ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.250
Committed: Sun Sep 1 05:22:49 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.249: +3 -1 lines
Log Message:
use @deprecated in addition to @Deprecated

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Comparator;
17     import java.util.Enumeration;
18     import java.util.HashMap;
19 dl 1.119 import java.util.Hashtable;
20     import java.util.Iterator;
21 dl 1.208 import java.util.Map;
22 dl 1.119 import java.util.NoSuchElementException;
23 dl 1.208 import java.util.Set;
24     import java.util.Spliterator;
25 dl 1.119 import java.util.concurrent.ConcurrentMap;
26 dl 1.208 import java.util.concurrent.ForkJoinPool;
27     import java.util.concurrent.atomic.AtomicReference;
28 dl 1.222 import java.util.concurrent.locks.LockSupport;
29 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
30     import java.util.function.BiConsumer;
31     import java.util.function.BiFunction;
32     import java.util.function.BinaryOperator;
33     import java.util.function.Consumer;
34     import java.util.function.DoubleBinaryOperator;
35     import java.util.function.Function;
36     import java.util.function.IntBinaryOperator;
37     import java.util.function.LongBinaryOperator;
38     import java.util.function.ToDoubleBiFunction;
39     import java.util.function.ToDoubleFunction;
40     import java.util.function.ToIntBiFunction;
41     import java.util.function.ToIntFunction;
42     import java.util.function.ToLongBiFunction;
43     import java.util.function.ToLongFunction;
44 dl 1.210 import java.util.stream.Stream;
45 tim 1.1
46     /**
47 dl 1.4 * A hash table supporting full concurrency of retrievals and
48 dl 1.119 * high expected concurrency for updates. This class obeys the
49 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
50 dl 1.19 * includes versions of methods corresponding to each method of
51 dl 1.119 * {@code Hashtable}. However, even though all operations are
52 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
53     * and there is <em>not</em> any support for locking the entire table
54     * in a way that prevents all access. This class is fully
55 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
56 dl 1.4 * thread safety but not on its synchronization details.
57 tim 1.11 *
58 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
59 dl 1.119 * block, so may overlap with update operations (including {@code put}
60     * and {@code remove}). Retrievals reflect the results of the most
61     * recently <em>completed</em> update operations holding upon their
62 dl 1.126 * onset. (More formally, an update operation for a given key bears a
63     * <em>happens-before</em> relation with any (non-null) retrieval for
64     * that key reporting the updated value.) For aggregate operations
65     * such as {@code putAll} and {@code clear}, concurrent retrievals may
66     * reflect insertion or removal of only some entries. Similarly,
67 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
68     * state of the hash table at some point at or since the creation of the
69 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
70 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71     * However, iterators are designed to be used by only one thread at a time.
72     * Bear in mind that the results of aggregate status methods including
73     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74     * useful only when a map is not undergoing concurrent updates in other threads.
75 dl 1.126 * Otherwise the results of these methods reflect transient states
76     * that may be adequate for monitoring or estimation purposes, but not
77     * for program control.
78 tim 1.1 *
79 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
80 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
81     * the same slot modulo the table size), with the expected average
82     * effect of maintaining roughly two bins per mapping (corresponding
83     * to a 0.75 load factor threshold for resizing). There may be much
84     * variance around this average as mappings are added and removed, but
85     * overall, this maintains a commonly accepted time/space tradeoff for
86     * hash tables. However, resizing this or any other kind of hash
87     * table may be a relatively slow operation. When possible, it is a
88     * good idea to provide a size estimate as an optional {@code
89     * initialCapacity} constructor argument. An additional optional
90     * {@code loadFactor} constructor argument provides a further means of
91     * customizing initial table capacity by specifying the table density
92     * to be used in calculating the amount of space to allocate for the
93     * given number of elements. Also, for compatibility with previous
94     * versions of this class, constructors may optionally specify an
95     * expected {@code concurrencyLevel} as an additional hint for
96     * internal sizing. Note that using many keys with exactly the same
97     * {@code hashCode()} is a sure way to slow down performance of any
98 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
99     * this class may use comparison order among keys to help break ties.
100 tim 1.1 *
101 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103     * (using {@link #keySet(Object)} when only keys are of interest, and the
104     * mapped values are (perhaps transiently) not used or all take the
105     * same mapping value.
106     *
107 jsr166 1.145 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 dl 1.153 * form of histogram or multiset) by using {@link
109     * java.util.concurrent.atomic.LongAdder} values and initializing via
110 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112     * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 dl 1.137 *
114 dl 1.45 * <p>This class and its views and iterators implement all of the
115     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116     * interfaces.
117 dl 1.23 *
118 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 tim 1.1 *
121 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122     * operations that, unlike most {@link Stream} methods, are designed
123     * to be safely, and often sensibly, applied even with maps that are
124     * being concurrently updated by other threads; for example, when
125     * computing a snapshot summary of the values in a shared registry.
126     * There are three kinds of operation, each with four forms, accepting
127     * functions with Keys, Values, Entries, and (Key, Value) arguments
128     * and/or return values. Because the elements of a ConcurrentHashMap
129     * are not ordered in any particular way, and may be processed in
130     * different orders in different parallel executions, the correctness
131     * of supplied functions should not depend on any ordering, or on any
132     * other objects or values that may transiently change while
133     * computation is in progress; and except for forEach actions, should
134 dl 1.235 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 dl 1.210 * objects do not support method {@code setValue}.
136 dl 1.137 *
137     * <ul>
138     * <li> forEach: Perform a given action on each element.
139     * A variant form applies a given transformation on each element
140     * before performing the action.</li>
141     *
142     * <li> search: Return the first available non-null result of
143     * applying a given function on each element; skipping further
144     * search when a result is found.</li>
145     *
146     * <li> reduce: Accumulate each element. The supplied reduction
147     * function cannot rely on ordering (more formally, it should be
148     * both associative and commutative). There are five variants:
149     *
150     * <ul>
151     *
152     * <li> Plain reductions. (There is not a form of this method for
153     * (key, value) function arguments since there is no corresponding
154     * return type.)</li>
155     *
156     * <li> Mapped reductions that accumulate the results of a given
157     * function applied to each element.</li>
158     *
159     * <li> Reductions to scalar doubles, longs, and ints, using a
160     * given basis value.</li>
161     *
162 jsr166 1.178 * </ul>
163 dl 1.137 * </li>
164     * </ul>
165     *
166 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
167     * argument. Methods proceed sequentially if the current map size is
168     * estimated to be less than the given threshold. Using a value of
169     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
171 dl 1.219 * enough subtasks to fully utilize the {@link
172     * ForkJoinPool#commonPool()} that is used for all parallel
173     * computations. Normally, you would initially choose one of these
174     * extreme values, and then measure performance of using in-between
175     * values that trade off overhead versus throughput.
176 dl 1.210 *
177 dl 1.137 * <p>The concurrency properties of bulk operations follow
178     * from those of ConcurrentHashMap: Any non-null result returned
179     * from {@code get(key)} and related access methods bears a
180     * happens-before relation with the associated insertion or
181     * update. The result of any bulk operation reflects the
182     * composition of these per-element relations (but is not
183     * necessarily atomic with respect to the map as a whole unless it
184     * is somehow known to be quiescent). Conversely, because keys
185     * and values in the map are never null, null serves as a reliable
186     * atomic indicator of the current lack of any result. To
187     * maintain this property, null serves as an implicit basis for
188     * all non-scalar reduction operations. For the double, long, and
189     * int versions, the basis should be one that, when combined with
190     * any other value, returns that other value (more formally, it
191     * should be the identity element for the reduction). Most common
192     * reductions have these properties; for example, computing a sum
193     * with basis 0 or a minimum with basis MAX_VALUE.
194     *
195     * <p>Search and transformation functions provided as arguments
196     * should similarly return null to indicate the lack of any result
197     * (in which case it is not used). In the case of mapped
198     * reductions, this also enables transformations to serve as
199     * filters, returning null (or, in the case of primitive
200     * specializations, the identity basis) if the element should not
201     * be combined. You can create compound transformations and
202     * filterings by composing them yourself under this "null means
203     * there is nothing there now" rule before using them in search or
204     * reduce operations.
205     *
206     * <p>Methods accepting and/or returning Entry arguments maintain
207     * key-value associations. They may be useful for example when
208     * finding the key for the greatest value. Note that "plain" Entry
209     * arguments can be supplied using {@code new
210     * AbstractMap.SimpleEntry(k,v)}.
211     *
212 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
213 dl 1.137 * exception encountered in the application of a supplied
214     * function. Bear in mind when handling such exceptions that other
215     * concurrently executing functions could also have thrown
216     * exceptions, or would have done so if the first exception had
217     * not occurred.
218     *
219 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
220     * but not guaranteed. Parallel operations involving brief functions
221     * on small maps may execute more slowly than sequential forms if the
222     * underlying work to parallelize the computation is more expensive
223     * than the computation itself. Similarly, parallelization may not
224     * lead to much actual parallelism if all processors are busy
225     * performing unrelated tasks.
226 dl 1.137 *
227 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
228 dl 1.137 *
229 dl 1.42 * <p>This class is a member of the
230 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 dl 1.42 * Java Collections Framework</a>.
232     *
233 dl 1.8 * @since 1.5
234     * @author Doug Lea
235 dl 1.27 * @param <K> the type of keys maintained by this map
236 jsr166 1.64 * @param <V> the type of mapped values
237 dl 1.8 */
238 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239     implements ConcurrentMap<K,V>, Serializable {
240 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
241 tim 1.1
242     /*
243 dl 1.119 * Overview:
244     *
245     * The primary design goal of this hash table is to maintain
246     * concurrent readability (typically method get(), but also
247     * iterators and related methods) while minimizing update
248     * contention. Secondary goals are to keep space consumption about
249     * the same or better than java.util.HashMap, and to support high
250     * initial insertion rates on an empty table by many threads.
251     *
252 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
253     * key-value mapping is held in a Node. Most nodes are instances
254     * of the basic Node class with hash, key, value, and next
255     * fields. However, various subclasses exist: TreeNodes are
256 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
257     * of sets of TreeNodes. ForwardingNodes are placed at the heads
258     * of bins during resizing. ReservationNodes are used as
259     * placeholders while establishing values in computeIfAbsent and
260 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
261 dl 1.222 * ReservationNode do not hold normal user keys, values, or
262     * hashes, and are readily distinguishable during search etc
263     * because they have negative hash fields and null key and value
264     * fields. (These special nodes are either uncommon or transient,
265     * so the impact of carrying around some unused fields is
266 jsr166 1.232 * insignificant.)
267 dl 1.119 *
268     * The table is lazily initialized to a power-of-two size upon the
269     * first insertion. Each bin in the table normally contains a
270     * list of Nodes (most often, the list has only zero or one Node).
271     * Table accesses require volatile/atomic reads, writes, and
272     * CASes. Because there is no other way to arrange this without
273     * adding further indirections, we use intrinsics
274 dl 1.210 * (sun.misc.Unsafe) operations.
275 dl 1.119 *
276 dl 1.149 * We use the top (sign) bit of Node hash fields for control
277     * purposes -- it is available anyway because of addressing
278 dl 1.222 * constraints. Nodes with negative hash fields are specially
279     * handled or ignored in map methods.
280 dl 1.119 *
281     * Insertion (via put or its variants) of the first node in an
282     * empty bin is performed by just CASing it to the bin. This is
283     * by far the most common case for put operations under most
284     * key/hash distributions. Other update operations (insert,
285     * delete, and replace) require locks. We do not want to waste
286     * the space required to associate a distinct lock object with
287     * each bin, so instead use the first node of a bin list itself as
288 dl 1.149 * a lock. Locking support for these locks relies on builtin
289     * "synchronized" monitors.
290 dl 1.119 *
291     * Using the first node of a list as a lock does not by itself
292     * suffice though: When a node is locked, any update must first
293     * validate that it is still the first node after locking it, and
294     * retry if not. Because new nodes are always appended to lists,
295     * once a node is first in a bin, it remains first until deleted
296 dl 1.210 * or the bin becomes invalidated (upon resizing).
297 dl 1.119 *
298     * The main disadvantage of per-bin locks is that other update
299     * operations on other nodes in a bin list protected by the same
300     * lock can stall, for example when user equals() or mapping
301     * functions take a long time. However, statistically, under
302     * random hash codes, this is not a common problem. Ideally, the
303     * frequency of nodes in bins follows a Poisson distribution
304     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305     * parameter of about 0.5 on average, given the resizing threshold
306     * of 0.75, although with a large variance because of resizing
307     * granularity. Ignoring variance, the expected occurrences of
308     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309     * first values are:
310     *
311     * 0: 0.60653066
312     * 1: 0.30326533
313     * 2: 0.07581633
314     * 3: 0.01263606
315     * 4: 0.00157952
316     * 5: 0.00015795
317     * 6: 0.00001316
318     * 7: 0.00000094
319     * 8: 0.00000006
320     * more: less than 1 in ten million
321     *
322     * Lock contention probability for two threads accessing distinct
323     * elements is roughly 1 / (8 * #elements) under random hashes.
324     *
325     * Actual hash code distributions encountered in practice
326     * sometimes deviate significantly from uniform randomness. This
327     * includes the case when N > (1<<30), so some keys MUST collide.
328     * Similarly for dumb or hostile usages in which multiple keys are
329 dl 1.222 * designed to have identical hash codes or ones that differs only
330 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
331     * applies when the number of nodes in a bin exceeds a
332     * threshold. These TreeBins use a balanced tree to hold nodes (a
333     * specialized form of red-black trees), bounding search time to
334     * O(log N). Each search step in a TreeBin is at least twice as
335     * slow as in a regular list, but given that N cannot exceed
336     * (1<<64) (before running out of addresses) this bounds search
337     * steps, lock hold times, etc, to reasonable constants (roughly
338     * 100 nodes inspected per operation worst case) so long as keys
339     * are Comparable (which is very common -- String, Long, etc).
340 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
341     * traversal pointers as regular nodes, so can be traversed in
342     * iterators in the same way.
343     *
344     * The table is resized when occupancy exceeds a percentage
345 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
346     * noticing an overfull bin may assist in resizing after the
347 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
348     * However, rather than stalling, these other threads may proceed
349     * with insertions etc. The use of TreeBins shields us from the
350     * worst case effects of overfilling while resizes are in
351 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
352 dl 1.246 * from the table to the next table. However, threads claim small
353     * blocks of indices to transfer (via field transferIndex) before
354     * doing so, reducing contention. Because we are using
355     * power-of-two expansion, the elements from each bin must either
356     * stay at same index, or move with a power of two offset. We
357     * eliminate unnecessary node creation by catching cases where old
358     * nodes can be reused because their next fields won't change. On
359     * average, only about one-sixth of them need cloning when a table
360     * doubles. The nodes they replace will be garbage collectable as
361     * soon as they are no longer referenced by any reader thread that
362     * may be in the midst of concurrently traversing table. Upon
363     * transfer, the old table bin contains only a special forwarding
364     * node (with hash field "MOVED") that contains the next table as
365     * its key. On encountering a forwarding node, access and update
366     * operations restart, using the new table.
367 dl 1.149 *
368     * Each bin transfer requires its bin lock, which can stall
369     * waiting for locks while resizing. However, because other
370     * threads can join in and help resize rather than contend for
371     * locks, average aggregate waits become shorter as resizing
372     * progresses. The transfer operation must also ensure that all
373     * accessible bins in both the old and new table are usable by any
374 dl 1.246 * traversal. This is arranged in part by proceeding from the
375     * last bin (table.length - 1) up towards the first. Upon seeing
376     * a forwarding node, traversals (see class Traverser) arrange to
377     * move to the new table without revisiting nodes. To ensure that
378     * no intervening nodes are skipped even when moved out of order,
379     * a stack (see class TableStack) is created on first encounter of
380     * a forwarding node during a traversal, to maintain its place if
381     * later processing the current table. The need for these
382     * save/restore mechanics is relatively rare, but when one
383 jsr166 1.248 * forwarding node is encountered, typically many more will be.
384 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
385     * many new TableStack nodes. (Thanks to Peter Levart for
386     * suggesting use of a stack here.)
387 dl 1.119 *
388     * The traversal scheme also applies to partial traversals of
389     * ranges of bins (via an alternate Traverser constructor)
390     * to support partitioned aggregate operations. Also, read-only
391     * operations give up if ever forwarded to a null table, which
392     * provides support for shutdown-style clearing, which is also not
393     * currently implemented.
394     *
395     * Lazy table initialization minimizes footprint until first use,
396     * and also avoids resizings when the first operation is from a
397     * putAll, constructor with map argument, or deserialization.
398     * These cases attempt to override the initial capacity settings,
399     * but harmlessly fail to take effect in cases of races.
400     *
401 dl 1.149 * The element count is maintained using a specialization of
402     * LongAdder. We need to incorporate a specialization rather than
403     * just use a LongAdder in order to access implicit
404     * contention-sensing that leads to creation of multiple
405 dl 1.222 * CounterCells. The counter mechanics avoid contention on
406 dl 1.149 * updates but can encounter cache thrashing if read too
407     * frequently during concurrent access. To avoid reading so often,
408     * resizing under contention is attempted only upon adding to a
409     * bin already holding two or more nodes. Under uniform hash
410     * distributions, the probability of this occurring at threshold
411     * is around 13%, meaning that only about 1 in 8 puts check
412 dl 1.222 * threshold (and after resizing, many fewer do so).
413     *
414     * TreeBins use a special form of comparison for search and
415     * related operations (which is the main reason we cannot use
416     * existing collections such as TreeMaps). TreeBins contain
417     * Comparable elements, but may contain others, as well as
418 dl 1.240 * elements that are Comparable but not necessarily Comparable for
419     * the same T, so we cannot invoke compareTo among them. To handle
420     * this, the tree is ordered primarily by hash value, then by
421     * Comparable.compareTo order if applicable. On lookup at a node,
422     * if elements are not comparable or compare as 0 then both left
423     * and right children may need to be searched in the case of tied
424     * hash values. (This corresponds to the full list search that
425     * would be necessary if all elements were non-Comparable and had
426     * tied hashes.) On insertion, to keep a total ordering (or as
427     * close as is required here) across rebalancings, we compare
428     * classes and identityHashCodes as tie-breakers. The red-black
429     * balancing code is updated from pre-jdk-collections
430 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432     * Algorithms" (CLR).
433     *
434     * TreeBins also require an additional locking mechanism. While
435 dl 1.224 * list traversal is always possible by readers even during
436 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
437 dl 1.222 * that may change the root node and/or its linkages. TreeBins
438     * include a simple read-write lock mechanism parasitic on the
439     * main bin-synchronization strategy: Structural adjustments
440     * associated with an insertion or removal are already bin-locked
441     * (and so cannot conflict with other writers) but must wait for
442     * ongoing readers to finish. Since there can be only one such
443     * waiter, we use a simple scheme using a single "waiter" field to
444     * block writers. However, readers need never block. If the root
445     * lock is held, they proceed along the slow traversal path (via
446     * next-pointers) until the lock becomes available or the list is
447     * exhausted, whichever comes first. These cases are not fast, but
448     * maximize aggregate expected throughput.
449 dl 1.119 *
450     * Maintaining API and serialization compatibility with previous
451     * versions of this class introduces several oddities. Mainly: We
452     * leave untouched but unused constructor arguments refering to
453     * concurrencyLevel. We accept a loadFactor constructor argument,
454     * but apply it only to initial table capacity (which is the only
455     * time that we can guarantee to honor it.) We also declare an
456     * unused "Segment" class that is instantiated in minimal form
457     * only when serializing.
458 dl 1.222 *
459 dl 1.240 * Also, solely for compatibility with previous versions of this
460     * class, it extends AbstractMap, even though all of its methods
461     * are overridden, so it is just useless baggage.
462     *
463 dl 1.222 * This file is organized to make things a little easier to follow
464 dl 1.224 * while reading than they might otherwise: First the main static
465 dl 1.222 * declarations and utilities, then fields, then main public
466     * methods (with a few factorings of multiple public methods into
467     * internal ones), then sizing methods, trees, traversers, and
468     * bulk operations.
469 dl 1.4 */
470 tim 1.1
471 dl 1.4 /* ---------------- Constants -------------- */
472 tim 1.11
473 dl 1.4 /**
474 dl 1.119 * The largest possible table capacity. This value must be
475     * exactly 1<<30 to stay within Java array allocation and indexing
476     * bounds for power of two table sizes, and is further required
477     * because the top two bits of 32bit hash fields are used for
478     * control purposes.
479 dl 1.4 */
480 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
481 dl 1.56
482     /**
483 dl 1.119 * The default initial table capacity. Must be a power of 2
484     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 dl 1.56 */
486 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
487 dl 1.56
488     /**
489 dl 1.119 * The largest possible (non-power of two) array size.
490     * Needed by toArray and related methods.
491 jsr166 1.59 */
492 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493 tim 1.1
494     /**
495 dl 1.119 * The default concurrency level for this table. Unused but
496     * defined for compatibility with previous versions of this class.
497 dl 1.4 */
498 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499 tim 1.11
500 tim 1.1 /**
501 dl 1.119 * The load factor for this table. Overrides of this value in
502     * constructors affect only the initial table capacity. The
503     * actual floating point value isn't normally used -- it is
504     * simpler to use expressions such as {@code n - (n >>> 2)} for
505     * the associated resizing threshold.
506 dl 1.99 */
507 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
508 dl 1.99
509     /**
510 dl 1.119 * The bin count threshold for using a tree rather than list for a
511 dl 1.222 * bin. Bins are converted to trees when adding an element to a
512 dl 1.224 * bin with at least this many nodes. The value must be greater
513     * than 2, and should be at least 8 to mesh with assumptions in
514     * tree removal about conversion back to plain bins upon
515     * shrinkage.
516 dl 1.222 */
517     static final int TREEIFY_THRESHOLD = 8;
518    
519     /**
520     * The bin count threshold for untreeifying a (split) bin during a
521     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522     * most 6 to mesh with shrinkage detection under removal.
523     */
524     static final int UNTREEIFY_THRESHOLD = 6;
525    
526     /**
527     * The smallest table capacity for which bins may be treeified.
528     * (Otherwise the table is resized if too many nodes in a bin.)
529 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530     * conflicts between resizing and treeification thresholds.
531 dl 1.119 */
532 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
533 dl 1.119
534 dl 1.149 /**
535     * Minimum number of rebinnings per transfer step. Ranges are
536     * subdivided to allow multiple resizer threads. This value
537     * serves as a lower bound to avoid resizers encountering
538     * excessive memory contention. The value should be at least
539     * DEFAULT_CAPACITY.
540     */
541     private static final int MIN_TRANSFER_STRIDE = 16;
542    
543 dl 1.119 /*
544 dl 1.149 * Encodings for Node hash fields. See above for explanation.
545 dl 1.46 */
546 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
547     static final int TREEBIN = -2; // hash for roots of trees
548     static final int RESERVED = -3; // hash for transient reservations
549 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
550    
551     /** Number of CPUS, to place bounds on some sizings */
552     static final int NCPU = Runtime.getRuntime().availableProcessors();
553    
554 dl 1.208 /** For serialization compatibility. */
555     private static final ObjectStreamField[] serialPersistentFields = {
556 dl 1.209 new ObjectStreamField("segments", Segment[].class),
557     new ObjectStreamField("segmentMask", Integer.TYPE),
558     new ObjectStreamField("segmentShift", Integer.TYPE)
559 dl 1.208 };
560    
561 dl 1.222 /* ---------------- Nodes -------------- */
562    
563     /**
564     * Key-value entry. This class is never exported out as a
565     * user-mutable Map.Entry (i.e., one supporting setValue; see
566     * MapEntry below), but can be used for read-only traversals used
567 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
568 dl 1.224 * are special, and contain null keys and values (but are never
569     * exported). Otherwise, keys and vals are never null.
570 dl 1.222 */
571     static class Node<K,V> implements Map.Entry<K,V> {
572     final int hash;
573     final K key;
574     volatile V val;
575 dl 1.233 volatile Node<K,V> next;
576 dl 1.222
577     Node(int hash, K key, V val, Node<K,V> next) {
578     this.hash = hash;
579     this.key = key;
580     this.val = val;
581     this.next = next;
582     }
583    
584     public final K getKey() { return key; }
585     public final V getValue() { return val; }
586     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
587     public final String toString(){ return key + "=" + val; }
588     public final V setValue(V value) {
589     throw new UnsupportedOperationException();
590     }
591    
592     public final boolean equals(Object o) {
593     Object k, v, u; Map.Entry<?,?> e;
594     return ((o instanceof Map.Entry) &&
595     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
596     (v = e.getValue()) != null &&
597     (k == key || k.equals(key)) &&
598     (v == (u = val) || v.equals(u)));
599     }
600    
601 dl 1.224 /**
602     * Virtualized support for map.get(); overridden in subclasses.
603     */
604 dl 1.222 Node<K,V> find(int h, Object k) {
605     Node<K,V> e = this;
606     if (k != null) {
607     do {
608     K ek;
609     if (e.hash == h &&
610     ((ek = e.key) == k || (ek != null && k.equals(ek))))
611     return e;
612     } while ((e = e.next) != null);
613     }
614     return null;
615     }
616     }
617    
618     /* ---------------- Static utilities -------------- */
619    
620     /**
621     * Spreads (XORs) higher bits of hash to lower and also forces top
622     * bit to 0. Because the table uses power-of-two masking, sets of
623     * hashes that vary only in bits above the current mask will
624     * always collide. (Among known examples are sets of Float keys
625     * holding consecutive whole numbers in small tables.) So we
626     * apply a transform that spreads the impact of higher bits
627     * downward. There is a tradeoff between speed, utility, and
628     * quality of bit-spreading. Because many common sets of hashes
629     * are already reasonably distributed (so don't benefit from
630     * spreading), and because we use trees to handle large sets of
631     * collisions in bins, we just XOR some shifted bits in the
632     * cheapest possible way to reduce systematic lossage, as well as
633     * to incorporate impact of the highest bits that would otherwise
634     * never be used in index calculations because of table bounds.
635     */
636     static final int spread(int h) {
637     return (h ^ (h >>> 16)) & HASH_BITS;
638     }
639    
640     /**
641     * Returns a power of two table size for the given desired capacity.
642     * See Hackers Delight, sec 3.2
643     */
644     private static final int tableSizeFor(int c) {
645     int n = c - 1;
646     n |= n >>> 1;
647     n |= n >>> 2;
648     n |= n >>> 4;
649     n |= n >>> 8;
650     n |= n >>> 16;
651     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
652     }
653    
654     /**
655     * Returns x's Class if it is of the form "class C implements
656     * Comparable<C>", else null.
657     */
658     static Class<?> comparableClassFor(Object x) {
659     if (x instanceof Comparable) {
660     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
661     if ((c = x.getClass()) == String.class) // bypass checks
662     return c;
663     if ((ts = c.getGenericInterfaces()) != null) {
664     for (int i = 0; i < ts.length; ++i) {
665     if (((t = ts[i]) instanceof ParameterizedType) &&
666     ((p = (ParameterizedType)t).getRawType() ==
667     Comparable.class) &&
668     (as = p.getActualTypeArguments()) != null &&
669     as.length == 1 && as[0] == c) // type arg is c
670     return c;
671     }
672     }
673     }
674     return null;
675     }
676    
677 dl 1.210 /**
678 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
679     * class), else 0.
680     */
681     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
682     static int compareComparables(Class<?> kc, Object k, Object x) {
683     return (x == null || x.getClass() != kc ? 0 :
684     ((Comparable)k).compareTo(x));
685     }
686    
687     /* ---------------- Table element access -------------- */
688    
689     /*
690     * Volatile access methods are used for table elements as well as
691     * elements of in-progress next table while resizing. All uses of
692     * the tab arguments must be null checked by callers. All callers
693     * also paranoically precheck that tab's length is not zero (or an
694     * equivalent check), thus ensuring that any index argument taking
695     * the form of a hash value anded with (length - 1) is a valid
696     * index. Note that, to be correct wrt arbitrary concurrency
697     * errors by users, these checks must operate on local variables,
698     * which accounts for some odd-looking inline assignments below.
699     * Note that calls to setTabAt always occur within locked regions,
700 dl 1.233 * and so in principle require only release ordering, not need
701     * full volatile semantics, but are currently coded as volatile
702     * writes to be conservative.
703 dl 1.210 */
704 dl 1.222
705     @SuppressWarnings("unchecked")
706     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
707     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
708     }
709    
710     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
711     Node<K,V> c, Node<K,V> v) {
712     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
713     }
714    
715     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
716 dl 1.233 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
717 dl 1.149 }
718    
719 dl 1.4 /* ---------------- Fields -------------- */
720 tim 1.1
721     /**
722 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
723     * Size is always a power of two. Accessed directly by iterators.
724 jsr166 1.59 */
725 dl 1.210 transient volatile Node<K,V>[] table;
726 tim 1.1
727     /**
728 dl 1.149 * The next table to use; non-null only while resizing.
729 jsr166 1.59 */
730 dl 1.210 private transient volatile Node<K,V>[] nextTable;
731 dl 1.149
732     /**
733     * Base counter value, used mainly when there is no contention,
734     * but also as a fallback during table initialization
735     * races. Updated via CAS.
736     */
737     private transient volatile long baseCount;
738 tim 1.1
739     /**
740 dl 1.119 * Table initialization and resizing control. When negative, the
741 dl 1.149 * table is being initialized or resized: -1 for initialization,
742     * else -(1 + the number of active resizing threads). Otherwise,
743     * when table is null, holds the initial table size to use upon
744     * creation, or 0 for default. After initialization, holds the
745     * next element count value upon which to resize the table.
746 tim 1.1 */
747 dl 1.119 private transient volatile int sizeCtl;
748 dl 1.4
749 dl 1.149 /**
750     * The next table index (plus one) to split while resizing.
751     */
752     private transient volatile int transferIndex;
753    
754     /**
755 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
756 dl 1.149 */
757 dl 1.153 private transient volatile int cellsBusy;
758 dl 1.149
759     /**
760     * Table of counter cells. When non-null, size is a power of 2.
761     */
762 dl 1.222 private transient volatile CounterCell[] counterCells;
763 dl 1.149
764 dl 1.119 // views
765 dl 1.137 private transient KeySetView<K,V> keySet;
766 dl 1.142 private transient ValuesView<K,V> values;
767     private transient EntrySetView<K,V> entrySet;
768 dl 1.119
769    
770 dl 1.222 /* ---------------- Public operations -------------- */
771    
772     /**
773     * Creates a new, empty map with the default initial table size (16).
774 dl 1.119 */
775 dl 1.222 public ConcurrentHashMap() {
776     }
777 dl 1.119
778 dl 1.222 /**
779     * Creates a new, empty map with an initial table size
780     * accommodating the specified number of elements without the need
781     * to dynamically resize.
782     *
783     * @param initialCapacity The implementation performs internal
784     * sizing to accommodate this many elements.
785     * @throws IllegalArgumentException if the initial capacity of
786     * elements is negative
787     */
788     public ConcurrentHashMap(int initialCapacity) {
789     if (initialCapacity < 0)
790     throw new IllegalArgumentException();
791     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
792     MAXIMUM_CAPACITY :
793     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
794     this.sizeCtl = cap;
795 dl 1.119 }
796    
797 dl 1.222 /**
798     * Creates a new map with the same mappings as the given map.
799     *
800     * @param m the map
801     */
802     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
803     this.sizeCtl = DEFAULT_CAPACITY;
804     putAll(m);
805 dl 1.119 }
806    
807 dl 1.222 /**
808     * Creates a new, empty map with an initial table size based on
809     * the given number of elements ({@code initialCapacity}) and
810     * initial table density ({@code loadFactor}).
811     *
812     * @param initialCapacity the initial capacity. The implementation
813     * performs internal sizing to accommodate this many elements,
814     * given the specified load factor.
815     * @param loadFactor the load factor (table density) for
816     * establishing the initial table size
817     * @throws IllegalArgumentException if the initial capacity of
818     * elements is negative or the load factor is nonpositive
819     *
820     * @since 1.6
821     */
822     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
823     this(initialCapacity, loadFactor, 1);
824 dl 1.119 }
825    
826 dl 1.99 /**
827 dl 1.222 * Creates a new, empty map with an initial table size based on
828     * the given number of elements ({@code initialCapacity}), table
829     * density ({@code loadFactor}), and number of concurrently
830     * updating threads ({@code concurrencyLevel}).
831     *
832     * @param initialCapacity the initial capacity. The implementation
833     * performs internal sizing to accommodate this many elements,
834     * given the specified load factor.
835     * @param loadFactor the load factor (table density) for
836     * establishing the initial table size
837     * @param concurrencyLevel the estimated number of concurrently
838     * updating threads. The implementation may use this value as
839     * a sizing hint.
840     * @throws IllegalArgumentException if the initial capacity is
841     * negative or the load factor or concurrencyLevel are
842     * nonpositive
843 dl 1.99 */
844 dl 1.222 public ConcurrentHashMap(int initialCapacity,
845     float loadFactor, int concurrencyLevel) {
846     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
847     throw new IllegalArgumentException();
848     if (initialCapacity < concurrencyLevel) // Use at least as many bins
849     initialCapacity = concurrencyLevel; // as estimated threads
850     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
851     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
852     MAXIMUM_CAPACITY : tableSizeFor((int)size);
853     this.sizeCtl = cap;
854     }
855 dl 1.99
856 dl 1.222 // Original (since JDK1.2) Map methods
857 dl 1.210
858 dl 1.222 /**
859     * {@inheritDoc}
860     */
861     public int size() {
862     long n = sumCount();
863     return ((n < 0L) ? 0 :
864     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
865     (int)n);
866     }
867 dl 1.210
868 dl 1.222 /**
869     * {@inheritDoc}
870     */
871     public boolean isEmpty() {
872     return sumCount() <= 0L; // ignore transient negative values
873 dl 1.210 }
874    
875     /**
876 dl 1.222 * Returns the value to which the specified key is mapped,
877     * or {@code null} if this map contains no mapping for the key.
878     *
879     * <p>More formally, if this map contains a mapping from a key
880     * {@code k} to a value {@code v} such that {@code key.equals(k)},
881     * then this method returns {@code v}; otherwise it returns
882     * {@code null}. (There can be at most one such mapping.)
883     *
884     * @throws NullPointerException if the specified key is null
885 dl 1.210 */
886 dl 1.222 public V get(Object key) {
887     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
888     int h = spread(key.hashCode());
889     if ((tab = table) != null && (n = tab.length) > 0 &&
890     (e = tabAt(tab, (n - 1) & h)) != null) {
891     if ((eh = e.hash) == h) {
892     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
893     return e.val;
894     }
895     else if (eh < 0)
896     return (p = e.find(h, key)) != null ? p.val : null;
897     while ((e = e.next) != null) {
898     if (e.hash == h &&
899     ((ek = e.key) == key || (ek != null && key.equals(ek))))
900     return e.val;
901     }
902 dl 1.210 }
903 dl 1.222 return null;
904 dl 1.99 }
905    
906     /**
907 dl 1.222 * Tests if the specified object is a key in this table.
908     *
909     * @param key possible key
910     * @return {@code true} if and only if the specified object
911     * is a key in this table, as determined by the
912     * {@code equals} method; {@code false} otherwise
913     * @throws NullPointerException if the specified key is null
914 dl 1.99 */
915 dl 1.222 public boolean containsKey(Object key) {
916     return get(key) != null;
917 dl 1.99 }
918 tim 1.1
919 dl 1.201 /**
920 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
921     * specified value. Note: This method may require a full traversal
922     * of the map, and is much slower than method {@code containsKey}.
923     *
924     * @param value value whose presence in this map is to be tested
925     * @return {@code true} if this map maps one or more keys to the
926     * specified value
927     * @throws NullPointerException if the specified value is null
928     */
929     public boolean containsValue(Object value) {
930     if (value == null)
931     throw new NullPointerException();
932     Node<K,V>[] t;
933     if ((t = table) != null) {
934     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
935     for (Node<K,V> p; (p = it.advance()) != null; ) {
936     V v;
937     if ((v = p.val) == value || (v != null && value.equals(v)))
938     return true;
939 dl 1.201 }
940     }
941 dl 1.222 return false;
942 dl 1.201 }
943    
944 tim 1.1 /**
945 dl 1.222 * Maps the specified key to the specified value in this table.
946     * Neither the key nor the value can be null.
947 dl 1.119 *
948 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
949     * with a key that is equal to the original key.
950 dl 1.119 *
951 dl 1.222 * @param key key with which the specified value is to be associated
952     * @param value value to be associated with the specified key
953     * @return the previous value associated with {@code key}, or
954     * {@code null} if there was no mapping for {@code key}
955     * @throws NullPointerException if the specified key or value is null
956 dl 1.119 */
957 dl 1.222 public V put(K key, V value) {
958     return putVal(key, value, false);
959     }
960 dl 1.119
961 dl 1.222 /** Implementation for put and putIfAbsent */
962     final V putVal(K key, V value, boolean onlyIfAbsent) {
963     if (key == null || value == null) throw new NullPointerException();
964     int hash = spread(key.hashCode());
965     int binCount = 0;
966     for (Node<K,V>[] tab = table;;) {
967     Node<K,V> f; int n, i, fh;
968     if (tab == null || (n = tab.length) == 0)
969     tab = initTable();
970     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
971     if (casTabAt(tab, i, null,
972     new Node<K,V>(hash, key, value, null)))
973     break; // no lock when adding to empty bin
974 dl 1.119 }
975 dl 1.222 else if ((fh = f.hash) == MOVED)
976     tab = helpTransfer(tab, f);
977     else {
978     V oldVal = null;
979     synchronized (f) {
980     if (tabAt(tab, i) == f) {
981     if (fh >= 0) {
982     binCount = 1;
983     for (Node<K,V> e = f;; ++binCount) {
984     K ek;
985     if (e.hash == hash &&
986     ((ek = e.key) == key ||
987     (ek != null && key.equals(ek)))) {
988     oldVal = e.val;
989     if (!onlyIfAbsent)
990     e.val = value;
991     break;
992     }
993     Node<K,V> pred = e;
994     if ((e = e.next) == null) {
995     pred.next = new Node<K,V>(hash, key,
996     value, null);
997     break;
998     }
999     }
1000     }
1001     else if (f instanceof TreeBin) {
1002     Node<K,V> p;
1003     binCount = 2;
1004     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1005     value)) != null) {
1006     oldVal = p.val;
1007     if (!onlyIfAbsent)
1008     p.val = value;
1009     }
1010     }
1011 dl 1.99 }
1012     }
1013 dl 1.222 if (binCount != 0) {
1014     if (binCount >= TREEIFY_THRESHOLD)
1015     treeifyBin(tab, i);
1016     if (oldVal != null)
1017     return oldVal;
1018 dl 1.99 break;
1019     }
1020     }
1021     }
1022 dl 1.222 addCount(1L, binCount);
1023     return null;
1024     }
1025    
1026     /**
1027     * Copies all of the mappings from the specified map to this one.
1028     * These mappings replace any mappings that this map had for any of the
1029     * keys currently in the specified map.
1030     *
1031     * @param m mappings to be stored in this map
1032     */
1033     public void putAll(Map<? extends K, ? extends V> m) {
1034     tryPresize(m.size());
1035     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1036     putVal(e.getKey(), e.getValue(), false);
1037     }
1038 dl 1.99
1039 dl 1.222 /**
1040     * Removes the key (and its corresponding value) from this map.
1041     * This method does nothing if the key is not in the map.
1042     *
1043     * @param key the key that needs to be removed
1044     * @return the previous value associated with {@code key}, or
1045     * {@code null} if there was no mapping for {@code key}
1046     * @throws NullPointerException if the specified key is null
1047     */
1048     public V remove(Object key) {
1049     return replaceNode(key, null, null);
1050     }
1051 dl 1.99
1052 dl 1.222 /**
1053     * Implementation for the four public remove/replace methods:
1054     * Replaces node value with v, conditional upon match of cv if
1055     * non-null. If resulting value is null, delete.
1056     */
1057     final V replaceNode(Object key, V value, Object cv) {
1058     int hash = spread(key.hashCode());
1059     for (Node<K,V>[] tab = table;;) {
1060     Node<K,V> f; int n, i, fh;
1061     if (tab == null || (n = tab.length) == 0 ||
1062     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1063     break;
1064     else if ((fh = f.hash) == MOVED)
1065     tab = helpTransfer(tab, f);
1066     else {
1067     V oldVal = null;
1068     boolean validated = false;
1069     synchronized (f) {
1070     if (tabAt(tab, i) == f) {
1071     if (fh >= 0) {
1072     validated = true;
1073     for (Node<K,V> e = f, pred = null;;) {
1074     K ek;
1075     if (e.hash == hash &&
1076     ((ek = e.key) == key ||
1077     (ek != null && key.equals(ek)))) {
1078     V ev = e.val;
1079     if (cv == null || cv == ev ||
1080     (ev != null && cv.equals(ev))) {
1081     oldVal = ev;
1082     if (value != null)
1083     e.val = value;
1084     else if (pred != null)
1085     pred.next = e.next;
1086     else
1087     setTabAt(tab, i, e.next);
1088     }
1089     break;
1090 dl 1.119 }
1091 dl 1.222 pred = e;
1092     if ((e = e.next) == null)
1093     break;
1094 dl 1.119 }
1095     }
1096 dl 1.222 else if (f instanceof TreeBin) {
1097     validated = true;
1098     TreeBin<K,V> t = (TreeBin<K,V>)f;
1099     TreeNode<K,V> r, p;
1100     if ((r = t.root) != null &&
1101     (p = r.findTreeNode(hash, key, null)) != null) {
1102     V pv = p.val;
1103     if (cv == null || cv == pv ||
1104     (pv != null && cv.equals(pv))) {
1105     oldVal = pv;
1106     if (value != null)
1107     p.val = value;
1108     else if (t.removeTreeNode(p))
1109     setTabAt(tab, i, untreeify(t.first));
1110 dl 1.119 }
1111     }
1112 dl 1.99 }
1113     }
1114     }
1115 dl 1.222 if (validated) {
1116     if (oldVal != null) {
1117     if (value == null)
1118     addCount(-1L, -1);
1119     return oldVal;
1120     }
1121     break;
1122     }
1123 dl 1.99 }
1124     }
1125 dl 1.222 return null;
1126     }
1127 dl 1.45
1128 dl 1.222 /**
1129     * Removes all of the mappings from this map.
1130     */
1131     public void clear() {
1132     long delta = 0L; // negative number of deletions
1133     int i = 0;
1134     Node<K,V>[] tab = table;
1135     while (tab != null && i < tab.length) {
1136     int fh;
1137     Node<K,V> f = tabAt(tab, i);
1138     if (f == null)
1139     ++i;
1140     else if ((fh = f.hash) == MOVED) {
1141     tab = helpTransfer(tab, f);
1142     i = 0; // restart
1143 dl 1.217 }
1144 dl 1.222 else {
1145     synchronized (f) {
1146     if (tabAt(tab, i) == f) {
1147     Node<K,V> p = (fh >= 0 ? f :
1148     (f instanceof TreeBin) ?
1149     ((TreeBin<K,V>)f).first : null);
1150     while (p != null) {
1151     --delta;
1152     p = p.next;
1153 dl 1.119 }
1154 dl 1.222 setTabAt(tab, i++, null);
1155 dl 1.119 }
1156 dl 1.45 }
1157 dl 1.4 }
1158 dl 1.217 }
1159 dl 1.222 if (delta != 0L)
1160     addCount(delta, -1);
1161     }
1162 dl 1.217
1163 dl 1.222 /**
1164     * Returns a {@link Set} view of the keys contained in this map.
1165     * The set is backed by the map, so changes to the map are
1166     * reflected in the set, and vice-versa. The set supports element
1167     * removal, which removes the corresponding mapping from this map,
1168     * via the {@code Iterator.remove}, {@code Set.remove},
1169     * {@code removeAll}, {@code retainAll}, and {@code clear}
1170     * operations. It does not support the {@code add} or
1171     * {@code addAll} operations.
1172     *
1173 jsr166 1.242 * <p>The view's iterators and spliterators are
1174     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1175 dl 1.222 *
1176 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1177     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1178     *
1179 dl 1.222 * @return the set view
1180     */
1181     public KeySetView<K,V> keySet() {
1182     KeySetView<K,V> ks;
1183     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1184     }
1185 dl 1.217
1186 dl 1.222 /**
1187     * Returns a {@link Collection} view of the values contained in this map.
1188     * The collection is backed by the map, so changes to the map are
1189     * reflected in the collection, and vice-versa. The collection
1190     * supports element removal, which removes the corresponding
1191     * mapping from this map, via the {@code Iterator.remove},
1192     * {@code Collection.remove}, {@code removeAll},
1193     * {@code retainAll}, and {@code clear} operations. It does not
1194     * support the {@code add} or {@code addAll} operations.
1195     *
1196 jsr166 1.242 * <p>The view's iterators and spliterators are
1197     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 dl 1.222 *
1199 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1200     * and {@link Spliterator#NONNULL}.
1201     *
1202 dl 1.222 * @return the collection view
1203     */
1204     public Collection<V> values() {
1205     ValuesView<K,V> vs;
1206     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1207 tim 1.1 }
1208    
1209 dl 1.99 /**
1210 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1211     * The set is backed by the map, so changes to the map are
1212     * reflected in the set, and vice-versa. The set supports element
1213     * removal, which removes the corresponding mapping from the map,
1214     * via the {@code Iterator.remove}, {@code Set.remove},
1215     * {@code removeAll}, {@code retainAll}, and {@code clear}
1216     * operations.
1217     *
1218 jsr166 1.242 * <p>The view's iterators and spliterators are
1219     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 dl 1.222 *
1221 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1222     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1223     *
1224 dl 1.222 * @return the set view
1225 dl 1.119 */
1226 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1227     EntrySetView<K,V> es;
1228     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1229 dl 1.99 }
1230    
1231     /**
1232 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1233     * the sum of, for each key-value pair in the map,
1234     * {@code key.hashCode() ^ value.hashCode()}.
1235     *
1236     * @return the hash code value for this map
1237 dl 1.119 */
1238 dl 1.222 public int hashCode() {
1239     int h = 0;
1240     Node<K,V>[] t;
1241     if ((t = table) != null) {
1242     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1243     for (Node<K,V> p; (p = it.advance()) != null; )
1244     h += p.key.hashCode() ^ p.val.hashCode();
1245 dl 1.119 }
1246 dl 1.222 return h;
1247 dl 1.99 }
1248 tim 1.11
1249 dl 1.222 /**
1250     * Returns a string representation of this map. The string
1251     * representation consists of a list of key-value mappings (in no
1252     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1253     * mappings are separated by the characters {@code ", "} (comma
1254     * and space). Each key-value mapping is rendered as the key
1255     * followed by an equals sign ("{@code =}") followed by the
1256     * associated value.
1257     *
1258     * @return a string representation of this map
1259     */
1260     public String toString() {
1261     Node<K,V>[] t;
1262     int f = (t = table) == null ? 0 : t.length;
1263     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1264     StringBuilder sb = new StringBuilder();
1265     sb.append('{');
1266     Node<K,V> p;
1267     if ((p = it.advance()) != null) {
1268 dl 1.210 for (;;) {
1269 dl 1.222 K k = p.key;
1270     V v = p.val;
1271     sb.append(k == this ? "(this Map)" : k);
1272     sb.append('=');
1273     sb.append(v == this ? "(this Map)" : v);
1274     if ((p = it.advance()) == null)
1275 dl 1.210 break;
1276 dl 1.222 sb.append(',').append(' ');
1277 dl 1.119 }
1278     }
1279 dl 1.222 return sb.append('}').toString();
1280 tim 1.1 }
1281    
1282     /**
1283 dl 1.222 * Compares the specified object with this map for equality.
1284     * Returns {@code true} if the given object is a map with the same
1285     * mappings as this map. This operation may return misleading
1286     * results if either map is concurrently modified during execution
1287     * of this method.
1288     *
1289     * @param o object to be compared for equality with this map
1290     * @return {@code true} if the specified object is equal to this map
1291 dl 1.119 */
1292 dl 1.222 public boolean equals(Object o) {
1293     if (o != this) {
1294     if (!(o instanceof Map))
1295     return false;
1296     Map<?,?> m = (Map<?,?>) o;
1297     Node<K,V>[] t;
1298     int f = (t = table) == null ? 0 : t.length;
1299     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300     for (Node<K,V> p; (p = it.advance()) != null; ) {
1301     V val = p.val;
1302     Object v = m.get(p.key);
1303     if (v == null || (v != val && !v.equals(val)))
1304     return false;
1305 dl 1.119 }
1306 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1307     Object mk, mv, v;
1308     if ((mk = e.getKey()) == null ||
1309     (mv = e.getValue()) == null ||
1310     (v = get(mk)) == null ||
1311     (mv != v && !mv.equals(v)))
1312     return false;
1313     }
1314     }
1315     return true;
1316     }
1317    
1318     /**
1319     * Stripped-down version of helper class used in previous version,
1320     * declared for the sake of serialization compatibility
1321     */
1322     static class Segment<K,V> extends ReentrantLock implements Serializable {
1323     private static final long serialVersionUID = 2249069246763182397L;
1324     final float loadFactor;
1325     Segment(float lf) { this.loadFactor = lf; }
1326     }
1327    
1328     /**
1329     * Saves the state of the {@code ConcurrentHashMap} instance to a
1330     * stream (i.e., serializes it).
1331     * @param s the stream
1332 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1333 dl 1.222 * @serialData
1334     * the key (Object) and value (Object)
1335     * for each key-value mapping, followed by a null pair.
1336     * The key-value mappings are emitted in no particular order.
1337     */
1338     private void writeObject(java.io.ObjectOutputStream s)
1339     throws java.io.IOException {
1340     // For serialization compatibility
1341     // Emulate segment calculation from previous version of this class
1342     int sshift = 0;
1343     int ssize = 1;
1344     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1345     ++sshift;
1346     ssize <<= 1;
1347     }
1348     int segmentShift = 32 - sshift;
1349     int segmentMask = ssize - 1;
1350 dl 1.246 @SuppressWarnings("unchecked")
1351     Segment<K,V>[] segments = (Segment<K,V>[])
1352 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1353     for (int i = 0; i < segments.length; ++i)
1354     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1355     s.putFields().put("segments", segments);
1356     s.putFields().put("segmentShift", segmentShift);
1357     s.putFields().put("segmentMask", segmentMask);
1358     s.writeFields();
1359    
1360     Node<K,V>[] t;
1361     if ((t = table) != null) {
1362     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1363     for (Node<K,V> p; (p = it.advance()) != null; ) {
1364     s.writeObject(p.key);
1365     s.writeObject(p.val);
1366     }
1367     }
1368     s.writeObject(null);
1369     s.writeObject(null);
1370     segments = null; // throw away
1371     }
1372    
1373     /**
1374     * Reconstitutes the instance from a stream (that is, deserializes it).
1375     * @param s the stream
1376 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1377     * could not be found
1378     * @throws java.io.IOException if an I/O error occurs
1379 dl 1.222 */
1380     private void readObject(java.io.ObjectInputStream s)
1381     throws java.io.IOException, ClassNotFoundException {
1382     /*
1383     * To improve performance in typical cases, we create nodes
1384     * while reading, then place in table once size is known.
1385     * However, we must also validate uniqueness and deal with
1386     * overpopulated bins while doing so, which requires
1387     * specialized versions of putVal mechanics.
1388     */
1389     sizeCtl = -1; // force exclusion for table construction
1390     s.defaultReadObject();
1391     long size = 0L;
1392     Node<K,V> p = null;
1393     for (;;) {
1394 dl 1.246 @SuppressWarnings("unchecked")
1395     K k = (K) s.readObject();
1396     @SuppressWarnings("unchecked")
1397     V v = (V) s.readObject();
1398 dl 1.222 if (k != null && v != null) {
1399     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1400     ++size;
1401     }
1402     else
1403     break;
1404     }
1405     if (size == 0L)
1406     sizeCtl = 0;
1407     else {
1408     int n;
1409     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1410     n = MAXIMUM_CAPACITY;
1411 dl 1.149 else {
1412 dl 1.222 int sz = (int)size;
1413     n = tableSizeFor(sz + (sz >>> 1) + 1);
1414     }
1415 jsr166 1.245 @SuppressWarnings("unchecked")
1416 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1417 dl 1.222 int mask = n - 1;
1418     long added = 0L;
1419     while (p != null) {
1420     boolean insertAtFront;
1421     Node<K,V> next = p.next, first;
1422     int h = p.hash, j = h & mask;
1423     if ((first = tabAt(tab, j)) == null)
1424     insertAtFront = true;
1425     else {
1426     K k = p.key;
1427     if (first.hash < 0) {
1428     TreeBin<K,V> t = (TreeBin<K,V>)first;
1429     if (t.putTreeVal(h, k, p.val) == null)
1430     ++added;
1431     insertAtFront = false;
1432     }
1433     else {
1434     int binCount = 0;
1435     insertAtFront = true;
1436     Node<K,V> q; K qk;
1437     for (q = first; q != null; q = q.next) {
1438     if (q.hash == h &&
1439     ((qk = q.key) == k ||
1440     (qk != null && k.equals(qk)))) {
1441     insertAtFront = false;
1442 dl 1.119 break;
1443     }
1444 dl 1.222 ++binCount;
1445     }
1446     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1447     insertAtFront = false;
1448     ++added;
1449     p.next = first;
1450     TreeNode<K,V> hd = null, tl = null;
1451     for (q = p; q != null; q = q.next) {
1452     TreeNode<K,V> t = new TreeNode<K,V>
1453     (q.hash, q.key, q.val, null, null);
1454     if ((t.prev = tl) == null)
1455     hd = t;
1456     else
1457     tl.next = t;
1458     tl = t;
1459     }
1460     setTabAt(tab, j, new TreeBin<K,V>(hd));
1461 dl 1.119 }
1462     }
1463     }
1464 dl 1.222 if (insertAtFront) {
1465     ++added;
1466     p.next = first;
1467     setTabAt(tab, j, p);
1468 dl 1.119 }
1469 dl 1.222 p = next;
1470 dl 1.119 }
1471 dl 1.222 table = tab;
1472     sizeCtl = n - (n >>> 2);
1473     baseCount = added;
1474 dl 1.119 }
1475 dl 1.55 }
1476    
1477 dl 1.222 // ConcurrentMap methods
1478    
1479     /**
1480     * {@inheritDoc}
1481     *
1482     * @return the previous value associated with the specified key,
1483     * or {@code null} if there was no mapping for the key
1484     * @throws NullPointerException if the specified key or value is null
1485     */
1486     public V putIfAbsent(K key, V value) {
1487     return putVal(key, value, true);
1488     }
1489    
1490     /**
1491     * {@inheritDoc}
1492     *
1493     * @throws NullPointerException if the specified key is null
1494     */
1495     public boolean remove(Object key, Object value) {
1496     if (key == null)
1497     throw new NullPointerException();
1498     return value != null && replaceNode(key, null, value) != null;
1499     }
1500    
1501     /**
1502     * {@inheritDoc}
1503     *
1504     * @throws NullPointerException if any of the arguments are null
1505     */
1506     public boolean replace(K key, V oldValue, V newValue) {
1507     if (key == null || oldValue == null || newValue == null)
1508     throw new NullPointerException();
1509     return replaceNode(key, newValue, oldValue) != null;
1510     }
1511    
1512     /**
1513     * {@inheritDoc}
1514     *
1515     * @return the previous value associated with the specified key,
1516     * or {@code null} if there was no mapping for the key
1517     * @throws NullPointerException if the specified key or value is null
1518     */
1519     public V replace(K key, V value) {
1520     if (key == null || value == null)
1521     throw new NullPointerException();
1522     return replaceNode(key, value, null);
1523     }
1524    
1525     // Overrides of JDK8+ Map extension method defaults
1526    
1527     /**
1528     * Returns the value to which the specified key is mapped, or the
1529     * given default value if this map contains no mapping for the
1530     * key.
1531     *
1532     * @param key the key whose associated value is to be returned
1533     * @param defaultValue the value to return if this map contains
1534     * no mapping for the given key
1535     * @return the mapping for the key, if present; else the default value
1536     * @throws NullPointerException if the specified key is null
1537 tim 1.1 */
1538 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1539     V v;
1540     return (v = get(key)) == null ? defaultValue : v;
1541     }
1542 tim 1.1
1543 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1544     if (action == null) throw new NullPointerException();
1545     Node<K,V>[] t;
1546     if ((t = table) != null) {
1547     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1548     for (Node<K,V> p; (p = it.advance()) != null; ) {
1549     action.accept(p.key, p.val);
1550 dl 1.99 }
1551 dl 1.222 }
1552     }
1553    
1554     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1555     if (function == null) throw new NullPointerException();
1556     Node<K,V>[] t;
1557     if ((t = table) != null) {
1558     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1559     for (Node<K,V> p; (p = it.advance()) != null; ) {
1560     V oldValue = p.val;
1561     for (K key = p.key;;) {
1562     V newValue = function.apply(key, oldValue);
1563     if (newValue == null)
1564     throw new NullPointerException();
1565     if (replaceNode(key, newValue, oldValue) != null ||
1566     (oldValue = get(key)) == null)
1567 dl 1.119 break;
1568     }
1569     }
1570 dl 1.45 }
1571 dl 1.21 }
1572    
1573 dl 1.222 /**
1574     * If the specified key is not already associated with a value,
1575     * attempts to compute its value using the given mapping function
1576     * and enters it into this map unless {@code null}. The entire
1577     * method invocation is performed atomically, so the function is
1578     * applied at most once per key. Some attempted update operations
1579     * on this map by other threads may be blocked while computation
1580     * is in progress, so the computation should be short and simple,
1581     * and must not attempt to update any other mappings of this map.
1582     *
1583     * @param key key with which the specified value is to be associated
1584     * @param mappingFunction the function to compute a value
1585     * @return the current (existing or computed) value associated with
1586     * the specified key, or null if the computed value is null
1587     * @throws NullPointerException if the specified key or mappingFunction
1588     * is null
1589     * @throws IllegalStateException if the computation detectably
1590     * attempts a recursive update to this map that would
1591     * otherwise never complete
1592     * @throws RuntimeException or Error if the mappingFunction does so,
1593     * in which case the mapping is left unestablished
1594     */
1595     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1596     if (key == null || mappingFunction == null)
1597 dl 1.149 throw new NullPointerException();
1598 dl 1.222 int h = spread(key.hashCode());
1599 dl 1.151 V val = null;
1600 dl 1.222 int binCount = 0;
1601 dl 1.210 for (Node<K,V>[] tab = table;;) {
1602 dl 1.222 Node<K,V> f; int n, i, fh;
1603     if (tab == null || (n = tab.length) == 0)
1604 dl 1.119 tab = initTable();
1605 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1606     Node<K,V> r = new ReservationNode<K,V>();
1607     synchronized (r) {
1608     if (casTabAt(tab, i, null, r)) {
1609     binCount = 1;
1610     Node<K,V> node = null;
1611 dl 1.149 try {
1612 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1613     node = new Node<K,V>(h, key, val, null);
1614 dl 1.149 } finally {
1615 dl 1.222 setTabAt(tab, i, node);
1616 dl 1.119 }
1617     }
1618     }
1619 dl 1.222 if (binCount != 0)
1620 dl 1.119 break;
1621     }
1622 dl 1.222 else if ((fh = f.hash) == MOVED)
1623     tab = helpTransfer(tab, f);
1624 dl 1.119 else {
1625 dl 1.149 boolean added = false;
1626 jsr166 1.150 synchronized (f) {
1627 dl 1.149 if (tabAt(tab, i) == f) {
1628 dl 1.222 if (fh >= 0) {
1629     binCount = 1;
1630     for (Node<K,V> e = f;; ++binCount) {
1631     K ek; V ev;
1632     if (e.hash == h &&
1633     ((ek = e.key) == key ||
1634     (ek != null && key.equals(ek)))) {
1635     val = e.val;
1636     break;
1637     }
1638     Node<K,V> pred = e;
1639     if ((e = e.next) == null) {
1640     if ((val = mappingFunction.apply(key)) != null) {
1641     added = true;
1642     pred.next = new Node<K,V>(h, key, val, null);
1643     }
1644     break;
1645     }
1646 dl 1.149 }
1647 dl 1.222 }
1648     else if (f instanceof TreeBin) {
1649     binCount = 2;
1650     TreeBin<K,V> t = (TreeBin<K,V>)f;
1651     TreeNode<K,V> r, p;
1652     if ((r = t.root) != null &&
1653     (p = r.findTreeNode(h, key, null)) != null)
1654     val = p.val;
1655     else if ((val = mappingFunction.apply(key)) != null) {
1656     added = true;
1657     t.putTreeVal(h, key, val);
1658 dl 1.119 }
1659     }
1660     }
1661 dl 1.149 }
1662 dl 1.222 if (binCount != 0) {
1663     if (binCount >= TREEIFY_THRESHOLD)
1664     treeifyBin(tab, i);
1665 dl 1.149 if (!added)
1666 dl 1.151 return val;
1667 dl 1.149 break;
1668 dl 1.119 }
1669 dl 1.105 }
1670 dl 1.99 }
1671 dl 1.149 if (val != null)
1672 dl 1.222 addCount(1L, binCount);
1673 dl 1.151 return val;
1674 tim 1.1 }
1675    
1676 dl 1.222 /**
1677     * If the value for the specified key is present, attempts to
1678     * compute a new mapping given the key and its current mapped
1679     * value. The entire method invocation is performed atomically.
1680     * Some attempted update operations on this map by other threads
1681     * may be blocked while computation is in progress, so the
1682     * computation should be short and simple, and must not attempt to
1683     * update any other mappings of this map.
1684     *
1685     * @param key key with which a value may be associated
1686     * @param remappingFunction the function to compute a value
1687     * @return the new value associated with the specified key, or null if none
1688     * @throws NullPointerException if the specified key or remappingFunction
1689     * is null
1690     * @throws IllegalStateException if the computation detectably
1691     * attempts a recursive update to this map that would
1692     * otherwise never complete
1693     * @throws RuntimeException or Error if the remappingFunction does so,
1694     * in which case the mapping is unchanged
1695     */
1696     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1697     if (key == null || remappingFunction == null)
1698 dl 1.149 throw new NullPointerException();
1699 dl 1.222 int h = spread(key.hashCode());
1700 dl 1.151 V val = null;
1701 dl 1.119 int delta = 0;
1702 dl 1.222 int binCount = 0;
1703 dl 1.210 for (Node<K,V>[] tab = table;;) {
1704 dl 1.222 Node<K,V> f; int n, i, fh;
1705     if (tab == null || (n = tab.length) == 0)
1706 dl 1.119 tab = initTable();
1707 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1708     break;
1709     else if ((fh = f.hash) == MOVED)
1710     tab = helpTransfer(tab, f);
1711     else {
1712     synchronized (f) {
1713     if (tabAt(tab, i) == f) {
1714     if (fh >= 0) {
1715     binCount = 1;
1716     for (Node<K,V> e = f, pred = null;; ++binCount) {
1717     K ek;
1718     if (e.hash == h &&
1719     ((ek = e.key) == key ||
1720     (ek != null && key.equals(ek)))) {
1721     val = remappingFunction.apply(key, e.val);
1722     if (val != null)
1723     e.val = val;
1724 dl 1.210 else {
1725 dl 1.222 delta = -1;
1726     Node<K,V> en = e.next;
1727     if (pred != null)
1728     pred.next = en;
1729     else
1730     setTabAt(tab, i, en);
1731 dl 1.210 }
1732 dl 1.222 break;
1733 dl 1.210 }
1734 dl 1.222 pred = e;
1735     if ((e = e.next) == null)
1736     break;
1737 dl 1.119 }
1738     }
1739 dl 1.222 else if (f instanceof TreeBin) {
1740     binCount = 2;
1741     TreeBin<K,V> t = (TreeBin<K,V>)f;
1742     TreeNode<K,V> r, p;
1743     if ((r = t.root) != null &&
1744     (p = r.findTreeNode(h, key, null)) != null) {
1745     val = remappingFunction.apply(key, p.val);
1746 dl 1.119 if (val != null)
1747 dl 1.222 p.val = val;
1748 dl 1.119 else {
1749     delta = -1;
1750 dl 1.222 if (t.removeTreeNode(p))
1751     setTabAt(tab, i, untreeify(t.first));
1752 dl 1.119 }
1753     }
1754     }
1755     }
1756     }
1757 dl 1.222 if (binCount != 0)
1758 dl 1.119 break;
1759     }
1760     }
1761 dl 1.149 if (delta != 0)
1762 dl 1.222 addCount((long)delta, binCount);
1763 dl 1.151 return val;
1764 dl 1.119 }
1765    
1766 dl 1.222 /**
1767     * Attempts to compute a mapping for the specified key and its
1768     * current mapped value (or {@code null} if there is no current
1769     * mapping). The entire method invocation is performed atomically.
1770     * Some attempted update operations on this map by other threads
1771     * may be blocked while computation is in progress, so the
1772     * computation should be short and simple, and must not attempt to
1773     * update any other mappings of this Map.
1774     *
1775     * @param key key with which the specified value is to be associated
1776     * @param remappingFunction the function to compute a value
1777     * @return the new value associated with the specified key, or null if none
1778     * @throws NullPointerException if the specified key or remappingFunction
1779     * is null
1780     * @throws IllegalStateException if the computation detectably
1781     * attempts a recursive update to this map that would
1782     * otherwise never complete
1783     * @throws RuntimeException or Error if the remappingFunction does so,
1784     * in which case the mapping is unchanged
1785     */
1786     public V compute(K key,
1787     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1788     if (key == null || remappingFunction == null)
1789 dl 1.149 throw new NullPointerException();
1790 dl 1.222 int h = spread(key.hashCode());
1791 dl 1.151 V val = null;
1792 dl 1.119 int delta = 0;
1793 dl 1.222 int binCount = 0;
1794 dl 1.210 for (Node<K,V>[] tab = table;;) {
1795 dl 1.222 Node<K,V> f; int n, i, fh;
1796     if (tab == null || (n = tab.length) == 0)
1797 dl 1.119 tab = initTable();
1798 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1799     Node<K,V> r = new ReservationNode<K,V>();
1800     synchronized (r) {
1801     if (casTabAt(tab, i, null, r)) {
1802     binCount = 1;
1803     Node<K,V> node = null;
1804     try {
1805     if ((val = remappingFunction.apply(key, null)) != null) {
1806     delta = 1;
1807     node = new Node<K,V>(h, key, val, null);
1808     }
1809     } finally {
1810     setTabAt(tab, i, node);
1811     }
1812     }
1813     }
1814     if (binCount != 0)
1815 dl 1.119 break;
1816     }
1817 dl 1.222 else if ((fh = f.hash) == MOVED)
1818     tab = helpTransfer(tab, f);
1819     else {
1820     synchronized (f) {
1821     if (tabAt(tab, i) == f) {
1822     if (fh >= 0) {
1823     binCount = 1;
1824     for (Node<K,V> e = f, pred = null;; ++binCount) {
1825     K ek;
1826     if (e.hash == h &&
1827     ((ek = e.key) == key ||
1828     (ek != null && key.equals(ek)))) {
1829     val = remappingFunction.apply(key, e.val);
1830     if (val != null)
1831     e.val = val;
1832     else {
1833     delta = -1;
1834     Node<K,V> en = e.next;
1835     if (pred != null)
1836     pred.next = en;
1837     else
1838     setTabAt(tab, i, en);
1839     }
1840     break;
1841     }
1842     pred = e;
1843     if ((e = e.next) == null) {
1844     val = remappingFunction.apply(key, null);
1845     if (val != null) {
1846     delta = 1;
1847     pred.next =
1848     new Node<K,V>(h, key, val, null);
1849     }
1850     break;
1851     }
1852     }
1853     }
1854     else if (f instanceof TreeBin) {
1855     binCount = 1;
1856     TreeBin<K,V> t = (TreeBin<K,V>)f;
1857     TreeNode<K,V> r, p;
1858     if ((r = t.root) != null)
1859     p = r.findTreeNode(h, key, null);
1860     else
1861     p = null;
1862     V pv = (p == null) ? null : p.val;
1863     val = remappingFunction.apply(key, pv);
1864 dl 1.119 if (val != null) {
1865     if (p != null)
1866     p.val = val;
1867     else {
1868     delta = 1;
1869 dl 1.222 t.putTreeVal(h, key, val);
1870 dl 1.119 }
1871     }
1872     else if (p != null) {
1873     delta = -1;
1874 dl 1.222 if (t.removeTreeNode(p))
1875     setTabAt(tab, i, untreeify(t.first));
1876 dl 1.119 }
1877     }
1878     }
1879     }
1880 dl 1.222 if (binCount != 0) {
1881     if (binCount >= TREEIFY_THRESHOLD)
1882     treeifyBin(tab, i);
1883     break;
1884 dl 1.119 }
1885 dl 1.105 }
1886 dl 1.99 }
1887 dl 1.149 if (delta != 0)
1888 dl 1.222 addCount((long)delta, binCount);
1889 dl 1.151 return val;
1890 dl 1.119 }
1891    
1892 dl 1.222 /**
1893     * If the specified key is not already associated with a
1894     * (non-null) value, associates it with the given value.
1895     * Otherwise, replaces the value with the results of the given
1896     * remapping function, or removes if {@code null}. The entire
1897     * method invocation is performed atomically. Some attempted
1898     * update operations on this map by other threads may be blocked
1899     * while computation is in progress, so the computation should be
1900     * short and simple, and must not attempt to update any other
1901     * mappings of this Map.
1902     *
1903     * @param key key with which the specified value is to be associated
1904     * @param value the value to use if absent
1905     * @param remappingFunction the function to recompute a value if present
1906     * @return the new value associated with the specified key, or null if none
1907     * @throws NullPointerException if the specified key or the
1908     * remappingFunction is null
1909     * @throws RuntimeException or Error if the remappingFunction does so,
1910     * in which case the mapping is unchanged
1911     */
1912     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1913     if (key == null || value == null || remappingFunction == null)
1914     throw new NullPointerException();
1915     int h = spread(key.hashCode());
1916     V val = null;
1917     int delta = 0;
1918     int binCount = 0;
1919     for (Node<K,V>[] tab = table;;) {
1920     Node<K,V> f; int n, i, fh;
1921     if (tab == null || (n = tab.length) == 0)
1922     tab = initTable();
1923     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1924     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1925     delta = 1;
1926     val = value;
1927 dl 1.119 break;
1928     }
1929 dl 1.222 }
1930     else if ((fh = f.hash) == MOVED)
1931     tab = helpTransfer(tab, f);
1932     else {
1933     synchronized (f) {
1934     if (tabAt(tab, i) == f) {
1935     if (fh >= 0) {
1936     binCount = 1;
1937     for (Node<K,V> e = f, pred = null;; ++binCount) {
1938     K ek;
1939     if (e.hash == h &&
1940     ((ek = e.key) == key ||
1941     (ek != null && key.equals(ek)))) {
1942     val = remappingFunction.apply(e.val, value);
1943     if (val != null)
1944     e.val = val;
1945 dl 1.119 else {
1946 dl 1.222 delta = -1;
1947     Node<K,V> en = e.next;
1948     if (pred != null)
1949     pred.next = en;
1950     else
1951     setTabAt(tab, i, en);
1952 dl 1.119 }
1953 dl 1.222 break;
1954     }
1955     pred = e;
1956     if ((e = e.next) == null) {
1957     delta = 1;
1958     val = value;
1959     pred.next =
1960     new Node<K,V>(h, key, val, null);
1961     break;
1962 dl 1.119 }
1963     }
1964     }
1965 dl 1.222 else if (f instanceof TreeBin) {
1966     binCount = 2;
1967     TreeBin<K,V> t = (TreeBin<K,V>)f;
1968     TreeNode<K,V> r = t.root;
1969     TreeNode<K,V> p = (r == null) ? null :
1970     r.findTreeNode(h, key, null);
1971     val = (p == null) ? value :
1972     remappingFunction.apply(p.val, value);
1973     if (val != null) {
1974     if (p != null)
1975     p.val = val;
1976     else {
1977     delta = 1;
1978     t.putTreeVal(h, key, val);
1979 dl 1.119 }
1980     }
1981 dl 1.222 else if (p != null) {
1982     delta = -1;
1983     if (t.removeTreeNode(p))
1984     setTabAt(tab, i, untreeify(t.first));
1985 dl 1.164 }
1986 dl 1.99 }
1987 dl 1.21 }
1988     }
1989 dl 1.222 if (binCount != 0) {
1990     if (binCount >= TREEIFY_THRESHOLD)
1991     treeifyBin(tab, i);
1992     break;
1993     }
1994 dl 1.45 }
1995     }
1996 dl 1.222 if (delta != 0)
1997     addCount((long)delta, binCount);
1998     return val;
1999 tim 1.1 }
2000 dl 1.19
2001 dl 1.222 // Hashtable legacy methods
2002    
2003 dl 1.149 /**
2004 dl 1.222 * Legacy method testing if some key maps into the specified value
2005 jsr166 1.250 * in this table.
2006     *
2007     * @deprecated This method is identical in functionality to
2008 dl 1.222 * {@link #containsValue(Object)}, and exists solely to ensure
2009     * full compatibility with class {@link java.util.Hashtable},
2010     * which supported this method prior to introduction of the
2011     * Java Collections framework.
2012     *
2013     * @param value a value to search for
2014     * @return {@code true} if and only if some key maps to the
2015     * {@code value} argument in this table as
2016     * determined by the {@code equals} method;
2017     * {@code false} otherwise
2018     * @throws NullPointerException if the specified value is null
2019 dl 1.149 */
2020 dl 1.246 @Deprecated
2021     public boolean contains(Object value) {
2022 dl 1.222 return containsValue(value);
2023 dl 1.149 }
2024    
2025 tim 1.1 /**
2026 dl 1.222 * Returns an enumeration of the keys in this table.
2027     *
2028     * @return an enumeration of the keys in this table
2029     * @see #keySet()
2030 tim 1.1 */
2031 dl 1.222 public Enumeration<K> keys() {
2032     Node<K,V>[] t;
2033     int f = (t = table) == null ? 0 : t.length;
2034     return new KeyIterator<K,V>(t, f, 0, f, this);
2035 tim 1.1 }
2036    
2037     /**
2038 dl 1.222 * Returns an enumeration of the values in this table.
2039     *
2040     * @return an enumeration of the values in this table
2041     * @see #values()
2042     */
2043     public Enumeration<V> elements() {
2044     Node<K,V>[] t;
2045     int f = (t = table) == null ? 0 : t.length;
2046     return new ValueIterator<K,V>(t, f, 0, f, this);
2047     }
2048    
2049     // ConcurrentHashMap-only methods
2050    
2051     /**
2052     * Returns the number of mappings. This method should be used
2053     * instead of {@link #size} because a ConcurrentHashMap may
2054     * contain more mappings than can be represented as an int. The
2055     * value returned is an estimate; the actual count may differ if
2056     * there are concurrent insertions or removals.
2057     *
2058     * @return the number of mappings
2059     * @since 1.8
2060     */
2061     public long mappingCount() {
2062     long n = sumCount();
2063     return (n < 0L) ? 0L : n; // ignore transient negative values
2064     }
2065    
2066     /**
2067     * Creates a new {@link Set} backed by a ConcurrentHashMap
2068     * from the given type to {@code Boolean.TRUE}.
2069     *
2070 jsr166 1.237 * @param <K> the element type of the returned set
2071 dl 1.222 * @return the new set
2072     * @since 1.8
2073     */
2074     public static <K> KeySetView<K,Boolean> newKeySet() {
2075     return new KeySetView<K,Boolean>
2076     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2077     }
2078    
2079     /**
2080     * Creates a new {@link Set} backed by a ConcurrentHashMap
2081     * from the given type to {@code Boolean.TRUE}.
2082     *
2083     * @param initialCapacity The implementation performs internal
2084     * sizing to accommodate this many elements.
2085 jsr166 1.237 * @param <K> the element type of the returned set
2086 jsr166 1.239 * @return the new set
2087 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2088     * elements is negative
2089     * @since 1.8
2090     */
2091     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2092     return new KeySetView<K,Boolean>
2093     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2094     }
2095    
2096     /**
2097     * Returns a {@link Set} view of the keys in this map, using the
2098     * given common mapped value for any additions (i.e., {@link
2099     * Collection#add} and {@link Collection#addAll(Collection)}).
2100     * This is of course only appropriate if it is acceptable to use
2101     * the same value for all additions from this view.
2102     *
2103     * @param mappedValue the mapped value to use for any additions
2104     * @return the set view
2105     * @throws NullPointerException if the mappedValue is null
2106     */
2107     public KeySetView<K,V> keySet(V mappedValue) {
2108     if (mappedValue == null)
2109     throw new NullPointerException();
2110     return new KeySetView<K,V>(this, mappedValue);
2111     }
2112    
2113     /* ---------------- Special Nodes -------------- */
2114    
2115     /**
2116     * A node inserted at head of bins during transfer operations.
2117     */
2118     static final class ForwardingNode<K,V> extends Node<K,V> {
2119     final Node<K,V>[] nextTable;
2120     ForwardingNode(Node<K,V>[] tab) {
2121     super(MOVED, null, null, null);
2122     this.nextTable = tab;
2123     }
2124    
2125     Node<K,V> find(int h, Object k) {
2126 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2127     outer: for (Node<K,V>[] tab = nextTable;;) {
2128     Node<K,V> e; int n;
2129     if (k == null || tab == null || (n = tab.length) == 0 ||
2130     (e = tabAt(tab, (n - 1) & h)) == null)
2131     return null;
2132     for (;;) {
2133 dl 1.222 int eh; K ek;
2134     if ((eh = e.hash) == h &&
2135     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2136     return e;
2137 dl 1.234 if (eh < 0) {
2138     if (e instanceof ForwardingNode) {
2139     tab = ((ForwardingNode<K,V>)e).nextTable;
2140     continue outer;
2141     }
2142     else
2143     return e.find(h, k);
2144     }
2145     if ((e = e.next) == null)
2146     return null;
2147     }
2148 dl 1.222 }
2149     }
2150     }
2151    
2152     /**
2153     * A place-holder node used in computeIfAbsent and compute
2154     */
2155     static final class ReservationNode<K,V> extends Node<K,V> {
2156     ReservationNode() {
2157     super(RESERVED, null, null, null);
2158     }
2159    
2160     Node<K,V> find(int h, Object k) {
2161     return null;
2162     }
2163     }
2164    
2165     /* ---------------- Table Initialization and Resizing -------------- */
2166    
2167     /**
2168     * Initializes table, using the size recorded in sizeCtl.
2169 dl 1.119 */
2170 dl 1.210 private final Node<K,V>[] initTable() {
2171     Node<K,V>[] tab; int sc;
2172 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2173 dl 1.119 if ((sc = sizeCtl) < 0)
2174     Thread.yield(); // lost initialization race; just spin
2175 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2176 dl 1.119 try {
2177 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2178 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2179 jsr166 1.245 @SuppressWarnings("unchecked")
2180 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2181 dl 1.222 table = tab = nt;
2182 dl 1.119 sc = n - (n >>> 2);
2183     }
2184     } finally {
2185     sizeCtl = sc;
2186     }
2187     break;
2188     }
2189     }
2190     return tab;
2191 dl 1.4 }
2192    
2193     /**
2194 dl 1.149 * Adds to count, and if table is too small and not already
2195     * resizing, initiates transfer. If already resizing, helps
2196     * perform transfer if work is available. Rechecks occupancy
2197     * after a transfer to see if another resize is already needed
2198     * because resizings are lagging additions.
2199     *
2200     * @param x the count to add
2201     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2202     */
2203     private final void addCount(long x, int check) {
2204 dl 1.222 CounterCell[] as; long b, s;
2205 dl 1.149 if ((as = counterCells) != null ||
2206     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2207 dl 1.222 CounterCell a; long v; int m;
2208 dl 1.149 boolean uncontended = true;
2209 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
2210     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2211 dl 1.149 !(uncontended =
2212     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2213 dl 1.160 fullAddCount(x, uncontended);
2214 dl 1.149 return;
2215     }
2216     if (check <= 1)
2217     return;
2218     s = sumCount();
2219     }
2220     if (check >= 0) {
2221 dl 1.210 Node<K,V>[] tab, nt; int sc;
2222 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2223     tab.length < MAXIMUM_CAPACITY) {
2224     if (sc < 0) {
2225 dl 1.246 if (sc == -1 || transferIndex <= 0 ||
2226 dl 1.149 (nt = nextTable) == null)
2227     break;
2228     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2229     transfer(tab, nt);
2230 dl 1.119 }
2231 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2232     transfer(tab, null);
2233     s = sumCount();
2234 dl 1.119 }
2235     }
2236 dl 1.4 }
2237    
2238     /**
2239 dl 1.222 * Helps transfer if a resize is in progress.
2240     */
2241     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2242     Node<K,V>[] nextTab; int sc;
2243     if ((f instanceof ForwardingNode) &&
2244     (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2245 dl 1.246 while (transferIndex > 0 && nextTab == nextTable &&
2246     (sc = sizeCtl) < -1) {
2247     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) {
2248     transfer(tab, nextTab);
2249     break;
2250     }
2251     }
2252 dl 1.222 return nextTab;
2253     }
2254     return table;
2255     }
2256    
2257     /**
2258 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2259 tim 1.1 *
2260 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2261 tim 1.1 */
2262 dl 1.210 private final void tryPresize(int size) {
2263 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2264     tableSizeFor(size + (size >>> 1) + 1);
2265     int sc;
2266     while ((sc = sizeCtl) >= 0) {
2267 dl 1.210 Node<K,V>[] tab = table; int n;
2268 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2269     n = (sc > c) ? sc : c;
2270 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2271 dl 1.119 try {
2272     if (table == tab) {
2273 jsr166 1.245 @SuppressWarnings("unchecked")
2274 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2275 dl 1.222 table = nt;
2276 dl 1.119 sc = n - (n >>> 2);
2277     }
2278     } finally {
2279     sizeCtl = sc;
2280     }
2281     }
2282     }
2283     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2284     break;
2285 dl 1.149 else if (tab == table &&
2286     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2287     transfer(tab, null);
2288 dl 1.119 }
2289 dl 1.4 }
2290    
2291 jsr166 1.170 /**
2292 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2293     * above for explanation.
2294 dl 1.4 */
2295 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2296 dl 1.149 int n = tab.length, stride;
2297     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2298     stride = MIN_TRANSFER_STRIDE; // subdivide range
2299     if (nextTab == null) { // initiating
2300     try {
2301 jsr166 1.245 @SuppressWarnings("unchecked")
2302 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2303 dl 1.222 nextTab = nt;
2304 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2305 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2306     return;
2307     }
2308     nextTable = nextTab;
2309     transferIndex = n;
2310     }
2311     int nextn = nextTab.length;
2312 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2313 dl 1.149 boolean advance = true;
2314 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2315 dl 1.149 for (int i = 0, bound = 0;;) {
2316 dl 1.246 Node<K,V> f; int fh;
2317 dl 1.149 while (advance) {
2318 dl 1.246 int nextIndex, nextBound;
2319 dl 1.234 if (--i >= bound || finishing)
2320 dl 1.149 advance = false;
2321 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2322 dl 1.149 i = -1;
2323     advance = false;
2324     }
2325     else if (U.compareAndSwapInt
2326     (this, TRANSFERINDEX, nextIndex,
2327 jsr166 1.150 nextBound = (nextIndex > stride ?
2328 dl 1.149 nextIndex - stride : 0))) {
2329     bound = nextBound;
2330     i = nextIndex - 1;
2331     advance = false;
2332     }
2333     }
2334     if (i < 0 || i >= n || i + n >= nextn) {
2335 dl 1.246 int sc;
2336 dl 1.234 if (finishing) {
2337     nextTable = null;
2338     table = nextTab;
2339     sizeCtl = (n << 1) - (n >>> 1);
2340     return;
2341     }
2342 dl 1.246 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2343     if (sc != -1)
2344     return;
2345     finishing = advance = true;
2346     i = n; // recheck before commit
2347 dl 1.149 }
2348     }
2349 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2350     advance = casTabAt(tab, i, null, fwd);
2351 dl 1.222 else if ((fh = f.hash) == MOVED)
2352     advance = true; // already processed
2353     else {
2354 jsr166 1.150 synchronized (f) {
2355 dl 1.149 if (tabAt(tab, i) == f) {
2356 dl 1.222 Node<K,V> ln, hn;
2357     if (fh >= 0) {
2358     int runBit = fh & n;
2359     Node<K,V> lastRun = f;
2360     for (Node<K,V> p = f.next; p != null; p = p.next) {
2361     int b = p.hash & n;
2362     if (b != runBit) {
2363     runBit = b;
2364     lastRun = p;
2365     }
2366     }
2367     if (runBit == 0) {
2368     ln = lastRun;
2369     hn = null;
2370     }
2371     else {
2372     hn = lastRun;
2373     ln = null;
2374 dl 1.149 }
2375 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2376     int ph = p.hash; K pk = p.key; V pv = p.val;
2377     if ((ph & n) == 0)
2378     ln = new Node<K,V>(ph, pk, pv, ln);
2379 dl 1.210 else
2380 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2381 dl 1.149 }
2382 dl 1.233 setTabAt(nextTab, i, ln);
2383     setTabAt(nextTab, i + n, hn);
2384     setTabAt(tab, i, fwd);
2385     advance = true;
2386 dl 1.222 }
2387     else if (f instanceof TreeBin) {
2388     TreeBin<K,V> t = (TreeBin<K,V>)f;
2389     TreeNode<K,V> lo = null, loTail = null;
2390     TreeNode<K,V> hi = null, hiTail = null;
2391     int lc = 0, hc = 0;
2392     for (Node<K,V> e = t.first; e != null; e = e.next) {
2393     int h = e.hash;
2394     TreeNode<K,V> p = new TreeNode<K,V>
2395     (h, e.key, e.val, null, null);
2396     if ((h & n) == 0) {
2397     if ((p.prev = loTail) == null)
2398     lo = p;
2399     else
2400     loTail.next = p;
2401     loTail = p;
2402     ++lc;
2403 dl 1.210 }
2404 dl 1.222 else {
2405     if ((p.prev = hiTail) == null)
2406     hi = p;
2407     else
2408     hiTail.next = p;
2409     hiTail = p;
2410     ++hc;
2411 dl 1.210 }
2412 dl 1.149 }
2413 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2414     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2415     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2416     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2417 dl 1.233 setTabAt(nextTab, i, ln);
2418     setTabAt(nextTab, i + n, hn);
2419     setTabAt(tab, i, fwd);
2420     advance = true;
2421 dl 1.149 }
2422 dl 1.119 }
2423     }
2424     }
2425     }
2426 dl 1.4 }
2427 tim 1.1
2428 dl 1.149 /* ---------------- Counter support -------------- */
2429    
2430 dl 1.222 /**
2431     * A padded cell for distributing counts. Adapted from LongAdder
2432     * and Striped64. See their internal docs for explanation.
2433     */
2434     @sun.misc.Contended static final class CounterCell {
2435     volatile long value;
2436     CounterCell(long x) { value = x; }
2437     }
2438    
2439 dl 1.149 final long sumCount() {
2440 dl 1.222 CounterCell[] as = counterCells; CounterCell a;
2441 dl 1.149 long sum = baseCount;
2442     if (as != null) {
2443     for (int i = 0; i < as.length; ++i) {
2444     if ((a = as[i]) != null)
2445     sum += a.value;
2446 dl 1.119 }
2447     }
2448 dl 1.149 return sum;
2449 dl 1.119 }
2450    
2451 dl 1.149 // See LongAdder version for explanation
2452 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2453 dl 1.149 int h;
2454 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2455     ThreadLocalRandom.localInit(); // force initialization
2456     h = ThreadLocalRandom.getProbe();
2457     wasUncontended = true;
2458 dl 1.119 }
2459 dl 1.149 boolean collide = false; // True if last slot nonempty
2460     for (;;) {
2461 dl 1.222 CounterCell[] as; CounterCell a; int n; long v;
2462 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2463     if ((a = as[(n - 1) & h]) == null) {
2464 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2465 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2466 dl 1.153 if (cellsBusy == 0 &&
2467     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2468 dl 1.149 boolean created = false;
2469     try { // Recheck under lock
2470 dl 1.222 CounterCell[] rs; int m, j;
2471 dl 1.149 if ((rs = counterCells) != null &&
2472     (m = rs.length) > 0 &&
2473     rs[j = (m - 1) & h] == null) {
2474     rs[j] = r;
2475     created = true;
2476 dl 1.128 }
2477 dl 1.149 } finally {
2478 dl 1.153 cellsBusy = 0;
2479 dl 1.119 }
2480 dl 1.149 if (created)
2481     break;
2482     continue; // Slot is now non-empty
2483     }
2484     }
2485     collide = false;
2486     }
2487     else if (!wasUncontended) // CAS already known to fail
2488     wasUncontended = true; // Continue after rehash
2489     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2490     break;
2491     else if (counterCells != as || n >= NCPU)
2492     collide = false; // At max size or stale
2493     else if (!collide)
2494     collide = true;
2495 dl 1.153 else if (cellsBusy == 0 &&
2496     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2497 dl 1.149 try {
2498     if (counterCells == as) {// Expand table unless stale
2499 dl 1.222 CounterCell[] rs = new CounterCell[n << 1];
2500 dl 1.149 for (int i = 0; i < n; ++i)
2501     rs[i] = as[i];
2502     counterCells = rs;
2503 dl 1.119 }
2504     } finally {
2505 dl 1.153 cellsBusy = 0;
2506 dl 1.119 }
2507 dl 1.149 collide = false;
2508     continue; // Retry with expanded table
2509 dl 1.119 }
2510 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2511 dl 1.149 }
2512 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2513     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2514 dl 1.149 boolean init = false;
2515     try { // Initialize table
2516     if (counterCells == as) {
2517 dl 1.222 CounterCell[] rs = new CounterCell[2];
2518     rs[h & 1] = new CounterCell(x);
2519 dl 1.149 counterCells = rs;
2520     init = true;
2521 dl 1.119 }
2522     } finally {
2523 dl 1.153 cellsBusy = 0;
2524 dl 1.119 }
2525 dl 1.149 if (init)
2526     break;
2527 dl 1.119 }
2528 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2529     break; // Fall back on using base
2530 dl 1.119 }
2531     }
2532    
2533 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2534 dl 1.119
2535     /**
2536 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2537     * too small, in which case resizes instead.
2538 dl 1.119 */
2539 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2540     Node<K,V> b; int n, sc;
2541     if (tab != null) {
2542 dl 1.224 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2543     if (tab == table && (sc = sizeCtl) >= 0 &&
2544     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2545     transfer(tab, null);
2546     }
2547 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2548 jsr166 1.223 synchronized (b) {
2549 dl 1.222 if (tabAt(tab, index) == b) {
2550     TreeNode<K,V> hd = null, tl = null;
2551     for (Node<K,V> e = b; e != null; e = e.next) {
2552     TreeNode<K,V> p =
2553     new TreeNode<K,V>(e.hash, e.key, e.val,
2554     null, null);
2555     if ((p.prev = tl) == null)
2556     hd = p;
2557     else
2558     tl.next = p;
2559     tl = p;
2560     }
2561     setTabAt(tab, index, new TreeBin<K,V>(hd));
2562 dl 1.210 }
2563     }
2564     }
2565     }
2566     }
2567    
2568     /**
2569 jsr166 1.229 * Returns a list on non-TreeNodes replacing those in given list.
2570 dl 1.210 */
2571 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2572     Node<K,V> hd = null, tl = null;
2573     for (Node<K,V> q = b; q != null; q = q.next) {
2574     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2575     if (tl == null)
2576     hd = p;
2577     else
2578     tl.next = p;
2579     tl = p;
2580 dl 1.210 }
2581 dl 1.222 return hd;
2582     }
2583 dl 1.210
2584 dl 1.222 /* ---------------- TreeNodes -------------- */
2585    
2586     /**
2587     * Nodes for use in TreeBins
2588     */
2589     static final class TreeNode<K,V> extends Node<K,V> {
2590     TreeNode<K,V> parent; // red-black tree links
2591     TreeNode<K,V> left;
2592     TreeNode<K,V> right;
2593     TreeNode<K,V> prev; // needed to unlink next upon deletion
2594     boolean red;
2595 dl 1.210
2596 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2597     TreeNode<K,V> parent) {
2598     super(hash, key, val, next);
2599     this.parent = parent;
2600 dl 1.210 }
2601    
2602 dl 1.222 Node<K,V> find(int h, Object k) {
2603     return findTreeNode(h, k, null);
2604 dl 1.210 }
2605    
2606 dl 1.222 /**
2607     * Returns the TreeNode (or null if not found) for the given key
2608     * starting at given root.
2609     */
2610     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2611 dl 1.224 if (k != null) {
2612     TreeNode<K,V> p = this;
2613     do {
2614     int ph, dir; K pk; TreeNode<K,V> q;
2615     TreeNode<K,V> pl = p.left, pr = p.right;
2616     if ((ph = p.hash) > h)
2617     p = pl;
2618     else if (ph < h)
2619     p = pr;
2620     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2621     return p;
2622 dl 1.240 else if (pl == null)
2623     p = pr;
2624     else if (pr == null)
2625     p = pl;
2626 jsr166 1.225 else if ((kc != null ||
2627 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2628     (dir = compareComparables(kc, k, pk)) != 0)
2629     p = (dir < 0) ? pl : pr;
2630 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2631     return q;
2632     else
2633 dl 1.224 p = pl;
2634     } while (p != null);
2635     }
2636 dl 1.222 return null;
2637 dl 1.210 }
2638     }
2639 dl 1.192
2640 dl 1.222 /* ---------------- TreeBins -------------- */
2641 dl 1.119
2642 dl 1.222 /**
2643     * TreeNodes used at the heads of bins. TreeBins do not hold user
2644     * keys or values, but instead point to list of TreeNodes and
2645     * their root. They also maintain a parasitic read-write lock
2646     * forcing writers (who hold bin lock) to wait for readers (who do
2647     * not) to complete before tree restructuring operations.
2648     */
2649     static final class TreeBin<K,V> extends Node<K,V> {
2650     TreeNode<K,V> root;
2651     volatile TreeNode<K,V> first;
2652     volatile Thread waiter;
2653     volatile int lockState;
2654 dl 1.224 // values for lockState
2655     static final int WRITER = 1; // set while holding write lock
2656     static final int WAITER = 2; // set when waiting for write lock
2657     static final int READER = 4; // increment value for setting read lock
2658 dl 1.119
2659 dl 1.222 /**
2660 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2661     * hashCodes and non-comparable. We don't require a total
2662     * order, just a consistent insertion rule to maintain
2663     * equivalence across rebalancings. Tie-breaking further than
2664     * necessary simplifies testing a bit.
2665     */
2666     static int tieBreakOrder(Object a, Object b) {
2667     int d;
2668     if (a == null || b == null ||
2669     (d = a.getClass().getName().
2670     compareTo(b.getClass().getName())) == 0)
2671     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2672     -1 : 1);
2673     return d;
2674     }
2675    
2676     /**
2677 dl 1.222 * Creates bin with initial set of nodes headed by b.
2678     */
2679     TreeBin(TreeNode<K,V> b) {
2680     super(TREEBIN, null, null, null);
2681 dl 1.224 this.first = b;
2682 dl 1.222 TreeNode<K,V> r = null;
2683     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2684     next = (TreeNode<K,V>)x.next;
2685     x.left = x.right = null;
2686     if (r == null) {
2687     x.parent = null;
2688     x.red = false;
2689     r = x;
2690     }
2691     else {
2692 dl 1.240 K k = x.key;
2693     int h = x.hash;
2694 dl 1.222 Class<?> kc = null;
2695     for (TreeNode<K,V> p = r;;) {
2696     int dir, ph;
2697 dl 1.240 K pk = p.key;
2698     if ((ph = p.hash) > h)
2699 dl 1.222 dir = -1;
2700 dl 1.240 else if (ph < h)
2701 dl 1.222 dir = 1;
2702 dl 1.240 else if ((kc == null &&
2703     (kc = comparableClassFor(k)) == null) ||
2704     (dir = compareComparables(kc, k, pk)) == 0)
2705     dir = tieBreakOrder(k, pk);
2706     TreeNode<K,V> xp = p;
2707 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2708     x.parent = xp;
2709     if (dir <= 0)
2710     xp.left = x;
2711     else
2712     xp.right = x;
2713     r = balanceInsertion(r, x);
2714     break;
2715     }
2716     }
2717     }
2718     }
2719 dl 1.224 this.root = r;
2720 dl 1.240 assert checkInvariants(root);
2721 dl 1.222 }
2722 dl 1.210
2723 dl 1.222 /**
2724 jsr166 1.229 * Acquires write lock for tree restructuring.
2725 dl 1.222 */
2726     private final void lockRoot() {
2727     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2728     contendedLock(); // offload to separate method
2729 dl 1.153 }
2730    
2731 dl 1.222 /**
2732 jsr166 1.229 * Releases write lock for tree restructuring.
2733 dl 1.222 */
2734     private final void unlockRoot() {
2735     lockState = 0;
2736 dl 1.191 }
2737    
2738 dl 1.222 /**
2739 jsr166 1.229 * Possibly blocks awaiting root lock.
2740 dl 1.222 */
2741     private final void contendedLock() {
2742     boolean waiting = false;
2743     for (int s;;) {
2744     if (((s = lockState) & WRITER) == 0) {
2745     if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2746     if (waiting)
2747     waiter = null;
2748     return;
2749     }
2750     }
2751 dl 1.244 else if ((s & WAITER) == 0) {
2752 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2753     waiting = true;
2754     waiter = Thread.currentThread();
2755     }
2756     }
2757     else if (waiting)
2758     LockSupport.park(this);
2759     }
2760 dl 1.192 }
2761    
2762 dl 1.222 /**
2763     * Returns matching node or null if none. Tries to search
2764 jsr166 1.232 * using tree comparisons from root, but continues linear
2765 dl 1.222 * search when lock not available.
2766     */
2767     final Node<K,V> find(int h, Object k) {
2768     if (k != null) {
2769     for (Node<K,V> e = first; e != null; e = e.next) {
2770     int s; K ek;
2771     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2772     if (e.hash == h &&
2773     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2774     return e;
2775     }
2776     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2777     s + READER)) {
2778     TreeNode<K,V> r, p;
2779     try {
2780     p = ((r = root) == null ? null :
2781     r.findTreeNode(h, k, null));
2782     } finally {
2783     Thread w;
2784     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2785     (READER|WAITER) && (w = waiter) != null)
2786     LockSupport.unpark(w);
2787     }
2788     return p;
2789     }
2790     }
2791     }
2792     return null;
2793 dl 1.192 }
2794    
2795 dl 1.222 /**
2796     * Finds or adds a node.
2797     * @return null if added
2798     */
2799     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2800     Class<?> kc = null;
2801 dl 1.240 boolean searched = false;
2802 dl 1.224 for (TreeNode<K,V> p = root;;) {
2803 dl 1.240 int dir, ph; K pk;
2804 dl 1.224 if (p == null) {
2805     first = root = new TreeNode<K,V>(h, k, v, null, null);
2806     break;
2807     }
2808     else if ((ph = p.hash) > h)
2809 dl 1.222 dir = -1;
2810     else if (ph < h)
2811     dir = 1;
2812     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2813     return p;
2814     else if ((kc == null &&
2815     (kc = comparableClassFor(k)) == null) ||
2816     (dir = compareComparables(kc, k, pk)) == 0) {
2817 dl 1.240 if (!searched) {
2818     TreeNode<K,V> q, ch;
2819     searched = true;
2820     if (((ch = p.left) != null &&
2821     (q = ch.findTreeNode(h, k, kc)) != null) ||
2822     ((ch = p.right) != null &&
2823     (q = ch.findTreeNode(h, k, kc)) != null))
2824     return q;
2825     }
2826     dir = tieBreakOrder(k, pk);
2827 dl 1.222 }
2828 dl 1.240
2829 dl 1.222 TreeNode<K,V> xp = p;
2830 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2831 dl 1.222 TreeNode<K,V> x, f = first;
2832     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2833     if (f != null)
2834     f.prev = x;
2835 dl 1.240 if (dir <= 0)
2836 dl 1.222 xp.left = x;
2837     else
2838     xp.right = x;
2839     if (!xp.red)
2840     x.red = true;
2841     else {
2842     lockRoot();
2843     try {
2844     root = balanceInsertion(root, x);
2845     } finally {
2846     unlockRoot();
2847     }
2848     }
2849 dl 1.224 break;
2850 dl 1.222 }
2851     }
2852 dl 1.224 assert checkInvariants(root);
2853     return null;
2854 dl 1.192 }
2855    
2856 dl 1.222 /**
2857     * Removes the given node, that must be present before this
2858     * call. This is messier than typical red-black deletion code
2859     * because we cannot swap the contents of an interior node
2860     * with a leaf successor that is pinned by "next" pointers
2861     * that are accessible independently of lock. So instead we
2862     * swap the tree linkages.
2863     *
2864 jsr166 1.230 * @return true if now too small, so should be untreeified
2865 dl 1.222 */
2866     final boolean removeTreeNode(TreeNode<K,V> p) {
2867     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2868     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2869     TreeNode<K,V> r, rl;
2870     if (pred == null)
2871     first = next;
2872     else
2873     pred.next = next;
2874     if (next != null)
2875     next.prev = pred;
2876     if (first == null) {
2877     root = null;
2878     return true;
2879     }
2880 dl 1.224 if ((r = root) == null || r.right == null || // too small
2881 dl 1.222 (rl = r.left) == null || rl.left == null)
2882     return true;
2883     lockRoot();
2884     try {
2885     TreeNode<K,V> replacement;
2886     TreeNode<K,V> pl = p.left;
2887     TreeNode<K,V> pr = p.right;
2888     if (pl != null && pr != null) {
2889     TreeNode<K,V> s = pr, sl;
2890     while ((sl = s.left) != null) // find successor
2891     s = sl;
2892     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2893     TreeNode<K,V> sr = s.right;
2894     TreeNode<K,V> pp = p.parent;
2895     if (s == pr) { // p was s's direct parent
2896     p.parent = s;
2897     s.right = p;
2898     }
2899     else {
2900     TreeNode<K,V> sp = s.parent;
2901     if ((p.parent = sp) != null) {
2902     if (s == sp.left)
2903     sp.left = p;
2904     else
2905     sp.right = p;
2906     }
2907     if ((s.right = pr) != null)
2908     pr.parent = s;
2909     }
2910     p.left = null;
2911     if ((p.right = sr) != null)
2912     sr.parent = p;
2913     if ((s.left = pl) != null)
2914     pl.parent = s;
2915     if ((s.parent = pp) == null)
2916     r = s;
2917     else if (p == pp.left)
2918     pp.left = s;
2919     else
2920     pp.right = s;
2921     if (sr != null)
2922     replacement = sr;
2923     else
2924     replacement = p;
2925     }
2926     else if (pl != null)
2927     replacement = pl;
2928     else if (pr != null)
2929     replacement = pr;
2930     else
2931     replacement = p;
2932     if (replacement != p) {
2933     TreeNode<K,V> pp = replacement.parent = p.parent;
2934     if (pp == null)
2935     r = replacement;
2936     else if (p == pp.left)
2937     pp.left = replacement;
2938     else
2939     pp.right = replacement;
2940     p.left = p.right = p.parent = null;
2941     }
2942    
2943     root = (p.red) ? r : balanceDeletion(r, replacement);
2944    
2945     if (p == replacement) { // detach pointers
2946     TreeNode<K,V> pp;
2947     if ((pp = p.parent) != null) {
2948     if (p == pp.left)
2949     pp.left = null;
2950     else if (p == pp.right)
2951     pp.right = null;
2952     p.parent = null;
2953     }
2954     }
2955     } finally {
2956     unlockRoot();
2957     }
2958 dl 1.224 assert checkInvariants(root);
2959 dl 1.222 return false;
2960 dl 1.210 }
2961    
2962 dl 1.222 /* ------------------------------------------------------------ */
2963     // Red-black tree methods, all adapted from CLR
2964 dl 1.210
2965 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2966     TreeNode<K,V> p) {
2967 dl 1.224 TreeNode<K,V> r, pp, rl;
2968     if (p != null && (r = p.right) != null) {
2969 dl 1.222 if ((rl = p.right = r.left) != null)
2970     rl.parent = p;
2971     if ((pp = r.parent = p.parent) == null)
2972     (root = r).red = false;
2973     else if (pp.left == p)
2974     pp.left = r;
2975     else
2976     pp.right = r;
2977     r.left = p;
2978     p.parent = r;
2979     }
2980     return root;
2981 dl 1.119 }
2982    
2983 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2984     TreeNode<K,V> p) {
2985 dl 1.224 TreeNode<K,V> l, pp, lr;
2986     if (p != null && (l = p.left) != null) {
2987 dl 1.222 if ((lr = p.left = l.right) != null)
2988     lr.parent = p;
2989     if ((pp = l.parent = p.parent) == null)
2990     (root = l).red = false;
2991     else if (pp.right == p)
2992     pp.right = l;
2993     else
2994     pp.left = l;
2995     l.right = p;
2996     p.parent = l;
2997     }
2998     return root;
2999 dl 1.119 }
3000    
3001 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3002     TreeNode<K,V> x) {
3003     x.red = true;
3004     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3005     if ((xp = x.parent) == null) {
3006     x.red = false;
3007     return x;
3008     }
3009     else if (!xp.red || (xpp = xp.parent) == null)
3010     return root;
3011     if (xp == (xppl = xpp.left)) {
3012     if ((xppr = xpp.right) != null && xppr.red) {
3013     xppr.red = false;
3014     xp.red = false;
3015     xpp.red = true;
3016     x = xpp;
3017     }
3018     else {
3019     if (x == xp.right) {
3020     root = rotateLeft(root, x = xp);
3021     xpp = (xp = x.parent) == null ? null : xp.parent;
3022     }
3023     if (xp != null) {
3024     xp.red = false;
3025     if (xpp != null) {
3026     xpp.red = true;
3027     root = rotateRight(root, xpp);
3028     }
3029     }
3030     }
3031     }
3032     else {
3033     if (xppl != null && xppl.red) {
3034     xppl.red = false;
3035     xp.red = false;
3036     xpp.red = true;
3037     x = xpp;
3038     }
3039     else {
3040     if (x == xp.left) {
3041     root = rotateRight(root, x = xp);
3042     xpp = (xp = x.parent) == null ? null : xp.parent;
3043     }
3044     if (xp != null) {
3045     xp.red = false;
3046     if (xpp != null) {
3047     xpp.red = true;
3048     root = rotateLeft(root, xpp);
3049     }
3050     }
3051     }
3052     }
3053     }
3054 dl 1.119 }
3055    
3056 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3057     TreeNode<K,V> x) {
3058     for (TreeNode<K,V> xp, xpl, xpr;;) {
3059     if (x == null || x == root)
3060     return root;
3061     else if ((xp = x.parent) == null) {
3062     x.red = false;
3063     return x;
3064     }
3065     else if (x.red) {
3066     x.red = false;
3067     return root;
3068     }
3069     else if ((xpl = xp.left) == x) {
3070     if ((xpr = xp.right) != null && xpr.red) {
3071     xpr.red = false;
3072     xp.red = true;
3073     root = rotateLeft(root, xp);
3074     xpr = (xp = x.parent) == null ? null : xp.right;
3075     }
3076     if (xpr == null)
3077     x = xp;
3078     else {
3079     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3080     if ((sr == null || !sr.red) &&
3081     (sl == null || !sl.red)) {
3082     xpr.red = true;
3083     x = xp;
3084     }
3085     else {
3086     if (sr == null || !sr.red) {
3087     if (sl != null)
3088     sl.red = false;
3089     xpr.red = true;
3090     root = rotateRight(root, xpr);
3091     xpr = (xp = x.parent) == null ?
3092     null : xp.right;
3093     }
3094     if (xpr != null) {
3095     xpr.red = (xp == null) ? false : xp.red;
3096     if ((sr = xpr.right) != null)
3097     sr.red = false;
3098     }
3099     if (xp != null) {
3100     xp.red = false;
3101     root = rotateLeft(root, xp);
3102     }
3103     x = root;
3104     }
3105     }
3106     }
3107     else { // symmetric
3108     if (xpl != null && xpl.red) {
3109     xpl.red = false;
3110     xp.red = true;
3111     root = rotateRight(root, xp);
3112     xpl = (xp = x.parent) == null ? null : xp.left;
3113     }
3114     if (xpl == null)
3115     x = xp;
3116     else {
3117     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3118     if ((sl == null || !sl.red) &&
3119     (sr == null || !sr.red)) {
3120     xpl.red = true;
3121     x = xp;
3122     }
3123     else {
3124     if (sl == null || !sl.red) {
3125     if (sr != null)
3126     sr.red = false;
3127     xpl.red = true;
3128     root = rotateLeft(root, xpl);
3129     xpl = (xp = x.parent) == null ?
3130     null : xp.left;
3131     }
3132     if (xpl != null) {
3133     xpl.red = (xp == null) ? false : xp.red;
3134     if ((sl = xpl.left) != null)
3135     sl.red = false;
3136     }
3137     if (xp != null) {
3138     xp.red = false;
3139     root = rotateRight(root, xp);
3140     }
3141     x = root;
3142     }
3143     }
3144     }
3145     }
3146 dl 1.210 }
3147 jsr166 1.225
3148 dl 1.222 /**
3149     * Recursive invariant check
3150     */
3151 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3152 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3153     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3154     if (tb != null && tb.next != t)
3155     return false;
3156     if (tn != null && tn.prev != t)
3157     return false;
3158     if (tp != null && t != tp.left && t != tp.right)
3159     return false;
3160     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3161     return false;
3162     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3163     return false;
3164     if (t.red && tl != null && tl.red && tr != null && tr.red)
3165     return false;
3166 dl 1.224 if (tl != null && !checkInvariants(tl))
3167 dl 1.222 return false;
3168 dl 1.224 if (tr != null && !checkInvariants(tr))
3169 dl 1.210 return false;
3170     return true;
3171     }
3172 dl 1.146
3173 dl 1.222 private static final sun.misc.Unsafe U;
3174     private static final long LOCKSTATE;
3175     static {
3176     try {
3177     U = sun.misc.Unsafe.getUnsafe();
3178     Class<?> k = TreeBin.class;
3179     LOCKSTATE = U.objectFieldOffset
3180     (k.getDeclaredField("lockState"));
3181     } catch (Exception e) {
3182     throw new Error(e);
3183     }
3184 dl 1.146 }
3185 dl 1.119 }
3186    
3187 dl 1.222 /* ----------------Table Traversal -------------- */
3188    
3189 jsr166 1.247 /**
3190     * Records the table, its length, and current traversal index for a
3191     * traverser that must process a region of a forwarded table before
3192     * proceeding with current table.
3193     */
3194     static final class TableStack<K,V> {
3195 dl 1.246 int length;
3196     int index;
3197     Node<K,V>[] tab;
3198 jsr166 1.247 TableStack<K,V> next;
3199 dl 1.246 }
3200    
3201 dl 1.222 /**
3202     * Encapsulates traversal for methods such as containsValue; also
3203     * serves as a base class for other iterators and spliterators.
3204     *
3205     * Method advance visits once each still-valid node that was
3206     * reachable upon iterator construction. It might miss some that
3207     * were added to a bin after the bin was visited, which is OK wrt
3208     * consistency guarantees. Maintaining this property in the face
3209     * of possible ongoing resizes requires a fair amount of
3210     * bookkeeping state that is difficult to optimize away amidst
3211     * volatile accesses. Even so, traversal maintains reasonable
3212     * throughput.
3213     *
3214     * Normally, iteration proceeds bin-by-bin traversing lists.
3215     * However, if the table has been resized, then all future steps
3216     * must traverse both the bin at the current index as well as at
3217     * (index + baseSize); and so on for further resizings. To
3218     * paranoically cope with potential sharing by users of iterators
3219     * across threads, iteration terminates if a bounds checks fails
3220     * for a table read.
3221     */
3222     static class Traverser<K,V> {
3223     Node<K,V>[] tab; // current table; updated if resized
3224     Node<K,V> next; // the next entry to use
3225 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3226 dl 1.222 int index; // index of bin to use next
3227     int baseIndex; // current index of initial table
3228     int baseLimit; // index bound for initial table
3229     final int baseSize; // initial table size
3230    
3231     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3232     this.tab = tab;
3233     this.baseSize = size;
3234     this.baseIndex = this.index = index;
3235     this.baseLimit = limit;
3236     this.next = null;
3237     }
3238    
3239     /**
3240     * Advances if possible, returning next valid node, or null if none.
3241     */
3242     final Node<K,V> advance() {
3243     Node<K,V> e;
3244     if ((e = next) != null)
3245     e = e.next;
3246     for (;;) {
3247 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3248 dl 1.222 if (e != null)
3249     return next = e;
3250     if (baseIndex >= baseLimit || (t = tab) == null ||
3251     (n = t.length) <= (i = index) || i < 0)
3252     return next = null;
3253 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3254 dl 1.222 if (e instanceof ForwardingNode) {
3255     tab = ((ForwardingNode<K,V>)e).nextTable;
3256     e = null;
3257 dl 1.246 pushState(t, i, n);
3258 dl 1.222 continue;
3259     }
3260     else if (e instanceof TreeBin)
3261     e = ((TreeBin<K,V>)e).first;
3262     else
3263     e = null;
3264     }
3265 dl 1.246 if (stack != null)
3266     recoverState(n);
3267     else if ((index = i + baseSize) >= n)
3268     index = ++baseIndex; // visit upper slots if present
3269 dl 1.222 }
3270     }
3271 dl 1.246
3272     /**
3273 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3274 dl 1.246 */
3275     private void pushState(Node<K,V>[] t, int i, int n) {
3276     TableStack<K,V> s = spare; // reuse if possible
3277     if (s != null)
3278     spare = s.next;
3279     else
3280     s = new TableStack<K,V>();
3281     s.tab = t;
3282     s.length = n;
3283     s.index = i;
3284     s.next = stack;
3285     stack = s;
3286     }
3287    
3288     /**
3289 jsr166 1.249 * Possibly pops traversal state.
3290 dl 1.246 *
3291     * @param n length of current table
3292     */
3293     private void recoverState(int n) {
3294     TableStack<K,V> s; int len;
3295     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3296     n = len;
3297     index = s.index;
3298     tab = s.tab;
3299     s.tab = null;
3300     TableStack<K,V> next = s.next;
3301     s.next = spare; // save for reuse
3302     stack = next;
3303     spare = s;
3304     }
3305     if (s == null && (index += baseSize) >= n)
3306     index = ++baseIndex;
3307     }
3308 dl 1.222 }
3309    
3310     /**
3311     * Base of key, value, and entry Iterators. Adds fields to
3312 jsr166 1.229 * Traverser to support iterator.remove.
3313 dl 1.222 */
3314     static class BaseIterator<K,V> extends Traverser<K,V> {
3315     final ConcurrentHashMap<K,V> map;
3316     Node<K,V> lastReturned;
3317     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3318     ConcurrentHashMap<K,V> map) {
3319 dl 1.210 super(tab, size, index, limit);
3320     this.map = map;
3321 dl 1.222 advance();
3322 dl 1.210 }
3323    
3324 dl 1.222 public final boolean hasNext() { return next != null; }
3325     public final boolean hasMoreElements() { return next != null; }
3326    
3327     public final void remove() {
3328     Node<K,V> p;
3329     if ((p = lastReturned) == null)
3330     throw new IllegalStateException();
3331     lastReturned = null;
3332     map.replaceNode(p.key, null, null);
3333 dl 1.210 }
3334 dl 1.222 }
3335 dl 1.210
3336 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3337     implements Iterator<K>, Enumeration<K> {
3338     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3339     ConcurrentHashMap<K,V> map) {
3340     super(tab, index, size, limit, map);
3341 dl 1.210 }
3342    
3343 dl 1.222 public final K next() {
3344 dl 1.210 Node<K,V> p;
3345 dl 1.222 if ((p = next) == null)
3346     throw new NoSuchElementException();
3347     K k = p.key;
3348     lastReturned = p;
3349     advance();
3350     return k;
3351 dl 1.210 }
3352    
3353 dl 1.222 public final K nextElement() { return next(); }
3354     }
3355    
3356     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3357     implements Iterator<V>, Enumeration<V> {
3358     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3359     ConcurrentHashMap<K,V> map) {
3360     super(tab, index, size, limit, map);
3361     }
3362 dl 1.210
3363 dl 1.222 public final V next() {
3364     Node<K,V> p;
3365     if ((p = next) == null)
3366     throw new NoSuchElementException();
3367     V v = p.val;
3368     lastReturned = p;
3369     advance();
3370     return v;
3371 dl 1.210 }
3372 dl 1.222
3373     public final V nextElement() { return next(); }
3374 dl 1.210 }
3375    
3376 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3377     implements Iterator<Map.Entry<K,V>> {
3378     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3379     ConcurrentHashMap<K,V> map) {
3380     super(tab, index, size, limit, map);
3381     }
3382 dl 1.210
3383 dl 1.222 public final Map.Entry<K,V> next() {
3384     Node<K,V> p;
3385     if ((p = next) == null)
3386     throw new NoSuchElementException();
3387     K k = p.key;
3388     V v = p.val;
3389     lastReturned = p;
3390     advance();
3391     return new MapEntry<K,V>(k, v, map);
3392     }
3393     }
3394 dl 1.119
3395     /**
3396 dl 1.222 * Exported Entry for EntryIterator
3397 dl 1.119 */
3398 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3399     final K key; // non-null
3400     V val; // non-null
3401     final ConcurrentHashMap<K,V> map;
3402     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3403     this.key = key;
3404     this.val = val;
3405     this.map = map;
3406     }
3407     public K getKey() { return key; }
3408     public V getValue() { return val; }
3409     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3410     public String toString() { return key + "=" + val; }
3411 dl 1.119
3412 dl 1.222 public boolean equals(Object o) {
3413     Object k, v; Map.Entry<?,?> e;
3414     return ((o instanceof Map.Entry) &&
3415     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3416     (v = e.getValue()) != null &&
3417     (k == key || k.equals(key)) &&
3418     (v == val || v.equals(val)));
3419     }
3420 dl 1.119
3421 dl 1.222 /**
3422     * Sets our entry's value and writes through to the map. The
3423     * value to return is somewhat arbitrary here. Since we do not
3424     * necessarily track asynchronous changes, the most recent
3425     * "previous" value could be different from what we return (or
3426     * could even have been removed, in which case the put will
3427     * re-establish). We do not and cannot guarantee more.
3428     */
3429     public V setValue(V value) {
3430     if (value == null) throw new NullPointerException();
3431     V v = val;
3432     val = value;
3433     map.put(key, value);
3434     return v;
3435     }
3436 dl 1.119 }
3437    
3438 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3439     implements Spliterator<K> {
3440     long est; // size estimate
3441     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3442     long est) {
3443     super(tab, size, index, limit);
3444     this.est = est;
3445     }
3446 dl 1.119
3447 dl 1.222 public Spliterator<K> trySplit() {
3448     int i, f, h;
3449     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3450     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3451     f, est >>>= 1);
3452 dl 1.119 }
3453    
3454 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3455     if (action == null) throw new NullPointerException();
3456     for (Node<K,V> p; (p = advance()) != null;)
3457     action.accept(p.key);
3458 dl 1.119 }
3459    
3460 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3461     if (action == null) throw new NullPointerException();
3462     Node<K,V> p;
3463     if ((p = advance()) == null)
3464 dl 1.119 return false;
3465 dl 1.222 action.accept(p.key);
3466     return true;
3467 dl 1.119 }
3468    
3469 dl 1.222 public long estimateSize() { return est; }
3470 dl 1.119
3471 dl 1.222 public int characteristics() {
3472     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3473     Spliterator.NONNULL;
3474     }
3475 dl 1.142 }
3476 dl 1.119
3477 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3478     implements Spliterator<V> {
3479     long est; // size estimate
3480     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3481     long est) {
3482     super(tab, size, index, limit);
3483     this.est = est;
3484 dl 1.209 }
3485    
3486 dl 1.222 public Spliterator<V> trySplit() {
3487     int i, f, h;
3488     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3489     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3490     f, est >>>= 1);
3491 dl 1.142 }
3492 dl 1.119
3493 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3494     if (action == null) throw new NullPointerException();
3495     for (Node<K,V> p; (p = advance()) != null;)
3496     action.accept(p.val);
3497     }
3498 dl 1.119
3499 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3500     if (action == null) throw new NullPointerException();
3501     Node<K,V> p;
3502     if ((p = advance()) == null)
3503     return false;
3504     action.accept(p.val);
3505     return true;
3506 dl 1.119 }
3507 dl 1.222
3508     public long estimateSize() { return est; }
3509    
3510     public int characteristics() {
3511     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3512 dl 1.119 }
3513 dl 1.142 }
3514 dl 1.119
3515 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3516     implements Spliterator<Map.Entry<K,V>> {
3517     final ConcurrentHashMap<K,V> map; // To export MapEntry
3518     long est; // size estimate
3519     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3520     long est, ConcurrentHashMap<K,V> map) {
3521     super(tab, size, index, limit);
3522     this.map = map;
3523     this.est = est;
3524     }
3525    
3526     public Spliterator<Map.Entry<K,V>> trySplit() {
3527     int i, f, h;
3528     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3529     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3530     f, est >>>= 1, map);
3531     }
3532 dl 1.142
3533 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3534     if (action == null) throw new NullPointerException();
3535     for (Node<K,V> p; (p = advance()) != null; )
3536     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3537     }
3538 dl 1.210
3539 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3540     if (action == null) throw new NullPointerException();
3541     Node<K,V> p;
3542     if ((p = advance()) == null)
3543     return false;
3544     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3545     return true;
3546 dl 1.210 }
3547    
3548 dl 1.222 public long estimateSize() { return est; }
3549    
3550     public int characteristics() {
3551     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3552     Spliterator.NONNULL;
3553 dl 1.210 }
3554     }
3555    
3556     // Parallel bulk operations
3557    
3558     /**
3559     * Computes initial batch value for bulk tasks. The returned value
3560     * is approximately exp2 of the number of times (minus one) to
3561     * split task by two before executing leaf action. This value is
3562     * faster to compute and more convenient to use as a guide to
3563     * splitting than is the depth, since it is used while dividing by
3564     * two anyway.
3565     */
3566     final int batchFor(long b) {
3567     long n;
3568     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3569     return 0;
3570     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3571     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3572     }
3573 dl 1.151
3574 dl 1.119 /**
3575 dl 1.137 * Performs the given action for each (key, value).
3576 dl 1.119 *
3577 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3578 jsr166 1.213 * needed for this operation to be executed in parallel
3579 dl 1.137 * @param action the action
3580 jsr166 1.220 * @since 1.8
3581 dl 1.119 */
3582 dl 1.210 public void forEach(long parallelismThreshold,
3583     BiConsumer<? super K,? super V> action) {
3584 dl 1.151 if (action == null) throw new NullPointerException();
3585 dl 1.210 new ForEachMappingTask<K,V>
3586     (null, batchFor(parallelismThreshold), 0, 0, table,
3587     action).invoke();
3588 dl 1.119 }
3589    
3590     /**
3591 dl 1.137 * Performs the given action for each non-null transformation
3592     * of each (key, value).
3593     *
3594 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3595 jsr166 1.213 * needed for this operation to be executed in parallel
3596 dl 1.137 * @param transformer a function returning the transformation
3597 jsr166 1.169 * for an element, or null if there is no transformation (in
3598 jsr166 1.172 * which case the action is not applied)
3599 dl 1.137 * @param action the action
3600 jsr166 1.237 * @param <U> the return type of the transformer
3601 jsr166 1.220 * @since 1.8
3602 dl 1.119 */
3603 dl 1.210 public <U> void forEach(long parallelismThreshold,
3604     BiFunction<? super K, ? super V, ? extends U> transformer,
3605     Consumer<? super U> action) {
3606 dl 1.151 if (transformer == null || action == null)
3607     throw new NullPointerException();
3608 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3609     (null, batchFor(parallelismThreshold), 0, 0, table,
3610     transformer, action).invoke();
3611 dl 1.137 }
3612    
3613     /**
3614     * Returns a non-null result from applying the given search
3615 dl 1.210 * function on each (key, value), or null if none. Upon
3616     * success, further element processing is suppressed and the
3617     * results of any other parallel invocations of the search
3618     * function are ignored.
3619 dl 1.137 *
3620 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3621 jsr166 1.213 * needed for this operation to be executed in parallel
3622 dl 1.137 * @param searchFunction a function returning a non-null
3623     * result on success, else null
3624 jsr166 1.237 * @param <U> the return type of the search function
3625 dl 1.137 * @return a non-null result from applying the given search
3626     * function on each (key, value), or null if none
3627 jsr166 1.220 * @since 1.8
3628 dl 1.137 */
3629 dl 1.210 public <U> U search(long parallelismThreshold,
3630     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3631 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3632 dl 1.210 return new SearchMappingsTask<K,V,U>
3633     (null, batchFor(parallelismThreshold), 0, 0, table,
3634     searchFunction, new AtomicReference<U>()).invoke();
3635 dl 1.137 }
3636    
3637     /**
3638     * Returns the result of accumulating the given transformation
3639     * of all (key, value) pairs using the given reducer to
3640     * combine values, or null if none.
3641     *
3642 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3643 jsr166 1.213 * needed for this operation to be executed in parallel
3644 dl 1.137 * @param transformer a function returning the transformation
3645 jsr166 1.169 * for an element, or null if there is no transformation (in
3646 jsr166 1.172 * which case it is not combined)
3647 dl 1.137 * @param reducer a commutative associative combining function
3648 jsr166 1.237 * @param <U> the return type of the transformer
3649 dl 1.137 * @return the result of accumulating the given transformation
3650     * of all (key, value) pairs
3651 jsr166 1.220 * @since 1.8
3652 dl 1.137 */
3653 dl 1.210 public <U> U reduce(long parallelismThreshold,
3654     BiFunction<? super K, ? super V, ? extends U> transformer,
3655     BiFunction<? super U, ? super U, ? extends U> reducer) {
3656 dl 1.151 if (transformer == null || reducer == null)
3657     throw new NullPointerException();
3658 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3659     (null, batchFor(parallelismThreshold), 0, 0, table,
3660     null, transformer, reducer).invoke();
3661 dl 1.137 }
3662    
3663     /**
3664     * Returns the result of accumulating the given transformation
3665     * of all (key, value) pairs using the given reducer to
3666     * combine values, and the given basis as an identity value.
3667     *
3668 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3669 jsr166 1.213 * needed for this operation to be executed in parallel
3670 dl 1.137 * @param transformer a function returning the transformation
3671     * for an element
3672     * @param basis the identity (initial default value) for the reduction
3673     * @param reducer a commutative associative combining function
3674     * @return the result of accumulating the given transformation
3675     * of all (key, value) pairs
3676 jsr166 1.220 * @since 1.8
3677 dl 1.137 */
3678 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3679     ToDoubleBiFunction<? super K, ? super V> transformer,
3680     double basis,
3681     DoubleBinaryOperator reducer) {
3682 dl 1.151 if (transformer == null || reducer == null)
3683     throw new NullPointerException();
3684 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3685     (null, batchFor(parallelismThreshold), 0, 0, table,
3686     null, transformer, basis, reducer).invoke();
3687 dl 1.137 }
3688 dl 1.119
3689 dl 1.137 /**
3690     * Returns the result of accumulating the given transformation
3691     * of all (key, value) pairs using the given reducer to
3692     * combine values, and the given basis as an identity value.
3693     *
3694 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3695 jsr166 1.213 * needed for this operation to be executed in parallel
3696 dl 1.137 * @param transformer a function returning the transformation
3697     * for an element
3698     * @param basis the identity (initial default value) for the reduction
3699     * @param reducer a commutative associative combining function
3700     * @return the result of accumulating the given transformation
3701     * of all (key, value) pairs
3702 jsr166 1.220 * @since 1.8
3703 dl 1.137 */
3704 dl 1.210 public long reduceToLong(long parallelismThreshold,
3705     ToLongBiFunction<? super K, ? super V> transformer,
3706     long basis,
3707     LongBinaryOperator reducer) {
3708 dl 1.151 if (transformer == null || reducer == null)
3709     throw new NullPointerException();
3710 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3711     (null, batchFor(parallelismThreshold), 0, 0, table,
3712     null, transformer, basis, reducer).invoke();
3713 dl 1.137 }
3714    
3715     /**
3716     * Returns the result of accumulating the given transformation
3717     * of all (key, value) pairs using the given reducer to
3718     * combine values, and the given basis as an identity value.
3719     *
3720 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3721 jsr166 1.213 * needed for this operation to be executed in parallel
3722 dl 1.137 * @param transformer a function returning the transformation
3723     * for an element
3724     * @param basis the identity (initial default value) for the reduction
3725     * @param reducer a commutative associative combining function
3726     * @return the result of accumulating the given transformation
3727     * of all (key, value) pairs
3728 jsr166 1.220 * @since 1.8
3729 dl 1.137 */
3730 dl 1.210 public int reduceToInt(long parallelismThreshold,
3731     ToIntBiFunction<? super K, ? super V> transformer,
3732     int basis,
3733     IntBinaryOperator reducer) {
3734 dl 1.151 if (transformer == null || reducer == null)
3735     throw new NullPointerException();
3736 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3737     (null, batchFor(parallelismThreshold), 0, 0, table,
3738     null, transformer, basis, reducer).invoke();
3739 dl 1.137 }
3740    
3741     /**
3742     * Performs the given action for each key.
3743     *
3744 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3745 jsr166 1.213 * needed for this operation to be executed in parallel
3746 dl 1.137 * @param action the action
3747 jsr166 1.220 * @since 1.8
3748 dl 1.137 */
3749 dl 1.210 public void forEachKey(long parallelismThreshold,
3750     Consumer<? super K> action) {
3751     if (action == null) throw new NullPointerException();
3752     new ForEachKeyTask<K,V>
3753     (null, batchFor(parallelismThreshold), 0, 0, table,
3754     action).invoke();
3755 dl 1.137 }
3756 dl 1.119
3757 dl 1.137 /**
3758     * Performs the given action for each non-null transformation
3759     * of each key.
3760     *
3761 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3762 jsr166 1.213 * needed for this operation to be executed in parallel
3763 dl 1.137 * @param transformer a function returning the transformation
3764 jsr166 1.169 * for an element, or null if there is no transformation (in
3765 jsr166 1.172 * which case the action is not applied)
3766 dl 1.137 * @param action the action
3767 jsr166 1.237 * @param <U> the return type of the transformer
3768 jsr166 1.220 * @since 1.8
3769 dl 1.137 */
3770 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3771     Function<? super K, ? extends U> transformer,
3772     Consumer<? super U> action) {
3773 dl 1.151 if (transformer == null || action == null)
3774     throw new NullPointerException();
3775 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3776     (null, batchFor(parallelismThreshold), 0, 0, table,
3777     transformer, action).invoke();
3778 dl 1.137 }
3779 dl 1.119
3780 dl 1.137 /**
3781     * Returns a non-null result from applying the given search
3782 dl 1.210 * function on each key, or null if none. Upon success,
3783     * further element processing is suppressed and the results of
3784     * any other parallel invocations of the search function are
3785     * ignored.
3786 dl 1.137 *
3787 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3788 jsr166 1.213 * needed for this operation to be executed in parallel
3789 dl 1.137 * @param searchFunction a function returning a non-null
3790     * result on success, else null
3791 jsr166 1.237 * @param <U> the return type of the search function
3792 dl 1.137 * @return a non-null result from applying the given search
3793     * function on each key, or null if none
3794 jsr166 1.220 * @since 1.8
3795 dl 1.137 */
3796 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3797     Function<? super K, ? extends U> searchFunction) {
3798     if (searchFunction == null) throw new NullPointerException();
3799     return new SearchKeysTask<K,V,U>
3800     (null, batchFor(parallelismThreshold), 0, 0, table,
3801     searchFunction, new AtomicReference<U>()).invoke();
3802 dl 1.137 }
3803 dl 1.119
3804 dl 1.137 /**
3805     * Returns the result of accumulating all keys using the given
3806     * reducer to combine values, or null if none.
3807     *
3808 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3809 jsr166 1.213 * needed for this operation to be executed in parallel
3810 dl 1.137 * @param reducer a commutative associative combining function
3811     * @return the result of accumulating all keys using the given
3812     * reducer to combine values, or null if none
3813 jsr166 1.220 * @since 1.8
3814 dl 1.137 */
3815 dl 1.210 public K reduceKeys(long parallelismThreshold,
3816     BiFunction<? super K, ? super K, ? extends K> reducer) {
3817 dl 1.151 if (reducer == null) throw new NullPointerException();
3818 dl 1.210 return new ReduceKeysTask<K,V>
3819     (null, batchFor(parallelismThreshold), 0, 0, table,
3820     null, reducer).invoke();
3821 dl 1.137 }
3822 dl 1.119
3823 dl 1.137 /**
3824     * Returns the result of accumulating the given transformation
3825     * of all keys using the given reducer to combine values, or
3826     * null if none.
3827     *
3828 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3829 jsr166 1.213 * needed for this operation to be executed in parallel
3830 dl 1.137 * @param transformer a function returning the transformation
3831 jsr166 1.169 * for an element, or null if there is no transformation (in
3832 jsr166 1.172 * which case it is not combined)
3833 dl 1.137 * @param reducer a commutative associative combining function
3834 jsr166 1.237 * @param <U> the return type of the transformer
3835 dl 1.137 * @return the result of accumulating the given transformation
3836     * of all keys
3837 jsr166 1.220 * @since 1.8
3838 dl 1.137 */
3839 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3840     Function<? super K, ? extends U> transformer,
3841 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3842 dl 1.151 if (transformer == null || reducer == null)
3843     throw new NullPointerException();
3844 dl 1.210 return new MapReduceKeysTask<K,V,U>
3845     (null, batchFor(parallelismThreshold), 0, 0, table,
3846     null, transformer, reducer).invoke();
3847 dl 1.137 }
3848 dl 1.119
3849 dl 1.137 /**
3850     * Returns the result of accumulating the given transformation
3851     * of all keys using the given reducer to combine values, and
3852     * the given basis as an identity value.
3853     *
3854 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3855 jsr166 1.213 * needed for this operation to be executed in parallel
3856 dl 1.137 * @param transformer a function returning the transformation
3857     * for an element
3858     * @param basis the identity (initial default value) for the reduction
3859     * @param reducer a commutative associative combining function
3860 jsr166 1.157 * @return the result of accumulating the given transformation
3861 dl 1.137 * of all keys
3862 jsr166 1.220 * @since 1.8
3863 dl 1.137 */
3864 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3865     ToDoubleFunction<? super K> transformer,
3866     double basis,
3867     DoubleBinaryOperator reducer) {
3868 dl 1.151 if (transformer == null || reducer == null)
3869     throw new NullPointerException();
3870 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3871     (null, batchFor(parallelismThreshold), 0, 0, table,
3872     null, transformer, basis, reducer).invoke();
3873 dl 1.137 }
3874 dl 1.119
3875 dl 1.137 /**
3876     * Returns the result of accumulating the given transformation
3877     * of all keys using the given reducer to combine values, and
3878     * the given basis as an identity value.
3879     *
3880 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3881 jsr166 1.213 * needed for this operation to be executed in parallel
3882 dl 1.137 * @param transformer a function returning the transformation
3883     * for an element
3884     * @param basis the identity (initial default value) for the reduction
3885     * @param reducer a commutative associative combining function
3886     * @return the result of accumulating the given transformation
3887     * of all keys
3888 jsr166 1.220 * @since 1.8
3889 dl 1.137 */
3890 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3891     ToLongFunction<? super K> transformer,
3892     long basis,
3893     LongBinaryOperator reducer) {
3894 dl 1.151 if (transformer == null || reducer == null)
3895     throw new NullPointerException();
3896 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3897     (null, batchFor(parallelismThreshold), 0, 0, table,
3898     null, transformer, basis, reducer).invoke();
3899 dl 1.137 }
3900 dl 1.119
3901 dl 1.137 /**
3902     * Returns the result of accumulating the given transformation
3903     * of all keys using the given reducer to combine values, and
3904     * the given basis as an identity value.
3905     *
3906 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3907 jsr166 1.213 * needed for this operation to be executed in parallel
3908 dl 1.137 * @param transformer a function returning the transformation
3909     * for an element
3910     * @param basis the identity (initial default value) for the reduction
3911     * @param reducer a commutative associative combining function
3912     * @return the result of accumulating the given transformation
3913     * of all keys
3914 jsr166 1.220 * @since 1.8
3915 dl 1.137 */
3916 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
3917     ToIntFunction<? super K> transformer,
3918     int basis,
3919     IntBinaryOperator reducer) {
3920 dl 1.151 if (transformer == null || reducer == null)
3921     throw new NullPointerException();
3922 dl 1.210 return new MapReduceKeysToIntTask<K,V>
3923     (null, batchFor(parallelismThreshold), 0, 0, table,
3924     null, transformer, basis, reducer).invoke();
3925 dl 1.137 }
3926 dl 1.119
3927 dl 1.137 /**
3928     * Performs the given action for each value.
3929     *
3930 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3931 jsr166 1.213 * needed for this operation to be executed in parallel
3932 dl 1.137 * @param action the action
3933 jsr166 1.220 * @since 1.8
3934 dl 1.137 */
3935 dl 1.210 public void forEachValue(long parallelismThreshold,
3936     Consumer<? super V> action) {
3937     if (action == null)
3938     throw new NullPointerException();
3939     new ForEachValueTask<K,V>
3940     (null, batchFor(parallelismThreshold), 0, 0, table,
3941     action).invoke();
3942 dl 1.137 }
3943 dl 1.119
3944 dl 1.137 /**
3945     * Performs the given action for each non-null transformation
3946     * of each value.
3947     *
3948 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3949 jsr166 1.213 * needed for this operation to be executed in parallel
3950 dl 1.137 * @param transformer a function returning the transformation
3951 jsr166 1.169 * for an element, or null if there is no transformation (in
3952 jsr166 1.172 * which case the action is not applied)
3953 jsr166 1.179 * @param action the action
3954 jsr166 1.237 * @param <U> the return type of the transformer
3955 jsr166 1.220 * @since 1.8
3956 dl 1.137 */
3957 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
3958     Function<? super V, ? extends U> transformer,
3959     Consumer<? super U> action) {
3960 dl 1.151 if (transformer == null || action == null)
3961     throw new NullPointerException();
3962 dl 1.210 new ForEachTransformedValueTask<K,V,U>
3963     (null, batchFor(parallelismThreshold), 0, 0, table,
3964     transformer, action).invoke();
3965 dl 1.137 }
3966 dl 1.119
3967 dl 1.137 /**
3968     * Returns a non-null result from applying the given search
3969 dl 1.210 * function on each value, or null if none. Upon success,
3970     * further element processing is suppressed and the results of
3971     * any other parallel invocations of the search function are
3972     * ignored.
3973 dl 1.137 *
3974 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3975 jsr166 1.213 * needed for this operation to be executed in parallel
3976 dl 1.137 * @param searchFunction a function returning a non-null
3977     * result on success, else null
3978 jsr166 1.237 * @param <U> the return type of the search function
3979 dl 1.137 * @return a non-null result from applying the given search
3980     * function on each value, or null if none
3981 jsr166 1.220 * @since 1.8
3982 dl 1.137 */
3983 dl 1.210 public <U> U searchValues(long parallelismThreshold,
3984     Function<? super V, ? extends U> searchFunction) {
3985 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3986 dl 1.210 return new SearchValuesTask<K,V,U>
3987     (null, batchFor(parallelismThreshold), 0, 0, table,
3988     searchFunction, new AtomicReference<U>()).invoke();
3989 dl 1.137 }
3990 dl 1.119
3991 dl 1.137 /**
3992     * Returns the result of accumulating all values using the
3993     * given reducer to combine values, or null if none.
3994     *
3995 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3996 jsr166 1.213 * needed for this operation to be executed in parallel
3997 dl 1.137 * @param reducer a commutative associative combining function
3998 jsr166 1.157 * @return the result of accumulating all values
3999 jsr166 1.220 * @since 1.8
4000 dl 1.137 */
4001 dl 1.210 public V reduceValues(long parallelismThreshold,
4002     BiFunction<? super V, ? super V, ? extends V> reducer) {
4003 dl 1.151 if (reducer == null) throw new NullPointerException();
4004 dl 1.210 return new ReduceValuesTask<K,V>
4005     (null, batchFor(parallelismThreshold), 0, 0, table,
4006     null, reducer).invoke();
4007 dl 1.137 }
4008 dl 1.119
4009 dl 1.137 /**
4010     * Returns the result of accumulating the given transformation
4011     * of all values using the given reducer to combine values, or
4012     * null if none.
4013     *
4014 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4015 jsr166 1.213 * needed for this operation to be executed in parallel
4016 dl 1.137 * @param transformer a function returning the transformation
4017 jsr166 1.169 * for an element, or null if there is no transformation (in
4018 jsr166 1.172 * which case it is not combined)
4019 dl 1.137 * @param reducer a commutative associative combining function
4020 jsr166 1.237 * @param <U> the return type of the transformer
4021 dl 1.137 * @return the result of accumulating the given transformation
4022     * of all values
4023 jsr166 1.220 * @since 1.8
4024 dl 1.137 */
4025 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4026     Function<? super V, ? extends U> transformer,
4027     BiFunction<? super U, ? super U, ? extends U> reducer) {
4028 dl 1.151 if (transformer == null || reducer == null)
4029     throw new NullPointerException();
4030 dl 1.210 return new MapReduceValuesTask<K,V,U>
4031     (null, batchFor(parallelismThreshold), 0, 0, table,
4032     null, transformer, reducer).invoke();
4033 dl 1.137 }
4034 dl 1.119
4035 dl 1.137 /**
4036     * Returns the result of accumulating the given transformation
4037     * of all values using the given reducer to combine values,
4038     * and the given basis as an identity value.
4039     *
4040 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4041 jsr166 1.213 * needed for this operation to be executed in parallel
4042 dl 1.137 * @param transformer a function returning the transformation
4043     * for an element
4044     * @param basis the identity (initial default value) for the reduction
4045     * @param reducer a commutative associative combining function
4046     * @return the result of accumulating the given transformation
4047     * of all values
4048 jsr166 1.220 * @since 1.8
4049 dl 1.137 */
4050 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4051     ToDoubleFunction<? super V> transformer,
4052     double basis,
4053     DoubleBinaryOperator reducer) {
4054 dl 1.151 if (transformer == null || reducer == null)
4055     throw new NullPointerException();
4056 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4057     (null, batchFor(parallelismThreshold), 0, 0, table,
4058     null, transformer, basis, reducer).invoke();
4059 dl 1.137 }
4060 dl 1.119
4061 dl 1.137 /**
4062     * Returns the result of accumulating the given transformation
4063     * of all values using the given reducer to combine values,
4064     * and the given basis as an identity value.
4065     *
4066 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4067 jsr166 1.213 * needed for this operation to be executed in parallel
4068 dl 1.137 * @param transformer a function returning the transformation
4069     * for an element
4070     * @param basis the identity (initial default value) for the reduction
4071     * @param reducer a commutative associative combining function
4072     * @return the result of accumulating the given transformation
4073     * of all values
4074 jsr166 1.220 * @since 1.8
4075 dl 1.137 */
4076 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4077     ToLongFunction<? super V> transformer,
4078     long basis,
4079     LongBinaryOperator reducer) {
4080 dl 1.151 if (transformer == null || reducer == null)
4081     throw new NullPointerException();
4082 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4083     (null, batchFor(parallelismThreshold), 0, 0, table,
4084     null, transformer, basis, reducer).invoke();
4085 dl 1.137 }
4086 dl 1.119
4087 dl 1.137 /**
4088     * Returns the result of accumulating the given transformation
4089     * of all values using the given reducer to combine values,
4090     * and the given basis as an identity value.
4091     *
4092 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4093 jsr166 1.213 * needed for this operation to be executed in parallel
4094 dl 1.137 * @param transformer a function returning the transformation
4095     * for an element
4096     * @param basis the identity (initial default value) for the reduction
4097     * @param reducer a commutative associative combining function
4098     * @return the result of accumulating the given transformation
4099     * of all values
4100 jsr166 1.220 * @since 1.8
4101 dl 1.137 */
4102 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4103     ToIntFunction<? super V> transformer,
4104     int basis,
4105     IntBinaryOperator reducer) {
4106 dl 1.151 if (transformer == null || reducer == null)
4107     throw new NullPointerException();
4108 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4109     (null, batchFor(parallelismThreshold), 0, 0, table,
4110     null, transformer, basis, reducer).invoke();
4111 dl 1.137 }
4112 dl 1.119
4113 dl 1.137 /**
4114     * Performs the given action for each entry.
4115     *
4116 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4117 jsr166 1.213 * needed for this operation to be executed in parallel
4118 dl 1.137 * @param action the action
4119 jsr166 1.220 * @since 1.8
4120 dl 1.137 */
4121 dl 1.210 public void forEachEntry(long parallelismThreshold,
4122     Consumer<? super Map.Entry<K,V>> action) {
4123 dl 1.151 if (action == null) throw new NullPointerException();
4124 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4125     action).invoke();
4126 dl 1.137 }
4127 dl 1.119
4128 dl 1.137 /**
4129     * Performs the given action for each non-null transformation
4130     * of each entry.
4131     *
4132 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4133 jsr166 1.213 * needed for this operation to be executed in parallel
4134 dl 1.137 * @param transformer a function returning the transformation
4135 jsr166 1.169 * for an element, or null if there is no transformation (in
4136 jsr166 1.172 * which case the action is not applied)
4137 dl 1.137 * @param action the action
4138 jsr166 1.237 * @param <U> the return type of the transformer
4139 jsr166 1.220 * @since 1.8
4140 dl 1.137 */
4141 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4142     Function<Map.Entry<K,V>, ? extends U> transformer,
4143     Consumer<? super U> action) {
4144 dl 1.151 if (transformer == null || action == null)
4145     throw new NullPointerException();
4146 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4147     (null, batchFor(parallelismThreshold), 0, 0, table,
4148     transformer, action).invoke();
4149 dl 1.137 }
4150 dl 1.119
4151 dl 1.137 /**
4152     * Returns a non-null result from applying the given search
4153 dl 1.210 * function on each entry, or null if none. Upon success,
4154     * further element processing is suppressed and the results of
4155     * any other parallel invocations of the search function are
4156     * ignored.
4157 dl 1.137 *
4158 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4159 jsr166 1.213 * needed for this operation to be executed in parallel
4160 dl 1.137 * @param searchFunction a function returning a non-null
4161     * result on success, else null
4162 jsr166 1.237 * @param <U> the return type of the search function
4163 dl 1.137 * @return a non-null result from applying the given search
4164     * function on each entry, or null if none
4165 jsr166 1.220 * @since 1.8
4166 dl 1.137 */
4167 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4168     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4169 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4170 dl 1.210 return new SearchEntriesTask<K,V,U>
4171     (null, batchFor(parallelismThreshold), 0, 0, table,
4172     searchFunction, new AtomicReference<U>()).invoke();
4173 dl 1.137 }
4174 dl 1.119
4175 dl 1.137 /**
4176     * Returns the result of accumulating all entries using the
4177     * given reducer to combine values, or null if none.
4178     *
4179 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4180 jsr166 1.213 * needed for this operation to be executed in parallel
4181 dl 1.137 * @param reducer a commutative associative combining function
4182     * @return the result of accumulating all entries
4183 jsr166 1.220 * @since 1.8
4184 dl 1.137 */
4185 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4186     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4187 dl 1.151 if (reducer == null) throw new NullPointerException();
4188 dl 1.210 return new ReduceEntriesTask<K,V>
4189     (null, batchFor(parallelismThreshold), 0, 0, table,
4190     null, reducer).invoke();
4191 dl 1.137 }
4192 dl 1.119
4193 dl 1.137 /**
4194     * Returns the result of accumulating the given transformation
4195     * of all entries using the given reducer to combine values,
4196     * or null if none.
4197     *
4198 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4199 jsr166 1.213 * needed for this operation to be executed in parallel
4200 dl 1.137 * @param transformer a function returning the transformation
4201 jsr166 1.169 * for an element, or null if there is no transformation (in
4202 jsr166 1.172 * which case it is not combined)
4203 dl 1.137 * @param reducer a commutative associative combining function
4204 jsr166 1.237 * @param <U> the return type of the transformer
4205 dl 1.137 * @return the result of accumulating the given transformation
4206     * of all entries
4207 jsr166 1.220 * @since 1.8
4208 dl 1.137 */
4209 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4210     Function<Map.Entry<K,V>, ? extends U> transformer,
4211     BiFunction<? super U, ? super U, ? extends U> reducer) {
4212 dl 1.151 if (transformer == null || reducer == null)
4213     throw new NullPointerException();
4214 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4215     (null, batchFor(parallelismThreshold), 0, 0, table,
4216     null, transformer, reducer).invoke();
4217 dl 1.137 }
4218 dl 1.119
4219 dl 1.137 /**
4220     * Returns the result of accumulating the given transformation
4221     * of all entries using the given reducer to combine values,
4222     * and the given basis as an identity value.
4223     *
4224 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4225 jsr166 1.213 * needed for this operation to be executed in parallel
4226 dl 1.137 * @param transformer a function returning the transformation
4227     * for an element
4228     * @param basis the identity (initial default value) for the reduction
4229     * @param reducer a commutative associative combining function
4230     * @return the result of accumulating the given transformation
4231     * of all entries
4232 jsr166 1.220 * @since 1.8
4233 dl 1.137 */
4234 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4235     ToDoubleFunction<Map.Entry<K,V>> transformer,
4236     double basis,
4237     DoubleBinaryOperator reducer) {
4238 dl 1.151 if (transformer == null || reducer == null)
4239     throw new NullPointerException();
4240 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4241     (null, batchFor(parallelismThreshold), 0, 0, table,
4242     null, transformer, basis, reducer).invoke();
4243 dl 1.137 }
4244 dl 1.119
4245 dl 1.137 /**
4246     * Returns the result of accumulating the given transformation
4247     * of all entries using the given reducer to combine values,
4248     * and the given basis as an identity value.
4249     *
4250 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4251 jsr166 1.213 * needed for this operation to be executed in parallel
4252 dl 1.137 * @param transformer a function returning the transformation
4253     * for an element
4254     * @param basis the identity (initial default value) for the reduction
4255     * @param reducer a commutative associative combining function
4256 jsr166 1.157 * @return the result of accumulating the given transformation
4257 dl 1.137 * of all entries
4258 jsr166 1.221 * @since 1.8
4259 dl 1.137 */
4260 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4261     ToLongFunction<Map.Entry<K,V>> transformer,
4262     long basis,
4263     LongBinaryOperator reducer) {
4264 dl 1.151 if (transformer == null || reducer == null)
4265     throw new NullPointerException();
4266 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4267     (null, batchFor(parallelismThreshold), 0, 0, table,
4268     null, transformer, basis, reducer).invoke();
4269 dl 1.137 }
4270 dl 1.119
4271 dl 1.137 /**
4272     * Returns the result of accumulating the given transformation
4273     * of all entries using the given reducer to combine values,
4274     * and the given basis as an identity value.
4275     *
4276 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4277 jsr166 1.213 * needed for this operation to be executed in parallel
4278 dl 1.137 * @param transformer a function returning the transformation
4279     * for an element
4280     * @param basis the identity (initial default value) for the reduction
4281     * @param reducer a commutative associative combining function
4282     * @return the result of accumulating the given transformation
4283     * of all entries
4284 jsr166 1.221 * @since 1.8
4285 dl 1.137 */
4286 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4287     ToIntFunction<Map.Entry<K,V>> transformer,
4288     int basis,
4289     IntBinaryOperator reducer) {
4290 dl 1.151 if (transformer == null || reducer == null)
4291     throw new NullPointerException();
4292 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4293     (null, batchFor(parallelismThreshold), 0, 0, table,
4294     null, transformer, basis, reducer).invoke();
4295 dl 1.119 }
4296    
4297 dl 1.209
4298 dl 1.210 /* ----------------Views -------------- */
4299 dl 1.142
4300     /**
4301 dl 1.210 * Base class for views.
4302 dl 1.142 */
4303 dl 1.210 abstract static class CollectionView<K,V,E>
4304     implements Collection<E>, java.io.Serializable {
4305     private static final long serialVersionUID = 7249069246763182397L;
4306     final ConcurrentHashMap<K,V> map;
4307     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4308    
4309     /**
4310     * Returns the map backing this view.
4311     *
4312     * @return the map backing this view
4313     */
4314     public ConcurrentHashMap<K,V> getMap() { return map; }
4315 dl 1.142
4316 dl 1.210 /**
4317     * Removes all of the elements from this view, by removing all
4318     * the mappings from the map backing this view.
4319 jsr166 1.184 */
4320     public final void clear() { map.clear(); }
4321     public final int size() { return map.size(); }
4322     public final boolean isEmpty() { return map.isEmpty(); }
4323 dl 1.151
4324     // implementations below rely on concrete classes supplying these
4325 jsr166 1.184 // abstract methods
4326     /**
4327 jsr166 1.242 * Returns an iterator over the elements in this collection.
4328     *
4329     * <p>The returned iterator is
4330     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4331     *
4332     * @return an iterator over the elements in this collection
4333 jsr166 1.184 */
4334     public abstract Iterator<E> iterator();
4335 jsr166 1.165 public abstract boolean contains(Object o);
4336     public abstract boolean remove(Object o);
4337 dl 1.151
4338     private static final String oomeMsg = "Required array size too large";
4339 dl 1.142
4340     public final Object[] toArray() {
4341     long sz = map.mappingCount();
4342 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4343 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4344     int n = (int)sz;
4345     Object[] r = new Object[n];
4346     int i = 0;
4347 jsr166 1.184 for (E e : this) {
4348 dl 1.142 if (i == n) {
4349     if (n >= MAX_ARRAY_SIZE)
4350     throw new OutOfMemoryError(oomeMsg);
4351     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4352     n = MAX_ARRAY_SIZE;
4353     else
4354     n += (n >>> 1) + 1;
4355     r = Arrays.copyOf(r, n);
4356     }
4357 jsr166 1.184 r[i++] = e;
4358 dl 1.142 }
4359     return (i == n) ? r : Arrays.copyOf(r, i);
4360     }
4361    
4362 dl 1.222 @SuppressWarnings("unchecked")
4363 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4364 dl 1.142 long sz = map.mappingCount();
4365 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4366 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4367     int m = (int)sz;
4368     T[] r = (a.length >= m) ? a :
4369     (T[])java.lang.reflect.Array
4370     .newInstance(a.getClass().getComponentType(), m);
4371     int n = r.length;
4372     int i = 0;
4373 jsr166 1.184 for (E e : this) {
4374 dl 1.142 if (i == n) {
4375     if (n >= MAX_ARRAY_SIZE)
4376     throw new OutOfMemoryError(oomeMsg);
4377     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4378     n = MAX_ARRAY_SIZE;
4379     else
4380     n += (n >>> 1) + 1;
4381     r = Arrays.copyOf(r, n);
4382     }
4383 jsr166 1.184 r[i++] = (T)e;
4384 dl 1.142 }
4385     if (a == r && i < n) {
4386     r[i] = null; // null-terminate
4387     return r;
4388     }
4389     return (i == n) ? r : Arrays.copyOf(r, i);
4390     }
4391    
4392 jsr166 1.184 /**
4393     * Returns a string representation of this collection.
4394     * The string representation consists of the string representations
4395     * of the collection's elements in the order they are returned by
4396     * its iterator, enclosed in square brackets ({@code "[]"}).
4397     * Adjacent elements are separated by the characters {@code ", "}
4398     * (comma and space). Elements are converted to strings as by
4399     * {@link String#valueOf(Object)}.
4400     *
4401     * @return a string representation of this collection
4402     */
4403 dl 1.142 public final String toString() {
4404     StringBuilder sb = new StringBuilder();
4405     sb.append('[');
4406 jsr166 1.184 Iterator<E> it = iterator();
4407 dl 1.142 if (it.hasNext()) {
4408     for (;;) {
4409     Object e = it.next();
4410     sb.append(e == this ? "(this Collection)" : e);
4411     if (!it.hasNext())
4412     break;
4413     sb.append(',').append(' ');
4414     }
4415     }
4416     return sb.append(']').toString();
4417     }
4418    
4419     public final boolean containsAll(Collection<?> c) {
4420     if (c != this) {
4421 jsr166 1.184 for (Object e : c) {
4422 dl 1.142 if (e == null || !contains(e))
4423     return false;
4424     }
4425     }
4426     return true;
4427     }
4428    
4429     public final boolean removeAll(Collection<?> c) {
4430     boolean modified = false;
4431 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4432 dl 1.142 if (c.contains(it.next())) {
4433     it.remove();
4434     modified = true;
4435     }
4436     }
4437     return modified;
4438     }
4439    
4440     public final boolean retainAll(Collection<?> c) {
4441     boolean modified = false;
4442 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4443 dl 1.142 if (!c.contains(it.next())) {
4444     it.remove();
4445     modified = true;
4446     }
4447     }
4448     return modified;
4449     }
4450    
4451     }
4452    
4453     /**
4454     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4455     * which additions may optionally be enabled by mapping to a
4456 jsr166 1.185 * common value. This class cannot be directly instantiated.
4457     * See {@link #keySet() keySet()},
4458     * {@link #keySet(Object) keySet(V)},
4459     * {@link #newKeySet() newKeySet()},
4460     * {@link #newKeySet(int) newKeySet(int)}.
4461 jsr166 1.221 *
4462     * @since 1.8
4463 dl 1.142 */
4464 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4465     implements Set<K>, java.io.Serializable {
4466 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4467     private final V value;
4468 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4469 dl 1.142 super(map);
4470     this.value = value;
4471     }
4472    
4473     /**
4474     * Returns the default mapped value for additions,
4475     * or {@code null} if additions are not supported.
4476     *
4477     * @return the default mapped value for additions, or {@code null}
4478 jsr166 1.172 * if not supported
4479 dl 1.142 */
4480     public V getMappedValue() { return value; }
4481    
4482 jsr166 1.184 /**
4483     * {@inheritDoc}
4484     * @throws NullPointerException if the specified key is null
4485     */
4486     public boolean contains(Object o) { return map.containsKey(o); }
4487 dl 1.142
4488 jsr166 1.184 /**
4489     * Removes the key from this map view, by removing the key (and its
4490     * corresponding value) from the backing map. This method does
4491     * nothing if the key is not in the map.
4492     *
4493     * @param o the key to be removed from the backing map
4494     * @return {@code true} if the backing map contained the specified key
4495     * @throws NullPointerException if the specified key is null
4496     */
4497     public boolean remove(Object o) { return map.remove(o) != null; }
4498    
4499     /**
4500     * @return an iterator over the keys of the backing map
4501     */
4502 dl 1.210 public Iterator<K> iterator() {
4503     Node<K,V>[] t;
4504     ConcurrentHashMap<K,V> m = map;
4505     int f = (t = m.table) == null ? 0 : t.length;
4506     return new KeyIterator<K,V>(t, f, 0, f, m);
4507     }
4508 dl 1.142
4509     /**
4510 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4511     * the default mapped value in the backing map, if defined.
4512 dl 1.142 *
4513 jsr166 1.184 * @param e key to be added
4514     * @return {@code true} if this set changed as a result of the call
4515     * @throws NullPointerException if the specified key is null
4516     * @throws UnsupportedOperationException if no default mapped value
4517     * for additions was provided
4518 dl 1.142 */
4519     public boolean add(K e) {
4520     V v;
4521     if ((v = value) == null)
4522     throw new UnsupportedOperationException();
4523 dl 1.222 return map.putVal(e, v, true) == null;
4524 dl 1.142 }
4525 jsr166 1.184
4526     /**
4527     * Adds all of the elements in the specified collection to this set,
4528     * as if by calling {@link #add} on each one.
4529     *
4530     * @param c the elements to be inserted into this set
4531     * @return {@code true} if this set changed as a result of the call
4532     * @throws NullPointerException if the collection or any of its
4533     * elements are {@code null}
4534     * @throws UnsupportedOperationException if no default mapped value
4535     * for additions was provided
4536     */
4537 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4538     boolean added = false;
4539     V v;
4540     if ((v = value) == null)
4541     throw new UnsupportedOperationException();
4542     for (K e : c) {
4543 dl 1.222 if (map.putVal(e, v, true) == null)
4544 dl 1.142 added = true;
4545     }
4546     return added;
4547     }
4548 dl 1.153
4549 dl 1.210 public int hashCode() {
4550     int h = 0;
4551     for (K e : this)
4552     h += e.hashCode();
4553     return h;
4554 dl 1.191 }
4555    
4556 dl 1.210 public boolean equals(Object o) {
4557     Set<?> c;
4558     return ((o instanceof Set) &&
4559     ((c = (Set<?>)o) == this ||
4560     (containsAll(c) && c.containsAll(this))));
4561 dl 1.119 }
4562 jsr166 1.125
4563 dl 1.210 public Spliterator<K> spliterator() {
4564     Node<K,V>[] t;
4565     ConcurrentHashMap<K,V> m = map;
4566     long n = m.sumCount();
4567     int f = (t = m.table) == null ? 0 : t.length;
4568     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4569 dl 1.119 }
4570    
4571 dl 1.210 public void forEach(Consumer<? super K> action) {
4572     if (action == null) throw new NullPointerException();
4573     Node<K,V>[] t;
4574     if ((t = map.table) != null) {
4575     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4576     for (Node<K,V> p; (p = it.advance()) != null; )
4577 dl 1.222 action.accept(p.key);
4578 dl 1.210 }
4579 dl 1.119 }
4580 dl 1.210 }
4581 dl 1.119
4582 dl 1.210 /**
4583     * A view of a ConcurrentHashMap as a {@link Collection} of
4584     * values, in which additions are disabled. This class cannot be
4585     * directly instantiated. See {@link #values()}.
4586     */
4587     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4588     implements Collection<V>, java.io.Serializable {
4589     private static final long serialVersionUID = 2249069246763182397L;
4590     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4591     public final boolean contains(Object o) {
4592     return map.containsValue(o);
4593 dl 1.119 }
4594    
4595 dl 1.210 public final boolean remove(Object o) {
4596     if (o != null) {
4597     for (Iterator<V> it = iterator(); it.hasNext();) {
4598     if (o.equals(it.next())) {
4599     it.remove();
4600     return true;
4601     }
4602     }
4603     }
4604     return false;
4605 dl 1.119 }
4606    
4607 dl 1.210 public final Iterator<V> iterator() {
4608     ConcurrentHashMap<K,V> m = map;
4609     Node<K,V>[] t;
4610     int f = (t = m.table) == null ? 0 : t.length;
4611     return new ValueIterator<K,V>(t, f, 0, f, m);
4612 dl 1.119 }
4613    
4614 dl 1.210 public final boolean add(V e) {
4615     throw new UnsupportedOperationException();
4616     }
4617     public final boolean addAll(Collection<? extends V> c) {
4618     throw new UnsupportedOperationException();
4619 dl 1.119 }
4620    
4621 dl 1.210 public Spliterator<V> spliterator() {
4622     Node<K,V>[] t;
4623     ConcurrentHashMap<K,V> m = map;
4624     long n = m.sumCount();
4625     int f = (t = m.table) == null ? 0 : t.length;
4626     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4627 dl 1.119 }
4628    
4629 dl 1.210 public void forEach(Consumer<? super V> action) {
4630     if (action == null) throw new NullPointerException();
4631     Node<K,V>[] t;
4632     if ((t = map.table) != null) {
4633     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4634     for (Node<K,V> p; (p = it.advance()) != null; )
4635     action.accept(p.val);
4636     }
4637 dl 1.119 }
4638 dl 1.210 }
4639    
4640     /**
4641     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4642     * entries. This class cannot be directly instantiated. See
4643     * {@link #entrySet()}.
4644     */
4645     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4646     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4647     private static final long serialVersionUID = 2249069246763182397L;
4648     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4649 dl 1.119
4650 dl 1.210 public boolean contains(Object o) {
4651     Object k, v, r; Map.Entry<?,?> e;
4652     return ((o instanceof Map.Entry) &&
4653     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4654     (r = map.get(k)) != null &&
4655     (v = e.getValue()) != null &&
4656     (v == r || v.equals(r)));
4657 dl 1.119 }
4658    
4659 dl 1.210 public boolean remove(Object o) {
4660     Object k, v; Map.Entry<?,?> e;
4661     return ((o instanceof Map.Entry) &&
4662     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4663     (v = e.getValue()) != null &&
4664     map.remove(k, v));
4665 dl 1.119 }
4666    
4667     /**
4668 dl 1.210 * @return an iterator over the entries of the backing map
4669 dl 1.119 */
4670 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4671     ConcurrentHashMap<K,V> m = map;
4672     Node<K,V>[] t;
4673     int f = (t = m.table) == null ? 0 : t.length;
4674     return new EntryIterator<K,V>(t, f, 0, f, m);
4675 dl 1.119 }
4676    
4677 dl 1.210 public boolean add(Entry<K,V> e) {
4678 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4679 dl 1.119 }
4680    
4681 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4682     boolean added = false;
4683     for (Entry<K,V> e : c) {
4684     if (add(e))
4685     added = true;
4686     }
4687     return added;
4688 dl 1.119 }
4689    
4690 dl 1.210 public final int hashCode() {
4691     int h = 0;
4692     Node<K,V>[] t;
4693     if ((t = map.table) != null) {
4694     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4695     for (Node<K,V> p; (p = it.advance()) != null; ) {
4696     h += p.hashCode();
4697     }
4698     }
4699     return h;
4700 dl 1.119 }
4701    
4702 dl 1.210 public final boolean equals(Object o) {
4703     Set<?> c;
4704     return ((o instanceof Set) &&
4705     ((c = (Set<?>)o) == this ||
4706     (containsAll(c) && c.containsAll(this))));
4707 dl 1.119 }
4708    
4709 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4710     Node<K,V>[] t;
4711     ConcurrentHashMap<K,V> m = map;
4712     long n = m.sumCount();
4713     int f = (t = m.table) == null ? 0 : t.length;
4714     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4715 dl 1.119 }
4716    
4717 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4718     if (action == null) throw new NullPointerException();
4719     Node<K,V>[] t;
4720     if ((t = map.table) != null) {
4721     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4722     for (Node<K,V> p; (p = it.advance()) != null; )
4723 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4724 dl 1.210 }
4725 dl 1.119 }
4726    
4727 dl 1.210 }
4728    
4729     // -------------------------------------------------------
4730 dl 1.119
4731 dl 1.210 /**
4732     * Base class for bulk tasks. Repeats some fields and code from
4733     * class Traverser, because we need to subclass CountedCompleter.
4734     */
4735 dl 1.243 @SuppressWarnings("serial")
4736 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4737 dl 1.210 Node<K,V>[] tab; // same as Traverser
4738     Node<K,V> next;
4739 dl 1.246 TableStack<K,V> stack, spare;
4740 dl 1.210 int index;
4741     int baseIndex;
4742     int baseLimit;
4743     final int baseSize;
4744     int batch; // split control
4745    
4746     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4747     super(par);
4748     this.batch = b;
4749     this.index = this.baseIndex = i;
4750     if ((this.tab = t) == null)
4751     this.baseSize = this.baseLimit = 0;
4752     else if (par == null)
4753     this.baseSize = this.baseLimit = t.length;
4754     else {
4755     this.baseLimit = f;
4756     this.baseSize = par.baseSize;
4757     }
4758 dl 1.119 }
4759    
4760     /**
4761 dl 1.210 * Same as Traverser version
4762 dl 1.119 */
4763 dl 1.210 final Node<K,V> advance() {
4764     Node<K,V> e;
4765     if ((e = next) != null)
4766     e = e.next;
4767     for (;;) {
4768 dl 1.246 Node<K,V>[] t; int i, n;
4769 dl 1.210 if (e != null)
4770     return next = e;
4771     if (baseIndex >= baseLimit || (t = tab) == null ||
4772     (n = t.length) <= (i = index) || i < 0)
4773     return next = null;
4774 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4775 dl 1.222 if (e instanceof ForwardingNode) {
4776     tab = ((ForwardingNode<K,V>)e).nextTable;
4777 dl 1.210 e = null;
4778 dl 1.246 pushState(t, i, n);
4779 dl 1.210 continue;
4780     }
4781 dl 1.222 else if (e instanceof TreeBin)
4782     e = ((TreeBin<K,V>)e).first;
4783     else
4784     e = null;
4785 dl 1.210 }
4786 dl 1.246 if (stack != null)
4787     recoverState(n);
4788     else if ((index = i + baseSize) >= n)
4789     index = ++baseIndex;
4790     }
4791     }
4792    
4793     private void pushState(Node<K,V>[] t, int i, int n) {
4794     TableStack<K,V> s = spare;
4795     if (s != null)
4796     spare = s.next;
4797     else
4798     s = new TableStack<K,V>();
4799     s.tab = t;
4800     s.length = n;
4801     s.index = i;
4802     s.next = stack;
4803     stack = s;
4804     }
4805    
4806     private void recoverState(int n) {
4807     TableStack<K,V> s; int len;
4808     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4809     n = len;
4810     index = s.index;
4811     tab = s.tab;
4812     s.tab = null;
4813     TableStack<K,V> next = s.next;
4814     s.next = spare; // save for reuse
4815     stack = next;
4816     spare = s;
4817 dl 1.210 }
4818 dl 1.246 if (s == null && (index += baseSize) >= n)
4819     index = ++baseIndex;
4820 dl 1.119 }
4821     }
4822    
4823     /*
4824     * Task classes. Coded in a regular but ugly format/style to
4825     * simplify checks that each variant differs in the right way from
4826 dl 1.149 * others. The null screenings exist because compilers cannot tell
4827     * that we've already null-checked task arguments, so we force
4828     * simplest hoisted bypass to help avoid convoluted traps.
4829 dl 1.119 */
4830 dl 1.222 @SuppressWarnings("serial")
4831 dl 1.210 static final class ForEachKeyTask<K,V>
4832     extends BulkTask<K,V,Void> {
4833 dl 1.171 final Consumer<? super K> action;
4834 dl 1.119 ForEachKeyTask
4835 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4836 dl 1.171 Consumer<? super K> action) {
4837 dl 1.210 super(p, b, i, f, t);
4838 dl 1.119 this.action = action;
4839     }
4840 jsr166 1.168 public final void compute() {
4841 dl 1.171 final Consumer<? super K> action;
4842 dl 1.149 if ((action = this.action) != null) {
4843 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4844     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4845     addToPendingCount(1);
4846     new ForEachKeyTask<K,V>
4847     (this, batch >>>= 1, baseLimit = h, f, tab,
4848     action).fork();
4849     }
4850     for (Node<K,V> p; (p = advance()) != null;)
4851 dl 1.222 action.accept(p.key);
4852 dl 1.149 propagateCompletion();
4853     }
4854 dl 1.119 }
4855     }
4856    
4857 dl 1.222 @SuppressWarnings("serial")
4858 dl 1.210 static final class ForEachValueTask<K,V>
4859     extends BulkTask<K,V,Void> {
4860 dl 1.171 final Consumer<? super V> action;
4861 dl 1.119 ForEachValueTask
4862 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4863 dl 1.171 Consumer<? super V> action) {
4864 dl 1.210 super(p, b, i, f, t);
4865 dl 1.119 this.action = action;
4866     }
4867 jsr166 1.168 public final void compute() {
4868 dl 1.171 final Consumer<? super V> action;
4869 dl 1.149 if ((action = this.action) != null) {
4870 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4871     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4872     addToPendingCount(1);
4873     new ForEachValueTask<K,V>
4874     (this, batch >>>= 1, baseLimit = h, f, tab,
4875     action).fork();
4876     }
4877     for (Node<K,V> p; (p = advance()) != null;)
4878     action.accept(p.val);
4879 dl 1.149 propagateCompletion();
4880     }
4881 dl 1.119 }
4882     }
4883    
4884 dl 1.222 @SuppressWarnings("serial")
4885 dl 1.210 static final class ForEachEntryTask<K,V>
4886     extends BulkTask<K,V,Void> {
4887 dl 1.171 final Consumer<? super Entry<K,V>> action;
4888 dl 1.119 ForEachEntryTask
4889 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4890 dl 1.171 Consumer<? super Entry<K,V>> action) {
4891 dl 1.210 super(p, b, i, f, t);
4892 dl 1.119 this.action = action;
4893     }
4894 jsr166 1.168 public final void compute() {
4895 dl 1.171 final Consumer<? super Entry<K,V>> action;
4896 dl 1.149 if ((action = this.action) != null) {
4897 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4898     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4899     addToPendingCount(1);
4900     new ForEachEntryTask<K,V>
4901     (this, batch >>>= 1, baseLimit = h, f, tab,
4902     action).fork();
4903     }
4904     for (Node<K,V> p; (p = advance()) != null; )
4905     action.accept(p);
4906 dl 1.149 propagateCompletion();
4907     }
4908 dl 1.119 }
4909     }
4910    
4911 dl 1.222 @SuppressWarnings("serial")
4912 dl 1.210 static final class ForEachMappingTask<K,V>
4913     extends BulkTask<K,V,Void> {
4914 dl 1.171 final BiConsumer<? super K, ? super V> action;
4915 dl 1.119 ForEachMappingTask
4916 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4917 dl 1.171 BiConsumer<? super K,? super V> action) {
4918 dl 1.210 super(p, b, i, f, t);
4919 dl 1.119 this.action = action;
4920     }
4921 jsr166 1.168 public final void compute() {
4922 dl 1.171 final BiConsumer<? super K, ? super V> action;
4923 dl 1.149 if ((action = this.action) != null) {
4924 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4925     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4926     addToPendingCount(1);
4927     new ForEachMappingTask<K,V>
4928     (this, batch >>>= 1, baseLimit = h, f, tab,
4929     action).fork();
4930     }
4931     for (Node<K,V> p; (p = advance()) != null; )
4932 dl 1.222 action.accept(p.key, p.val);
4933 dl 1.149 propagateCompletion();
4934     }
4935 dl 1.119 }
4936     }
4937    
4938 dl 1.222 @SuppressWarnings("serial")
4939 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
4940     extends BulkTask<K,V,Void> {
4941 dl 1.153 final Function<? super K, ? extends U> transformer;
4942 dl 1.171 final Consumer<? super U> action;
4943 dl 1.119 ForEachTransformedKeyTask
4944 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4945 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4946 dl 1.210 super(p, b, i, f, t);
4947 dl 1.146 this.transformer = transformer; this.action = action;
4948     }
4949 jsr166 1.168 public final void compute() {
4950 dl 1.153 final Function<? super K, ? extends U> transformer;
4951 dl 1.171 final Consumer<? super U> action;
4952 dl 1.149 if ((transformer = this.transformer) != null &&
4953     (action = this.action) != null) {
4954 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4955     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4956     addToPendingCount(1);
4957 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
4958 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4959     transformer, action).fork();
4960     }
4961     for (Node<K,V> p; (p = advance()) != null; ) {
4962     U u;
4963 dl 1.222 if ((u = transformer.apply(p.key)) != null)
4964 dl 1.153 action.accept(u);
4965 dl 1.149 }
4966     propagateCompletion();
4967 dl 1.119 }
4968     }
4969     }
4970    
4971 dl 1.222 @SuppressWarnings("serial")
4972 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
4973     extends BulkTask<K,V,Void> {
4974 dl 1.153 final Function<? super V, ? extends U> transformer;
4975 dl 1.171 final Consumer<? super U> action;
4976 dl 1.119 ForEachTransformedValueTask
4977 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4978 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4979 dl 1.210 super(p, b, i, f, t);
4980 dl 1.146 this.transformer = transformer; this.action = action;
4981     }
4982 jsr166 1.168 public final void compute() {
4983 dl 1.153 final Function<? super V, ? extends U> transformer;
4984 dl 1.171 final Consumer<? super U> action;
4985 dl 1.149 if ((transformer = this.transformer) != null &&
4986     (action = this.action) != null) {
4987 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4988     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4989     addToPendingCount(1);
4990 dl 1.149 new ForEachTransformedValueTask<K,V,U>
4991 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
4992     transformer, action).fork();
4993     }
4994     for (Node<K,V> p; (p = advance()) != null; ) {
4995     U u;
4996     if ((u = transformer.apply(p.val)) != null)
4997 dl 1.153 action.accept(u);
4998 dl 1.149 }
4999     propagateCompletion();
5000 dl 1.119 }
5001     }
5002 tim 1.1 }
5003    
5004 dl 1.222 @SuppressWarnings("serial")
5005 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5006     extends BulkTask<K,V,Void> {
5007 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5008 dl 1.171 final Consumer<? super U> action;
5009 dl 1.119 ForEachTransformedEntryTask
5010 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5011 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5012 dl 1.210 super(p, b, i, f, t);
5013 dl 1.146 this.transformer = transformer; this.action = action;
5014     }
5015 jsr166 1.168 public final void compute() {
5016 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5017 dl 1.171 final Consumer<? super U> action;
5018 dl 1.149 if ((transformer = this.transformer) != null &&
5019     (action = this.action) != null) {
5020 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5021     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5022     addToPendingCount(1);
5023 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5024 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5025     transformer, action).fork();
5026     }
5027     for (Node<K,V> p; (p = advance()) != null; ) {
5028     U u;
5029     if ((u = transformer.apply(p)) != null)
5030 dl 1.153 action.accept(u);
5031 dl 1.149 }
5032     propagateCompletion();
5033 dl 1.119 }
5034     }
5035 tim 1.1 }
5036    
5037 dl 1.222 @SuppressWarnings("serial")
5038 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5039     extends BulkTask<K,V,Void> {
5040 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5041 dl 1.171 final Consumer<? super U> action;
5042 dl 1.119 ForEachTransformedMappingTask
5043 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5045 dl 1.171 Consumer<? super U> action) {
5046 dl 1.210 super(p, b, i, f, t);
5047 dl 1.146 this.transformer = transformer; this.action = action;
5048 dl 1.119 }
5049 jsr166 1.168 public final void compute() {
5050 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5051 dl 1.171 final Consumer<? super U> action;
5052 dl 1.149 if ((transformer = this.transformer) != null &&
5053     (action = this.action) != null) {
5054 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5055     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5056     addToPendingCount(1);
5057 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5058 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5059     transformer, action).fork();
5060     }
5061     for (Node<K,V> p; (p = advance()) != null; ) {
5062     U u;
5063 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5064 dl 1.153 action.accept(u);
5065 dl 1.149 }
5066     propagateCompletion();
5067 dl 1.119 }
5068     }
5069 tim 1.1 }
5070    
5071 dl 1.222 @SuppressWarnings("serial")
5072 dl 1.210 static final class SearchKeysTask<K,V,U>
5073     extends BulkTask<K,V,U> {
5074 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5075 dl 1.119 final AtomicReference<U> result;
5076     SearchKeysTask
5077 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5078 dl 1.153 Function<? super K, ? extends U> searchFunction,
5079 dl 1.119 AtomicReference<U> result) {
5080 dl 1.210 super(p, b, i, f, t);
5081 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5082     }
5083 dl 1.146 public final U getRawResult() { return result.get(); }
5084 jsr166 1.168 public final void compute() {
5085 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5086 dl 1.146 final AtomicReference<U> result;
5087 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5088     (result = this.result) != null) {
5089 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5090     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5091 dl 1.149 if (result.get() != null)
5092     return;
5093 dl 1.210 addToPendingCount(1);
5094 dl 1.149 new SearchKeysTask<K,V,U>
5095 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5096     searchFunction, result).fork();
5097 dl 1.128 }
5098 dl 1.149 while (result.get() == null) {
5099 dl 1.210 U u;
5100     Node<K,V> p;
5101     if ((p = advance()) == null) {
5102 dl 1.149 propagateCompletion();
5103     break;
5104     }
5105 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5106 dl 1.149 if (result.compareAndSet(null, u))
5107     quietlyCompleteRoot();
5108     break;
5109     }
5110 dl 1.119 }
5111     }
5112     }
5113 tim 1.1 }
5114    
5115 dl 1.222 @SuppressWarnings("serial")
5116 dl 1.210 static final class SearchValuesTask<K,V,U>
5117     extends BulkTask<K,V,U> {
5118 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5119 dl 1.119 final AtomicReference<U> result;
5120     SearchValuesTask
5121 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5122 dl 1.153 Function<? super V, ? extends U> searchFunction,
5123 dl 1.119 AtomicReference<U> result) {
5124 dl 1.210 super(p, b, i, f, t);
5125 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5126     }
5127 dl 1.146 public final U getRawResult() { return result.get(); }
5128 jsr166 1.168 public final void compute() {
5129 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5130 dl 1.146 final AtomicReference<U> result;
5131 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5132     (result = this.result) != null) {
5133 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5134     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5135 dl 1.149 if (result.get() != null)
5136     return;
5137 dl 1.210 addToPendingCount(1);
5138 dl 1.149 new SearchValuesTask<K,V,U>
5139 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5140     searchFunction, result).fork();
5141 dl 1.128 }
5142 dl 1.149 while (result.get() == null) {
5143 dl 1.210 U u;
5144     Node<K,V> p;
5145     if ((p = advance()) == null) {
5146 dl 1.149 propagateCompletion();
5147     break;
5148     }
5149 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5150 dl 1.149 if (result.compareAndSet(null, u))
5151     quietlyCompleteRoot();
5152     break;
5153     }
5154 dl 1.119 }
5155     }
5156     }
5157     }
5158 tim 1.11
5159 dl 1.222 @SuppressWarnings("serial")
5160 dl 1.210 static final class SearchEntriesTask<K,V,U>
5161     extends BulkTask<K,V,U> {
5162 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5163 dl 1.119 final AtomicReference<U> result;
5164     SearchEntriesTask
5165 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5166 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5167 dl 1.119 AtomicReference<U> result) {
5168 dl 1.210 super(p, b, i, f, t);
5169 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5170     }
5171 dl 1.146 public final U getRawResult() { return result.get(); }
5172 jsr166 1.168 public final void compute() {
5173 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5174 dl 1.146 final AtomicReference<U> result;
5175 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5176     (result = this.result) != null) {
5177 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5178     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5179 dl 1.149 if (result.get() != null)
5180     return;
5181 dl 1.210 addToPendingCount(1);
5182 dl 1.149 new SearchEntriesTask<K,V,U>
5183 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5184     searchFunction, result).fork();
5185 dl 1.128 }
5186 dl 1.149 while (result.get() == null) {
5187 dl 1.210 U u;
5188     Node<K,V> p;
5189     if ((p = advance()) == null) {
5190 dl 1.149 propagateCompletion();
5191     break;
5192     }
5193 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5194 dl 1.149 if (result.compareAndSet(null, u))
5195     quietlyCompleteRoot();
5196     return;
5197     }
5198 dl 1.119 }
5199     }
5200     }
5201     }
5202 tim 1.1
5203 dl 1.222 @SuppressWarnings("serial")
5204 dl 1.210 static final class SearchMappingsTask<K,V,U>
5205     extends BulkTask<K,V,U> {
5206 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5207 dl 1.119 final AtomicReference<U> result;
5208     SearchMappingsTask
5209 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5210 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5211 dl 1.119 AtomicReference<U> result) {
5212 dl 1.210 super(p, b, i, f, t);
5213 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5214     }
5215 dl 1.146 public final U getRawResult() { return result.get(); }
5216 jsr166 1.168 public final void compute() {
5217 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5218 dl 1.146 final AtomicReference<U> result;
5219 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5220     (result = this.result) != null) {
5221 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5222     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5223 dl 1.149 if (result.get() != null)
5224     return;
5225 dl 1.210 addToPendingCount(1);
5226 dl 1.149 new SearchMappingsTask<K,V,U>
5227 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5228     searchFunction, result).fork();
5229 dl 1.128 }
5230 dl 1.149 while (result.get() == null) {
5231 dl 1.210 U u;
5232     Node<K,V> p;
5233     if ((p = advance()) == null) {
5234 dl 1.149 propagateCompletion();
5235     break;
5236     }
5237 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5238 dl 1.149 if (result.compareAndSet(null, u))
5239     quietlyCompleteRoot();
5240     break;
5241     }
5242 dl 1.119 }
5243     }
5244 tim 1.1 }
5245 dl 1.119 }
5246 tim 1.1
5247 dl 1.222 @SuppressWarnings("serial")
5248 dl 1.210 static final class ReduceKeysTask<K,V>
5249     extends BulkTask<K,V,K> {
5250 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5251 dl 1.119 K result;
5252 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5253 dl 1.119 ReduceKeysTask
5254 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5255 dl 1.128 ReduceKeysTask<K,V> nextRight,
5256 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5257 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5258 dl 1.119 this.reducer = reducer;
5259     }
5260 dl 1.146 public final K getRawResult() { return result; }
5261 dl 1.210 public final void compute() {
5262 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5263 dl 1.149 if ((reducer = this.reducer) != null) {
5264 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5265     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5266     addToPendingCount(1);
5267 dl 1.149 (rights = new ReduceKeysTask<K,V>
5268 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5269     rights, reducer)).fork();
5270     }
5271     K r = null;
5272     for (Node<K,V> p; (p = advance()) != null; ) {
5273 dl 1.222 K u = p.key;
5274 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5275 dl 1.149 }
5276     result = r;
5277     CountedCompleter<?> c;
5278     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5279 dl 1.246 @SuppressWarnings("unchecked")
5280     ReduceKeysTask<K,V>
5281 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5282     s = t.rights;
5283     while (s != null) {
5284     K tr, sr;
5285     if ((sr = s.result) != null)
5286     t.result = (((tr = t.result) == null) ? sr :
5287     reducer.apply(tr, sr));
5288     s = t.rights = s.nextRight;
5289     }
5290 dl 1.99 }
5291 dl 1.138 }
5292 tim 1.1 }
5293 dl 1.119 }
5294 tim 1.1
5295 dl 1.222 @SuppressWarnings("serial")
5296 dl 1.210 static final class ReduceValuesTask<K,V>
5297     extends BulkTask<K,V,V> {
5298 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5299 dl 1.119 V result;
5300 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5301 dl 1.119 ReduceValuesTask
5302 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5303 dl 1.128 ReduceValuesTask<K,V> nextRight,
5304 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5305 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5306 dl 1.119 this.reducer = reducer;
5307     }
5308 dl 1.146 public final V getRawResult() { return result; }
5309 dl 1.210 public final void compute() {
5310 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5311 dl 1.149 if ((reducer = this.reducer) != null) {
5312 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5313     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5314     addToPendingCount(1);
5315 dl 1.149 (rights = new ReduceValuesTask<K,V>
5316 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5317     rights, reducer)).fork();
5318     }
5319     V r = null;
5320     for (Node<K,V> p; (p = advance()) != null; ) {
5321     V v = p.val;
5322 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5323 dl 1.210 }
5324 dl 1.149 result = r;
5325     CountedCompleter<?> c;
5326     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5327 dl 1.246 @SuppressWarnings("unchecked")
5328     ReduceValuesTask<K,V>
5329 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5330     s = t.rights;
5331     while (s != null) {
5332     V tr, sr;
5333     if ((sr = s.result) != null)
5334     t.result = (((tr = t.result) == null) ? sr :
5335     reducer.apply(tr, sr));
5336     s = t.rights = s.nextRight;
5337     }
5338 dl 1.119 }
5339     }
5340 tim 1.1 }
5341 dl 1.119 }
5342 tim 1.1
5343 dl 1.222 @SuppressWarnings("serial")
5344 dl 1.210 static final class ReduceEntriesTask<K,V>
5345     extends BulkTask<K,V,Map.Entry<K,V>> {
5346 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5347 dl 1.119 Map.Entry<K,V> result;
5348 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5349 dl 1.119 ReduceEntriesTask
5350 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5351 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5352 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5353 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5354 dl 1.119 this.reducer = reducer;
5355     }
5356 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5357 dl 1.210 public final void compute() {
5358 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5359 dl 1.149 if ((reducer = this.reducer) != null) {
5360 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5361     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5362     addToPendingCount(1);
5363 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5364 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5365     rights, reducer)).fork();
5366     }
5367 dl 1.149 Map.Entry<K,V> r = null;
5368 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5369     r = (r == null) ? p : reducer.apply(r, p);
5370 dl 1.149 result = r;
5371     CountedCompleter<?> c;
5372     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5373 dl 1.246 @SuppressWarnings("unchecked")
5374     ReduceEntriesTask<K,V>
5375 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5376     s = t.rights;
5377     while (s != null) {
5378     Map.Entry<K,V> tr, sr;
5379     if ((sr = s.result) != null)
5380     t.result = (((tr = t.result) == null) ? sr :
5381     reducer.apply(tr, sr));
5382     s = t.rights = s.nextRight;
5383     }
5384 dl 1.119 }
5385 dl 1.138 }
5386 dl 1.119 }
5387     }
5388 dl 1.99
5389 dl 1.222 @SuppressWarnings("serial")
5390 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5391     extends BulkTask<K,V,U> {
5392 dl 1.153 final Function<? super K, ? extends U> transformer;
5393     final BiFunction<? super U, ? super U, ? extends U> reducer;
5394 dl 1.119 U result;
5395 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5396 dl 1.119 MapReduceKeysTask
5397 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5398 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5399 dl 1.153 Function<? super K, ? extends U> transformer,
5400     BiFunction<? super U, ? super U, ? extends U> reducer) {
5401 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5402 dl 1.119 this.transformer = transformer;
5403     this.reducer = reducer;
5404     }
5405 dl 1.146 public final U getRawResult() { return result; }
5406 dl 1.210 public final void compute() {
5407 dl 1.153 final Function<? super K, ? extends U> transformer;
5408     final BiFunction<? super U, ? super U, ? extends U> reducer;
5409 dl 1.149 if ((transformer = this.transformer) != null &&
5410     (reducer = this.reducer) != null) {
5411 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5412     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413     addToPendingCount(1);
5414 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5415 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5416     rights, transformer, reducer)).fork();
5417     }
5418     U r = null;
5419     for (Node<K,V> p; (p = advance()) != null; ) {
5420     U u;
5421 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5422 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5423     }
5424     result = r;
5425     CountedCompleter<?> c;
5426     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5427 dl 1.246 @SuppressWarnings("unchecked")
5428     MapReduceKeysTask<K,V,U>
5429 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5430     s = t.rights;
5431     while (s != null) {
5432     U tr, sr;
5433     if ((sr = s.result) != null)
5434     t.result = (((tr = t.result) == null) ? sr :
5435     reducer.apply(tr, sr));
5436     s = t.rights = s.nextRight;
5437     }
5438 dl 1.119 }
5439 dl 1.138 }
5440 tim 1.1 }
5441 dl 1.4 }
5442    
5443 dl 1.222 @SuppressWarnings("serial")
5444 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5445     extends BulkTask<K,V,U> {
5446 dl 1.153 final Function<? super V, ? extends U> transformer;
5447     final BiFunction<? super U, ? super U, ? extends U> reducer;
5448 dl 1.119 U result;
5449 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5450 dl 1.119 MapReduceValuesTask
5451 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5452 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5453 dl 1.153 Function<? super V, ? extends U> transformer,
5454     BiFunction<? super U, ? super U, ? extends U> reducer) {
5455 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5456 dl 1.119 this.transformer = transformer;
5457     this.reducer = reducer;
5458     }
5459 dl 1.146 public final U getRawResult() { return result; }
5460 dl 1.210 public final void compute() {
5461 dl 1.153 final Function<? super V, ? extends U> transformer;
5462     final BiFunction<? super U, ? super U, ? extends U> reducer;
5463 dl 1.149 if ((transformer = this.transformer) != null &&
5464     (reducer = this.reducer) != null) {
5465 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5466     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5467     addToPendingCount(1);
5468 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5469 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5470     rights, transformer, reducer)).fork();
5471     }
5472     U r = null;
5473     for (Node<K,V> p; (p = advance()) != null; ) {
5474     U u;
5475     if ((u = transformer.apply(p.val)) != null)
5476 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5477     }
5478     result = r;
5479     CountedCompleter<?> c;
5480     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5481 dl 1.246 @SuppressWarnings("unchecked")
5482     MapReduceValuesTask<K,V,U>
5483 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5484     s = t.rights;
5485     while (s != null) {
5486     U tr, sr;
5487     if ((sr = s.result) != null)
5488     t.result = (((tr = t.result) == null) ? sr :
5489     reducer.apply(tr, sr));
5490     s = t.rights = s.nextRight;
5491     }
5492 dl 1.119 }
5493     }
5494     }
5495 dl 1.4 }
5496    
5497 dl 1.222 @SuppressWarnings("serial")
5498 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5499     extends BulkTask<K,V,U> {
5500 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5501     final BiFunction<? super U, ? super U, ? extends U> reducer;
5502 dl 1.119 U result;
5503 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5504 dl 1.119 MapReduceEntriesTask
5505 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5506 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5507 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5508     BiFunction<? super U, ? super U, ? extends U> reducer) {
5509 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5510 dl 1.119 this.transformer = transformer;
5511     this.reducer = reducer;
5512     }
5513 dl 1.146 public final U getRawResult() { return result; }
5514 dl 1.210 public final void compute() {
5515 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5516     final BiFunction<? super U, ? super U, ? extends U> reducer;
5517 dl 1.149 if ((transformer = this.transformer) != null &&
5518     (reducer = this.reducer) != null) {
5519 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5520     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5521     addToPendingCount(1);
5522 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5523 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5524     rights, transformer, reducer)).fork();
5525     }
5526     U r = null;
5527     for (Node<K,V> p; (p = advance()) != null; ) {
5528     U u;
5529     if ((u = transformer.apply(p)) != null)
5530 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5531     }
5532     result = r;
5533     CountedCompleter<?> c;
5534     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5535 dl 1.246 @SuppressWarnings("unchecked")
5536     MapReduceEntriesTask<K,V,U>
5537 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5538     s = t.rights;
5539     while (s != null) {
5540     U tr, sr;
5541     if ((sr = s.result) != null)
5542     t.result = (((tr = t.result) == null) ? sr :
5543     reducer.apply(tr, sr));
5544     s = t.rights = s.nextRight;
5545     }
5546 dl 1.119 }
5547 dl 1.138 }
5548 dl 1.119 }
5549 dl 1.4 }
5550 tim 1.1
5551 dl 1.222 @SuppressWarnings("serial")
5552 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5553     extends BulkTask<K,V,U> {
5554 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5555     final BiFunction<? super U, ? super U, ? extends U> reducer;
5556 dl 1.119 U result;
5557 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5558 dl 1.119 MapReduceMappingsTask
5559 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5560 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5561 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5562     BiFunction<? super U, ? super U, ? extends U> reducer) {
5563 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5564 dl 1.119 this.transformer = transformer;
5565     this.reducer = reducer;
5566     }
5567 dl 1.146 public final U getRawResult() { return result; }
5568 dl 1.210 public final void compute() {
5569 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5570     final BiFunction<? super U, ? super U, ? extends U> reducer;
5571 dl 1.149 if ((transformer = this.transformer) != null &&
5572     (reducer = this.reducer) != null) {
5573 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5574     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5575     addToPendingCount(1);
5576 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5577 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5578     rights, transformer, reducer)).fork();
5579     }
5580     U r = null;
5581     for (Node<K,V> p; (p = advance()) != null; ) {
5582     U u;
5583 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5584 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5585     }
5586     result = r;
5587     CountedCompleter<?> c;
5588     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5589 dl 1.246 @SuppressWarnings("unchecked")
5590     MapReduceMappingsTask<K,V,U>
5591 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5592     s = t.rights;
5593     while (s != null) {
5594     U tr, sr;
5595     if ((sr = s.result) != null)
5596     t.result = (((tr = t.result) == null) ? sr :
5597     reducer.apply(tr, sr));
5598     s = t.rights = s.nextRight;
5599     }
5600 dl 1.119 }
5601     }
5602     }
5603     }
5604 jsr166 1.114
5605 dl 1.222 @SuppressWarnings("serial")
5606 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5607     extends BulkTask<K,V,Double> {
5608 dl 1.171 final ToDoubleFunction<? super K> transformer;
5609 dl 1.153 final DoubleBinaryOperator reducer;
5610 dl 1.119 final double basis;
5611     double result;
5612 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5613 dl 1.119 MapReduceKeysToDoubleTask
5614 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5615 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5616 dl 1.171 ToDoubleFunction<? super K> transformer,
5617 dl 1.119 double basis,
5618 dl 1.153 DoubleBinaryOperator reducer) {
5619 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5620 dl 1.119 this.transformer = transformer;
5621     this.basis = basis; this.reducer = reducer;
5622     }
5623 dl 1.146 public final Double getRawResult() { return result; }
5624 dl 1.210 public final void compute() {
5625 dl 1.171 final ToDoubleFunction<? super K> transformer;
5626 dl 1.153 final DoubleBinaryOperator reducer;
5627 dl 1.149 if ((transformer = this.transformer) != null &&
5628     (reducer = this.reducer) != null) {
5629     double r = this.basis;
5630 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5631     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5632     addToPendingCount(1);
5633 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5634 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5635     rights, transformer, r, reducer)).fork();
5636     }
5637     for (Node<K,V> p; (p = advance()) != null; )
5638 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5639 dl 1.149 result = r;
5640     CountedCompleter<?> c;
5641     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5642 dl 1.246 @SuppressWarnings("unchecked")
5643     MapReduceKeysToDoubleTask<K,V>
5644 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5645     s = t.rights;
5646     while (s != null) {
5647 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5648 dl 1.149 s = t.rights = s.nextRight;
5649     }
5650 dl 1.119 }
5651 dl 1.138 }
5652 dl 1.79 }
5653 dl 1.119 }
5654 dl 1.79
5655 dl 1.222 @SuppressWarnings("serial")
5656 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5657     extends BulkTask<K,V,Double> {
5658 dl 1.171 final ToDoubleFunction<? super V> transformer;
5659 dl 1.153 final DoubleBinaryOperator reducer;
5660 dl 1.119 final double basis;
5661     double result;
5662 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5663 dl 1.119 MapReduceValuesToDoubleTask
5664 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5665 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5666 dl 1.171 ToDoubleFunction<? super V> transformer,
5667 dl 1.119 double basis,
5668 dl 1.153 DoubleBinaryOperator reducer) {
5669 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5670 dl 1.119 this.transformer = transformer;
5671     this.basis = basis; this.reducer = reducer;
5672     }
5673 dl 1.146 public final Double getRawResult() { return result; }
5674 dl 1.210 public final void compute() {
5675 dl 1.171 final ToDoubleFunction<? super V> transformer;
5676 dl 1.153 final DoubleBinaryOperator reducer;
5677 dl 1.149 if ((transformer = this.transformer) != null &&
5678     (reducer = this.reducer) != null) {
5679     double r = this.basis;
5680 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5681     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5682     addToPendingCount(1);
5683 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5684 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5685     rights, transformer, r, reducer)).fork();
5686     }
5687     for (Node<K,V> p; (p = advance()) != null; )
5688     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5689 dl 1.149 result = r;
5690     CountedCompleter<?> c;
5691     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5692 dl 1.246 @SuppressWarnings("unchecked")
5693     MapReduceValuesToDoubleTask<K,V>
5694 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5695     s = t.rights;
5696     while (s != null) {
5697 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5698 dl 1.149 s = t.rights = s.nextRight;
5699     }
5700 dl 1.119 }
5701     }
5702 dl 1.30 }
5703 dl 1.79 }
5704 dl 1.30
5705 dl 1.222 @SuppressWarnings("serial")
5706 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5707     extends BulkTask<K,V,Double> {
5708 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5709 dl 1.153 final DoubleBinaryOperator reducer;
5710 dl 1.119 final double basis;
5711     double result;
5712 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5713 dl 1.119 MapReduceEntriesToDoubleTask
5714 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5715 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5716 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5717 dl 1.119 double basis,
5718 dl 1.153 DoubleBinaryOperator reducer) {
5719 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5720 dl 1.119 this.transformer = transformer;
5721     this.basis = basis; this.reducer = reducer;
5722     }
5723 dl 1.146 public final Double getRawResult() { return result; }
5724 dl 1.210 public final void compute() {
5725 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5726 dl 1.153 final DoubleBinaryOperator reducer;
5727 dl 1.149 if ((transformer = this.transformer) != null &&
5728     (reducer = this.reducer) != null) {
5729     double r = this.basis;
5730 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5731     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5732     addToPendingCount(1);
5733 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5734 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5735     rights, transformer, r, reducer)).fork();
5736     }
5737     for (Node<K,V> p; (p = advance()) != null; )
5738     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5739 dl 1.149 result = r;
5740     CountedCompleter<?> c;
5741     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5742 dl 1.246 @SuppressWarnings("unchecked")
5743     MapReduceEntriesToDoubleTask<K,V>
5744 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5745     s = t.rights;
5746     while (s != null) {
5747 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5748 dl 1.149 s = t.rights = s.nextRight;
5749     }
5750 dl 1.119 }
5751 dl 1.138 }
5752 dl 1.30 }
5753 tim 1.1 }
5754    
5755 dl 1.222 @SuppressWarnings("serial")
5756 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5757     extends BulkTask<K,V,Double> {
5758 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5759 dl 1.153 final DoubleBinaryOperator reducer;
5760 dl 1.119 final double basis;
5761     double result;
5762 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5763 dl 1.119 MapReduceMappingsToDoubleTask
5764 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5765 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5766 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5767 dl 1.119 double basis,
5768 dl 1.153 DoubleBinaryOperator reducer) {
5769 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5770 dl 1.119 this.transformer = transformer;
5771     this.basis = basis; this.reducer = reducer;
5772     }
5773 dl 1.146 public final Double getRawResult() { return result; }
5774 dl 1.210 public final void compute() {
5775 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5776 dl 1.153 final DoubleBinaryOperator reducer;
5777 dl 1.149 if ((transformer = this.transformer) != null &&
5778     (reducer = this.reducer) != null) {
5779     double r = this.basis;
5780 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5781     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5782     addToPendingCount(1);
5783 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5784 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5785     rights, transformer, r, reducer)).fork();
5786     }
5787     for (Node<K,V> p; (p = advance()) != null; )
5788 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5789 dl 1.149 result = r;
5790     CountedCompleter<?> c;
5791     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5792 dl 1.246 @SuppressWarnings("unchecked")
5793     MapReduceMappingsToDoubleTask<K,V>
5794 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5795     s = t.rights;
5796     while (s != null) {
5797 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5798 dl 1.149 s = t.rights = s.nextRight;
5799     }
5800 dl 1.119 }
5801     }
5802 dl 1.4 }
5803 dl 1.119 }
5804    
5805 dl 1.222 @SuppressWarnings("serial")
5806 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5807     extends BulkTask<K,V,Long> {
5808 dl 1.171 final ToLongFunction<? super K> transformer;
5809 dl 1.153 final LongBinaryOperator reducer;
5810 dl 1.119 final long basis;
5811     long result;
5812 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5813 dl 1.119 MapReduceKeysToLongTask
5814 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5815 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5816 dl 1.171 ToLongFunction<? super K> transformer,
5817 dl 1.119 long basis,
5818 dl 1.153 LongBinaryOperator reducer) {
5819 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5820 dl 1.119 this.transformer = transformer;
5821     this.basis = basis; this.reducer = reducer;
5822     }
5823 dl 1.146 public final Long getRawResult() { return result; }
5824 dl 1.210 public final void compute() {
5825 dl 1.171 final ToLongFunction<? super K> transformer;
5826 dl 1.153 final LongBinaryOperator reducer;
5827 dl 1.149 if ((transformer = this.transformer) != null &&
5828     (reducer = this.reducer) != null) {
5829     long r = this.basis;
5830 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5831     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5832     addToPendingCount(1);
5833 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5834 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5835     rights, transformer, r, reducer)).fork();
5836     }
5837     for (Node<K,V> p; (p = advance()) != null; )
5838 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5839 dl 1.149 result = r;
5840     CountedCompleter<?> c;
5841     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5842 dl 1.246 @SuppressWarnings("unchecked")
5843     MapReduceKeysToLongTask<K,V>
5844 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5845     s = t.rights;
5846     while (s != null) {
5847 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5848 dl 1.149 s = t.rights = s.nextRight;
5849     }
5850 dl 1.119 }
5851 dl 1.138 }
5852 dl 1.4 }
5853 dl 1.119 }
5854    
5855 dl 1.222 @SuppressWarnings("serial")
5856 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5857     extends BulkTask<K,V,Long> {
5858 dl 1.171 final ToLongFunction<? super V> transformer;
5859 dl 1.153 final LongBinaryOperator reducer;
5860 dl 1.119 final long basis;
5861     long result;
5862 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5863 dl 1.119 MapReduceValuesToLongTask
5864 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5866 dl 1.171 ToLongFunction<? super V> transformer,
5867 dl 1.119 long basis,
5868 dl 1.153 LongBinaryOperator reducer) {
5869 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5870 dl 1.119 this.transformer = transformer;
5871     this.basis = basis; this.reducer = reducer;
5872     }
5873 dl 1.146 public final Long getRawResult() { return result; }
5874 dl 1.210 public final void compute() {
5875 dl 1.171 final ToLongFunction<? super V> transformer;
5876 dl 1.153 final LongBinaryOperator reducer;
5877 dl 1.149 if ((transformer = this.transformer) != null &&
5878     (reducer = this.reducer) != null) {
5879     long r = this.basis;
5880 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5881     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882     addToPendingCount(1);
5883 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5884 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5885     rights, transformer, r, reducer)).fork();
5886     }
5887     for (Node<K,V> p; (p = advance()) != null; )
5888     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5889 dl 1.149 result = r;
5890     CountedCompleter<?> c;
5891     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 dl 1.246 @SuppressWarnings("unchecked")
5893     MapReduceValuesToLongTask<K,V>
5894 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
5895     s = t.rights;
5896     while (s != null) {
5897 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5898 dl 1.149 s = t.rights = s.nextRight;
5899     }
5900 dl 1.119 }
5901     }
5902 jsr166 1.95 }
5903 dl 1.119 }
5904    
5905 dl 1.222 @SuppressWarnings("serial")
5906 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
5907     extends BulkTask<K,V,Long> {
5908 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5909 dl 1.153 final LongBinaryOperator reducer;
5910 dl 1.119 final long basis;
5911     long result;
5912 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5913 dl 1.119 MapReduceEntriesToLongTask
5914 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
5916 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
5917 dl 1.119 long basis,
5918 dl 1.153 LongBinaryOperator reducer) {
5919 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5920 dl 1.119 this.transformer = transformer;
5921     this.basis = basis; this.reducer = reducer;
5922     }
5923 dl 1.146 public final Long getRawResult() { return result; }
5924 dl 1.210 public final void compute() {
5925 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
5926 dl 1.153 final LongBinaryOperator reducer;
5927 dl 1.149 if ((transformer = this.transformer) != null &&
5928     (reducer = this.reducer) != null) {
5929     long r = this.basis;
5930 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5931     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932     addToPendingCount(1);
5933 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
5934 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5935     rights, transformer, r, reducer)).fork();
5936     }
5937     for (Node<K,V> p; (p = advance()) != null; )
5938     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5939 dl 1.149 result = r;
5940     CountedCompleter<?> c;
5941     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 dl 1.246 @SuppressWarnings("unchecked")
5943     MapReduceEntriesToLongTask<K,V>
5944 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
5945     s = t.rights;
5946     while (s != null) {
5947 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5948 dl 1.149 s = t.rights = s.nextRight;
5949     }
5950 dl 1.119 }
5951 dl 1.138 }
5952 dl 1.4 }
5953 tim 1.1 }
5954    
5955 dl 1.222 @SuppressWarnings("serial")
5956 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
5957     extends BulkTask<K,V,Long> {
5958 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5959 dl 1.153 final LongBinaryOperator reducer;
5960 dl 1.119 final long basis;
5961     long result;
5962 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5963 dl 1.119 MapReduceMappingsToLongTask
5964 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5965 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
5966 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
5967 dl 1.119 long basis,
5968 dl 1.153 LongBinaryOperator reducer) {
5969 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5970 dl 1.119 this.transformer = transformer;
5971     this.basis = basis; this.reducer = reducer;
5972     }
5973 dl 1.146 public final Long getRawResult() { return result; }
5974 dl 1.210 public final void compute() {
5975 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
5976 dl 1.153 final LongBinaryOperator reducer;
5977 dl 1.149 if ((transformer = this.transformer) != null &&
5978     (reducer = this.reducer) != null) {
5979     long r = this.basis;
5980 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5981     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5982     addToPendingCount(1);
5983 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
5984 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5985     rights, transformer, r, reducer)).fork();
5986     }
5987     for (Node<K,V> p; (p = advance()) != null; )
5988 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5989 dl 1.149 result = r;
5990     CountedCompleter<?> c;
5991     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992 dl 1.246 @SuppressWarnings("unchecked")
5993     MapReduceMappingsToLongTask<K,V>
5994 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
5995     s = t.rights;
5996     while (s != null) {
5997 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5998 dl 1.149 s = t.rights = s.nextRight;
5999     }
6000 dl 1.119 }
6001     }
6002 dl 1.4 }
6003 tim 1.1 }
6004    
6005 dl 1.222 @SuppressWarnings("serial")
6006 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6007     extends BulkTask<K,V,Integer> {
6008 dl 1.171 final ToIntFunction<? super K> transformer;
6009 dl 1.153 final IntBinaryOperator reducer;
6010 dl 1.119 final int basis;
6011     int result;
6012 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6013 dl 1.119 MapReduceKeysToIntTask
6014 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6015 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6016 dl 1.171 ToIntFunction<? super K> transformer,
6017 dl 1.119 int basis,
6018 dl 1.153 IntBinaryOperator reducer) {
6019 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6020 dl 1.119 this.transformer = transformer;
6021     this.basis = basis; this.reducer = reducer;
6022     }
6023 dl 1.146 public final Integer getRawResult() { return result; }
6024 dl 1.210 public final void compute() {
6025 dl 1.171 final ToIntFunction<? super K> transformer;
6026 dl 1.153 final IntBinaryOperator reducer;
6027 dl 1.149 if ((transformer = this.transformer) != null &&
6028     (reducer = this.reducer) != null) {
6029     int r = this.basis;
6030 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6031     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6032     addToPendingCount(1);
6033 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6034 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6035     rights, transformer, r, reducer)).fork();
6036     }
6037     for (Node<K,V> p; (p = advance()) != null; )
6038 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6039 dl 1.149 result = r;
6040     CountedCompleter<?> c;
6041     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6042 dl 1.246 @SuppressWarnings("unchecked")
6043     MapReduceKeysToIntTask<K,V>
6044 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6045     s = t.rights;
6046     while (s != null) {
6047 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6048 dl 1.149 s = t.rights = s.nextRight;
6049     }
6050 dl 1.119 }
6051 dl 1.138 }
6052 dl 1.30 }
6053     }
6054    
6055 dl 1.222 @SuppressWarnings("serial")
6056 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6057     extends BulkTask<K,V,Integer> {
6058 dl 1.171 final ToIntFunction<? super V> transformer;
6059 dl 1.153 final IntBinaryOperator reducer;
6060 dl 1.119 final int basis;
6061     int result;
6062 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6063 dl 1.119 MapReduceValuesToIntTask
6064 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6065 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6066 dl 1.171 ToIntFunction<? super V> transformer,
6067 dl 1.119 int basis,
6068 dl 1.153 IntBinaryOperator reducer) {
6069 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6070 dl 1.119 this.transformer = transformer;
6071     this.basis = basis; this.reducer = reducer;
6072     }
6073 dl 1.146 public final Integer getRawResult() { return result; }
6074 dl 1.210 public final void compute() {
6075 dl 1.171 final ToIntFunction<? super V> transformer;
6076 dl 1.153 final IntBinaryOperator reducer;
6077 dl 1.149 if ((transformer = this.transformer) != null &&
6078     (reducer = this.reducer) != null) {
6079     int r = this.basis;
6080 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6081     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6082     addToPendingCount(1);
6083 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6084 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6085     rights, transformer, r, reducer)).fork();
6086     }
6087     for (Node<K,V> p; (p = advance()) != null; )
6088     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6089 dl 1.149 result = r;
6090     CountedCompleter<?> c;
6091     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6092 dl 1.246 @SuppressWarnings("unchecked")
6093     MapReduceValuesToIntTask<K,V>
6094 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6095     s = t.rights;
6096     while (s != null) {
6097 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6098 dl 1.149 s = t.rights = s.nextRight;
6099     }
6100 dl 1.119 }
6101 dl 1.2 }
6102 tim 1.1 }
6103     }
6104    
6105 dl 1.222 @SuppressWarnings("serial")
6106 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6107     extends BulkTask<K,V,Integer> {
6108 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6109 dl 1.153 final IntBinaryOperator reducer;
6110 dl 1.119 final int basis;
6111     int result;
6112 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6113 dl 1.119 MapReduceEntriesToIntTask
6114 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6115 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6116 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6117 dl 1.119 int basis,
6118 dl 1.153 IntBinaryOperator reducer) {
6119 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6120 dl 1.119 this.transformer = transformer;
6121     this.basis = basis; this.reducer = reducer;
6122     }
6123 dl 1.146 public final Integer getRawResult() { return result; }
6124 dl 1.210 public final void compute() {
6125 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6126 dl 1.153 final IntBinaryOperator reducer;
6127 dl 1.149 if ((transformer = this.transformer) != null &&
6128     (reducer = this.reducer) != null) {
6129     int r = this.basis;
6130 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6131     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6132     addToPendingCount(1);
6133 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6134 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6135     rights, transformer, r, reducer)).fork();
6136     }
6137     for (Node<K,V> p; (p = advance()) != null; )
6138     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6139 dl 1.149 result = r;
6140     CountedCompleter<?> c;
6141     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6142 dl 1.246 @SuppressWarnings("unchecked")
6143     MapReduceEntriesToIntTask<K,V>
6144 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6145     s = t.rights;
6146     while (s != null) {
6147 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6148 dl 1.149 s = t.rights = s.nextRight;
6149     }
6150 dl 1.119 }
6151 dl 1.138 }
6152 dl 1.4 }
6153 dl 1.119 }
6154 tim 1.1
6155 dl 1.222 @SuppressWarnings("serial")
6156 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6157     extends BulkTask<K,V,Integer> {
6158 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6159 dl 1.153 final IntBinaryOperator reducer;
6160 dl 1.119 final int basis;
6161     int result;
6162 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6163 dl 1.119 MapReduceMappingsToIntTask
6164 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6165 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6166 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6167 dl 1.119 int basis,
6168 dl 1.153 IntBinaryOperator reducer) {
6169 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6170 dl 1.119 this.transformer = transformer;
6171     this.basis = basis; this.reducer = reducer;
6172     }
6173 dl 1.146 public final Integer getRawResult() { return result; }
6174 dl 1.210 public final void compute() {
6175 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6176 dl 1.153 final IntBinaryOperator reducer;
6177 dl 1.149 if ((transformer = this.transformer) != null &&
6178     (reducer = this.reducer) != null) {
6179     int r = this.basis;
6180 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6181     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6182     addToPendingCount(1);
6183 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6184 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6185     rights, transformer, r, reducer)).fork();
6186     }
6187     for (Node<K,V> p; (p = advance()) != null; )
6188 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6189 dl 1.149 result = r;
6190     CountedCompleter<?> c;
6191     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 dl 1.246 @SuppressWarnings("unchecked")
6193     MapReduceMappingsToIntTask<K,V>
6194 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6195     s = t.rights;
6196     while (s != null) {
6197 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6198 dl 1.149 s = t.rights = s.nextRight;
6199     }
6200 dl 1.119 }
6201 dl 1.138 }
6202 tim 1.1 }
6203     }
6204 dl 1.99
6205     // Unsafe mechanics
6206 dl 1.149 private static final sun.misc.Unsafe U;
6207     private static final long SIZECTL;
6208     private static final long TRANSFERINDEX;
6209     private static final long BASECOUNT;
6210 dl 1.153 private static final long CELLSBUSY;
6211 dl 1.149 private static final long CELLVALUE;
6212 dl 1.119 private static final long ABASE;
6213     private static final int ASHIFT;
6214 dl 1.99
6215     static {
6216     try {
6217 dl 1.149 U = sun.misc.Unsafe.getUnsafe();
6218 dl 1.119 Class<?> k = ConcurrentHashMap.class;
6219 dl 1.149 SIZECTL = U.objectFieldOffset
6220 dl 1.119 (k.getDeclaredField("sizeCtl"));
6221 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6222     (k.getDeclaredField("transferIndex"));
6223     BASECOUNT = U.objectFieldOffset
6224     (k.getDeclaredField("baseCount"));
6225 dl 1.153 CELLSBUSY = U.objectFieldOffset
6226     (k.getDeclaredField("cellsBusy"));
6227 dl 1.222 Class<?> ck = CounterCell.class;
6228 dl 1.149 CELLVALUE = U.objectFieldOffset
6229     (ck.getDeclaredField("value"));
6230 jsr166 1.226 Class<?> ak = Node[].class;
6231     ABASE = U.arrayBaseOffset(ak);
6232     int scale = U.arrayIndexScale(ak);
6233 jsr166 1.167 if ((scale & (scale - 1)) != 0)
6234     throw new Error("data type scale not a power of two");
6235     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6236 dl 1.99 } catch (Exception e) {
6237     throw new Error(e);
6238     }
6239     }
6240 jsr166 1.152 }