ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.278
Committed: Sat Sep 12 21:55:08 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.277: +10 -9 lines
Log Message:
clearer description of bulk operation variants

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Enumeration;
17     import java.util.HashMap;
18 dl 1.119 import java.util.Hashtable;
19     import java.util.Iterator;
20 dl 1.208 import java.util.Map;
21 dl 1.119 import java.util.NoSuchElementException;
22 dl 1.208 import java.util.Set;
23     import java.util.Spliterator;
24     import java.util.concurrent.atomic.AtomicReference;
25 dl 1.222 import java.util.concurrent.locks.LockSupport;
26 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
27     import java.util.function.BiConsumer;
28     import java.util.function.BiFunction;
29     import java.util.function.Consumer;
30     import java.util.function.DoubleBinaryOperator;
31     import java.util.function.Function;
32     import java.util.function.IntBinaryOperator;
33     import java.util.function.LongBinaryOperator;
34 dl 1.271 import java.util.function.Predicate;
35 dl 1.208 import java.util.function.ToDoubleBiFunction;
36     import java.util.function.ToDoubleFunction;
37     import java.util.function.ToIntBiFunction;
38     import java.util.function.ToIntFunction;
39     import java.util.function.ToLongBiFunction;
40     import java.util.function.ToLongFunction;
41 dl 1.210 import java.util.stream.Stream;
42 tim 1.1
43     /**
44 dl 1.4 * A hash table supporting full concurrency of retrievals and
45 dl 1.119 * high expected concurrency for updates. This class obeys the
46 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
47 dl 1.19 * includes versions of methods corresponding to each method of
48 dl 1.119 * {@code Hashtable}. However, even though all operations are
49 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
50     * and there is <em>not</em> any support for locking the entire table
51     * in a way that prevents all access. This class is fully
52 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
53 dl 1.4 * thread safety but not on its synchronization details.
54 tim 1.11 *
55 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
56 dl 1.119 * block, so may overlap with update operations (including {@code put}
57     * and {@code remove}). Retrievals reflect the results of the most
58     * recently <em>completed</em> update operations holding upon their
59 dl 1.126 * onset. (More formally, an update operation for a given key bears a
60     * <em>happens-before</em> relation with any (non-null) retrieval for
61     * that key reporting the updated value.) For aggregate operations
62     * such as {@code putAll} and {@code clear}, concurrent retrievals may
63     * reflect insertion or removal of only some entries. Similarly,
64 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
65     * state of the hash table at some point at or since the creation of the
66 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
67 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68     * However, iterators are designed to be used by only one thread at a time.
69     * Bear in mind that the results of aggregate status methods including
70     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71     * useful only when a map is not undergoing concurrent updates in other threads.
72 dl 1.126 * Otherwise the results of these methods reflect transient states
73     * that may be adequate for monitoring or estimation purposes, but not
74     * for program control.
75 tim 1.1 *
76 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
77 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
78     * the same slot modulo the table size), with the expected average
79     * effect of maintaining roughly two bins per mapping (corresponding
80     * to a 0.75 load factor threshold for resizing). There may be much
81     * variance around this average as mappings are added and removed, but
82     * overall, this maintains a commonly accepted time/space tradeoff for
83     * hash tables. However, resizing this or any other kind of hash
84     * table may be a relatively slow operation. When possible, it is a
85     * good idea to provide a size estimate as an optional {@code
86     * initialCapacity} constructor argument. An additional optional
87     * {@code loadFactor} constructor argument provides a further means of
88     * customizing initial table capacity by specifying the table density
89     * to be used in calculating the amount of space to allocate for the
90     * given number of elements. Also, for compatibility with previous
91     * versions of this class, constructors may optionally specify an
92     * expected {@code concurrencyLevel} as an additional hint for
93     * internal sizing. Note that using many keys with exactly the same
94     * {@code hashCode()} is a sure way to slow down performance of any
95 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
96     * this class may use comparison order among keys to help break ties.
97 tim 1.1 *
98 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100     * (using {@link #keySet(Object)} when only keys are of interest, and the
101     * mapped values are (perhaps transiently) not used or all take the
102     * same mapping value.
103     *
104 jsr166 1.257 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 dl 1.153 * form of histogram or multiset) by using {@link
106     * java.util.concurrent.atomic.LongAdder} values and initializing via
107 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 jsr166 1.257 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 dl 1.137 *
111 dl 1.45 * <p>This class and its views and iterators implement all of the
112     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113     * interfaces.
114 dl 1.23 *
115 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
117 tim 1.1 *
118 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119     * operations that, unlike most {@link Stream} methods, are designed
120     * to be safely, and often sensibly, applied even with maps that are
121     * being concurrently updated by other threads; for example, when
122     * computing a snapshot summary of the values in a shared registry.
123     * There are three kinds of operation, each with four forms, accepting
124 jsr166 1.278 * functions with keys, values, entries, and (key, value) pairs as
125     * arguments and/or return values. Because the elements of a
126     * ConcurrentHashMap are not ordered in any particular way, and may be
127     * processed in different orders in different parallel executions, the
128     * correctness of supplied functions should not depend on any
129     * ordering, or on any other objects or values that may transiently
130     * change while computation is in progress; and except for forEach
131     * actions, should ideally be side-effect-free. Bulk operations on
132     * {@link java.util.Map.Entry} objects do not support method {@code
133     * setValue}.
134 dl 1.137 *
135     * <ul>
136     * <li> forEach: Perform a given action on each element.
137     * A variant form applies a given transformation on each element
138     * before performing the action.</li>
139     *
140     * <li> search: Return the first available non-null result of
141     * applying a given function on each element; skipping further
142     * search when a result is found.</li>
143     *
144     * <li> reduce: Accumulate each element. The supplied reduction
145     * function cannot rely on ordering (more formally, it should be
146     * both associative and commutative). There are five variants:
147     *
148     * <ul>
149     *
150     * <li> Plain reductions. (There is not a form of this method for
151     * (key, value) function arguments since there is no corresponding
152     * return type.)</li>
153     *
154     * <li> Mapped reductions that accumulate the results of a given
155     * function applied to each element.</li>
156     *
157     * <li> Reductions to scalar doubles, longs, and ints, using a
158     * given basis value.</li>
159     *
160 jsr166 1.178 * </ul>
161 dl 1.137 * </li>
162     * </ul>
163     *
164 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
165     * argument. Methods proceed sequentially if the current map size is
166     * estimated to be less than the given threshold. Using a value of
167     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
168 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
169 dl 1.219 * enough subtasks to fully utilize the {@link
170     * ForkJoinPool#commonPool()} that is used for all parallel
171     * computations. Normally, you would initially choose one of these
172     * extreme values, and then measure performance of using in-between
173     * values that trade off overhead versus throughput.
174 dl 1.210 *
175 dl 1.137 * <p>The concurrency properties of bulk operations follow
176     * from those of ConcurrentHashMap: Any non-null result returned
177     * from {@code get(key)} and related access methods bears a
178     * happens-before relation with the associated insertion or
179     * update. The result of any bulk operation reflects the
180     * composition of these per-element relations (but is not
181     * necessarily atomic with respect to the map as a whole unless it
182     * is somehow known to be quiescent). Conversely, because keys
183     * and values in the map are never null, null serves as a reliable
184     * atomic indicator of the current lack of any result. To
185     * maintain this property, null serves as an implicit basis for
186     * all non-scalar reduction operations. For the double, long, and
187     * int versions, the basis should be one that, when combined with
188     * any other value, returns that other value (more formally, it
189     * should be the identity element for the reduction). Most common
190     * reductions have these properties; for example, computing a sum
191     * with basis 0 or a minimum with basis MAX_VALUE.
192     *
193     * <p>Search and transformation functions provided as arguments
194     * should similarly return null to indicate the lack of any result
195     * (in which case it is not used). In the case of mapped
196     * reductions, this also enables transformations to serve as
197     * filters, returning null (or, in the case of primitive
198     * specializations, the identity basis) if the element should not
199     * be combined. You can create compound transformations and
200     * filterings by composing them yourself under this "null means
201     * there is nothing there now" rule before using them in search or
202     * reduce operations.
203     *
204     * <p>Methods accepting and/or returning Entry arguments maintain
205     * key-value associations. They may be useful for example when
206     * finding the key for the greatest value. Note that "plain" Entry
207     * arguments can be supplied using {@code new
208     * AbstractMap.SimpleEntry(k,v)}.
209     *
210 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
211 dl 1.137 * exception encountered in the application of a supplied
212     * function. Bear in mind when handling such exceptions that other
213     * concurrently executing functions could also have thrown
214     * exceptions, or would have done so if the first exception had
215     * not occurred.
216     *
217 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
218     * but not guaranteed. Parallel operations involving brief functions
219     * on small maps may execute more slowly than sequential forms if the
220     * underlying work to parallelize the computation is more expensive
221     * than the computation itself. Similarly, parallelization may not
222     * lead to much actual parallelism if all processors are busy
223     * performing unrelated tasks.
224 dl 1.137 *
225 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
226 dl 1.137 *
227 dl 1.42 * <p>This class is a member of the
228 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
229 dl 1.42 * Java Collections Framework</a>.
230     *
231 dl 1.8 * @since 1.5
232     * @author Doug Lea
233 dl 1.27 * @param <K> the type of keys maintained by this map
234 jsr166 1.64 * @param <V> the type of mapped values
235 dl 1.8 */
236 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
237     implements ConcurrentMap<K,V>, Serializable {
238 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
239 tim 1.1
240     /*
241 dl 1.119 * Overview:
242     *
243     * The primary design goal of this hash table is to maintain
244     * concurrent readability (typically method get(), but also
245     * iterators and related methods) while minimizing update
246     * contention. Secondary goals are to keep space consumption about
247     * the same or better than java.util.HashMap, and to support high
248     * initial insertion rates on an empty table by many threads.
249     *
250 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
251     * key-value mapping is held in a Node. Most nodes are instances
252     * of the basic Node class with hash, key, value, and next
253     * fields. However, various subclasses exist: TreeNodes are
254 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
255     * of sets of TreeNodes. ForwardingNodes are placed at the heads
256     * of bins during resizing. ReservationNodes are used as
257     * placeholders while establishing values in computeIfAbsent and
258 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
259 dl 1.222 * ReservationNode do not hold normal user keys, values, or
260     * hashes, and are readily distinguishable during search etc
261     * because they have negative hash fields and null key and value
262     * fields. (These special nodes are either uncommon or transient,
263     * so the impact of carrying around some unused fields is
264 jsr166 1.232 * insignificant.)
265 dl 1.119 *
266     * The table is lazily initialized to a power-of-two size upon the
267     * first insertion. Each bin in the table normally contains a
268     * list of Nodes (most often, the list has only zero or one Node).
269     * Table accesses require volatile/atomic reads, writes, and
270     * CASes. Because there is no other way to arrange this without
271     * adding further indirections, we use intrinsics
272 dl 1.210 * (sun.misc.Unsafe) operations.
273 dl 1.119 *
274 dl 1.149 * We use the top (sign) bit of Node hash fields for control
275     * purposes -- it is available anyway because of addressing
276 dl 1.222 * constraints. Nodes with negative hash fields are specially
277     * handled or ignored in map methods.
278 dl 1.119 *
279     * Insertion (via put or its variants) of the first node in an
280     * empty bin is performed by just CASing it to the bin. This is
281     * by far the most common case for put operations under most
282     * key/hash distributions. Other update operations (insert,
283     * delete, and replace) require locks. We do not want to waste
284     * the space required to associate a distinct lock object with
285     * each bin, so instead use the first node of a bin list itself as
286 dl 1.149 * a lock. Locking support for these locks relies on builtin
287     * "synchronized" monitors.
288 dl 1.119 *
289     * Using the first node of a list as a lock does not by itself
290     * suffice though: When a node is locked, any update must first
291     * validate that it is still the first node after locking it, and
292     * retry if not. Because new nodes are always appended to lists,
293     * once a node is first in a bin, it remains first until deleted
294 dl 1.210 * or the bin becomes invalidated (upon resizing).
295 dl 1.119 *
296     * The main disadvantage of per-bin locks is that other update
297     * operations on other nodes in a bin list protected by the same
298     * lock can stall, for example when user equals() or mapping
299     * functions take a long time. However, statistically, under
300     * random hash codes, this is not a common problem. Ideally, the
301     * frequency of nodes in bins follows a Poisson distribution
302     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
303     * parameter of about 0.5 on average, given the resizing threshold
304     * of 0.75, although with a large variance because of resizing
305     * granularity. Ignoring variance, the expected occurrences of
306     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
307     * first values are:
308     *
309     * 0: 0.60653066
310     * 1: 0.30326533
311     * 2: 0.07581633
312     * 3: 0.01263606
313     * 4: 0.00157952
314     * 5: 0.00015795
315     * 6: 0.00001316
316     * 7: 0.00000094
317     * 8: 0.00000006
318     * more: less than 1 in ten million
319     *
320     * Lock contention probability for two threads accessing distinct
321     * elements is roughly 1 / (8 * #elements) under random hashes.
322     *
323     * Actual hash code distributions encountered in practice
324     * sometimes deviate significantly from uniform randomness. This
325     * includes the case when N > (1<<30), so some keys MUST collide.
326     * Similarly for dumb or hostile usages in which multiple keys are
327 dl 1.222 * designed to have identical hash codes or ones that differs only
328 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
329     * applies when the number of nodes in a bin exceeds a
330     * threshold. These TreeBins use a balanced tree to hold nodes (a
331     * specialized form of red-black trees), bounding search time to
332     * O(log N). Each search step in a TreeBin is at least twice as
333     * slow as in a regular list, but given that N cannot exceed
334     * (1<<64) (before running out of addresses) this bounds search
335     * steps, lock hold times, etc, to reasonable constants (roughly
336     * 100 nodes inspected per operation worst case) so long as keys
337     * are Comparable (which is very common -- String, Long, etc).
338 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
339     * traversal pointers as regular nodes, so can be traversed in
340     * iterators in the same way.
341     *
342     * The table is resized when occupancy exceeds a percentage
343 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
344     * noticing an overfull bin may assist in resizing after the
345 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
346     * However, rather than stalling, these other threads may proceed
347     * with insertions etc. The use of TreeBins shields us from the
348     * worst case effects of overfilling while resizes are in
349 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
350 dl 1.246 * from the table to the next table. However, threads claim small
351     * blocks of indices to transfer (via field transferIndex) before
352 dl 1.252 * doing so, reducing contention. A generation stamp in field
353     * sizeCtl ensures that resizings do not overlap. Because we are
354     * using power-of-two expansion, the elements from each bin must
355     * either stay at same index, or move with a power of two
356     * offset. We eliminate unnecessary node creation by catching
357     * cases where old nodes can be reused because their next fields
358     * won't change. On average, only about one-sixth of them need
359     * cloning when a table doubles. The nodes they replace will be
360     * garbage collectable as soon as they are no longer referenced by
361     * any reader thread that may be in the midst of concurrently
362     * traversing table. Upon transfer, the old table bin contains
363     * only a special forwarding node (with hash field "MOVED") that
364     * contains the next table as its key. On encountering a
365     * forwarding node, access and update operations restart, using
366     * the new table.
367 dl 1.149 *
368     * Each bin transfer requires its bin lock, which can stall
369     * waiting for locks while resizing. However, because other
370     * threads can join in and help resize rather than contend for
371     * locks, average aggregate waits become shorter as resizing
372     * progresses. The transfer operation must also ensure that all
373     * accessible bins in both the old and new table are usable by any
374 dl 1.246 * traversal. This is arranged in part by proceeding from the
375     * last bin (table.length - 1) up towards the first. Upon seeing
376     * a forwarding node, traversals (see class Traverser) arrange to
377     * move to the new table without revisiting nodes. To ensure that
378     * no intervening nodes are skipped even when moved out of order,
379     * a stack (see class TableStack) is created on first encounter of
380     * a forwarding node during a traversal, to maintain its place if
381     * later processing the current table. The need for these
382     * save/restore mechanics is relatively rare, but when one
383 jsr166 1.248 * forwarding node is encountered, typically many more will be.
384 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
385     * many new TableStack nodes. (Thanks to Peter Levart for
386     * suggesting use of a stack here.)
387 dl 1.119 *
388     * The traversal scheme also applies to partial traversals of
389     * ranges of bins (via an alternate Traverser constructor)
390     * to support partitioned aggregate operations. Also, read-only
391     * operations give up if ever forwarded to a null table, which
392     * provides support for shutdown-style clearing, which is also not
393     * currently implemented.
394     *
395     * Lazy table initialization minimizes footprint until first use,
396     * and also avoids resizings when the first operation is from a
397     * putAll, constructor with map argument, or deserialization.
398     * These cases attempt to override the initial capacity settings,
399     * but harmlessly fail to take effect in cases of races.
400     *
401 dl 1.149 * The element count is maintained using a specialization of
402     * LongAdder. We need to incorporate a specialization rather than
403     * just use a LongAdder in order to access implicit
404     * contention-sensing that leads to creation of multiple
405 dl 1.222 * CounterCells. The counter mechanics avoid contention on
406 dl 1.149 * updates but can encounter cache thrashing if read too
407     * frequently during concurrent access. To avoid reading so often,
408     * resizing under contention is attempted only upon adding to a
409     * bin already holding two or more nodes. Under uniform hash
410     * distributions, the probability of this occurring at threshold
411     * is around 13%, meaning that only about 1 in 8 puts check
412 dl 1.222 * threshold (and after resizing, many fewer do so).
413     *
414     * TreeBins use a special form of comparison for search and
415     * related operations (which is the main reason we cannot use
416     * existing collections such as TreeMaps). TreeBins contain
417     * Comparable elements, but may contain others, as well as
418 dl 1.240 * elements that are Comparable but not necessarily Comparable for
419     * the same T, so we cannot invoke compareTo among them. To handle
420     * this, the tree is ordered primarily by hash value, then by
421     * Comparable.compareTo order if applicable. On lookup at a node,
422     * if elements are not comparable or compare as 0 then both left
423     * and right children may need to be searched in the case of tied
424     * hash values. (This corresponds to the full list search that
425     * would be necessary if all elements were non-Comparable and had
426     * tied hashes.) On insertion, to keep a total ordering (or as
427     * close as is required here) across rebalancings, we compare
428     * classes and identityHashCodes as tie-breakers. The red-black
429     * balancing code is updated from pre-jdk-collections
430 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432     * Algorithms" (CLR).
433     *
434     * TreeBins also require an additional locking mechanism. While
435 dl 1.224 * list traversal is always possible by readers even during
436 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
437 dl 1.222 * that may change the root node and/or its linkages. TreeBins
438     * include a simple read-write lock mechanism parasitic on the
439     * main bin-synchronization strategy: Structural adjustments
440     * associated with an insertion or removal are already bin-locked
441     * (and so cannot conflict with other writers) but must wait for
442     * ongoing readers to finish. Since there can be only one such
443     * waiter, we use a simple scheme using a single "waiter" field to
444     * block writers. However, readers need never block. If the root
445     * lock is held, they proceed along the slow traversal path (via
446     * next-pointers) until the lock becomes available or the list is
447     * exhausted, whichever comes first. These cases are not fast, but
448     * maximize aggregate expected throughput.
449 dl 1.119 *
450     * Maintaining API and serialization compatibility with previous
451     * versions of this class introduces several oddities. Mainly: We
452 jsr166 1.274 * leave untouched but unused constructor arguments referring to
453 dl 1.119 * concurrencyLevel. We accept a loadFactor constructor argument,
454     * but apply it only to initial table capacity (which is the only
455     * time that we can guarantee to honor it.) We also declare an
456     * unused "Segment" class that is instantiated in minimal form
457     * only when serializing.
458 dl 1.222 *
459 dl 1.240 * Also, solely for compatibility with previous versions of this
460     * class, it extends AbstractMap, even though all of its methods
461     * are overridden, so it is just useless baggage.
462     *
463 dl 1.222 * This file is organized to make things a little easier to follow
464 dl 1.224 * while reading than they might otherwise: First the main static
465 dl 1.222 * declarations and utilities, then fields, then main public
466     * methods (with a few factorings of multiple public methods into
467     * internal ones), then sizing methods, trees, traversers, and
468     * bulk operations.
469 dl 1.4 */
470 tim 1.1
471 dl 1.4 /* ---------------- Constants -------------- */
472 tim 1.11
473 dl 1.4 /**
474 dl 1.119 * The largest possible table capacity. This value must be
475     * exactly 1<<30 to stay within Java array allocation and indexing
476     * bounds for power of two table sizes, and is further required
477     * because the top two bits of 32bit hash fields are used for
478     * control purposes.
479 dl 1.4 */
480 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
481 dl 1.56
482     /**
483 dl 1.119 * The default initial table capacity. Must be a power of 2
484     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 dl 1.56 */
486 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
487 dl 1.56
488     /**
489 dl 1.119 * The largest possible (non-power of two) array size.
490     * Needed by toArray and related methods.
491 jsr166 1.59 */
492 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493 tim 1.1
494     /**
495 dl 1.119 * The default concurrency level for this table. Unused but
496     * defined for compatibility with previous versions of this class.
497 dl 1.4 */
498 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499 tim 1.11
500 tim 1.1 /**
501 dl 1.119 * The load factor for this table. Overrides of this value in
502     * constructors affect only the initial table capacity. The
503     * actual floating point value isn't normally used -- it is
504     * simpler to use expressions such as {@code n - (n >>> 2)} for
505     * the associated resizing threshold.
506 dl 1.99 */
507 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
508 dl 1.99
509     /**
510 dl 1.119 * The bin count threshold for using a tree rather than list for a
511 dl 1.222 * bin. Bins are converted to trees when adding an element to a
512 dl 1.224 * bin with at least this many nodes. The value must be greater
513     * than 2, and should be at least 8 to mesh with assumptions in
514     * tree removal about conversion back to plain bins upon
515     * shrinkage.
516 dl 1.222 */
517     static final int TREEIFY_THRESHOLD = 8;
518    
519     /**
520     * The bin count threshold for untreeifying a (split) bin during a
521     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522     * most 6 to mesh with shrinkage detection under removal.
523     */
524     static final int UNTREEIFY_THRESHOLD = 6;
525    
526     /**
527     * The smallest table capacity for which bins may be treeified.
528     * (Otherwise the table is resized if too many nodes in a bin.)
529 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530     * conflicts between resizing and treeification thresholds.
531 dl 1.119 */
532 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
533 dl 1.119
534 dl 1.149 /**
535     * Minimum number of rebinnings per transfer step. Ranges are
536     * subdivided to allow multiple resizer threads. This value
537     * serves as a lower bound to avoid resizers encountering
538     * excessive memory contention. The value should be at least
539     * DEFAULT_CAPACITY.
540     */
541     private static final int MIN_TRANSFER_STRIDE = 16;
542    
543 dl 1.252 /**
544     * The number of bits used for generation stamp in sizeCtl.
545     * Must be at least 6 for 32bit arrays.
546     */
547     private static int RESIZE_STAMP_BITS = 16;
548    
549     /**
550     * The maximum number of threads that can help resize.
551     * Must fit in 32 - RESIZE_STAMP_BITS bits.
552     */
553     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
554    
555     /**
556     * The bit shift for recording size stamp in sizeCtl.
557     */
558     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
559    
560 dl 1.119 /*
561 dl 1.149 * Encodings for Node hash fields. See above for explanation.
562 dl 1.46 */
563 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
564     static final int TREEBIN = -2; // hash for roots of trees
565     static final int RESERVED = -3; // hash for transient reservations
566 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
567    
568     /** Number of CPUS, to place bounds on some sizings */
569     static final int NCPU = Runtime.getRuntime().availableProcessors();
570    
571 dl 1.208 /** For serialization compatibility. */
572     private static final ObjectStreamField[] serialPersistentFields = {
573 dl 1.209 new ObjectStreamField("segments", Segment[].class),
574     new ObjectStreamField("segmentMask", Integer.TYPE),
575     new ObjectStreamField("segmentShift", Integer.TYPE)
576 dl 1.208 };
577    
578 dl 1.222 /* ---------------- Nodes -------------- */
579    
580     /**
581     * Key-value entry. This class is never exported out as a
582     * user-mutable Map.Entry (i.e., one supporting setValue; see
583     * MapEntry below), but can be used for read-only traversals used
584 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
585 dl 1.224 * are special, and contain null keys and values (but are never
586     * exported). Otherwise, keys and vals are never null.
587 dl 1.222 */
588     static class Node<K,V> implements Map.Entry<K,V> {
589     final int hash;
590     final K key;
591     volatile V val;
592 dl 1.233 volatile Node<K,V> next;
593 dl 1.222
594     Node(int hash, K key, V val, Node<K,V> next) {
595     this.hash = hash;
596     this.key = key;
597     this.val = val;
598     this.next = next;
599     }
600    
601 jsr166 1.268 public final K getKey() { return key; }
602     public final V getValue() { return val; }
603     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
604     public final String toString() {
605     return Helpers.mapEntryToString(key, val);
606 jsr166 1.265 }
607 dl 1.222 public final V setValue(V value) {
608     throw new UnsupportedOperationException();
609     }
610    
611     public final boolean equals(Object o) {
612     Object k, v, u; Map.Entry<?,?> e;
613     return ((o instanceof Map.Entry) &&
614     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615     (v = e.getValue()) != null &&
616     (k == key || k.equals(key)) &&
617     (v == (u = val) || v.equals(u)));
618     }
619    
620 dl 1.224 /**
621     * Virtualized support for map.get(); overridden in subclasses.
622     */
623 dl 1.222 Node<K,V> find(int h, Object k) {
624     Node<K,V> e = this;
625     if (k != null) {
626     do {
627     K ek;
628     if (e.hash == h &&
629     ((ek = e.key) == k || (ek != null && k.equals(ek))))
630     return e;
631     } while ((e = e.next) != null);
632     }
633     return null;
634     }
635     }
636    
637     /* ---------------- Static utilities -------------- */
638    
639     /**
640     * Spreads (XORs) higher bits of hash to lower and also forces top
641     * bit to 0. Because the table uses power-of-two masking, sets of
642     * hashes that vary only in bits above the current mask will
643     * always collide. (Among known examples are sets of Float keys
644     * holding consecutive whole numbers in small tables.) So we
645     * apply a transform that spreads the impact of higher bits
646     * downward. There is a tradeoff between speed, utility, and
647     * quality of bit-spreading. Because many common sets of hashes
648     * are already reasonably distributed (so don't benefit from
649     * spreading), and because we use trees to handle large sets of
650     * collisions in bins, we just XOR some shifted bits in the
651     * cheapest possible way to reduce systematic lossage, as well as
652     * to incorporate impact of the highest bits that would otherwise
653     * never be used in index calculations because of table bounds.
654     */
655     static final int spread(int h) {
656     return (h ^ (h >>> 16)) & HASH_BITS;
657     }
658    
659     /**
660     * Returns a power of two table size for the given desired capacity.
661     * See Hackers Delight, sec 3.2
662     */
663     private static final int tableSizeFor(int c) {
664     int n = c - 1;
665     n |= n >>> 1;
666     n |= n >>> 2;
667     n |= n >>> 4;
668     n |= n >>> 8;
669     n |= n >>> 16;
670     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671     }
672    
673     /**
674     * Returns x's Class if it is of the form "class C implements
675     * Comparable<C>", else null.
676     */
677     static Class<?> comparableClassFor(Object x) {
678     if (x instanceof Comparable) {
679     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680     if ((c = x.getClass()) == String.class) // bypass checks
681     return c;
682     if ((ts = c.getGenericInterfaces()) != null) {
683     for (int i = 0; i < ts.length; ++i) {
684     if (((t = ts[i]) instanceof ParameterizedType) &&
685     ((p = (ParameterizedType)t).getRawType() ==
686     Comparable.class) &&
687     (as = p.getActualTypeArguments()) != null &&
688     as.length == 1 && as[0] == c) // type arg is c
689     return c;
690     }
691     }
692     }
693     return null;
694     }
695    
696 dl 1.210 /**
697 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
698     * class), else 0.
699     */
700     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701     static int compareComparables(Class<?> kc, Object k, Object x) {
702     return (x == null || x.getClass() != kc ? 0 :
703     ((Comparable)k).compareTo(x));
704     }
705    
706     /* ---------------- Table element access -------------- */
707    
708     /*
709     * Volatile access methods are used for table elements as well as
710     * elements of in-progress next table while resizing. All uses of
711     * the tab arguments must be null checked by callers. All callers
712     * also paranoically precheck that tab's length is not zero (or an
713     * equivalent check), thus ensuring that any index argument taking
714     * the form of a hash value anded with (length - 1) is a valid
715     * index. Note that, to be correct wrt arbitrary concurrency
716     * errors by users, these checks must operate on local variables,
717     * which accounts for some odd-looking inline assignments below.
718     * Note that calls to setTabAt always occur within locked regions,
719 dl 1.252 * and so in principle require only release ordering, not
720 dl 1.233 * full volatile semantics, but are currently coded as volatile
721     * writes to be conservative.
722 dl 1.210 */
723 dl 1.222
724     @SuppressWarnings("unchecked")
725     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727     }
728    
729     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730     Node<K,V> c, Node<K,V> v) {
731     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732     }
733    
734     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 dl 1.233 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 dl 1.149 }
737    
738 dl 1.4 /* ---------------- Fields -------------- */
739 tim 1.1
740     /**
741 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
742     * Size is always a power of two. Accessed directly by iterators.
743 jsr166 1.59 */
744 dl 1.210 transient volatile Node<K,V>[] table;
745 tim 1.1
746     /**
747 dl 1.149 * The next table to use; non-null only while resizing.
748 jsr166 1.59 */
749 dl 1.210 private transient volatile Node<K,V>[] nextTable;
750 dl 1.149
751     /**
752     * Base counter value, used mainly when there is no contention,
753     * but also as a fallback during table initialization
754     * races. Updated via CAS.
755     */
756     private transient volatile long baseCount;
757 tim 1.1
758     /**
759 dl 1.119 * Table initialization and resizing control. When negative, the
760 dl 1.149 * table is being initialized or resized: -1 for initialization,
761     * else -(1 + the number of active resizing threads). Otherwise,
762     * when table is null, holds the initial table size to use upon
763     * creation, or 0 for default. After initialization, holds the
764     * next element count value upon which to resize the table.
765 tim 1.1 */
766 dl 1.119 private transient volatile int sizeCtl;
767 dl 1.4
768 dl 1.149 /**
769     * The next table index (plus one) to split while resizing.
770     */
771     private transient volatile int transferIndex;
772    
773     /**
774 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 dl 1.149 */
776 dl 1.153 private transient volatile int cellsBusy;
777 dl 1.149
778     /**
779     * Table of counter cells. When non-null, size is a power of 2.
780     */
781 dl 1.222 private transient volatile CounterCell[] counterCells;
782 dl 1.149
783 dl 1.119 // views
784 dl 1.137 private transient KeySetView<K,V> keySet;
785 dl 1.142 private transient ValuesView<K,V> values;
786     private transient EntrySetView<K,V> entrySet;
787 dl 1.119
788    
789 dl 1.222 /* ---------------- Public operations -------------- */
790    
791     /**
792     * Creates a new, empty map with the default initial table size (16).
793 dl 1.119 */
794 dl 1.222 public ConcurrentHashMap() {
795     }
796 dl 1.119
797 dl 1.222 /**
798     * Creates a new, empty map with an initial table size
799     * accommodating the specified number of elements without the need
800     * to dynamically resize.
801     *
802     * @param initialCapacity The implementation performs internal
803     * sizing to accommodate this many elements.
804     * @throws IllegalArgumentException if the initial capacity of
805     * elements is negative
806     */
807     public ConcurrentHashMap(int initialCapacity) {
808     if (initialCapacity < 0)
809     throw new IllegalArgumentException();
810     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811     MAXIMUM_CAPACITY :
812     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813     this.sizeCtl = cap;
814 dl 1.119 }
815    
816 dl 1.222 /**
817     * Creates a new map with the same mappings as the given map.
818     *
819     * @param m the map
820     */
821     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822     this.sizeCtl = DEFAULT_CAPACITY;
823     putAll(m);
824 dl 1.119 }
825    
826 dl 1.222 /**
827     * Creates a new, empty map with an initial table size based on
828     * the given number of elements ({@code initialCapacity}) and
829     * initial table density ({@code loadFactor}).
830     *
831     * @param initialCapacity the initial capacity. The implementation
832     * performs internal sizing to accommodate this many elements,
833     * given the specified load factor.
834     * @param loadFactor the load factor (table density) for
835     * establishing the initial table size
836     * @throws IllegalArgumentException if the initial capacity of
837     * elements is negative or the load factor is nonpositive
838     *
839     * @since 1.6
840     */
841     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842     this(initialCapacity, loadFactor, 1);
843 dl 1.119 }
844    
845 dl 1.99 /**
846 dl 1.222 * Creates a new, empty map with an initial table size based on
847     * the given number of elements ({@code initialCapacity}), table
848     * density ({@code loadFactor}), and number of concurrently
849     * updating threads ({@code concurrencyLevel}).
850     *
851     * @param initialCapacity the initial capacity. The implementation
852     * performs internal sizing to accommodate this many elements,
853     * given the specified load factor.
854     * @param loadFactor the load factor (table density) for
855     * establishing the initial table size
856     * @param concurrencyLevel the estimated number of concurrently
857     * updating threads. The implementation may use this value as
858     * a sizing hint.
859     * @throws IllegalArgumentException if the initial capacity is
860     * negative or the load factor or concurrencyLevel are
861     * nonpositive
862 dl 1.99 */
863 dl 1.222 public ConcurrentHashMap(int initialCapacity,
864     float loadFactor, int concurrencyLevel) {
865     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866     throw new IllegalArgumentException();
867     if (initialCapacity < concurrencyLevel) // Use at least as many bins
868     initialCapacity = concurrencyLevel; // as estimated threads
869     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871     MAXIMUM_CAPACITY : tableSizeFor((int)size);
872     this.sizeCtl = cap;
873     }
874 dl 1.99
875 dl 1.222 // Original (since JDK1.2) Map methods
876 dl 1.210
877 dl 1.222 /**
878     * {@inheritDoc}
879     */
880     public int size() {
881     long n = sumCount();
882     return ((n < 0L) ? 0 :
883     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884     (int)n);
885     }
886 dl 1.210
887 dl 1.222 /**
888     * {@inheritDoc}
889     */
890     public boolean isEmpty() {
891     return sumCount() <= 0L; // ignore transient negative values
892 dl 1.210 }
893    
894     /**
895 dl 1.222 * Returns the value to which the specified key is mapped,
896     * or {@code null} if this map contains no mapping for the key.
897     *
898     * <p>More formally, if this map contains a mapping from a key
899     * {@code k} to a value {@code v} such that {@code key.equals(k)},
900     * then this method returns {@code v}; otherwise it returns
901     * {@code null}. (There can be at most one such mapping.)
902     *
903     * @throws NullPointerException if the specified key is null
904 dl 1.210 */
905 dl 1.222 public V get(Object key) {
906     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907     int h = spread(key.hashCode());
908     if ((tab = table) != null && (n = tab.length) > 0 &&
909     (e = tabAt(tab, (n - 1) & h)) != null) {
910     if ((eh = e.hash) == h) {
911     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912     return e.val;
913     }
914     else if (eh < 0)
915     return (p = e.find(h, key)) != null ? p.val : null;
916     while ((e = e.next) != null) {
917     if (e.hash == h &&
918     ((ek = e.key) == key || (ek != null && key.equals(ek))))
919     return e.val;
920     }
921 dl 1.210 }
922 dl 1.222 return null;
923 dl 1.99 }
924    
925     /**
926 dl 1.222 * Tests if the specified object is a key in this table.
927     *
928     * @param key possible key
929     * @return {@code true} if and only if the specified object
930     * is a key in this table, as determined by the
931     * {@code equals} method; {@code false} otherwise
932     * @throws NullPointerException if the specified key is null
933 dl 1.99 */
934 dl 1.222 public boolean containsKey(Object key) {
935     return get(key) != null;
936 dl 1.99 }
937 tim 1.1
938 dl 1.201 /**
939 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
940     * specified value. Note: This method may require a full traversal
941     * of the map, and is much slower than method {@code containsKey}.
942     *
943     * @param value value whose presence in this map is to be tested
944     * @return {@code true} if this map maps one or more keys to the
945     * specified value
946     * @throws NullPointerException if the specified value is null
947     */
948     public boolean containsValue(Object value) {
949     if (value == null)
950     throw new NullPointerException();
951     Node<K,V>[] t;
952     if ((t = table) != null) {
953     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954     for (Node<K,V> p; (p = it.advance()) != null; ) {
955     V v;
956     if ((v = p.val) == value || (v != null && value.equals(v)))
957     return true;
958 dl 1.201 }
959     }
960 dl 1.222 return false;
961 dl 1.201 }
962    
963 tim 1.1 /**
964 dl 1.222 * Maps the specified key to the specified value in this table.
965     * Neither the key nor the value can be null.
966 dl 1.119 *
967 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
968     * with a key that is equal to the original key.
969 dl 1.119 *
970 dl 1.222 * @param key key with which the specified value is to be associated
971     * @param value value to be associated with the specified key
972     * @return the previous value associated with {@code key}, or
973     * {@code null} if there was no mapping for {@code key}
974     * @throws NullPointerException if the specified key or value is null
975 dl 1.119 */
976 dl 1.222 public V put(K key, V value) {
977     return putVal(key, value, false);
978     }
979 dl 1.119
980 dl 1.222 /** Implementation for put and putIfAbsent */
981     final V putVal(K key, V value, boolean onlyIfAbsent) {
982     if (key == null || value == null) throw new NullPointerException();
983     int hash = spread(key.hashCode());
984     int binCount = 0;
985     for (Node<K,V>[] tab = table;;) {
986     Node<K,V> f; int n, i, fh;
987     if (tab == null || (n = tab.length) == 0)
988     tab = initTable();
989     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990     if (casTabAt(tab, i, null,
991     new Node<K,V>(hash, key, value, null)))
992     break; // no lock when adding to empty bin
993 dl 1.119 }
994 dl 1.222 else if ((fh = f.hash) == MOVED)
995     tab = helpTransfer(tab, f);
996     else {
997     V oldVal = null;
998     synchronized (f) {
999     if (tabAt(tab, i) == f) {
1000     if (fh >= 0) {
1001     binCount = 1;
1002     for (Node<K,V> e = f;; ++binCount) {
1003     K ek;
1004     if (e.hash == hash &&
1005     ((ek = e.key) == key ||
1006     (ek != null && key.equals(ek)))) {
1007     oldVal = e.val;
1008     if (!onlyIfAbsent)
1009     e.val = value;
1010     break;
1011     }
1012     Node<K,V> pred = e;
1013     if ((e = e.next) == null) {
1014     pred.next = new Node<K,V>(hash, key,
1015     value, null);
1016     break;
1017     }
1018     }
1019     }
1020     else if (f instanceof TreeBin) {
1021     Node<K,V> p;
1022     binCount = 2;
1023     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024     value)) != null) {
1025     oldVal = p.val;
1026     if (!onlyIfAbsent)
1027     p.val = value;
1028     }
1029     }
1030 dl 1.259 else if (f instanceof ReservationNode)
1031     throw new IllegalStateException("Recursive update");
1032 dl 1.99 }
1033     }
1034 dl 1.222 if (binCount != 0) {
1035     if (binCount >= TREEIFY_THRESHOLD)
1036     treeifyBin(tab, i);
1037     if (oldVal != null)
1038     return oldVal;
1039 dl 1.99 break;
1040     }
1041     }
1042     }
1043 dl 1.222 addCount(1L, binCount);
1044     return null;
1045     }
1046    
1047     /**
1048     * Copies all of the mappings from the specified map to this one.
1049     * These mappings replace any mappings that this map had for any of the
1050     * keys currently in the specified map.
1051     *
1052     * @param m mappings to be stored in this map
1053     */
1054     public void putAll(Map<? extends K, ? extends V> m) {
1055     tryPresize(m.size());
1056     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1057     putVal(e.getKey(), e.getValue(), false);
1058     }
1059 dl 1.99
1060 dl 1.222 /**
1061     * Removes the key (and its corresponding value) from this map.
1062     * This method does nothing if the key is not in the map.
1063     *
1064     * @param key the key that needs to be removed
1065     * @return the previous value associated with {@code key}, or
1066     * {@code null} if there was no mapping for {@code key}
1067     * @throws NullPointerException if the specified key is null
1068     */
1069     public V remove(Object key) {
1070     return replaceNode(key, null, null);
1071     }
1072 dl 1.99
1073 dl 1.222 /**
1074     * Implementation for the four public remove/replace methods:
1075     * Replaces node value with v, conditional upon match of cv if
1076     * non-null. If resulting value is null, delete.
1077     */
1078     final V replaceNode(Object key, V value, Object cv) {
1079     int hash = spread(key.hashCode());
1080     for (Node<K,V>[] tab = table;;) {
1081     Node<K,V> f; int n, i, fh;
1082     if (tab == null || (n = tab.length) == 0 ||
1083     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1084     break;
1085     else if ((fh = f.hash) == MOVED)
1086     tab = helpTransfer(tab, f);
1087     else {
1088     V oldVal = null;
1089     boolean validated = false;
1090     synchronized (f) {
1091     if (tabAt(tab, i) == f) {
1092     if (fh >= 0) {
1093     validated = true;
1094     for (Node<K,V> e = f, pred = null;;) {
1095     K ek;
1096     if (e.hash == hash &&
1097     ((ek = e.key) == key ||
1098     (ek != null && key.equals(ek)))) {
1099     V ev = e.val;
1100     if (cv == null || cv == ev ||
1101     (ev != null && cv.equals(ev))) {
1102     oldVal = ev;
1103     if (value != null)
1104     e.val = value;
1105     else if (pred != null)
1106     pred.next = e.next;
1107     else
1108     setTabAt(tab, i, e.next);
1109     }
1110     break;
1111 dl 1.119 }
1112 dl 1.222 pred = e;
1113     if ((e = e.next) == null)
1114     break;
1115 dl 1.119 }
1116     }
1117 dl 1.222 else if (f instanceof TreeBin) {
1118     validated = true;
1119     TreeBin<K,V> t = (TreeBin<K,V>)f;
1120     TreeNode<K,V> r, p;
1121     if ((r = t.root) != null &&
1122     (p = r.findTreeNode(hash, key, null)) != null) {
1123     V pv = p.val;
1124     if (cv == null || cv == pv ||
1125     (pv != null && cv.equals(pv))) {
1126     oldVal = pv;
1127     if (value != null)
1128     p.val = value;
1129     else if (t.removeTreeNode(p))
1130     setTabAt(tab, i, untreeify(t.first));
1131 dl 1.119 }
1132     }
1133 dl 1.99 }
1134 dl 1.259 else if (f instanceof ReservationNode)
1135     throw new IllegalStateException("Recursive update");
1136 dl 1.99 }
1137     }
1138 dl 1.222 if (validated) {
1139     if (oldVal != null) {
1140     if (value == null)
1141     addCount(-1L, -1);
1142     return oldVal;
1143     }
1144     break;
1145     }
1146 dl 1.99 }
1147     }
1148 dl 1.222 return null;
1149     }
1150 dl 1.45
1151 dl 1.222 /**
1152     * Removes all of the mappings from this map.
1153     */
1154     public void clear() {
1155     long delta = 0L; // negative number of deletions
1156     int i = 0;
1157     Node<K,V>[] tab = table;
1158     while (tab != null && i < tab.length) {
1159     int fh;
1160     Node<K,V> f = tabAt(tab, i);
1161     if (f == null)
1162     ++i;
1163     else if ((fh = f.hash) == MOVED) {
1164     tab = helpTransfer(tab, f);
1165     i = 0; // restart
1166 dl 1.217 }
1167 dl 1.222 else {
1168     synchronized (f) {
1169     if (tabAt(tab, i) == f) {
1170     Node<K,V> p = (fh >= 0 ? f :
1171     (f instanceof TreeBin) ?
1172     ((TreeBin<K,V>)f).first : null);
1173     while (p != null) {
1174     --delta;
1175     p = p.next;
1176 dl 1.119 }
1177 dl 1.222 setTabAt(tab, i++, null);
1178 dl 1.119 }
1179 dl 1.45 }
1180 dl 1.4 }
1181 dl 1.217 }
1182 dl 1.222 if (delta != 0L)
1183     addCount(delta, -1);
1184     }
1185 dl 1.217
1186 dl 1.222 /**
1187     * Returns a {@link Set} view of the keys contained in this map.
1188     * The set is backed by the map, so changes to the map are
1189     * reflected in the set, and vice-versa. The set supports element
1190     * removal, which removes the corresponding mapping from this map,
1191     * via the {@code Iterator.remove}, {@code Set.remove},
1192     * {@code removeAll}, {@code retainAll}, and {@code clear}
1193     * operations. It does not support the {@code add} or
1194     * {@code addAll} operations.
1195     *
1196 jsr166 1.242 * <p>The view's iterators and spliterators are
1197     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 dl 1.222 *
1199 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1200     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1201     *
1202 dl 1.222 * @return the set view
1203     */
1204     public KeySetView<K,V> keySet() {
1205     KeySetView<K,V> ks;
1206     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1207     }
1208 dl 1.217
1209 dl 1.222 /**
1210     * Returns a {@link Collection} view of the values contained in this map.
1211     * The collection is backed by the map, so changes to the map are
1212     * reflected in the collection, and vice-versa. The collection
1213     * supports element removal, which removes the corresponding
1214     * mapping from this map, via the {@code Iterator.remove},
1215     * {@code Collection.remove}, {@code removeAll},
1216     * {@code retainAll}, and {@code clear} operations. It does not
1217     * support the {@code add} or {@code addAll} operations.
1218     *
1219 jsr166 1.242 * <p>The view's iterators and spliterators are
1220     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1221 dl 1.222 *
1222 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1223     * and {@link Spliterator#NONNULL}.
1224     *
1225 dl 1.222 * @return the collection view
1226     */
1227     public Collection<V> values() {
1228     ValuesView<K,V> vs;
1229     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1230 tim 1.1 }
1231    
1232 dl 1.99 /**
1233 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1234     * The set is backed by the map, so changes to the map are
1235     * reflected in the set, and vice-versa. The set supports element
1236     * removal, which removes the corresponding mapping from the map,
1237     * via the {@code Iterator.remove}, {@code Set.remove},
1238     * {@code removeAll}, {@code retainAll}, and {@code clear}
1239     * operations.
1240     *
1241 jsr166 1.242 * <p>The view's iterators and spliterators are
1242     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1243 dl 1.222 *
1244 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1245     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1246     *
1247 dl 1.222 * @return the set view
1248 dl 1.119 */
1249 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1250     EntrySetView<K,V> es;
1251     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1252 dl 1.99 }
1253    
1254     /**
1255 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1256     * the sum of, for each key-value pair in the map,
1257     * {@code key.hashCode() ^ value.hashCode()}.
1258     *
1259     * @return the hash code value for this map
1260 dl 1.119 */
1261 dl 1.222 public int hashCode() {
1262     int h = 0;
1263     Node<K,V>[] t;
1264     if ((t = table) != null) {
1265     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1266     for (Node<K,V> p; (p = it.advance()) != null; )
1267     h += p.key.hashCode() ^ p.val.hashCode();
1268 dl 1.119 }
1269 dl 1.222 return h;
1270 dl 1.99 }
1271 tim 1.11
1272 dl 1.222 /**
1273     * Returns a string representation of this map. The string
1274     * representation consists of a list of key-value mappings (in no
1275     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1276     * mappings are separated by the characters {@code ", "} (comma
1277     * and space). Each key-value mapping is rendered as the key
1278     * followed by an equals sign ("{@code =}") followed by the
1279     * associated value.
1280     *
1281     * @return a string representation of this map
1282     */
1283     public String toString() {
1284     Node<K,V>[] t;
1285     int f = (t = table) == null ? 0 : t.length;
1286     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1287     StringBuilder sb = new StringBuilder();
1288     sb.append('{');
1289     Node<K,V> p;
1290     if ((p = it.advance()) != null) {
1291 dl 1.210 for (;;) {
1292 dl 1.222 K k = p.key;
1293     V v = p.val;
1294     sb.append(k == this ? "(this Map)" : k);
1295     sb.append('=');
1296     sb.append(v == this ? "(this Map)" : v);
1297     if ((p = it.advance()) == null)
1298 dl 1.210 break;
1299 dl 1.222 sb.append(',').append(' ');
1300 dl 1.119 }
1301     }
1302 dl 1.222 return sb.append('}').toString();
1303 tim 1.1 }
1304    
1305     /**
1306 dl 1.222 * Compares the specified object with this map for equality.
1307     * Returns {@code true} if the given object is a map with the same
1308     * mappings as this map. This operation may return misleading
1309     * results if either map is concurrently modified during execution
1310     * of this method.
1311     *
1312     * @param o object to be compared for equality with this map
1313     * @return {@code true} if the specified object is equal to this map
1314 dl 1.119 */
1315 dl 1.222 public boolean equals(Object o) {
1316     if (o != this) {
1317     if (!(o instanceof Map))
1318     return false;
1319     Map<?,?> m = (Map<?,?>) o;
1320     Node<K,V>[] t;
1321     int f = (t = table) == null ? 0 : t.length;
1322     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1323     for (Node<K,V> p; (p = it.advance()) != null; ) {
1324     V val = p.val;
1325     Object v = m.get(p.key);
1326     if (v == null || (v != val && !v.equals(val)))
1327     return false;
1328 dl 1.119 }
1329 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1330     Object mk, mv, v;
1331     if ((mk = e.getKey()) == null ||
1332     (mv = e.getValue()) == null ||
1333     (v = get(mk)) == null ||
1334     (mv != v && !mv.equals(v)))
1335     return false;
1336     }
1337     }
1338     return true;
1339     }
1340    
1341     /**
1342     * Stripped-down version of helper class used in previous version,
1343     * declared for the sake of serialization compatibility
1344     */
1345     static class Segment<K,V> extends ReentrantLock implements Serializable {
1346     private static final long serialVersionUID = 2249069246763182397L;
1347     final float loadFactor;
1348     Segment(float lf) { this.loadFactor = lf; }
1349     }
1350    
1351     /**
1352     * Saves the state of the {@code ConcurrentHashMap} instance to a
1353     * stream (i.e., serializes it).
1354     * @param s the stream
1355 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1356 dl 1.222 * @serialData
1357     * the key (Object) and value (Object)
1358     * for each key-value mapping, followed by a null pair.
1359     * The key-value mappings are emitted in no particular order.
1360     */
1361     private void writeObject(java.io.ObjectOutputStream s)
1362     throws java.io.IOException {
1363     // For serialization compatibility
1364     // Emulate segment calculation from previous version of this class
1365     int sshift = 0;
1366     int ssize = 1;
1367     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1368     ++sshift;
1369     ssize <<= 1;
1370     }
1371     int segmentShift = 32 - sshift;
1372     int segmentMask = ssize - 1;
1373 dl 1.246 @SuppressWarnings("unchecked")
1374     Segment<K,V>[] segments = (Segment<K,V>[])
1375 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1376     for (int i = 0; i < segments.length; ++i)
1377     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1378 jsr166 1.270 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1379     streamFields.put("segments", segments);
1380     streamFields.put("segmentShift", segmentShift);
1381     streamFields.put("segmentMask", segmentMask);
1382 dl 1.222 s.writeFields();
1383    
1384     Node<K,V>[] t;
1385     if ((t = table) != null) {
1386     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1387     for (Node<K,V> p; (p = it.advance()) != null; ) {
1388     s.writeObject(p.key);
1389     s.writeObject(p.val);
1390     }
1391     }
1392     s.writeObject(null);
1393     s.writeObject(null);
1394     segments = null; // throw away
1395     }
1396    
1397     /**
1398     * Reconstitutes the instance from a stream (that is, deserializes it).
1399     * @param s the stream
1400 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1401     * could not be found
1402     * @throws java.io.IOException if an I/O error occurs
1403 dl 1.222 */
1404     private void readObject(java.io.ObjectInputStream s)
1405     throws java.io.IOException, ClassNotFoundException {
1406     /*
1407     * To improve performance in typical cases, we create nodes
1408     * while reading, then place in table once size is known.
1409     * However, we must also validate uniqueness and deal with
1410     * overpopulated bins while doing so, which requires
1411     * specialized versions of putVal mechanics.
1412     */
1413     sizeCtl = -1; // force exclusion for table construction
1414     s.defaultReadObject();
1415     long size = 0L;
1416     Node<K,V> p = null;
1417     for (;;) {
1418 dl 1.246 @SuppressWarnings("unchecked")
1419     K k = (K) s.readObject();
1420     @SuppressWarnings("unchecked")
1421     V v = (V) s.readObject();
1422 dl 1.222 if (k != null && v != null) {
1423     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1424     ++size;
1425     }
1426     else
1427     break;
1428     }
1429     if (size == 0L)
1430     sizeCtl = 0;
1431     else {
1432     int n;
1433     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1434     n = MAXIMUM_CAPACITY;
1435 dl 1.149 else {
1436 dl 1.222 int sz = (int)size;
1437     n = tableSizeFor(sz + (sz >>> 1) + 1);
1438     }
1439 jsr166 1.245 @SuppressWarnings("unchecked")
1440 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1441 dl 1.222 int mask = n - 1;
1442     long added = 0L;
1443     while (p != null) {
1444     boolean insertAtFront;
1445     Node<K,V> next = p.next, first;
1446     int h = p.hash, j = h & mask;
1447     if ((first = tabAt(tab, j)) == null)
1448     insertAtFront = true;
1449     else {
1450     K k = p.key;
1451     if (first.hash < 0) {
1452     TreeBin<K,V> t = (TreeBin<K,V>)first;
1453     if (t.putTreeVal(h, k, p.val) == null)
1454     ++added;
1455     insertAtFront = false;
1456     }
1457     else {
1458     int binCount = 0;
1459     insertAtFront = true;
1460     Node<K,V> q; K qk;
1461     for (q = first; q != null; q = q.next) {
1462     if (q.hash == h &&
1463     ((qk = q.key) == k ||
1464     (qk != null && k.equals(qk)))) {
1465     insertAtFront = false;
1466 dl 1.119 break;
1467     }
1468 dl 1.222 ++binCount;
1469     }
1470     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1471     insertAtFront = false;
1472     ++added;
1473     p.next = first;
1474     TreeNode<K,V> hd = null, tl = null;
1475     for (q = p; q != null; q = q.next) {
1476     TreeNode<K,V> t = new TreeNode<K,V>
1477     (q.hash, q.key, q.val, null, null);
1478     if ((t.prev = tl) == null)
1479     hd = t;
1480     else
1481     tl.next = t;
1482     tl = t;
1483     }
1484     setTabAt(tab, j, new TreeBin<K,V>(hd));
1485 dl 1.119 }
1486     }
1487     }
1488 dl 1.222 if (insertAtFront) {
1489     ++added;
1490     p.next = first;
1491     setTabAt(tab, j, p);
1492 dl 1.119 }
1493 dl 1.222 p = next;
1494 dl 1.119 }
1495 dl 1.222 table = tab;
1496     sizeCtl = n - (n >>> 2);
1497     baseCount = added;
1498 dl 1.119 }
1499 dl 1.55 }
1500    
1501 dl 1.222 // ConcurrentMap methods
1502    
1503     /**
1504     * {@inheritDoc}
1505     *
1506     * @return the previous value associated with the specified key,
1507     * or {@code null} if there was no mapping for the key
1508     * @throws NullPointerException if the specified key or value is null
1509     */
1510     public V putIfAbsent(K key, V value) {
1511     return putVal(key, value, true);
1512     }
1513    
1514     /**
1515     * {@inheritDoc}
1516     *
1517     * @throws NullPointerException if the specified key is null
1518     */
1519     public boolean remove(Object key, Object value) {
1520     if (key == null)
1521     throw new NullPointerException();
1522     return value != null && replaceNode(key, null, value) != null;
1523     }
1524    
1525     /**
1526     * {@inheritDoc}
1527     *
1528     * @throws NullPointerException if any of the arguments are null
1529     */
1530     public boolean replace(K key, V oldValue, V newValue) {
1531     if (key == null || oldValue == null || newValue == null)
1532     throw new NullPointerException();
1533     return replaceNode(key, newValue, oldValue) != null;
1534     }
1535    
1536     /**
1537     * {@inheritDoc}
1538     *
1539     * @return the previous value associated with the specified key,
1540     * or {@code null} if there was no mapping for the key
1541     * @throws NullPointerException if the specified key or value is null
1542     */
1543     public V replace(K key, V value) {
1544     if (key == null || value == null)
1545     throw new NullPointerException();
1546     return replaceNode(key, value, null);
1547     }
1548    
1549     // Overrides of JDK8+ Map extension method defaults
1550    
1551     /**
1552     * Returns the value to which the specified key is mapped, or the
1553     * given default value if this map contains no mapping for the
1554     * key.
1555     *
1556     * @param key the key whose associated value is to be returned
1557     * @param defaultValue the value to return if this map contains
1558     * no mapping for the given key
1559     * @return the mapping for the key, if present; else the default value
1560     * @throws NullPointerException if the specified key is null
1561 tim 1.1 */
1562 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1563     V v;
1564     return (v = get(key)) == null ? defaultValue : v;
1565     }
1566 tim 1.1
1567 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1568     if (action == null) throw new NullPointerException();
1569     Node<K,V>[] t;
1570     if ((t = table) != null) {
1571     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1572     for (Node<K,V> p; (p = it.advance()) != null; ) {
1573     action.accept(p.key, p.val);
1574 dl 1.99 }
1575 dl 1.222 }
1576     }
1577    
1578     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1579     if (function == null) throw new NullPointerException();
1580     Node<K,V>[] t;
1581     if ((t = table) != null) {
1582     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1583     for (Node<K,V> p; (p = it.advance()) != null; ) {
1584     V oldValue = p.val;
1585     for (K key = p.key;;) {
1586     V newValue = function.apply(key, oldValue);
1587     if (newValue == null)
1588     throw new NullPointerException();
1589     if (replaceNode(key, newValue, oldValue) != null ||
1590     (oldValue = get(key)) == null)
1591 dl 1.119 break;
1592     }
1593     }
1594 dl 1.45 }
1595 dl 1.21 }
1596    
1597 dl 1.222 /**
1598 jsr166 1.277 * Helper method for EntrySetView.removeIf
1599 dl 1.271 */
1600 jsr166 1.273 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1601 dl 1.271 if (function == null) throw new NullPointerException();
1602     Node<K,V>[] t;
1603     boolean removed = false;
1604     if ((t = table) != null) {
1605     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1606     for (Node<K,V> p; (p = it.advance()) != null; ) {
1607     K k = p.key;
1608     V v = p.val;
1609     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1610     if (function.test(e) && replaceNode(k, null, v) != null)
1611     removed = true;
1612     }
1613     }
1614     return removed;
1615     }
1616    
1617     /**
1618 jsr166 1.277 * Helper method for ValuesView.removeIf
1619 dl 1.272 */
1620 jsr166 1.276 boolean removeValueIf(Predicate<? super V> function) {
1621 dl 1.272 if (function == null) throw new NullPointerException();
1622     Node<K,V>[] t;
1623     boolean removed = false;
1624     if ((t = table) != null) {
1625     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1626     for (Node<K,V> p; (p = it.advance()) != null; ) {
1627     K k = p.key;
1628     V v = p.val;
1629     if (function.test(v) && replaceNode(k, null, v) != null)
1630     removed = true;
1631     }
1632     }
1633     return removed;
1634     }
1635    
1636     /**
1637 dl 1.222 * If the specified key is not already associated with a value,
1638     * attempts to compute its value using the given mapping function
1639     * and enters it into this map unless {@code null}. The entire
1640     * method invocation is performed atomically, so the function is
1641     * applied at most once per key. Some attempted update operations
1642     * on this map by other threads may be blocked while computation
1643     * is in progress, so the computation should be short and simple,
1644     * and must not attempt to update any other mappings of this map.
1645     *
1646     * @param key key with which the specified value is to be associated
1647     * @param mappingFunction the function to compute a value
1648     * @return the current (existing or computed) value associated with
1649     * the specified key, or null if the computed value is null
1650     * @throws NullPointerException if the specified key or mappingFunction
1651     * is null
1652     * @throws IllegalStateException if the computation detectably
1653     * attempts a recursive update to this map that would
1654     * otherwise never complete
1655     * @throws RuntimeException or Error if the mappingFunction does so,
1656     * in which case the mapping is left unestablished
1657     */
1658     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1659     if (key == null || mappingFunction == null)
1660 dl 1.149 throw new NullPointerException();
1661 dl 1.222 int h = spread(key.hashCode());
1662 dl 1.151 V val = null;
1663 dl 1.222 int binCount = 0;
1664 dl 1.210 for (Node<K,V>[] tab = table;;) {
1665 dl 1.222 Node<K,V> f; int n, i, fh;
1666     if (tab == null || (n = tab.length) == 0)
1667 dl 1.119 tab = initTable();
1668 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1669     Node<K,V> r = new ReservationNode<K,V>();
1670     synchronized (r) {
1671     if (casTabAt(tab, i, null, r)) {
1672     binCount = 1;
1673     Node<K,V> node = null;
1674 dl 1.149 try {
1675 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1676     node = new Node<K,V>(h, key, val, null);
1677 dl 1.149 } finally {
1678 dl 1.222 setTabAt(tab, i, node);
1679 dl 1.119 }
1680     }
1681     }
1682 dl 1.222 if (binCount != 0)
1683 dl 1.119 break;
1684     }
1685 dl 1.222 else if ((fh = f.hash) == MOVED)
1686     tab = helpTransfer(tab, f);
1687 dl 1.119 else {
1688 dl 1.149 boolean added = false;
1689 jsr166 1.150 synchronized (f) {
1690 dl 1.149 if (tabAt(tab, i) == f) {
1691 dl 1.222 if (fh >= 0) {
1692     binCount = 1;
1693     for (Node<K,V> e = f;; ++binCount) {
1694 dl 1.266 K ek;
1695 dl 1.222 if (e.hash == h &&
1696     ((ek = e.key) == key ||
1697     (ek != null && key.equals(ek)))) {
1698     val = e.val;
1699     break;
1700     }
1701     Node<K,V> pred = e;
1702     if ((e = e.next) == null) {
1703     if ((val = mappingFunction.apply(key)) != null) {
1704 dl 1.259 if (pred.next != null)
1705     throw new IllegalStateException("Recursive update");
1706 dl 1.222 added = true;
1707     pred.next = new Node<K,V>(h, key, val, null);
1708     }
1709     break;
1710     }
1711 dl 1.149 }
1712 dl 1.222 }
1713     else if (f instanceof TreeBin) {
1714     binCount = 2;
1715     TreeBin<K,V> t = (TreeBin<K,V>)f;
1716     TreeNode<K,V> r, p;
1717     if ((r = t.root) != null &&
1718     (p = r.findTreeNode(h, key, null)) != null)
1719     val = p.val;
1720     else if ((val = mappingFunction.apply(key)) != null) {
1721     added = true;
1722     t.putTreeVal(h, key, val);
1723 dl 1.119 }
1724     }
1725 dl 1.259 else if (f instanceof ReservationNode)
1726     throw new IllegalStateException("Recursive update");
1727 dl 1.119 }
1728 dl 1.149 }
1729 dl 1.222 if (binCount != 0) {
1730     if (binCount >= TREEIFY_THRESHOLD)
1731     treeifyBin(tab, i);
1732 dl 1.149 if (!added)
1733 dl 1.151 return val;
1734 dl 1.149 break;
1735 dl 1.119 }
1736 dl 1.105 }
1737 dl 1.99 }
1738 dl 1.149 if (val != null)
1739 dl 1.222 addCount(1L, binCount);
1740 dl 1.151 return val;
1741 tim 1.1 }
1742    
1743 dl 1.222 /**
1744     * If the value for the specified key is present, attempts to
1745     * compute a new mapping given the key and its current mapped
1746     * value. The entire method invocation is performed atomically.
1747     * Some attempted update operations on this map by other threads
1748     * may be blocked while computation is in progress, so the
1749     * computation should be short and simple, and must not attempt to
1750     * update any other mappings of this map.
1751     *
1752     * @param key key with which a value may be associated
1753     * @param remappingFunction the function to compute a value
1754     * @return the new value associated with the specified key, or null if none
1755     * @throws NullPointerException if the specified key or remappingFunction
1756     * is null
1757     * @throws IllegalStateException if the computation detectably
1758     * attempts a recursive update to this map that would
1759     * otherwise never complete
1760     * @throws RuntimeException or Error if the remappingFunction does so,
1761     * in which case the mapping is unchanged
1762     */
1763     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1764     if (key == null || remappingFunction == null)
1765 dl 1.149 throw new NullPointerException();
1766 dl 1.222 int h = spread(key.hashCode());
1767 dl 1.151 V val = null;
1768 dl 1.119 int delta = 0;
1769 dl 1.222 int binCount = 0;
1770 dl 1.210 for (Node<K,V>[] tab = table;;) {
1771 dl 1.222 Node<K,V> f; int n, i, fh;
1772     if (tab == null || (n = tab.length) == 0)
1773 dl 1.119 tab = initTable();
1774 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1775     break;
1776     else if ((fh = f.hash) == MOVED)
1777     tab = helpTransfer(tab, f);
1778     else {
1779     synchronized (f) {
1780     if (tabAt(tab, i) == f) {
1781     if (fh >= 0) {
1782     binCount = 1;
1783     for (Node<K,V> e = f, pred = null;; ++binCount) {
1784     K ek;
1785     if (e.hash == h &&
1786     ((ek = e.key) == key ||
1787     (ek != null && key.equals(ek)))) {
1788     val = remappingFunction.apply(key, e.val);
1789     if (val != null)
1790     e.val = val;
1791 dl 1.210 else {
1792 dl 1.222 delta = -1;
1793     Node<K,V> en = e.next;
1794     if (pred != null)
1795     pred.next = en;
1796     else
1797     setTabAt(tab, i, en);
1798 dl 1.210 }
1799 dl 1.222 break;
1800 dl 1.210 }
1801 dl 1.222 pred = e;
1802     if ((e = e.next) == null)
1803     break;
1804 dl 1.119 }
1805     }
1806 dl 1.222 else if (f instanceof TreeBin) {
1807     binCount = 2;
1808     TreeBin<K,V> t = (TreeBin<K,V>)f;
1809     TreeNode<K,V> r, p;
1810     if ((r = t.root) != null &&
1811     (p = r.findTreeNode(h, key, null)) != null) {
1812     val = remappingFunction.apply(key, p.val);
1813 dl 1.119 if (val != null)
1814 dl 1.222 p.val = val;
1815 dl 1.119 else {
1816     delta = -1;
1817 dl 1.222 if (t.removeTreeNode(p))
1818     setTabAt(tab, i, untreeify(t.first));
1819 dl 1.119 }
1820     }
1821     }
1822 dl 1.259 else if (f instanceof ReservationNode)
1823     throw new IllegalStateException("Recursive update");
1824 dl 1.119 }
1825     }
1826 dl 1.222 if (binCount != 0)
1827 dl 1.119 break;
1828     }
1829     }
1830 dl 1.149 if (delta != 0)
1831 dl 1.222 addCount((long)delta, binCount);
1832 dl 1.151 return val;
1833 dl 1.119 }
1834    
1835 dl 1.222 /**
1836     * Attempts to compute a mapping for the specified key and its
1837     * current mapped value (or {@code null} if there is no current
1838     * mapping). The entire method invocation is performed atomically.
1839     * Some attempted update operations on this map by other threads
1840     * may be blocked while computation is in progress, so the
1841     * computation should be short and simple, and must not attempt to
1842     * update any other mappings of this Map.
1843     *
1844     * @param key key with which the specified value is to be associated
1845     * @param remappingFunction the function to compute a value
1846     * @return the new value associated with the specified key, or null if none
1847     * @throws NullPointerException if the specified key or remappingFunction
1848     * is null
1849     * @throws IllegalStateException if the computation detectably
1850     * attempts a recursive update to this map that would
1851     * otherwise never complete
1852     * @throws RuntimeException or Error if the remappingFunction does so,
1853     * in which case the mapping is unchanged
1854     */
1855     public V compute(K key,
1856     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1857     if (key == null || remappingFunction == null)
1858 dl 1.149 throw new NullPointerException();
1859 dl 1.222 int h = spread(key.hashCode());
1860 dl 1.151 V val = null;
1861 dl 1.119 int delta = 0;
1862 dl 1.222 int binCount = 0;
1863 dl 1.210 for (Node<K,V>[] tab = table;;) {
1864 dl 1.222 Node<K,V> f; int n, i, fh;
1865     if (tab == null || (n = tab.length) == 0)
1866 dl 1.119 tab = initTable();
1867 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1868     Node<K,V> r = new ReservationNode<K,V>();
1869     synchronized (r) {
1870     if (casTabAt(tab, i, null, r)) {
1871     binCount = 1;
1872     Node<K,V> node = null;
1873     try {
1874     if ((val = remappingFunction.apply(key, null)) != null) {
1875     delta = 1;
1876     node = new Node<K,V>(h, key, val, null);
1877     }
1878     } finally {
1879     setTabAt(tab, i, node);
1880     }
1881     }
1882     }
1883     if (binCount != 0)
1884 dl 1.119 break;
1885     }
1886 dl 1.222 else if ((fh = f.hash) == MOVED)
1887     tab = helpTransfer(tab, f);
1888     else {
1889     synchronized (f) {
1890     if (tabAt(tab, i) == f) {
1891     if (fh >= 0) {
1892     binCount = 1;
1893     for (Node<K,V> e = f, pred = null;; ++binCount) {
1894     K ek;
1895     if (e.hash == h &&
1896     ((ek = e.key) == key ||
1897     (ek != null && key.equals(ek)))) {
1898     val = remappingFunction.apply(key, e.val);
1899     if (val != null)
1900     e.val = val;
1901     else {
1902     delta = -1;
1903     Node<K,V> en = e.next;
1904     if (pred != null)
1905     pred.next = en;
1906     else
1907     setTabAt(tab, i, en);
1908     }
1909     break;
1910     }
1911     pred = e;
1912     if ((e = e.next) == null) {
1913     val = remappingFunction.apply(key, null);
1914     if (val != null) {
1915 dl 1.259 if (pred.next != null)
1916     throw new IllegalStateException("Recursive update");
1917 dl 1.222 delta = 1;
1918     pred.next =
1919     new Node<K,V>(h, key, val, null);
1920     }
1921     break;
1922     }
1923     }
1924     }
1925     else if (f instanceof TreeBin) {
1926     binCount = 1;
1927     TreeBin<K,V> t = (TreeBin<K,V>)f;
1928     TreeNode<K,V> r, p;
1929     if ((r = t.root) != null)
1930     p = r.findTreeNode(h, key, null);
1931     else
1932     p = null;
1933     V pv = (p == null) ? null : p.val;
1934     val = remappingFunction.apply(key, pv);
1935 dl 1.119 if (val != null) {
1936     if (p != null)
1937     p.val = val;
1938     else {
1939     delta = 1;
1940 dl 1.222 t.putTreeVal(h, key, val);
1941 dl 1.119 }
1942     }
1943     else if (p != null) {
1944     delta = -1;
1945 dl 1.222 if (t.removeTreeNode(p))
1946     setTabAt(tab, i, untreeify(t.first));
1947 dl 1.119 }
1948     }
1949 dl 1.259 else if (f instanceof ReservationNode)
1950     throw new IllegalStateException("Recursive update");
1951 dl 1.119 }
1952     }
1953 dl 1.222 if (binCount != 0) {
1954     if (binCount >= TREEIFY_THRESHOLD)
1955     treeifyBin(tab, i);
1956     break;
1957 dl 1.119 }
1958 dl 1.105 }
1959 dl 1.99 }
1960 dl 1.149 if (delta != 0)
1961 dl 1.222 addCount((long)delta, binCount);
1962 dl 1.151 return val;
1963 dl 1.119 }
1964    
1965 dl 1.222 /**
1966     * If the specified key is not already associated with a
1967     * (non-null) value, associates it with the given value.
1968     * Otherwise, replaces the value with the results of the given
1969     * remapping function, or removes if {@code null}. The entire
1970     * method invocation is performed atomically. Some attempted
1971     * update operations on this map by other threads may be blocked
1972     * while computation is in progress, so the computation should be
1973     * short and simple, and must not attempt to update any other
1974     * mappings of this Map.
1975     *
1976     * @param key key with which the specified value is to be associated
1977     * @param value the value to use if absent
1978     * @param remappingFunction the function to recompute a value if present
1979     * @return the new value associated with the specified key, or null if none
1980     * @throws NullPointerException if the specified key or the
1981     * remappingFunction is null
1982     * @throws RuntimeException or Error if the remappingFunction does so,
1983     * in which case the mapping is unchanged
1984     */
1985     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1986     if (key == null || value == null || remappingFunction == null)
1987     throw new NullPointerException();
1988     int h = spread(key.hashCode());
1989     V val = null;
1990     int delta = 0;
1991     int binCount = 0;
1992     for (Node<K,V>[] tab = table;;) {
1993     Node<K,V> f; int n, i, fh;
1994     if (tab == null || (n = tab.length) == 0)
1995     tab = initTable();
1996     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1997     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1998     delta = 1;
1999     val = value;
2000 dl 1.119 break;
2001     }
2002 dl 1.222 }
2003     else if ((fh = f.hash) == MOVED)
2004     tab = helpTransfer(tab, f);
2005     else {
2006     synchronized (f) {
2007     if (tabAt(tab, i) == f) {
2008     if (fh >= 0) {
2009     binCount = 1;
2010     for (Node<K,V> e = f, pred = null;; ++binCount) {
2011     K ek;
2012     if (e.hash == h &&
2013     ((ek = e.key) == key ||
2014     (ek != null && key.equals(ek)))) {
2015     val = remappingFunction.apply(e.val, value);
2016     if (val != null)
2017     e.val = val;
2018 dl 1.119 else {
2019 dl 1.222 delta = -1;
2020     Node<K,V> en = e.next;
2021     if (pred != null)
2022     pred.next = en;
2023     else
2024     setTabAt(tab, i, en);
2025 dl 1.119 }
2026 dl 1.222 break;
2027     }
2028     pred = e;
2029     if ((e = e.next) == null) {
2030     delta = 1;
2031     val = value;
2032     pred.next =
2033     new Node<K,V>(h, key, val, null);
2034     break;
2035 dl 1.119 }
2036     }
2037     }
2038 dl 1.222 else if (f instanceof TreeBin) {
2039     binCount = 2;
2040     TreeBin<K,V> t = (TreeBin<K,V>)f;
2041     TreeNode<K,V> r = t.root;
2042     TreeNode<K,V> p = (r == null) ? null :
2043     r.findTreeNode(h, key, null);
2044     val = (p == null) ? value :
2045     remappingFunction.apply(p.val, value);
2046     if (val != null) {
2047     if (p != null)
2048     p.val = val;
2049     else {
2050     delta = 1;
2051     t.putTreeVal(h, key, val);
2052 dl 1.119 }
2053     }
2054 dl 1.222 else if (p != null) {
2055     delta = -1;
2056     if (t.removeTreeNode(p))
2057     setTabAt(tab, i, untreeify(t.first));
2058 dl 1.164 }
2059 dl 1.99 }
2060 dl 1.259 else if (f instanceof ReservationNode)
2061     throw new IllegalStateException("Recursive update");
2062 dl 1.21 }
2063     }
2064 dl 1.222 if (binCount != 0) {
2065     if (binCount >= TREEIFY_THRESHOLD)
2066     treeifyBin(tab, i);
2067     break;
2068     }
2069 dl 1.45 }
2070     }
2071 dl 1.222 if (delta != 0)
2072     addCount((long)delta, binCount);
2073     return val;
2074 tim 1.1 }
2075 dl 1.19
2076 dl 1.222 // Hashtable legacy methods
2077    
2078 dl 1.149 /**
2079 jsr166 1.275 * Tests if some key maps into the specified value in this table.
2080 jsr166 1.250 *
2081 jsr166 1.275 * <p>Note that this method is identical in functionality to
2082 dl 1.222 * {@link #containsValue(Object)}, and exists solely to ensure
2083     * full compatibility with class {@link java.util.Hashtable},
2084 jsr166 1.275 * which supported this method prior to introduction of the Java
2085     * Collections Framework.
2086 dl 1.222 *
2087     * @param value a value to search for
2088     * @return {@code true} if and only if some key maps to the
2089     * {@code value} argument in this table as
2090     * determined by the {@code equals} method;
2091     * {@code false} otherwise
2092     * @throws NullPointerException if the specified value is null
2093 dl 1.149 */
2094 dl 1.246 public boolean contains(Object value) {
2095 dl 1.222 return containsValue(value);
2096 dl 1.149 }
2097    
2098 tim 1.1 /**
2099 dl 1.222 * Returns an enumeration of the keys in this table.
2100     *
2101     * @return an enumeration of the keys in this table
2102     * @see #keySet()
2103 tim 1.1 */
2104 dl 1.222 public Enumeration<K> keys() {
2105     Node<K,V>[] t;
2106     int f = (t = table) == null ? 0 : t.length;
2107     return new KeyIterator<K,V>(t, f, 0, f, this);
2108 tim 1.1 }
2109    
2110     /**
2111 dl 1.222 * Returns an enumeration of the values in this table.
2112     *
2113     * @return an enumeration of the values in this table
2114     * @see #values()
2115     */
2116     public Enumeration<V> elements() {
2117     Node<K,V>[] t;
2118     int f = (t = table) == null ? 0 : t.length;
2119     return new ValueIterator<K,V>(t, f, 0, f, this);
2120     }
2121    
2122     // ConcurrentHashMap-only methods
2123    
2124     /**
2125     * Returns the number of mappings. This method should be used
2126     * instead of {@link #size} because a ConcurrentHashMap may
2127     * contain more mappings than can be represented as an int. The
2128     * value returned is an estimate; the actual count may differ if
2129     * there are concurrent insertions or removals.
2130     *
2131     * @return the number of mappings
2132     * @since 1.8
2133     */
2134     public long mappingCount() {
2135     long n = sumCount();
2136     return (n < 0L) ? 0L : n; // ignore transient negative values
2137     }
2138    
2139     /**
2140     * Creates a new {@link Set} backed by a ConcurrentHashMap
2141     * from the given type to {@code Boolean.TRUE}.
2142     *
2143 jsr166 1.237 * @param <K> the element type of the returned set
2144 dl 1.222 * @return the new set
2145     * @since 1.8
2146     */
2147     public static <K> KeySetView<K,Boolean> newKeySet() {
2148     return new KeySetView<K,Boolean>
2149     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2150     }
2151    
2152     /**
2153     * Creates a new {@link Set} backed by a ConcurrentHashMap
2154     * from the given type to {@code Boolean.TRUE}.
2155     *
2156     * @param initialCapacity The implementation performs internal
2157     * sizing to accommodate this many elements.
2158 jsr166 1.237 * @param <K> the element type of the returned set
2159 jsr166 1.239 * @return the new set
2160 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2161     * elements is negative
2162     * @since 1.8
2163     */
2164     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2165     return new KeySetView<K,Boolean>
2166     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2167     }
2168    
2169     /**
2170     * Returns a {@link Set} view of the keys in this map, using the
2171     * given common mapped value for any additions (i.e., {@link
2172     * Collection#add} and {@link Collection#addAll(Collection)}).
2173     * This is of course only appropriate if it is acceptable to use
2174     * the same value for all additions from this view.
2175     *
2176     * @param mappedValue the mapped value to use for any additions
2177     * @return the set view
2178     * @throws NullPointerException if the mappedValue is null
2179     */
2180     public KeySetView<K,V> keySet(V mappedValue) {
2181     if (mappedValue == null)
2182     throw new NullPointerException();
2183     return new KeySetView<K,V>(this, mappedValue);
2184     }
2185    
2186     /* ---------------- Special Nodes -------------- */
2187    
2188     /**
2189     * A node inserted at head of bins during transfer operations.
2190     */
2191     static final class ForwardingNode<K,V> extends Node<K,V> {
2192     final Node<K,V>[] nextTable;
2193     ForwardingNode(Node<K,V>[] tab) {
2194     super(MOVED, null, null, null);
2195     this.nextTable = tab;
2196     }
2197    
2198     Node<K,V> find(int h, Object k) {
2199 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2200     outer: for (Node<K,V>[] tab = nextTable;;) {
2201     Node<K,V> e; int n;
2202     if (k == null || tab == null || (n = tab.length) == 0 ||
2203     (e = tabAt(tab, (n - 1) & h)) == null)
2204     return null;
2205     for (;;) {
2206 dl 1.222 int eh; K ek;
2207     if ((eh = e.hash) == h &&
2208     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2209     return e;
2210 dl 1.234 if (eh < 0) {
2211     if (e instanceof ForwardingNode) {
2212     tab = ((ForwardingNode<K,V>)e).nextTable;
2213     continue outer;
2214     }
2215     else
2216     return e.find(h, k);
2217     }
2218     if ((e = e.next) == null)
2219     return null;
2220     }
2221 dl 1.222 }
2222     }
2223     }
2224    
2225     /**
2226     * A place-holder node used in computeIfAbsent and compute
2227     */
2228     static final class ReservationNode<K,V> extends Node<K,V> {
2229     ReservationNode() {
2230     super(RESERVED, null, null, null);
2231     }
2232    
2233     Node<K,V> find(int h, Object k) {
2234     return null;
2235     }
2236     }
2237    
2238     /* ---------------- Table Initialization and Resizing -------------- */
2239    
2240     /**
2241 dl 1.252 * Returns the stamp bits for resizing a table of size n.
2242     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2243     */
2244     static final int resizeStamp(int n) {
2245 jsr166 1.254 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2246 dl 1.252 }
2247    
2248     /**
2249 dl 1.222 * Initializes table, using the size recorded in sizeCtl.
2250 dl 1.119 */
2251 dl 1.210 private final Node<K,V>[] initTable() {
2252     Node<K,V>[] tab; int sc;
2253 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2254 dl 1.119 if ((sc = sizeCtl) < 0)
2255     Thread.yield(); // lost initialization race; just spin
2256 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2257 dl 1.119 try {
2258 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2259 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2260 jsr166 1.245 @SuppressWarnings("unchecked")
2261 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2262 dl 1.222 table = tab = nt;
2263 dl 1.119 sc = n - (n >>> 2);
2264     }
2265     } finally {
2266     sizeCtl = sc;
2267     }
2268     break;
2269     }
2270     }
2271     return tab;
2272 dl 1.4 }
2273    
2274     /**
2275 dl 1.149 * Adds to count, and if table is too small and not already
2276     * resizing, initiates transfer. If already resizing, helps
2277     * perform transfer if work is available. Rechecks occupancy
2278     * after a transfer to see if another resize is already needed
2279     * because resizings are lagging additions.
2280     *
2281     * @param x the count to add
2282     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2283     */
2284     private final void addCount(long x, int check) {
2285 dl 1.222 CounterCell[] as; long b, s;
2286 dl 1.149 if ((as = counterCells) != null ||
2287     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2288 dl 1.222 CounterCell a; long v; int m;
2289 dl 1.149 boolean uncontended = true;
2290 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
2291     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2292 dl 1.149 !(uncontended =
2293     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2294 dl 1.160 fullAddCount(x, uncontended);
2295 dl 1.149 return;
2296     }
2297     if (check <= 1)
2298     return;
2299     s = sumCount();
2300     }
2301     if (check >= 0) {
2302 dl 1.252 Node<K,V>[] tab, nt; int n, sc;
2303 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2304 dl 1.252 (n = tab.length) < MAXIMUM_CAPACITY) {
2305     int rs = resizeStamp(n);
2306 dl 1.149 if (sc < 0) {
2307 dl 1.252 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 jsr166 1.254 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2309     transferIndex <= 0)
2310 dl 1.149 break;
2311 dl 1.252 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2312 dl 1.149 transfer(tab, nt);
2313 dl 1.119 }
2314 dl 1.252 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2315 jsr166 1.254 (rs << RESIZE_STAMP_SHIFT) + 2))
2316 dl 1.149 transfer(tab, null);
2317     s = sumCount();
2318 dl 1.119 }
2319     }
2320 dl 1.4 }
2321    
2322     /**
2323 dl 1.222 * Helps transfer if a resize is in progress.
2324     */
2325     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2326     Node<K,V>[] nextTab; int sc;
2327 dl 1.252 if (tab != null && (f instanceof ForwardingNode) &&
2328 dl 1.222 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2329 jsr166 1.254 int rs = resizeStamp(tab.length);
2330 dl 1.252 while (nextTab == nextTable && table == tab &&
2331 jsr166 1.254 (sc = sizeCtl) < 0) {
2332     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2333 dl 1.252 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2334 jsr166 1.254 break;
2335     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2336 dl 1.246 transfer(tab, nextTab);
2337     break;
2338     }
2339     }
2340 dl 1.222 return nextTab;
2341     }
2342     return table;
2343     }
2344    
2345     /**
2346 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2347 tim 1.1 *
2348 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2349 tim 1.1 */
2350 dl 1.210 private final void tryPresize(int size) {
2351 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2352     tableSizeFor(size + (size >>> 1) + 1);
2353     int sc;
2354     while ((sc = sizeCtl) >= 0) {
2355 dl 1.210 Node<K,V>[] tab = table; int n;
2356 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2357     n = (sc > c) ? sc : c;
2358 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2359 dl 1.119 try {
2360     if (table == tab) {
2361 jsr166 1.245 @SuppressWarnings("unchecked")
2362 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2363 dl 1.222 table = nt;
2364 dl 1.119 sc = n - (n >>> 2);
2365     }
2366     } finally {
2367     sizeCtl = sc;
2368     }
2369     }
2370     }
2371     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2372     break;
2373 dl 1.252 else if (tab == table) {
2374     int rs = resizeStamp(n);
2375 dl 1.258 if (U.compareAndSwapInt(this, SIZECTL, sc,
2376     (rs << RESIZE_STAMP_SHIFT) + 2))
2377 dl 1.252 transfer(tab, null);
2378     }
2379 dl 1.119 }
2380 dl 1.4 }
2381    
2382 jsr166 1.170 /**
2383 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2384     * above for explanation.
2385 dl 1.4 */
2386 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2387 dl 1.149 int n = tab.length, stride;
2388     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2389     stride = MIN_TRANSFER_STRIDE; // subdivide range
2390     if (nextTab == null) { // initiating
2391     try {
2392 jsr166 1.245 @SuppressWarnings("unchecked")
2393 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2394 dl 1.222 nextTab = nt;
2395 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2396 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2397     return;
2398     }
2399     nextTable = nextTab;
2400     transferIndex = n;
2401     }
2402     int nextn = nextTab.length;
2403 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2404 dl 1.149 boolean advance = true;
2405 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2406 dl 1.149 for (int i = 0, bound = 0;;) {
2407 dl 1.246 Node<K,V> f; int fh;
2408 dl 1.149 while (advance) {
2409 dl 1.246 int nextIndex, nextBound;
2410 dl 1.234 if (--i >= bound || finishing)
2411 dl 1.149 advance = false;
2412 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2413 dl 1.149 i = -1;
2414     advance = false;
2415     }
2416     else if (U.compareAndSwapInt
2417     (this, TRANSFERINDEX, nextIndex,
2418 jsr166 1.150 nextBound = (nextIndex > stride ?
2419 dl 1.149 nextIndex - stride : 0))) {
2420     bound = nextBound;
2421     i = nextIndex - 1;
2422     advance = false;
2423     }
2424     }
2425     if (i < 0 || i >= n || i + n >= nextn) {
2426 dl 1.246 int sc;
2427 dl 1.234 if (finishing) {
2428     nextTable = null;
2429     table = nextTab;
2430     sizeCtl = (n << 1) - (n >>> 1);
2431     return;
2432     }
2433 dl 1.252 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2434 dl 1.255 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2435 dl 1.246 return;
2436     finishing = advance = true;
2437     i = n; // recheck before commit
2438 dl 1.149 }
2439     }
2440 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2441     advance = casTabAt(tab, i, null, fwd);
2442 dl 1.222 else if ((fh = f.hash) == MOVED)
2443     advance = true; // already processed
2444     else {
2445 jsr166 1.150 synchronized (f) {
2446 dl 1.149 if (tabAt(tab, i) == f) {
2447 dl 1.222 Node<K,V> ln, hn;
2448     if (fh >= 0) {
2449     int runBit = fh & n;
2450     Node<K,V> lastRun = f;
2451     for (Node<K,V> p = f.next; p != null; p = p.next) {
2452     int b = p.hash & n;
2453     if (b != runBit) {
2454     runBit = b;
2455     lastRun = p;
2456     }
2457     }
2458     if (runBit == 0) {
2459     ln = lastRun;
2460     hn = null;
2461     }
2462     else {
2463     hn = lastRun;
2464     ln = null;
2465 dl 1.149 }
2466 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2467     int ph = p.hash; K pk = p.key; V pv = p.val;
2468     if ((ph & n) == 0)
2469     ln = new Node<K,V>(ph, pk, pv, ln);
2470 dl 1.210 else
2471 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2472 dl 1.149 }
2473 dl 1.233 setTabAt(nextTab, i, ln);
2474     setTabAt(nextTab, i + n, hn);
2475     setTabAt(tab, i, fwd);
2476     advance = true;
2477 dl 1.222 }
2478     else if (f instanceof TreeBin) {
2479     TreeBin<K,V> t = (TreeBin<K,V>)f;
2480     TreeNode<K,V> lo = null, loTail = null;
2481     TreeNode<K,V> hi = null, hiTail = null;
2482     int lc = 0, hc = 0;
2483     for (Node<K,V> e = t.first; e != null; e = e.next) {
2484     int h = e.hash;
2485     TreeNode<K,V> p = new TreeNode<K,V>
2486     (h, e.key, e.val, null, null);
2487     if ((h & n) == 0) {
2488     if ((p.prev = loTail) == null)
2489     lo = p;
2490     else
2491     loTail.next = p;
2492     loTail = p;
2493     ++lc;
2494 dl 1.210 }
2495 dl 1.222 else {
2496     if ((p.prev = hiTail) == null)
2497     hi = p;
2498     else
2499     hiTail.next = p;
2500     hiTail = p;
2501     ++hc;
2502 dl 1.210 }
2503 dl 1.149 }
2504 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2505     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2506     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2507     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2508 dl 1.233 setTabAt(nextTab, i, ln);
2509     setTabAt(nextTab, i + n, hn);
2510     setTabAt(tab, i, fwd);
2511     advance = true;
2512 dl 1.149 }
2513 dl 1.119 }
2514     }
2515     }
2516     }
2517 dl 1.4 }
2518 tim 1.1
2519 dl 1.149 /* ---------------- Counter support -------------- */
2520    
2521 dl 1.222 /**
2522     * A padded cell for distributing counts. Adapted from LongAdder
2523     * and Striped64. See their internal docs for explanation.
2524     */
2525     @sun.misc.Contended static final class CounterCell {
2526     volatile long value;
2527     CounterCell(long x) { value = x; }
2528     }
2529    
2530 dl 1.149 final long sumCount() {
2531 dl 1.222 CounterCell[] as = counterCells; CounterCell a;
2532 dl 1.149 long sum = baseCount;
2533     if (as != null) {
2534     for (int i = 0; i < as.length; ++i) {
2535     if ((a = as[i]) != null)
2536     sum += a.value;
2537 dl 1.119 }
2538     }
2539 dl 1.149 return sum;
2540 dl 1.119 }
2541    
2542 dl 1.149 // See LongAdder version for explanation
2543 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2544 dl 1.149 int h;
2545 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2546     ThreadLocalRandom.localInit(); // force initialization
2547     h = ThreadLocalRandom.getProbe();
2548     wasUncontended = true;
2549 dl 1.119 }
2550 dl 1.149 boolean collide = false; // True if last slot nonempty
2551     for (;;) {
2552 dl 1.222 CounterCell[] as; CounterCell a; int n; long v;
2553 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2554     if ((a = as[(n - 1) & h]) == null) {
2555 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2556 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2557 dl 1.153 if (cellsBusy == 0 &&
2558     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2559 dl 1.149 boolean created = false;
2560     try { // Recheck under lock
2561 dl 1.222 CounterCell[] rs; int m, j;
2562 dl 1.149 if ((rs = counterCells) != null &&
2563     (m = rs.length) > 0 &&
2564     rs[j = (m - 1) & h] == null) {
2565     rs[j] = r;
2566     created = true;
2567 dl 1.128 }
2568 dl 1.149 } finally {
2569 dl 1.153 cellsBusy = 0;
2570 dl 1.119 }
2571 dl 1.149 if (created)
2572     break;
2573     continue; // Slot is now non-empty
2574     }
2575     }
2576     collide = false;
2577     }
2578     else if (!wasUncontended) // CAS already known to fail
2579     wasUncontended = true; // Continue after rehash
2580     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2581     break;
2582     else if (counterCells != as || n >= NCPU)
2583     collide = false; // At max size or stale
2584     else if (!collide)
2585     collide = true;
2586 dl 1.153 else if (cellsBusy == 0 &&
2587     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2588 dl 1.149 try {
2589     if (counterCells == as) {// Expand table unless stale
2590 dl 1.222 CounterCell[] rs = new CounterCell[n << 1];
2591 dl 1.149 for (int i = 0; i < n; ++i)
2592     rs[i] = as[i];
2593     counterCells = rs;
2594 dl 1.119 }
2595     } finally {
2596 dl 1.153 cellsBusy = 0;
2597 dl 1.119 }
2598 dl 1.149 collide = false;
2599     continue; // Retry with expanded table
2600 dl 1.119 }
2601 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2602 dl 1.149 }
2603 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2604     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2605 dl 1.149 boolean init = false;
2606     try { // Initialize table
2607     if (counterCells == as) {
2608 dl 1.222 CounterCell[] rs = new CounterCell[2];
2609     rs[h & 1] = new CounterCell(x);
2610 dl 1.149 counterCells = rs;
2611     init = true;
2612 dl 1.119 }
2613     } finally {
2614 dl 1.153 cellsBusy = 0;
2615 dl 1.119 }
2616 dl 1.149 if (init)
2617     break;
2618 dl 1.119 }
2619 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2620     break; // Fall back on using base
2621 dl 1.119 }
2622     }
2623    
2624 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2625 dl 1.119
2626     /**
2627 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2628     * too small, in which case resizes instead.
2629 dl 1.119 */
2630 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2631 jsr166 1.267 Node<K,V> b; int n;
2632 dl 1.222 if (tab != null) {
2633 dl 1.252 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2634     tryPresize(n << 1);
2635 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2636 jsr166 1.223 synchronized (b) {
2637 dl 1.222 if (tabAt(tab, index) == b) {
2638     TreeNode<K,V> hd = null, tl = null;
2639     for (Node<K,V> e = b; e != null; e = e.next) {
2640     TreeNode<K,V> p =
2641     new TreeNode<K,V>(e.hash, e.key, e.val,
2642     null, null);
2643     if ((p.prev = tl) == null)
2644     hd = p;
2645     else
2646     tl.next = p;
2647     tl = p;
2648     }
2649     setTabAt(tab, index, new TreeBin<K,V>(hd));
2650 dl 1.210 }
2651     }
2652     }
2653     }
2654     }
2655    
2656     /**
2657 jsr166 1.229 * Returns a list on non-TreeNodes replacing those in given list.
2658 dl 1.210 */
2659 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2660     Node<K,V> hd = null, tl = null;
2661     for (Node<K,V> q = b; q != null; q = q.next) {
2662     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2663     if (tl == null)
2664     hd = p;
2665     else
2666     tl.next = p;
2667     tl = p;
2668 dl 1.210 }
2669 dl 1.222 return hd;
2670     }
2671 dl 1.210
2672 dl 1.222 /* ---------------- TreeNodes -------------- */
2673    
2674     /**
2675     * Nodes for use in TreeBins
2676     */
2677     static final class TreeNode<K,V> extends Node<K,V> {
2678     TreeNode<K,V> parent; // red-black tree links
2679     TreeNode<K,V> left;
2680     TreeNode<K,V> right;
2681     TreeNode<K,V> prev; // needed to unlink next upon deletion
2682     boolean red;
2683 dl 1.210
2684 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2685     TreeNode<K,V> parent) {
2686     super(hash, key, val, next);
2687     this.parent = parent;
2688 dl 1.210 }
2689    
2690 dl 1.222 Node<K,V> find(int h, Object k) {
2691     return findTreeNode(h, k, null);
2692 dl 1.210 }
2693    
2694 dl 1.222 /**
2695     * Returns the TreeNode (or null if not found) for the given key
2696     * starting at given root.
2697     */
2698     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2699 dl 1.224 if (k != null) {
2700     TreeNode<K,V> p = this;
2701 jsr166 1.256 do {
2702 dl 1.224 int ph, dir; K pk; TreeNode<K,V> q;
2703     TreeNode<K,V> pl = p.left, pr = p.right;
2704     if ((ph = p.hash) > h)
2705     p = pl;
2706     else if (ph < h)
2707     p = pr;
2708     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2709     return p;
2710 dl 1.240 else if (pl == null)
2711     p = pr;
2712     else if (pr == null)
2713     p = pl;
2714 jsr166 1.225 else if ((kc != null ||
2715 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2716     (dir = compareComparables(kc, k, pk)) != 0)
2717     p = (dir < 0) ? pl : pr;
2718 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2719     return q;
2720     else
2721 dl 1.224 p = pl;
2722     } while (p != null);
2723     }
2724 dl 1.222 return null;
2725 dl 1.210 }
2726     }
2727 dl 1.192
2728 dl 1.222 /* ---------------- TreeBins -------------- */
2729 dl 1.119
2730 dl 1.222 /**
2731     * TreeNodes used at the heads of bins. TreeBins do not hold user
2732     * keys or values, but instead point to list of TreeNodes and
2733     * their root. They also maintain a parasitic read-write lock
2734     * forcing writers (who hold bin lock) to wait for readers (who do
2735     * not) to complete before tree restructuring operations.
2736     */
2737     static final class TreeBin<K,V> extends Node<K,V> {
2738     TreeNode<K,V> root;
2739     volatile TreeNode<K,V> first;
2740     volatile Thread waiter;
2741     volatile int lockState;
2742 dl 1.224 // values for lockState
2743     static final int WRITER = 1; // set while holding write lock
2744     static final int WAITER = 2; // set when waiting for write lock
2745     static final int READER = 4; // increment value for setting read lock
2746 dl 1.119
2747 dl 1.222 /**
2748 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2749     * hashCodes and non-comparable. We don't require a total
2750     * order, just a consistent insertion rule to maintain
2751     * equivalence across rebalancings. Tie-breaking further than
2752     * necessary simplifies testing a bit.
2753     */
2754     static int tieBreakOrder(Object a, Object b) {
2755     int d;
2756     if (a == null || b == null ||
2757     (d = a.getClass().getName().
2758     compareTo(b.getClass().getName())) == 0)
2759     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2760     -1 : 1);
2761     return d;
2762     }
2763    
2764     /**
2765 dl 1.222 * Creates bin with initial set of nodes headed by b.
2766     */
2767     TreeBin(TreeNode<K,V> b) {
2768     super(TREEBIN, null, null, null);
2769 dl 1.224 this.first = b;
2770 dl 1.222 TreeNode<K,V> r = null;
2771     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2772     next = (TreeNode<K,V>)x.next;
2773     x.left = x.right = null;
2774     if (r == null) {
2775     x.parent = null;
2776     x.red = false;
2777     r = x;
2778     }
2779     else {
2780 dl 1.240 K k = x.key;
2781     int h = x.hash;
2782 dl 1.222 Class<?> kc = null;
2783     for (TreeNode<K,V> p = r;;) {
2784     int dir, ph;
2785 dl 1.240 K pk = p.key;
2786     if ((ph = p.hash) > h)
2787 dl 1.222 dir = -1;
2788 dl 1.240 else if (ph < h)
2789 dl 1.222 dir = 1;
2790 dl 1.240 else if ((kc == null &&
2791     (kc = comparableClassFor(k)) == null) ||
2792     (dir = compareComparables(kc, k, pk)) == 0)
2793     dir = tieBreakOrder(k, pk);
2794 jsr166 1.260 TreeNode<K,V> xp = p;
2795 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2796     x.parent = xp;
2797     if (dir <= 0)
2798     xp.left = x;
2799     else
2800     xp.right = x;
2801     r = balanceInsertion(r, x);
2802     break;
2803     }
2804     }
2805     }
2806     }
2807 dl 1.224 this.root = r;
2808 dl 1.240 assert checkInvariants(root);
2809 dl 1.222 }
2810 dl 1.210
2811 dl 1.222 /**
2812 jsr166 1.229 * Acquires write lock for tree restructuring.
2813 dl 1.222 */
2814     private final void lockRoot() {
2815     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2816     contendedLock(); // offload to separate method
2817 dl 1.153 }
2818    
2819 dl 1.222 /**
2820 jsr166 1.229 * Releases write lock for tree restructuring.
2821 dl 1.222 */
2822     private final void unlockRoot() {
2823     lockState = 0;
2824 dl 1.191 }
2825    
2826 dl 1.222 /**
2827 jsr166 1.229 * Possibly blocks awaiting root lock.
2828 dl 1.222 */
2829     private final void contendedLock() {
2830     boolean waiting = false;
2831     for (int s;;) {
2832 dl 1.252 if (((s = lockState) & ~WAITER) == 0) {
2833 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2834     if (waiting)
2835     waiter = null;
2836     return;
2837     }
2838     }
2839 dl 1.244 else if ((s & WAITER) == 0) {
2840 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2841     waiting = true;
2842     waiter = Thread.currentThread();
2843     }
2844     }
2845     else if (waiting)
2846     LockSupport.park(this);
2847     }
2848 dl 1.192 }
2849    
2850 dl 1.222 /**
2851     * Returns matching node or null if none. Tries to search
2852 jsr166 1.232 * using tree comparisons from root, but continues linear
2853 dl 1.222 * search when lock not available.
2854     */
2855     final Node<K,V> find(int h, Object k) {
2856     if (k != null) {
2857 dl 1.253 for (Node<K,V> e = first; e != null; ) {
2858 dl 1.222 int s; K ek;
2859     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2860     if (e.hash == h &&
2861     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2862     return e;
2863 dl 1.253 e = e.next;
2864 dl 1.222 }
2865     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2866     s + READER)) {
2867     TreeNode<K,V> r, p;
2868     try {
2869     p = ((r = root) == null ? null :
2870     r.findTreeNode(h, k, null));
2871     } finally {
2872     Thread w;
2873     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2874     (READER|WAITER) && (w = waiter) != null)
2875     LockSupport.unpark(w);
2876     }
2877     return p;
2878     }
2879     }
2880     }
2881     return null;
2882 dl 1.192 }
2883    
2884 dl 1.222 /**
2885     * Finds or adds a node.
2886     * @return null if added
2887     */
2888     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2889     Class<?> kc = null;
2890 dl 1.240 boolean searched = false;
2891 dl 1.224 for (TreeNode<K,V> p = root;;) {
2892 dl 1.240 int dir, ph; K pk;
2893 dl 1.224 if (p == null) {
2894     first = root = new TreeNode<K,V>(h, k, v, null, null);
2895     break;
2896     }
2897     else if ((ph = p.hash) > h)
2898 dl 1.222 dir = -1;
2899     else if (ph < h)
2900     dir = 1;
2901     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2902     return p;
2903     else if ((kc == null &&
2904     (kc = comparableClassFor(k)) == null) ||
2905     (dir = compareComparables(kc, k, pk)) == 0) {
2906 dl 1.240 if (!searched) {
2907     TreeNode<K,V> q, ch;
2908     searched = true;
2909     if (((ch = p.left) != null &&
2910     (q = ch.findTreeNode(h, k, kc)) != null) ||
2911     ((ch = p.right) != null &&
2912     (q = ch.findTreeNode(h, k, kc)) != null))
2913     return q;
2914     }
2915     dir = tieBreakOrder(k, pk);
2916 dl 1.222 }
2917 dl 1.240
2918 dl 1.222 TreeNode<K,V> xp = p;
2919 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2920 dl 1.222 TreeNode<K,V> x, f = first;
2921     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2922     if (f != null)
2923     f.prev = x;
2924 dl 1.240 if (dir <= 0)
2925 dl 1.222 xp.left = x;
2926     else
2927     xp.right = x;
2928     if (!xp.red)
2929     x.red = true;
2930     else {
2931     lockRoot();
2932     try {
2933     root = balanceInsertion(root, x);
2934     } finally {
2935     unlockRoot();
2936     }
2937     }
2938 dl 1.224 break;
2939 dl 1.222 }
2940     }
2941 dl 1.224 assert checkInvariants(root);
2942     return null;
2943 dl 1.192 }
2944    
2945 dl 1.222 /**
2946     * Removes the given node, that must be present before this
2947     * call. This is messier than typical red-black deletion code
2948     * because we cannot swap the contents of an interior node
2949     * with a leaf successor that is pinned by "next" pointers
2950     * that are accessible independently of lock. So instead we
2951     * swap the tree linkages.
2952     *
2953 jsr166 1.230 * @return true if now too small, so should be untreeified
2954 dl 1.222 */
2955     final boolean removeTreeNode(TreeNode<K,V> p) {
2956     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2957     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2958     TreeNode<K,V> r, rl;
2959     if (pred == null)
2960     first = next;
2961     else
2962     pred.next = next;
2963     if (next != null)
2964     next.prev = pred;
2965     if (first == null) {
2966     root = null;
2967     return true;
2968     }
2969 dl 1.224 if ((r = root) == null || r.right == null || // too small
2970 dl 1.222 (rl = r.left) == null || rl.left == null)
2971     return true;
2972     lockRoot();
2973     try {
2974     TreeNode<K,V> replacement;
2975     TreeNode<K,V> pl = p.left;
2976     TreeNode<K,V> pr = p.right;
2977     if (pl != null && pr != null) {
2978     TreeNode<K,V> s = pr, sl;
2979     while ((sl = s.left) != null) // find successor
2980     s = sl;
2981     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2982     TreeNode<K,V> sr = s.right;
2983     TreeNode<K,V> pp = p.parent;
2984     if (s == pr) { // p was s's direct parent
2985     p.parent = s;
2986     s.right = p;
2987     }
2988     else {
2989     TreeNode<K,V> sp = s.parent;
2990     if ((p.parent = sp) != null) {
2991     if (s == sp.left)
2992     sp.left = p;
2993     else
2994     sp.right = p;
2995     }
2996     if ((s.right = pr) != null)
2997     pr.parent = s;
2998     }
2999     p.left = null;
3000     if ((p.right = sr) != null)
3001     sr.parent = p;
3002     if ((s.left = pl) != null)
3003     pl.parent = s;
3004     if ((s.parent = pp) == null)
3005     r = s;
3006     else if (p == pp.left)
3007     pp.left = s;
3008     else
3009     pp.right = s;
3010     if (sr != null)
3011     replacement = sr;
3012     else
3013     replacement = p;
3014     }
3015     else if (pl != null)
3016     replacement = pl;
3017     else if (pr != null)
3018     replacement = pr;
3019     else
3020     replacement = p;
3021     if (replacement != p) {
3022     TreeNode<K,V> pp = replacement.parent = p.parent;
3023     if (pp == null)
3024     r = replacement;
3025     else if (p == pp.left)
3026     pp.left = replacement;
3027     else
3028     pp.right = replacement;
3029     p.left = p.right = p.parent = null;
3030     }
3031    
3032     root = (p.red) ? r : balanceDeletion(r, replacement);
3033    
3034     if (p == replacement) { // detach pointers
3035     TreeNode<K,V> pp;
3036     if ((pp = p.parent) != null) {
3037     if (p == pp.left)
3038     pp.left = null;
3039     else if (p == pp.right)
3040     pp.right = null;
3041     p.parent = null;
3042     }
3043     }
3044     } finally {
3045     unlockRoot();
3046     }
3047 dl 1.224 assert checkInvariants(root);
3048 dl 1.222 return false;
3049 dl 1.210 }
3050    
3051 dl 1.222 /* ------------------------------------------------------------ */
3052     // Red-black tree methods, all adapted from CLR
3053 dl 1.210
3054 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3055     TreeNode<K,V> p) {
3056 dl 1.224 TreeNode<K,V> r, pp, rl;
3057     if (p != null && (r = p.right) != null) {
3058 dl 1.222 if ((rl = p.right = r.left) != null)
3059     rl.parent = p;
3060     if ((pp = r.parent = p.parent) == null)
3061     (root = r).red = false;
3062     else if (pp.left == p)
3063     pp.left = r;
3064     else
3065     pp.right = r;
3066     r.left = p;
3067     p.parent = r;
3068     }
3069     return root;
3070 dl 1.119 }
3071    
3072 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3073     TreeNode<K,V> p) {
3074 dl 1.224 TreeNode<K,V> l, pp, lr;
3075     if (p != null && (l = p.left) != null) {
3076 dl 1.222 if ((lr = p.left = l.right) != null)
3077     lr.parent = p;
3078     if ((pp = l.parent = p.parent) == null)
3079     (root = l).red = false;
3080     else if (pp.right == p)
3081     pp.right = l;
3082     else
3083     pp.left = l;
3084     l.right = p;
3085     p.parent = l;
3086     }
3087     return root;
3088 dl 1.119 }
3089    
3090 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3091     TreeNode<K,V> x) {
3092     x.red = true;
3093     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3094     if ((xp = x.parent) == null) {
3095     x.red = false;
3096     return x;
3097     }
3098     else if (!xp.red || (xpp = xp.parent) == null)
3099     return root;
3100     if (xp == (xppl = xpp.left)) {
3101     if ((xppr = xpp.right) != null && xppr.red) {
3102     xppr.red = false;
3103     xp.red = false;
3104     xpp.red = true;
3105     x = xpp;
3106     }
3107     else {
3108     if (x == xp.right) {
3109     root = rotateLeft(root, x = xp);
3110     xpp = (xp = x.parent) == null ? null : xp.parent;
3111     }
3112     if (xp != null) {
3113     xp.red = false;
3114     if (xpp != null) {
3115     xpp.red = true;
3116     root = rotateRight(root, xpp);
3117     }
3118     }
3119     }
3120     }
3121     else {
3122     if (xppl != null && xppl.red) {
3123     xppl.red = false;
3124     xp.red = false;
3125     xpp.red = true;
3126     x = xpp;
3127     }
3128     else {
3129     if (x == xp.left) {
3130     root = rotateRight(root, x = xp);
3131     xpp = (xp = x.parent) == null ? null : xp.parent;
3132     }
3133     if (xp != null) {
3134     xp.red = false;
3135     if (xpp != null) {
3136     xpp.red = true;
3137     root = rotateLeft(root, xpp);
3138     }
3139     }
3140     }
3141     }
3142     }
3143 dl 1.119 }
3144    
3145 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3146     TreeNode<K,V> x) {
3147 jsr166 1.256 for (TreeNode<K,V> xp, xpl, xpr;;) {
3148 dl 1.222 if (x == null || x == root)
3149     return root;
3150     else if ((xp = x.parent) == null) {
3151     x.red = false;
3152     return x;
3153     }
3154     else if (x.red) {
3155     x.red = false;
3156     return root;
3157     }
3158     else if ((xpl = xp.left) == x) {
3159     if ((xpr = xp.right) != null && xpr.red) {
3160     xpr.red = false;
3161     xp.red = true;
3162     root = rotateLeft(root, xp);
3163     xpr = (xp = x.parent) == null ? null : xp.right;
3164     }
3165     if (xpr == null)
3166     x = xp;
3167     else {
3168     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3169     if ((sr == null || !sr.red) &&
3170     (sl == null || !sl.red)) {
3171     xpr.red = true;
3172     x = xp;
3173     }
3174     else {
3175     if (sr == null || !sr.red) {
3176     if (sl != null)
3177     sl.red = false;
3178     xpr.red = true;
3179     root = rotateRight(root, xpr);
3180     xpr = (xp = x.parent) == null ?
3181     null : xp.right;
3182     }
3183     if (xpr != null) {
3184     xpr.red = (xp == null) ? false : xp.red;
3185     if ((sr = xpr.right) != null)
3186     sr.red = false;
3187     }
3188     if (xp != null) {
3189     xp.red = false;
3190     root = rotateLeft(root, xp);
3191     }
3192     x = root;
3193     }
3194     }
3195     }
3196     else { // symmetric
3197     if (xpl != null && xpl.red) {
3198     xpl.red = false;
3199     xp.red = true;
3200     root = rotateRight(root, xp);
3201     xpl = (xp = x.parent) == null ? null : xp.left;
3202     }
3203     if (xpl == null)
3204     x = xp;
3205     else {
3206     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3207     if ((sl == null || !sl.red) &&
3208     (sr == null || !sr.red)) {
3209     xpl.red = true;
3210     x = xp;
3211     }
3212     else {
3213     if (sl == null || !sl.red) {
3214     if (sr != null)
3215     sr.red = false;
3216     xpl.red = true;
3217     root = rotateLeft(root, xpl);
3218     xpl = (xp = x.parent) == null ?
3219     null : xp.left;
3220     }
3221     if (xpl != null) {
3222     xpl.red = (xp == null) ? false : xp.red;
3223     if ((sl = xpl.left) != null)
3224     sl.red = false;
3225     }
3226     if (xp != null) {
3227     xp.red = false;
3228     root = rotateRight(root, xp);
3229     }
3230     x = root;
3231     }
3232     }
3233     }
3234     }
3235 dl 1.210 }
3236 jsr166 1.225
3237 dl 1.222 /**
3238     * Recursive invariant check
3239     */
3240 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3241 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3242     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3243     if (tb != null && tb.next != t)
3244     return false;
3245     if (tn != null && tn.prev != t)
3246     return false;
3247     if (tp != null && t != tp.left && t != tp.right)
3248     return false;
3249     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3250     return false;
3251     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3252     return false;
3253     if (t.red && tl != null && tl.red && tr != null && tr.red)
3254     return false;
3255 dl 1.224 if (tl != null && !checkInvariants(tl))
3256 dl 1.222 return false;
3257 dl 1.224 if (tr != null && !checkInvariants(tr))
3258 dl 1.210 return false;
3259     return true;
3260     }
3261 dl 1.146
3262 jsr166 1.264 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3263 dl 1.222 private static final long LOCKSTATE;
3264     static {
3265     try {
3266     LOCKSTATE = U.objectFieldOffset
3267 jsr166 1.264 (TreeBin.class.getDeclaredField("lockState"));
3268 jsr166 1.262 } catch (ReflectiveOperationException e) {
3269 dl 1.222 throw new Error(e);
3270     }
3271 dl 1.146 }
3272 dl 1.119 }
3273    
3274 dl 1.222 /* ----------------Table Traversal -------------- */
3275    
3276 jsr166 1.247 /**
3277     * Records the table, its length, and current traversal index for a
3278     * traverser that must process a region of a forwarded table before
3279     * proceeding with current table.
3280     */
3281     static final class TableStack<K,V> {
3282 dl 1.246 int length;
3283     int index;
3284     Node<K,V>[] tab;
3285 jsr166 1.247 TableStack<K,V> next;
3286 dl 1.246 }
3287    
3288 dl 1.222 /**
3289     * Encapsulates traversal for methods such as containsValue; also
3290     * serves as a base class for other iterators and spliterators.
3291     *
3292     * Method advance visits once each still-valid node that was
3293     * reachable upon iterator construction. It might miss some that
3294     * were added to a bin after the bin was visited, which is OK wrt
3295     * consistency guarantees. Maintaining this property in the face
3296     * of possible ongoing resizes requires a fair amount of
3297     * bookkeeping state that is difficult to optimize away amidst
3298     * volatile accesses. Even so, traversal maintains reasonable
3299     * throughput.
3300     *
3301     * Normally, iteration proceeds bin-by-bin traversing lists.
3302     * However, if the table has been resized, then all future steps
3303     * must traverse both the bin at the current index as well as at
3304     * (index + baseSize); and so on for further resizings. To
3305     * paranoically cope with potential sharing by users of iterators
3306     * across threads, iteration terminates if a bounds checks fails
3307     * for a table read.
3308     */
3309     static class Traverser<K,V> {
3310     Node<K,V>[] tab; // current table; updated if resized
3311     Node<K,V> next; // the next entry to use
3312 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3313 dl 1.222 int index; // index of bin to use next
3314     int baseIndex; // current index of initial table
3315     int baseLimit; // index bound for initial table
3316     final int baseSize; // initial table size
3317    
3318     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3319     this.tab = tab;
3320     this.baseSize = size;
3321     this.baseIndex = this.index = index;
3322     this.baseLimit = limit;
3323     this.next = null;
3324     }
3325    
3326     /**
3327     * Advances if possible, returning next valid node, or null if none.
3328     */
3329     final Node<K,V> advance() {
3330     Node<K,V> e;
3331     if ((e = next) != null)
3332     e = e.next;
3333     for (;;) {
3334 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3335 dl 1.222 if (e != null)
3336     return next = e;
3337     if (baseIndex >= baseLimit || (t = tab) == null ||
3338     (n = t.length) <= (i = index) || i < 0)
3339     return next = null;
3340 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3341 dl 1.222 if (e instanceof ForwardingNode) {
3342     tab = ((ForwardingNode<K,V>)e).nextTable;
3343     e = null;
3344 dl 1.246 pushState(t, i, n);
3345 dl 1.222 continue;
3346     }
3347     else if (e instanceof TreeBin)
3348     e = ((TreeBin<K,V>)e).first;
3349     else
3350     e = null;
3351     }
3352 dl 1.246 if (stack != null)
3353     recoverState(n);
3354     else if ((index = i + baseSize) >= n)
3355     index = ++baseIndex; // visit upper slots if present
3356 dl 1.222 }
3357     }
3358 dl 1.246
3359     /**
3360 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3361 dl 1.246 */
3362     private void pushState(Node<K,V>[] t, int i, int n) {
3363     TableStack<K,V> s = spare; // reuse if possible
3364     if (s != null)
3365     spare = s.next;
3366     else
3367     s = new TableStack<K,V>();
3368     s.tab = t;
3369     s.length = n;
3370     s.index = i;
3371     s.next = stack;
3372     stack = s;
3373     }
3374    
3375     /**
3376 jsr166 1.249 * Possibly pops traversal state.
3377 dl 1.246 *
3378     * @param n length of current table
3379     */
3380     private void recoverState(int n) {
3381     TableStack<K,V> s; int len;
3382     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3383     n = len;
3384     index = s.index;
3385     tab = s.tab;
3386     s.tab = null;
3387     TableStack<K,V> next = s.next;
3388     s.next = spare; // save for reuse
3389     stack = next;
3390     spare = s;
3391     }
3392     if (s == null && (index += baseSize) >= n)
3393     index = ++baseIndex;
3394     }
3395 dl 1.222 }
3396    
3397     /**
3398     * Base of key, value, and entry Iterators. Adds fields to
3399 jsr166 1.229 * Traverser to support iterator.remove.
3400 dl 1.222 */
3401     static class BaseIterator<K,V> extends Traverser<K,V> {
3402     final ConcurrentHashMap<K,V> map;
3403     Node<K,V> lastReturned;
3404     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3405     ConcurrentHashMap<K,V> map) {
3406 dl 1.210 super(tab, size, index, limit);
3407     this.map = map;
3408 dl 1.222 advance();
3409 dl 1.210 }
3410    
3411 dl 1.222 public final boolean hasNext() { return next != null; }
3412     public final boolean hasMoreElements() { return next != null; }
3413    
3414     public final void remove() {
3415     Node<K,V> p;
3416     if ((p = lastReturned) == null)
3417     throw new IllegalStateException();
3418     lastReturned = null;
3419     map.replaceNode(p.key, null, null);
3420 dl 1.210 }
3421 dl 1.222 }
3422 dl 1.210
3423 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3424     implements Iterator<K>, Enumeration<K> {
3425     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3426     ConcurrentHashMap<K,V> map) {
3427     super(tab, index, size, limit, map);
3428 dl 1.210 }
3429    
3430 dl 1.222 public final K next() {
3431 dl 1.210 Node<K,V> p;
3432 dl 1.222 if ((p = next) == null)
3433     throw new NoSuchElementException();
3434     K k = p.key;
3435     lastReturned = p;
3436     advance();
3437     return k;
3438 dl 1.210 }
3439    
3440 dl 1.222 public final K nextElement() { return next(); }
3441     }
3442    
3443     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3444     implements Iterator<V>, Enumeration<V> {
3445     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3446     ConcurrentHashMap<K,V> map) {
3447     super(tab, index, size, limit, map);
3448     }
3449 dl 1.210
3450 dl 1.222 public final V next() {
3451     Node<K,V> p;
3452     if ((p = next) == null)
3453     throw new NoSuchElementException();
3454     V v = p.val;
3455     lastReturned = p;
3456     advance();
3457     return v;
3458 dl 1.210 }
3459 dl 1.222
3460     public final V nextElement() { return next(); }
3461 dl 1.210 }
3462    
3463 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3464     implements Iterator<Map.Entry<K,V>> {
3465     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3466     ConcurrentHashMap<K,V> map) {
3467     super(tab, index, size, limit, map);
3468     }
3469 dl 1.210
3470 dl 1.222 public final Map.Entry<K,V> next() {
3471     Node<K,V> p;
3472     if ((p = next) == null)
3473     throw new NoSuchElementException();
3474     K k = p.key;
3475     V v = p.val;
3476     lastReturned = p;
3477     advance();
3478     return new MapEntry<K,V>(k, v, map);
3479     }
3480     }
3481 dl 1.119
3482     /**
3483 dl 1.222 * Exported Entry for EntryIterator
3484 dl 1.119 */
3485 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3486     final K key; // non-null
3487     V val; // non-null
3488     final ConcurrentHashMap<K,V> map;
3489     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3490     this.key = key;
3491     this.val = val;
3492     this.map = map;
3493     }
3494     public K getKey() { return key; }
3495     public V getValue() { return val; }
3496     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3497 jsr166 1.268 public String toString() {
3498     return Helpers.mapEntryToString(key, val);
3499     }
3500 dl 1.119
3501 dl 1.222 public boolean equals(Object o) {
3502     Object k, v; Map.Entry<?,?> e;
3503     return ((o instanceof Map.Entry) &&
3504     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3505     (v = e.getValue()) != null &&
3506     (k == key || k.equals(key)) &&
3507     (v == val || v.equals(val)));
3508     }
3509 dl 1.119
3510 dl 1.222 /**
3511     * Sets our entry's value and writes through to the map. The
3512     * value to return is somewhat arbitrary here. Since we do not
3513     * necessarily track asynchronous changes, the most recent
3514     * "previous" value could be different from what we return (or
3515     * could even have been removed, in which case the put will
3516     * re-establish). We do not and cannot guarantee more.
3517     */
3518     public V setValue(V value) {
3519     if (value == null) throw new NullPointerException();
3520     V v = val;
3521     val = value;
3522     map.put(key, value);
3523     return v;
3524     }
3525 dl 1.119 }
3526    
3527 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3528     implements Spliterator<K> {
3529     long est; // size estimate
3530     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531     long est) {
3532     super(tab, size, index, limit);
3533     this.est = est;
3534     }
3535 dl 1.119
3536 dl 1.222 public Spliterator<K> trySplit() {
3537     int i, f, h;
3538     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3540     f, est >>>= 1);
3541 dl 1.119 }
3542    
3543 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3544     if (action == null) throw new NullPointerException();
3545     for (Node<K,V> p; (p = advance()) != null;)
3546     action.accept(p.key);
3547 dl 1.119 }
3548    
3549 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3550     if (action == null) throw new NullPointerException();
3551     Node<K,V> p;
3552     if ((p = advance()) == null)
3553 dl 1.119 return false;
3554 dl 1.222 action.accept(p.key);
3555     return true;
3556 dl 1.119 }
3557    
3558 dl 1.222 public long estimateSize() { return est; }
3559 dl 1.119
3560 dl 1.222 public int characteristics() {
3561     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3562     Spliterator.NONNULL;
3563     }
3564 dl 1.142 }
3565 dl 1.119
3566 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3567     implements Spliterator<V> {
3568     long est; // size estimate
3569     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570     long est) {
3571     super(tab, size, index, limit);
3572     this.est = est;
3573 dl 1.209 }
3574    
3575 dl 1.222 public Spliterator<V> trySplit() {
3576     int i, f, h;
3577     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3579     f, est >>>= 1);
3580 dl 1.142 }
3581 dl 1.119
3582 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3583     if (action == null) throw new NullPointerException();
3584     for (Node<K,V> p; (p = advance()) != null;)
3585     action.accept(p.val);
3586     }
3587 dl 1.119
3588 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3589     if (action == null) throw new NullPointerException();
3590     Node<K,V> p;
3591     if ((p = advance()) == null)
3592     return false;
3593     action.accept(p.val);
3594     return true;
3595 dl 1.119 }
3596 dl 1.222
3597     public long estimateSize() { return est; }
3598    
3599     public int characteristics() {
3600     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3601 dl 1.119 }
3602 dl 1.142 }
3603 dl 1.119
3604 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3605     implements Spliterator<Map.Entry<K,V>> {
3606     final ConcurrentHashMap<K,V> map; // To export MapEntry
3607     long est; // size estimate
3608     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3609     long est, ConcurrentHashMap<K,V> map) {
3610     super(tab, size, index, limit);
3611     this.map = map;
3612     this.est = est;
3613     }
3614    
3615     public Spliterator<Map.Entry<K,V>> trySplit() {
3616     int i, f, h;
3617     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3618     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3619     f, est >>>= 1, map);
3620     }
3621 dl 1.142
3622 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3623     if (action == null) throw new NullPointerException();
3624     for (Node<K,V> p; (p = advance()) != null; )
3625     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3626     }
3627 dl 1.210
3628 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3629     if (action == null) throw new NullPointerException();
3630     Node<K,V> p;
3631     if ((p = advance()) == null)
3632     return false;
3633     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3634     return true;
3635 dl 1.210 }
3636    
3637 dl 1.222 public long estimateSize() { return est; }
3638    
3639     public int characteristics() {
3640     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3641     Spliterator.NONNULL;
3642 dl 1.210 }
3643     }
3644    
3645     // Parallel bulk operations
3646    
3647     /**
3648     * Computes initial batch value for bulk tasks. The returned value
3649     * is approximately exp2 of the number of times (minus one) to
3650     * split task by two before executing leaf action. This value is
3651     * faster to compute and more convenient to use as a guide to
3652     * splitting than is the depth, since it is used while dividing by
3653     * two anyway.
3654     */
3655     final int batchFor(long b) {
3656     long n;
3657     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3658     return 0;
3659     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3660     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3661     }
3662 dl 1.151
3663 dl 1.119 /**
3664 dl 1.137 * Performs the given action for each (key, value).
3665 dl 1.119 *
3666 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3667 jsr166 1.213 * needed for this operation to be executed in parallel
3668 dl 1.137 * @param action the action
3669 jsr166 1.220 * @since 1.8
3670 dl 1.119 */
3671 dl 1.210 public void forEach(long parallelismThreshold,
3672     BiConsumer<? super K,? super V> action) {
3673 dl 1.151 if (action == null) throw new NullPointerException();
3674 dl 1.210 new ForEachMappingTask<K,V>
3675     (null, batchFor(parallelismThreshold), 0, 0, table,
3676     action).invoke();
3677 dl 1.119 }
3678    
3679     /**
3680 dl 1.137 * Performs the given action for each non-null transformation
3681     * of each (key, value).
3682     *
3683 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3684 jsr166 1.213 * needed for this operation to be executed in parallel
3685 dl 1.137 * @param transformer a function returning the transformation
3686 jsr166 1.169 * for an element, or null if there is no transformation (in
3687 jsr166 1.172 * which case the action is not applied)
3688 dl 1.137 * @param action the action
3689 jsr166 1.237 * @param <U> the return type of the transformer
3690 jsr166 1.220 * @since 1.8
3691 dl 1.119 */
3692 dl 1.210 public <U> void forEach(long parallelismThreshold,
3693     BiFunction<? super K, ? super V, ? extends U> transformer,
3694     Consumer<? super U> action) {
3695 dl 1.151 if (transformer == null || action == null)
3696     throw new NullPointerException();
3697 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3698     (null, batchFor(parallelismThreshold), 0, 0, table,
3699     transformer, action).invoke();
3700 dl 1.137 }
3701    
3702     /**
3703     * Returns a non-null result from applying the given search
3704 dl 1.210 * function on each (key, value), or null if none. Upon
3705     * success, further element processing is suppressed and the
3706     * results of any other parallel invocations of the search
3707     * function are ignored.
3708 dl 1.137 *
3709 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3710 jsr166 1.213 * needed for this operation to be executed in parallel
3711 dl 1.137 * @param searchFunction a function returning a non-null
3712     * result on success, else null
3713 jsr166 1.237 * @param <U> the return type of the search function
3714 dl 1.137 * @return a non-null result from applying the given search
3715     * function on each (key, value), or null if none
3716 jsr166 1.220 * @since 1.8
3717 dl 1.137 */
3718 dl 1.210 public <U> U search(long parallelismThreshold,
3719     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3720 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3721 dl 1.210 return new SearchMappingsTask<K,V,U>
3722     (null, batchFor(parallelismThreshold), 0, 0, table,
3723     searchFunction, new AtomicReference<U>()).invoke();
3724 dl 1.137 }
3725    
3726     /**
3727     * Returns the result of accumulating the given transformation
3728     * of all (key, value) pairs using the given reducer to
3729     * combine values, or null if none.
3730     *
3731 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3732 jsr166 1.213 * needed for this operation to be executed in parallel
3733 dl 1.137 * @param transformer a function returning the transformation
3734 jsr166 1.169 * for an element, or null if there is no transformation (in
3735 jsr166 1.172 * which case it is not combined)
3736 dl 1.137 * @param reducer a commutative associative combining function
3737 jsr166 1.237 * @param <U> the return type of the transformer
3738 dl 1.137 * @return the result of accumulating the given transformation
3739     * of all (key, value) pairs
3740 jsr166 1.220 * @since 1.8
3741 dl 1.137 */
3742 dl 1.210 public <U> U reduce(long parallelismThreshold,
3743     BiFunction<? super K, ? super V, ? extends U> transformer,
3744     BiFunction<? super U, ? super U, ? extends U> reducer) {
3745 dl 1.151 if (transformer == null || reducer == null)
3746     throw new NullPointerException();
3747 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3748     (null, batchFor(parallelismThreshold), 0, 0, table,
3749     null, transformer, reducer).invoke();
3750 dl 1.137 }
3751    
3752     /**
3753     * Returns the result of accumulating the given transformation
3754     * of all (key, value) pairs using the given reducer to
3755     * combine values, and the given basis as an identity value.
3756     *
3757 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3758 jsr166 1.213 * needed for this operation to be executed in parallel
3759 dl 1.137 * @param transformer a function returning the transformation
3760     * for an element
3761     * @param basis the identity (initial default value) for the reduction
3762     * @param reducer a commutative associative combining function
3763     * @return the result of accumulating the given transformation
3764     * of all (key, value) pairs
3765 jsr166 1.220 * @since 1.8
3766 dl 1.137 */
3767 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3768     ToDoubleBiFunction<? super K, ? super V> transformer,
3769     double basis,
3770     DoubleBinaryOperator reducer) {
3771 dl 1.151 if (transformer == null || reducer == null)
3772     throw new NullPointerException();
3773 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3774     (null, batchFor(parallelismThreshold), 0, 0, table,
3775     null, transformer, basis, reducer).invoke();
3776 dl 1.137 }
3777 dl 1.119
3778 dl 1.137 /**
3779     * Returns the result of accumulating the given transformation
3780     * of all (key, value) pairs using the given reducer to
3781     * combine values, and the given basis as an identity value.
3782     *
3783 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3784 jsr166 1.213 * needed for this operation to be executed in parallel
3785 dl 1.137 * @param transformer a function returning the transformation
3786     * for an element
3787     * @param basis the identity (initial default value) for the reduction
3788     * @param reducer a commutative associative combining function
3789     * @return the result of accumulating the given transformation
3790     * of all (key, value) pairs
3791 jsr166 1.220 * @since 1.8
3792 dl 1.137 */
3793 dl 1.210 public long reduceToLong(long parallelismThreshold,
3794     ToLongBiFunction<? super K, ? super V> transformer,
3795     long basis,
3796     LongBinaryOperator reducer) {
3797 dl 1.151 if (transformer == null || reducer == null)
3798     throw new NullPointerException();
3799 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3800     (null, batchFor(parallelismThreshold), 0, 0, table,
3801     null, transformer, basis, reducer).invoke();
3802 dl 1.137 }
3803    
3804     /**
3805     * Returns the result of accumulating the given transformation
3806     * of all (key, value) pairs using the given reducer to
3807     * combine values, and the given basis as an identity value.
3808     *
3809 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3810 jsr166 1.213 * needed for this operation to be executed in parallel
3811 dl 1.137 * @param transformer a function returning the transformation
3812     * for an element
3813     * @param basis the identity (initial default value) for the reduction
3814     * @param reducer a commutative associative combining function
3815     * @return the result of accumulating the given transformation
3816     * of all (key, value) pairs
3817 jsr166 1.220 * @since 1.8
3818 dl 1.137 */
3819 dl 1.210 public int reduceToInt(long parallelismThreshold,
3820     ToIntBiFunction<? super K, ? super V> transformer,
3821     int basis,
3822     IntBinaryOperator reducer) {
3823 dl 1.151 if (transformer == null || reducer == null)
3824     throw new NullPointerException();
3825 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3826     (null, batchFor(parallelismThreshold), 0, 0, table,
3827     null, transformer, basis, reducer).invoke();
3828 dl 1.137 }
3829    
3830     /**
3831     * Performs the given action for each key.
3832     *
3833 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3834 jsr166 1.213 * needed for this operation to be executed in parallel
3835 dl 1.137 * @param action the action
3836 jsr166 1.220 * @since 1.8
3837 dl 1.137 */
3838 dl 1.210 public void forEachKey(long parallelismThreshold,
3839     Consumer<? super K> action) {
3840     if (action == null) throw new NullPointerException();
3841     new ForEachKeyTask<K,V>
3842     (null, batchFor(parallelismThreshold), 0, 0, table,
3843     action).invoke();
3844 dl 1.137 }
3845 dl 1.119
3846 dl 1.137 /**
3847     * Performs the given action for each non-null transformation
3848     * of each key.
3849     *
3850 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3851 jsr166 1.213 * needed for this operation to be executed in parallel
3852 dl 1.137 * @param transformer a function returning the transformation
3853 jsr166 1.169 * for an element, or null if there is no transformation (in
3854 jsr166 1.172 * which case the action is not applied)
3855 dl 1.137 * @param action the action
3856 jsr166 1.237 * @param <U> the return type of the transformer
3857 jsr166 1.220 * @since 1.8
3858 dl 1.137 */
3859 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3860     Function<? super K, ? extends U> transformer,
3861     Consumer<? super U> action) {
3862 dl 1.151 if (transformer == null || action == null)
3863     throw new NullPointerException();
3864 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3865     (null, batchFor(parallelismThreshold), 0, 0, table,
3866     transformer, action).invoke();
3867 dl 1.137 }
3868 dl 1.119
3869 dl 1.137 /**
3870     * Returns a non-null result from applying the given search
3871 dl 1.210 * function on each key, or null if none. Upon success,
3872     * further element processing is suppressed and the results of
3873     * any other parallel invocations of the search function are
3874     * ignored.
3875 dl 1.137 *
3876 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3877 jsr166 1.213 * needed for this operation to be executed in parallel
3878 dl 1.137 * @param searchFunction a function returning a non-null
3879     * result on success, else null
3880 jsr166 1.237 * @param <U> the return type of the search function
3881 dl 1.137 * @return a non-null result from applying the given search
3882     * function on each key, or null if none
3883 jsr166 1.220 * @since 1.8
3884 dl 1.137 */
3885 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3886     Function<? super K, ? extends U> searchFunction) {
3887     if (searchFunction == null) throw new NullPointerException();
3888     return new SearchKeysTask<K,V,U>
3889     (null, batchFor(parallelismThreshold), 0, 0, table,
3890     searchFunction, new AtomicReference<U>()).invoke();
3891 dl 1.137 }
3892 dl 1.119
3893 dl 1.137 /**
3894     * Returns the result of accumulating all keys using the given
3895     * reducer to combine values, or null if none.
3896     *
3897 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3898 jsr166 1.213 * needed for this operation to be executed in parallel
3899 dl 1.137 * @param reducer a commutative associative combining function
3900     * @return the result of accumulating all keys using the given
3901     * reducer to combine values, or null if none
3902 jsr166 1.220 * @since 1.8
3903 dl 1.137 */
3904 dl 1.210 public K reduceKeys(long parallelismThreshold,
3905     BiFunction<? super K, ? super K, ? extends K> reducer) {
3906 dl 1.151 if (reducer == null) throw new NullPointerException();
3907 dl 1.210 return new ReduceKeysTask<K,V>
3908     (null, batchFor(parallelismThreshold), 0, 0, table,
3909     null, reducer).invoke();
3910 dl 1.137 }
3911 dl 1.119
3912 dl 1.137 /**
3913     * Returns the result of accumulating the given transformation
3914     * of all keys using the given reducer to combine values, or
3915     * null if none.
3916     *
3917 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3918 jsr166 1.213 * needed for this operation to be executed in parallel
3919 dl 1.137 * @param transformer a function returning the transformation
3920 jsr166 1.169 * for an element, or null if there is no transformation (in
3921 jsr166 1.172 * which case it is not combined)
3922 dl 1.137 * @param reducer a commutative associative combining function
3923 jsr166 1.237 * @param <U> the return type of the transformer
3924 dl 1.137 * @return the result of accumulating the given transformation
3925     * of all keys
3926 jsr166 1.220 * @since 1.8
3927 dl 1.137 */
3928 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3929     Function<? super K, ? extends U> transformer,
3930 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3931 dl 1.151 if (transformer == null || reducer == null)
3932     throw new NullPointerException();
3933 dl 1.210 return new MapReduceKeysTask<K,V,U>
3934     (null, batchFor(parallelismThreshold), 0, 0, table,
3935     null, transformer, reducer).invoke();
3936 dl 1.137 }
3937 dl 1.119
3938 dl 1.137 /**
3939     * Returns the result of accumulating the given transformation
3940     * of all keys using the given reducer to combine values, and
3941     * the given basis as an identity value.
3942     *
3943 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3944 jsr166 1.213 * needed for this operation to be executed in parallel
3945 dl 1.137 * @param transformer a function returning the transformation
3946     * for an element
3947     * @param basis the identity (initial default value) for the reduction
3948     * @param reducer a commutative associative combining function
3949 jsr166 1.157 * @return the result of accumulating the given transformation
3950 dl 1.137 * of all keys
3951 jsr166 1.220 * @since 1.8
3952 dl 1.137 */
3953 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3954     ToDoubleFunction<? super K> transformer,
3955     double basis,
3956     DoubleBinaryOperator reducer) {
3957 dl 1.151 if (transformer == null || reducer == null)
3958     throw new NullPointerException();
3959 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3960     (null, batchFor(parallelismThreshold), 0, 0, table,
3961     null, transformer, basis, reducer).invoke();
3962 dl 1.137 }
3963 dl 1.119
3964 dl 1.137 /**
3965     * Returns the result of accumulating the given transformation
3966     * of all keys using the given reducer to combine values, and
3967     * the given basis as an identity value.
3968     *
3969 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3970 jsr166 1.213 * needed for this operation to be executed in parallel
3971 dl 1.137 * @param transformer a function returning the transformation
3972     * for an element
3973     * @param basis the identity (initial default value) for the reduction
3974     * @param reducer a commutative associative combining function
3975     * @return the result of accumulating the given transformation
3976     * of all keys
3977 jsr166 1.220 * @since 1.8
3978 dl 1.137 */
3979 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3980     ToLongFunction<? super K> transformer,
3981     long basis,
3982     LongBinaryOperator reducer) {
3983 dl 1.151 if (transformer == null || reducer == null)
3984     throw new NullPointerException();
3985 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3986     (null, batchFor(parallelismThreshold), 0, 0, table,
3987     null, transformer, basis, reducer).invoke();
3988 dl 1.137 }
3989 dl 1.119
3990 dl 1.137 /**
3991     * Returns the result of accumulating the given transformation
3992     * of all keys using the given reducer to combine values, and
3993     * the given basis as an identity value.
3994     *
3995 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3996 jsr166 1.213 * needed for this operation to be executed in parallel
3997 dl 1.137 * @param transformer a function returning the transformation
3998     * for an element
3999     * @param basis the identity (initial default value) for the reduction
4000     * @param reducer a commutative associative combining function
4001     * @return the result of accumulating the given transformation
4002     * of all keys
4003 jsr166 1.220 * @since 1.8
4004 dl 1.137 */
4005 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
4006     ToIntFunction<? super K> transformer,
4007     int basis,
4008     IntBinaryOperator reducer) {
4009 dl 1.151 if (transformer == null || reducer == null)
4010     throw new NullPointerException();
4011 dl 1.210 return new MapReduceKeysToIntTask<K,V>
4012     (null, batchFor(parallelismThreshold), 0, 0, table,
4013     null, transformer, basis, reducer).invoke();
4014 dl 1.137 }
4015 dl 1.119
4016 dl 1.137 /**
4017     * Performs the given action for each value.
4018     *
4019 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4020 jsr166 1.213 * needed for this operation to be executed in parallel
4021 dl 1.137 * @param action the action
4022 jsr166 1.220 * @since 1.8
4023 dl 1.137 */
4024 dl 1.210 public void forEachValue(long parallelismThreshold,
4025     Consumer<? super V> action) {
4026     if (action == null)
4027     throw new NullPointerException();
4028     new ForEachValueTask<K,V>
4029     (null, batchFor(parallelismThreshold), 0, 0, table,
4030     action).invoke();
4031 dl 1.137 }
4032 dl 1.119
4033 dl 1.137 /**
4034     * Performs the given action for each non-null transformation
4035     * of each value.
4036     *
4037 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4038 jsr166 1.213 * needed for this operation to be executed in parallel
4039 dl 1.137 * @param transformer a function returning the transformation
4040 jsr166 1.169 * for an element, or null if there is no transformation (in
4041 jsr166 1.172 * which case the action is not applied)
4042 jsr166 1.179 * @param action the action
4043 jsr166 1.237 * @param <U> the return type of the transformer
4044 jsr166 1.220 * @since 1.8
4045 dl 1.137 */
4046 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
4047     Function<? super V, ? extends U> transformer,
4048     Consumer<? super U> action) {
4049 dl 1.151 if (transformer == null || action == null)
4050     throw new NullPointerException();
4051 dl 1.210 new ForEachTransformedValueTask<K,V,U>
4052     (null, batchFor(parallelismThreshold), 0, 0, table,
4053     transformer, action).invoke();
4054 dl 1.137 }
4055 dl 1.119
4056 dl 1.137 /**
4057     * Returns a non-null result from applying the given search
4058 dl 1.210 * function on each value, or null if none. Upon success,
4059     * further element processing is suppressed and the results of
4060     * any other parallel invocations of the search function are
4061     * ignored.
4062 dl 1.137 *
4063 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4064 jsr166 1.213 * needed for this operation to be executed in parallel
4065 dl 1.137 * @param searchFunction a function returning a non-null
4066     * result on success, else null
4067 jsr166 1.237 * @param <U> the return type of the search function
4068 dl 1.137 * @return a non-null result from applying the given search
4069     * function on each value, or null if none
4070 jsr166 1.220 * @since 1.8
4071 dl 1.137 */
4072 dl 1.210 public <U> U searchValues(long parallelismThreshold,
4073     Function<? super V, ? extends U> searchFunction) {
4074 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4075 dl 1.210 return new SearchValuesTask<K,V,U>
4076     (null, batchFor(parallelismThreshold), 0, 0, table,
4077     searchFunction, new AtomicReference<U>()).invoke();
4078 dl 1.137 }
4079 dl 1.119
4080 dl 1.137 /**
4081     * Returns the result of accumulating all values using the
4082     * given reducer to combine values, or null if none.
4083     *
4084 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4085 jsr166 1.213 * needed for this operation to be executed in parallel
4086 dl 1.137 * @param reducer a commutative associative combining function
4087 jsr166 1.157 * @return the result of accumulating all values
4088 jsr166 1.220 * @since 1.8
4089 dl 1.137 */
4090 dl 1.210 public V reduceValues(long parallelismThreshold,
4091     BiFunction<? super V, ? super V, ? extends V> reducer) {
4092 dl 1.151 if (reducer == null) throw new NullPointerException();
4093 dl 1.210 return new ReduceValuesTask<K,V>
4094     (null, batchFor(parallelismThreshold), 0, 0, table,
4095     null, reducer).invoke();
4096 dl 1.137 }
4097 dl 1.119
4098 dl 1.137 /**
4099     * Returns the result of accumulating the given transformation
4100     * of all values using the given reducer to combine values, or
4101     * null if none.
4102     *
4103 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4104 jsr166 1.213 * needed for this operation to be executed in parallel
4105 dl 1.137 * @param transformer a function returning the transformation
4106 jsr166 1.169 * for an element, or null if there is no transformation (in
4107 jsr166 1.172 * which case it is not combined)
4108 dl 1.137 * @param reducer a commutative associative combining function
4109 jsr166 1.237 * @param <U> the return type of the transformer
4110 dl 1.137 * @return the result of accumulating the given transformation
4111     * of all values
4112 jsr166 1.220 * @since 1.8
4113 dl 1.137 */
4114 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4115     Function<? super V, ? extends U> transformer,
4116     BiFunction<? super U, ? super U, ? extends U> reducer) {
4117 dl 1.151 if (transformer == null || reducer == null)
4118     throw new NullPointerException();
4119 dl 1.210 return new MapReduceValuesTask<K,V,U>
4120     (null, batchFor(parallelismThreshold), 0, 0, table,
4121     null, transformer, reducer).invoke();
4122 dl 1.137 }
4123 dl 1.119
4124 dl 1.137 /**
4125     * Returns the result of accumulating the given transformation
4126     * of all values using the given reducer to combine values,
4127     * and the given basis as an identity value.
4128     *
4129 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4130 jsr166 1.213 * needed for this operation to be executed in parallel
4131 dl 1.137 * @param transformer a function returning the transformation
4132     * for an element
4133     * @param basis the identity (initial default value) for the reduction
4134     * @param reducer a commutative associative combining function
4135     * @return the result of accumulating the given transformation
4136     * of all values
4137 jsr166 1.220 * @since 1.8
4138 dl 1.137 */
4139 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4140     ToDoubleFunction<? super V> transformer,
4141     double basis,
4142     DoubleBinaryOperator reducer) {
4143 dl 1.151 if (transformer == null || reducer == null)
4144     throw new NullPointerException();
4145 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4146     (null, batchFor(parallelismThreshold), 0, 0, table,
4147     null, transformer, basis, reducer).invoke();
4148 dl 1.137 }
4149 dl 1.119
4150 dl 1.137 /**
4151     * Returns the result of accumulating the given transformation
4152     * of all values using the given reducer to combine values,
4153     * and the given basis as an identity value.
4154     *
4155 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4156 jsr166 1.213 * needed for this operation to be executed in parallel
4157 dl 1.137 * @param transformer a function returning the transformation
4158     * for an element
4159     * @param basis the identity (initial default value) for the reduction
4160     * @param reducer a commutative associative combining function
4161     * @return the result of accumulating the given transformation
4162     * of all values
4163 jsr166 1.220 * @since 1.8
4164 dl 1.137 */
4165 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4166     ToLongFunction<? super V> transformer,
4167     long basis,
4168     LongBinaryOperator reducer) {
4169 dl 1.151 if (transformer == null || reducer == null)
4170     throw new NullPointerException();
4171 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4172     (null, batchFor(parallelismThreshold), 0, 0, table,
4173     null, transformer, basis, reducer).invoke();
4174 dl 1.137 }
4175 dl 1.119
4176 dl 1.137 /**
4177     * Returns the result of accumulating the given transformation
4178     * of all values using the given reducer to combine values,
4179     * and the given basis as an identity value.
4180     *
4181 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4182 jsr166 1.213 * needed for this operation to be executed in parallel
4183 dl 1.137 * @param transformer a function returning the transformation
4184     * for an element
4185     * @param basis the identity (initial default value) for the reduction
4186     * @param reducer a commutative associative combining function
4187     * @return the result of accumulating the given transformation
4188     * of all values
4189 jsr166 1.220 * @since 1.8
4190 dl 1.137 */
4191 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4192     ToIntFunction<? super V> transformer,
4193     int basis,
4194     IntBinaryOperator reducer) {
4195 dl 1.151 if (transformer == null || reducer == null)
4196     throw new NullPointerException();
4197 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4198     (null, batchFor(parallelismThreshold), 0, 0, table,
4199     null, transformer, basis, reducer).invoke();
4200 dl 1.137 }
4201 dl 1.119
4202 dl 1.137 /**
4203     * Performs the given action for each entry.
4204     *
4205 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4206 jsr166 1.213 * needed for this operation to be executed in parallel
4207 dl 1.137 * @param action the action
4208 jsr166 1.220 * @since 1.8
4209 dl 1.137 */
4210 dl 1.210 public void forEachEntry(long parallelismThreshold,
4211     Consumer<? super Map.Entry<K,V>> action) {
4212 dl 1.151 if (action == null) throw new NullPointerException();
4213 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4214     action).invoke();
4215 dl 1.137 }
4216 dl 1.119
4217 dl 1.137 /**
4218     * Performs the given action for each non-null transformation
4219     * of each entry.
4220     *
4221 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4222 jsr166 1.213 * needed for this operation to be executed in parallel
4223 dl 1.137 * @param transformer a function returning the transformation
4224 jsr166 1.169 * for an element, or null if there is no transformation (in
4225 jsr166 1.172 * which case the action is not applied)
4226 dl 1.137 * @param action the action
4227 jsr166 1.237 * @param <U> the return type of the transformer
4228 jsr166 1.220 * @since 1.8
4229 dl 1.137 */
4230 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4231     Function<Map.Entry<K,V>, ? extends U> transformer,
4232     Consumer<? super U> action) {
4233 dl 1.151 if (transformer == null || action == null)
4234     throw new NullPointerException();
4235 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4236     (null, batchFor(parallelismThreshold), 0, 0, table,
4237     transformer, action).invoke();
4238 dl 1.137 }
4239 dl 1.119
4240 dl 1.137 /**
4241     * Returns a non-null result from applying the given search
4242 dl 1.210 * function on each entry, or null if none. Upon success,
4243     * further element processing is suppressed and the results of
4244     * any other parallel invocations of the search function are
4245     * ignored.
4246 dl 1.137 *
4247 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4248 jsr166 1.213 * needed for this operation to be executed in parallel
4249 dl 1.137 * @param searchFunction a function returning a non-null
4250     * result on success, else null
4251 jsr166 1.237 * @param <U> the return type of the search function
4252 dl 1.137 * @return a non-null result from applying the given search
4253     * function on each entry, or null if none
4254 jsr166 1.220 * @since 1.8
4255 dl 1.137 */
4256 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4257     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4258 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4259 dl 1.210 return new SearchEntriesTask<K,V,U>
4260     (null, batchFor(parallelismThreshold), 0, 0, table,
4261     searchFunction, new AtomicReference<U>()).invoke();
4262 dl 1.137 }
4263 dl 1.119
4264 dl 1.137 /**
4265     * Returns the result of accumulating all entries using the
4266     * given reducer to combine values, or null if none.
4267     *
4268 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4269 jsr166 1.213 * needed for this operation to be executed in parallel
4270 dl 1.137 * @param reducer a commutative associative combining function
4271     * @return the result of accumulating all entries
4272 jsr166 1.220 * @since 1.8
4273 dl 1.137 */
4274 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4275     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4276 dl 1.151 if (reducer == null) throw new NullPointerException();
4277 dl 1.210 return new ReduceEntriesTask<K,V>
4278     (null, batchFor(parallelismThreshold), 0, 0, table,
4279     null, reducer).invoke();
4280 dl 1.137 }
4281 dl 1.119
4282 dl 1.137 /**
4283     * Returns the result of accumulating the given transformation
4284     * of all entries using the given reducer to combine values,
4285     * or null if none.
4286     *
4287 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4288 jsr166 1.213 * needed for this operation to be executed in parallel
4289 dl 1.137 * @param transformer a function returning the transformation
4290 jsr166 1.169 * for an element, or null if there is no transformation (in
4291 jsr166 1.172 * which case it is not combined)
4292 dl 1.137 * @param reducer a commutative associative combining function
4293 jsr166 1.237 * @param <U> the return type of the transformer
4294 dl 1.137 * @return the result of accumulating the given transformation
4295     * of all entries
4296 jsr166 1.220 * @since 1.8
4297 dl 1.137 */
4298 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4299     Function<Map.Entry<K,V>, ? extends U> transformer,
4300     BiFunction<? super U, ? super U, ? extends U> reducer) {
4301 dl 1.151 if (transformer == null || reducer == null)
4302     throw new NullPointerException();
4303 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4304     (null, batchFor(parallelismThreshold), 0, 0, table,
4305     null, transformer, reducer).invoke();
4306 dl 1.137 }
4307 dl 1.119
4308 dl 1.137 /**
4309     * Returns the result of accumulating the given transformation
4310     * of all entries using the given reducer to combine values,
4311     * and the given basis as an identity value.
4312     *
4313 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4314 jsr166 1.213 * needed for this operation to be executed in parallel
4315 dl 1.137 * @param transformer a function returning the transformation
4316     * for an element
4317     * @param basis the identity (initial default value) for the reduction
4318     * @param reducer a commutative associative combining function
4319     * @return the result of accumulating the given transformation
4320     * of all entries
4321 jsr166 1.220 * @since 1.8
4322 dl 1.137 */
4323 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4324     ToDoubleFunction<Map.Entry<K,V>> transformer,
4325     double basis,
4326     DoubleBinaryOperator reducer) {
4327 dl 1.151 if (transformer == null || reducer == null)
4328     throw new NullPointerException();
4329 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4330     (null, batchFor(parallelismThreshold), 0, 0, table,
4331     null, transformer, basis, reducer).invoke();
4332 dl 1.137 }
4333 dl 1.119
4334 dl 1.137 /**
4335     * Returns the result of accumulating the given transformation
4336     * of all entries using the given reducer to combine values,
4337     * and the given basis as an identity value.
4338     *
4339 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4340 jsr166 1.213 * needed for this operation to be executed in parallel
4341 dl 1.137 * @param transformer a function returning the transformation
4342     * for an element
4343     * @param basis the identity (initial default value) for the reduction
4344     * @param reducer a commutative associative combining function
4345 jsr166 1.157 * @return the result of accumulating the given transformation
4346 dl 1.137 * of all entries
4347 jsr166 1.221 * @since 1.8
4348 dl 1.137 */
4349 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4350     ToLongFunction<Map.Entry<K,V>> transformer,
4351     long basis,
4352     LongBinaryOperator reducer) {
4353 dl 1.151 if (transformer == null || reducer == null)
4354     throw new NullPointerException();
4355 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4356     (null, batchFor(parallelismThreshold), 0, 0, table,
4357     null, transformer, basis, reducer).invoke();
4358 dl 1.137 }
4359 dl 1.119
4360 dl 1.137 /**
4361     * Returns the result of accumulating the given transformation
4362     * of all entries using the given reducer to combine values,
4363     * and the given basis as an identity value.
4364     *
4365 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4366 jsr166 1.213 * needed for this operation to be executed in parallel
4367 dl 1.137 * @param transformer a function returning the transformation
4368     * for an element
4369     * @param basis the identity (initial default value) for the reduction
4370     * @param reducer a commutative associative combining function
4371     * @return the result of accumulating the given transformation
4372     * of all entries
4373 jsr166 1.221 * @since 1.8
4374 dl 1.137 */
4375 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4376     ToIntFunction<Map.Entry<K,V>> transformer,
4377     int basis,
4378     IntBinaryOperator reducer) {
4379 dl 1.151 if (transformer == null || reducer == null)
4380     throw new NullPointerException();
4381 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4382     (null, batchFor(parallelismThreshold), 0, 0, table,
4383     null, transformer, basis, reducer).invoke();
4384 dl 1.119 }
4385    
4386 dl 1.209
4387 dl 1.210 /* ----------------Views -------------- */
4388 dl 1.142
4389     /**
4390 dl 1.210 * Base class for views.
4391 dl 1.142 */
4392 dl 1.210 abstract static class CollectionView<K,V,E>
4393     implements Collection<E>, java.io.Serializable {
4394     private static final long serialVersionUID = 7249069246763182397L;
4395     final ConcurrentHashMap<K,V> map;
4396     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4397    
4398     /**
4399     * Returns the map backing this view.
4400     *
4401     * @return the map backing this view
4402     */
4403     public ConcurrentHashMap<K,V> getMap() { return map; }
4404 dl 1.142
4405 dl 1.210 /**
4406     * Removes all of the elements from this view, by removing all
4407     * the mappings from the map backing this view.
4408 jsr166 1.184 */
4409     public final void clear() { map.clear(); }
4410     public final int size() { return map.size(); }
4411     public final boolean isEmpty() { return map.isEmpty(); }
4412 dl 1.151
4413     // implementations below rely on concrete classes supplying these
4414 jsr166 1.184 // abstract methods
4415     /**
4416 jsr166 1.242 * Returns an iterator over the elements in this collection.
4417     *
4418     * <p>The returned iterator is
4419     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4420     *
4421     * @return an iterator over the elements in this collection
4422 jsr166 1.184 */
4423     public abstract Iterator<E> iterator();
4424 jsr166 1.165 public abstract boolean contains(Object o);
4425     public abstract boolean remove(Object o);
4426 dl 1.151
4427     private static final String oomeMsg = "Required array size too large";
4428 dl 1.142
4429     public final Object[] toArray() {
4430     long sz = map.mappingCount();
4431 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4432 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4433     int n = (int)sz;
4434     Object[] r = new Object[n];
4435     int i = 0;
4436 jsr166 1.184 for (E e : this) {
4437 dl 1.142 if (i == n) {
4438     if (n >= MAX_ARRAY_SIZE)
4439     throw new OutOfMemoryError(oomeMsg);
4440     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4441     n = MAX_ARRAY_SIZE;
4442     else
4443     n += (n >>> 1) + 1;
4444     r = Arrays.copyOf(r, n);
4445     }
4446 jsr166 1.184 r[i++] = e;
4447 dl 1.142 }
4448     return (i == n) ? r : Arrays.copyOf(r, i);
4449     }
4450    
4451 dl 1.222 @SuppressWarnings("unchecked")
4452 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4453 dl 1.142 long sz = map.mappingCount();
4454 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4455 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4456     int m = (int)sz;
4457     T[] r = (a.length >= m) ? a :
4458     (T[])java.lang.reflect.Array
4459     .newInstance(a.getClass().getComponentType(), m);
4460     int n = r.length;
4461     int i = 0;
4462 jsr166 1.184 for (E e : this) {
4463 dl 1.142 if (i == n) {
4464     if (n >= MAX_ARRAY_SIZE)
4465     throw new OutOfMemoryError(oomeMsg);
4466     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4467     n = MAX_ARRAY_SIZE;
4468     else
4469     n += (n >>> 1) + 1;
4470     r = Arrays.copyOf(r, n);
4471     }
4472 jsr166 1.184 r[i++] = (T)e;
4473 dl 1.142 }
4474     if (a == r && i < n) {
4475     r[i] = null; // null-terminate
4476     return r;
4477     }
4478     return (i == n) ? r : Arrays.copyOf(r, i);
4479     }
4480    
4481 jsr166 1.184 /**
4482     * Returns a string representation of this collection.
4483     * The string representation consists of the string representations
4484     * of the collection's elements in the order they are returned by
4485     * its iterator, enclosed in square brackets ({@code "[]"}).
4486     * Adjacent elements are separated by the characters {@code ", "}
4487     * (comma and space). Elements are converted to strings as by
4488     * {@link String#valueOf(Object)}.
4489     *
4490     * @return a string representation of this collection
4491     */
4492 dl 1.142 public final String toString() {
4493     StringBuilder sb = new StringBuilder();
4494     sb.append('[');
4495 jsr166 1.184 Iterator<E> it = iterator();
4496 dl 1.142 if (it.hasNext()) {
4497     for (;;) {
4498     Object e = it.next();
4499     sb.append(e == this ? "(this Collection)" : e);
4500     if (!it.hasNext())
4501     break;
4502     sb.append(',').append(' ');
4503     }
4504     }
4505     return sb.append(']').toString();
4506     }
4507    
4508     public final boolean containsAll(Collection<?> c) {
4509     if (c != this) {
4510 jsr166 1.184 for (Object e : c) {
4511 dl 1.142 if (e == null || !contains(e))
4512     return false;
4513     }
4514     }
4515     return true;
4516     }
4517    
4518     public final boolean removeAll(Collection<?> c) {
4519 dl 1.251 if (c == null) throw new NullPointerException();
4520 dl 1.142 boolean modified = false;
4521 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4522 dl 1.142 if (c.contains(it.next())) {
4523     it.remove();
4524     modified = true;
4525     }
4526     }
4527     return modified;
4528     }
4529    
4530     public final boolean retainAll(Collection<?> c) {
4531 dl 1.251 if (c == null) throw new NullPointerException();
4532 dl 1.142 boolean modified = false;
4533 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4534 dl 1.142 if (!c.contains(it.next())) {
4535     it.remove();
4536     modified = true;
4537     }
4538     }
4539     return modified;
4540     }
4541    
4542     }
4543    
4544     /**
4545     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4546     * which additions may optionally be enabled by mapping to a
4547 jsr166 1.185 * common value. This class cannot be directly instantiated.
4548     * See {@link #keySet() keySet()},
4549     * {@link #keySet(Object) keySet(V)},
4550     * {@link #newKeySet() newKeySet()},
4551     * {@link #newKeySet(int) newKeySet(int)}.
4552 jsr166 1.221 *
4553     * @since 1.8
4554 dl 1.142 */
4555 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4556     implements Set<K>, java.io.Serializable {
4557 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4558     private final V value;
4559 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4560 dl 1.142 super(map);
4561     this.value = value;
4562     }
4563    
4564     /**
4565     * Returns the default mapped value for additions,
4566     * or {@code null} if additions are not supported.
4567     *
4568     * @return the default mapped value for additions, or {@code null}
4569 jsr166 1.172 * if not supported
4570 dl 1.142 */
4571     public V getMappedValue() { return value; }
4572    
4573 jsr166 1.184 /**
4574     * {@inheritDoc}
4575     * @throws NullPointerException if the specified key is null
4576     */
4577     public boolean contains(Object o) { return map.containsKey(o); }
4578 dl 1.142
4579 jsr166 1.184 /**
4580     * Removes the key from this map view, by removing the key (and its
4581     * corresponding value) from the backing map. This method does
4582     * nothing if the key is not in the map.
4583     *
4584     * @param o the key to be removed from the backing map
4585     * @return {@code true} if the backing map contained the specified key
4586     * @throws NullPointerException if the specified key is null
4587     */
4588     public boolean remove(Object o) { return map.remove(o) != null; }
4589    
4590     /**
4591     * @return an iterator over the keys of the backing map
4592     */
4593 dl 1.210 public Iterator<K> iterator() {
4594     Node<K,V>[] t;
4595     ConcurrentHashMap<K,V> m = map;
4596     int f = (t = m.table) == null ? 0 : t.length;
4597     return new KeyIterator<K,V>(t, f, 0, f, m);
4598     }
4599 dl 1.142
4600     /**
4601 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4602     * the default mapped value in the backing map, if defined.
4603 dl 1.142 *
4604 jsr166 1.184 * @param e key to be added
4605     * @return {@code true} if this set changed as a result of the call
4606     * @throws NullPointerException if the specified key is null
4607     * @throws UnsupportedOperationException if no default mapped value
4608     * for additions was provided
4609 dl 1.142 */
4610     public boolean add(K e) {
4611     V v;
4612     if ((v = value) == null)
4613     throw new UnsupportedOperationException();
4614 dl 1.222 return map.putVal(e, v, true) == null;
4615 dl 1.142 }
4616 jsr166 1.184
4617     /**
4618     * Adds all of the elements in the specified collection to this set,
4619     * as if by calling {@link #add} on each one.
4620     *
4621     * @param c the elements to be inserted into this set
4622     * @return {@code true} if this set changed as a result of the call
4623     * @throws NullPointerException if the collection or any of its
4624     * elements are {@code null}
4625     * @throws UnsupportedOperationException if no default mapped value
4626     * for additions was provided
4627     */
4628 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4629     boolean added = false;
4630     V v;
4631     if ((v = value) == null)
4632     throw new UnsupportedOperationException();
4633     for (K e : c) {
4634 dl 1.222 if (map.putVal(e, v, true) == null)
4635 dl 1.142 added = true;
4636     }
4637     return added;
4638     }
4639 dl 1.153
4640 dl 1.210 public int hashCode() {
4641     int h = 0;
4642     for (K e : this)
4643     h += e.hashCode();
4644     return h;
4645 dl 1.191 }
4646    
4647 dl 1.210 public boolean equals(Object o) {
4648     Set<?> c;
4649     return ((o instanceof Set) &&
4650     ((c = (Set<?>)o) == this ||
4651     (containsAll(c) && c.containsAll(this))));
4652 dl 1.119 }
4653 jsr166 1.125
4654 dl 1.210 public Spliterator<K> spliterator() {
4655     Node<K,V>[] t;
4656     ConcurrentHashMap<K,V> m = map;
4657     long n = m.sumCount();
4658     int f = (t = m.table) == null ? 0 : t.length;
4659     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4660 dl 1.119 }
4661    
4662 dl 1.210 public void forEach(Consumer<? super K> action) {
4663     if (action == null) throw new NullPointerException();
4664     Node<K,V>[] t;
4665     if ((t = map.table) != null) {
4666     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4667     for (Node<K,V> p; (p = it.advance()) != null; )
4668 dl 1.222 action.accept(p.key);
4669 dl 1.210 }
4670 dl 1.119 }
4671 dl 1.210 }
4672 dl 1.119
4673 dl 1.210 /**
4674     * A view of a ConcurrentHashMap as a {@link Collection} of
4675     * values, in which additions are disabled. This class cannot be
4676     * directly instantiated. See {@link #values()}.
4677     */
4678     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4679     implements Collection<V>, java.io.Serializable {
4680     private static final long serialVersionUID = 2249069246763182397L;
4681     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4682     public final boolean contains(Object o) {
4683     return map.containsValue(o);
4684 dl 1.119 }
4685    
4686 dl 1.210 public final boolean remove(Object o) {
4687     if (o != null) {
4688     for (Iterator<V> it = iterator(); it.hasNext();) {
4689     if (o.equals(it.next())) {
4690     it.remove();
4691     return true;
4692     }
4693     }
4694     }
4695     return false;
4696 dl 1.119 }
4697    
4698 dl 1.210 public final Iterator<V> iterator() {
4699     ConcurrentHashMap<K,V> m = map;
4700     Node<K,V>[] t;
4701     int f = (t = m.table) == null ? 0 : t.length;
4702     return new ValueIterator<K,V>(t, f, 0, f, m);
4703 dl 1.119 }
4704    
4705 dl 1.210 public final boolean add(V e) {
4706     throw new UnsupportedOperationException();
4707     }
4708     public final boolean addAll(Collection<? extends V> c) {
4709     throw new UnsupportedOperationException();
4710 dl 1.119 }
4711    
4712 dl 1.272 public boolean removeIf(Predicate<? super V> filter) {
4713     return map.removeValueIf(filter);
4714     }
4715    
4716 dl 1.210 public Spliterator<V> spliterator() {
4717     Node<K,V>[] t;
4718     ConcurrentHashMap<K,V> m = map;
4719     long n = m.sumCount();
4720     int f = (t = m.table) == null ? 0 : t.length;
4721     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4722 dl 1.119 }
4723    
4724 dl 1.210 public void forEach(Consumer<? super V> action) {
4725     if (action == null) throw new NullPointerException();
4726     Node<K,V>[] t;
4727     if ((t = map.table) != null) {
4728     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4729     for (Node<K,V> p; (p = it.advance()) != null; )
4730     action.accept(p.val);
4731     }
4732 dl 1.119 }
4733 dl 1.210 }
4734    
4735     /**
4736     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4737     * entries. This class cannot be directly instantiated. See
4738     * {@link #entrySet()}.
4739     */
4740     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4741     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4742     private static final long serialVersionUID = 2249069246763182397L;
4743     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4744 dl 1.119
4745 dl 1.210 public boolean contains(Object o) {
4746     Object k, v, r; Map.Entry<?,?> e;
4747     return ((o instanceof Map.Entry) &&
4748     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4749     (r = map.get(k)) != null &&
4750     (v = e.getValue()) != null &&
4751     (v == r || v.equals(r)));
4752 dl 1.119 }
4753    
4754 dl 1.210 public boolean remove(Object o) {
4755     Object k, v; Map.Entry<?,?> e;
4756     return ((o instanceof Map.Entry) &&
4757     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4758     (v = e.getValue()) != null &&
4759     map.remove(k, v));
4760 dl 1.119 }
4761    
4762     /**
4763 dl 1.210 * @return an iterator over the entries of the backing map
4764 dl 1.119 */
4765 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4766     ConcurrentHashMap<K,V> m = map;
4767     Node<K,V>[] t;
4768     int f = (t = m.table) == null ? 0 : t.length;
4769     return new EntryIterator<K,V>(t, f, 0, f, m);
4770 dl 1.119 }
4771    
4772 dl 1.210 public boolean add(Entry<K,V> e) {
4773 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4774 dl 1.119 }
4775    
4776 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4777     boolean added = false;
4778     for (Entry<K,V> e : c) {
4779     if (add(e))
4780     added = true;
4781     }
4782     return added;
4783 dl 1.119 }
4784    
4785 jsr166 1.273 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4786 dl 1.271 return map.removeEntryIf(filter);
4787     }
4788    
4789 dl 1.210 public final int hashCode() {
4790     int h = 0;
4791     Node<K,V>[] t;
4792     if ((t = map.table) != null) {
4793     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4794     for (Node<K,V> p; (p = it.advance()) != null; ) {
4795     h += p.hashCode();
4796     }
4797     }
4798     return h;
4799 dl 1.119 }
4800    
4801 dl 1.210 public final boolean equals(Object o) {
4802     Set<?> c;
4803     return ((o instanceof Set) &&
4804     ((c = (Set<?>)o) == this ||
4805     (containsAll(c) && c.containsAll(this))));
4806 dl 1.119 }
4807    
4808 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4809     Node<K,V>[] t;
4810     ConcurrentHashMap<K,V> m = map;
4811     long n = m.sumCount();
4812     int f = (t = m.table) == null ? 0 : t.length;
4813     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4814 dl 1.119 }
4815    
4816 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4817     if (action == null) throw new NullPointerException();
4818     Node<K,V>[] t;
4819     if ((t = map.table) != null) {
4820     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4821     for (Node<K,V> p; (p = it.advance()) != null; )
4822 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4823 dl 1.210 }
4824 dl 1.119 }
4825    
4826 dl 1.210 }
4827    
4828     // -------------------------------------------------------
4829 dl 1.119
4830 dl 1.210 /**
4831     * Base class for bulk tasks. Repeats some fields and code from
4832     * class Traverser, because we need to subclass CountedCompleter.
4833     */
4834 dl 1.243 @SuppressWarnings("serial")
4835 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4836 dl 1.210 Node<K,V>[] tab; // same as Traverser
4837     Node<K,V> next;
4838 dl 1.246 TableStack<K,V> stack, spare;
4839 dl 1.210 int index;
4840     int baseIndex;
4841     int baseLimit;
4842     final int baseSize;
4843     int batch; // split control
4844    
4845     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4846     super(par);
4847     this.batch = b;
4848     this.index = this.baseIndex = i;
4849     if ((this.tab = t) == null)
4850     this.baseSize = this.baseLimit = 0;
4851     else if (par == null)
4852     this.baseSize = this.baseLimit = t.length;
4853     else {
4854     this.baseLimit = f;
4855     this.baseSize = par.baseSize;
4856     }
4857 dl 1.119 }
4858    
4859     /**
4860 dl 1.210 * Same as Traverser version
4861 dl 1.119 */
4862 dl 1.210 final Node<K,V> advance() {
4863     Node<K,V> e;
4864     if ((e = next) != null)
4865     e = e.next;
4866     for (;;) {
4867 dl 1.246 Node<K,V>[] t; int i, n;
4868 dl 1.210 if (e != null)
4869     return next = e;
4870     if (baseIndex >= baseLimit || (t = tab) == null ||
4871     (n = t.length) <= (i = index) || i < 0)
4872     return next = null;
4873 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4874 dl 1.222 if (e instanceof ForwardingNode) {
4875     tab = ((ForwardingNode<K,V>)e).nextTable;
4876 dl 1.210 e = null;
4877 dl 1.246 pushState(t, i, n);
4878 dl 1.210 continue;
4879     }
4880 dl 1.222 else if (e instanceof TreeBin)
4881     e = ((TreeBin<K,V>)e).first;
4882     else
4883     e = null;
4884 dl 1.210 }
4885 dl 1.246 if (stack != null)
4886     recoverState(n);
4887     else if ((index = i + baseSize) >= n)
4888     index = ++baseIndex;
4889     }
4890     }
4891    
4892     private void pushState(Node<K,V>[] t, int i, int n) {
4893     TableStack<K,V> s = spare;
4894     if (s != null)
4895     spare = s.next;
4896     else
4897     s = new TableStack<K,V>();
4898     s.tab = t;
4899     s.length = n;
4900     s.index = i;
4901     s.next = stack;
4902     stack = s;
4903     }
4904    
4905     private void recoverState(int n) {
4906     TableStack<K,V> s; int len;
4907     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4908     n = len;
4909     index = s.index;
4910     tab = s.tab;
4911     s.tab = null;
4912     TableStack<K,V> next = s.next;
4913     s.next = spare; // save for reuse
4914     stack = next;
4915     spare = s;
4916 dl 1.210 }
4917 dl 1.246 if (s == null && (index += baseSize) >= n)
4918     index = ++baseIndex;
4919 dl 1.119 }
4920     }
4921    
4922     /*
4923     * Task classes. Coded in a regular but ugly format/style to
4924     * simplify checks that each variant differs in the right way from
4925 dl 1.149 * others. The null screenings exist because compilers cannot tell
4926     * that we've already null-checked task arguments, so we force
4927     * simplest hoisted bypass to help avoid convoluted traps.
4928 dl 1.119 */
4929 dl 1.222 @SuppressWarnings("serial")
4930 dl 1.210 static final class ForEachKeyTask<K,V>
4931     extends BulkTask<K,V,Void> {
4932 dl 1.171 final Consumer<? super K> action;
4933 dl 1.119 ForEachKeyTask
4934 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4935 dl 1.171 Consumer<? super K> action) {
4936 dl 1.210 super(p, b, i, f, t);
4937 dl 1.119 this.action = action;
4938     }
4939 jsr166 1.168 public final void compute() {
4940 dl 1.171 final Consumer<? super K> action;
4941 dl 1.149 if ((action = this.action) != null) {
4942 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4943     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944     addToPendingCount(1);
4945     new ForEachKeyTask<K,V>
4946     (this, batch >>>= 1, baseLimit = h, f, tab,
4947     action).fork();
4948     }
4949     for (Node<K,V> p; (p = advance()) != null;)
4950 dl 1.222 action.accept(p.key);
4951 dl 1.149 propagateCompletion();
4952     }
4953 dl 1.119 }
4954     }
4955    
4956 dl 1.222 @SuppressWarnings("serial")
4957 dl 1.210 static final class ForEachValueTask<K,V>
4958     extends BulkTask<K,V,Void> {
4959 dl 1.171 final Consumer<? super V> action;
4960 dl 1.119 ForEachValueTask
4961 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4962 dl 1.171 Consumer<? super V> action) {
4963 dl 1.210 super(p, b, i, f, t);
4964 dl 1.119 this.action = action;
4965     }
4966 jsr166 1.168 public final void compute() {
4967 dl 1.171 final Consumer<? super V> action;
4968 dl 1.149 if ((action = this.action) != null) {
4969 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4970     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971     addToPendingCount(1);
4972     new ForEachValueTask<K,V>
4973     (this, batch >>>= 1, baseLimit = h, f, tab,
4974     action).fork();
4975     }
4976     for (Node<K,V> p; (p = advance()) != null;)
4977     action.accept(p.val);
4978 dl 1.149 propagateCompletion();
4979     }
4980 dl 1.119 }
4981     }
4982    
4983 dl 1.222 @SuppressWarnings("serial")
4984 dl 1.210 static final class ForEachEntryTask<K,V>
4985     extends BulkTask<K,V,Void> {
4986 dl 1.171 final Consumer<? super Entry<K,V>> action;
4987 dl 1.119 ForEachEntryTask
4988 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4989 dl 1.171 Consumer<? super Entry<K,V>> action) {
4990 dl 1.210 super(p, b, i, f, t);
4991 dl 1.119 this.action = action;
4992     }
4993 jsr166 1.168 public final void compute() {
4994 dl 1.171 final Consumer<? super Entry<K,V>> action;
4995 dl 1.149 if ((action = this.action) != null) {
4996 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4997     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4998     addToPendingCount(1);
4999     new ForEachEntryTask<K,V>
5000     (this, batch >>>= 1, baseLimit = h, f, tab,
5001     action).fork();
5002     }
5003     for (Node<K,V> p; (p = advance()) != null; )
5004     action.accept(p);
5005 dl 1.149 propagateCompletion();
5006     }
5007 dl 1.119 }
5008     }
5009    
5010 dl 1.222 @SuppressWarnings("serial")
5011 dl 1.210 static final class ForEachMappingTask<K,V>
5012     extends BulkTask<K,V,Void> {
5013 dl 1.171 final BiConsumer<? super K, ? super V> action;
5014 dl 1.119 ForEachMappingTask
5015 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5016 dl 1.171 BiConsumer<? super K,? super V> action) {
5017 dl 1.210 super(p, b, i, f, t);
5018 dl 1.119 this.action = action;
5019     }
5020 jsr166 1.168 public final void compute() {
5021 dl 1.171 final BiConsumer<? super K, ? super V> action;
5022 dl 1.149 if ((action = this.action) != null) {
5023 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5024     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5025     addToPendingCount(1);
5026     new ForEachMappingTask<K,V>
5027     (this, batch >>>= 1, baseLimit = h, f, tab,
5028     action).fork();
5029     }
5030     for (Node<K,V> p; (p = advance()) != null; )
5031 dl 1.222 action.accept(p.key, p.val);
5032 dl 1.149 propagateCompletion();
5033     }
5034 dl 1.119 }
5035     }
5036    
5037 dl 1.222 @SuppressWarnings("serial")
5038 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
5039     extends BulkTask<K,V,Void> {
5040 dl 1.153 final Function<? super K, ? extends U> transformer;
5041 dl 1.171 final Consumer<? super U> action;
5042 dl 1.119 ForEachTransformedKeyTask
5043 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5045 dl 1.210 super(p, b, i, f, t);
5046 dl 1.146 this.transformer = transformer; this.action = action;
5047     }
5048 jsr166 1.168 public final void compute() {
5049 dl 1.153 final Function<? super K, ? extends U> transformer;
5050 dl 1.171 final Consumer<? super U> action;
5051 dl 1.149 if ((transformer = this.transformer) != null &&
5052     (action = this.action) != null) {
5053 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5054     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5055     addToPendingCount(1);
5056 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
5057 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5058     transformer, action).fork();
5059     }
5060     for (Node<K,V> p; (p = advance()) != null; ) {
5061     U u;
5062 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5063 dl 1.153 action.accept(u);
5064 dl 1.149 }
5065     propagateCompletion();
5066 dl 1.119 }
5067     }
5068     }
5069    
5070 dl 1.222 @SuppressWarnings("serial")
5071 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
5072     extends BulkTask<K,V,Void> {
5073 dl 1.153 final Function<? super V, ? extends U> transformer;
5074 dl 1.171 final Consumer<? super U> action;
5075 dl 1.119 ForEachTransformedValueTask
5076 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5077 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5078 dl 1.210 super(p, b, i, f, t);
5079 dl 1.146 this.transformer = transformer; this.action = action;
5080     }
5081 jsr166 1.168 public final void compute() {
5082 dl 1.153 final Function<? super V, ? extends U> transformer;
5083 dl 1.171 final Consumer<? super U> action;
5084 dl 1.149 if ((transformer = this.transformer) != null &&
5085     (action = this.action) != null) {
5086 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5087     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5088     addToPendingCount(1);
5089 dl 1.149 new ForEachTransformedValueTask<K,V,U>
5090 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5091     transformer, action).fork();
5092     }
5093     for (Node<K,V> p; (p = advance()) != null; ) {
5094     U u;
5095     if ((u = transformer.apply(p.val)) != null)
5096 dl 1.153 action.accept(u);
5097 dl 1.149 }
5098     propagateCompletion();
5099 dl 1.119 }
5100     }
5101 tim 1.1 }
5102    
5103 dl 1.222 @SuppressWarnings("serial")
5104 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5105     extends BulkTask<K,V,Void> {
5106 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5107 dl 1.171 final Consumer<? super U> action;
5108 dl 1.119 ForEachTransformedEntryTask
5109 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5110 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5111 dl 1.210 super(p, b, i, f, t);
5112 dl 1.146 this.transformer = transformer; this.action = action;
5113     }
5114 jsr166 1.168 public final void compute() {
5115 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5116 dl 1.171 final Consumer<? super U> action;
5117 dl 1.149 if ((transformer = this.transformer) != null &&
5118     (action = this.action) != null) {
5119 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5120     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5121     addToPendingCount(1);
5122 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5123 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5124     transformer, action).fork();
5125     }
5126     for (Node<K,V> p; (p = advance()) != null; ) {
5127     U u;
5128     if ((u = transformer.apply(p)) != null)
5129 dl 1.153 action.accept(u);
5130 dl 1.149 }
5131     propagateCompletion();
5132 dl 1.119 }
5133     }
5134 tim 1.1 }
5135    
5136 dl 1.222 @SuppressWarnings("serial")
5137 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5138     extends BulkTask<K,V,Void> {
5139 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5140 dl 1.171 final Consumer<? super U> action;
5141 dl 1.119 ForEachTransformedMappingTask
5142 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5143 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5144 dl 1.171 Consumer<? super U> action) {
5145 dl 1.210 super(p, b, i, f, t);
5146 dl 1.146 this.transformer = transformer; this.action = action;
5147 dl 1.119 }
5148 jsr166 1.168 public final void compute() {
5149 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5150 dl 1.171 final Consumer<? super U> action;
5151 dl 1.149 if ((transformer = this.transformer) != null &&
5152     (action = this.action) != null) {
5153 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5154     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5155     addToPendingCount(1);
5156 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5157 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5158     transformer, action).fork();
5159     }
5160     for (Node<K,V> p; (p = advance()) != null; ) {
5161     U u;
5162 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5163 dl 1.153 action.accept(u);
5164 dl 1.149 }
5165     propagateCompletion();
5166 dl 1.119 }
5167     }
5168 tim 1.1 }
5169    
5170 dl 1.222 @SuppressWarnings("serial")
5171 dl 1.210 static final class SearchKeysTask<K,V,U>
5172     extends BulkTask<K,V,U> {
5173 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5174 dl 1.119 final AtomicReference<U> result;
5175     SearchKeysTask
5176 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5177 dl 1.153 Function<? super K, ? extends U> searchFunction,
5178 dl 1.119 AtomicReference<U> result) {
5179 dl 1.210 super(p, b, i, f, t);
5180 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5181     }
5182 dl 1.146 public final U getRawResult() { return result.get(); }
5183 jsr166 1.168 public final void compute() {
5184 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5185 dl 1.146 final AtomicReference<U> result;
5186 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5187     (result = this.result) != null) {
5188 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5189     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5190 dl 1.149 if (result.get() != null)
5191     return;
5192 dl 1.210 addToPendingCount(1);
5193 dl 1.149 new SearchKeysTask<K,V,U>
5194 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5195     searchFunction, result).fork();
5196 dl 1.128 }
5197 dl 1.149 while (result.get() == null) {
5198 dl 1.210 U u;
5199     Node<K,V> p;
5200     if ((p = advance()) == null) {
5201 dl 1.149 propagateCompletion();
5202     break;
5203     }
5204 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5205 dl 1.149 if (result.compareAndSet(null, u))
5206     quietlyCompleteRoot();
5207     break;
5208     }
5209 dl 1.119 }
5210     }
5211     }
5212 tim 1.1 }
5213    
5214 dl 1.222 @SuppressWarnings("serial")
5215 dl 1.210 static final class SearchValuesTask<K,V,U>
5216     extends BulkTask<K,V,U> {
5217 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5218 dl 1.119 final AtomicReference<U> result;
5219     SearchValuesTask
5220 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5221 dl 1.153 Function<? super V, ? extends U> searchFunction,
5222 dl 1.119 AtomicReference<U> result) {
5223 dl 1.210 super(p, b, i, f, t);
5224 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5225     }
5226 dl 1.146 public final U getRawResult() { return result.get(); }
5227 jsr166 1.168 public final void compute() {
5228 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5229 dl 1.146 final AtomicReference<U> result;
5230 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5231     (result = this.result) != null) {
5232 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5233     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234 dl 1.149 if (result.get() != null)
5235     return;
5236 dl 1.210 addToPendingCount(1);
5237 dl 1.149 new SearchValuesTask<K,V,U>
5238 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5239     searchFunction, result).fork();
5240 dl 1.128 }
5241 dl 1.149 while (result.get() == null) {
5242 dl 1.210 U u;
5243     Node<K,V> p;
5244     if ((p = advance()) == null) {
5245 dl 1.149 propagateCompletion();
5246     break;
5247     }
5248 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5249 dl 1.149 if (result.compareAndSet(null, u))
5250     quietlyCompleteRoot();
5251     break;
5252     }
5253 dl 1.119 }
5254     }
5255     }
5256     }
5257 tim 1.11
5258 dl 1.222 @SuppressWarnings("serial")
5259 dl 1.210 static final class SearchEntriesTask<K,V,U>
5260     extends BulkTask<K,V,U> {
5261 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5262 dl 1.119 final AtomicReference<U> result;
5263     SearchEntriesTask
5264 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5265 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5266 dl 1.119 AtomicReference<U> result) {
5267 dl 1.210 super(p, b, i, f, t);
5268 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5269     }
5270 dl 1.146 public final U getRawResult() { return result.get(); }
5271 jsr166 1.168 public final void compute() {
5272 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5273 dl 1.146 final AtomicReference<U> result;
5274 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5275     (result = this.result) != null) {
5276 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5277     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5278 dl 1.149 if (result.get() != null)
5279     return;
5280 dl 1.210 addToPendingCount(1);
5281 dl 1.149 new SearchEntriesTask<K,V,U>
5282 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5283     searchFunction, result).fork();
5284 dl 1.128 }
5285 dl 1.149 while (result.get() == null) {
5286 dl 1.210 U u;
5287     Node<K,V> p;
5288     if ((p = advance()) == null) {
5289 dl 1.149 propagateCompletion();
5290     break;
5291     }
5292 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5293 dl 1.149 if (result.compareAndSet(null, u))
5294     quietlyCompleteRoot();
5295     return;
5296     }
5297 dl 1.119 }
5298     }
5299     }
5300     }
5301 tim 1.1
5302 dl 1.222 @SuppressWarnings("serial")
5303 dl 1.210 static final class SearchMappingsTask<K,V,U>
5304     extends BulkTask<K,V,U> {
5305 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5306 dl 1.119 final AtomicReference<U> result;
5307     SearchMappingsTask
5308 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5310 dl 1.119 AtomicReference<U> result) {
5311 dl 1.210 super(p, b, i, f, t);
5312 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5313     }
5314 dl 1.146 public final U getRawResult() { return result.get(); }
5315 jsr166 1.168 public final void compute() {
5316 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5317 dl 1.146 final AtomicReference<U> result;
5318 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5319     (result = this.result) != null) {
5320 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5321     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5322 dl 1.149 if (result.get() != null)
5323     return;
5324 dl 1.210 addToPendingCount(1);
5325 dl 1.149 new SearchMappingsTask<K,V,U>
5326 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5327     searchFunction, result).fork();
5328 dl 1.128 }
5329 dl 1.149 while (result.get() == null) {
5330 dl 1.210 U u;
5331     Node<K,V> p;
5332     if ((p = advance()) == null) {
5333 dl 1.149 propagateCompletion();
5334     break;
5335     }
5336 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5337 dl 1.149 if (result.compareAndSet(null, u))
5338     quietlyCompleteRoot();
5339     break;
5340     }
5341 dl 1.119 }
5342     }
5343 tim 1.1 }
5344 dl 1.119 }
5345 tim 1.1
5346 dl 1.222 @SuppressWarnings("serial")
5347 dl 1.210 static final class ReduceKeysTask<K,V>
5348     extends BulkTask<K,V,K> {
5349 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5350 dl 1.119 K result;
5351 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5352 dl 1.119 ReduceKeysTask
5353 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5354 dl 1.128 ReduceKeysTask<K,V> nextRight,
5355 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5356 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5357 dl 1.119 this.reducer = reducer;
5358     }
5359 dl 1.146 public final K getRawResult() { return result; }
5360 dl 1.210 public final void compute() {
5361 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5362 dl 1.149 if ((reducer = this.reducer) != null) {
5363 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5364     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5365     addToPendingCount(1);
5366 dl 1.149 (rights = new ReduceKeysTask<K,V>
5367 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5368     rights, reducer)).fork();
5369     }
5370     K r = null;
5371     for (Node<K,V> p; (p = advance()) != null; ) {
5372 dl 1.222 K u = p.key;
5373 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5374 dl 1.149 }
5375     result = r;
5376     CountedCompleter<?> c;
5377     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5378 dl 1.246 @SuppressWarnings("unchecked")
5379     ReduceKeysTask<K,V>
5380 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5381     s = t.rights;
5382     while (s != null) {
5383     K tr, sr;
5384     if ((sr = s.result) != null)
5385     t.result = (((tr = t.result) == null) ? sr :
5386     reducer.apply(tr, sr));
5387     s = t.rights = s.nextRight;
5388     }
5389 dl 1.99 }
5390 dl 1.138 }
5391 tim 1.1 }
5392 dl 1.119 }
5393 tim 1.1
5394 dl 1.222 @SuppressWarnings("serial")
5395 dl 1.210 static final class ReduceValuesTask<K,V>
5396     extends BulkTask<K,V,V> {
5397 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5398 dl 1.119 V result;
5399 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5400 dl 1.119 ReduceValuesTask
5401 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5402 dl 1.128 ReduceValuesTask<K,V> nextRight,
5403 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5404 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5405 dl 1.119 this.reducer = reducer;
5406     }
5407 dl 1.146 public final V getRawResult() { return result; }
5408 dl 1.210 public final void compute() {
5409 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5410 dl 1.149 if ((reducer = this.reducer) != null) {
5411 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5412     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413     addToPendingCount(1);
5414 dl 1.149 (rights = new ReduceValuesTask<K,V>
5415 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5416     rights, reducer)).fork();
5417     }
5418     V r = null;
5419     for (Node<K,V> p; (p = advance()) != null; ) {
5420     V v = p.val;
5421 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5422 dl 1.210 }
5423 dl 1.149 result = r;
5424     CountedCompleter<?> c;
5425     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5426 dl 1.246 @SuppressWarnings("unchecked")
5427     ReduceValuesTask<K,V>
5428 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5429     s = t.rights;
5430     while (s != null) {
5431     V tr, sr;
5432     if ((sr = s.result) != null)
5433     t.result = (((tr = t.result) == null) ? sr :
5434     reducer.apply(tr, sr));
5435     s = t.rights = s.nextRight;
5436     }
5437 dl 1.119 }
5438     }
5439 tim 1.1 }
5440 dl 1.119 }
5441 tim 1.1
5442 dl 1.222 @SuppressWarnings("serial")
5443 dl 1.210 static final class ReduceEntriesTask<K,V>
5444     extends BulkTask<K,V,Map.Entry<K,V>> {
5445 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5446 dl 1.119 Map.Entry<K,V> result;
5447 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5448 dl 1.119 ReduceEntriesTask
5449 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5451 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5452 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5453 dl 1.119 this.reducer = reducer;
5454     }
5455 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5456 dl 1.210 public final void compute() {
5457 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 dl 1.149 if ((reducer = this.reducer) != null) {
5459 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5460     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461     addToPendingCount(1);
5462 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5463 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5464     rights, reducer)).fork();
5465     }
5466 dl 1.149 Map.Entry<K,V> r = null;
5467 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5468     r = (r == null) ? p : reducer.apply(r, p);
5469 dl 1.149 result = r;
5470     CountedCompleter<?> c;
5471     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5472 dl 1.246 @SuppressWarnings("unchecked")
5473     ReduceEntriesTask<K,V>
5474 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5475     s = t.rights;
5476     while (s != null) {
5477     Map.Entry<K,V> tr, sr;
5478     if ((sr = s.result) != null)
5479     t.result = (((tr = t.result) == null) ? sr :
5480     reducer.apply(tr, sr));
5481     s = t.rights = s.nextRight;
5482     }
5483 dl 1.119 }
5484 dl 1.138 }
5485 dl 1.119 }
5486     }
5487 dl 1.99
5488 dl 1.222 @SuppressWarnings("serial")
5489 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5490     extends BulkTask<K,V,U> {
5491 dl 1.153 final Function<? super K, ? extends U> transformer;
5492     final BiFunction<? super U, ? super U, ? extends U> reducer;
5493 dl 1.119 U result;
5494 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5495 dl 1.119 MapReduceKeysTask
5496 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5498 dl 1.153 Function<? super K, ? extends U> transformer,
5499     BiFunction<? super U, ? super U, ? extends U> reducer) {
5500 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5501 dl 1.119 this.transformer = transformer;
5502     this.reducer = reducer;
5503     }
5504 dl 1.146 public final U getRawResult() { return result; }
5505 dl 1.210 public final void compute() {
5506 dl 1.153 final Function<? super K, ? extends U> transformer;
5507     final BiFunction<? super U, ? super U, ? extends U> reducer;
5508 dl 1.149 if ((transformer = this.transformer) != null &&
5509     (reducer = this.reducer) != null) {
5510 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5511     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512     addToPendingCount(1);
5513 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5514 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5515     rights, transformer, reducer)).fork();
5516     }
5517     U r = null;
5518     for (Node<K,V> p; (p = advance()) != null; ) {
5519     U u;
5520 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5521 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5522     }
5523     result = r;
5524     CountedCompleter<?> c;
5525     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 dl 1.246 @SuppressWarnings("unchecked")
5527     MapReduceKeysTask<K,V,U>
5528 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5529     s = t.rights;
5530     while (s != null) {
5531     U tr, sr;
5532     if ((sr = s.result) != null)
5533     t.result = (((tr = t.result) == null) ? sr :
5534     reducer.apply(tr, sr));
5535     s = t.rights = s.nextRight;
5536     }
5537 dl 1.119 }
5538 dl 1.138 }
5539 tim 1.1 }
5540 dl 1.4 }
5541    
5542 dl 1.222 @SuppressWarnings("serial")
5543 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5544     extends BulkTask<K,V,U> {
5545 dl 1.153 final Function<? super V, ? extends U> transformer;
5546     final BiFunction<? super U, ? super U, ? extends U> reducer;
5547 dl 1.119 U result;
5548 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5549 dl 1.119 MapReduceValuesTask
5550 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5551 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5552 dl 1.153 Function<? super V, ? extends U> transformer,
5553     BiFunction<? super U, ? super U, ? extends U> reducer) {
5554 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5555 dl 1.119 this.transformer = transformer;
5556     this.reducer = reducer;
5557     }
5558 dl 1.146 public final U getRawResult() { return result; }
5559 dl 1.210 public final void compute() {
5560 dl 1.153 final Function<? super V, ? extends U> transformer;
5561     final BiFunction<? super U, ? super U, ? extends U> reducer;
5562 dl 1.149 if ((transformer = this.transformer) != null &&
5563     (reducer = this.reducer) != null) {
5564 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5565     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566     addToPendingCount(1);
5567 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5568 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5569     rights, transformer, reducer)).fork();
5570     }
5571     U r = null;
5572     for (Node<K,V> p; (p = advance()) != null; ) {
5573     U u;
5574     if ((u = transformer.apply(p.val)) != null)
5575 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5576     }
5577     result = r;
5578     CountedCompleter<?> c;
5579     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 dl 1.246 @SuppressWarnings("unchecked")
5581     MapReduceValuesTask<K,V,U>
5582 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5583     s = t.rights;
5584     while (s != null) {
5585     U tr, sr;
5586     if ((sr = s.result) != null)
5587     t.result = (((tr = t.result) == null) ? sr :
5588     reducer.apply(tr, sr));
5589     s = t.rights = s.nextRight;
5590     }
5591 dl 1.119 }
5592     }
5593     }
5594 dl 1.4 }
5595    
5596 dl 1.222 @SuppressWarnings("serial")
5597 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5598     extends BulkTask<K,V,U> {
5599 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5600     final BiFunction<? super U, ? super U, ? extends U> reducer;
5601 dl 1.119 U result;
5602 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5603 dl 1.119 MapReduceEntriesTask
5604 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5605 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5606 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5607     BiFunction<? super U, ? super U, ? extends U> reducer) {
5608 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5609 dl 1.119 this.transformer = transformer;
5610     this.reducer = reducer;
5611     }
5612 dl 1.146 public final U getRawResult() { return result; }
5613 dl 1.210 public final void compute() {
5614 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5615     final BiFunction<? super U, ? super U, ? extends U> reducer;
5616 dl 1.149 if ((transformer = this.transformer) != null &&
5617     (reducer = this.reducer) != null) {
5618 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5619     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620     addToPendingCount(1);
5621 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5622 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5623     rights, transformer, reducer)).fork();
5624     }
5625     U r = null;
5626     for (Node<K,V> p; (p = advance()) != null; ) {
5627     U u;
5628     if ((u = transformer.apply(p)) != null)
5629 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5630     }
5631     result = r;
5632     CountedCompleter<?> c;
5633     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5634 dl 1.246 @SuppressWarnings("unchecked")
5635     MapReduceEntriesTask<K,V,U>
5636 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5637     s = t.rights;
5638     while (s != null) {
5639     U tr, sr;
5640     if ((sr = s.result) != null)
5641     t.result = (((tr = t.result) == null) ? sr :
5642     reducer.apply(tr, sr));
5643     s = t.rights = s.nextRight;
5644     }
5645 dl 1.119 }
5646 dl 1.138 }
5647 dl 1.119 }
5648 dl 1.4 }
5649 tim 1.1
5650 dl 1.222 @SuppressWarnings("serial")
5651 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5652     extends BulkTask<K,V,U> {
5653 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5654     final BiFunction<? super U, ? super U, ? extends U> reducer;
5655 dl 1.119 U result;
5656 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5657 dl 1.119 MapReduceMappingsTask
5658 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5659 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5660 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5661     BiFunction<? super U, ? super U, ? extends U> reducer) {
5662 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5663 dl 1.119 this.transformer = transformer;
5664     this.reducer = reducer;
5665     }
5666 dl 1.146 public final U getRawResult() { return result; }
5667 dl 1.210 public final void compute() {
5668 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5669     final BiFunction<? super U, ? super U, ? extends U> reducer;
5670 dl 1.149 if ((transformer = this.transformer) != null &&
5671     (reducer = this.reducer) != null) {
5672 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5673     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5674     addToPendingCount(1);
5675 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5676 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5677     rights, transformer, reducer)).fork();
5678     }
5679     U r = null;
5680     for (Node<K,V> p; (p = advance()) != null; ) {
5681     U u;
5682 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5683 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5684     }
5685     result = r;
5686     CountedCompleter<?> c;
5687     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5688 dl 1.246 @SuppressWarnings("unchecked")
5689     MapReduceMappingsTask<K,V,U>
5690 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5691     s = t.rights;
5692     while (s != null) {
5693     U tr, sr;
5694     if ((sr = s.result) != null)
5695     t.result = (((tr = t.result) == null) ? sr :
5696     reducer.apply(tr, sr));
5697     s = t.rights = s.nextRight;
5698     }
5699 dl 1.119 }
5700     }
5701     }
5702     }
5703 jsr166 1.114
5704 dl 1.222 @SuppressWarnings("serial")
5705 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5706     extends BulkTask<K,V,Double> {
5707 dl 1.171 final ToDoubleFunction<? super K> transformer;
5708 dl 1.153 final DoubleBinaryOperator reducer;
5709 dl 1.119 final double basis;
5710     double result;
5711 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5712 dl 1.119 MapReduceKeysToDoubleTask
5713 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5714 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5715 dl 1.171 ToDoubleFunction<? super K> transformer,
5716 dl 1.119 double basis,
5717 dl 1.153 DoubleBinaryOperator reducer) {
5718 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5719 dl 1.119 this.transformer = transformer;
5720     this.basis = basis; this.reducer = reducer;
5721     }
5722 dl 1.146 public final Double getRawResult() { return result; }
5723 dl 1.210 public final void compute() {
5724 dl 1.171 final ToDoubleFunction<? super K> transformer;
5725 dl 1.153 final DoubleBinaryOperator reducer;
5726 dl 1.149 if ((transformer = this.transformer) != null &&
5727     (reducer = this.reducer) != null) {
5728     double r = this.basis;
5729 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5730     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5731     addToPendingCount(1);
5732 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5733 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5734     rights, transformer, r, reducer)).fork();
5735     }
5736     for (Node<K,V> p; (p = advance()) != null; )
5737 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5738 dl 1.149 result = r;
5739     CountedCompleter<?> c;
5740     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 dl 1.246 @SuppressWarnings("unchecked")
5742     MapReduceKeysToDoubleTask<K,V>
5743 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5744     s = t.rights;
5745     while (s != null) {
5746 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5747 dl 1.149 s = t.rights = s.nextRight;
5748     }
5749 dl 1.119 }
5750 dl 1.138 }
5751 dl 1.79 }
5752 dl 1.119 }
5753 dl 1.79
5754 dl 1.222 @SuppressWarnings("serial")
5755 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5756     extends BulkTask<K,V,Double> {
5757 dl 1.171 final ToDoubleFunction<? super V> transformer;
5758 dl 1.153 final DoubleBinaryOperator reducer;
5759 dl 1.119 final double basis;
5760     double result;
5761 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5762 dl 1.119 MapReduceValuesToDoubleTask
5763 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5764 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5765 dl 1.171 ToDoubleFunction<? super V> transformer,
5766 dl 1.119 double basis,
5767 dl 1.153 DoubleBinaryOperator reducer) {
5768 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5769 dl 1.119 this.transformer = transformer;
5770     this.basis = basis; this.reducer = reducer;
5771     }
5772 dl 1.146 public final Double getRawResult() { return result; }
5773 dl 1.210 public final void compute() {
5774 dl 1.171 final ToDoubleFunction<? super V> transformer;
5775 dl 1.153 final DoubleBinaryOperator reducer;
5776 dl 1.149 if ((transformer = this.transformer) != null &&
5777     (reducer = this.reducer) != null) {
5778     double r = this.basis;
5779 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5780     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5781     addToPendingCount(1);
5782 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5783 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5784     rights, transformer, r, reducer)).fork();
5785     }
5786     for (Node<K,V> p; (p = advance()) != null; )
5787     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5788 dl 1.149 result = r;
5789     CountedCompleter<?> c;
5790     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5791 dl 1.246 @SuppressWarnings("unchecked")
5792     MapReduceValuesToDoubleTask<K,V>
5793 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5794     s = t.rights;
5795     while (s != null) {
5796 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5797 dl 1.149 s = t.rights = s.nextRight;
5798     }
5799 dl 1.119 }
5800     }
5801 dl 1.30 }
5802 dl 1.79 }
5803 dl 1.30
5804 dl 1.222 @SuppressWarnings("serial")
5805 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5806     extends BulkTask<K,V,Double> {
5807 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5808 dl 1.153 final DoubleBinaryOperator reducer;
5809 dl 1.119 final double basis;
5810     double result;
5811 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5812 dl 1.119 MapReduceEntriesToDoubleTask
5813 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5814 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5815 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5816 dl 1.119 double basis,
5817 dl 1.153 DoubleBinaryOperator reducer) {
5818 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5819 dl 1.119 this.transformer = transformer;
5820     this.basis = basis; this.reducer = reducer;
5821     }
5822 dl 1.146 public final Double getRawResult() { return result; }
5823 dl 1.210 public final void compute() {
5824 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5825 dl 1.153 final DoubleBinaryOperator reducer;
5826 dl 1.149 if ((transformer = this.transformer) != null &&
5827     (reducer = this.reducer) != null) {
5828     double r = this.basis;
5829 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5830     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5831     addToPendingCount(1);
5832 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5833 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5834     rights, transformer, r, reducer)).fork();
5835     }
5836     for (Node<K,V> p; (p = advance()) != null; )
5837     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5838 dl 1.149 result = r;
5839     CountedCompleter<?> c;
5840     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5841 dl 1.246 @SuppressWarnings("unchecked")
5842     MapReduceEntriesToDoubleTask<K,V>
5843 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5844     s = t.rights;
5845     while (s != null) {
5846 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5847 dl 1.149 s = t.rights = s.nextRight;
5848     }
5849 dl 1.119 }
5850 dl 1.138 }
5851 dl 1.30 }
5852 tim 1.1 }
5853    
5854 dl 1.222 @SuppressWarnings("serial")
5855 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5856     extends BulkTask<K,V,Double> {
5857 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5858 dl 1.153 final DoubleBinaryOperator reducer;
5859 dl 1.119 final double basis;
5860     double result;
5861 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5862 dl 1.119 MapReduceMappingsToDoubleTask
5863 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5864 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5865 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5866 dl 1.119 double basis,
5867 dl 1.153 DoubleBinaryOperator reducer) {
5868 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5869 dl 1.119 this.transformer = transformer;
5870     this.basis = basis; this.reducer = reducer;
5871     }
5872 dl 1.146 public final Double getRawResult() { return result; }
5873 dl 1.210 public final void compute() {
5874 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5875 dl 1.153 final DoubleBinaryOperator reducer;
5876 dl 1.149 if ((transformer = this.transformer) != null &&
5877     (reducer = this.reducer) != null) {
5878     double r = this.basis;
5879 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5880     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5881     addToPendingCount(1);
5882 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5883 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5884     rights, transformer, r, reducer)).fork();
5885     }
5886     for (Node<K,V> p; (p = advance()) != null; )
5887 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5888 dl 1.149 result = r;
5889     CountedCompleter<?> c;
5890     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5891 dl 1.246 @SuppressWarnings("unchecked")
5892     MapReduceMappingsToDoubleTask<K,V>
5893 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5894     s = t.rights;
5895     while (s != null) {
5896 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5897 dl 1.149 s = t.rights = s.nextRight;
5898     }
5899 dl 1.119 }
5900     }
5901 dl 1.4 }
5902 dl 1.119 }
5903    
5904 dl 1.222 @SuppressWarnings("serial")
5905 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5906     extends BulkTask<K,V,Long> {
5907 dl 1.171 final ToLongFunction<? super K> transformer;
5908 dl 1.153 final LongBinaryOperator reducer;
5909 dl 1.119 final long basis;
5910     long result;
5911 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5912 dl 1.119 MapReduceKeysToLongTask
5913 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5915 dl 1.171 ToLongFunction<? super K> transformer,
5916 dl 1.119 long basis,
5917 dl 1.153 LongBinaryOperator reducer) {
5918 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5919 dl 1.119 this.transformer = transformer;
5920     this.basis = basis; this.reducer = reducer;
5921     }
5922 dl 1.146 public final Long getRawResult() { return result; }
5923 dl 1.210 public final void compute() {
5924 dl 1.171 final ToLongFunction<? super K> transformer;
5925 dl 1.153 final LongBinaryOperator reducer;
5926 dl 1.149 if ((transformer = this.transformer) != null &&
5927     (reducer = this.reducer) != null) {
5928     long r = this.basis;
5929 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5930     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931     addToPendingCount(1);
5932 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5933 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5934     rights, transformer, r, reducer)).fork();
5935     }
5936     for (Node<K,V> p; (p = advance()) != null; )
5937 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5938 dl 1.149 result = r;
5939     CountedCompleter<?> c;
5940     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 dl 1.246 @SuppressWarnings("unchecked")
5942     MapReduceKeysToLongTask<K,V>
5943 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5944     s = t.rights;
5945     while (s != null) {
5946 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5947 dl 1.149 s = t.rights = s.nextRight;
5948     }
5949 dl 1.119 }
5950 dl 1.138 }
5951 dl 1.4 }
5952 dl 1.119 }
5953    
5954 dl 1.222 @SuppressWarnings("serial")
5955 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5956     extends BulkTask<K,V,Long> {
5957 dl 1.171 final ToLongFunction<? super V> transformer;
5958 dl 1.153 final LongBinaryOperator reducer;
5959 dl 1.119 final long basis;
5960     long result;
5961 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5962 dl 1.119 MapReduceValuesToLongTask
5963 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5965 dl 1.171 ToLongFunction<? super V> transformer,
5966 dl 1.119 long basis,
5967 dl 1.153 LongBinaryOperator reducer) {
5968 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5969 dl 1.119 this.transformer = transformer;
5970     this.basis = basis; this.reducer = reducer;
5971     }
5972 dl 1.146 public final Long getRawResult() { return result; }
5973 dl 1.210 public final void compute() {
5974 dl 1.171 final ToLongFunction<? super V> transformer;
5975 dl 1.153 final LongBinaryOperator reducer;
5976 dl 1.149 if ((transformer = this.transformer) != null &&
5977     (reducer = this.reducer) != null) {
5978     long r = this.basis;
5979 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5980     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981     addToPendingCount(1);
5982 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5983 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5984     rights, transformer, r, reducer)).fork();
5985     }
5986     for (Node<K,V> p; (p = advance()) != null; )
5987     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5988 dl 1.149 result = r;
5989     CountedCompleter<?> c;
5990     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 dl 1.246 @SuppressWarnings("unchecked")
5992     MapReduceValuesToLongTask<K,V>
5993 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
5994     s = t.rights;
5995     while (s != null) {
5996 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5997 dl 1.149 s = t.rights = s.nextRight;
5998     }
5999 dl 1.119 }
6000     }
6001 jsr166 1.95 }
6002 dl 1.119 }
6003    
6004 dl 1.222 @SuppressWarnings("serial")
6005 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
6006     extends BulkTask<K,V,Long> {
6007 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6008 dl 1.153 final LongBinaryOperator reducer;
6009 dl 1.119 final long basis;
6010     long result;
6011 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6012 dl 1.119 MapReduceEntriesToLongTask
6013 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6015 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6016 dl 1.119 long basis,
6017 dl 1.153 LongBinaryOperator reducer) {
6018 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6019 dl 1.119 this.transformer = transformer;
6020     this.basis = basis; this.reducer = reducer;
6021     }
6022 dl 1.146 public final Long getRawResult() { return result; }
6023 dl 1.210 public final void compute() {
6024 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6025 dl 1.153 final LongBinaryOperator reducer;
6026 dl 1.149 if ((transformer = this.transformer) != null &&
6027     (reducer = this.reducer) != null) {
6028     long r = this.basis;
6029 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6030     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031     addToPendingCount(1);
6032 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
6033 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6034     rights, transformer, r, reducer)).fork();
6035     }
6036     for (Node<K,V> p; (p = advance()) != null; )
6037     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6038 dl 1.149 result = r;
6039     CountedCompleter<?> c;
6040     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 dl 1.246 @SuppressWarnings("unchecked")
6042     MapReduceEntriesToLongTask<K,V>
6043 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
6044     s = t.rights;
6045     while (s != null) {
6046 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6047 dl 1.149 s = t.rights = s.nextRight;
6048     }
6049 dl 1.119 }
6050 dl 1.138 }
6051 dl 1.4 }
6052 tim 1.1 }
6053    
6054 dl 1.222 @SuppressWarnings("serial")
6055 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
6056     extends BulkTask<K,V,Long> {
6057 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6058 dl 1.153 final LongBinaryOperator reducer;
6059 dl 1.119 final long basis;
6060     long result;
6061 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6062 dl 1.119 MapReduceMappingsToLongTask
6063 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6064 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6065 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6066 dl 1.119 long basis,
6067 dl 1.153 LongBinaryOperator reducer) {
6068 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6069 dl 1.119 this.transformer = transformer;
6070     this.basis = basis; this.reducer = reducer;
6071     }
6072 dl 1.146 public final Long getRawResult() { return result; }
6073 dl 1.210 public final void compute() {
6074 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6075 dl 1.153 final LongBinaryOperator reducer;
6076 dl 1.149 if ((transformer = this.transformer) != null &&
6077     (reducer = this.reducer) != null) {
6078     long r = this.basis;
6079 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6080     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6081     addToPendingCount(1);
6082 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
6083 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6084     rights, transformer, r, reducer)).fork();
6085     }
6086     for (Node<K,V> p; (p = advance()) != null; )
6087 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6088 dl 1.149 result = r;
6089     CountedCompleter<?> c;
6090     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 dl 1.246 @SuppressWarnings("unchecked")
6092     MapReduceMappingsToLongTask<K,V>
6093 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
6094     s = t.rights;
6095     while (s != null) {
6096 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6097 dl 1.149 s = t.rights = s.nextRight;
6098     }
6099 dl 1.119 }
6100     }
6101 dl 1.4 }
6102 tim 1.1 }
6103    
6104 dl 1.222 @SuppressWarnings("serial")
6105 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6106     extends BulkTask<K,V,Integer> {
6107 dl 1.171 final ToIntFunction<? super K> transformer;
6108 dl 1.153 final IntBinaryOperator reducer;
6109 dl 1.119 final int basis;
6110     int result;
6111 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6112 dl 1.119 MapReduceKeysToIntTask
6113 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6114 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6115 dl 1.171 ToIntFunction<? super K> transformer,
6116 dl 1.119 int basis,
6117 dl 1.153 IntBinaryOperator reducer) {
6118 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6119 dl 1.119 this.transformer = transformer;
6120     this.basis = basis; this.reducer = reducer;
6121     }
6122 dl 1.146 public final Integer getRawResult() { return result; }
6123 dl 1.210 public final void compute() {
6124 dl 1.171 final ToIntFunction<? super K> transformer;
6125 dl 1.153 final IntBinaryOperator reducer;
6126 dl 1.149 if ((transformer = this.transformer) != null &&
6127     (reducer = this.reducer) != null) {
6128     int r = this.basis;
6129 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6130     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6131     addToPendingCount(1);
6132 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6133 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6134     rights, transformer, r, reducer)).fork();
6135     }
6136     for (Node<K,V> p; (p = advance()) != null; )
6137 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6138 dl 1.149 result = r;
6139     CountedCompleter<?> c;
6140     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6141 dl 1.246 @SuppressWarnings("unchecked")
6142     MapReduceKeysToIntTask<K,V>
6143 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6144     s = t.rights;
6145     while (s != null) {
6146 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6147 dl 1.149 s = t.rights = s.nextRight;
6148     }
6149 dl 1.119 }
6150 dl 1.138 }
6151 dl 1.30 }
6152     }
6153    
6154 dl 1.222 @SuppressWarnings("serial")
6155 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6156     extends BulkTask<K,V,Integer> {
6157 dl 1.171 final ToIntFunction<? super V> transformer;
6158 dl 1.153 final IntBinaryOperator reducer;
6159 dl 1.119 final int basis;
6160     int result;
6161 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6162 dl 1.119 MapReduceValuesToIntTask
6163 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6164 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6165 dl 1.171 ToIntFunction<? super V> transformer,
6166 dl 1.119 int basis,
6167 dl 1.153 IntBinaryOperator reducer) {
6168 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6169 dl 1.119 this.transformer = transformer;
6170     this.basis = basis; this.reducer = reducer;
6171     }
6172 dl 1.146 public final Integer getRawResult() { return result; }
6173 dl 1.210 public final void compute() {
6174 dl 1.171 final ToIntFunction<? super V> transformer;
6175 dl 1.153 final IntBinaryOperator reducer;
6176 dl 1.149 if ((transformer = this.transformer) != null &&
6177     (reducer = this.reducer) != null) {
6178     int r = this.basis;
6179 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6180     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6181     addToPendingCount(1);
6182 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6183 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6184     rights, transformer, r, reducer)).fork();
6185     }
6186     for (Node<K,V> p; (p = advance()) != null; )
6187     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6188 dl 1.149 result = r;
6189     CountedCompleter<?> c;
6190     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6191 dl 1.246 @SuppressWarnings("unchecked")
6192     MapReduceValuesToIntTask<K,V>
6193 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6194     s = t.rights;
6195     while (s != null) {
6196 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6197 dl 1.149 s = t.rights = s.nextRight;
6198     }
6199 dl 1.119 }
6200 dl 1.2 }
6201 tim 1.1 }
6202     }
6203    
6204 dl 1.222 @SuppressWarnings("serial")
6205 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6206     extends BulkTask<K,V,Integer> {
6207 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6208 dl 1.153 final IntBinaryOperator reducer;
6209 dl 1.119 final int basis;
6210     int result;
6211 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6212 dl 1.119 MapReduceEntriesToIntTask
6213 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6214 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6215 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6216 dl 1.119 int basis,
6217 dl 1.153 IntBinaryOperator reducer) {
6218 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6219 dl 1.119 this.transformer = transformer;
6220     this.basis = basis; this.reducer = reducer;
6221     }
6222 dl 1.146 public final Integer getRawResult() { return result; }
6223 dl 1.210 public final void compute() {
6224 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6225 dl 1.153 final IntBinaryOperator reducer;
6226 dl 1.149 if ((transformer = this.transformer) != null &&
6227     (reducer = this.reducer) != null) {
6228     int r = this.basis;
6229 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6230     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6231     addToPendingCount(1);
6232 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6233 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6234     rights, transformer, r, reducer)).fork();
6235     }
6236     for (Node<K,V> p; (p = advance()) != null; )
6237     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6238 dl 1.149 result = r;
6239     CountedCompleter<?> c;
6240     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 dl 1.246 @SuppressWarnings("unchecked")
6242     MapReduceEntriesToIntTask<K,V>
6243 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6244     s = t.rights;
6245     while (s != null) {
6246 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6247 dl 1.149 s = t.rights = s.nextRight;
6248     }
6249 dl 1.119 }
6250 dl 1.138 }
6251 dl 1.4 }
6252 dl 1.119 }
6253 tim 1.1
6254 dl 1.222 @SuppressWarnings("serial")
6255 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6256     extends BulkTask<K,V,Integer> {
6257 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6258 dl 1.153 final IntBinaryOperator reducer;
6259 dl 1.119 final int basis;
6260     int result;
6261 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6262 dl 1.119 MapReduceMappingsToIntTask
6263 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6264 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6265 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6266 dl 1.119 int basis,
6267 dl 1.153 IntBinaryOperator reducer) {
6268 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6269 dl 1.119 this.transformer = transformer;
6270     this.basis = basis; this.reducer = reducer;
6271     }
6272 dl 1.146 public final Integer getRawResult() { return result; }
6273 dl 1.210 public final void compute() {
6274 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6275 dl 1.153 final IntBinaryOperator reducer;
6276 dl 1.149 if ((transformer = this.transformer) != null &&
6277     (reducer = this.reducer) != null) {
6278     int r = this.basis;
6279 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6280     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6281     addToPendingCount(1);
6282 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6283 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6284     rights, transformer, r, reducer)).fork();
6285     }
6286     for (Node<K,V> p; (p = advance()) != null; )
6287 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6288 dl 1.149 result = r;
6289     CountedCompleter<?> c;
6290     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6291 dl 1.246 @SuppressWarnings("unchecked")
6292     MapReduceMappingsToIntTask<K,V>
6293 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6294     s = t.rights;
6295     while (s != null) {
6296 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6297 dl 1.149 s = t.rights = s.nextRight;
6298     }
6299 dl 1.119 }
6300 dl 1.138 }
6301 tim 1.1 }
6302     }
6303 dl 1.99
6304     // Unsafe mechanics
6305 jsr166 1.264 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6306 dl 1.149 private static final long SIZECTL;
6307     private static final long TRANSFERINDEX;
6308     private static final long BASECOUNT;
6309 dl 1.153 private static final long CELLSBUSY;
6310 dl 1.149 private static final long CELLVALUE;
6311 jsr166 1.264 private static final int ABASE;
6312 dl 1.119 private static final int ASHIFT;
6313 dl 1.99
6314     static {
6315     try {
6316 dl 1.149 SIZECTL = U.objectFieldOffset
6317 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6318 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6319 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6320 dl 1.149 BASECOUNT = U.objectFieldOffset
6321 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6322 dl 1.153 CELLSBUSY = U.objectFieldOffset
6323 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6324    
6325 dl 1.149 CELLVALUE = U.objectFieldOffset
6326 jsr166 1.264 (CounterCell.class.getDeclaredField("value"));
6327    
6328     ABASE = U.arrayBaseOffset(Node[].class);
6329     int scale = U.arrayIndexScale(Node[].class);
6330 jsr166 1.167 if ((scale & (scale - 1)) != 0)
6331 jsr166 1.263 throw new Error("array index scale not a power of two");
6332 jsr166 1.167 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6333 jsr166 1.262 } catch (ReflectiveOperationException e) {
6334 dl 1.99 throw new Error(e);
6335     }
6336 jsr166 1.269
6337     // Reduce the risk of rare disastrous classloading in first call to
6338     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6339     Class<?> ensureLoaded = LockSupport.class;
6340 dl 1.99 }
6341 jsr166 1.152 }