210 else {
1710 dl 1.222 delta = -1;
1711     Node<K,V> en = e.next;
1712     if (pred != null)
1713     pred.next = en;
1714     else
1715     setTabAt(tab, i, en);
1716 dl 1.210 }
1717 dl 1.222 break;
1718 dl 1.210 }
1719 dl 1.222 pred = e;
1720     if ((e = e.next) == null)
1721     break;
1722 dl 1.119 }
1723     }
1724 dl 1.222 else if (f instanceof TreeBin) {
1725     binCount = 2;
1726     TreeBin<K,V> t = (TreeBin<K,V>)f;
1727     TreeNode<K,V> r, p;
1728     if ((r = t.root) != null &&
1729     (p = r.findTreeNode(h, key, null)) != null) {
1730     val = remappingFunction.apply(key, p.val);
1731 dl 1.119 if (val != null)
1732 dl 1.222 p.val = val;
1733 dl 1.119 else {
1734     delta = -1;
1735 dl 1.222 if (t.removeTreeNode(p))
1736     setTabAt(tab, i, untreeify(t.first));
1737 dl 1.119 }
1738     }
1739     }
1740     }
1741     }
1742 dl 1.222 if (binCount != 0)
1743 dl 1.119 break;
1744     }
1745     }
1746 dl 1.149 if (delta != 0)
1747 dl 1.222 addCount((long)delta, binCount);
1748 dl 1.151 return val;
1749 dl 1.119 }
1750    
1751 dl 1.222 /**
1752     * Attempts to compute a mapping for the specified key and its
1753     * current mapped value (or {@code null} if there is no current
1754     * mapping). The entire method invocation is performed atomically.
1755     * Some attempted update operations on this map by other threads
1756     * may be blocked while computation is in progress, so the
1757     * computation should be short and simple, and must not attempt to
1758     * update any other mappings of this Map.
1759     *
1760     * @param key key with which the specified value is to be associated
1761     * @param remappingFunction the function to compute a value
1762     * @return the new value associated with the specified key, or null if none
1763     * @throws NullPointerException if the specified key or remappingFunction
1764     * is null
1765     * @throws IllegalStateException if the computation detectably
1766     * attempts a recursive update to this map that would
1767     * otherwise never complete
1768     * @throws RuntimeException or Error if the remappingFunction does so,
1769     * in which case the mapping is unchanged
1770     */
1771     public V compute(K key,
1772     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773     if (key == null || remappingFunction == null)
1774 dl 1.149 throw new NullPointerException();
1775 dl 1.222 int h = spread(key.hashCode());
1776 dl 1.151 V val = null;
1777 dl 1.119 int delta = 0;
1778 dl 1.222 int binCount = 0;
1779 dl 1.210 for (Node<K,V>[] tab = table;;) {
1780 dl 1.222 Node<K,V> f; int n, i, fh;
1781     if (tab == null || (n = tab.length) == 0)
1782 dl 1.119 tab = initTable();
1783 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1784     Node<K,V> r = new ReservationNode<K,V>();
1785     synchronized (r) {
1786     if (casTabAt(tab, i, null, r)) {
1787     binCount = 1;
1788     Node<K,V> node = null;
1789     try {
1790     if ((val = remappingFunction.apply(key, null)) != null) {
1791     delta = 1;
1792     node = new Node<K,V>(h, key, val, null);
1793     }
1794     } finally {
1795     setTabAt(tab, i, node);
1796     }
1797     }
1798     }
1799     if (binCount != 0)
1800 dl 1.119 break;
1801     }
1802 dl 1.222 else if ((fh = f.hash) == MOVED)
1803     tab = helpTransfer(tab, f);
1804     else {
1805     synchronized (f) {
1806     if (tabAt(tab, i) == f) {
1807     if (fh >= 0) {
1808     binCount = 1;
1809     for (Node<K,V> e = f, pred = null;; ++binCount) {
1810     K ek;
1811     if (e.hash == h &&
1812     ((ek = e.key) == key ||
1813     (ek != null && key.equals(ek)))) {
1814     val = remappingFunction.apply(key, e.val);
1815     if (val != null)
1816     e.val = val;
1817     else {
1818     delta = -1;
1819     Node<K,V> en = e.next;
1820     if (pred != null)
1821     pred.next = en;
1822     else
1823     setTabAt(tab, i, en);
1824     }
1825     break;
1826     }
1827     pred = e;
1828     if ((e = e.next) == null) {
1829     val = remappingFunction.apply(key, null);
1830     if (val != null) {
1831     delta = 1;
1832     pred.next =
1833     new Node<K,V>(h, key, val, null);
1834     }
1835     break;
1836     }
1837     }
1838     }
1839     else if (f instanceof TreeBin) {
1840     binCount = 1;
1841     TreeBin<K,V> t = (TreeBin<K,V>)f;
1842     TreeNode<K,V> r, p;
1843     if ((r = t.root) != null)
1844     p = r.findTreeNode(h, key, null);
1845     else
1846     p = null;
1847     V pv = (p == null) ? null : p.val;
1848     val = remappingFunction.apply(key, pv);
1849 dl 1.119 if (val != null) {
1850     if (p != null)
1851     p.val = val;
1852     else {
1853     delta = 1;
1854 dl 1.222 t.putTreeVal(h, key, val);
1855 dl 1.119 }
1856     }
1857     else if (p != null) {
1858     delta = -1;
1859 dl 1.222 if (t.removeTreeNode(p))
1860     setTabAt(tab, i, untreeify(t.first));
1861 dl 1.119 }
1862     }
1863     }
1864     }
1865 dl 1.222 if (binCount != 0) {
1866     if (binCount >= TREEIFY_THRESHOLD)
1867     treeifyBin(tab, i);
1868     break;
1869 dl 1.119 }
1870 dl 1.105 }
1871 dl 1.99 }
1872 dl 1.149 if (delta != 0)
1873 dl 1.222 addCount((long)delta, binCount);
1874 dl 1.151 return val;
1875 dl 1.119 }
1876    
1877 dl 1.222 /**
1878     * If the specified key is not already associated with a
1879     * (non-null) value, associates it with the given value.
1880     * Otherwise, replaces the value with the results of the given
1881     * remapping function, or removes if {@code null}. The entire
1882     * method invocation is performed atomically. Some attempted
1883     * update operations on this map by other threads may be blocked
1884     * while computation is in progress, so the computation should be
1885     * short and simple, and must not attempt to update any other
1886     * mappings of this Map.
1887     *
1888     * @param key key with which the specified value is to be associated
1889     * @param value the value to use if absent
1890     * @param remappingFunction the function to recompute a value if present
1891     * @return the new value associated with the specified key, or null if none
1892     * @throws NullPointerException if the specified key or the
1893     * remappingFunction is null
1894     * @throws RuntimeException or Error if the remappingFunction does so,
1895     * in which case the mapping is unchanged
1896     */
1897     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1898     if (key == null || value == null || remappingFunction == null)
1899     throw new NullPointerException();
1900     int h = spread(key.hashCode());
1901     V val = null;
1902     int delta = 0;
1903     int binCount = 0;
1904     for (Node<K,V>[] tab = table;;) {
1905     Node<K,V> f; int n, i, fh;
1906     if (tab == null || (n = tab.length) == 0)
1907     tab = initTable();
1908     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1909     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1910     delta = 1;
1911     val = value;
1912 dl 1.119 break;
1913     }
1914 dl 1.222 }
1915     else if ((fh = f.hash) == MOVED)
1916     tab = helpTransfer(tab, f);
1917     else {
1918     synchronized (f) {
1919     if (tabAt(tab, i) == f) {
1920     if (fh >= 0) {
1921     binCount = 1;
1922     for (Node<K,V> e = f, pred = null;; ++binCount) {
1923     K ek;
1924     if (e.hash == h &&
1925     ((ek = e.key) == key ||
1926     (ek != null && key.equals(ek)))) {
1927     val = remappingFunction.apply(e.val, value);
1928     if (val != null)
1929     e.val = val;
1930 dl 1.119 else {
1931 dl 1.222 delta = -1;
1932     Node<K,V> en = e.next;
1933     if (pred != null)
1934     pred.next = en;
1935     else
1936     setTabAt(tab, i, en);
1937 dl 1.119 }
1938 dl 1.222 break;
1939     }
1940     pred = e;
1941     if ((e = e.next) == null) {
1942     delta = 1;
1943     val = value;
1944     pred.next =
1945     new Node<K,V>(h, key, val, null);
1946     break;
1947 dl 1.119 }
1948     }
1949     }
1950 dl 1.222 else if (f instanceof TreeBin) {
1951     binCount = 2;
1952     TreeBin<K,V> t = (TreeBin<K,V>)f;
1953     TreeNode<K,V> r = t.root;
1954     TreeNode<K,V> p = (r == null) ? null :
1955     r.findTreeNode(h, key, null);
1956     val = (p == null) ? value :
1957     remappingFunction.apply(p.val, value);
1958     if (val != null) {
1959     if (p != null)
1960     p.val = val;
1961     else {
1962     delta = 1;
1963     t.putTreeVal(h, key, val);
1964 dl 1.119 }
1965     }
1966 dl 1.222 else if (p != null) {
1967     delta = -1;
1968     if (t.removeTreeNode(p))
1969     setTabAt(tab, i, untreeify(t.first));
1970 dl 1.164 }
1971 dl 1.99 }
1972 dl 1.21 }
1973     }
1974 dl 1.222 if (binCount != 0) {
1975     if (binCount >= TREEIFY_THRESHOLD)
1976     treeifyBin(tab, i);
1977     break;
1978     }
1979 dl 1.45 }
1980     }
1981 dl 1.222 if (delta != 0)
1982     addCount((long)delta, binCount);
1983     return val;
1984 tim 1.1 }
1985 dl 1.19
1986 dl 1.222 // Hashtable legacy methods
1987    
1988 dl 1.149 /**
1989 dl 1.222 * Legacy method testing if some key maps into the specified value
1990     * in this table. This method is identical in functionality to
1991     * {@link #containsValue(Object)}, and exists solely to ensure
1992     * full compatibility with class {@link java.util.Hashtable},
1993     * which supported this method prior to introduction of the
1994     * Java Collections framework.
1995     *
1996     * @param value a value to search for
1997     * @return {@code true} if and only if some key maps to the
1998     * {@code value} argument in this table as
1999     * determined by the {@code equals} method;
2000     * {@code false} otherwise
2001     * @throws NullPointerException if the specified value is null
2002 dl 1.149 */
2003 dl 1.222 @Deprecated public boolean contains(Object value) {
2004     return containsValue(value);
2005 dl 1.149 }
2006    
2007 tim 1.1 /**
2008 dl 1.222 * Returns an enumeration of the keys in this table.
2009     *
2010     * @return an enumeration of the keys in this table
2011     * @see #keySet()
2012 tim 1.1 */
2013 dl 1.222 public Enumeration<K> keys() {
2014     Node<K,V>[] t;
2015     int f = (t = table) == null ? 0 : t.length;
2016     return new KeyIterator<K,V>(t, f, 0, f, this);
2017 tim 1.1 }
2018    
2019     /**
2020 dl 1.222 * Returns an enumeration of the values in this table.
2021     *
2022     * @return an enumeration of the values in this table
2023     * @see #values()
2024     */
2025     public Enumeration<V> elements() {
2026     Node<K,V>[] t;
2027     int f = (t = table) == null ? 0 : t.length;
2028     return new ValueIterator<K,V>(t, f, 0, f, this);
2029     }
2030    
2031     // ConcurrentHashMap-only methods
2032    
2033     /**
2034     * Returns the number of mappings. This method should be used
2035     * instead of {@link #size} because a ConcurrentHashMap may
2036     * contain more mappings than can be represented as an int. The
2037     * value returned is an estimate; the actual count may differ if
2038     * there are concurrent insertions or removals.
2039     *
2040     * @return the number of mappings
2041     * @since 1.8
2042     */
2043     public long mappingCount() {
2044     long n = sumCount();
2045     return (n < 0L) ? 0L : n; // ignore transient negative values
2046     }
2047    
2048     /**
2049     * Creates a new {@link Set} backed by a ConcurrentHashMap
2050     * from the given type to {@code Boolean.TRUE}.
2051     *
2052     * @return the new set
2053     * @since 1.8
2054     */
2055     public static <K> KeySetView<K,Boolean> newKeySet() {
2056     return new KeySetView<K,Boolean>
2057     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2058     }
2059    
2060     /**
2061     * Creates a new {@link Set} backed by a ConcurrentHashMap
2062     * from the given type to {@code Boolean.TRUE}.
2063     *
2064     * @param initialCapacity The implementation performs internal
2065     * sizing to accommodate this many elements.
2066     * @throws IllegalArgumentException if the initial capacity of
2067     * elements is negative
2068     * @return the new set
2069     * @since 1.8
2070     */
2071     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2072     return new KeySetView<K,Boolean>
2073     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2074     }
2075    
2076     /**
2077     * Returns a {@link Set} view of the keys in this map, using the
2078     * given common mapped value for any additions (i.e., {@link
2079     * Collection#add} and {@link Collection#addAll(Collection)}).
2080     * This is of course only appropriate if it is acceptable to use
2081     * the same value for all additions from this view.
2082     *
2083     * @param mappedValue the mapped value to use for any additions
2084     * @return the set view
2085     * @throws NullPointerException if the mappedValue is null
2086     */
2087     public KeySetView<K,V> keySet(V mappedValue) {
2088     if (mappedValue == null)
2089     throw new NullPointerException();
2090     return new KeySetView<K,V>(this, mappedValue);
2091     }
2092    
2093     /* ---------------- Special Nodes -------------- */
2094    
2095     /**
2096     * A node inserted at head of bins during transfer operations.
2097     */
2098     static final class ForwardingNode<K,V> extends Node<K,V> {
2099     final Node<K,V>[] nextTable;
2100     ForwardingNode(Node<K,V>[] tab) {
2101     super(MOVED, null, null, null);
2102     this.nextTable = tab;
2103     }
2104    
2105     Node<K,V> find(int h, Object k) {
2106     Node<K,V> e; int n;
2107     Node<K,V>[] tab = nextTable;
2108     if (k != null && tab != null && (n = tab.length) > 0 &&
2109     (e = tabAt(tab, (n - 1) & h)) != null) {
2110     do {
2111     int eh; K ek;
2112     if ((eh = e.hash) == h &&
2113     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2114     return e;
2115     if (eh < 0)
2116     return e.find(h, k);
2117     } while ((e = e.next) != null);
2118     }
2119     return null;
2120     }
2121     }
2122    
2123     /**
2124     * A place-holder node used in computeIfAbsent and compute
2125     */
2126     static final class ReservationNode<K,V> extends Node<K,V> {
2127     ReservationNode() {
2128     super(RESERVED, null, null, null);
2129     }
2130    
2131     Node<K,V> find(int h, Object k) {
2132     return null;
2133     }
2134     }
2135    
2136     /* ---------------- Table Initialization and Resizing -------------- */
2137    
2138     /**
2139     * Initializes table, using the size recorded in sizeCtl.
2140 dl 1.119 */
2141 dl 1.210 private final Node<K,V>[] initTable() {
2142     Node<K,V>[] tab; int sc;
2143 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2144 dl 1.119 if ((sc = sizeCtl) < 0)
2145     Thread.yield(); // lost initialization race; just spin
2146 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2147 dl 1.119 try {
2148 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2149 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2150 dl 1.222 @SuppressWarnings({"rawtypes","unchecked"})
2151     Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2152     table = tab = nt;
2153 dl 1.119 sc = n - (n >>> 2);
2154     }
2155     } finally {
2156     sizeCtl = sc;
2157     }
2158     break;
2159     }
2160     }
2161     return tab;
2162 dl 1.4 }
2163    
2164     /**
2165 dl 1.149 * Adds to count, and if table is too small and not already
2166     * resizing, initiates transfer. If already resizing, helps
2167     * perform transfer if work is available. Rechecks occupancy
2168     * after a transfer to see if another resize is already needed
2169     * because resizings are lagging additions.
2170     *
2171     * @param x the count to add
2172     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2173     */
2174     private final void addCount(long x, int check) {
2175 dl 1.222 CounterCell[] as; long b, s;
2176 dl 1.149 if ((as = counterCells) != null ||
2177     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2178 dl 1.222 CounterCell a; long v; int m;
2179 dl 1.149 boolean uncontended = true;
2180 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
2181     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2182 dl 1.149 !(uncontended =
2183     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2184 dl 1.160 fullAddCount(x, uncontended);
2185 dl 1.149 return;
2186     }
2187     if (check <= 1)
2188     return;
2189     s = sumCount();
2190     }
2191     if (check >= 0) {
2192 dl 1.210 Node<K,V>[] tab, nt; int sc;
2193 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2194     tab.length < MAXIMUM_CAPACITY) {
2195     if (sc < 0) {
2196     if (sc == -1 || transferIndex <= transferOrigin ||
2197     (nt = nextTable) == null)
2198     break;
2199     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2200     transfer(tab, nt);
2201 dl 1.119 }
2202 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2203     transfer(tab, null);
2204     s = sumCount();
2205 dl 1.119 }
2206     }
2207 dl 1.4 }
2208    
2209     /**
2210 dl 1.222 * Helps transfer if a resize is in progress.
2211     */
2212     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2213     Node<K,V>[] nextTab; int sc;
2214     if ((f instanceof ForwardingNode) &&
2215     (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2216     if (nextTab == nextTable && tab == table &&
2217     transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2218     U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2219     transfer(tab, nextTab);
2220     return nextTab;
2221     }
2222     return table;
2223     }
2224    
2225     /**
2226 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2227 tim 1.1 *
2228 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2229 tim 1.1 */
2230 dl 1.210 private final void tryPresize(int size) {
2231 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2232     tableSizeFor(size + (size >>> 1) + 1);
2233     int sc;
2234     while ((sc = sizeCtl) >= 0) {
2235 dl 1.210 Node<K,V>[] tab = table; int n;
2236 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2237     n = (sc > c) ? sc : c;
2238 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2239 dl 1.119 try {
2240     if (table == tab) {
2241 dl 1.222 @SuppressWarnings({"rawtypes","unchecked"})
2242     Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2243     table = nt;
2244 dl 1.119 sc = n - (n >>> 2);
2245     }
2246     } finally {
2247     sizeCtl = sc;
2248     }
2249     }
2250     }
2251     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2252     break;
2253 dl 1.149 else if (tab == table &&
2254     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2255     transfer(tab, null);
2256 dl 1.119 }
2257 dl 1.4 }
2258    
2259 jsr166 1.170 /**
2260 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2261     * above for explanation.
2262 dl 1.4 */
2263 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2264 dl 1.149 int n = tab.length, stride;
2265     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2266     stride = MIN_TRANSFER_STRIDE; // subdivide range
2267     if (nextTab == null) { // initiating
2268     try {
2269 dl 1.222 @SuppressWarnings({"rawtypes","unchecked"})
2270     Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2271     nextTab = nt;
2272 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2273 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2274     return;
2275     }
2276     nextTable = nextTab;
2277     transferOrigin = n;
2278     transferIndex = n;
2279 dl 1.222 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2280 dl 1.149 for (int k = n; k > 0;) { // progressively reveal ready slots
2281 jsr166 1.150 int nextk = (k > stride) ? k - stride : 0;
2282 dl 1.149 for (int m = nextk; m < k; ++m)
2283     nextTab[m] = rev;
2284     for (int m = n + nextk; m < n + k; ++m)
2285     nextTab[m] = rev;
2286     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2287     }
2288     }
2289     int nextn = nextTab.length;
2290 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2291 dl 1.149 boolean advance = true;
2292     for (int i = 0, bound = 0;;) {
2293 dl 1.222 int nextIndex, nextBound, fh; Node<K,V> f;
2294 dl 1.149 while (advance) {
2295     if (--i >= bound)
2296     advance = false;
2297     else if ((nextIndex = transferIndex) <= transferOrigin) {
2298     i = -1;
2299     advance = false;
2300     }
2301     else if (U.compareAndSwapInt
2302     (this, TRANSFERINDEX, nextIndex,
2303 jsr166 1.150 nextBound = (nextIndex > stride ?
2304 dl 1.149 nextIndex - stride : 0))) {
2305     bound = nextBound;
2306     i = nextIndex - 1;
2307     advance = false;
2308     }
2309     }
2310     if (i < 0 || i >= n || i + n >= nextn) {
2311     for (int sc;;) {
2312     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2313     if (sc == -1) {
2314     nextTable = null;
2315     table = nextTab;
2316     sizeCtl = (n << 1) - (n >>> 1);
2317     }
2318     return;
2319     }
2320     }
2321     }
2322     else if ((f = tabAt(tab, i)) == null) {
2323     if (casTabAt(tab, i, null, fwd)) {
2324 dl 1.119 setTabAt(nextTab, i, null);
2325     setTabAt(nextTab, i + n, null);
2326 dl 1.149 advance = true;
2327     }
2328     }
2329 dl 1.222 else if ((fh = f.hash) == MOVED)
2330     advance = true; // already processed
2331     else {
2332 jsr166 1.150 synchronized (f) {
2333 dl 1.149 if (tabAt(tab, i) == f) {
2334 dl 1.222 Node<K,V> ln, hn;
2335     if (fh >= 0) {
2336     int runBit = fh & n;
2337     Node<K,V> lastRun = f;
2338     for (Node<K,V> p = f.next; p != null; p = p.next) {
2339     int b = p.hash & n;
2340     if (b != runBit) {
2341     runBit = b;
2342     lastRun = p;
2343     }
2344     }
2345     if (runBit == 0) {
2346     ln = lastRun;
2347     hn = null;
2348     }
2349     else {
2350     hn = lastRun;
2351     ln = null;
2352 dl 1.149 }
2353 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2354     int ph = p.hash; K pk = p.key; V pv = p.val;
2355     if ((ph & n) == 0)
2356     ln = new Node<K,V>(ph, pk, pv, ln);
2357 dl 1.210 else
2358 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2359 dl 1.149 }
2360 dl 1.222 }
2361     else if (f instanceof TreeBin) {
2362     TreeBin<K,V> t = (TreeBin<K,V>)f;
2363     TreeNode<K,V> lo = null, loTail = null;
2364     TreeNode<K,V> hi = null, hiTail = null;
2365     int lc = 0, hc = 0;
2366     for (Node<K,V> e = t.first; e != null; e = e.next) {
2367     int h = e.hash;
2368     TreeNode<K,V> p = new TreeNode<K,V>
2369     (h, e.key, e.val, null, null);
2370     if ((h & n) == 0) {
2371     if ((p.prev = loTail) == null)
2372     lo = p;
2373     else
2374     loTail.next = p;
2375     loTail = p;
2376     ++lc;
2377 dl 1.210 }
2378 dl 1.222 else {
2379     if ((p.prev = hiTail) == null)
2380     hi = p;
2381     else
2382     hiTail.next = p;
2383     hiTail = p;
2384     ++hc;
2385 dl 1.210 }
2386 dl 1.149 }
2387 dl 1.222 ln = (lc <= UNTREEIFY_THRESHOLD ? untreeify(lo) :
2388     (hc != 0) ? new TreeBin<K,V>(lo) : t);
2389     hn = (hc <= UNTREEIFY_THRESHOLD ? untreeify(hi) :
2390     (lc != 0) ? new TreeBin<K,V>(hi) : t);
2391 dl 1.149 }
2392 dl 1.222 else
2393     ln = hn = null;
2394 dl 1.149 setTabAt(nextTab, i, ln);
2395     setTabAt(nextTab, i + n, hn);
2396 dl 1.119 setTabAt(tab, i, fwd);
2397 dl 1.149 advance = true;
2398 dl 1.119 }
2399     }
2400     }
2401     }
2402 dl 1.4 }
2403 tim 1.1
2404 dl 1.149 /* ---------------- Counter support -------------- */
2405    
2406 dl 1.222 /**
2407     * A padded cell for distributing counts. Adapted from LongAdder
2408     * and Striped64. See their internal docs for explanation.
2409     */
2410     @sun.misc.Contended static final class CounterCell {
2411     volatile long value;
2412     CounterCell(long x) { value = x; }
2413     }
2414    
2415 dl 1.149 final long sumCount() {
2416 dl 1.222 CounterCell[] as = counterCells; CounterCell a;
2417 dl 1.149 long sum = baseCount;
2418     if (as != null) {
2419     for (int i = 0; i < as.length; ++i) {
2420     if ((a = as[i]) != null)
2421     sum += a.value;
2422 dl 1.119 }
2423     }
2424 dl 1.149 return sum;
2425 dl 1.119 }
2426    
2427 dl 1.149 // See LongAdder version for explanation
2428 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2429 dl 1.149 int h;
2430 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2431     ThreadLocalRandom.localInit(); // force initialization
2432     h = ThreadLocalRandom.getProbe();
2433     wasUncontended = true;
2434 dl 1.119 }
2435 dl 1.149 boolean collide = false; // True if last slot nonempty
2436     for (;;) {
2437 dl 1.222 CounterCell[] as; CounterCell a; int n; long v;
2438 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2439     if ((a = as[(n - 1) & h]) == null) {
2440 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2441 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2442 dl 1.153 if (cellsBusy == 0 &&
2443     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2444 dl 1.149 boolean created = false;
2445     try { // Recheck under lock
2446 dl 1.222 CounterCell[] rs; int m, j;
2447 dl 1.149 if ((rs = counterCells) != null &&
2448     (m = rs.length) > 0 &&
2449     rs[j = (m - 1) & h] == null) {
2450     rs[j] = r;
2451     created = true;
2452 dl 1.128 }
2453 dl 1.149 } finally {
2454 dl 1.153 cellsBusy = 0;
2455 dl 1.119 }
2456 dl 1.149 if (created)
2457     break;
2458     continue; // Slot is now non-empty
2459     }
2460     }
2461     collide = false;
2462     }
2463     else if (!wasUncontended) // CAS already known to fail
2464     wasUncontended = true; // Continue after rehash
2465     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2466     break;
2467     else if (counterCells != as || n >= NCPU)
2468     collide = false; // At max size or stale
2469     else if (!collide)
2470     collide = true;
2471 dl 1.153 else if (cellsBusy == 0 &&
2472     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2473 dl 1.149 try {
2474     if (counterCells == as) {// Expand table unless stale
2475 dl 1.222 CounterCell[] rs = new CounterCell[n << 1];
2476 dl 1.149 for (int i = 0; i < n; ++i)
2477     rs[i] = as[i];
2478     counterCells = rs;
2479 dl 1.119 }
2480     } finally {
2481 dl 1.153 cellsBusy = 0;
2482 dl 1.119 }
2483 dl 1.149 collide = false;
2484     continue; // Retry with expanded table
2485 dl 1.119 }
2486 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2487 dl 1.149 }
2488 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2489     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2490 dl 1.149 boolean init = false;
2491     try { // Initialize table
2492     if (counterCells == as) {
2493 dl 1.222 CounterCell[] rs = new CounterCell[2];
2494     rs[h & 1] = new CounterCell(x);
2495 dl 1.149 counterCells = rs;
2496     init = true;
2497 dl 1.119 }
2498     } finally {
2499 dl 1.153 cellsBusy = 0;
2500 dl 1.119 }
2501 dl 1.149 if (init)
2502     break;
2503 dl 1.119 }
2504 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2505     break; // Fall back on using base
2506 dl 1.119 }
2507     }
2508    
2509 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2510 dl 1.119
2511     /**
2512 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2513     * too small, in which case resizes instead.
2514 dl 1.119 */
2515 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2516     Node<K,V> b; int n, sc;
2517     if (tab != null) {
2518 dl 1.224 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2519     if (tab == table && (sc = sizeCtl) >= 0 &&
2520     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2521     transfer(tab, null);
2522     }
2523 dl 1.222 else if ((b = tabAt(tab, index)) != null) {
2524 jsr166 1.223 synchronized (b) {
2525 dl 1.222 if (tabAt(tab, index) == b) {
2526     TreeNode<K,V> hd = null, tl = null;
2527     for (Node<K,V> e = b; e != null; e = e.next) {
2528     TreeNode<K,V> p =
2529     new TreeNode<K,V>(e.hash, e.key, e.val,
2530     null, null);
2531     if ((p.prev = tl) == null)
2532     hd = p;
2533     else
2534     tl.next = p;
2535     tl = p;
2536     }
2537     setTabAt(tab, index, new TreeBin<K,V>(hd));
2538 dl 1.210 }
2539     }
2540     }
2541     }
2542     }
2543    
2544     /**
2545 dl 1.222 * Returns a list on non-TreeNodes replacing those in given list
2546 dl 1.210 */
2547 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2548     Node<K,V> hd = null, tl = null;
2549     for (Node<K,V> q = b; q != null; q = q.next) {
2550     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2551     if (tl == null)
2552     hd = p;
2553     else
2554     tl.next = p;
2555     tl = p;
2556 dl 1.210 }
2557 dl 1.222 return hd;
2558     }
2559 dl 1.210
2560 dl 1.222 /* ---------------- TreeNodes -------------- */
2561    
2562     /**
2563     * Nodes for use in TreeBins
2564     */
2565     static final class TreeNode<K,V> extends Node<K,V> {
2566     TreeNode<K,V> parent; // red-black tree links
2567     TreeNode<K,V> left;
2568     TreeNode<K,V> right;
2569     TreeNode<K,V> prev; // needed to unlink next upon deletion
2570     boolean red;
2571 dl 1.210
2572 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2573     TreeNode<K,V> parent) {
2574     super(hash, key, val, next);
2575     this.parent = parent;
2576 dl 1.210 }
2577    
2578 dl 1.222 Node<K,V> find(int h, Object k) {
2579     return findTreeNode(h, k, null);
2580 dl 1.210 }
2581    
2582 dl 1.222 /**
2583     * Returns the TreeNode (or null if not found) for the given key
2584     * starting at given root.
2585     */
2586     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2587 dl 1.224 if (k != null) {
2588     TreeNode<K,V> p = this;
2589     do {
2590     int ph, dir; K pk; TreeNode<K,V> q;
2591     TreeNode<K,V> pl = p.left, pr = p.right;
2592     if ((ph = p.hash) > h)
2593     p = pl;
2594     else if (ph < h)
2595     p = pr;
2596     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2597     return p;
2598     else if (pl == null && pr == null)
2599     break;
2600     else if ((kc != null ||
2601     (kc = comparableClassFor(k)) != null) &&
2602     (dir = compareComparables(kc, k, pk)) != 0)
2603     p = (dir < 0) ? pl : pr;
2604     else if (pl == null)
2605     p = pr;
2606     else if (pr == null ||
2607     (q = pr.findTreeNode(h, k, kc)) == null)
2608     p = pl;
2609     else
2610     return q;
2611     } while (p != null);
2612     }
2613 dl 1.222 return null;
2614 dl 1.210 }
2615     }
2616 dl 1.192
2617 dl 1.222 /* ---------------- TreeBins -------------- */
2618 dl 1.119
2619 dl 1.222 /**
2620     * TreeNodes used at the heads of bins. TreeBins do not hold user
2621     * keys or values, but instead point to list of TreeNodes and
2622     * their root. They also maintain a parasitic read-write lock
2623     * forcing writers (who hold bin lock) to wait for readers (who do
2624     * not) to complete before tree restructuring operations.
2625     */
2626     static final class TreeBin<K,V> extends Node<K,V> {
2627     TreeNode<K,V> root;
2628     volatile TreeNode<K,V> first;
2629     volatile Thread waiter;
2630     volatile int lockState;
2631 dl 1.224 // values for lockState
2632     static final int WRITER = 1; // set while holding write lock
2633     static final int WAITER = 2; // set when waiting for write lock
2634     static final int READER = 4; // increment value for setting read lock
2635 dl 1.119
2636 dl 1.222 /**
2637     * Creates bin with initial set of nodes headed by b.
2638     */
2639     TreeBin(TreeNode<K,V> b) {
2640     super(TREEBIN, null, null, null);
2641 dl 1.224 this.first = b;
2642 dl 1.222 TreeNode<K,V> r = null;
2643     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2644     next = (TreeNode<K,V>)x.next;
2645     x.left = x.right = null;
2646     if (r == null) {
2647     x.parent = null;
2648     x.red = false;
2649     r = x;
2650     }
2651     else {
2652     Object key = x.key;
2653     int hash = x.hash;
2654     Class<?> kc = null;
2655     for (TreeNode<K,V> p = r;;) {
2656     int dir, ph;
2657     if ((ph = p.hash) > hash)
2658     dir = -1;
2659     else if (ph < hash)
2660     dir = 1;
2661     else if ((kc != null ||
2662     (kc = comparableClassFor(key)) != null))
2663     dir = compareComparables(kc, key, p.key);
2664     else
2665     dir = 0;
2666     TreeNode<K,V> xp = p;
2667     if ((p = (dir <= 0) ? p.left : p.right) == null) {
2668     x.parent = xp;
2669     if (dir <= 0)
2670     xp.left = x;
2671     else
2672     xp.right = x;
2673     r = balanceInsertion(r, x);
2674     break;
2675     }
2676     }
2677     }
2678     }
2679 dl 1.224 this.root = r;
2680 dl 1.222 }
2681 dl 1.210
2682 dl 1.222 /**
2683     * Acquires write lock for tree restructuring
2684     */
2685     private final void lockRoot() {
2686     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2687     contendedLock(); // offload to separate method
2688 dl 1.153 }
2689    
2690 dl 1.222 /**
2691     * Releases write lock for tree restructuring
2692     */
2693     private final void unlockRoot() {
2694     lockState = 0;
2695 dl 1.191 }
2696    
2697 dl 1.222 /**
2698     * Possibly blocks awaiting root lock
2699     */
2700     private final void contendedLock() {
2701     boolean waiting = false;
2702     for (int s;;) {
2703     if (((s = lockState) & WRITER) == 0) {
2704     if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2705     if (waiting)
2706     waiter = null;
2707     return;
2708     }
2709     }
2710     else if ((s | WAITER) == 0) {
2711     if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2712     waiting = true;
2713     waiter = Thread.currentThread();
2714     }
2715     }
2716     else if (waiting)
2717     LockSupport.park(this);
2718     }
2719 dl 1.192 }
2720    
2721 dl 1.222 /**
2722     * Returns matching node or null if none. Tries to search
2723     * using tree compareisons from root, but continues linear
2724     * search when lock not available.
2725     */
2726     final Node<K,V> find(int h, Object k) {
2727     if (k != null) {
2728     for (Node<K,V> e = first; e != null; e = e.next) {
2729     int s; K ek;
2730     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2731     if (e.hash == h &&
2732     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2733     return e;
2734     }
2735     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2736     s + READER)) {
2737     TreeNode<K,V> r, p;
2738     try {
2739     p = ((r = root) == null ? null :
2740     r.findTreeNode(h, k, null));
2741     } finally {
2742     Thread w;
2743     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2744     (READER|WAITER) && (w = waiter) != null)
2745     LockSupport.unpark(w);
2746     }
2747     return p;
2748     }
2749     }
2750     }
2751     return null;
2752 dl 1.192 }
2753    
2754 dl 1.222 /**
2755     * Finds or adds a node.
2756     * @return null if added
2757     */
2758     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2759     Class<?> kc = null;
2760 dl 1.224 for (TreeNode<K,V> p = root;;) {
2761 dl 1.222 int dir, ph; K pk; TreeNode<K,V> q, pr;
2762 dl 1.224 if (p == null) {
2763     first = root = new TreeNode<K,V>(h, k, v, null, null);
2764     break;
2765     }
2766     else if ((ph = p.hash) > h)
2767 dl 1.222 dir = -1;
2768     else if (ph < h)
2769     dir = 1;
2770     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2771     return p;
2772     else if ((kc == null &&
2773     (kc = comparableClassFor(k)) == null) ||
2774     (dir = compareComparables(kc, k, pk)) == 0) {
2775     if (p.left == null)
2776     dir = 1;
2777     else if ((pr = p.right) == null ||
2778     (q = pr.findTreeNode(h, k, kc)) == null)
2779     dir = -1;
2780     else
2781     return q;
2782     }
2783     TreeNode<K,V> xp = p;
2784     if ((p = (dir < 0) ? p.left : p.right) == null) {
2785     TreeNode<K,V> x, f = first;
2786     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2787     if (f != null)
2788     f.prev = x;
2789     if (dir < 0)
2790     xp.left = x;
2791     else
2792     xp.right = x;
2793     if (!xp.red)
2794     x.red = true;
2795     else {
2796     lockRoot();
2797     try {
2798     root = balanceInsertion(root, x);
2799     } finally {
2800     unlockRoot();
2801     }
2802     }
2803 dl 1.224 break;
2804 dl 1.222 }
2805     }
2806 dl 1.224 assert checkInvariants(root);
2807     return null;
2808 dl 1.192 }
2809    
2810 dl 1.222 /**
2811     * Removes the given node, that must be present before this
2812     * call. This is messier than typical red-black deletion code
2813     * because we cannot swap the contents of an interior node
2814     * with a leaf successor that is pinned by "next" pointers
2815     * that are accessible independently of lock. So instead we
2816     * swap the tree linkages.
2817     *
2818     * @return true if now too small so should be untreeified.
2819     */
2820     final boolean removeTreeNode(TreeNode<K,V> p) {
2821     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2822     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2823     TreeNode<K,V> r, rl;
2824     if (pred == null)
2825     first = next;
2826     else
2827     pred.next = next;
2828     if (next != null)
2829     next.prev = pred;
2830     if (first == null) {
2831     root = null;
2832     return true;
2833     }
2834 dl 1.224 if ((r = root) == null || r.right == null || // too small
2835 dl 1.222 (rl = r.left) == null || rl.left == null)
2836     return true;
2837     lockRoot();
2838     try {
2839     TreeNode<K,V> replacement;
2840     TreeNode<K,V> pl = p.left;
2841     TreeNode<K,V> pr = p.right;
2842     if (pl != null && pr != null) {
2843     TreeNode<K,V> s = pr, sl;
2844     while ((sl = s.left) != null) // find successor
2845     s = sl;
2846     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2847     TreeNode<K,V> sr = s.right;
2848     TreeNode<K,V> pp = p.parent;
2849     if (s == pr) { // p was s's direct parent
2850     p.parent = s;
2851     s.right = p;
2852     }
2853     else {
2854     TreeNode<K,V> sp = s.parent;
2855     if ((p.parent = sp) != null) {
2856     if (s == sp.left)
2857     sp.left = p;
2858     else
2859     sp.right = p;
2860     }
2861     if ((s.right = pr) != null)
2862     pr.parent = s;
2863     }
2864     p.left = null;
2865     if ((p.right = sr) != null)
2866     sr.parent = p;
2867     if ((s.left = pl) != null)
2868     pl.parent = s;
2869     if ((s.parent = pp) == null)
2870     r = s;
2871     else if (p == pp.left)
2872     pp.left = s;
2873     else
2874     pp.right = s;
2875     if (sr != null)
2876     replacement = sr;
2877     else
2878     replacement = p;
2879     }
2880     else if (pl != null)
2881     replacement = pl;
2882     else if (pr != null)
2883     replacement = pr;
2884     else
2885     replacement = p;
2886     if (replacement != p) {
2887     TreeNode<K,V> pp = replacement.parent = p.parent;
2888     if (pp == null)
2889     r = replacement;
2890     else if (p == pp.left)
2891     pp.left = replacement;
2892     else
2893     pp.right = replacement;
2894     p.left = p.right = p.parent = null;
2895     }
2896    
2897     root = (p.red) ? r : balanceDeletion(r, replacement);
2898    
2899     if (p == replacement) { // detach pointers
2900     TreeNode<K,V> pp;
2901     if ((pp = p.parent) != null) {
2902     if (p == pp.left)
2903     pp.left = null;
2904     else if (p == pp.right)
2905     pp.right = null;
2906     p.parent = null;
2907     }
2908     }
2909     } finally {
2910     unlockRoot();
2911     }
2912 dl 1.224 assert checkInvariants(root);
2913 dl 1.222 return false;
2914 dl 1.210 }
2915    
2916 dl 1.222 /* ------------------------------------------------------------ */
2917     // Red-black tree methods, all adapted from CLR
2918 dl 1.210
2919 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2920     TreeNode<K,V> p) {
2921 dl 1.224 TreeNode<K,V> r, pp, rl;
2922     if (p != null && (r = p.right) != null) {
2923 dl 1.222 if ((rl = p.right = r.left) != null)
2924     rl.parent = p;
2925     if ((pp = r.parent = p.parent) == null)
2926     (root = r).red = false;
2927     else if (pp.left == p)
2928     pp.left = r;
2929     else
2930     pp.right = r;
2931     r.left = p;
2932     p.parent = r;
2933     }
2934     return root;
2935 dl 1.119 }
2936    
2937 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2938     TreeNode<K,V> p) {
2939 dl 1.224 TreeNode<K,V> l, pp, lr;
2940     if (p != null && (l = p.left) != null) {
2941 dl 1.222 if ((lr = p.left = l.right) != null)
2942     lr.parent = p;
2943     if ((pp = l.parent = p.parent) == null)
2944     (root = l).red = false;
2945     else if (pp.right == p)
2946     pp.right = l;
2947     else
2948     pp.left = l;
2949     l.right = p;
2950     p.parent = l;
2951     }
2952     return root;
2953 dl 1.119 }
2954    
2955 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2956     TreeNode<K,V> x) {
2957     x.red = true;
2958     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2959     if ((xp = x.parent) == null) {
2960     x.red = false;
2961     return x;
2962     }
2963     else if (!xp.red || (xpp = xp.parent) == null)
2964     return root;
2965     if (xp == (xppl = xpp.left)) {
2966     if ((xppr = xpp.right) != null && xppr.red) {
2967     xppr.red = false;
2968     xp.red = false;
2969     xpp.red = true;
2970     x = xpp;
2971     }
2972     else {
2973     if (x == xp.right) {
2974     root = rotateLeft(root, x = xp);
2975     xpp = (xp = x.parent) == null ? null : xp.parent;
2976     }
2977     if (xp != null) {
2978     xp.red = false;
2979     if (xpp != null) {
2980     xpp.red = true;
2981     root = rotateRight(root, xpp);
2982     }
2983     }
2984     }
2985     }
2986     else {
2987     if (xppl != null && xppl.red) {
2988     xppl.red = false;
2989     xp.red = false;
2990     xpp.red = true;
2991     x = xpp;
2992     }
2993     else {
2994     if (x == xp.left) {
2995     root = rotateRight(root, x = xp);
2996     xpp = (xp = x.parent) == null ? null : xp.parent;
2997     }
2998     if (xp != null) {
2999     xp.red = false;
3000     if (xpp != null) {
3001     xpp.red = true;
3002     root = rotateLeft(root, xpp);
3003     }
3004     }
3005     }
3006     }
3007     }
3008 dl 1.119 }
3009    
3010 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3011     TreeNode<K,V> x) {
3012     for (TreeNode<K,V> xp, xpl, xpr;;) {
3013     if (x == null || x == root)
3014     return root;
3015     else if ((xp = x.parent) == null) {
3016     x.red = false;
3017     return x;
3018     }
3019     else if (x.red) {
3020     x.red = false;
3021     return root;
3022     }
3023     else if ((xpl = xp.left) == x) {
3024     if ((xpr = xp.right) != null && xpr.red) {
3025     xpr.red = false;
3026     xp.red = true;
3027     root = rotateLeft(root, xp);
3028     xpr = (xp = x.parent) == null ? null : xp.right;
3029     }
3030     if (xpr == null)
3031     x = xp;
3032     else {
3033     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3034     if ((sr == null || !sr.red) &&
3035     (sl == null || !sl.red)) {
3036     xpr.red = true;
3037     x = xp;
3038     }
3039     else {
3040     if (sr == null || !sr.red) {
3041     if (sl != null)
3042     sl.red = false;
3043     xpr.red = true;
3044     root = rotateRight(root, xpr);
3045     xpr = (xp = x.parent) == null ?
3046     null : xp.right;
3047     }
3048     if (xpr != null) {
3049     xpr.red = (xp == null) ? false : xp.red;
3050     if ((sr = xpr.right) != null)
3051     sr.red = false;
3052     }
3053     if (xp != null) {
3054     xp.red = false;
3055     root = rotateLeft(root, xp);
3056     }
3057     x = root;
3058     }
3059     }
3060     }
3061     else { // symmetric
3062     if (xpl != null && xpl.red) {
3063     xpl.red = false;
3064     xp.red = true;
3065     root = rotateRight(root, xp);
3066     xpl = (xp = x.parent) == null ? null : xp.left;
3067     }
3068     if (xpl == null)
3069     x = xp;
3070     else {
3071     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3072     if ((sl == null || !sl.red) &&
3073     (sr == null || !sr.red)) {
3074     xpl.red = true;
3075     x = xp;
3076     }
3077     else {
3078     if (sl == null || !sl.red) {
3079     if (sr != null)
3080     sr.red = false;
3081     xpl.red = true;
3082     root = rotateLeft(root, xpl);
3083     xpl = (xp = x.parent) == null ?
3084     null : xp.left;
3085     }
3086     if (xpl != null) {
3087     xpl.red = (xp == null) ? false : xp.red;
3088     if ((sl = xpl.left) != null)
3089     sl.red = false;
3090     }
3091     if (xp != null) {
3092     xp.red = false;
3093     root = rotateRight(root, xp);
3094     }
3095     x = root;
3096     }
3097     }
3098     }
3099     }
3100 dl 1.210 }
3101 dl 1.222 /**
3102     * Recursive invariant check
3103     */
3104 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3105 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3106     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3107     if (tb != null && tb.next != t)
3108     return false;
3109     if (tn != null && tn.prev != t)
3110     return false;
3111     if (tp != null && t != tp.left && t != tp.right)
3112     return false;
3113     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3114     return false;
3115     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3116     return false;
3117     if (t.red && tl != null && tl.red && tr != null && tr.red)
3118     return false;
3119 dl 1.224 if (tl != null && !checkInvariants(tl))
3120 dl 1.222 return false;
3121 dl 1.224 if (tr != null && !checkInvariants(tr))
3122 dl 1.210 return false;
3123     return true;
3124     }
3125 dl 1.146
3126 dl 1.222 private static final sun.misc.Unsafe U;
3127     private static final long LOCKSTATE;
3128     static {
3129     try {
3130     U = sun.misc.Unsafe.getUnsafe();
3131     Class<?> k = TreeBin.class;
3132     LOCKSTATE = U.objectFieldOffset
3133     (k.getDeclaredField("lockState"));
3134     } catch (Exception e) {
3135     throw new Error(e);
3136     }
3137 dl 1.146 }
3138 dl 1.119 }
3139    
3140 dl 1.222 /* ----------------Table Traversal -------------- */
3141    
3142     /**
3143     * Encapsulates traversal for methods such as containsValue; also
3144     * serves as a base class for other iterators and spliterators.
3145     *
3146     * Method advance visits once each still-valid node that was
3147     * reachable upon iterator construction. It might miss some that
3148     * were added to a bin after the bin was visited, which is OK wrt
3149     * consistency guarantees. Maintaining this property in the face
3150     * of possible ongoing resizes requires a fair amount of
3151     * bookkeeping state that is difficult to optimize away amidst
3152     * volatile accesses. Even so, traversal maintains reasonable
3153     * throughput.
3154     *
3155     * Normally, iteration proceeds bin-by-bin traversing lists.
3156     * However, if the table has been resized, then all future steps
3157     * must traverse both the bin at the current index as well as at
3158     * (index + baseSize); and so on for further resizings. To
3159     * paranoically cope with potential sharing by users of iterators
3160     * across threads, iteration terminates if a bounds checks fails
3161     * for a table read.
3162     */
3163     static class Traverser<K,V> {
3164     Node<K,V>[] tab; // current table; updated if resized
3165     Node<K,V> next; // the next entry to use
3166     int index; // index of bin to use next
3167     int baseIndex; // current index of initial table
3168     int baseLimit; // index bound for initial table
3169     final int baseSize; // initial table size
3170    
3171     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3172     this.tab = tab;
3173     this.baseSize = size;
3174     this.baseIndex = this.index = index;
3175     this.baseLimit = limit;
3176     this.next = null;
3177     }
3178    
3179     /**
3180     * Advances if possible, returning next valid node, or null if none.
3181     */
3182     final Node<K,V> advance() {
3183     Node<K,V> e;
3184     if ((e = next) != null)
3185     e = e.next;
3186     for (;;) {
3187     Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3188     if (e != null)
3189     return next = e;
3190     if (baseIndex >= baseLimit || (t = tab) == null ||
3191     (n = t.length) <= (i = index) || i < 0)
3192     return next = null;
3193 dl 1.224 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3194 dl 1.222 if (e instanceof ForwardingNode) {
3195     tab = ((ForwardingNode<K,V>)e).nextTable;
3196     e = null;
3197     continue;
3198     }
3199     else if (e instanceof TreeBin)
3200     e = ((TreeBin<K,V>)e).first;
3201     else
3202     e = null;
3203     }
3204     if ((index += baseSize) >= n)
3205     index = ++baseIndex; // visit upper slots if present
3206     }
3207     }
3208     }
3209    
3210     /**
3211     * Base of key, value, and entry Iterators. Adds fields to
3212     * Traverser to support iterator.remove
3213     */
3214     static class BaseIterator<K,V> extends Traverser<K,V> {
3215     final ConcurrentHashMap<K,V> map;
3216     Node<K,V> lastReturned;
3217     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3218     ConcurrentHashMap<K,V> map) {
3219 dl 1.210 super(tab, size, index, limit);
3220     this.map = map;
3221 dl 1.222 advance();
3222 dl 1.210 }
3223    
3224 dl 1.222 public final boolean hasNext() { return next != null; }
3225     public final boolean hasMoreElements() { return next != null; }
3226    
3227     public final void remove() {
3228     Node<K,V> p;
3229     if ((p = lastReturned) == null)
3230     throw new IllegalStateException();
3231     lastReturned = null;
3232     map.replaceNode(p.key, null, null);
3233 dl 1.210 }
3234 dl 1.222 }
3235 dl 1.210
3236 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3237     implements Iterator<K>, Enumeration<K> {
3238     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3239     ConcurrentHashMap<K,V> map) {
3240     super(tab, index, size, limit, map);
3241 dl 1.210 }
3242    
3243 dl 1.222 public final K next() {
3244 dl 1.210 Node<K,V> p;
3245 dl 1.222 if ((p = next) == null)
3246     throw new NoSuchElementException();
3247     K k = p.key;
3248     lastReturned = p;
3249     advance();
3250     return k;
3251 dl 1.210 }
3252    
3253 dl 1.222 public final K nextElement() { return next(); }
3254     }
3255    
3256     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3257     implements Iterator<V>, Enumeration<V> {
3258     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3259     ConcurrentHashMap<K,V> map) {
3260     super(tab, index, size, limit, map);
3261     }
3262 dl 1.210
3263 dl 1.222 public final V next() {
3264     Node<K,V> p;
3265     if ((p = next) == null)
3266     throw new NoSuchElementException();
3267     V v = p.val;
3268     lastReturned = p;
3269     advance();
3270     return v;
3271 dl 1.210 }
3272 dl 1.222
3273     public final V nextElement() { return next(); }
3274 dl 1.210 }
3275    
3276 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3277     implements Iterator<Map.Entry<K,V>> {
3278     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3279     ConcurrentHashMap<K,V> map) {
3280     super(tab, index, size, limit, map);
3281     }
3282 dl 1.210
3283 dl 1.222 public final Map.Entry<K,V> next() {
3284     Node<K,V> p;
3285     if ((p = next) == null)
3286     throw new NoSuchElementException();
3287     K k = p.key;
3288     V v = p.val;
3289     lastReturned = p;
3290     advance();
3291     return new MapEntry<K,V>(k, v, map);
3292     }
3293     }
3294 dl 1.119
3295     /**
3296 dl 1.222 * Exported Entry for EntryIterator
3297 dl 1.119 */
3298 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3299     final K key; // non-null
3300     V val; // non-null
3301     final ConcurrentHashMap<K,V> map;
3302     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3303     this.key = key;
3304     this.val = val;
3305     this.map = map;
3306     }
3307     public K getKey() { return key; }
3308     public V getValue() { return val; }
3309     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3310     public String toString() { return key + "=" + val; }
3311 dl 1.119
3312 dl 1.222 public boolean equals(Object o) {
3313     Object k, v; Map.Entry<?,?> e;
3314     return ((o instanceof Map.Entry) &&
3315     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3316     (v = e.getValue()) != null &&
3317     (k == key || k.equals(key)) &&
3318     (v == val || v.equals(val)));
3319     }
3320 dl 1.119
3321 dl 1.222 /**
3322     * Sets our entry's value and writes through to the map. The
3323     * value to return is somewhat arbitrary here. Since we do not
3324     * necessarily track asynchronous changes, the most recent
3325     * "previous" value could be different from what we return (or
3326     * could even have been removed, in which case the put will
3327     * re-establish). We do not and cannot guarantee more.
3328     */
3329     public V setValue(V value) {
3330     if (value == null) throw new NullPointerException();
3331     V v = val;
3332     val = value;
3333     map.put(key, value);
3334     return v;
3335     }
3336 dl 1.119 }
3337    
3338 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3339     implements Spliterator<K> {
3340     long est; // size estimate
3341     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3342     long est) {
3343     super(tab, size, index, limit);
3344     this.est = est;
3345     }
3346 dl 1.119
3347 dl 1.222 public Spliterator<K> trySplit() {
3348     int i, f, h;
3349     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3350     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3351     f, est >>>= 1);
3352 dl 1.119 }
3353    
3354 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3355     if (action == null) throw new NullPointerException();
3356     for (Node<K,V> p; (p = advance()) != null;)
3357     action.accept(p.key);
3358 dl 1.119 }
3359    
3360 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3361     if (action == null) throw new NullPointerException();
3362     Node<K,V> p;
3363     if ((p = advance()) == null)
3364 dl 1.119 return false;
3365 dl 1.222 action.accept(p.key);
3366     return true;
3367 dl 1.119 }
3368    
3369 dl 1.222 public long estimateSize() { return est; }
3370 dl 1.119
3371 dl 1.222 public int characteristics() {
3372     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3373     Spliterator.NONNULL;
3374     }
3375 dl 1.142 }
3376 dl 1.119
3377 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3378     implements Spliterator<V> {
3379     long est; // size estimate
3380     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3381     long est) {
3382     super(tab, size, index, limit);
3383     this.est = est;
3384 dl 1.209 }
3385    
3386 dl 1.222 public Spliterator<V> trySplit() {
3387     int i, f, h;
3388     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3389     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3390     f, est >>>= 1);
3391 dl 1.142 }
3392 dl 1.119
3393 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3394     if (action == null) throw new NullPointerException();
3395     for (Node<K,V> p; (p = advance()) != null;)
3396     action.accept(p.val);
3397     }
3398 dl 1.119
3399 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3400     if (action == null) throw new NullPointerException();
3401     Node<K,V> p;
3402     if ((p = advance()) == null)
3403     return false;
3404     action.accept(p.val);
3405     return true;
3406 dl 1.119 }
3407 dl 1.222
3408     public long estimateSize() { return est; }
3409    
3410     public int characteristics() {
3411     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3412 dl 1.119 }
3413 dl 1.142 }
3414 dl 1.119
3415 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3416     implements Spliterator<Map.Entry<K,V>> {
3417     final ConcurrentHashMap<K,V> map; // To export MapEntry
3418     long est; // size estimate
3419     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3420     long est, ConcurrentHashMap<K,V> map) {
3421     super(tab, size, index, limit);
3422     this.map = map;
3423     this.est = est;
3424     }
3425    
3426     public Spliterator<Map.Entry<K,V>> trySplit() {
3427     int i, f, h;
3428     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3429     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3430     f, est >>>= 1, map);
3431     }
3432 dl 1.142
3433 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3434     if (action == null) throw new NullPointerException();
3435     for (Node<K,V> p; (p = advance()) != null; )
3436     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3437     }
3438 dl 1.210
3439 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3440     if (action == null) throw new NullPointerException();
3441     Node<K,V> p;
3442     if ((p = advance()) == null)
3443     return false;
3444     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3445     return true;
3446 dl 1.210 }
3447    
3448 dl 1.222 public long estimateSize() { return est; }
3449    
3450     public int characteristics() {
3451     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3452     Spliterator.NONNULL;
3453 dl 1.210 }
3454     }
3455    
3456     // Parallel bulk operations
3457    
3458     /**
3459     * Computes initial batch value for bulk tasks. The returned value
3460     * is approximately exp2 of the number of times (minus one) to
3461     * split task by two before executing leaf action. This value is
3462     * faster to compute and more convenient to use as a guide to
3463     * splitting than is the depth, since it is used while dividing by
3464     * two anyway.
3465     */
3466     final int batchFor(long b) {
3467     long n;
3468     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3469     return 0;
3470     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3471     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3472     }
3473 dl 1.151
3474 dl 1.119 /**
3475 dl 1.137 * Performs the given action for each (key, value).
3476 dl 1.119 *
3477 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3478 jsr166 1.213 * needed for this operation to be executed in parallel
3479 dl 1.137 * @param action the action
3480 jsr166 1.220 * @since 1.8
3481 dl 1.119 */
3482 dl 1.210 public void forEach(long parallelismThreshold,
3483     BiConsumer<? super K,? super V> action) {
3484 dl 1.151 if (action == null) throw new NullPointerException();
3485 dl 1.210 new ForEachMappingTask<K,V>
3486     (null, batchFor(parallelismThreshold), 0, 0, table,
3487     action).invoke();
3488 dl 1.119 }
3489    
3490     /**
3491 dl 1.137 * Performs the given action for each non-null transformation
3492     * of each (key, value).
3493     *
3494 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3495 jsr166 1.213 * needed for this operation to be executed in parallel
3496 dl 1.137 * @param transformer a function returning the transformation
3497 jsr166 1.169 * for an element, or null if there is no transformation (in
3498 jsr166 1.172 * which case the action is not applied)
3499 dl 1.137 * @param action the action
3500 jsr166 1.220 * @since 1.8
3501 dl 1.119 */
3502 dl 1.210 public <U> void forEach(long parallelismThreshold,
3503     BiFunction<? super K, ? super V, ? extends U> transformer,
3504     Consumer<? super U> action) {
3505 dl 1.151 if (transformer == null || action == null)
3506     throw new NullPointerException();
3507 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3508     (null, batchFor(parallelismThreshold), 0, 0, table,
3509     transformer, action).invoke();
3510 dl 1.137 }
3511    
3512     /**
3513     * Returns a non-null result from applying the given search
3514 dl 1.210 * function on each (key, value), or null if none. Upon
3515     * success, further element processing is suppressed and the
3516     * results of any other parallel invocations of the search
3517     * function are ignored.
3518 dl 1.137 *
3519 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3520 jsr166 1.213 * needed for this operation to be executed in parallel
3521 dl 1.137 * @param searchFunction a function returning a non-null
3522     * result on success, else null
3523     * @return a non-null result from applying the given search
3524     * function on each (key, value), or null if none
3525 jsr166 1.220 * @since 1.8
3526 dl 1.137 */
3527 dl 1.210 public <U> U search(long parallelismThreshold,
3528     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3529 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3530 dl 1.210 return new SearchMappingsTask<K,V,U>
3531     (null, batchFor(parallelismThreshold), 0, 0, table,
3532     searchFunction, new AtomicReference<U>()).invoke();
3533 dl 1.137 }
3534    
3535     /**
3536     * Returns the result of accumulating the given transformation
3537     * of all (key, value) pairs using the given reducer to
3538     * combine values, or null if none.
3539     *
3540 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3541 jsr166 1.213 * needed for this operation to be executed in parallel
3542 dl 1.137 * @param transformer a function returning the transformation
3543 jsr166 1.169 * for an element, or null if there is no transformation (in
3544 jsr166 1.172 * which case it is not combined)
3545 dl 1.137 * @param reducer a commutative associative combining function
3546     * @return the result of accumulating the given transformation
3547     * of all (key, value) pairs
3548 jsr166 1.220 * @since 1.8
3549 dl 1.137 */
3550 dl 1.210 public <U> U reduce(long parallelismThreshold,
3551     BiFunction<? super K, ? super V, ? extends U> transformer,
3552     BiFunction<? super U, ? super U, ? extends U> reducer) {
3553 dl 1.151 if (transformer == null || reducer == null)
3554     throw new NullPointerException();
3555 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3556     (null, batchFor(parallelismThreshold), 0, 0, table,
3557     null, transformer, reducer).invoke();
3558 dl 1.137 }
3559    
3560     /**
3561     * Returns the result of accumulating the given transformation
3562     * of all (key, value) pairs using the given reducer to
3563     * combine values, and the given basis as an identity value.
3564     *
3565 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3566 jsr166 1.213 * needed for this operation to be executed in parallel
3567 dl 1.137 * @param transformer a function returning the transformation
3568     * for an element
3569     * @param basis the identity (initial default value) for the reduction
3570     * @param reducer a commutative associative combining function
3571     * @return the result of accumulating the given transformation
3572     * of all (key, value) pairs
3573 jsr166 1.220 * @since 1.8
3574 dl 1.137 */
3575 dl 1.210 public double reduceToDoubleIn(long parallelismThreshold,
3576     ToDoubleBiFunction<? super K, ? super V> transformer,
3577     double basis,
3578     DoubleBinaryOperator reducer) {
3579 dl 1.151 if (transformer == null || reducer == null)
3580     throw new NullPointerException();
3581 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3582     (null, batchFor(parallelismThreshold), 0, 0, table,
3583     null, transformer, basis, reducer).invoke();
3584 dl 1.137 }
3585 dl 1.119
3586 dl 1.137 /**
3587     * Returns the result of accumulating the given transformation
3588     * of all (key, value) pairs using the given reducer to
3589     * combine values, and the given basis as an identity value.
3590     *
3591 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3592 jsr166 1.213 * needed for this operation to be executed in parallel
3593 dl 1.137 * @param transformer a function returning the transformation
3594     * for an element
3595     * @param basis the identity (initial default value) for the reduction
3596     * @param reducer a commutative associative combining function
3597     * @return the result of accumulating the given transformation
3598     * of all (key, value) pairs
3599 jsr166 1.220 * @since 1.8
3600 dl 1.137 */
3601 dl 1.210 public long reduceToLong(long parallelismThreshold,
3602     ToLongBiFunction<? super K, ? super V> transformer,
3603     long basis,
3604     LongBinaryOperator reducer) {
3605 dl 1.151 if (transformer == null || reducer == null)
3606     throw new NullPointerException();
3607 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3608     (null, batchFor(parallelismThreshold), 0, 0, table,
3609     null, transformer, basis, reducer).invoke();
3610 dl 1.137 }
3611    
3612     /**
3613     * Returns the result of accumulating the given transformation
3614     * of all (key, value) pairs using the given reducer to
3615     * combine values, and the given basis as an identity value.
3616     *
3617 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3618 jsr166 1.213 * needed for this operation to be executed in parallel
3619 dl 1.137 * @param transformer a function returning the transformation
3620     * for an element
3621     * @param basis the identity (initial default value) for the reduction
3622     * @param reducer a commutative associative combining function
3623     * @return the result of accumulating the given transformation
3624     * of all (key, value) pairs
3625 jsr166 1.220 * @since 1.8
3626 dl 1.137 */
3627 dl 1.210 public int reduceToInt(long parallelismThreshold,
3628     ToIntBiFunction<? super K, ? super V> transformer,
3629     int basis,
3630     IntBinaryOperator reducer) {
3631 dl 1.151 if (transformer == null || reducer == null)
3632     throw new NullPointerException();
3633 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3634     (null, batchFor(parallelismThreshold), 0, 0, table,
3635     null, transformer, basis, reducer).invoke();
3636 dl 1.137 }
3637    
3638     /**
3639     * Performs the given action for each key.
3640     *
3641 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3642 jsr166 1.213 * needed for this operation to be executed in parallel
3643 dl 1.137 * @param action the action
3644 jsr166 1.220 * @since 1.8
3645 dl 1.137 */
3646 dl 1.210 public void forEachKey(long parallelismThreshold,
3647     Consumer<? super K> action) {
3648     if (action == null) throw new NullPointerException();
3649     new ForEachKeyTask<K,V>
3650     (null, batchFor(parallelismThreshold), 0, 0, table,
3651     action).invoke();
3652 dl 1.137 }
3653 dl 1.119
3654 dl 1.137 /**
3655     * Performs the given action for each non-null transformation
3656     * of each key.
3657     *
3658 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3659 jsr166 1.213 * needed for this operation to be executed in parallel
3660 dl 1.137 * @param transformer a function returning the transformation
3661 jsr166 1.169 * for an element, or null if there is no transformation (in
3662 jsr166 1.172 * which case the action is not applied)
3663 dl 1.137 * @param action the action
3664 jsr166 1.220 * @since 1.8
3665 dl 1.137 */
3666 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3667     Function<? super K, ? extends U> transformer,
3668     Consumer<? super U> action) {
3669 dl 1.151 if (transformer == null || action == null)
3670     throw new NullPointerException();
3671 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3672     (null, batchFor(parallelismThreshold), 0, 0, table,
3673     transformer, action).invoke();
3674 dl 1.137 }
3675 dl 1.119
3676 dl 1.137 /**
3677     * Returns a non-null result from applying the given search
3678 dl 1.210 * function on each key, or null if none. Upon success,
3679     * further element processing is suppressed and the results of
3680     * any other parallel invocations of the search function are
3681     * ignored.
3682 dl 1.137 *
3683 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3684 jsr166 1.213 * needed for this operation to be executed in parallel
3685 dl 1.137 * @param searchFunction a function returning a non-null
3686     * result on success, else null
3687     * @return a non-null result from applying the given search
3688     * function on each key, or null if none
3689 jsr166 1.220 * @since 1.8
3690 dl 1.137 */
3691 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3692     Function<? super K, ? extends U> searchFunction) {
3693     if (searchFunction == null) throw new NullPointerException();
3694     return new SearchKeysTask<K,V,U>
3695     (null, batchFor(parallelismThreshold), 0, 0, table,
3696     searchFunction, new AtomicReference<U>()).invoke();
3697 dl 1.137 }
3698 dl 1.119
3699 dl 1.137 /**
3700     * Returns the result of accumulating all keys using the given
3701     * reducer to combine values, or null if none.
3702     *
3703 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3704 jsr166 1.213 * needed for this operation to be executed in parallel
3705 dl 1.137 * @param reducer a commutative associative combining function
3706     * @return the result of accumulating all keys using the given
3707     * reducer to combine values, or null if none
3708 jsr166 1.220 * @since 1.8
3709 dl 1.137 */
3710 dl 1.210 public K reduceKeys(long parallelismThreshold,
3711     BiFunction<? super K, ? super K, ? extends K> reducer) {
3712 dl 1.151 if (reducer == null) throw new NullPointerException();
3713 dl 1.210 return new ReduceKeysTask<K,V>
3714     (null, batchFor(parallelismThreshold), 0, 0, table,
3715     null, reducer).invoke();
3716 dl 1.137 }
3717 dl 1.119
3718 dl 1.137 /**
3719     * Returns the result of accumulating the given transformation
3720     * of all keys using the given reducer to combine values, or
3721     * null if none.
3722     *
3723 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3724 jsr166 1.213 * needed for this operation to be executed in parallel
3725 dl 1.137 * @param transformer a function returning the transformation
3726 jsr166 1.169 * for an element, or null if there is no transformation (in
3727 jsr166 1.172 * which case it is not combined)
3728 dl 1.137 * @param reducer a commutative associative combining function
3729     * @return the result of accumulating the given transformation
3730     * of all keys
3731 jsr166 1.220 * @since 1.8
3732 dl 1.137 */
3733 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3734     Function<? super K, ? extends U> transformer,
3735 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3736 dl 1.151 if (transformer == null || reducer == null)
3737     throw new NullPointerException();
3738 dl 1.210 return new MapReduceKeysTask<K,V,U>
3739     (null, batchFor(parallelismThreshold), 0, 0, table,
3740     null, transformer, reducer).invoke();
3741 dl 1.137 }
3742 dl 1.119
3743 dl 1.137 /**
3744     * Returns the result of accumulating the given transformation
3745     * of all keys using the given reducer to combine values, and
3746     * the given basis as an identity value.
3747     *
3748 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3749 jsr166 1.213 * needed for this operation to be executed in parallel
3750 dl 1.137 * @param transformer a function returning the transformation
3751     * for an element
3752     * @param basis the identity (initial default value) for the reduction
3753     * @param reducer a commutative associative combining function
3754 jsr166 1.157 * @return the result of accumulating the given transformation
3755 dl 1.137 * of all keys
3756 jsr166 1.220 * @since 1.8
3757 dl 1.137 */
3758 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3759     ToDoubleFunction<? super K> transformer,
3760     double basis,
3761     DoubleBinaryOperator reducer) {
3762 dl 1.151 if (transformer == null || reducer == null)
3763     throw new NullPointerException();
3764 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3765     (null, batchFor(parallelismThreshold), 0, 0, table,
3766     null, transformer, basis, reducer).invoke();
3767 dl 1.137 }
3768 dl 1.119
3769 dl 1.137 /**
3770     * Returns the result of accumulating the given transformation
3771     * of all keys using the given reducer to combine values, and
3772     * the given basis as an identity value.
3773     *
3774 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3775 jsr166 1.213 * needed for this operation to be executed in parallel
3776 dl 1.137 * @param transformer a function returning the transformation
3777     * for an element
3778     * @param basis the identity (initial default value) for the reduction
3779     * @param reducer a commutative associative combining function
3780     * @return the result of accumulating the given transformation
3781     * of all keys
3782 jsr166 1.220 * @since 1.8
3783 dl 1.137 */
3784 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3785     ToLongFunction<? super K> transformer,
3786     long basis,
3787     LongBinaryOperator reducer) {
3788 dl 1.151 if (transformer == null || reducer == null)
3789     throw new NullPointerException();
3790 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3791     (null, batchFor(parallelismThreshold), 0, 0, table,
3792     null, transformer, basis, reducer).invoke();
3793 dl 1.137 }
3794 dl 1.119
3795 dl 1.137 /**
3796     * Returns the result of accumulating the given transformation
3797     * of all keys using the given reducer to combine values, and
3798     * the given basis as an identity value.
3799     *
3800 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3801 jsr166 1.213 * needed for this operation to be executed in parallel
3802 dl 1.137 * @param transformer a function returning the transformation
3803     * for an element
3804     * @param basis the identity (initial default value) for the reduction
3805     * @param reducer a commutative associative combining function
3806     * @return the result of accumulating the given transformation
3807     * of all keys
3808 jsr166 1.220 * @since 1.8
3809 dl 1.137 */
3810 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
3811     ToIntFunction<? super K> transformer,
3812     int basis,
3813     IntBinaryOperator reducer) {
3814 dl 1.151 if (transformer == null || reducer == null)
3815     throw new NullPointerException();
3816 dl 1.210 return new MapReduceKeysToIntTask<K,V>
3817     (null, batchFor(parallelismThreshold), 0, 0, table,
3818     null, transformer, basis, reducer).invoke();
3819 dl 1.137 }
3820 dl 1.119
3821 dl 1.137 /**
3822     * Performs the given action for each value.
3823     *
3824 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3825 jsr166 1.213 * needed for this operation to be executed in parallel
3826 dl 1.137 * @param action the action
3827 jsr166 1.220 * @since 1.8
3828 dl 1.137 */
3829 dl 1.210 public void forEachValue(long parallelismThreshold,
3830     Consumer<? super V> action) {
3831     if (action == null)
3832     throw new NullPointerException();
3833     new ForEachValueTask<K,V>
3834     (null, batchFor(parallelismThreshold), 0, 0, table,
3835     action).invoke();
3836 dl 1.137 }
3837 dl 1.119
3838 dl 1.137 /**
3839     * Performs the given action for each non-null transformation
3840     * of each value.
3841     *
3842 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3843 jsr166 1.213 * needed for this operation to be executed in parallel
3844 dl 1.137 * @param transformer a function returning the transformation
3845 jsr166 1.169 * for an element, or null if there is no transformation (in
3846 jsr166 1.172 * which case the action is not applied)
3847 jsr166 1.179 * @param action the action
3848 jsr166 1.220 * @since 1.8
3849 dl 1.137 */
3850 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
3851     Function<? super V, ? extends U> transformer,
3852     Consumer<? super U> action) {
3853 dl 1.151 if (transformer == null || action == null)
3854     throw new NullPointerException();
3855 dl 1.210 new ForEachTransformedValueTask<K,V,U>
3856     (null, batchFor(parallelismThreshold), 0, 0, table,
3857     transformer, action).invoke();
3858 dl 1.137 }
3859 dl 1.119
3860 dl 1.137 /**
3861     * Returns a non-null result from applying the given search
3862 dl 1.210 * function on each value, or null if none. Upon success,
3863     * further element processing is suppressed and the results of
3864     * any other parallel invocations of the search function are
3865     * ignored.
3866 dl 1.137 *
3867 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3868 jsr166 1.213 * needed for this operation to be executed in parallel
3869 dl 1.137 * @param searchFunction a function returning a non-null
3870     * result on success, else null
3871     * @return a non-null result from applying the given search
3872     * function on each value, or null if none
3873 jsr166 1.220 * @since 1.8
3874 dl 1.137 */
3875 dl 1.210 public <U> U searchValues(long parallelismThreshold,
3876     Function<? super V, ? extends U> searchFunction) {
3877 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3878 dl 1.210 return new SearchValuesTask<K,V,U>
3879     (null, batchFor(parallelismThreshold), 0, 0, table,
3880     searchFunction, new AtomicReference<U>()).invoke();
3881 dl 1.137 }
3882 dl 1.119
3883 dl 1.137 /**
3884     * Returns the result of accumulating all values using the
3885     * given reducer to combine values, or null if none.
3886     *
3887 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3888 jsr166 1.213 * needed for this operation to be executed in parallel
3889 dl 1.137 * @param reducer a commutative associative combining function
3890 jsr166 1.157 * @return the result of accumulating all values
3891 jsr166 1.220 * @since 1.8
3892 dl 1.137 */
3893 dl 1.210 public V reduceValues(long parallelismThreshold,
3894     BiFunction<? super V, ? super V, ? extends V> reducer) {
3895 dl 1.151 if (reducer == null) throw new NullPointerException();
3896 dl 1.210 return new ReduceValuesTask<K,V>
3897     (null, batchFor(parallelismThreshold), 0, 0, table,
3898     null, reducer).invoke();
3899 dl 1.137 }
3900 dl 1.119
3901 dl 1.137 /**
3902     * Returns the result of accumulating the given transformation
3903     * of all values using the given reducer to combine values, or
3904     * null if none.
3905     *
3906 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3907 jsr166 1.213 * needed for this operation to be executed in parallel
3908 dl 1.137 * @param transformer a function returning the transformation
3909 jsr166 1.169 * for an element, or null if there is no transformation (in
3910 jsr166 1.172 * which case it is not combined)
3911 dl 1.137 * @param reducer a commutative associative combining function
3912     * @return the result of accumulating the given transformation
3913     * of all values
3914 jsr166 1.220 * @since 1.8
3915 dl 1.137 */
3916 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
3917     Function<? super V, ? extends U> transformer,
3918     BiFunction<? super U, ? super U, ? extends U> reducer) {
3919 dl 1.151 if (transformer == null || reducer == null)
3920     throw new NullPointerException();
3921 dl 1.210 return new MapReduceValuesTask<K,V,U>
3922     (null, batchFor(parallelismThreshold), 0, 0, table,
3923     null, transformer, reducer).invoke();
3924 dl 1.137 }
3925 dl 1.119
3926 dl 1.137 /**
3927     * Returns the result of accumulating the given transformation
3928     * of all values using the given reducer to combine values,
3929     * and the given basis as an identity value.
3930     *
3931 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3932 jsr166 1.213 * needed for this operation to be executed in parallel
3933 dl 1.137 * @param transformer a function returning the transformation
3934     * for an element
3935     * @param basis the identity (initial default value) for the reduction
3936     * @param reducer a commutative associative combining function
3937     * @return the result of accumulating the given transformation
3938     * of all values
3939 jsr166 1.220 * @since 1.8
3940 dl 1.137 */
3941 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
3942     ToDoubleFunction<? super V> transformer,
3943     double basis,
3944     DoubleBinaryOperator reducer) {
3945 dl 1.151 if (transformer == null || reducer == null)
3946     throw new NullPointerException();
3947 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
3948     (null, batchFor(parallelismThreshold), 0, 0, table,
3949     null, transformer, basis, reducer).invoke();
3950 dl 1.137 }
3951 dl 1.119
3952 dl 1.137 /**
3953     * Returns the result of accumulating the given transformation
3954     * of all values using the given reducer to combine values,
3955     * and the given basis as an identity value.
3956     *
3957 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3958 jsr166 1.213 * needed for this operation to be executed in parallel
3959 dl 1.137 * @param transformer a function returning the transformation
3960     * for an element
3961     * @param basis the identity (initial default value) for the reduction
3962     * @param reducer a commutative associative combining function
3963     * @return the result of accumulating the given transformation
3964     * of all values
3965 jsr166 1.220 * @since 1.8
3966 dl 1.137 */
3967 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
3968     ToLongFunction<? super V> transformer,
3969     long basis,
3970     LongBinaryOperator reducer) {
3971 dl 1.151 if (transformer == null || reducer == null)
3972     throw new NullPointerException();
3973 dl 1.210 return new MapReduceValuesToLongTask<K,V>
3974     (null, batchFor(parallelismThreshold), 0, 0, table,
3975     null, transformer, basis, reducer).invoke();
3976 dl 1.137 }
3977 dl 1.119
3978 dl 1.137 /**
3979     * Returns the result of accumulating the given transformation
3980     * of all values using the given reducer to combine values,
3981     * and the given basis as an identity value.
3982     *
3983 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3984 jsr166 1.213 * needed for this operation to be executed in parallel
3985 dl 1.137 * @param transformer a function returning the transformation
3986     * for an element
3987     * @param basis the identity (initial default value) for the reduction
3988     * @param reducer a commutative associative combining function
3989     * @return the result of accumulating the given transformation
3990     * of all values
3991 jsr166 1.220 * @since 1.8
3992 dl 1.137 */
3993 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
3994     ToIntFunction<? super V> transformer,
3995     int basis,
3996     IntBinaryOperator reducer) {
3997 dl 1.151 if (transformer == null || reducer == null)
3998     throw new NullPointerException();
3999 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4000     (null, batchFor(parallelismThreshold), 0, 0, table,
4001     null, transformer, basis, reducer).invoke();
4002 dl 1.137 }
4003 dl 1.119
4004 dl 1.137 /**
4005     * Performs the given action for each entry.
4006     *
4007 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4008 jsr166 1.213 * needed for this operation to be executed in parallel
4009 dl 1.137 * @param action the action
4010 jsr166 1.220 * @since 1.8
4011 dl 1.137 */
4012 dl 1.210 public void forEachEntry(long parallelismThreshold,
4013     Consumer<? super Map.Entry<K,V>> action) {
4014 dl 1.151 if (action == null) throw new NullPointerException();
4015 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4016     action).invoke();
4017 dl 1.137 }
4018 dl 1.119
4019 dl 1.137 /**
4020     * Performs the given action for each non-null transformation
4021     * of each entry.
4022     *
4023 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4024 jsr166 1.213 * needed for this operation to be executed in parallel
4025 dl 1.137 * @param transformer a function returning the transformation
4026 jsr166 1.169 * for an element, or null if there is no transformation (in
4027 jsr166 1.172 * which case the action is not applied)
4028 dl 1.137 * @param action the action
4029 jsr166 1.220 * @since 1.8
4030 dl 1.137 */
4031 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4032     Function<Map.Entry<K,V>, ? extends U> transformer,
4033     Consumer<? super U> action) {
4034 dl 1.151 if (transformer == null || action == null)
4035     throw new NullPointerException();
4036 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4037     (null, batchFor(parallelismThreshold), 0, 0, table,
4038     transformer, action).invoke();
4039 dl 1.137 }
4040 dl 1.119
4041 dl 1.137 /**
4042     * Returns a non-null result from applying the given search
4043 dl 1.210 * function on each entry, or null if none. Upon success,
4044     * further element processing is suppressed and the results of
4045     * any other parallel invocations of the search function are
4046     * ignored.
4047 dl 1.137 *
4048 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4049 jsr166 1.213 * needed for this operation to be executed in parallel
4050 dl 1.137 * @param searchFunction a function returning a non-null
4051     * result on success, else null
4052     * @return a non-null result from applying the given search
4053     * function on each entry, or null if none
4054 jsr166 1.220 * @since 1.8
4055 dl 1.137 */
4056 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4057     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4058 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4059 dl 1.210 return new SearchEntriesTask<K,V,U>
4060     (null, batchFor(parallelismThreshold), 0, 0, table,
4061     searchFunction, new AtomicReference<U>()).invoke();
4062 dl 1.137 }
4063 dl 1.119
4064 dl 1.137 /**
4065     * Returns the result of accumulating all entries using the
4066     * given reducer to combine values, or null if none.
4067     *
4068 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4069 jsr166 1.213 * needed for this operation to be executed in parallel
4070 dl 1.137 * @param reducer a commutative associative combining function
4071     * @return the result of accumulating all entries
4072 jsr166 1.220 * @since 1.8
4073 dl 1.137 */
4074 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4075     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4076 dl 1.151 if (reducer == null) throw new NullPointerException();
4077 dl 1.210 return new ReduceEntriesTask<K,V>
4078     (null, batchFor(parallelismThreshold), 0, 0, table,
4079     null, reducer).invoke();
4080 dl 1.137 }
4081 dl 1.119
4082 dl 1.137 /**
4083     * Returns the result of accumulating the given transformation
4084     * of all entries using the given reducer to combine values,
4085     * or null if none.
4086     *
4087 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4088 jsr166 1.213 * needed for this operation to be executed in parallel
4089 dl 1.137 * @param transformer a function returning the transformation
4090 jsr166 1.169 * for an element, or null if there is no transformation (in
4091 jsr166 1.172 * which case it is not combined)
4092 dl 1.137 * @param reducer a commutative associative combining function
4093     * @return the result of accumulating the given transformation
4094     * of all entries
4095 jsr166 1.220 * @since 1.8
4096 dl 1.137 */
4097 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4098     Function<Map.Entry<K,V>, ? extends U> transformer,
4099     BiFunction<? super U, ? super U, ? extends U> reducer) {
4100 dl 1.151 if (transformer == null || reducer == null)
4101     throw new NullPointerException();
4102 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4103     (null, batchFor(parallelismThreshold), 0, 0, table,
4104     null, transformer, reducer).invoke();
4105 dl 1.137 }
4106 dl 1.119
4107 dl 1.137 /**
4108     * Returns the result of accumulating the given transformation
4109     * of all entries using the given reducer to combine values,
4110     * and the given basis as an identity value.
4111     *
4112 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4113 jsr166 1.213 * needed for this operation to be executed in parallel
4114 dl 1.137 * @param transformer a function returning the transformation
4115     * for an element
4116     * @param basis the identity (initial default value) for the reduction
4117     * @param reducer a commutative associative combining function
4118     * @return the result of accumulating the given transformation
4119     * of all entries
4120 jsr166 1.220 * @since 1.8
4121 dl 1.137 */
4122 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4123     ToDoubleFunction<Map.Entry<K,V>> transformer,
4124     double basis,
4125     DoubleBinaryOperator reducer) {
4126 dl 1.151 if (transformer == null || reducer == null)
4127     throw new NullPointerException();
4128 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4129     (null, batchFor(parallelismThreshold), 0, 0, table,
4130     null, transformer, basis, reducer).invoke();
4131 dl 1.137 }
4132 dl 1.119
4133 dl 1.137 /**
4134     * Returns the result of accumulating the given transformation
4135     * of all entries using the given reducer to combine values,
4136     * and the given basis as an identity value.
4137     *
4138 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4139 jsr166 1.213 * needed for this operation to be executed in parallel
4140 dl 1.137 * @param transformer a function returning the transformation
4141     * for an element
4142     * @param basis the identity (initial default value) for the reduction
4143     * @param reducer a commutative associative combining function
4144 jsr166 1.157 * @return the result of accumulating the given transformation
4145 dl 1.137 * of all entries
4146 jsr166 1.221 * @since 1.8
4147 dl 1.137 */
4148 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4149     ToLongFunction<Map.Entry<K,V>> transformer,
4150     long basis,
4151     LongBinaryOperator reducer) {
4152 dl 1.151 if (transformer == null || reducer == null)
4153     throw new NullPointerException();
4154 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4155     (null, batchFor(parallelismThreshold), 0, 0, table,
4156     null, transformer, basis, reducer).invoke();
4157 dl 1.137 }
4158 dl 1.119
4159 dl 1.137 /**
4160     * Returns the result of accumulating the given transformation
4161     * of all entries using the given reducer to combine values,
4162     * and the given basis as an identity value.
4163     *
4164 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4165 jsr166 1.213 * needed for this operation to be executed in parallel
4166 dl 1.137 * @param transformer a function returning the transformation
4167     * for an element
4168     * @param basis the identity (initial default value) for the reduction
4169     * @param reducer a commutative associative combining function
4170     * @return the result of accumulating the given transformation
4171     * of all entries
4172 jsr166 1.221 * @since 1.8
4173 dl 1.137 */
4174 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4175     ToIntFunction<Map.Entry<K,V>> transformer,
4176     int basis,
4177     IntBinaryOperator reducer) {
4178 dl 1.151 if (transformer == null || reducer == null)
4179     throw new NullPointerException();
4180 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4181     (null, batchFor(parallelismThreshold), 0, 0, table,
4182     null, transformer, basis, reducer).invoke();
4183 dl 1.119 }
4184    
4185 dl 1.209
4186 dl 1.210 /* ----------------Views -------------- */
4187 dl 1.142
4188     /**
4189 dl 1.210 * Base class for views.
4190 dl 1.142 */
4191 dl 1.210 abstract static class CollectionView<K,V,E>
4192     implements Collection<E>, java.io.Serializable {
4193     private static final long serialVersionUID = 7249069246763182397L;
4194     final ConcurrentHashMap<K,V> map;
4195     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4196    
4197     /**
4198     * Returns the map backing this view.
4199     *
4200     * @return the map backing this view
4201     */
4202     public ConcurrentHashMap<K,V> getMap() { return map; }
4203 dl 1.142
4204 dl 1.210 /**
4205     * Removes all of the elements from this view, by removing all
4206     * the mappings from the map backing this view.
4207 jsr166 1.184 */
4208     public final void clear() { map.clear(); }
4209     public final int size() { return map.size(); }
4210     public final boolean isEmpty() { return map.isEmpty(); }
4211 dl 1.151
4212     // implementations below rely on concrete classes supplying these
4213 jsr166 1.184 // abstract methods
4214     /**
4215     * Returns a "weakly consistent" iterator that will never
4216     * throw {@link ConcurrentModificationException}, and
4217     * guarantees to traverse elements as they existed upon
4218     * construction of the iterator, and may (but is not
4219     * guaranteed to) reflect any modifications subsequent to
4220     * construction.
4221     */
4222     public abstract Iterator<E> iterator();
4223 jsr166 1.165 public abstract boolean contains(Object o);
4224     public abstract boolean remove(Object o);
4225 dl 1.151
4226     private static final String oomeMsg = "Required array size too large";
4227 dl 1.142
4228     public final Object[] toArray() {
4229     long sz = map.mappingCount();
4230 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4231 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4232     int n = (int)sz;
4233     Object[] r = new Object[n];
4234     int i = 0;
4235 jsr166 1.184 for (E e : this) {
4236 dl 1.142 if (i == n) {
4237     if (n >= MAX_ARRAY_SIZE)
4238     throw new OutOfMemoryError(oomeMsg);
4239     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4240     n = MAX_ARRAY_SIZE;
4241     else
4242     n += (n >>> 1) + 1;
4243     r = Arrays.copyOf(r, n);
4244     }
4245 jsr166 1.184 r[i++] = e;
4246 dl 1.142 }
4247     return (i == n) ? r : Arrays.copyOf(r, i);
4248     }
4249    
4250 dl 1.222 @SuppressWarnings("unchecked")
4251 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4252 dl 1.142 long sz = map.mappingCount();
4253 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4254 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4255     int m = (int)sz;
4256     T[] r = (a.length >= m) ? a :
4257     (T[])java.lang.reflect.Array
4258     .newInstance(a.getClass().getComponentType(), m);
4259     int n = r.length;
4260     int i = 0;
4261 jsr166 1.184 for (E e : this) {
4262 dl 1.142 if (i == n) {
4263     if (n >= MAX_ARRAY_SIZE)
4264     throw new OutOfMemoryError(oomeMsg);
4265     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4266     n = MAX_ARRAY_SIZE;
4267     else
4268     n += (n >>> 1) + 1;
4269     r = Arrays.copyOf(r, n);
4270     }
4271 jsr166 1.184 r[i++] = (T)e;
4272 dl 1.142 }
4273     if (a == r && i < n) {
4274     r[i] = null; // null-terminate
4275     return r;
4276     }
4277     return (i == n) ? r : Arrays.copyOf(r, i);
4278     }
4279    
4280 jsr166 1.184 /**
4281     * Returns a string representation of this collection.
4282     * The string representation consists of the string representations
4283     * of the collection's elements in the order they are returned by
4284     * its iterator, enclosed in square brackets ({@code "[]"}).
4285     * Adjacent elements are separated by the characters {@code ", "}
4286     * (comma and space). Elements are converted to strings as by
4287     * {@link String#valueOf(Object)}.
4288     *
4289     * @return a string representation of this collection
4290     */
4291 dl 1.142 public final String toString() {
4292     StringBuilder sb = new StringBuilder();
4293     sb.append('[');
4294 jsr166 1.184 Iterator<E> it = iterator();
4295 dl 1.142 if (it.hasNext()) {
4296     for (;;) {
4297     Object e = it.next();
4298     sb.append(e == this ? "(this Collection)" : e);
4299     if (!it.hasNext())
4300     break;
4301     sb.append(',').append(' ');
4302     }
4303     }
4304     return sb.append(']').toString();
4305     }
4306    
4307     public final boolean containsAll(Collection<?> c) {
4308     if (c != this) {
4309 jsr166 1.184 for (Object e : c) {
4310 dl 1.142 if (e == null || !contains(e))
4311     return false;
4312     }
4313     }
4314     return true;
4315     }
4316    
4317     public final boolean removeAll(Collection<?> c) {
4318     boolean modified = false;
4319 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4320 dl 1.142 if (c.contains(it.next())) {
4321     it.remove();
4322     modified = true;
4323     }
4324     }
4325     return modified;
4326     }
4327    
4328     public final boolean retainAll(Collection<?> c) {
4329     boolean modified = false;
4330 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4331 dl 1.142 if (!c.contains(it.next())) {
4332     it.remove();
4333     modified = true;
4334     }
4335     }
4336     return modified;
4337     }
4338    
4339     }
4340    
4341     /**
4342     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4343     * which additions may optionally be enabled by mapping to a
4344 jsr166 1.185 * common value. This class cannot be directly instantiated.
4345     * See {@link #keySet() keySet()},
4346     * {@link #keySet(Object) keySet(V)},
4347     * {@link #newKeySet() newKeySet()},
4348     * {@link #newKeySet(int) newKeySet(int)}.
4349 jsr166 1.221 *
4350     * @since 1.8
4351 dl 1.142 */
4352 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4353     implements Set<K>, java.io.Serializable {
4354 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4355     private final V value;
4356 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4357 dl 1.142 super(map);
4358     this.value = value;
4359     }
4360    
4361     /**
4362     * Returns the default mapped value for additions,
4363     * or {@code null} if additions are not supported.
4364     *
4365     * @return the default mapped value for additions, or {@code null}
4366 jsr166 1.172 * if not supported
4367 dl 1.142 */
4368     public V getMappedValue() { return value; }
4369    
4370 jsr166 1.184 /**
4371     * {@inheritDoc}
4372     * @throws NullPointerException if the specified key is null
4373     */
4374     public boolean contains(Object o) { return map.containsKey(o); }
4375 dl 1.142
4376 jsr166 1.184 /**
4377     * Removes the key from this map view, by removing the key (and its
4378     * corresponding value) from the backing map. This method does
4379     * nothing if the key is not in the map.
4380     *
4381     * @param o the key to be removed from the backing map
4382     * @return {@code true} if the backing map contained the specified key
4383     * @throws NullPointerException if the specified key is null
4384     */
4385     public boolean remove(Object o) { return map.remove(o) != null; }
4386    
4387     /**
4388     * @return an iterator over the keys of the backing map
4389     */
4390 dl 1.210 public Iterator<K> iterator() {
4391     Node<K,V>[] t;
4392     ConcurrentHashMap<K,V> m = map;
4393     int f = (t = m.table) == null ? 0 : t.length;
4394     return new KeyIterator<K,V>(t, f, 0, f, m);
4395     }
4396 dl 1.142
4397     /**
4398 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4399     * the default mapped value in the backing map, if defined.
4400 dl 1.142 *
4401 jsr166 1.184 * @param e key to be added
4402     * @return {@code true} if this set changed as a result of the call
4403     * @throws NullPointerException if the specified key is null
4404     * @throws UnsupportedOperationException if no default mapped value
4405     * for additions was provided
4406 dl 1.142 */
4407     public boolean add(K e) {
4408     V v;
4409     if ((v = value) == null)
4410     throw new UnsupportedOperationException();
4411 dl 1.222 return map.putVal(e, v, true) == null;
4412 dl 1.142 }
4413 jsr166 1.184
4414     /**
4415     * Adds all of the elements in the specified collection to this set,
4416     * as if by calling {@link #add} on each one.
4417     *
4418     * @param c the elements to be inserted into this set
4419     * @return {@code true} if this set changed as a result of the call
4420     * @throws NullPointerException if the collection or any of its
4421     * elements are {@code null}
4422     * @throws UnsupportedOperationException if no default mapped value
4423     * for additions was provided
4424     */
4425 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4426     boolean added = false;
4427     V v;
4428     if ((v = value) == null)
4429     throw new UnsupportedOperationException();
4430     for (K e : c) {
4431 dl 1.222 if (map.putVal(e, v, true) == null)
4432 dl 1.142 added = true;
4433     }
4434     return added;
4435     }
4436 dl 1.153
4437 dl 1.210 public int hashCode() {
4438     int h = 0;
4439     for (K e : this)
4440     h += e.hashCode();
4441     return h;
4442 dl 1.191 }
4443    
4444 dl 1.210 public boolean equals(Object o) {
4445     Set<?> c;
4446     return ((o instanceof Set) &&
4447     ((c = (Set<?>)o) == this ||
4448     (containsAll(c) && c.containsAll(this))));
4449 dl 1.119 }
4450 jsr166 1.125
4451 dl 1.210 public Spliterator<K> spliterator() {
4452     Node<K,V>[] t;
4453     ConcurrentHashMap<K,V> m = map;
4454     long n = m.sumCount();
4455     int f = (t = m.table) == null ? 0 : t.length;
4456     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4457 dl 1.119 }
4458    
4459 dl 1.210 public void forEach(Consumer<? super K> action) {
4460     if (action == null) throw new NullPointerException();
4461     Node<K,V>[] t;
4462     if ((t = map.table) != null) {
4463     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4464     for (Node<K,V> p; (p = it.advance()) != null; )
4465 dl 1.222 action.accept(p.key);
4466 dl 1.210 }
4467 dl 1.119 }
4468 dl 1.210 }
4469 dl 1.119
4470 dl 1.210 /**
4471     * A view of a ConcurrentHashMap as a {@link Collection} of
4472     * values, in which additions are disabled. This class cannot be
4473     * directly instantiated. See {@link #values()}.
4474     */
4475     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4476     implements Collection<V>, java.io.Serializable {
4477     private static final long serialVersionUID = 2249069246763182397L;
4478     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4479     public final boolean contains(Object o) {
4480     return map.containsValue(o);
4481 dl 1.119 }
4482    
4483 dl 1.210 public final boolean remove(Object o) {
4484     if (o != null) {
4485     for (Iterator<V> it = iterator(); it.hasNext();) {
4486     if (o.equals(it.next())) {
4487     it.remove();
4488     return true;
4489     }
4490     }
4491     }
4492     return false;
4493 dl 1.119 }
4494    
4495 dl 1.210 public final Iterator<V> iterator() {
4496     ConcurrentHashMap<K,V> m = map;
4497     Node<K,V>[] t;
4498     int f = (t = m.table) == null ? 0 : t.length;
4499     return new ValueIterator<K,V>(t, f, 0, f, m);
4500 dl 1.119 }
4501    
4502 dl 1.210 public final boolean add(V e) {
4503     throw new UnsupportedOperationException();
4504     }
4505     public final boolean addAll(Collection<? extends V> c) {
4506     throw new UnsupportedOperationException();
4507 dl 1.119 }
4508    
4509 dl 1.210 public Spliterator<V> spliterator() {
4510     Node<K,V>[] t;
4511     ConcurrentHashMap<K,V> m = map;
4512     long n = m.sumCount();
4513     int f = (t = m.table) == null ? 0 : t.length;
4514     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4515 dl 1.119 }
4516    
4517 dl 1.210 public void forEach(Consumer<? super V> action) {
4518     if (action == null) throw new NullPointerException();
4519     Node<K,V>[] t;
4520     if ((t = map.table) != null) {
4521     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4522     for (Node<K,V> p; (p = it.advance()) != null; )
4523     action.accept(p.val);
4524     }
4525 dl 1.119 }
4526 dl 1.210 }
4527    
4528     /**
4529     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4530     * entries. This class cannot be directly instantiated. See
4531     * {@link #entrySet()}.
4532     */
4533     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4534     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4535     private static final long serialVersionUID = 2249069246763182397L;
4536     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4537 dl 1.119
4538 dl 1.210 public boolean contains(Object o) {
4539     Object k, v, r; Map.Entry<?,?> e;
4540     return ((o instanceof Map.Entry) &&
4541     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4542     (r = map.get(k)) != null &&
4543     (v = e.getValue()) != null &&
4544     (v == r || v.equals(r)));
4545 dl 1.119 }
4546    
4547 dl 1.210 public boolean remove(Object o) {
4548     Object k, v; Map.Entry<?,?> e;
4549     return ((o instanceof Map.Entry) &&
4550     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4551     (v = e.getValue()) != null &&
4552     map.remove(k, v));
4553 dl 1.119 }
4554    
4555     /**
4556 dl 1.210 * @return an iterator over the entries of the backing map
4557 dl 1.119 */
4558 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4559     ConcurrentHashMap<K,V> m = map;
4560     Node<K,V>[] t;
4561     int f = (t = m.table) == null ? 0 : t.length;
4562     return new EntryIterator<K,V>(t, f, 0, f, m);
4563 dl 1.119 }
4564    
4565 dl 1.210 public boolean add(Entry<K,V> e) {
4566 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4567 dl 1.119 }
4568    
4569 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4570     boolean added = false;
4571     for (Entry<K,V> e : c) {
4572     if (add(e))
4573     added = true;
4574     }
4575     return added;
4576 dl 1.119 }
4577    
4578 dl 1.210 public final int hashCode() {
4579     int h = 0;
4580     Node<K,V>[] t;
4581     if ((t = map.table) != null) {
4582     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583     for (Node<K,V> p; (p = it.advance()) != null; ) {
4584     h += p.hashCode();
4585     }
4586     }
4587     return h;
4588 dl 1.119 }
4589    
4590 dl 1.210 public final boolean equals(Object o) {
4591     Set<?> c;
4592     return ((o instanceof Set) &&
4593     ((c = (Set<?>)o) == this ||
4594     (containsAll(c) && c.containsAll(this))));
4595 dl 1.119 }
4596    
4597 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4598     Node<K,V>[] t;
4599     ConcurrentHashMap<K,V> m = map;
4600     long n = m.sumCount();
4601     int f = (t = m.table) == null ? 0 : t.length;
4602     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4603 dl 1.119 }
4604    
4605 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4606     if (action == null) throw new NullPointerException();
4607     Node<K,V>[] t;
4608     if ((t = map.table) != null) {
4609     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4610     for (Node<K,V> p; (p = it.advance()) != null; )
4611 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4612 dl 1.210 }
4613 dl 1.119 }
4614    
4615 dl 1.210 }
4616    
4617     // -------------------------------------------------------
4618 dl 1.119
4619 dl 1.210 /**
4620     * Base class for bulk tasks. Repeats some fields and code from
4621     * class Traverser, because we need to subclass CountedCompleter.
4622     */
4623 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4624 dl 1.210 Node<K,V>[] tab; // same as Traverser
4625     Node<K,V> next;
4626     int index;
4627     int baseIndex;
4628     int baseLimit;
4629     final int baseSize;
4630     int batch; // split control
4631    
4632     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4633     super(par);
4634     this.batch = b;
4635     this.index = this.baseIndex = i;
4636     if ((this.tab = t) == null)
4637     this.baseSize = this.baseLimit = 0;
4638     else if (par == null)
4639     this.baseSize = this.baseLimit = t.length;
4640     else {
4641     this.baseLimit = f;
4642     this.baseSize = par.baseSize;
4643     }
4644 dl 1.119 }
4645    
4646     /**
4647 dl 1.210 * Same as Traverser version
4648 dl 1.119 */
4649 dl 1.210 final Node<K,V> advance() {
4650     Node<K,V> e;
4651     if ((e = next) != null)
4652     e = e.next;
4653     for (;;) {
4654 dl 1.222 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4655 dl 1.210 if (e != null)
4656     return next = e;
4657     if (baseIndex >= baseLimit || (t = tab) == null ||
4658     (n = t.length) <= (i = index) || i < 0)
4659     return next = null;
4660 dl 1.224 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4661 dl 1.222 if (e instanceof ForwardingNode) {
4662     tab = ((ForwardingNode<K,V>)e).nextTable;
4663 dl 1.210 e = null;
4664     continue;
4665     }
4666 dl 1.222 else if (e instanceof TreeBin)
4667     e = ((TreeBin<K,V>)e).first;
4668     else
4669     e = null;
4670 dl 1.210 }
4671     if ((index += baseSize) >= n)
4672 dl 1.222 index = ++baseIndex; // visit upper slots if present
4673 dl 1.210 }
4674 dl 1.119 }
4675     }
4676    
4677     /*
4678     * Task classes. Coded in a regular but ugly format/style to
4679     * simplify checks that each variant differs in the right way from
4680 dl 1.149 * others. The null screenings exist because compilers cannot tell
4681     * that we've already null-checked task arguments, so we force
4682     * simplest hoisted bypass to help avoid convoluted traps.
4683 dl 1.119 */
4684 dl 1.222 @SuppressWarnings("serial")
4685 dl 1.210 static final class ForEachKeyTask<K,V>
4686     extends BulkTask<K,V,Void> {
4687 dl 1.171 final Consumer<? super K> action;
4688 dl 1.119 ForEachKeyTask
4689 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4690 dl 1.171 Consumer<? super K> action) {
4691 dl 1.210 super(p, b, i, f, t);
4692 dl 1.119 this.action = action;
4693     }
4694 jsr166 1.168 public final void compute() {
4695 dl 1.171 final Consumer<? super K> action;
4696 dl 1.149 if ((action = this.action) != null) {
4697 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4698     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4699     addToPendingCount(1);
4700     new ForEachKeyTask<K,V>
4701     (this, batch >>>= 1, baseLimit = h, f, tab,
4702     action).fork();
4703     }
4704     for (Node<K,V> p; (p = advance()) != null;)
4705 dl 1.222 action.accept(p.key);
4706 dl 1.149 propagateCompletion();
4707     }
4708 dl 1.119 }
4709     }
4710    
4711 dl 1.222 @SuppressWarnings("serial")
4712 dl 1.210 static final class ForEachValueTask<K,V>
4713     extends BulkTask<K,V,Void> {
4714 dl 1.171 final Consumer<? super V> action;
4715 dl 1.119 ForEachValueTask
4716 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4717 dl 1.171 Consumer<? super V> action) {
4718 dl 1.210 super(p, b, i, f, t);
4719 dl 1.119 this.action = action;
4720     }
4721 jsr166 1.168 public final void compute() {
4722 dl 1.171 final Consumer<? super V> action;
4723 dl 1.149 if ((action = this.action) != null) {
4724 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4725     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4726     addToPendingCount(1);
4727     new ForEachValueTask<K,V>
4728     (this, batch >>>= 1, baseLimit = h, f, tab,
4729     action).fork();
4730     }
4731     for (Node<K,V> p; (p = advance()) != null;)
4732     action.accept(p.val);
4733 dl 1.149 propagateCompletion();
4734     }
4735 dl 1.119 }
4736     }
4737    
4738 dl 1.222 @SuppressWarnings("serial")
4739 dl 1.210 static final class ForEachEntryTask<K,V>
4740     extends BulkTask<K,V,Void> {
4741 dl 1.171 final Consumer<? super Entry<K,V>> action;
4742 dl 1.119 ForEachEntryTask
4743 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4744 dl 1.171 Consumer<? super Entry<K,V>> action) {
4745 dl 1.210 super(p, b, i, f, t);
4746 dl 1.119 this.action = action;
4747     }
4748 jsr166 1.168 public final void compute() {
4749 dl 1.171 final Consumer<? super Entry<K,V>> action;
4750 dl 1.149 if ((action = this.action) != null) {
4751 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4752     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753     addToPendingCount(1);
4754     new ForEachEntryTask<K,V>
4755     (this, batch >>>= 1, baseLimit = h, f, tab,
4756     action).fork();
4757     }
4758     for (Node<K,V> p; (p = advance()) != null; )
4759     action.accept(p);
4760 dl 1.149 propagateCompletion();
4761     }
4762 dl 1.119 }
4763     }
4764    
4765 dl 1.222 @SuppressWarnings("serial")
4766 dl 1.210 static final class ForEachMappingTask<K,V>
4767     extends BulkTask<K,V,Void> {
4768 dl 1.171 final BiConsumer<? super K, ? super V> action;
4769 dl 1.119 ForEachMappingTask
4770 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4771 dl 1.171 BiConsumer<? super K,? super V> action) {
4772 dl 1.210 super(p, b, i, f, t);
4773 dl 1.119 this.action = action;
4774     }
4775 jsr166 1.168 public final void compute() {
4776 dl 1.171 final BiConsumer<? super K, ? super V> action;
4777 dl 1.149 if ((action = this.action) != null) {
4778 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4779     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4780     addToPendingCount(1);
4781     new ForEachMappingTask<K,V>
4782     (this, batch >>>= 1, baseLimit = h, f, tab,
4783     action).fork();
4784     }
4785     for (Node<K,V> p; (p = advance()) != null; )
4786 dl 1.222 action.accept(p.key, p.val);
4787 dl 1.149 propagateCompletion();
4788     }
4789 dl 1.119 }
4790     }
4791    
4792 dl 1.222 @SuppressWarnings("serial")
4793 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
4794     extends BulkTask<K,V,Void> {
4795 dl 1.153 final Function<? super K, ? extends U> transformer;
4796 dl 1.171 final Consumer<? super U> action;
4797 dl 1.119 ForEachTransformedKeyTask
4798 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4799 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4800 dl 1.210 super(p, b, i, f, t);
4801 dl 1.146 this.transformer = transformer; this.action = action;
4802     }
4803 jsr166 1.168 public final void compute() {
4804 dl 1.153 final Function<? super K, ? extends U> transformer;
4805 dl 1.171 final Consumer<? super U> action;
4806 dl 1.149 if ((transformer = this.transformer) != null &&
4807     (action = this.action) != null) {
4808 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4809     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4810     addToPendingCount(1);
4811 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
4812 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4813     transformer, action).fork();
4814     }
4815     for (Node<K,V> p; (p = advance()) != null; ) {
4816     U u;
4817 dl 1.222 if ((u = transformer.apply(p.key)) != null)
4818 dl 1.153 action.accept(u);
4819 dl 1.149 }
4820     propagateCompletion();
4821 dl 1.119 }
4822     }
4823     }
4824    
4825 dl 1.222 @SuppressWarnings("serial")
4826 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
4827     extends BulkTask<K,V,Void> {
4828 dl 1.153 final Function<? super V, ? extends U> transformer;
4829 dl 1.171 final Consumer<? super U> action;
4830 dl 1.119 ForEachTransformedValueTask
4831 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4832 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4833 dl 1.210 super(p, b, i, f, t);
4834 dl 1.146 this.transformer = transformer; this.action = action;
4835     }
4836 jsr166 1.168 public final void compute() {
4837 dl 1.153 final Function<? super V, ? extends U> transformer;
4838 dl 1.171 final Consumer<? super U> action;
4839 dl 1.149 if ((transformer = this.transformer) != null &&
4840     (action = this.action) != null) {
4841 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4842     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4843     addToPendingCount(1);
4844 dl 1.149 new ForEachTransformedValueTask<K,V,U>
4845 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4846     transformer, action).fork();
4847     }
4848     for (Node<K,V> p; (p = advance()) != null; ) {
4849     U u;
4850     if ((u = transformer.apply(p.val)) != null)
4851 dl 1.153 action.accept(u);
4852 dl 1.149 }
4853     propagateCompletion();
4854 dl 1.119 }
4855     }
4856 tim 1.1 }
4857    
4858 dl 1.222 @SuppressWarnings("serial")
4859 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
4860     extends BulkTask<K,V,Void> {
4861 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
4862 dl 1.171 final Consumer<? super U> action;
4863 dl 1.119 ForEachTransformedEntryTask
4864 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4865 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4866 dl 1.210 super(p, b, i, f, t);
4867 dl 1.146 this.transformer = transformer; this.action = action;
4868     }
4869 jsr166 1.168 public final void compute() {
4870 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
4871 dl 1.171 final Consumer<? super U> action;
4872 dl 1.149 if ((transformer = this.transformer) != null &&
4873     (action = this.action) != null) {
4874 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4875     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4876     addToPendingCount(1);
4877 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
4878 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4879     transformer, action).fork();
4880     }
4881     for (Node<K,V> p; (p = advance()) != null; ) {
4882     U u;
4883     if ((u = transformer.apply(p)) != null)
4884 dl 1.153 action.accept(u);
4885 dl 1.149 }
4886     propagateCompletion();
4887 dl 1.119 }
4888     }
4889 tim 1.1 }
4890    
4891 dl 1.222 @SuppressWarnings("serial")
4892 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
4893     extends BulkTask<K,V,Void> {
4894 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
4895 dl 1.171 final Consumer<? super U> action;
4896 dl 1.119 ForEachTransformedMappingTask
4897 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4898 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
4899 dl 1.171 Consumer<? super U> action) {
4900 dl 1.210 super(p, b, i, f, t);
4901 dl 1.146 this.transformer = transformer; this.action = action;
4902 dl 1.119 }
4903 jsr166 1.168 public final void compute() {
4904 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
4905 dl 1.171 final Consumer<? super U> action;
4906 dl 1.149 if ((transformer = this.transformer) != null &&
4907     (action = this.action) != null) {
4908 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4909     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4910     addToPendingCount(1);
4911 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
4912 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4913     transformer, action).fork();
4914     }
4915     for (Node<K,V> p; (p = advance()) != null; ) {
4916     U u;
4917 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
4918 dl 1.153 action.accept(u);
4919 dl 1.149 }
4920     propagateCompletion();
4921 dl 1.119 }
4922     }
4923 tim 1.1 }
4924    
4925 dl 1.222 @SuppressWarnings("serial")
4926 dl 1.210 static final class SearchKeysTask<K,V,U>
4927     extends BulkTask<K,V,U> {
4928 dl 1.153 final Function<? super K, ? extends U> searchFunction;
4929 dl 1.119 final AtomicReference<U> result;
4930     SearchKeysTask
4931 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4932 dl 1.153 Function<? super K, ? extends U> searchFunction,
4933 dl 1.119 AtomicReference<U> result) {
4934 dl 1.210 super(p, b, i, f, t);
4935 dl 1.119 this.searchFunction = searchFunction; this.result = result;
4936     }
4937 dl 1.146 public final U getRawResult() { return result.get(); }
4938 jsr166 1.168 public final void compute() {
4939 dl 1.153 final Function<? super K, ? extends U> searchFunction;
4940 dl 1.146 final AtomicReference<U> result;
4941 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
4942     (result = this.result) != null) {
4943 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4944     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4945 dl 1.149 if (result.get() != null)
4946     return;
4947 dl 1.210 addToPendingCount(1);
4948 dl 1.149 new SearchKeysTask<K,V,U>
4949 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4950     searchFunction, result).fork();
4951 dl 1.128 }
4952 dl 1.149 while (result.get() == null) {
4953 dl 1.210 U u;
4954     Node<K,V> p;
4955     if ((p = advance()) == null) {
4956 dl 1.149 propagateCompletion();
4957     break;
4958     }
4959 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
4960 dl 1.149 if (result.compareAndSet(null, u))
4961     quietlyCompleteRoot();
4962     break;
4963     }
4964 dl 1.119 }
4965     }
4966     }
4967 tim 1.1 }
4968    
4969 dl 1.222 @SuppressWarnings("serial")
4970 dl 1.210 static final class SearchValuesTask<K,V,U>
4971     extends BulkTask<K,V,U> {
4972 dl 1.153 final Function<? super V, ? extends U> searchFunction;
4973 dl 1.119 final AtomicReference<U> result;
4974     SearchValuesTask
4975 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4976 dl 1.153 Function<? super V, ? extends U> searchFunction,
4977 dl 1.119 AtomicReference<U> result) {
4978 dl 1.210 super(p, b, i, f, t);
4979 dl 1.119 this.searchFunction = searchFunction; this.result = result;
4980     }
4981 dl 1.146 public final U getRawResult() { return result.get(); }
4982 jsr166 1.168 public final void compute() {
4983 dl 1.153 final Function<? super V, ? extends U> searchFunction;
4984 dl 1.146 final AtomicReference<U> result;
4985 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
4986     (result = this.result) != null) {
4987 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4988     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4989 dl 1.149 if (result.get() != null)
4990     return;
4991 dl 1.210 addToPendingCount(1);
4992 dl 1.149 new SearchValuesTask<K,V,U>
4993 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4994     searchFunction, result).fork();
4995 dl 1.128 }
4996 dl 1.149 while (result.get() == null) {
4997 dl 1.210 U u;
4998     Node<K,V> p;
4999     if ((p = advance()) == null) {
5000 dl 1.149 propagateCompletion();
5001     break;
5002     }
5003 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5004 dl 1.149 if (result.compareAndSet(null, u))
5005     quietlyCompleteRoot();
5006     break;
5007     }
5008 dl 1.119 }
5009     }
5010     }
5011     }
5012 tim 1.11
5013 dl 1.222 @SuppressWarnings("serial")
5014 dl 1.210 static final class SearchEntriesTask<K,V,U>
5015     extends BulkTask<K,V,U> {
5016 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5017 dl 1.119 final AtomicReference<U> result;
5018     SearchEntriesTask
5019 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5020 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5021 dl 1.119 AtomicReference<U> result) {
5022 dl 1.210 super(p, b, i, f, t);
5023 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5024     }
5025 dl 1.146 public final U getRawResult() { return result.get(); }
5026 jsr166 1.168 public final void compute() {
5027 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5028 dl 1.146 final AtomicReference<U> result;
5029 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5030     (result = this.result) != null) {
5031 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5032     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5033 dl 1.149 if (result.get() != null)
5034     return;
5035 dl 1.210 addToPendingCount(1);
5036 dl 1.149 new SearchEntriesTask<K,V,U>
5037 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5038     searchFunction, result).fork();
5039 dl 1.128 }
5040 dl 1.149 while (result.get() == null) {
5041 dl 1.210 U u;
5042     Node<K,V> p;
5043     if ((p = advance()) == null) {
5044 dl 1.149 propagateCompletion();
5045     break;
5046     }
5047 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5048 dl 1.149 if (result.compareAndSet(null, u))
5049     quietlyCompleteRoot();
5050     return;
5051     }
5052 dl 1.119 }
5053     }
5054     }
5055     }
5056 tim 1.1
5057 dl 1.222 @SuppressWarnings("serial")
5058 dl 1.210 static final class SearchMappingsTask<K,V,U>
5059     extends BulkTask<K,V,U> {
5060 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5061 dl 1.119 final AtomicReference<U> result;
5062     SearchMappingsTask
5063 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5064 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5065 dl 1.119 AtomicReference<U> result) {
5066 dl 1.210 super(p, b, i, f, t);
5067 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5068     }
5069 dl 1.146 public final U getRawResult() { return result.get(); }
5070 jsr166 1.168 public final void compute() {
5071 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5072 dl 1.146 final AtomicReference<U> result;
5073 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5074     (result = this.result) != null) {
5075 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5076     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5077 dl 1.149 if (result.get() != null)
5078     return;
5079 dl 1.210 addToPendingCount(1);
5080 dl 1.149 new SearchMappingsTask<K,V,U>
5081 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5082     searchFunction, result).fork();
5083 dl 1.128 }
5084 dl 1.149 while (result.get() == null) {
5085 dl 1.210 U u;
5086     Node<K,V> p;
5087     if ((p = advance()) == null) {
5088 dl 1.149 propagateCompletion();
5089     break;
5090     }
5091 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5092 dl 1.149 if (result.compareAndSet(null, u))
5093     quietlyCompleteRoot();
5094     break;
5095     }
5096 dl 1.119 }
5097     }
5098 tim 1.1 }
5099 dl 1.119 }
5100 tim 1.1
5101 dl 1.222 @SuppressWarnings("serial")
5102 dl 1.210 static final class ReduceKeysTask<K,V>
5103     extends BulkTask<K,V,K> {
5104 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5105 dl 1.119 K result;
5106 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5107 dl 1.119 ReduceKeysTask
5108 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5109 dl 1.128 ReduceKeysTask<K,V> nextRight,
5110 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5111 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5112 dl 1.119 this.reducer = reducer;
5113     }
5114 dl 1.146 public final K getRawResult() { return result; }
5115 dl 1.210 public final void compute() {
5116 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5117 dl 1.149 if ((reducer = this.reducer) != null) {
5118 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5119     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5120     addToPendingCount(1);
5121 dl 1.149 (rights = new ReduceKeysTask<K,V>
5122 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5123     rights, reducer)).fork();
5124     }
5125     K r = null;
5126     for (Node<K,V> p; (p = advance()) != null; ) {
5127 dl 1.222 K u = p.key;
5128 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5129 dl 1.149 }
5130     result = r;
5131     CountedCompleter<?> c;
5132     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5133 dl 1.222 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5134 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5135     s = t.rights;
5136     while (s != null) {
5137     K tr, sr;
5138     if ((sr = s.result) != null)
5139     t.result = (((tr = t.result) == null) ? sr :
5140     reducer.apply(tr, sr));
5141     s = t.rights = s.nextRight;
5142     }
5143 dl 1.99 }
5144 dl 1.138 }
5145 tim 1.1 }
5146 dl 1.119 }
5147 tim 1.1
5148 dl 1.222 @SuppressWarnings("serial")
5149 dl 1.210 static final class ReduceValuesTask<K,V>
5150     extends BulkTask<K,V,V> {
5151 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5152 dl 1.119 V result;
5153 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5154 dl 1.119 ReduceValuesTask
5155 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5156 dl 1.128 ReduceValuesTask<K,V> nextRight,
5157 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5158 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5159 dl 1.119 this.reducer = reducer;
5160     }
5161 dl 1.146 public final V getRawResult() { return result; }
5162 dl 1.210 public final void compute() {
5163 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5164 dl 1.149 if ((reducer = this.reducer) != null) {
5165 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5166     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5167     addToPendingCount(1);
5168 dl 1.149 (rights = new ReduceValuesTask<K,V>
5169 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5170     rights, reducer)).fork();
5171     }
5172     V r = null;
5173     for (Node<K,V> p; (p = advance()) != null; ) {
5174     V v = p.val;
5175 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5176 dl 1.210 }
5177 dl 1.149 result = r;
5178     CountedCompleter<?> c;
5179     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5180 dl 1.222 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5181 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5182     s = t.rights;
5183     while (s != null) {
5184     V tr, sr;
5185     if ((sr = s.result) != null)
5186     t.result = (((tr = t.result) == null) ? sr :
5187     reducer.apply(tr, sr));
5188     s = t.rights = s.nextRight;
5189     }
5190 dl 1.119 }
5191     }
5192 tim 1.1 }
5193 dl 1.119 }
5194 tim 1.1
5195 dl 1.222 @SuppressWarnings("serial")
5196 dl 1.210 static final class ReduceEntriesTask<K,V>
5197     extends BulkTask<K,V,Map.Entry<K,V>> {
5198 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5199 dl 1.119 Map.Entry<K,V> result;
5200 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5201 dl 1.119 ReduceEntriesTask
5202 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5203 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5204 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5205 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5206 dl 1.119 this.reducer = reducer;
5207     }
5208 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5209 dl 1.210 public final void compute() {
5210 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5211 dl 1.149 if ((reducer = this.reducer) != null) {
5212 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5213     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5214     addToPendingCount(1);
5215 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5216 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5217     rights, reducer)).fork();
5218     }
5219 dl 1.149 Map.Entry<K,V> r = null;
5220 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5221     r = (r == null) ? p : reducer.apply(r, p);
5222 dl 1.149 result = r;
5223     CountedCompleter<?> c;
5224     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5225 dl 1.222 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5226 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5227     s = t.rights;
5228     while (s != null) {
5229     Map.Entry<K,V> tr, sr;
5230     if ((sr = s.result) != null)
5231     t.result = (((tr = t.result) == null) ? sr :
5232     reducer.apply(tr, sr));
5233     s = t.rights = s.nextRight;
5234     }
5235 dl 1.119 }
5236 dl 1.138 }
5237 dl 1.119 }
5238     }
5239 dl 1.99
5240 dl 1.222 @SuppressWarnings("serial")
5241 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5242     extends BulkTask<K,V,U> {
5243 dl 1.153 final Function<? super K, ? extends U> transformer;
5244     final BiFunction<? super U, ? super U, ? extends U> reducer;
5245 dl 1.119 U result;
5246 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5247 dl 1.119 MapReduceKeysTask
5248 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5249 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5250 dl 1.153 Function<? super K, ? extends U> transformer,
5251     BiFunction<? super U, ? super U, ? extends U> reducer) {
5252 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5253 dl 1.119 this.transformer = transformer;
5254     this.reducer = reducer;
5255     }
5256 dl 1.146 public final U getRawResult() { return result; }
5257 dl 1.210 public final void compute() {
5258 dl 1.153 final Function<? super K, ? extends U> transformer;
5259     final BiFunction<? super U, ? super U, ? extends U> reducer;
5260 dl 1.149 if ((transformer = this.transformer) != null &&
5261     (reducer = this.reducer) != null) {
5262 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5263     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5264     addToPendingCount(1);
5265 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5266 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5267     rights, transformer, reducer)).fork();
5268     }
5269     U r = null;
5270     for (Node<K,V> p; (p = advance()) != null; ) {
5271     U u;
5272 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5273 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5274     }
5275     result = r;
5276     CountedCompleter<?> c;
5277     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5278 dl 1.222 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5279 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5280     s = t.rights;
5281     while (s != null) {
5282     U tr, sr;
5283     if ((sr = s.result) != null)
5284     t.result = (((tr = t.result) == null) ? sr :
5285     reducer.apply(tr, sr));
5286     s = t.rights = s.nextRight;
5287     }
5288 dl 1.119 }
5289 dl 1.138 }
5290 tim 1.1 }
5291 dl 1.4 }
5292    
5293 dl 1.222 @SuppressWarnings("serial")
5294 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5295     extends BulkTask<K,V,U> {
5296 dl 1.153 final Function<? super V, ? extends U> transformer;
5297     final BiFunction<? super U, ? super U, ? extends U> reducer;
5298 dl 1.119 U result;
5299 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5300 dl 1.119 MapReduceValuesTask
5301 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5302 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5303 dl 1.153 Function<? super V, ? extends U> transformer,
5304     BiFunction<? super U, ? super U, ? extends U> reducer) {
5305 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5306 dl 1.119 this.transformer = transformer;
5307     this.reducer = reducer;
5308     }
5309 dl 1.146 public final U getRawResult() { return result; }
5310 dl 1.210 public final void compute() {
5311 dl 1.153 final Function<? super V, ? extends U> transformer;
5312     final BiFunction<? super U, ? super U, ? extends U> reducer;
5313 dl 1.149 if ((transformer = this.transformer) != null &&
5314     (reducer = this.reducer) != null) {
5315 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5316     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5317     addToPendingCount(1);
5318 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5319 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5320     rights, transformer, reducer)).fork();
5321     }
5322     U r = null;
5323     for (Node<K,V> p; (p = advance()) != null; ) {
5324     U u;
5325     if ((u = transformer.apply(p.val)) != null)
5326 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5327     }
5328     result = r;
5329     CountedCompleter<?> c;
5330     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5331 dl 1.222 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5332 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5333     s = t.rights;
5334     while (s != null) {
5335     U tr, sr;
5336     if ((sr = s.result) != null)
5337     t.result = (((tr = t.result) == null) ? sr :
5338     reducer.apply(tr, sr));
5339     s = t.rights = s.nextRight;
5340     }
5341 dl 1.119 }
5342     }
5343     }
5344 dl 1.4 }
5345    
5346 dl 1.222 @SuppressWarnings("serial")
5347 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5348     extends BulkTask<K,V,U> {
5349 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5350     final BiFunction<? super U, ? super U, ? extends U> reducer;
5351 dl 1.119 U result;
5352 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5353 dl 1.119 MapReduceEntriesTask
5354 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5355 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5356 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5357     BiFunction<? super U, ? super U, ? extends U> reducer) {
5358 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5359 dl 1.119 this.transformer = transformer;
5360     this.reducer = reducer;
5361     }
5362 dl 1.146 public final U getRawResult() { return result; }
5363 dl 1.210 public final void compute() {
5364 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5365     final BiFunction<? super U, ? super U, ? extends U> reducer;
5366 dl 1.149 if ((transformer = this.transformer) != null &&
5367     (reducer = this.reducer) != null) {
5368 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5369     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5370     addToPendingCount(1);
5371 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5372 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5373     rights, transformer, reducer)).fork();
5374     }
5375     U r = null;
5376     for (Node<K,V> p; (p = advance()) != null; ) {
5377     U u;
5378     if ((u = transformer.apply(p)) != null)
5379 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5380     }
5381     result = r;
5382     CountedCompleter<?> c;
5383     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5384 dl 1.222 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5385 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5386     s = t.rights;
5387     while (s != null) {
5388     U tr, sr;
5389     if ((sr = s.result) != null)
5390     t.result = (((tr = t.result) == null) ? sr :
5391     reducer.apply(tr, sr));
5392     s = t.rights = s.nextRight;
5393     }
5394 dl 1.119 }
5395 dl 1.138 }
5396 dl 1.119 }
5397 dl 1.4 }
5398 tim 1.1
5399 dl 1.222 @SuppressWarnings("serial")
5400 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5401     extends BulkTask<K,V,U> {
5402 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5403     final BiFunction<? super U, ? super U, ? extends U> reducer;
5404 dl 1.119 U result;
5405 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5406 dl 1.119 MapReduceMappingsTask
5407 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5408 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5409 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5410     BiFunction<? super U, ? super U, ? extends U> reducer) {
5411 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5412 dl 1.119 this.transformer = transformer;
5413     this.reducer = reducer;
5414     }
5415 dl 1.146 public final U getRawResult() { return result; }
5416 dl 1.210 public final void compute() {
5417 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5418     final BiFunction<? super U, ? super U, ? extends U> reducer;
5419 dl 1.149 if ((transformer = this.transformer) != null &&
5420     (reducer = this.reducer) != null) {
5421 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5422     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423     addToPendingCount(1);
5424 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5425 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5426     rights, transformer, reducer)).fork();
5427     }
5428     U r = null;
5429     for (Node<K,V> p; (p = advance()) != null; ) {
5430     U u;
5431 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5432 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5433     }
5434     result = r;
5435     CountedCompleter<?> c;
5436     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5437 dl 1.222 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5438 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5439     s = t.rights;
5440     while (s != null) {
5441     U tr, sr;
5442     if ((sr = s.result) != null)
5443     t.result = (((tr = t.result) == null) ? sr :
5444     reducer.apply(tr, sr));
5445     s = t.rights = s.nextRight;
5446     }
5447 dl 1.119 }
5448     }
5449     }
5450     }
5451 jsr166 1.114
5452 dl 1.222 @SuppressWarnings("serial")
5453 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5454     extends BulkTask<K,V,Double> {
5455 dl 1.171 final ToDoubleFunction<? super K> transformer;
5456 dl 1.153 final DoubleBinaryOperator reducer;
5457 dl 1.119 final double basis;
5458     double result;
5459 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5460 dl 1.119 MapReduceKeysToDoubleTask
5461 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5462 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5463 dl 1.171 ToDoubleFunction<? super K> transformer,
5464 dl 1.119 double basis,
5465 dl 1.153 DoubleBinaryOperator reducer) {
5466 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5467 dl 1.119 this.transformer = transformer;
5468     this.basis = basis; this.reducer = reducer;
5469     }
5470 dl 1.146 public final Double getRawResult() { return result; }
5471 dl 1.210 public final void compute() {
5472 dl 1.171 final ToDoubleFunction<? super K> transformer;
5473 dl 1.153 final DoubleBinaryOperator reducer;
5474 dl 1.149 if ((transformer = this.transformer) != null &&
5475     (reducer = this.reducer) != null) {
5476     double r = this.basis;
5477 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5478     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5479     addToPendingCount(1);
5480 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5481 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5482     rights, transformer, r, reducer)).fork();
5483     }
5484     for (Node<K,V> p; (p = advance()) != null; )
5485 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5486 dl 1.149 result = r;
5487     CountedCompleter<?> c;
5488     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5489 dl 1.222 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5490 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5491     s = t.rights;
5492     while (s != null) {
5493 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5494 dl 1.149 s = t.rights = s.nextRight;
5495     }
5496 dl 1.119 }
5497 dl 1.138 }
5498 dl 1.79 }
5499 dl 1.119 }
5500 dl 1.79
5501 dl 1.222 @SuppressWarnings("serial")
5502 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5503     extends BulkTask<K,V,Double> {
5504 dl 1.171 final ToDoubleFunction<? super V> transformer;
5505 dl 1.153 final DoubleBinaryOperator reducer;
5506 dl 1.119 final double basis;
5507     double result;
5508 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5509 dl 1.119 MapReduceValuesToDoubleTask
5510 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5511 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5512 dl 1.171 ToDoubleFunction<? super V> transformer,
5513 dl 1.119 double basis,
5514 dl 1.153 DoubleBinaryOperator reducer) {
5515 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5516 dl 1.119 this.transformer = transformer;
5517     this.basis = basis; this.reducer = reducer;
5518     }
5519 dl 1.146 public final Double getRawResult() { return result; }
5520 dl 1.210 public final void compute() {
5521 dl 1.171 final ToDoubleFunction<? super V> transformer;
5522 dl 1.153 final DoubleBinaryOperator reducer;
5523 dl 1.149 if ((transformer = this.transformer) != null &&
5524     (reducer = this.reducer) != null) {
5525     double r = this.basis;
5526 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5527     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5528     addToPendingCount(1);
5529 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5530 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5531     rights, transformer, r, reducer)).fork();
5532     }
5533     for (Node<K,V> p; (p = advance()) != null; )
5534     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5535 dl 1.149 result = r;
5536     CountedCompleter<?> c;
5537     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5538 dl 1.222 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5539 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5540     s = t.rights;
5541     while (s != null) {
5542 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5543 dl 1.149 s = t.rights = s.nextRight;
5544     }
5545 dl 1.119 }
5546     }
5547 dl 1.30 }
5548 dl 1.79 }
5549 dl 1.30
5550 dl 1.222 @SuppressWarnings("serial")
5551 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5552     extends BulkTask<K,V,Double> {
5553 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5554 dl 1.153 final DoubleBinaryOperator reducer;
5555 dl 1.119 final double basis;
5556     double result;
5557 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5558 dl 1.119 MapReduceEntriesToDoubleTask
5559 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5560 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5561 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5562 dl 1.119 double basis,
5563 dl 1.153 DoubleBinaryOperator reducer) {
5564 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5565 dl 1.119 this.transformer = transformer;
5566     this.basis = basis; this.reducer = reducer;
5567     }
5568 dl 1.146 public final Double getRawResult() { return result; }
5569 dl 1.210 public final void compute() {
5570 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5571 dl 1.153 final DoubleBinaryOperator reducer;
5572 dl 1.149 if ((transformer = this.transformer) != null &&
5573     (reducer = this.reducer) != null) {
5574     double r = this.basis;
5575 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5576     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5577     addToPendingCount(1);
5578 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5579 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5580     rights, transformer, r, reducer)).fork();
5581     }
5582     for (Node<K,V> p; (p = advance()) != null; )
5583     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5584 dl 1.149 result = r;
5585     CountedCompleter<?> c;
5586     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 dl 1.222 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5588 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5589     s = t.rights;
5590     while (s != null) {
5591 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5592 dl 1.149 s = t.rights = s.nextRight;
5593     }
5594 dl 1.119 }
5595 dl 1.138 }
5596 dl 1.30 }
5597 tim 1.1 }
5598    
5599 dl 1.222 @SuppressWarnings("serial")
5600 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5601     extends BulkTask<K,V,Double> {
5602 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5603 dl 1.153 final DoubleBinaryOperator reducer;
5604 dl 1.119 final double basis;
5605     double result;
5606 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5607 dl 1.119 MapReduceMappingsToDoubleTask
5608 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5609 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5610 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5611 dl 1.119 double basis,
5612 dl 1.153 DoubleBinaryOperator reducer) {
5613 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5614 dl 1.119 this.transformer = transformer;
5615     this.basis = basis; this.reducer = reducer;
5616     }
5617 dl 1.146 public final Double getRawResult() { return result; }
5618 dl 1.210 public final void compute() {
5619 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5620 dl 1.153 final DoubleBinaryOperator reducer;
5621 dl 1.149 if ((transformer = this.transformer) != null &&
5622     (reducer = this.reducer) != null) {
5623     double r = this.basis;
5624 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5625     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5626     addToPendingCount(1);
5627 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5628 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5629     rights, transformer, r, reducer)).fork();
5630     }
5631     for (Node<K,V> p; (p = advance()) != null; )
5632 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5633 dl 1.149 result = r;
5634     CountedCompleter<?> c;
5635     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5636 dl 1.222 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5637 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5638     s = t.rights;
5639     while (s != null) {
5640 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5641 dl 1.149 s = t.rights = s.nextRight;
5642     }
5643 dl 1.119 }
5644     }
5645 dl 1.4 }
5646 dl 1.119 }
5647    
5648 dl 1.222 @SuppressWarnings("serial")
5649 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5650     extends BulkTask<K,V,Long> {
5651 dl 1.171 final ToLongFunction<? super K> transformer;
5652 dl 1.153 final LongBinaryOperator reducer;
5653 dl 1.119 final long basis;
5654     long result;
5655 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5656 dl 1.119 MapReduceKeysToLongTask
5657 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5658 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5659 dl 1.171 ToLongFunction<? super K> transformer,
5660 dl 1.119 long basis,
5661 dl 1.153 LongBinaryOperator reducer) {
5662 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5663 dl 1.119 this.transformer = transformer;
5664     this.basis = basis; this.reducer = reducer;
5665     }
5666 dl 1.146 public final Long getRawResult() { return result; }
5667 dl 1.210 public final void compute() {
5668 dl 1.171 final ToLongFunction<? super K> transformer;
5669 dl 1.153 final LongBinaryOperator reducer;
5670 dl 1.149 if ((transformer = this.transformer) != null &&
5671     (reducer = this.reducer) != null) {
5672     long r = this.basis;
5673 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5674     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5675     addToPendingCount(1);
5676 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5677 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5678     rights, transformer, r, reducer)).fork();
5679     }
5680     for (Node<K,V> p; (p = advance()) != null; )
5681 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5682 dl 1.149 result = r;
5683     CountedCompleter<?> c;
5684     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5685 dl 1.222 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5686 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5687     s = t.rights;
5688     while (s != null) {
5689 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5690 dl 1.149 s = t.rights = s.nextRight;
5691     }
5692 dl 1.119 }
5693 dl 1.138 }
5694 dl 1.4 }
5695 dl 1.119 }
5696    
5697 dl 1.222 @SuppressWarnings("serial")
5698 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5699     extends BulkTask<K,V,Long> {
5700 dl 1.171 final ToLongFunction<? super V> transformer;
5701 dl 1.153 final LongBinaryOperator reducer;
5702 dl 1.119 final long basis;
5703     long result;
5704 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5705 dl 1.119 MapReduceValuesToLongTask
5706 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5707 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5708 dl 1.171 ToLongFunction<? super V> transformer,
5709 dl 1.119 long basis,
5710 dl 1.153 LongBinaryOperator reducer) {
5711 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5712 dl 1.119 this.transformer = transformer;
5713     this.basis = basis; this.reducer = reducer;
5714     }
5715 dl 1.146 public final Long getRawResult() { return result; }
5716 dl 1.210 public final void compute() {
5717 dl 1.171 final ToLongFunction<? super V> transformer;
5718 dl 1.153 final LongBinaryOperator reducer;
5719 dl 1.149 if ((transformer = this.transformer) != null &&
5720     (reducer = this.reducer) != null) {
5721     long r = this.basis;
5722 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5723     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5724     addToPendingCount(1);
5725 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5726 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5727     rights, transformer, r, reducer)).fork();
5728     }
5729     for (Node<K,V> p; (p = advance()) != null; )
5730     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5731 dl 1.149 result = r;
5732     CountedCompleter<?> c;
5733     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5734 dl 1.222 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5735 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
5736     s = t.rights;
5737     while (s != null) {
5738 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5739 dl 1.149 s = t.rights = s.nextRight;
5740     }
5741 dl 1.119 }
5742     }
5743 jsr166 1.95 }
5744 dl 1.119 }
5745    
5746 dl 1.222 @SuppressWarnings("serial")
5747 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
5748     extends BulkTask<K,V,Long> {
5749 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5750 dl 1.153 final LongBinaryOperator reducer;
5751 dl 1.119 final long basis;
5752     long result;
5753 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5754 dl 1.119 MapReduceEntriesToLongTask
5755 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5756 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
5757 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5758 dl 1.119 long basis,
5759 dl 1.153 LongBinaryOperator reducer) {
5760 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5761 dl 1.119 this.transformer = transformer;
5762     this.basis = basis; this.reducer = reducer;
5763     }
5764 dl 1.146 public final Long getRawResult() { return result; }
5765 dl 1.210 public final void compute() {
5766 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5767 dl 1.153 final LongBinaryOperator reducer;
5768 dl 1.149 if ((transformer = this.transformer) != null &&
5769     (reducer = this.reducer) != null) {
5770     long r = this.basis;
5771 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5772     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5773     addToPendingCount(1);
5774 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
5775 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5776     rights, transformer, r, reducer)).fork();
5777     }
5778     for (Node<K,V> p; (p = advance()) != null; )
5779     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5780 dl 1.149 result = r;
5781     CountedCompleter<?> c;
5782     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5783 dl 1.222 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5784 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
5785     s = t.rights;
5786     while (s != null) {
5787 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5788 dl 1.149 s = t.rights = s.nextRight;
5789     }
5790 dl 1.119 }
5791 dl 1.138 }
5792 dl 1.4 }
5793 tim 1.1 }
5794    
5795 dl 1.222 @SuppressWarnings("serial")
5796 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
5797     extends BulkTask<K,V,Long> {
5798 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5799 dl 1.153 final LongBinaryOperator reducer;
5800 dl 1.119 final long basis;
5801     long result;
5802 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5803 dl 1.119 MapReduceMappingsToLongTask
5804 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5805 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
5806 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5807 dl 1.119 long basis,
5808 dl 1.153 LongBinaryOperator reducer) {
5809 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5810 dl 1.119 this.transformer = transformer;
5811     this.basis = basis; this.reducer = reducer;
5812     }
5813 dl 1.146 public final Long getRawResult() { return result; }
5814 dl 1.210 public final void compute() {
5815 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5816 dl 1.153 final LongBinaryOperator reducer;
5817 dl 1.149 if ((transformer = this.transformer) != null &&
5818     (reducer = this.reducer) != null) {
5819     long r = this.basis;
5820 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5821     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5822     addToPendingCount(1);
5823 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
5824 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5825     rights, transformer, r, reducer)).fork();
5826     }
5827     for (Node<K,V> p; (p = advance()) != null; )
5828 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5829 dl 1.149 result = r;
5830     CountedCompleter<?> c;
5831     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5832 dl 1.222 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5833 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
5834     s = t.rights;
5835     while (s != null) {
5836 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5837 dl 1.149 s = t.rights = s.nextRight;
5838     }
5839 dl 1.119 }
5840     }
5841 dl 1.4 }
5842 tim 1.1 }
5843    
5844 dl 1.222 @SuppressWarnings("serial")
5845 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
5846     extends BulkTask<K,V,Integer> {
5847 dl 1.171 final ToIntFunction<? super K> transformer;
5848 dl 1.153 final IntBinaryOperator reducer;
5849 dl 1.119 final int basis;
5850     int result;
5851 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
5852 dl 1.119 MapReduceKeysToIntTask
5853 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5854 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
5855 dl 1.171 ToIntFunction<? super K> transformer,
5856 dl 1.119 int basis,
5857 dl 1.153 IntBinaryOperator reducer) {
5858 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5859 dl 1.119 this.transformer = transformer;
5860     this.basis = basis; this.reducer = reducer;
5861     }
5862 dl 1.146 public final Integer getRawResult() { return result; }
5863 dl 1.210 public final void compute() {
5864 dl 1.171 final ToIntFunction<? super K> transformer;
5865 dl 1.153 final IntBinaryOperator reducer;
5866 dl 1.149 if ((transformer = this.transformer) != null &&
5867     (reducer = this.reducer) != null) {
5868     int r = this.basis;
5869 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5870     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5871     addToPendingCount(1);
5872 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
5873 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5874     rights, transformer, r, reducer)).fork();
5875     }
5876     for (Node<K,V> p; (p = advance()) != null; )
5877 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5878 dl 1.149 result = r;
5879     CountedCompleter<?> c;
5880     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5881 dl 1.222 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5882 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
5883     s = t.rights;
5884     while (s != null) {
5885 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5886 dl 1.149 s = t.rights = s.nextRight;
5887     }
5888 dl 1.119 }
5889 dl 1.138 }
5890 dl 1.30 }
5891     }
5892    
5893 dl 1.222 @SuppressWarnings("serial")
5894 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
5895     extends BulkTask<K,V,Integer> {
5896 dl 1.171 final ToIntFunction<? super V> transformer;
5897 dl 1.153 final IntBinaryOperator reducer;
5898 dl 1.119 final int basis;
5899     int result;
5900 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
5901 dl 1.119 MapReduceValuesToIntTask
5902 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5903 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
5904 dl 1.171 ToIntFunction<? super V> transformer,
5905 dl 1.119 int basis,
5906 dl 1.153 IntBinaryOperator reducer) {
5907 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5908 dl 1.119 this.transformer = transformer;
5909     this.basis = basis; this.reducer = reducer;
5910     }
5911 dl 1.146 public final Integer getRawResult() { return result; }
5912 dl 1.210 public final void compute() {
5913 dl 1.171 final ToIntFunction<? super V> transformer;
5914 dl 1.153 final IntBinaryOperator reducer;
5915 dl 1.149 if ((transformer = this.transformer) != null &&
5916     (reducer = this.reducer) != null) {
5917     int r = this.basis;
5918 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5919     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5920     addToPendingCount(1);
5921 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
5922 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5923     rights, transformer, r, reducer)).fork();
5924     }
5925     for (Node<K,V> p; (p = advance()) != null; )
5926     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5927 dl 1.149 result = r;
5928     CountedCompleter<?> c;
5929     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5930 dl 1.222 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5931 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
5932     s = t.rights;
5933     while (s != null) {
5934 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5935 dl 1.149 s = t.rights = s.nextRight;
5936     }
5937 dl 1.119 }
5938 dl 1.2 }
5939 tim 1.1 }
5940     }
5941    
5942 dl 1.222 @SuppressWarnings("serial")
5943 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
5944     extends BulkTask<K,V,Integer> {
5945 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
5946 dl 1.153 final IntBinaryOperator reducer;
5947 dl 1.119 final int basis;
5948     int result;
5949 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5950 dl 1.119 MapReduceEntriesToIntTask
5951 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5952 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
5953 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
5954 dl 1.119 int basis,
5955 dl 1.153 IntBinaryOperator reducer) {
5956 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5957 dl 1.119 this.transformer = transformer;
5958     this.basis = basis; this.reducer = reducer;
5959     }
5960 dl 1.146 public final Integer getRawResult() { return result; }
5961 dl 1.210 public final void compute() {
5962 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
5963 dl 1.153 final IntBinaryOperator reducer;
5964 dl 1.149 if ((transformer = this.transformer) != null &&
5965     (reducer = this.reducer) != null) {
5966     int r = this.basis;
5967 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5968     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5969     addToPendingCount(1);
5970 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
5971 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5972     rights, transformer, r, reducer)).fork();
5973     }
5974     for (Node<K,V> p; (p = advance()) != null; )
5975     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5976 dl 1.149 result = r;
5977     CountedCompleter<?> c;
5978     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5979 dl 1.222 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5980 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
5981     s = t.rights;
5982     while (s != null) {
5983 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
5984 dl 1.149 s = t.rights = s.nextRight;
5985     }
5986 dl 1.119 }
5987 dl 1.138 }
5988 dl 1.4 }
5989 dl 1.119 }
5990 tim 1.1
5991 dl 1.222 @SuppressWarnings("serial")
5992 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
5993     extends BulkTask<K,V,Integer> {
5994 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
5995 dl 1.153 final IntBinaryOperator reducer;
5996 dl 1.119 final int basis;
5997     int result;
5998 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5999 dl 1.119 MapReduceMappingsToIntTask
6000 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6001 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6002 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6003 dl 1.119 int basis,
6004 dl 1.153 IntBinaryOperator reducer) {
6005 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6006 dl 1.119 this.transformer = transformer;
6007     this.basis = basis; this.reducer = reducer;
6008     }
6009 dl 1.146 public final Integer getRawResult() { return result; }
6010 dl 1.210 public final void compute() {
6011 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6012 dl 1.153 final IntBinaryOperator reducer;
6013 dl 1.149 if ((transformer = this.transformer) != null &&
6014     (reducer = this.reducer) != null) {
6015     int r = this.basis;
6016 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6017     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6018     addToPendingCount(1);
6019 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6020 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6021     rights, transformer, r, reducer)).fork();
6022     }
6023     for (Node<K,V> p; (p = advance()) != null; )
6024 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6025 dl 1.149 result = r;
6026     CountedCompleter<?> c;
6027     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6028 dl 1.222 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6029 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6030     s = t.rights;
6031     while (s != null) {
6032 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6033 dl 1.149 s = t.rights = s.nextRight;
6034     }
6035 dl 1.119 }
6036 dl 1.138 }
6037 tim 1.1 }
6038     }
6039 dl 1.99
6040     // Unsafe mechanics
6041 dl 1.149 private static final sun.misc.Unsafe U;
6042     private static final long SIZECTL;
6043     private static final long TRANSFERINDEX;
6044     private static final long TRANSFERORIGIN;
6045     private static final long BASECOUNT;
6046 dl 1.153 private static final long CELLSBUSY;
6047 dl 1.149 private static final long CELLVALUE;
6048 dl 1.119 private static final long ABASE;
6049     private static final int ASHIFT;
6050 dl 1.99
6051     static {
6052     try {
6053 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6054 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6055 dl 1.149 SIZECTL = U.objectFieldOffset
6056 dl 1.119 (k.getDeclaredField("sizeCtl"));
6057 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6058     (k.getDeclaredField("transferIndex"));
6059     TRANSFERORIGIN = U.objectFieldOffset
6060     (k.getDeclaredField("transferOrigin"));
6061     BASECOUNT = U.objectFieldOffset
6062     (k.getDeclaredField("baseCount"));
6063 dl 1.153 CELLSBUSY = U.objectFieldOffset
6064     (k.getDeclaredField("cellsBusy"));
6065 dl 1.222 Class<?> ck = CounterCell.class;
6066 dl 1.149 CELLVALUE = U.objectFieldOffset
6067     (ck.getDeclaredField("value"));
6068 dl 1.119 Class<?> sc = Node[].class;
6069 dl 1.149 ABASE = U.arrayBaseOffset(sc);
6070 jsr166 1.167 int scale = U.arrayIndexScale(sc);
6071     if ((scale & (scale - 1)) != 0)
6072     throw new Error("data type scale not a power of two");
6073     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6074 dl 1.99 } catch (Exception e) {
6075     throw new Error(e);
6076     }
6077     }
6078 jsr166 1.152 }