ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.281
Committed: Fri Sep 18 03:16:17 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.280: +2 -2 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4 dl 1.100 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.222
9     import java.io.ObjectStreamField;
10 dl 1.208 import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.236 import java.util.AbstractMap;
14 dl 1.119 import java.util.Arrays;
15     import java.util.Collection;
16 dl 1.208 import java.util.Enumeration;
17     import java.util.HashMap;
18 dl 1.119 import java.util.Hashtable;
19     import java.util.Iterator;
20 dl 1.208 import java.util.Map;
21 dl 1.119 import java.util.NoSuchElementException;
22 dl 1.208 import java.util.Set;
23     import java.util.Spliterator;
24     import java.util.concurrent.atomic.AtomicReference;
25 dl 1.222 import java.util.concurrent.locks.LockSupport;
26 dl 1.208 import java.util.concurrent.locks.ReentrantLock;
27     import java.util.function.BiConsumer;
28     import java.util.function.BiFunction;
29     import java.util.function.Consumer;
30     import java.util.function.DoubleBinaryOperator;
31     import java.util.function.Function;
32     import java.util.function.IntBinaryOperator;
33     import java.util.function.LongBinaryOperator;
34 dl 1.271 import java.util.function.Predicate;
35 dl 1.208 import java.util.function.ToDoubleBiFunction;
36     import java.util.function.ToDoubleFunction;
37     import java.util.function.ToIntBiFunction;
38     import java.util.function.ToIntFunction;
39     import java.util.function.ToLongBiFunction;
40     import java.util.function.ToLongFunction;
41 dl 1.210 import java.util.stream.Stream;
42 tim 1.1
43     /**
44 dl 1.4 * A hash table supporting full concurrency of retrievals and
45 dl 1.119 * high expected concurrency for updates. This class obeys the
46 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
47 dl 1.19 * includes versions of methods corresponding to each method of
48 dl 1.119 * {@code Hashtable}. However, even though all operations are
49 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
50     * and there is <em>not</em> any support for locking the entire table
51     * in a way that prevents all access. This class is fully
52 dl 1.119 * interoperable with {@code Hashtable} in programs that rely on its
53 dl 1.4 * thread safety but not on its synchronization details.
54 tim 1.11 *
55 jsr166 1.145 * <p>Retrieval operations (including {@code get}) generally do not
56 dl 1.119 * block, so may overlap with update operations (including {@code put}
57     * and {@code remove}). Retrievals reflect the results of the most
58     * recently <em>completed</em> update operations holding upon their
59 dl 1.126 * onset. (More formally, an update operation for a given key bears a
60     * <em>happens-before</em> relation with any (non-null) retrieval for
61     * that key reporting the updated value.) For aggregate operations
62     * such as {@code putAll} and {@code clear}, concurrent retrievals may
63     * reflect insertion or removal of only some entries. Similarly,
64 jsr166 1.241 * Iterators, Spliterators and Enumerations return elements reflecting the
65     * state of the hash table at some point at or since the creation of the
66 dl 1.126 * iterator/enumeration. They do <em>not</em> throw {@link
67 jsr166 1.241 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68     * However, iterators are designed to be used by only one thread at a time.
69     * Bear in mind that the results of aggregate status methods including
70     * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71     * useful only when a map is not undergoing concurrent updates in other threads.
72 dl 1.126 * Otherwise the results of these methods reflect transient states
73     * that may be adequate for monitoring or estimation purposes, but not
74     * for program control.
75 tim 1.1 *
76 jsr166 1.145 * <p>The table is dynamically expanded when there are too many
77 dl 1.119 * collisions (i.e., keys that have distinct hash codes but fall into
78     * the same slot modulo the table size), with the expected average
79     * effect of maintaining roughly two bins per mapping (corresponding
80     * to a 0.75 load factor threshold for resizing). There may be much
81     * variance around this average as mappings are added and removed, but
82     * overall, this maintains a commonly accepted time/space tradeoff for
83     * hash tables. However, resizing this or any other kind of hash
84     * table may be a relatively slow operation. When possible, it is a
85     * good idea to provide a size estimate as an optional {@code
86     * initialCapacity} constructor argument. An additional optional
87     * {@code loadFactor} constructor argument provides a further means of
88     * customizing initial table capacity by specifying the table density
89     * to be used in calculating the amount of space to allocate for the
90     * given number of elements. Also, for compatibility with previous
91     * versions of this class, constructors may optionally specify an
92     * expected {@code concurrencyLevel} as an additional hint for
93     * internal sizing. Note that using many keys with exactly the same
94     * {@code hashCode()} is a sure way to slow down performance of any
95 dl 1.210 * hash table. To ameliorate impact, when keys are {@link Comparable},
96     * this class may use comparison order among keys to help break ties.
97 tim 1.1 *
98 jsr166 1.145 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 dl 1.137 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100     * (using {@link #keySet(Object)} when only keys are of interest, and the
101     * mapped values are (perhaps transiently) not used or all take the
102     * same mapping value.
103     *
104 jsr166 1.257 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 dl 1.153 * form of histogram or multiset) by using {@link
106     * java.util.concurrent.atomic.LongAdder} values and initializing via
107 jsr166 1.175 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108     * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 jsr166 1.257 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 dl 1.137 *
111 dl 1.45 * <p>This class and its views and iterators implement all of the
112     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113     * interfaces.
114 dl 1.23 *
115 jsr166 1.145 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 dl 1.119 * does <em>not</em> allow {@code null} to be used as a key or value.
117 tim 1.1 *
118 dl 1.210 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119     * operations that, unlike most {@link Stream} methods, are designed
120     * to be safely, and often sensibly, applied even with maps that are
121     * being concurrently updated by other threads; for example, when
122     * computing a snapshot summary of the values in a shared registry.
123     * There are three kinds of operation, each with four forms, accepting
124 jsr166 1.278 * functions with keys, values, entries, and (key, value) pairs as
125     * arguments and/or return values. Because the elements of a
126     * ConcurrentHashMap are not ordered in any particular way, and may be
127     * processed in different orders in different parallel executions, the
128     * correctness of supplied functions should not depend on any
129     * ordering, or on any other objects or values that may transiently
130     * change while computation is in progress; and except for forEach
131     * actions, should ideally be side-effect-free. Bulk operations on
132     * {@link java.util.Map.Entry} objects do not support method {@code
133     * setValue}.
134 dl 1.137 *
135     * <ul>
136 jsr166 1.280 * <li>forEach: Performs a given action on each element.
137 dl 1.137 * A variant form applies a given transformation on each element
138 jsr166 1.280 * before performing the action.
139 dl 1.137 *
140 jsr166 1.280 * <li>search: Returns the first available non-null result of
141 dl 1.137 * applying a given function on each element; skipping further
142 jsr166 1.280 * search when a result is found.
143 dl 1.137 *
144 jsr166 1.280 * <li>reduce: Accumulates each element. The supplied reduction
145 dl 1.137 * function cannot rely on ordering (more formally, it should be
146     * both associative and commutative). There are five variants:
147     *
148     * <ul>
149     *
150 jsr166 1.280 * <li>Plain reductions. (There is not a form of this method for
151 dl 1.137 * (key, value) function arguments since there is no corresponding
152 jsr166 1.280 * return type.)
153 dl 1.137 *
154 jsr166 1.280 * <li>Mapped reductions that accumulate the results of a given
155     * function applied to each element.
156 dl 1.137 *
157 jsr166 1.280 * <li>Reductions to scalar doubles, longs, and ints, using a
158     * given basis value.
159 dl 1.137 *
160 jsr166 1.178 * </ul>
161 dl 1.137 * </ul>
162     *
163 dl 1.210 * <p>These bulk operations accept a {@code parallelismThreshold}
164     * argument. Methods proceed sequentially if the current map size is
165     * estimated to be less than the given threshold. Using a value of
166     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 dl 1.217 * of {@code 1} results in maximal parallelism by partitioning into
168 dl 1.219 * enough subtasks to fully utilize the {@link
169     * ForkJoinPool#commonPool()} that is used for all parallel
170     * computations. Normally, you would initially choose one of these
171     * extreme values, and then measure performance of using in-between
172     * values that trade off overhead versus throughput.
173 dl 1.210 *
174 dl 1.137 * <p>The concurrency properties of bulk operations follow
175     * from those of ConcurrentHashMap: Any non-null result returned
176     * from {@code get(key)} and related access methods bears a
177     * happens-before relation with the associated insertion or
178     * update. The result of any bulk operation reflects the
179     * composition of these per-element relations (but is not
180     * necessarily atomic with respect to the map as a whole unless it
181     * is somehow known to be quiescent). Conversely, because keys
182     * and values in the map are never null, null serves as a reliable
183     * atomic indicator of the current lack of any result. To
184     * maintain this property, null serves as an implicit basis for
185     * all non-scalar reduction operations. For the double, long, and
186     * int versions, the basis should be one that, when combined with
187     * any other value, returns that other value (more formally, it
188     * should be the identity element for the reduction). Most common
189     * reductions have these properties; for example, computing a sum
190     * with basis 0 or a minimum with basis MAX_VALUE.
191     *
192     * <p>Search and transformation functions provided as arguments
193     * should similarly return null to indicate the lack of any result
194     * (in which case it is not used). In the case of mapped
195     * reductions, this also enables transformations to serve as
196     * filters, returning null (or, in the case of primitive
197     * specializations, the identity basis) if the element should not
198     * be combined. You can create compound transformations and
199     * filterings by composing them yourself under this "null means
200     * there is nothing there now" rule before using them in search or
201     * reduce operations.
202     *
203     * <p>Methods accepting and/or returning Entry arguments maintain
204     * key-value associations. They may be useful for example when
205     * finding the key for the greatest value. Note that "plain" Entry
206     * arguments can be supplied using {@code new
207     * AbstractMap.SimpleEntry(k,v)}.
208     *
209 jsr166 1.145 * <p>Bulk operations may complete abruptly, throwing an
210 dl 1.137 * exception encountered in the application of a supplied
211     * function. Bear in mind when handling such exceptions that other
212     * concurrently executing functions could also have thrown
213     * exceptions, or would have done so if the first exception had
214     * not occurred.
215     *
216 dl 1.151 * <p>Speedups for parallel compared to sequential forms are common
217     * but not guaranteed. Parallel operations involving brief functions
218     * on small maps may execute more slowly than sequential forms if the
219     * underlying work to parallelize the computation is more expensive
220     * than the computation itself. Similarly, parallelization may not
221     * lead to much actual parallelism if all processors are busy
222     * performing unrelated tasks.
223 dl 1.137 *
224 jsr166 1.145 * <p>All arguments to all task methods must be non-null.
225 dl 1.137 *
226 dl 1.42 * <p>This class is a member of the
227 jsr166 1.88 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 dl 1.42 * Java Collections Framework</a>.
229     *
230 dl 1.8 * @since 1.5
231     * @author Doug Lea
232 dl 1.27 * @param <K> the type of keys maintained by this map
233 jsr166 1.64 * @param <V> the type of mapped values
234 dl 1.8 */
235 dl 1.240 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236     implements ConcurrentMap<K,V>, Serializable {
237 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
238 tim 1.1
239     /*
240 dl 1.119 * Overview:
241     *
242     * The primary design goal of this hash table is to maintain
243     * concurrent readability (typically method get(), but also
244     * iterators and related methods) while minimizing update
245     * contention. Secondary goals are to keep space consumption about
246     * the same or better than java.util.HashMap, and to support high
247     * initial insertion rates on an empty table by many threads.
248     *
249 dl 1.224 * This map usually acts as a binned (bucketed) hash table. Each
250     * key-value mapping is held in a Node. Most nodes are instances
251     * of the basic Node class with hash, key, value, and next
252     * fields. However, various subclasses exist: TreeNodes are
253 dl 1.222 * arranged in balanced trees, not lists. TreeBins hold the roots
254     * of sets of TreeNodes. ForwardingNodes are placed at the heads
255     * of bins during resizing. ReservationNodes are used as
256     * placeholders while establishing values in computeIfAbsent and
257 dl 1.224 * related methods. The types TreeBin, ForwardingNode, and
258 dl 1.222 * ReservationNode do not hold normal user keys, values, or
259     * hashes, and are readily distinguishable during search etc
260     * because they have negative hash fields and null key and value
261     * fields. (These special nodes are either uncommon or transient,
262     * so the impact of carrying around some unused fields is
263 jsr166 1.232 * insignificant.)
264 dl 1.119 *
265     * The table is lazily initialized to a power-of-two size upon the
266     * first insertion. Each bin in the table normally contains a
267     * list of Nodes (most often, the list has only zero or one Node).
268     * Table accesses require volatile/atomic reads, writes, and
269     * CASes. Because there is no other way to arrange this without
270     * adding further indirections, we use intrinsics
271 dl 1.210 * (sun.misc.Unsafe) operations.
272 dl 1.119 *
273 dl 1.149 * We use the top (sign) bit of Node hash fields for control
274     * purposes -- it is available anyway because of addressing
275 dl 1.222 * constraints. Nodes with negative hash fields are specially
276     * handled or ignored in map methods.
277 dl 1.119 *
278     * Insertion (via put or its variants) of the first node in an
279     * empty bin is performed by just CASing it to the bin. This is
280     * by far the most common case for put operations under most
281     * key/hash distributions. Other update operations (insert,
282     * delete, and replace) require locks. We do not want to waste
283     * the space required to associate a distinct lock object with
284     * each bin, so instead use the first node of a bin list itself as
285 dl 1.149 * a lock. Locking support for these locks relies on builtin
286     * "synchronized" monitors.
287 dl 1.119 *
288     * Using the first node of a list as a lock does not by itself
289     * suffice though: When a node is locked, any update must first
290     * validate that it is still the first node after locking it, and
291     * retry if not. Because new nodes are always appended to lists,
292     * once a node is first in a bin, it remains first until deleted
293 dl 1.210 * or the bin becomes invalidated (upon resizing).
294 dl 1.119 *
295     * The main disadvantage of per-bin locks is that other update
296     * operations on other nodes in a bin list protected by the same
297     * lock can stall, for example when user equals() or mapping
298     * functions take a long time. However, statistically, under
299     * random hash codes, this is not a common problem. Ideally, the
300     * frequency of nodes in bins follows a Poisson distribution
301     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302     * parameter of about 0.5 on average, given the resizing threshold
303     * of 0.75, although with a large variance because of resizing
304     * granularity. Ignoring variance, the expected occurrences of
305     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306     * first values are:
307     *
308     * 0: 0.60653066
309     * 1: 0.30326533
310     * 2: 0.07581633
311     * 3: 0.01263606
312     * 4: 0.00157952
313     * 5: 0.00015795
314     * 6: 0.00001316
315     * 7: 0.00000094
316     * 8: 0.00000006
317     * more: less than 1 in ten million
318     *
319     * Lock contention probability for two threads accessing distinct
320     * elements is roughly 1 / (8 * #elements) under random hashes.
321     *
322     * Actual hash code distributions encountered in practice
323     * sometimes deviate significantly from uniform randomness. This
324     * includes the case when N > (1<<30), so some keys MUST collide.
325     * Similarly for dumb or hostile usages in which multiple keys are
326 dl 1.222 * designed to have identical hash codes or ones that differs only
327 dl 1.224 * in masked-out high bits. So we use a secondary strategy that
328     * applies when the number of nodes in a bin exceeds a
329     * threshold. These TreeBins use a balanced tree to hold nodes (a
330     * specialized form of red-black trees), bounding search time to
331     * O(log N). Each search step in a TreeBin is at least twice as
332     * slow as in a regular list, but given that N cannot exceed
333     * (1<<64) (before running out of addresses) this bounds search
334     * steps, lock hold times, etc, to reasonable constants (roughly
335     * 100 nodes inspected per operation worst case) so long as keys
336     * are Comparable (which is very common -- String, Long, etc).
337 dl 1.119 * TreeBin nodes (TreeNodes) also maintain the same "next"
338     * traversal pointers as regular nodes, so can be traversed in
339     * iterators in the same way.
340     *
341     * The table is resized when occupancy exceeds a percentage
342 dl 1.149 * threshold (nominally, 0.75, but see below). Any thread
343     * noticing an overfull bin may assist in resizing after the
344 jsr166 1.248 * initiating thread allocates and sets up the replacement array.
345     * However, rather than stalling, these other threads may proceed
346     * with insertions etc. The use of TreeBins shields us from the
347     * worst case effects of overfilling while resizes are in
348 dl 1.149 * progress. Resizing proceeds by transferring bins, one by one,
349 dl 1.246 * from the table to the next table. However, threads claim small
350     * blocks of indices to transfer (via field transferIndex) before
351 dl 1.252 * doing so, reducing contention. A generation stamp in field
352     * sizeCtl ensures that resizings do not overlap. Because we are
353     * using power-of-two expansion, the elements from each bin must
354     * either stay at same index, or move with a power of two
355     * offset. We eliminate unnecessary node creation by catching
356     * cases where old nodes can be reused because their next fields
357     * won't change. On average, only about one-sixth of them need
358     * cloning when a table doubles. The nodes they replace will be
359     * garbage collectable as soon as they are no longer referenced by
360     * any reader thread that may be in the midst of concurrently
361     * traversing table. Upon transfer, the old table bin contains
362     * only a special forwarding node (with hash field "MOVED") that
363     * contains the next table as its key. On encountering a
364     * forwarding node, access and update operations restart, using
365     * the new table.
366 dl 1.149 *
367     * Each bin transfer requires its bin lock, which can stall
368     * waiting for locks while resizing. However, because other
369     * threads can join in and help resize rather than contend for
370     * locks, average aggregate waits become shorter as resizing
371     * progresses. The transfer operation must also ensure that all
372     * accessible bins in both the old and new table are usable by any
373 dl 1.246 * traversal. This is arranged in part by proceeding from the
374     * last bin (table.length - 1) up towards the first. Upon seeing
375     * a forwarding node, traversals (see class Traverser) arrange to
376     * move to the new table without revisiting nodes. To ensure that
377     * no intervening nodes are skipped even when moved out of order,
378     * a stack (see class TableStack) is created on first encounter of
379     * a forwarding node during a traversal, to maintain its place if
380     * later processing the current table. The need for these
381     * save/restore mechanics is relatively rare, but when one
382 jsr166 1.248 * forwarding node is encountered, typically many more will be.
383 dl 1.246 * So Traversers use a simple caching scheme to avoid creating so
384     * many new TableStack nodes. (Thanks to Peter Levart for
385     * suggesting use of a stack here.)
386 dl 1.119 *
387     * The traversal scheme also applies to partial traversals of
388     * ranges of bins (via an alternate Traverser constructor)
389     * to support partitioned aggregate operations. Also, read-only
390     * operations give up if ever forwarded to a null table, which
391     * provides support for shutdown-style clearing, which is also not
392     * currently implemented.
393     *
394     * Lazy table initialization minimizes footprint until first use,
395     * and also avoids resizings when the first operation is from a
396     * putAll, constructor with map argument, or deserialization.
397     * These cases attempt to override the initial capacity settings,
398     * but harmlessly fail to take effect in cases of races.
399     *
400 dl 1.149 * The element count is maintained using a specialization of
401     * LongAdder. We need to incorporate a specialization rather than
402     * just use a LongAdder in order to access implicit
403     * contention-sensing that leads to creation of multiple
404 dl 1.222 * CounterCells. The counter mechanics avoid contention on
405 dl 1.149 * updates but can encounter cache thrashing if read too
406     * frequently during concurrent access. To avoid reading so often,
407     * resizing under contention is attempted only upon adding to a
408     * bin already holding two or more nodes. Under uniform hash
409     * distributions, the probability of this occurring at threshold
410     * is around 13%, meaning that only about 1 in 8 puts check
411 dl 1.222 * threshold (and after resizing, many fewer do so).
412     *
413     * TreeBins use a special form of comparison for search and
414     * related operations (which is the main reason we cannot use
415     * existing collections such as TreeMaps). TreeBins contain
416     * Comparable elements, but may contain others, as well as
417 dl 1.240 * elements that are Comparable but not necessarily Comparable for
418     * the same T, so we cannot invoke compareTo among them. To handle
419     * this, the tree is ordered primarily by hash value, then by
420     * Comparable.compareTo order if applicable. On lookup at a node,
421     * if elements are not comparable or compare as 0 then both left
422     * and right children may need to be searched in the case of tied
423     * hash values. (This corresponds to the full list search that
424     * would be necessary if all elements were non-Comparable and had
425     * tied hashes.) On insertion, to keep a total ordering (or as
426     * close as is required here) across rebalancings, we compare
427     * classes and identityHashCodes as tie-breakers. The red-black
428     * balancing code is updated from pre-jdk-collections
429 dl 1.222 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431     * Algorithms" (CLR).
432     *
433     * TreeBins also require an additional locking mechanism. While
434 dl 1.224 * list traversal is always possible by readers even during
435 jsr166 1.232 * updates, tree traversal is not, mainly because of tree-rotations
436 dl 1.222 * that may change the root node and/or its linkages. TreeBins
437     * include a simple read-write lock mechanism parasitic on the
438     * main bin-synchronization strategy: Structural adjustments
439     * associated with an insertion or removal are already bin-locked
440     * (and so cannot conflict with other writers) but must wait for
441     * ongoing readers to finish. Since there can be only one such
442     * waiter, we use a simple scheme using a single "waiter" field to
443     * block writers. However, readers need never block. If the root
444     * lock is held, they proceed along the slow traversal path (via
445     * next-pointers) until the lock becomes available or the list is
446     * exhausted, whichever comes first. These cases are not fast, but
447     * maximize aggregate expected throughput.
448 dl 1.119 *
449     * Maintaining API and serialization compatibility with previous
450     * versions of this class introduces several oddities. Mainly: We
451 jsr166 1.274 * leave untouched but unused constructor arguments referring to
452 dl 1.119 * concurrencyLevel. We accept a loadFactor constructor argument,
453     * but apply it only to initial table capacity (which is the only
454     * time that we can guarantee to honor it.) We also declare an
455     * unused "Segment" class that is instantiated in minimal form
456     * only when serializing.
457 dl 1.222 *
458 dl 1.240 * Also, solely for compatibility with previous versions of this
459     * class, it extends AbstractMap, even though all of its methods
460     * are overridden, so it is just useless baggage.
461     *
462 dl 1.222 * This file is organized to make things a little easier to follow
463 dl 1.224 * while reading than they might otherwise: First the main static
464 dl 1.222 * declarations and utilities, then fields, then main public
465     * methods (with a few factorings of multiple public methods into
466     * internal ones), then sizing methods, trees, traversers, and
467     * bulk operations.
468 dl 1.4 */
469 tim 1.1
470 dl 1.4 /* ---------------- Constants -------------- */
471 tim 1.11
472 dl 1.4 /**
473 dl 1.119 * The largest possible table capacity. This value must be
474     * exactly 1<<30 to stay within Java array allocation and indexing
475     * bounds for power of two table sizes, and is further required
476     * because the top two bits of 32bit hash fields are used for
477     * control purposes.
478 dl 1.4 */
479 dl 1.119 private static final int MAXIMUM_CAPACITY = 1 << 30;
480 dl 1.56
481     /**
482 dl 1.119 * The default initial table capacity. Must be a power of 2
483     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 dl 1.56 */
485 dl 1.119 private static final int DEFAULT_CAPACITY = 16;
486 dl 1.56
487     /**
488 dl 1.119 * The largest possible (non-power of two) array size.
489     * Needed by toArray and related methods.
490 jsr166 1.59 */
491 dl 1.119 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492 tim 1.1
493     /**
494 dl 1.119 * The default concurrency level for this table. Unused but
495     * defined for compatibility with previous versions of this class.
496 dl 1.4 */
497 dl 1.119 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498 tim 1.11
499 tim 1.1 /**
500 dl 1.119 * The load factor for this table. Overrides of this value in
501     * constructors affect only the initial table capacity. The
502     * actual floating point value isn't normally used -- it is
503     * simpler to use expressions such as {@code n - (n >>> 2)} for
504     * the associated resizing threshold.
505 dl 1.99 */
506 dl 1.119 private static final float LOAD_FACTOR = 0.75f;
507 dl 1.99
508     /**
509 dl 1.119 * The bin count threshold for using a tree rather than list for a
510 dl 1.222 * bin. Bins are converted to trees when adding an element to a
511 dl 1.224 * bin with at least this many nodes. The value must be greater
512     * than 2, and should be at least 8 to mesh with assumptions in
513     * tree removal about conversion back to plain bins upon
514     * shrinkage.
515 dl 1.222 */
516     static final int TREEIFY_THRESHOLD = 8;
517    
518     /**
519     * The bin count threshold for untreeifying a (split) bin during a
520     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521     * most 6 to mesh with shrinkage detection under removal.
522     */
523     static final int UNTREEIFY_THRESHOLD = 6;
524    
525     /**
526     * The smallest table capacity for which bins may be treeified.
527     * (Otherwise the table is resized if too many nodes in a bin.)
528 dl 1.224 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529     * conflicts between resizing and treeification thresholds.
530 dl 1.119 */
531 dl 1.222 static final int MIN_TREEIFY_CAPACITY = 64;
532 dl 1.119
533 dl 1.149 /**
534     * Minimum number of rebinnings per transfer step. Ranges are
535     * subdivided to allow multiple resizer threads. This value
536     * serves as a lower bound to avoid resizers encountering
537     * excessive memory contention. The value should be at least
538     * DEFAULT_CAPACITY.
539     */
540     private static final int MIN_TRANSFER_STRIDE = 16;
541    
542 dl 1.252 /**
543     * The number of bits used for generation stamp in sizeCtl.
544     * Must be at least 6 for 32bit arrays.
545     */
546     private static int RESIZE_STAMP_BITS = 16;
547    
548     /**
549     * The maximum number of threads that can help resize.
550     * Must fit in 32 - RESIZE_STAMP_BITS bits.
551     */
552     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553    
554     /**
555     * The bit shift for recording size stamp in sizeCtl.
556     */
557     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558    
559 dl 1.119 /*
560 dl 1.149 * Encodings for Node hash fields. See above for explanation.
561 dl 1.46 */
562 dl 1.233 static final int MOVED = -1; // hash for forwarding nodes
563     static final int TREEBIN = -2; // hash for roots of trees
564     static final int RESERVED = -3; // hash for transient reservations
565 dl 1.149 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566    
567     /** Number of CPUS, to place bounds on some sizings */
568     static final int NCPU = Runtime.getRuntime().availableProcessors();
569    
570 dl 1.208 /** For serialization compatibility. */
571     private static final ObjectStreamField[] serialPersistentFields = {
572 dl 1.209 new ObjectStreamField("segments", Segment[].class),
573     new ObjectStreamField("segmentMask", Integer.TYPE),
574     new ObjectStreamField("segmentShift", Integer.TYPE)
575 dl 1.208 };
576    
577 dl 1.222 /* ---------------- Nodes -------------- */
578    
579     /**
580     * Key-value entry. This class is never exported out as a
581     * user-mutable Map.Entry (i.e., one supporting setValue; see
582     * MapEntry below), but can be used for read-only traversals used
583 jsr166 1.232 * in bulk tasks. Subclasses of Node with a negative hash field
584 dl 1.224 * are special, and contain null keys and values (but are never
585     * exported). Otherwise, keys and vals are never null.
586 dl 1.222 */
587     static class Node<K,V> implements Map.Entry<K,V> {
588     final int hash;
589     final K key;
590     volatile V val;
591 dl 1.233 volatile Node<K,V> next;
592 dl 1.222
593     Node(int hash, K key, V val, Node<K,V> next) {
594     this.hash = hash;
595     this.key = key;
596     this.val = val;
597     this.next = next;
598     }
599    
600 jsr166 1.268 public final K getKey() { return key; }
601     public final V getValue() { return val; }
602     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
603     public final String toString() {
604     return Helpers.mapEntryToString(key, val);
605 jsr166 1.265 }
606 dl 1.222 public final V setValue(V value) {
607     throw new UnsupportedOperationException();
608     }
609    
610     public final boolean equals(Object o) {
611     Object k, v, u; Map.Entry<?,?> e;
612     return ((o instanceof Map.Entry) &&
613     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
614     (v = e.getValue()) != null &&
615     (k == key || k.equals(key)) &&
616     (v == (u = val) || v.equals(u)));
617     }
618    
619 dl 1.224 /**
620     * Virtualized support for map.get(); overridden in subclasses.
621     */
622 dl 1.222 Node<K,V> find(int h, Object k) {
623     Node<K,V> e = this;
624     if (k != null) {
625     do {
626     K ek;
627     if (e.hash == h &&
628     ((ek = e.key) == k || (ek != null && k.equals(ek))))
629     return e;
630     } while ((e = e.next) != null);
631     }
632     return null;
633     }
634     }
635    
636     /* ---------------- Static utilities -------------- */
637    
638     /**
639     * Spreads (XORs) higher bits of hash to lower and also forces top
640     * bit to 0. Because the table uses power-of-two masking, sets of
641     * hashes that vary only in bits above the current mask will
642     * always collide. (Among known examples are sets of Float keys
643     * holding consecutive whole numbers in small tables.) So we
644     * apply a transform that spreads the impact of higher bits
645     * downward. There is a tradeoff between speed, utility, and
646     * quality of bit-spreading. Because many common sets of hashes
647     * are already reasonably distributed (so don't benefit from
648     * spreading), and because we use trees to handle large sets of
649     * collisions in bins, we just XOR some shifted bits in the
650     * cheapest possible way to reduce systematic lossage, as well as
651     * to incorporate impact of the highest bits that would otherwise
652     * never be used in index calculations because of table bounds.
653     */
654     static final int spread(int h) {
655     return (h ^ (h >>> 16)) & HASH_BITS;
656     }
657    
658     /**
659     * Returns a power of two table size for the given desired capacity.
660     * See Hackers Delight, sec 3.2
661     */
662     private static final int tableSizeFor(int c) {
663     int n = c - 1;
664     n |= n >>> 1;
665     n |= n >>> 2;
666     n |= n >>> 4;
667     n |= n >>> 8;
668     n |= n >>> 16;
669     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
670     }
671    
672     /**
673     * Returns x's Class if it is of the form "class C implements
674     * Comparable<C>", else null.
675     */
676     static Class<?> comparableClassFor(Object x) {
677     if (x instanceof Comparable) {
678     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
679     if ((c = x.getClass()) == String.class) // bypass checks
680     return c;
681     if ((ts = c.getGenericInterfaces()) != null) {
682     for (int i = 0; i < ts.length; ++i) {
683     if (((t = ts[i]) instanceof ParameterizedType) &&
684     ((p = (ParameterizedType)t).getRawType() ==
685     Comparable.class) &&
686     (as = p.getActualTypeArguments()) != null &&
687     as.length == 1 && as[0] == c) // type arg is c
688     return c;
689     }
690     }
691     }
692     return null;
693     }
694    
695 dl 1.210 /**
696 dl 1.222 * Returns k.compareTo(x) if x matches kc (k's screened comparable
697     * class), else 0.
698     */
699     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
700     static int compareComparables(Class<?> kc, Object k, Object x) {
701     return (x == null || x.getClass() != kc ? 0 :
702     ((Comparable)k).compareTo(x));
703     }
704    
705     /* ---------------- Table element access -------------- */
706    
707     /*
708     * Volatile access methods are used for table elements as well as
709     * elements of in-progress next table while resizing. All uses of
710     * the tab arguments must be null checked by callers. All callers
711     * also paranoically precheck that tab's length is not zero (or an
712     * equivalent check), thus ensuring that any index argument taking
713     * the form of a hash value anded with (length - 1) is a valid
714     * index. Note that, to be correct wrt arbitrary concurrency
715     * errors by users, these checks must operate on local variables,
716     * which accounts for some odd-looking inline assignments below.
717     * Note that calls to setTabAt always occur within locked regions,
718 dl 1.252 * and so in principle require only release ordering, not
719 dl 1.233 * full volatile semantics, but are currently coded as volatile
720     * writes to be conservative.
721 dl 1.210 */
722 dl 1.222
723     @SuppressWarnings("unchecked")
724     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
725     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
726     }
727    
728     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
729     Node<K,V> c, Node<K,V> v) {
730     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
731     }
732    
733     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
734 dl 1.233 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
735 dl 1.149 }
736    
737 dl 1.4 /* ---------------- Fields -------------- */
738 tim 1.1
739     /**
740 dl 1.119 * The array of bins. Lazily initialized upon first insertion.
741     * Size is always a power of two. Accessed directly by iterators.
742 jsr166 1.59 */
743 dl 1.210 transient volatile Node<K,V>[] table;
744 tim 1.1
745     /**
746 dl 1.149 * The next table to use; non-null only while resizing.
747 jsr166 1.59 */
748 dl 1.210 private transient volatile Node<K,V>[] nextTable;
749 dl 1.149
750     /**
751     * Base counter value, used mainly when there is no contention,
752     * but also as a fallback during table initialization
753     * races. Updated via CAS.
754     */
755     private transient volatile long baseCount;
756 tim 1.1
757     /**
758 dl 1.119 * Table initialization and resizing control. When negative, the
759 dl 1.149 * table is being initialized or resized: -1 for initialization,
760     * else -(1 + the number of active resizing threads). Otherwise,
761     * when table is null, holds the initial table size to use upon
762     * creation, or 0 for default. After initialization, holds the
763     * next element count value upon which to resize the table.
764 tim 1.1 */
765 dl 1.119 private transient volatile int sizeCtl;
766 dl 1.4
767 dl 1.149 /**
768     * The next table index (plus one) to split while resizing.
769     */
770     private transient volatile int transferIndex;
771    
772     /**
773 dl 1.222 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
774 dl 1.149 */
775 dl 1.153 private transient volatile int cellsBusy;
776 dl 1.149
777     /**
778     * Table of counter cells. When non-null, size is a power of 2.
779     */
780 dl 1.222 private transient volatile CounterCell[] counterCells;
781 dl 1.149
782 dl 1.119 // views
783 dl 1.137 private transient KeySetView<K,V> keySet;
784 dl 1.142 private transient ValuesView<K,V> values;
785     private transient EntrySetView<K,V> entrySet;
786 dl 1.119
787    
788 dl 1.222 /* ---------------- Public operations -------------- */
789    
790     /**
791     * Creates a new, empty map with the default initial table size (16).
792 dl 1.119 */
793 dl 1.222 public ConcurrentHashMap() {
794     }
795 dl 1.119
796 dl 1.222 /**
797     * Creates a new, empty map with an initial table size
798     * accommodating the specified number of elements without the need
799     * to dynamically resize.
800     *
801     * @param initialCapacity The implementation performs internal
802     * sizing to accommodate this many elements.
803     * @throws IllegalArgumentException if the initial capacity of
804     * elements is negative
805     */
806     public ConcurrentHashMap(int initialCapacity) {
807     if (initialCapacity < 0)
808     throw new IllegalArgumentException();
809     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
810     MAXIMUM_CAPACITY :
811     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
812     this.sizeCtl = cap;
813 dl 1.119 }
814    
815 dl 1.222 /**
816     * Creates a new map with the same mappings as the given map.
817     *
818     * @param m the map
819     */
820     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
821     this.sizeCtl = DEFAULT_CAPACITY;
822     putAll(m);
823 dl 1.119 }
824    
825 dl 1.222 /**
826     * Creates a new, empty map with an initial table size based on
827     * the given number of elements ({@code initialCapacity}) and
828     * initial table density ({@code loadFactor}).
829     *
830     * @param initialCapacity the initial capacity. The implementation
831     * performs internal sizing to accommodate this many elements,
832     * given the specified load factor.
833     * @param loadFactor the load factor (table density) for
834     * establishing the initial table size
835     * @throws IllegalArgumentException if the initial capacity of
836     * elements is negative or the load factor is nonpositive
837     *
838     * @since 1.6
839     */
840     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
841     this(initialCapacity, loadFactor, 1);
842 dl 1.119 }
843    
844 dl 1.99 /**
845 dl 1.222 * Creates a new, empty map with an initial table size based on
846     * the given number of elements ({@code initialCapacity}), table
847     * density ({@code loadFactor}), and number of concurrently
848     * updating threads ({@code concurrencyLevel}).
849     *
850     * @param initialCapacity the initial capacity. The implementation
851     * performs internal sizing to accommodate this many elements,
852     * given the specified load factor.
853     * @param loadFactor the load factor (table density) for
854     * establishing the initial table size
855     * @param concurrencyLevel the estimated number of concurrently
856     * updating threads. The implementation may use this value as
857     * a sizing hint.
858     * @throws IllegalArgumentException if the initial capacity is
859     * negative or the load factor or concurrencyLevel are
860     * nonpositive
861 dl 1.99 */
862 dl 1.222 public ConcurrentHashMap(int initialCapacity,
863     float loadFactor, int concurrencyLevel) {
864     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
865     throw new IllegalArgumentException();
866     if (initialCapacity < concurrencyLevel) // Use at least as many bins
867     initialCapacity = concurrencyLevel; // as estimated threads
868     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
869     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
870     MAXIMUM_CAPACITY : tableSizeFor((int)size);
871     this.sizeCtl = cap;
872     }
873 dl 1.99
874 dl 1.222 // Original (since JDK1.2) Map methods
875 dl 1.210
876 dl 1.222 /**
877     * {@inheritDoc}
878     */
879     public int size() {
880     long n = sumCount();
881     return ((n < 0L) ? 0 :
882     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
883     (int)n);
884     }
885 dl 1.210
886 dl 1.222 /**
887     * {@inheritDoc}
888     */
889     public boolean isEmpty() {
890     return sumCount() <= 0L; // ignore transient negative values
891 dl 1.210 }
892    
893     /**
894 dl 1.222 * Returns the value to which the specified key is mapped,
895     * or {@code null} if this map contains no mapping for the key.
896     *
897     * <p>More formally, if this map contains a mapping from a key
898     * {@code k} to a value {@code v} such that {@code key.equals(k)},
899     * then this method returns {@code v}; otherwise it returns
900     * {@code null}. (There can be at most one such mapping.)
901     *
902     * @throws NullPointerException if the specified key is null
903 dl 1.210 */
904 dl 1.222 public V get(Object key) {
905     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
906     int h = spread(key.hashCode());
907     if ((tab = table) != null && (n = tab.length) > 0 &&
908     (e = tabAt(tab, (n - 1) & h)) != null) {
909     if ((eh = e.hash) == h) {
910     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
911     return e.val;
912     }
913     else if (eh < 0)
914     return (p = e.find(h, key)) != null ? p.val : null;
915     while ((e = e.next) != null) {
916     if (e.hash == h &&
917     ((ek = e.key) == key || (ek != null && key.equals(ek))))
918     return e.val;
919     }
920 dl 1.210 }
921 dl 1.222 return null;
922 dl 1.99 }
923    
924     /**
925 dl 1.222 * Tests if the specified object is a key in this table.
926     *
927     * @param key possible key
928     * @return {@code true} if and only if the specified object
929     * is a key in this table, as determined by the
930     * {@code equals} method; {@code false} otherwise
931     * @throws NullPointerException if the specified key is null
932 dl 1.99 */
933 dl 1.222 public boolean containsKey(Object key) {
934     return get(key) != null;
935 dl 1.99 }
936 tim 1.1
937 dl 1.201 /**
938 dl 1.222 * Returns {@code true} if this map maps one or more keys to the
939     * specified value. Note: This method may require a full traversal
940     * of the map, and is much slower than method {@code containsKey}.
941     *
942     * @param value value whose presence in this map is to be tested
943     * @return {@code true} if this map maps one or more keys to the
944     * specified value
945     * @throws NullPointerException if the specified value is null
946     */
947     public boolean containsValue(Object value) {
948     if (value == null)
949     throw new NullPointerException();
950     Node<K,V>[] t;
951     if ((t = table) != null) {
952     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
953     for (Node<K,V> p; (p = it.advance()) != null; ) {
954     V v;
955     if ((v = p.val) == value || (v != null && value.equals(v)))
956     return true;
957 dl 1.201 }
958     }
959 dl 1.222 return false;
960 dl 1.201 }
961    
962 tim 1.1 /**
963 dl 1.222 * Maps the specified key to the specified value in this table.
964     * Neither the key nor the value can be null.
965 dl 1.119 *
966 dl 1.222 * <p>The value can be retrieved by calling the {@code get} method
967     * with a key that is equal to the original key.
968 dl 1.119 *
969 dl 1.222 * @param key key with which the specified value is to be associated
970     * @param value value to be associated with the specified key
971     * @return the previous value associated with {@code key}, or
972     * {@code null} if there was no mapping for {@code key}
973     * @throws NullPointerException if the specified key or value is null
974 dl 1.119 */
975 dl 1.222 public V put(K key, V value) {
976     return putVal(key, value, false);
977     }
978 dl 1.119
979 dl 1.222 /** Implementation for put and putIfAbsent */
980     final V putVal(K key, V value, boolean onlyIfAbsent) {
981     if (key == null || value == null) throw new NullPointerException();
982     int hash = spread(key.hashCode());
983     int binCount = 0;
984     for (Node<K,V>[] tab = table;;) {
985     Node<K,V> f; int n, i, fh;
986     if (tab == null || (n = tab.length) == 0)
987     tab = initTable();
988     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
989     if (casTabAt(tab, i, null,
990     new Node<K,V>(hash, key, value, null)))
991     break; // no lock when adding to empty bin
992 dl 1.119 }
993 dl 1.222 else if ((fh = f.hash) == MOVED)
994     tab = helpTransfer(tab, f);
995     else {
996     V oldVal = null;
997     synchronized (f) {
998     if (tabAt(tab, i) == f) {
999     if (fh >= 0) {
1000     binCount = 1;
1001     for (Node<K,V> e = f;; ++binCount) {
1002     K ek;
1003     if (e.hash == hash &&
1004     ((ek = e.key) == key ||
1005     (ek != null && key.equals(ek)))) {
1006     oldVal = e.val;
1007     if (!onlyIfAbsent)
1008     e.val = value;
1009     break;
1010     }
1011     Node<K,V> pred = e;
1012     if ((e = e.next) == null) {
1013     pred.next = new Node<K,V>(hash, key,
1014     value, null);
1015     break;
1016     }
1017     }
1018     }
1019     else if (f instanceof TreeBin) {
1020     Node<K,V> p;
1021     binCount = 2;
1022     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1023     value)) != null) {
1024     oldVal = p.val;
1025     if (!onlyIfAbsent)
1026     p.val = value;
1027     }
1028     }
1029 dl 1.259 else if (f instanceof ReservationNode)
1030     throw new IllegalStateException("Recursive update");
1031 dl 1.99 }
1032     }
1033 dl 1.222 if (binCount != 0) {
1034     if (binCount >= TREEIFY_THRESHOLD)
1035     treeifyBin(tab, i);
1036     if (oldVal != null)
1037     return oldVal;
1038 dl 1.99 break;
1039     }
1040     }
1041     }
1042 dl 1.222 addCount(1L, binCount);
1043     return null;
1044     }
1045    
1046     /**
1047     * Copies all of the mappings from the specified map to this one.
1048     * These mappings replace any mappings that this map had for any of the
1049     * keys currently in the specified map.
1050     *
1051     * @param m mappings to be stored in this map
1052     */
1053     public void putAll(Map<? extends K, ? extends V> m) {
1054     tryPresize(m.size());
1055     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1056     putVal(e.getKey(), e.getValue(), false);
1057     }
1058 dl 1.99
1059 dl 1.222 /**
1060     * Removes the key (and its corresponding value) from this map.
1061     * This method does nothing if the key is not in the map.
1062     *
1063     * @param key the key that needs to be removed
1064     * @return the previous value associated with {@code key}, or
1065     * {@code null} if there was no mapping for {@code key}
1066     * @throws NullPointerException if the specified key is null
1067     */
1068     public V remove(Object key) {
1069     return replaceNode(key, null, null);
1070     }
1071 dl 1.99
1072 dl 1.222 /**
1073     * Implementation for the four public remove/replace methods:
1074     * Replaces node value with v, conditional upon match of cv if
1075     * non-null. If resulting value is null, delete.
1076     */
1077     final V replaceNode(Object key, V value, Object cv) {
1078     int hash = spread(key.hashCode());
1079     for (Node<K,V>[] tab = table;;) {
1080     Node<K,V> f; int n, i, fh;
1081     if (tab == null || (n = tab.length) == 0 ||
1082     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1083     break;
1084     else if ((fh = f.hash) == MOVED)
1085     tab = helpTransfer(tab, f);
1086     else {
1087     V oldVal = null;
1088     boolean validated = false;
1089     synchronized (f) {
1090     if (tabAt(tab, i) == f) {
1091     if (fh >= 0) {
1092     validated = true;
1093     for (Node<K,V> e = f, pred = null;;) {
1094     K ek;
1095     if (e.hash == hash &&
1096     ((ek = e.key) == key ||
1097     (ek != null && key.equals(ek)))) {
1098     V ev = e.val;
1099     if (cv == null || cv == ev ||
1100     (ev != null && cv.equals(ev))) {
1101     oldVal = ev;
1102     if (value != null)
1103     e.val = value;
1104     else if (pred != null)
1105     pred.next = e.next;
1106     else
1107     setTabAt(tab, i, e.next);
1108     }
1109     break;
1110 dl 1.119 }
1111 dl 1.222 pred = e;
1112     if ((e = e.next) == null)
1113     break;
1114 dl 1.119 }
1115     }
1116 dl 1.222 else if (f instanceof TreeBin) {
1117     validated = true;
1118     TreeBin<K,V> t = (TreeBin<K,V>)f;
1119     TreeNode<K,V> r, p;
1120     if ((r = t.root) != null &&
1121     (p = r.findTreeNode(hash, key, null)) != null) {
1122     V pv = p.val;
1123     if (cv == null || cv == pv ||
1124     (pv != null && cv.equals(pv))) {
1125     oldVal = pv;
1126     if (value != null)
1127     p.val = value;
1128     else if (t.removeTreeNode(p))
1129     setTabAt(tab, i, untreeify(t.first));
1130 dl 1.119 }
1131     }
1132 dl 1.99 }
1133 dl 1.259 else if (f instanceof ReservationNode)
1134     throw new IllegalStateException("Recursive update");
1135 dl 1.99 }
1136     }
1137 dl 1.222 if (validated) {
1138     if (oldVal != null) {
1139     if (value == null)
1140     addCount(-1L, -1);
1141     return oldVal;
1142     }
1143     break;
1144     }
1145 dl 1.99 }
1146     }
1147 dl 1.222 return null;
1148     }
1149 dl 1.45
1150 dl 1.222 /**
1151     * Removes all of the mappings from this map.
1152     */
1153     public void clear() {
1154     long delta = 0L; // negative number of deletions
1155     int i = 0;
1156     Node<K,V>[] tab = table;
1157     while (tab != null && i < tab.length) {
1158     int fh;
1159     Node<K,V> f = tabAt(tab, i);
1160     if (f == null)
1161     ++i;
1162     else if ((fh = f.hash) == MOVED) {
1163     tab = helpTransfer(tab, f);
1164     i = 0; // restart
1165 dl 1.217 }
1166 dl 1.222 else {
1167     synchronized (f) {
1168     if (tabAt(tab, i) == f) {
1169     Node<K,V> p = (fh >= 0 ? f :
1170     (f instanceof TreeBin) ?
1171     ((TreeBin<K,V>)f).first : null);
1172     while (p != null) {
1173     --delta;
1174     p = p.next;
1175 dl 1.119 }
1176 dl 1.222 setTabAt(tab, i++, null);
1177 dl 1.119 }
1178 dl 1.45 }
1179 dl 1.4 }
1180 dl 1.217 }
1181 dl 1.222 if (delta != 0L)
1182     addCount(delta, -1);
1183     }
1184 dl 1.217
1185 dl 1.222 /**
1186     * Returns a {@link Set} view of the keys contained in this map.
1187     * The set is backed by the map, so changes to the map are
1188     * reflected in the set, and vice-versa. The set supports element
1189     * removal, which removes the corresponding mapping from this map,
1190     * via the {@code Iterator.remove}, {@code Set.remove},
1191     * {@code removeAll}, {@code retainAll}, and {@code clear}
1192     * operations. It does not support the {@code add} or
1193     * {@code addAll} operations.
1194     *
1195 jsr166 1.242 * <p>The view's iterators and spliterators are
1196     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1197 dl 1.222 *
1198 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1199     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1200     *
1201 dl 1.222 * @return the set view
1202     */
1203     public KeySetView<K,V> keySet() {
1204     KeySetView<K,V> ks;
1205     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1206     }
1207 dl 1.217
1208 dl 1.222 /**
1209     * Returns a {@link Collection} view of the values contained in this map.
1210     * The collection is backed by the map, so changes to the map are
1211     * reflected in the collection, and vice-versa. The collection
1212     * supports element removal, which removes the corresponding
1213     * mapping from this map, via the {@code Iterator.remove},
1214     * {@code Collection.remove}, {@code removeAll},
1215     * {@code retainAll}, and {@code clear} operations. It does not
1216     * support the {@code add} or {@code addAll} operations.
1217     *
1218 jsr166 1.242 * <p>The view's iterators and spliterators are
1219     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 dl 1.222 *
1221 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1222     * and {@link Spliterator#NONNULL}.
1223     *
1224 dl 1.222 * @return the collection view
1225     */
1226     public Collection<V> values() {
1227     ValuesView<K,V> vs;
1228     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1229 tim 1.1 }
1230    
1231 dl 1.99 /**
1232 dl 1.222 * Returns a {@link Set} view of the mappings contained in this map.
1233     * The set is backed by the map, so changes to the map are
1234     * reflected in the set, and vice-versa. The set supports element
1235     * removal, which removes the corresponding mapping from the map,
1236     * via the {@code Iterator.remove}, {@code Set.remove},
1237     * {@code removeAll}, {@code retainAll}, and {@code clear}
1238     * operations.
1239     *
1240 jsr166 1.242 * <p>The view's iterators and spliterators are
1241     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1242 dl 1.222 *
1243 jsr166 1.241 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1244     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1245     *
1246 dl 1.222 * @return the set view
1247 dl 1.119 */
1248 dl 1.222 public Set<Map.Entry<K,V>> entrySet() {
1249     EntrySetView<K,V> es;
1250     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1251 dl 1.99 }
1252    
1253     /**
1254 dl 1.222 * Returns the hash code value for this {@link Map}, i.e.,
1255     * the sum of, for each key-value pair in the map,
1256     * {@code key.hashCode() ^ value.hashCode()}.
1257     *
1258     * @return the hash code value for this map
1259 dl 1.119 */
1260 dl 1.222 public int hashCode() {
1261     int h = 0;
1262     Node<K,V>[] t;
1263     if ((t = table) != null) {
1264     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1265     for (Node<K,V> p; (p = it.advance()) != null; )
1266     h += p.key.hashCode() ^ p.val.hashCode();
1267 dl 1.119 }
1268 dl 1.222 return h;
1269 dl 1.99 }
1270 tim 1.11
1271 dl 1.222 /**
1272     * Returns a string representation of this map. The string
1273     * representation consists of a list of key-value mappings (in no
1274     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1275     * mappings are separated by the characters {@code ", "} (comma
1276     * and space). Each key-value mapping is rendered as the key
1277     * followed by an equals sign ("{@code =}") followed by the
1278     * associated value.
1279     *
1280     * @return a string representation of this map
1281     */
1282     public String toString() {
1283     Node<K,V>[] t;
1284     int f = (t = table) == null ? 0 : t.length;
1285     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1286     StringBuilder sb = new StringBuilder();
1287     sb.append('{');
1288     Node<K,V> p;
1289     if ((p = it.advance()) != null) {
1290 dl 1.210 for (;;) {
1291 dl 1.222 K k = p.key;
1292     V v = p.val;
1293     sb.append(k == this ? "(this Map)" : k);
1294     sb.append('=');
1295     sb.append(v == this ? "(this Map)" : v);
1296     if ((p = it.advance()) == null)
1297 dl 1.210 break;
1298 dl 1.222 sb.append(',').append(' ');
1299 dl 1.119 }
1300     }
1301 dl 1.222 return sb.append('}').toString();
1302 tim 1.1 }
1303    
1304     /**
1305 dl 1.222 * Compares the specified object with this map for equality.
1306     * Returns {@code true} if the given object is a map with the same
1307     * mappings as this map. This operation may return misleading
1308     * results if either map is concurrently modified during execution
1309     * of this method.
1310     *
1311     * @param o object to be compared for equality with this map
1312     * @return {@code true} if the specified object is equal to this map
1313 dl 1.119 */
1314 dl 1.222 public boolean equals(Object o) {
1315     if (o != this) {
1316     if (!(o instanceof Map))
1317     return false;
1318     Map<?,?> m = (Map<?,?>) o;
1319     Node<K,V>[] t;
1320     int f = (t = table) == null ? 0 : t.length;
1321     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1322     for (Node<K,V> p; (p = it.advance()) != null; ) {
1323     V val = p.val;
1324     Object v = m.get(p.key);
1325     if (v == null || (v != val && !v.equals(val)))
1326     return false;
1327 dl 1.119 }
1328 dl 1.222 for (Map.Entry<?,?> e : m.entrySet()) {
1329     Object mk, mv, v;
1330     if ((mk = e.getKey()) == null ||
1331     (mv = e.getValue()) == null ||
1332     (v = get(mk)) == null ||
1333     (mv != v && !mv.equals(v)))
1334     return false;
1335     }
1336     }
1337     return true;
1338     }
1339    
1340     /**
1341     * Stripped-down version of helper class used in previous version,
1342     * declared for the sake of serialization compatibility
1343     */
1344     static class Segment<K,V> extends ReentrantLock implements Serializable {
1345     private static final long serialVersionUID = 2249069246763182397L;
1346     final float loadFactor;
1347     Segment(float lf) { this.loadFactor = lf; }
1348     }
1349    
1350     /**
1351     * Saves the state of the {@code ConcurrentHashMap} instance to a
1352     * stream (i.e., serializes it).
1353     * @param s the stream
1354 jsr166 1.238 * @throws java.io.IOException if an I/O error occurs
1355 dl 1.222 * @serialData
1356     * the key (Object) and value (Object)
1357     * for each key-value mapping, followed by a null pair.
1358     * The key-value mappings are emitted in no particular order.
1359     */
1360     private void writeObject(java.io.ObjectOutputStream s)
1361     throws java.io.IOException {
1362     // For serialization compatibility
1363     // Emulate segment calculation from previous version of this class
1364     int sshift = 0;
1365     int ssize = 1;
1366     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1367     ++sshift;
1368     ssize <<= 1;
1369     }
1370     int segmentShift = 32 - sshift;
1371     int segmentMask = ssize - 1;
1372 dl 1.246 @SuppressWarnings("unchecked")
1373     Segment<K,V>[] segments = (Segment<K,V>[])
1374 dl 1.222 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1375     for (int i = 0; i < segments.length; ++i)
1376     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1377 jsr166 1.270 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1378     streamFields.put("segments", segments);
1379     streamFields.put("segmentShift", segmentShift);
1380     streamFields.put("segmentMask", segmentMask);
1381 dl 1.222 s.writeFields();
1382    
1383     Node<K,V>[] t;
1384     if ((t = table) != null) {
1385     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1386     for (Node<K,V> p; (p = it.advance()) != null; ) {
1387     s.writeObject(p.key);
1388     s.writeObject(p.val);
1389     }
1390     }
1391     s.writeObject(null);
1392     s.writeObject(null);
1393     segments = null; // throw away
1394     }
1395    
1396     /**
1397     * Reconstitutes the instance from a stream (that is, deserializes it).
1398     * @param s the stream
1399 jsr166 1.238 * @throws ClassNotFoundException if the class of a serialized object
1400     * could not be found
1401     * @throws java.io.IOException if an I/O error occurs
1402 dl 1.222 */
1403     private void readObject(java.io.ObjectInputStream s)
1404     throws java.io.IOException, ClassNotFoundException {
1405     /*
1406     * To improve performance in typical cases, we create nodes
1407     * while reading, then place in table once size is known.
1408     * However, we must also validate uniqueness and deal with
1409     * overpopulated bins while doing so, which requires
1410     * specialized versions of putVal mechanics.
1411     */
1412     sizeCtl = -1; // force exclusion for table construction
1413     s.defaultReadObject();
1414     long size = 0L;
1415     Node<K,V> p = null;
1416     for (;;) {
1417 dl 1.246 @SuppressWarnings("unchecked")
1418     K k = (K) s.readObject();
1419     @SuppressWarnings("unchecked")
1420     V v = (V) s.readObject();
1421 dl 1.222 if (k != null && v != null) {
1422     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423     ++size;
1424     }
1425     else
1426     break;
1427     }
1428     if (size == 0L)
1429     sizeCtl = 0;
1430     else {
1431     int n;
1432     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433     n = MAXIMUM_CAPACITY;
1434 dl 1.149 else {
1435 dl 1.222 int sz = (int)size;
1436     n = tableSizeFor(sz + (sz >>> 1) + 1);
1437     }
1438 jsr166 1.245 @SuppressWarnings("unchecked")
1439 dl 1.246 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1440 dl 1.222 int mask = n - 1;
1441     long added = 0L;
1442     while (p != null) {
1443     boolean insertAtFront;
1444     Node<K,V> next = p.next, first;
1445     int h = p.hash, j = h & mask;
1446     if ((first = tabAt(tab, j)) == null)
1447     insertAtFront = true;
1448     else {
1449     K k = p.key;
1450     if (first.hash < 0) {
1451     TreeBin<K,V> t = (TreeBin<K,V>)first;
1452     if (t.putTreeVal(h, k, p.val) == null)
1453     ++added;
1454     insertAtFront = false;
1455     }
1456     else {
1457     int binCount = 0;
1458     insertAtFront = true;
1459     Node<K,V> q; K qk;
1460     for (q = first; q != null; q = q.next) {
1461     if (q.hash == h &&
1462     ((qk = q.key) == k ||
1463     (qk != null && k.equals(qk)))) {
1464     insertAtFront = false;
1465 dl 1.119 break;
1466     }
1467 dl 1.222 ++binCount;
1468     }
1469     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470     insertAtFront = false;
1471     ++added;
1472     p.next = first;
1473     TreeNode<K,V> hd = null, tl = null;
1474     for (q = p; q != null; q = q.next) {
1475     TreeNode<K,V> t = new TreeNode<K,V>
1476     (q.hash, q.key, q.val, null, null);
1477     if ((t.prev = tl) == null)
1478     hd = t;
1479     else
1480     tl.next = t;
1481     tl = t;
1482     }
1483     setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 dl 1.119 }
1485     }
1486     }
1487 dl 1.222 if (insertAtFront) {
1488     ++added;
1489     p.next = first;
1490     setTabAt(tab, j, p);
1491 dl 1.119 }
1492 dl 1.222 p = next;
1493 dl 1.119 }
1494 dl 1.222 table = tab;
1495     sizeCtl = n - (n >>> 2);
1496     baseCount = added;
1497 dl 1.119 }
1498 dl 1.55 }
1499    
1500 dl 1.222 // ConcurrentMap methods
1501    
1502     /**
1503     * {@inheritDoc}
1504     *
1505     * @return the previous value associated with the specified key,
1506     * or {@code null} if there was no mapping for the key
1507     * @throws NullPointerException if the specified key or value is null
1508     */
1509     public V putIfAbsent(K key, V value) {
1510     return putVal(key, value, true);
1511     }
1512    
1513     /**
1514     * {@inheritDoc}
1515     *
1516     * @throws NullPointerException if the specified key is null
1517     */
1518     public boolean remove(Object key, Object value) {
1519     if (key == null)
1520     throw new NullPointerException();
1521     return value != null && replaceNode(key, null, value) != null;
1522     }
1523    
1524     /**
1525     * {@inheritDoc}
1526     *
1527     * @throws NullPointerException if any of the arguments are null
1528     */
1529     public boolean replace(K key, V oldValue, V newValue) {
1530     if (key == null || oldValue == null || newValue == null)
1531     throw new NullPointerException();
1532     return replaceNode(key, newValue, oldValue) != null;
1533     }
1534    
1535     /**
1536     * {@inheritDoc}
1537     *
1538     * @return the previous value associated with the specified key,
1539     * or {@code null} if there was no mapping for the key
1540     * @throws NullPointerException if the specified key or value is null
1541     */
1542     public V replace(K key, V value) {
1543     if (key == null || value == null)
1544     throw new NullPointerException();
1545     return replaceNode(key, value, null);
1546     }
1547    
1548     // Overrides of JDK8+ Map extension method defaults
1549    
1550     /**
1551     * Returns the value to which the specified key is mapped, or the
1552     * given default value if this map contains no mapping for the
1553     * key.
1554     *
1555     * @param key the key whose associated value is to be returned
1556     * @param defaultValue the value to return if this map contains
1557     * no mapping for the given key
1558     * @return the mapping for the key, if present; else the default value
1559     * @throws NullPointerException if the specified key is null
1560 tim 1.1 */
1561 dl 1.222 public V getOrDefault(Object key, V defaultValue) {
1562     V v;
1563     return (v = get(key)) == null ? defaultValue : v;
1564     }
1565 tim 1.1
1566 dl 1.222 public void forEach(BiConsumer<? super K, ? super V> action) {
1567     if (action == null) throw new NullPointerException();
1568     Node<K,V>[] t;
1569     if ((t = table) != null) {
1570     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571     for (Node<K,V> p; (p = it.advance()) != null; ) {
1572     action.accept(p.key, p.val);
1573 dl 1.99 }
1574 dl 1.222 }
1575     }
1576    
1577     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1578     if (function == null) throw new NullPointerException();
1579     Node<K,V>[] t;
1580     if ((t = table) != null) {
1581     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582     for (Node<K,V> p; (p = it.advance()) != null; ) {
1583     V oldValue = p.val;
1584     for (K key = p.key;;) {
1585     V newValue = function.apply(key, oldValue);
1586     if (newValue == null)
1587     throw new NullPointerException();
1588     if (replaceNode(key, newValue, oldValue) != null ||
1589     (oldValue = get(key)) == null)
1590 dl 1.119 break;
1591     }
1592     }
1593 dl 1.45 }
1594 dl 1.21 }
1595    
1596 dl 1.222 /**
1597 jsr166 1.277 * Helper method for EntrySetView.removeIf
1598 dl 1.271 */
1599 jsr166 1.273 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1600 dl 1.271 if (function == null) throw new NullPointerException();
1601     Node<K,V>[] t;
1602     boolean removed = false;
1603     if ((t = table) != null) {
1604     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1605     for (Node<K,V> p; (p = it.advance()) != null; ) {
1606     K k = p.key;
1607     V v = p.val;
1608     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1609     if (function.test(e) && replaceNode(k, null, v) != null)
1610     removed = true;
1611     }
1612     }
1613     return removed;
1614     }
1615    
1616     /**
1617 jsr166 1.277 * Helper method for ValuesView.removeIf
1618 dl 1.272 */
1619 jsr166 1.276 boolean removeValueIf(Predicate<? super V> function) {
1620 dl 1.272 if (function == null) throw new NullPointerException();
1621     Node<K,V>[] t;
1622     boolean removed = false;
1623     if ((t = table) != null) {
1624     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1625     for (Node<K,V> p; (p = it.advance()) != null; ) {
1626     K k = p.key;
1627     V v = p.val;
1628     if (function.test(v) && replaceNode(k, null, v) != null)
1629     removed = true;
1630     }
1631     }
1632     return removed;
1633     }
1634    
1635     /**
1636 dl 1.222 * If the specified key is not already associated with a value,
1637     * attempts to compute its value using the given mapping function
1638     * and enters it into this map unless {@code null}. The entire
1639     * method invocation is performed atomically, so the function is
1640     * applied at most once per key. Some attempted update operations
1641     * on this map by other threads may be blocked while computation
1642     * is in progress, so the computation should be short and simple,
1643     * and must not attempt to update any other mappings of this map.
1644     *
1645     * @param key key with which the specified value is to be associated
1646     * @param mappingFunction the function to compute a value
1647     * @return the current (existing or computed) value associated with
1648     * the specified key, or null if the computed value is null
1649     * @throws NullPointerException if the specified key or mappingFunction
1650     * is null
1651     * @throws IllegalStateException if the computation detectably
1652     * attempts a recursive update to this map that would
1653     * otherwise never complete
1654     * @throws RuntimeException or Error if the mappingFunction does so,
1655     * in which case the mapping is left unestablished
1656     */
1657     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1658     if (key == null || mappingFunction == null)
1659 dl 1.149 throw new NullPointerException();
1660 dl 1.222 int h = spread(key.hashCode());
1661 dl 1.151 V val = null;
1662 dl 1.222 int binCount = 0;
1663 dl 1.210 for (Node<K,V>[] tab = table;;) {
1664 dl 1.222 Node<K,V> f; int n, i, fh;
1665     if (tab == null || (n = tab.length) == 0)
1666 dl 1.119 tab = initTable();
1667 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1668     Node<K,V> r = new ReservationNode<K,V>();
1669     synchronized (r) {
1670     if (casTabAt(tab, i, null, r)) {
1671     binCount = 1;
1672     Node<K,V> node = null;
1673 dl 1.149 try {
1674 dl 1.222 if ((val = mappingFunction.apply(key)) != null)
1675     node = new Node<K,V>(h, key, val, null);
1676 dl 1.149 } finally {
1677 dl 1.222 setTabAt(tab, i, node);
1678 dl 1.119 }
1679     }
1680     }
1681 dl 1.222 if (binCount != 0)
1682 dl 1.119 break;
1683     }
1684 dl 1.222 else if ((fh = f.hash) == MOVED)
1685     tab = helpTransfer(tab, f);
1686 dl 1.119 else {
1687 dl 1.149 boolean added = false;
1688 jsr166 1.150 synchronized (f) {
1689 dl 1.149 if (tabAt(tab, i) == f) {
1690 dl 1.222 if (fh >= 0) {
1691     binCount = 1;
1692     for (Node<K,V> e = f;; ++binCount) {
1693 dl 1.266 K ek;
1694 dl 1.222 if (e.hash == h &&
1695     ((ek = e.key) == key ||
1696     (ek != null && key.equals(ek)))) {
1697     val = e.val;
1698     break;
1699     }
1700     Node<K,V> pred = e;
1701     if ((e = e.next) == null) {
1702     if ((val = mappingFunction.apply(key)) != null) {
1703 dl 1.259 if (pred.next != null)
1704     throw new IllegalStateException("Recursive update");
1705 dl 1.222 added = true;
1706     pred.next = new Node<K,V>(h, key, val, null);
1707     }
1708     break;
1709     }
1710 dl 1.149 }
1711 dl 1.222 }
1712     else if (f instanceof TreeBin) {
1713     binCount = 2;
1714     TreeBin<K,V> t = (TreeBin<K,V>)f;
1715     TreeNode<K,V> r, p;
1716     if ((r = t.root) != null &&
1717     (p = r.findTreeNode(h, key, null)) != null)
1718     val = p.val;
1719     else if ((val = mappingFunction.apply(key)) != null) {
1720     added = true;
1721     t.putTreeVal(h, key, val);
1722 dl 1.119 }
1723     }
1724 dl 1.259 else if (f instanceof ReservationNode)
1725     throw new IllegalStateException("Recursive update");
1726 dl 1.119 }
1727 dl 1.149 }
1728 dl 1.222 if (binCount != 0) {
1729     if (binCount >= TREEIFY_THRESHOLD)
1730     treeifyBin(tab, i);
1731 dl 1.149 if (!added)
1732 dl 1.151 return val;
1733 dl 1.149 break;
1734 dl 1.119 }
1735 dl 1.105 }
1736 dl 1.99 }
1737 dl 1.149 if (val != null)
1738 dl 1.222 addCount(1L, binCount);
1739 dl 1.151 return val;
1740 tim 1.1 }
1741    
1742 dl 1.222 /**
1743     * If the value for the specified key is present, attempts to
1744     * compute a new mapping given the key and its current mapped
1745     * value. The entire method invocation is performed atomically.
1746     * Some attempted update operations on this map by other threads
1747     * may be blocked while computation is in progress, so the
1748     * computation should be short and simple, and must not attempt to
1749     * update any other mappings of this map.
1750     *
1751     * @param key key with which a value may be associated
1752     * @param remappingFunction the function to compute a value
1753     * @return the new value associated with the specified key, or null if none
1754     * @throws NullPointerException if the specified key or remappingFunction
1755     * is null
1756     * @throws IllegalStateException if the computation detectably
1757     * attempts a recursive update to this map that would
1758     * otherwise never complete
1759     * @throws RuntimeException or Error if the remappingFunction does so,
1760     * in which case the mapping is unchanged
1761     */
1762     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1763     if (key == null || remappingFunction == null)
1764 dl 1.149 throw new NullPointerException();
1765 dl 1.222 int h = spread(key.hashCode());
1766 dl 1.151 V val = null;
1767 dl 1.119 int delta = 0;
1768 dl 1.222 int binCount = 0;
1769 dl 1.210 for (Node<K,V>[] tab = table;;) {
1770 dl 1.222 Node<K,V> f; int n, i, fh;
1771     if (tab == null || (n = tab.length) == 0)
1772 dl 1.119 tab = initTable();
1773 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1774     break;
1775     else if ((fh = f.hash) == MOVED)
1776     tab = helpTransfer(tab, f);
1777     else {
1778     synchronized (f) {
1779     if (tabAt(tab, i) == f) {
1780     if (fh >= 0) {
1781     binCount = 1;
1782     for (Node<K,V> e = f, pred = null;; ++binCount) {
1783     K ek;
1784     if (e.hash == h &&
1785     ((ek = e.key) == key ||
1786     (ek != null && key.equals(ek)))) {
1787     val = remappingFunction.apply(key, e.val);
1788     if (val != null)
1789     e.val = val;
1790 dl 1.210 else {
1791 dl 1.222 delta = -1;
1792     Node<K,V> en = e.next;
1793     if (pred != null)
1794     pred.next = en;
1795     else
1796     setTabAt(tab, i, en);
1797 dl 1.210 }
1798 dl 1.222 break;
1799 dl 1.210 }
1800 dl 1.222 pred = e;
1801     if ((e = e.next) == null)
1802     break;
1803 dl 1.119 }
1804     }
1805 dl 1.222 else if (f instanceof TreeBin) {
1806     binCount = 2;
1807     TreeBin<K,V> t = (TreeBin<K,V>)f;
1808     TreeNode<K,V> r, p;
1809     if ((r = t.root) != null &&
1810     (p = r.findTreeNode(h, key, null)) != null) {
1811     val = remappingFunction.apply(key, p.val);
1812 dl 1.119 if (val != null)
1813 dl 1.222 p.val = val;
1814 dl 1.119 else {
1815     delta = -1;
1816 dl 1.222 if (t.removeTreeNode(p))
1817     setTabAt(tab, i, untreeify(t.first));
1818 dl 1.119 }
1819     }
1820     }
1821 dl 1.259 else if (f instanceof ReservationNode)
1822     throw new IllegalStateException("Recursive update");
1823 dl 1.119 }
1824     }
1825 dl 1.222 if (binCount != 0)
1826 dl 1.119 break;
1827     }
1828     }
1829 dl 1.149 if (delta != 0)
1830 dl 1.222 addCount((long)delta, binCount);
1831 dl 1.151 return val;
1832 dl 1.119 }
1833    
1834 dl 1.222 /**
1835     * Attempts to compute a mapping for the specified key and its
1836     * current mapped value (or {@code null} if there is no current
1837     * mapping). The entire method invocation is performed atomically.
1838     * Some attempted update operations on this map by other threads
1839     * may be blocked while computation is in progress, so the
1840     * computation should be short and simple, and must not attempt to
1841     * update any other mappings of this Map.
1842     *
1843     * @param key key with which the specified value is to be associated
1844     * @param remappingFunction the function to compute a value
1845     * @return the new value associated with the specified key, or null if none
1846     * @throws NullPointerException if the specified key or remappingFunction
1847     * is null
1848     * @throws IllegalStateException if the computation detectably
1849     * attempts a recursive update to this map that would
1850     * otherwise never complete
1851     * @throws RuntimeException or Error if the remappingFunction does so,
1852     * in which case the mapping is unchanged
1853     */
1854     public V compute(K key,
1855     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1856     if (key == null || remappingFunction == null)
1857 dl 1.149 throw new NullPointerException();
1858 dl 1.222 int h = spread(key.hashCode());
1859 dl 1.151 V val = null;
1860 dl 1.119 int delta = 0;
1861 dl 1.222 int binCount = 0;
1862 dl 1.210 for (Node<K,V>[] tab = table;;) {
1863 dl 1.222 Node<K,V> f; int n, i, fh;
1864     if (tab == null || (n = tab.length) == 0)
1865 dl 1.119 tab = initTable();
1866 dl 1.222 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1867     Node<K,V> r = new ReservationNode<K,V>();
1868     synchronized (r) {
1869     if (casTabAt(tab, i, null, r)) {
1870     binCount = 1;
1871     Node<K,V> node = null;
1872     try {
1873     if ((val = remappingFunction.apply(key, null)) != null) {
1874     delta = 1;
1875     node = new Node<K,V>(h, key, val, null);
1876     }
1877     } finally {
1878     setTabAt(tab, i, node);
1879     }
1880     }
1881     }
1882     if (binCount != 0)
1883 dl 1.119 break;
1884     }
1885 dl 1.222 else if ((fh = f.hash) == MOVED)
1886     tab = helpTransfer(tab, f);
1887     else {
1888     synchronized (f) {
1889     if (tabAt(tab, i) == f) {
1890     if (fh >= 0) {
1891     binCount = 1;
1892     for (Node<K,V> e = f, pred = null;; ++binCount) {
1893     K ek;
1894     if (e.hash == h &&
1895     ((ek = e.key) == key ||
1896     (ek != null && key.equals(ek)))) {
1897     val = remappingFunction.apply(key, e.val);
1898     if (val != null)
1899     e.val = val;
1900     else {
1901     delta = -1;
1902     Node<K,V> en = e.next;
1903     if (pred != null)
1904     pred.next = en;
1905     else
1906     setTabAt(tab, i, en);
1907     }
1908     break;
1909     }
1910     pred = e;
1911     if ((e = e.next) == null) {
1912     val = remappingFunction.apply(key, null);
1913     if (val != null) {
1914 dl 1.259 if (pred.next != null)
1915     throw new IllegalStateException("Recursive update");
1916 dl 1.222 delta = 1;
1917     pred.next =
1918     new Node<K,V>(h, key, val, null);
1919     }
1920     break;
1921     }
1922     }
1923     }
1924     else if (f instanceof TreeBin) {
1925     binCount = 1;
1926     TreeBin<K,V> t = (TreeBin<K,V>)f;
1927     TreeNode<K,V> r, p;
1928     if ((r = t.root) != null)
1929     p = r.findTreeNode(h, key, null);
1930     else
1931     p = null;
1932     V pv = (p == null) ? null : p.val;
1933     val = remappingFunction.apply(key, pv);
1934 dl 1.119 if (val != null) {
1935     if (p != null)
1936     p.val = val;
1937     else {
1938     delta = 1;
1939 dl 1.222 t.putTreeVal(h, key, val);
1940 dl 1.119 }
1941     }
1942     else if (p != null) {
1943     delta = -1;
1944 dl 1.222 if (t.removeTreeNode(p))
1945     setTabAt(tab, i, untreeify(t.first));
1946 dl 1.119 }
1947     }
1948 dl 1.259 else if (f instanceof ReservationNode)
1949     throw new IllegalStateException("Recursive update");
1950 dl 1.119 }
1951     }
1952 dl 1.222 if (binCount != 0) {
1953     if (binCount >= TREEIFY_THRESHOLD)
1954     treeifyBin(tab, i);
1955     break;
1956 dl 1.119 }
1957 dl 1.105 }
1958 dl 1.99 }
1959 dl 1.149 if (delta != 0)
1960 dl 1.222 addCount((long)delta, binCount);
1961 dl 1.151 return val;
1962 dl 1.119 }
1963    
1964 dl 1.222 /**
1965     * If the specified key is not already associated with a
1966     * (non-null) value, associates it with the given value.
1967     * Otherwise, replaces the value with the results of the given
1968     * remapping function, or removes if {@code null}. The entire
1969     * method invocation is performed atomically. Some attempted
1970     * update operations on this map by other threads may be blocked
1971     * while computation is in progress, so the computation should be
1972     * short and simple, and must not attempt to update any other
1973     * mappings of this Map.
1974     *
1975     * @param key key with which the specified value is to be associated
1976     * @param value the value to use if absent
1977     * @param remappingFunction the function to recompute a value if present
1978     * @return the new value associated with the specified key, or null if none
1979     * @throws NullPointerException if the specified key or the
1980     * remappingFunction is null
1981     * @throws RuntimeException or Error if the remappingFunction does so,
1982     * in which case the mapping is unchanged
1983     */
1984     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1985     if (key == null || value == null || remappingFunction == null)
1986     throw new NullPointerException();
1987     int h = spread(key.hashCode());
1988     V val = null;
1989     int delta = 0;
1990     int binCount = 0;
1991     for (Node<K,V>[] tab = table;;) {
1992     Node<K,V> f; int n, i, fh;
1993     if (tab == null || (n = tab.length) == 0)
1994     tab = initTable();
1995     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1996     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1997     delta = 1;
1998     val = value;
1999 dl 1.119 break;
2000     }
2001 dl 1.222 }
2002     else if ((fh = f.hash) == MOVED)
2003     tab = helpTransfer(tab, f);
2004     else {
2005     synchronized (f) {
2006     if (tabAt(tab, i) == f) {
2007     if (fh >= 0) {
2008     binCount = 1;
2009     for (Node<K,V> e = f, pred = null;; ++binCount) {
2010     K ek;
2011     if (e.hash == h &&
2012     ((ek = e.key) == key ||
2013     (ek != null && key.equals(ek)))) {
2014     val = remappingFunction.apply(e.val, value);
2015     if (val != null)
2016     e.val = val;
2017 dl 1.119 else {
2018 dl 1.222 delta = -1;
2019     Node<K,V> en = e.next;
2020     if (pred != null)
2021     pred.next = en;
2022     else
2023     setTabAt(tab, i, en);
2024 dl 1.119 }
2025 dl 1.222 break;
2026     }
2027     pred = e;
2028     if ((e = e.next) == null) {
2029     delta = 1;
2030     val = value;
2031     pred.next =
2032     new Node<K,V>(h, key, val, null);
2033     break;
2034 dl 1.119 }
2035     }
2036     }
2037 dl 1.222 else if (f instanceof TreeBin) {
2038     binCount = 2;
2039     TreeBin<K,V> t = (TreeBin<K,V>)f;
2040     TreeNode<K,V> r = t.root;
2041     TreeNode<K,V> p = (r == null) ? null :
2042     r.findTreeNode(h, key, null);
2043     val = (p == null) ? value :
2044     remappingFunction.apply(p.val, value);
2045     if (val != null) {
2046     if (p != null)
2047     p.val = val;
2048     else {
2049     delta = 1;
2050     t.putTreeVal(h, key, val);
2051 dl 1.119 }
2052     }
2053 dl 1.222 else if (p != null) {
2054     delta = -1;
2055     if (t.removeTreeNode(p))
2056     setTabAt(tab, i, untreeify(t.first));
2057 dl 1.164 }
2058 dl 1.99 }
2059 dl 1.259 else if (f instanceof ReservationNode)
2060     throw new IllegalStateException("Recursive update");
2061 dl 1.21 }
2062     }
2063 dl 1.222 if (binCount != 0) {
2064     if (binCount >= TREEIFY_THRESHOLD)
2065     treeifyBin(tab, i);
2066     break;
2067     }
2068 dl 1.45 }
2069     }
2070 dl 1.222 if (delta != 0)
2071     addCount((long)delta, binCount);
2072     return val;
2073 tim 1.1 }
2074 dl 1.19
2075 dl 1.222 // Hashtable legacy methods
2076    
2077 dl 1.149 /**
2078 jsr166 1.275 * Tests if some key maps into the specified value in this table.
2079 jsr166 1.250 *
2080 jsr166 1.275 * <p>Note that this method is identical in functionality to
2081 dl 1.222 * {@link #containsValue(Object)}, and exists solely to ensure
2082     * full compatibility with class {@link java.util.Hashtable},
2083 jsr166 1.281 * which supported this method prior to introduction of the
2084     * Java Collections Framework.
2085 dl 1.222 *
2086     * @param value a value to search for
2087     * @return {@code true} if and only if some key maps to the
2088     * {@code value} argument in this table as
2089     * determined by the {@code equals} method;
2090     * {@code false} otherwise
2091     * @throws NullPointerException if the specified value is null
2092 dl 1.149 */
2093 dl 1.246 public boolean contains(Object value) {
2094 dl 1.222 return containsValue(value);
2095 dl 1.149 }
2096    
2097 tim 1.1 /**
2098 dl 1.222 * Returns an enumeration of the keys in this table.
2099     *
2100     * @return an enumeration of the keys in this table
2101     * @see #keySet()
2102 tim 1.1 */
2103 dl 1.222 public Enumeration<K> keys() {
2104     Node<K,V>[] t;
2105     int f = (t = table) == null ? 0 : t.length;
2106     return new KeyIterator<K,V>(t, f, 0, f, this);
2107 tim 1.1 }
2108    
2109     /**
2110 dl 1.222 * Returns an enumeration of the values in this table.
2111     *
2112     * @return an enumeration of the values in this table
2113     * @see #values()
2114     */
2115     public Enumeration<V> elements() {
2116     Node<K,V>[] t;
2117     int f = (t = table) == null ? 0 : t.length;
2118     return new ValueIterator<K,V>(t, f, 0, f, this);
2119     }
2120    
2121     // ConcurrentHashMap-only methods
2122    
2123     /**
2124     * Returns the number of mappings. This method should be used
2125     * instead of {@link #size} because a ConcurrentHashMap may
2126     * contain more mappings than can be represented as an int. The
2127     * value returned is an estimate; the actual count may differ if
2128     * there are concurrent insertions or removals.
2129     *
2130     * @return the number of mappings
2131     * @since 1.8
2132     */
2133     public long mappingCount() {
2134     long n = sumCount();
2135     return (n < 0L) ? 0L : n; // ignore transient negative values
2136     }
2137    
2138     /**
2139     * Creates a new {@link Set} backed by a ConcurrentHashMap
2140     * from the given type to {@code Boolean.TRUE}.
2141     *
2142 jsr166 1.237 * @param <K> the element type of the returned set
2143 dl 1.222 * @return the new set
2144     * @since 1.8
2145     */
2146     public static <K> KeySetView<K,Boolean> newKeySet() {
2147     return new KeySetView<K,Boolean>
2148     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2149     }
2150    
2151     /**
2152     * Creates a new {@link Set} backed by a ConcurrentHashMap
2153     * from the given type to {@code Boolean.TRUE}.
2154     *
2155     * @param initialCapacity The implementation performs internal
2156     * sizing to accommodate this many elements.
2157 jsr166 1.237 * @param <K> the element type of the returned set
2158 jsr166 1.239 * @return the new set
2159 dl 1.222 * @throws IllegalArgumentException if the initial capacity of
2160     * elements is negative
2161     * @since 1.8
2162     */
2163     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2164     return new KeySetView<K,Boolean>
2165     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2166     }
2167    
2168     /**
2169     * Returns a {@link Set} view of the keys in this map, using the
2170     * given common mapped value for any additions (i.e., {@link
2171     * Collection#add} and {@link Collection#addAll(Collection)}).
2172     * This is of course only appropriate if it is acceptable to use
2173     * the same value for all additions from this view.
2174     *
2175     * @param mappedValue the mapped value to use for any additions
2176     * @return the set view
2177     * @throws NullPointerException if the mappedValue is null
2178     */
2179     public KeySetView<K,V> keySet(V mappedValue) {
2180     if (mappedValue == null)
2181     throw new NullPointerException();
2182     return new KeySetView<K,V>(this, mappedValue);
2183     }
2184    
2185     /* ---------------- Special Nodes -------------- */
2186    
2187     /**
2188     * A node inserted at head of bins during transfer operations.
2189     */
2190     static final class ForwardingNode<K,V> extends Node<K,V> {
2191     final Node<K,V>[] nextTable;
2192     ForwardingNode(Node<K,V>[] tab) {
2193     super(MOVED, null, null, null);
2194     this.nextTable = tab;
2195     }
2196    
2197     Node<K,V> find(int h, Object k) {
2198 dl 1.234 // loop to avoid arbitrarily deep recursion on forwarding nodes
2199     outer: for (Node<K,V>[] tab = nextTable;;) {
2200     Node<K,V> e; int n;
2201     if (k == null || tab == null || (n = tab.length) == 0 ||
2202     (e = tabAt(tab, (n - 1) & h)) == null)
2203     return null;
2204     for (;;) {
2205 dl 1.222 int eh; K ek;
2206     if ((eh = e.hash) == h &&
2207     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2208     return e;
2209 dl 1.234 if (eh < 0) {
2210     if (e instanceof ForwardingNode) {
2211     tab = ((ForwardingNode<K,V>)e).nextTable;
2212     continue outer;
2213     }
2214     else
2215     return e.find(h, k);
2216     }
2217     if ((e = e.next) == null)
2218     return null;
2219     }
2220 dl 1.222 }
2221     }
2222     }
2223    
2224     /**
2225     * A place-holder node used in computeIfAbsent and compute
2226     */
2227     static final class ReservationNode<K,V> extends Node<K,V> {
2228     ReservationNode() {
2229     super(RESERVED, null, null, null);
2230     }
2231    
2232     Node<K,V> find(int h, Object k) {
2233     return null;
2234     }
2235     }
2236    
2237     /* ---------------- Table Initialization and Resizing -------------- */
2238    
2239     /**
2240 dl 1.252 * Returns the stamp bits for resizing a table of size n.
2241     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2242     */
2243     static final int resizeStamp(int n) {
2244 jsr166 1.254 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2245 dl 1.252 }
2246    
2247     /**
2248 dl 1.222 * Initializes table, using the size recorded in sizeCtl.
2249 dl 1.119 */
2250 dl 1.210 private final Node<K,V>[] initTable() {
2251     Node<K,V>[] tab; int sc;
2252 dl 1.222 while ((tab = table) == null || tab.length == 0) {
2253 dl 1.119 if ((sc = sizeCtl) < 0)
2254     Thread.yield(); // lost initialization race; just spin
2255 dl 1.149 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2256 dl 1.119 try {
2257 dl 1.222 if ((tab = table) == null || tab.length == 0) {
2258 dl 1.119 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2259 jsr166 1.245 @SuppressWarnings("unchecked")
2260 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2261 dl 1.222 table = tab = nt;
2262 dl 1.119 sc = n - (n >>> 2);
2263     }
2264     } finally {
2265     sizeCtl = sc;
2266     }
2267     break;
2268     }
2269     }
2270     return tab;
2271 dl 1.4 }
2272    
2273     /**
2274 dl 1.149 * Adds to count, and if table is too small and not already
2275     * resizing, initiates transfer. If already resizing, helps
2276     * perform transfer if work is available. Rechecks occupancy
2277     * after a transfer to see if another resize is already needed
2278     * because resizings are lagging additions.
2279     *
2280     * @param x the count to add
2281     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2282     */
2283     private final void addCount(long x, int check) {
2284 dl 1.222 CounterCell[] as; long b, s;
2285 dl 1.149 if ((as = counterCells) != null ||
2286     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2287 dl 1.222 CounterCell a; long v; int m;
2288 dl 1.149 boolean uncontended = true;
2289 dl 1.160 if (as == null || (m = as.length - 1) < 0 ||
2290     (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2291 dl 1.149 !(uncontended =
2292     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2293 dl 1.160 fullAddCount(x, uncontended);
2294 dl 1.149 return;
2295     }
2296     if (check <= 1)
2297     return;
2298     s = sumCount();
2299     }
2300     if (check >= 0) {
2301 dl 1.252 Node<K,V>[] tab, nt; int n, sc;
2302 dl 1.149 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2303 dl 1.252 (n = tab.length) < MAXIMUM_CAPACITY) {
2304     int rs = resizeStamp(n);
2305 dl 1.149 if (sc < 0) {
2306 dl 1.252 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2307 jsr166 1.254 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2308     transferIndex <= 0)
2309 dl 1.149 break;
2310 dl 1.252 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2311 dl 1.149 transfer(tab, nt);
2312 dl 1.119 }
2313 dl 1.252 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2314 jsr166 1.254 (rs << RESIZE_STAMP_SHIFT) + 2))
2315 dl 1.149 transfer(tab, null);
2316     s = sumCount();
2317 dl 1.119 }
2318     }
2319 dl 1.4 }
2320    
2321     /**
2322 dl 1.222 * Helps transfer if a resize is in progress.
2323     */
2324     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2325     Node<K,V>[] nextTab; int sc;
2326 dl 1.252 if (tab != null && (f instanceof ForwardingNode) &&
2327 dl 1.222 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2328 jsr166 1.254 int rs = resizeStamp(tab.length);
2329 dl 1.252 while (nextTab == nextTable && table == tab &&
2330 jsr166 1.254 (sc = sizeCtl) < 0) {
2331     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2332 dl 1.252 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2333 jsr166 1.254 break;
2334     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2335 dl 1.246 transfer(tab, nextTab);
2336     break;
2337     }
2338     }
2339 dl 1.222 return nextTab;
2340     }
2341     return table;
2342     }
2343    
2344     /**
2345 dl 1.119 * Tries to presize table to accommodate the given number of elements.
2346 tim 1.1 *
2347 dl 1.119 * @param size number of elements (doesn't need to be perfectly accurate)
2348 tim 1.1 */
2349 dl 1.210 private final void tryPresize(int size) {
2350 dl 1.119 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2351     tableSizeFor(size + (size >>> 1) + 1);
2352     int sc;
2353     while ((sc = sizeCtl) >= 0) {
2354 dl 1.210 Node<K,V>[] tab = table; int n;
2355 dl 1.119 if (tab == null || (n = tab.length) == 0) {
2356     n = (sc > c) ? sc : c;
2357 dl 1.149 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2358 dl 1.119 try {
2359     if (table == tab) {
2360 jsr166 1.245 @SuppressWarnings("unchecked")
2361 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2362 dl 1.222 table = nt;
2363 dl 1.119 sc = n - (n >>> 2);
2364     }
2365     } finally {
2366     sizeCtl = sc;
2367     }
2368     }
2369     }
2370     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2371     break;
2372 dl 1.252 else if (tab == table) {
2373     int rs = resizeStamp(n);
2374 dl 1.258 if (U.compareAndSwapInt(this, SIZECTL, sc,
2375     (rs << RESIZE_STAMP_SHIFT) + 2))
2376 dl 1.252 transfer(tab, null);
2377     }
2378 dl 1.119 }
2379 dl 1.4 }
2380    
2381 jsr166 1.170 /**
2382 dl 1.119 * Moves and/or copies the nodes in each bin to new table. See
2383     * above for explanation.
2384 dl 1.4 */
2385 dl 1.210 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2386 dl 1.149 int n = tab.length, stride;
2387     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2388     stride = MIN_TRANSFER_STRIDE; // subdivide range
2389     if (nextTab == null) { // initiating
2390     try {
2391 jsr166 1.245 @SuppressWarnings("unchecked")
2392 dl 1.246 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2393 dl 1.222 nextTab = nt;
2394 jsr166 1.150 } catch (Throwable ex) { // try to cope with OOME
2395 dl 1.149 sizeCtl = Integer.MAX_VALUE;
2396     return;
2397     }
2398     nextTable = nextTab;
2399     transferIndex = n;
2400     }
2401     int nextn = nextTab.length;
2402 dl 1.222 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2403 dl 1.149 boolean advance = true;
2404 dl 1.234 boolean finishing = false; // to ensure sweep before committing nextTab
2405 dl 1.149 for (int i = 0, bound = 0;;) {
2406 dl 1.246 Node<K,V> f; int fh;
2407 dl 1.149 while (advance) {
2408 dl 1.246 int nextIndex, nextBound;
2409 dl 1.234 if (--i >= bound || finishing)
2410 dl 1.149 advance = false;
2411 dl 1.246 else if ((nextIndex = transferIndex) <= 0) {
2412 dl 1.149 i = -1;
2413     advance = false;
2414     }
2415     else if (U.compareAndSwapInt
2416     (this, TRANSFERINDEX, nextIndex,
2417 jsr166 1.150 nextBound = (nextIndex > stride ?
2418 dl 1.149 nextIndex - stride : 0))) {
2419     bound = nextBound;
2420     i = nextIndex - 1;
2421     advance = false;
2422     }
2423     }
2424     if (i < 0 || i >= n || i + n >= nextn) {
2425 dl 1.246 int sc;
2426 dl 1.234 if (finishing) {
2427     nextTable = null;
2428     table = nextTab;
2429     sizeCtl = (n << 1) - (n >>> 1);
2430     return;
2431     }
2432 dl 1.252 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2433 dl 1.255 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2434 dl 1.246 return;
2435     finishing = advance = true;
2436     i = n; // recheck before commit
2437 dl 1.149 }
2438     }
2439 dl 1.246 else if ((f = tabAt(tab, i)) == null)
2440     advance = casTabAt(tab, i, null, fwd);
2441 dl 1.222 else if ((fh = f.hash) == MOVED)
2442     advance = true; // already processed
2443     else {
2444 jsr166 1.150 synchronized (f) {
2445 dl 1.149 if (tabAt(tab, i) == f) {
2446 dl 1.222 Node<K,V> ln, hn;
2447     if (fh >= 0) {
2448     int runBit = fh & n;
2449     Node<K,V> lastRun = f;
2450     for (Node<K,V> p = f.next; p != null; p = p.next) {
2451     int b = p.hash & n;
2452     if (b != runBit) {
2453     runBit = b;
2454     lastRun = p;
2455     }
2456     }
2457     if (runBit == 0) {
2458     ln = lastRun;
2459     hn = null;
2460     }
2461     else {
2462     hn = lastRun;
2463     ln = null;
2464 dl 1.149 }
2465 dl 1.222 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2466     int ph = p.hash; K pk = p.key; V pv = p.val;
2467     if ((ph & n) == 0)
2468     ln = new Node<K,V>(ph, pk, pv, ln);
2469 dl 1.210 else
2470 dl 1.222 hn = new Node<K,V>(ph, pk, pv, hn);
2471 dl 1.149 }
2472 dl 1.233 setTabAt(nextTab, i, ln);
2473     setTabAt(nextTab, i + n, hn);
2474     setTabAt(tab, i, fwd);
2475     advance = true;
2476 dl 1.222 }
2477     else if (f instanceof TreeBin) {
2478     TreeBin<K,V> t = (TreeBin<K,V>)f;
2479     TreeNode<K,V> lo = null, loTail = null;
2480     TreeNode<K,V> hi = null, hiTail = null;
2481     int lc = 0, hc = 0;
2482     for (Node<K,V> e = t.first; e != null; e = e.next) {
2483     int h = e.hash;
2484     TreeNode<K,V> p = new TreeNode<K,V>
2485     (h, e.key, e.val, null, null);
2486     if ((h & n) == 0) {
2487     if ((p.prev = loTail) == null)
2488     lo = p;
2489     else
2490     loTail.next = p;
2491     loTail = p;
2492     ++lc;
2493 dl 1.210 }
2494 dl 1.222 else {
2495     if ((p.prev = hiTail) == null)
2496     hi = p;
2497     else
2498     hiTail.next = p;
2499     hiTail = p;
2500     ++hc;
2501 dl 1.210 }
2502 dl 1.149 }
2503 jsr166 1.228 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2504     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2505     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2506     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2507 dl 1.233 setTabAt(nextTab, i, ln);
2508     setTabAt(nextTab, i + n, hn);
2509     setTabAt(tab, i, fwd);
2510     advance = true;
2511 dl 1.149 }
2512 dl 1.119 }
2513     }
2514     }
2515     }
2516 dl 1.4 }
2517 tim 1.1
2518 dl 1.149 /* ---------------- Counter support -------------- */
2519    
2520 dl 1.222 /**
2521     * A padded cell for distributing counts. Adapted from LongAdder
2522     * and Striped64. See their internal docs for explanation.
2523     */
2524     @sun.misc.Contended static final class CounterCell {
2525     volatile long value;
2526     CounterCell(long x) { value = x; }
2527     }
2528    
2529 dl 1.149 final long sumCount() {
2530 dl 1.222 CounterCell[] as = counterCells; CounterCell a;
2531 dl 1.149 long sum = baseCount;
2532     if (as != null) {
2533     for (int i = 0; i < as.length; ++i) {
2534     if ((a = as[i]) != null)
2535     sum += a.value;
2536 dl 1.119 }
2537     }
2538 dl 1.149 return sum;
2539 dl 1.119 }
2540    
2541 dl 1.149 // See LongAdder version for explanation
2542 dl 1.160 private final void fullAddCount(long x, boolean wasUncontended) {
2543 dl 1.149 int h;
2544 dl 1.160 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2545     ThreadLocalRandom.localInit(); // force initialization
2546     h = ThreadLocalRandom.getProbe();
2547     wasUncontended = true;
2548 dl 1.119 }
2549 dl 1.149 boolean collide = false; // True if last slot nonempty
2550     for (;;) {
2551 dl 1.222 CounterCell[] as; CounterCell a; int n; long v;
2552 dl 1.149 if ((as = counterCells) != null && (n = as.length) > 0) {
2553     if ((a = as[(n - 1) & h]) == null) {
2554 dl 1.153 if (cellsBusy == 0) { // Try to attach new Cell
2555 dl 1.222 CounterCell r = new CounterCell(x); // Optimistic create
2556 dl 1.153 if (cellsBusy == 0 &&
2557     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2558 dl 1.149 boolean created = false;
2559     try { // Recheck under lock
2560 dl 1.222 CounterCell[] rs; int m, j;
2561 dl 1.149 if ((rs = counterCells) != null &&
2562     (m = rs.length) > 0 &&
2563     rs[j = (m - 1) & h] == null) {
2564     rs[j] = r;
2565     created = true;
2566 dl 1.128 }
2567 dl 1.149 } finally {
2568 dl 1.153 cellsBusy = 0;
2569 dl 1.119 }
2570 dl 1.149 if (created)
2571     break;
2572     continue; // Slot is now non-empty
2573     }
2574     }
2575     collide = false;
2576     }
2577     else if (!wasUncontended) // CAS already known to fail
2578     wasUncontended = true; // Continue after rehash
2579     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2580     break;
2581     else if (counterCells != as || n >= NCPU)
2582     collide = false; // At max size or stale
2583     else if (!collide)
2584     collide = true;
2585 dl 1.153 else if (cellsBusy == 0 &&
2586     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2587 dl 1.149 try {
2588     if (counterCells == as) {// Expand table unless stale
2589 dl 1.222 CounterCell[] rs = new CounterCell[n << 1];
2590 dl 1.149 for (int i = 0; i < n; ++i)
2591     rs[i] = as[i];
2592     counterCells = rs;
2593 dl 1.119 }
2594     } finally {
2595 dl 1.153 cellsBusy = 0;
2596 dl 1.119 }
2597 dl 1.149 collide = false;
2598     continue; // Retry with expanded table
2599 dl 1.119 }
2600 dl 1.160 h = ThreadLocalRandom.advanceProbe(h);
2601 dl 1.149 }
2602 dl 1.153 else if (cellsBusy == 0 && counterCells == as &&
2603     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2604 dl 1.149 boolean init = false;
2605     try { // Initialize table
2606     if (counterCells == as) {
2607 dl 1.222 CounterCell[] rs = new CounterCell[2];
2608     rs[h & 1] = new CounterCell(x);
2609 dl 1.149 counterCells = rs;
2610     init = true;
2611 dl 1.119 }
2612     } finally {
2613 dl 1.153 cellsBusy = 0;
2614 dl 1.119 }
2615 dl 1.149 if (init)
2616     break;
2617 dl 1.119 }
2618 dl 1.149 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2619     break; // Fall back on using base
2620 dl 1.119 }
2621     }
2622    
2623 dl 1.222 /* ---------------- Conversion from/to TreeBins -------------- */
2624 dl 1.119
2625     /**
2626 dl 1.222 * Replaces all linked nodes in bin at given index unless table is
2627     * too small, in which case resizes instead.
2628 dl 1.119 */
2629 dl 1.222 private final void treeifyBin(Node<K,V>[] tab, int index) {
2630 jsr166 1.267 Node<K,V> b; int n;
2631 dl 1.222 if (tab != null) {
2632 dl 1.252 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2633     tryPresize(n << 1);
2634 dl 1.233 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2635 jsr166 1.223 synchronized (b) {
2636 dl 1.222 if (tabAt(tab, index) == b) {
2637     TreeNode<K,V> hd = null, tl = null;
2638     for (Node<K,V> e = b; e != null; e = e.next) {
2639     TreeNode<K,V> p =
2640     new TreeNode<K,V>(e.hash, e.key, e.val,
2641     null, null);
2642     if ((p.prev = tl) == null)
2643     hd = p;
2644     else
2645     tl.next = p;
2646     tl = p;
2647     }
2648     setTabAt(tab, index, new TreeBin<K,V>(hd));
2649 dl 1.210 }
2650     }
2651     }
2652     }
2653     }
2654    
2655     /**
2656 jsr166 1.229 * Returns a list on non-TreeNodes replacing those in given list.
2657 dl 1.210 */
2658 dl 1.222 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2659     Node<K,V> hd = null, tl = null;
2660     for (Node<K,V> q = b; q != null; q = q.next) {
2661     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2662     if (tl == null)
2663     hd = p;
2664     else
2665     tl.next = p;
2666     tl = p;
2667 dl 1.210 }
2668 dl 1.222 return hd;
2669     }
2670 dl 1.210
2671 dl 1.222 /* ---------------- TreeNodes -------------- */
2672    
2673     /**
2674     * Nodes for use in TreeBins
2675     */
2676     static final class TreeNode<K,V> extends Node<K,V> {
2677     TreeNode<K,V> parent; // red-black tree links
2678     TreeNode<K,V> left;
2679     TreeNode<K,V> right;
2680     TreeNode<K,V> prev; // needed to unlink next upon deletion
2681     boolean red;
2682 dl 1.210
2683 dl 1.222 TreeNode(int hash, K key, V val, Node<K,V> next,
2684     TreeNode<K,V> parent) {
2685     super(hash, key, val, next);
2686     this.parent = parent;
2687 dl 1.210 }
2688    
2689 dl 1.222 Node<K,V> find(int h, Object k) {
2690     return findTreeNode(h, k, null);
2691 dl 1.210 }
2692    
2693 dl 1.222 /**
2694     * Returns the TreeNode (or null if not found) for the given key
2695     * starting at given root.
2696     */
2697     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2698 dl 1.224 if (k != null) {
2699     TreeNode<K,V> p = this;
2700 jsr166 1.256 do {
2701 dl 1.224 int ph, dir; K pk; TreeNode<K,V> q;
2702     TreeNode<K,V> pl = p.left, pr = p.right;
2703     if ((ph = p.hash) > h)
2704     p = pl;
2705     else if (ph < h)
2706     p = pr;
2707     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2708     return p;
2709 dl 1.240 else if (pl == null)
2710     p = pr;
2711     else if (pr == null)
2712     p = pl;
2713 jsr166 1.225 else if ((kc != null ||
2714 dl 1.224 (kc = comparableClassFor(k)) != null) &&
2715     (dir = compareComparables(kc, k, pk)) != 0)
2716     p = (dir < 0) ? pl : pr;
2717 dl 1.240 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2718     return q;
2719     else
2720 dl 1.224 p = pl;
2721     } while (p != null);
2722     }
2723 dl 1.222 return null;
2724 dl 1.210 }
2725     }
2726 dl 1.192
2727 dl 1.222 /* ---------------- TreeBins -------------- */
2728 dl 1.119
2729 dl 1.222 /**
2730     * TreeNodes used at the heads of bins. TreeBins do not hold user
2731     * keys or values, but instead point to list of TreeNodes and
2732     * their root. They also maintain a parasitic read-write lock
2733     * forcing writers (who hold bin lock) to wait for readers (who do
2734     * not) to complete before tree restructuring operations.
2735     */
2736     static final class TreeBin<K,V> extends Node<K,V> {
2737     TreeNode<K,V> root;
2738     volatile TreeNode<K,V> first;
2739     volatile Thread waiter;
2740     volatile int lockState;
2741 dl 1.224 // values for lockState
2742     static final int WRITER = 1; // set while holding write lock
2743     static final int WAITER = 2; // set when waiting for write lock
2744     static final int READER = 4; // increment value for setting read lock
2745 dl 1.119
2746 dl 1.222 /**
2747 dl 1.240 * Tie-breaking utility for ordering insertions when equal
2748     * hashCodes and non-comparable. We don't require a total
2749     * order, just a consistent insertion rule to maintain
2750     * equivalence across rebalancings. Tie-breaking further than
2751     * necessary simplifies testing a bit.
2752     */
2753     static int tieBreakOrder(Object a, Object b) {
2754     int d;
2755     if (a == null || b == null ||
2756     (d = a.getClass().getName().
2757     compareTo(b.getClass().getName())) == 0)
2758     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2759     -1 : 1);
2760     return d;
2761     }
2762    
2763     /**
2764 dl 1.222 * Creates bin with initial set of nodes headed by b.
2765     */
2766     TreeBin(TreeNode<K,V> b) {
2767     super(TREEBIN, null, null, null);
2768 dl 1.224 this.first = b;
2769 dl 1.222 TreeNode<K,V> r = null;
2770     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2771     next = (TreeNode<K,V>)x.next;
2772     x.left = x.right = null;
2773     if (r == null) {
2774     x.parent = null;
2775     x.red = false;
2776     r = x;
2777     }
2778     else {
2779 dl 1.240 K k = x.key;
2780     int h = x.hash;
2781 dl 1.222 Class<?> kc = null;
2782     for (TreeNode<K,V> p = r;;) {
2783     int dir, ph;
2784 dl 1.240 K pk = p.key;
2785     if ((ph = p.hash) > h)
2786 dl 1.222 dir = -1;
2787 dl 1.240 else if (ph < h)
2788 dl 1.222 dir = 1;
2789 dl 1.240 else if ((kc == null &&
2790     (kc = comparableClassFor(k)) == null) ||
2791     (dir = compareComparables(kc, k, pk)) == 0)
2792     dir = tieBreakOrder(k, pk);
2793 jsr166 1.260 TreeNode<K,V> xp = p;
2794 dl 1.222 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2795     x.parent = xp;
2796     if (dir <= 0)
2797     xp.left = x;
2798     else
2799     xp.right = x;
2800     r = balanceInsertion(r, x);
2801     break;
2802     }
2803     }
2804     }
2805     }
2806 dl 1.224 this.root = r;
2807 dl 1.240 assert checkInvariants(root);
2808 dl 1.222 }
2809 dl 1.210
2810 dl 1.222 /**
2811 jsr166 1.229 * Acquires write lock for tree restructuring.
2812 dl 1.222 */
2813     private final void lockRoot() {
2814     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2815     contendedLock(); // offload to separate method
2816 dl 1.153 }
2817    
2818 dl 1.222 /**
2819 jsr166 1.229 * Releases write lock for tree restructuring.
2820 dl 1.222 */
2821     private final void unlockRoot() {
2822     lockState = 0;
2823 dl 1.191 }
2824    
2825 dl 1.222 /**
2826 jsr166 1.229 * Possibly blocks awaiting root lock.
2827 dl 1.222 */
2828     private final void contendedLock() {
2829     boolean waiting = false;
2830     for (int s;;) {
2831 dl 1.252 if (((s = lockState) & ~WAITER) == 0) {
2832 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2833     if (waiting)
2834     waiter = null;
2835     return;
2836     }
2837     }
2838 dl 1.244 else if ((s & WAITER) == 0) {
2839 dl 1.222 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2840     waiting = true;
2841     waiter = Thread.currentThread();
2842     }
2843     }
2844     else if (waiting)
2845     LockSupport.park(this);
2846     }
2847 dl 1.192 }
2848    
2849 dl 1.222 /**
2850     * Returns matching node or null if none. Tries to search
2851 jsr166 1.232 * using tree comparisons from root, but continues linear
2852 dl 1.222 * search when lock not available.
2853     */
2854     final Node<K,V> find(int h, Object k) {
2855     if (k != null) {
2856 dl 1.253 for (Node<K,V> e = first; e != null; ) {
2857 dl 1.222 int s; K ek;
2858     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2859     if (e.hash == h &&
2860     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2861     return e;
2862 dl 1.253 e = e.next;
2863 dl 1.222 }
2864     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2865     s + READER)) {
2866     TreeNode<K,V> r, p;
2867     try {
2868     p = ((r = root) == null ? null :
2869     r.findTreeNode(h, k, null));
2870     } finally {
2871     Thread w;
2872     if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2873     (READER|WAITER) && (w = waiter) != null)
2874     LockSupport.unpark(w);
2875     }
2876     return p;
2877     }
2878     }
2879     }
2880     return null;
2881 dl 1.192 }
2882    
2883 dl 1.222 /**
2884     * Finds or adds a node.
2885     * @return null if added
2886     */
2887     final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2888     Class<?> kc = null;
2889 dl 1.240 boolean searched = false;
2890 dl 1.224 for (TreeNode<K,V> p = root;;) {
2891 dl 1.240 int dir, ph; K pk;
2892 dl 1.224 if (p == null) {
2893     first = root = new TreeNode<K,V>(h, k, v, null, null);
2894     break;
2895     }
2896     else if ((ph = p.hash) > h)
2897 dl 1.222 dir = -1;
2898     else if (ph < h)
2899     dir = 1;
2900     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2901     return p;
2902     else if ((kc == null &&
2903     (kc = comparableClassFor(k)) == null) ||
2904     (dir = compareComparables(kc, k, pk)) == 0) {
2905 dl 1.240 if (!searched) {
2906     TreeNode<K,V> q, ch;
2907     searched = true;
2908     if (((ch = p.left) != null &&
2909     (q = ch.findTreeNode(h, k, kc)) != null) ||
2910     ((ch = p.right) != null &&
2911     (q = ch.findTreeNode(h, k, kc)) != null))
2912     return q;
2913     }
2914     dir = tieBreakOrder(k, pk);
2915 dl 1.222 }
2916 dl 1.240
2917 dl 1.222 TreeNode<K,V> xp = p;
2918 dl 1.240 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2919 dl 1.222 TreeNode<K,V> x, f = first;
2920     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2921     if (f != null)
2922     f.prev = x;
2923 dl 1.240 if (dir <= 0)
2924 dl 1.222 xp.left = x;
2925     else
2926     xp.right = x;
2927     if (!xp.red)
2928     x.red = true;
2929     else {
2930     lockRoot();
2931     try {
2932     root = balanceInsertion(root, x);
2933     } finally {
2934     unlockRoot();
2935     }
2936     }
2937 dl 1.224 break;
2938 dl 1.222 }
2939     }
2940 dl 1.224 assert checkInvariants(root);
2941     return null;
2942 dl 1.192 }
2943    
2944 dl 1.222 /**
2945     * Removes the given node, that must be present before this
2946     * call. This is messier than typical red-black deletion code
2947     * because we cannot swap the contents of an interior node
2948     * with a leaf successor that is pinned by "next" pointers
2949     * that are accessible independently of lock. So instead we
2950     * swap the tree linkages.
2951     *
2952 jsr166 1.230 * @return true if now too small, so should be untreeified
2953 dl 1.222 */
2954     final boolean removeTreeNode(TreeNode<K,V> p) {
2955     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2956     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2957     TreeNode<K,V> r, rl;
2958     if (pred == null)
2959     first = next;
2960     else
2961     pred.next = next;
2962     if (next != null)
2963     next.prev = pred;
2964     if (first == null) {
2965     root = null;
2966     return true;
2967     }
2968 dl 1.224 if ((r = root) == null || r.right == null || // too small
2969 dl 1.222 (rl = r.left) == null || rl.left == null)
2970     return true;
2971     lockRoot();
2972     try {
2973     TreeNode<K,V> replacement;
2974     TreeNode<K,V> pl = p.left;
2975     TreeNode<K,V> pr = p.right;
2976     if (pl != null && pr != null) {
2977     TreeNode<K,V> s = pr, sl;
2978     while ((sl = s.left) != null) // find successor
2979     s = sl;
2980     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2981     TreeNode<K,V> sr = s.right;
2982     TreeNode<K,V> pp = p.parent;
2983     if (s == pr) { // p was s's direct parent
2984     p.parent = s;
2985     s.right = p;
2986     }
2987     else {
2988     TreeNode<K,V> sp = s.parent;
2989     if ((p.parent = sp) != null) {
2990     if (s == sp.left)
2991     sp.left = p;
2992     else
2993     sp.right = p;
2994     }
2995     if ((s.right = pr) != null)
2996     pr.parent = s;
2997     }
2998     p.left = null;
2999     if ((p.right = sr) != null)
3000     sr.parent = p;
3001     if ((s.left = pl) != null)
3002     pl.parent = s;
3003     if ((s.parent = pp) == null)
3004     r = s;
3005     else if (p == pp.left)
3006     pp.left = s;
3007     else
3008     pp.right = s;
3009     if (sr != null)
3010     replacement = sr;
3011     else
3012     replacement = p;
3013     }
3014     else if (pl != null)
3015     replacement = pl;
3016     else if (pr != null)
3017     replacement = pr;
3018     else
3019     replacement = p;
3020     if (replacement != p) {
3021     TreeNode<K,V> pp = replacement.parent = p.parent;
3022     if (pp == null)
3023     r = replacement;
3024     else if (p == pp.left)
3025     pp.left = replacement;
3026     else
3027     pp.right = replacement;
3028     p.left = p.right = p.parent = null;
3029     }
3030    
3031     root = (p.red) ? r : balanceDeletion(r, replacement);
3032    
3033     if (p == replacement) { // detach pointers
3034     TreeNode<K,V> pp;
3035     if ((pp = p.parent) != null) {
3036     if (p == pp.left)
3037     pp.left = null;
3038     else if (p == pp.right)
3039     pp.right = null;
3040     p.parent = null;
3041     }
3042     }
3043     } finally {
3044     unlockRoot();
3045     }
3046 dl 1.224 assert checkInvariants(root);
3047 dl 1.222 return false;
3048 dl 1.210 }
3049    
3050 dl 1.222 /* ------------------------------------------------------------ */
3051     // Red-black tree methods, all adapted from CLR
3052 dl 1.210
3053 dl 1.222 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3054     TreeNode<K,V> p) {
3055 dl 1.224 TreeNode<K,V> r, pp, rl;
3056     if (p != null && (r = p.right) != null) {
3057 dl 1.222 if ((rl = p.right = r.left) != null)
3058     rl.parent = p;
3059     if ((pp = r.parent = p.parent) == null)
3060     (root = r).red = false;
3061     else if (pp.left == p)
3062     pp.left = r;
3063     else
3064     pp.right = r;
3065     r.left = p;
3066     p.parent = r;
3067     }
3068     return root;
3069 dl 1.119 }
3070    
3071 dl 1.222 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3072     TreeNode<K,V> p) {
3073 dl 1.224 TreeNode<K,V> l, pp, lr;
3074     if (p != null && (l = p.left) != null) {
3075 dl 1.222 if ((lr = p.left = l.right) != null)
3076     lr.parent = p;
3077     if ((pp = l.parent = p.parent) == null)
3078     (root = l).red = false;
3079     else if (pp.right == p)
3080     pp.right = l;
3081     else
3082     pp.left = l;
3083     l.right = p;
3084     p.parent = l;
3085     }
3086     return root;
3087 dl 1.119 }
3088    
3089 dl 1.222 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3090     TreeNode<K,V> x) {
3091     x.red = true;
3092     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3093     if ((xp = x.parent) == null) {
3094     x.red = false;
3095     return x;
3096     }
3097     else if (!xp.red || (xpp = xp.parent) == null)
3098     return root;
3099     if (xp == (xppl = xpp.left)) {
3100     if ((xppr = xpp.right) != null && xppr.red) {
3101     xppr.red = false;
3102     xp.red = false;
3103     xpp.red = true;
3104     x = xpp;
3105     }
3106     else {
3107     if (x == xp.right) {
3108     root = rotateLeft(root, x = xp);
3109     xpp = (xp = x.parent) == null ? null : xp.parent;
3110     }
3111     if (xp != null) {
3112     xp.red = false;
3113     if (xpp != null) {
3114     xpp.red = true;
3115     root = rotateRight(root, xpp);
3116     }
3117     }
3118     }
3119     }
3120     else {
3121     if (xppl != null && xppl.red) {
3122     xppl.red = false;
3123     xp.red = false;
3124     xpp.red = true;
3125     x = xpp;
3126     }
3127     else {
3128     if (x == xp.left) {
3129     root = rotateRight(root, x = xp);
3130     xpp = (xp = x.parent) == null ? null : xp.parent;
3131     }
3132     if (xp != null) {
3133     xp.red = false;
3134     if (xpp != null) {
3135     xpp.red = true;
3136     root = rotateLeft(root, xpp);
3137     }
3138     }
3139     }
3140     }
3141     }
3142 dl 1.119 }
3143    
3144 dl 1.222 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3145     TreeNode<K,V> x) {
3146 jsr166 1.256 for (TreeNode<K,V> xp, xpl, xpr;;) {
3147 dl 1.222 if (x == null || x == root)
3148     return root;
3149     else if ((xp = x.parent) == null) {
3150     x.red = false;
3151     return x;
3152     }
3153     else if (x.red) {
3154     x.red = false;
3155     return root;
3156     }
3157     else if ((xpl = xp.left) == x) {
3158     if ((xpr = xp.right) != null && xpr.red) {
3159     xpr.red = false;
3160     xp.red = true;
3161     root = rotateLeft(root, xp);
3162     xpr = (xp = x.parent) == null ? null : xp.right;
3163     }
3164     if (xpr == null)
3165     x = xp;
3166     else {
3167     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3168     if ((sr == null || !sr.red) &&
3169     (sl == null || !sl.red)) {
3170     xpr.red = true;
3171     x = xp;
3172     }
3173     else {
3174     if (sr == null || !sr.red) {
3175     if (sl != null)
3176     sl.red = false;
3177     xpr.red = true;
3178     root = rotateRight(root, xpr);
3179     xpr = (xp = x.parent) == null ?
3180     null : xp.right;
3181     }
3182     if (xpr != null) {
3183     xpr.red = (xp == null) ? false : xp.red;
3184     if ((sr = xpr.right) != null)
3185     sr.red = false;
3186     }
3187     if (xp != null) {
3188     xp.red = false;
3189     root = rotateLeft(root, xp);
3190     }
3191     x = root;
3192     }
3193     }
3194     }
3195     else { // symmetric
3196     if (xpl != null && xpl.red) {
3197     xpl.red = false;
3198     xp.red = true;
3199     root = rotateRight(root, xp);
3200     xpl = (xp = x.parent) == null ? null : xp.left;
3201     }
3202     if (xpl == null)
3203     x = xp;
3204     else {
3205     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3206     if ((sl == null || !sl.red) &&
3207     (sr == null || !sr.red)) {
3208     xpl.red = true;
3209     x = xp;
3210     }
3211     else {
3212     if (sl == null || !sl.red) {
3213     if (sr != null)
3214     sr.red = false;
3215     xpl.red = true;
3216     root = rotateLeft(root, xpl);
3217     xpl = (xp = x.parent) == null ?
3218     null : xp.left;
3219     }
3220     if (xpl != null) {
3221     xpl.red = (xp == null) ? false : xp.red;
3222     if ((sl = xpl.left) != null)
3223     sl.red = false;
3224     }
3225     if (xp != null) {
3226     xp.red = false;
3227     root = rotateRight(root, xp);
3228     }
3229     x = root;
3230     }
3231     }
3232     }
3233     }
3234 dl 1.210 }
3235 jsr166 1.225
3236 dl 1.222 /**
3237     * Recursive invariant check
3238     */
3239 dl 1.224 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3240 dl 1.222 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3241     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3242     if (tb != null && tb.next != t)
3243     return false;
3244     if (tn != null && tn.prev != t)
3245     return false;
3246     if (tp != null && t != tp.left && t != tp.right)
3247     return false;
3248     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3249     return false;
3250     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3251     return false;
3252     if (t.red && tl != null && tl.red && tr != null && tr.red)
3253     return false;
3254 dl 1.224 if (tl != null && !checkInvariants(tl))
3255 dl 1.222 return false;
3256 dl 1.224 if (tr != null && !checkInvariants(tr))
3257 dl 1.210 return false;
3258     return true;
3259     }
3260 dl 1.146
3261 jsr166 1.264 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3262 dl 1.222 private static final long LOCKSTATE;
3263     static {
3264     try {
3265     LOCKSTATE = U.objectFieldOffset
3266 jsr166 1.264 (TreeBin.class.getDeclaredField("lockState"));
3267 jsr166 1.262 } catch (ReflectiveOperationException e) {
3268 dl 1.222 throw new Error(e);
3269     }
3270 dl 1.146 }
3271 dl 1.119 }
3272    
3273 dl 1.222 /* ----------------Table Traversal -------------- */
3274    
3275 jsr166 1.247 /**
3276     * Records the table, its length, and current traversal index for a
3277     * traverser that must process a region of a forwarded table before
3278     * proceeding with current table.
3279     */
3280     static final class TableStack<K,V> {
3281 dl 1.246 int length;
3282     int index;
3283     Node<K,V>[] tab;
3284 jsr166 1.247 TableStack<K,V> next;
3285 dl 1.246 }
3286    
3287 dl 1.222 /**
3288     * Encapsulates traversal for methods such as containsValue; also
3289     * serves as a base class for other iterators and spliterators.
3290     *
3291     * Method advance visits once each still-valid node that was
3292     * reachable upon iterator construction. It might miss some that
3293     * were added to a bin after the bin was visited, which is OK wrt
3294     * consistency guarantees. Maintaining this property in the face
3295     * of possible ongoing resizes requires a fair amount of
3296     * bookkeeping state that is difficult to optimize away amidst
3297     * volatile accesses. Even so, traversal maintains reasonable
3298     * throughput.
3299     *
3300     * Normally, iteration proceeds bin-by-bin traversing lists.
3301     * However, if the table has been resized, then all future steps
3302     * must traverse both the bin at the current index as well as at
3303     * (index + baseSize); and so on for further resizings. To
3304     * paranoically cope with potential sharing by users of iterators
3305     * across threads, iteration terminates if a bounds checks fails
3306     * for a table read.
3307     */
3308     static class Traverser<K,V> {
3309     Node<K,V>[] tab; // current table; updated if resized
3310     Node<K,V> next; // the next entry to use
3311 dl 1.246 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3312 dl 1.222 int index; // index of bin to use next
3313     int baseIndex; // current index of initial table
3314     int baseLimit; // index bound for initial table
3315     final int baseSize; // initial table size
3316    
3317     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3318     this.tab = tab;
3319     this.baseSize = size;
3320     this.baseIndex = this.index = index;
3321     this.baseLimit = limit;
3322     this.next = null;
3323     }
3324    
3325     /**
3326     * Advances if possible, returning next valid node, or null if none.
3327     */
3328     final Node<K,V> advance() {
3329     Node<K,V> e;
3330     if ((e = next) != null)
3331     e = e.next;
3332     for (;;) {
3333 dl 1.246 Node<K,V>[] t; int i, n; // must use locals in checks
3334 dl 1.222 if (e != null)
3335     return next = e;
3336     if (baseIndex >= baseLimit || (t = tab) == null ||
3337     (n = t.length) <= (i = index) || i < 0)
3338     return next = null;
3339 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3340 dl 1.222 if (e instanceof ForwardingNode) {
3341     tab = ((ForwardingNode<K,V>)e).nextTable;
3342     e = null;
3343 dl 1.246 pushState(t, i, n);
3344 dl 1.222 continue;
3345     }
3346     else if (e instanceof TreeBin)
3347     e = ((TreeBin<K,V>)e).first;
3348     else
3349     e = null;
3350     }
3351 dl 1.246 if (stack != null)
3352     recoverState(n);
3353     else if ((index = i + baseSize) >= n)
3354     index = ++baseIndex; // visit upper slots if present
3355 dl 1.222 }
3356     }
3357 dl 1.246
3358     /**
3359 jsr166 1.249 * Saves traversal state upon encountering a forwarding node.
3360 dl 1.246 */
3361     private void pushState(Node<K,V>[] t, int i, int n) {
3362     TableStack<K,V> s = spare; // reuse if possible
3363     if (s != null)
3364     spare = s.next;
3365     else
3366     s = new TableStack<K,V>();
3367     s.tab = t;
3368     s.length = n;
3369     s.index = i;
3370     s.next = stack;
3371     stack = s;
3372     }
3373    
3374     /**
3375 jsr166 1.249 * Possibly pops traversal state.
3376 dl 1.246 *
3377     * @param n length of current table
3378     */
3379     private void recoverState(int n) {
3380     TableStack<K,V> s; int len;
3381     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3382     n = len;
3383     index = s.index;
3384     tab = s.tab;
3385     s.tab = null;
3386     TableStack<K,V> next = s.next;
3387     s.next = spare; // save for reuse
3388     stack = next;
3389     spare = s;
3390     }
3391     if (s == null && (index += baseSize) >= n)
3392     index = ++baseIndex;
3393     }
3394 dl 1.222 }
3395    
3396     /**
3397     * Base of key, value, and entry Iterators. Adds fields to
3398 jsr166 1.229 * Traverser to support iterator.remove.
3399 dl 1.222 */
3400     static class BaseIterator<K,V> extends Traverser<K,V> {
3401     final ConcurrentHashMap<K,V> map;
3402     Node<K,V> lastReturned;
3403     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3404     ConcurrentHashMap<K,V> map) {
3405 dl 1.210 super(tab, size, index, limit);
3406     this.map = map;
3407 dl 1.222 advance();
3408 dl 1.210 }
3409    
3410 dl 1.222 public final boolean hasNext() { return next != null; }
3411     public final boolean hasMoreElements() { return next != null; }
3412    
3413     public final void remove() {
3414     Node<K,V> p;
3415     if ((p = lastReturned) == null)
3416     throw new IllegalStateException();
3417     lastReturned = null;
3418     map.replaceNode(p.key, null, null);
3419 dl 1.210 }
3420 dl 1.222 }
3421 dl 1.210
3422 dl 1.222 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3423     implements Iterator<K>, Enumeration<K> {
3424     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3425     ConcurrentHashMap<K,V> map) {
3426     super(tab, index, size, limit, map);
3427 dl 1.210 }
3428    
3429 dl 1.222 public final K next() {
3430 dl 1.210 Node<K,V> p;
3431 dl 1.222 if ((p = next) == null)
3432     throw new NoSuchElementException();
3433     K k = p.key;
3434     lastReturned = p;
3435     advance();
3436     return k;
3437 dl 1.210 }
3438    
3439 dl 1.222 public final K nextElement() { return next(); }
3440     }
3441    
3442     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3443     implements Iterator<V>, Enumeration<V> {
3444     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3445     ConcurrentHashMap<K,V> map) {
3446     super(tab, index, size, limit, map);
3447     }
3448 dl 1.210
3449 dl 1.222 public final V next() {
3450     Node<K,V> p;
3451     if ((p = next) == null)
3452     throw new NoSuchElementException();
3453     V v = p.val;
3454     lastReturned = p;
3455     advance();
3456     return v;
3457 dl 1.210 }
3458 dl 1.222
3459     public final V nextElement() { return next(); }
3460 dl 1.210 }
3461    
3462 dl 1.222 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3463     implements Iterator<Map.Entry<K,V>> {
3464     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3465     ConcurrentHashMap<K,V> map) {
3466     super(tab, index, size, limit, map);
3467     }
3468 dl 1.210
3469 dl 1.222 public final Map.Entry<K,V> next() {
3470     Node<K,V> p;
3471     if ((p = next) == null)
3472     throw new NoSuchElementException();
3473     K k = p.key;
3474     V v = p.val;
3475     lastReturned = p;
3476     advance();
3477     return new MapEntry<K,V>(k, v, map);
3478     }
3479     }
3480 dl 1.119
3481     /**
3482 dl 1.222 * Exported Entry for EntryIterator
3483 dl 1.119 */
3484 dl 1.222 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3485     final K key; // non-null
3486     V val; // non-null
3487     final ConcurrentHashMap<K,V> map;
3488     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3489     this.key = key;
3490     this.val = val;
3491     this.map = map;
3492     }
3493     public K getKey() { return key; }
3494     public V getValue() { return val; }
3495     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3496 jsr166 1.268 public String toString() {
3497     return Helpers.mapEntryToString(key, val);
3498     }
3499 dl 1.119
3500 dl 1.222 public boolean equals(Object o) {
3501     Object k, v; Map.Entry<?,?> e;
3502     return ((o instanceof Map.Entry) &&
3503     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3504     (v = e.getValue()) != null &&
3505     (k == key || k.equals(key)) &&
3506     (v == val || v.equals(val)));
3507     }
3508 dl 1.119
3509 dl 1.222 /**
3510     * Sets our entry's value and writes through to the map. The
3511     * value to return is somewhat arbitrary here. Since we do not
3512     * necessarily track asynchronous changes, the most recent
3513     * "previous" value could be different from what we return (or
3514     * could even have been removed, in which case the put will
3515     * re-establish). We do not and cannot guarantee more.
3516     */
3517     public V setValue(V value) {
3518     if (value == null) throw new NullPointerException();
3519     V v = val;
3520     val = value;
3521     map.put(key, value);
3522     return v;
3523     }
3524 dl 1.119 }
3525    
3526 dl 1.222 static final class KeySpliterator<K,V> extends Traverser<K,V>
3527     implements Spliterator<K> {
3528     long est; // size estimate
3529     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3530     long est) {
3531     super(tab, size, index, limit);
3532     this.est = est;
3533     }
3534 dl 1.119
3535 dl 1.222 public Spliterator<K> trySplit() {
3536     int i, f, h;
3537     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3538     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3539     f, est >>>= 1);
3540 dl 1.119 }
3541    
3542 dl 1.222 public void forEachRemaining(Consumer<? super K> action) {
3543     if (action == null) throw new NullPointerException();
3544     for (Node<K,V> p; (p = advance()) != null;)
3545     action.accept(p.key);
3546 dl 1.119 }
3547    
3548 dl 1.222 public boolean tryAdvance(Consumer<? super K> action) {
3549     if (action == null) throw new NullPointerException();
3550     Node<K,V> p;
3551     if ((p = advance()) == null)
3552 dl 1.119 return false;
3553 dl 1.222 action.accept(p.key);
3554     return true;
3555 dl 1.119 }
3556    
3557 dl 1.222 public long estimateSize() { return est; }
3558 dl 1.119
3559 dl 1.222 public int characteristics() {
3560     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3561     Spliterator.NONNULL;
3562     }
3563 dl 1.142 }
3564 dl 1.119
3565 dl 1.222 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3566     implements Spliterator<V> {
3567     long est; // size estimate
3568     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3569     long est) {
3570     super(tab, size, index, limit);
3571     this.est = est;
3572 dl 1.209 }
3573    
3574 dl 1.222 public Spliterator<V> trySplit() {
3575     int i, f, h;
3576     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3577     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3578     f, est >>>= 1);
3579 dl 1.142 }
3580 dl 1.119
3581 dl 1.222 public void forEachRemaining(Consumer<? super V> action) {
3582     if (action == null) throw new NullPointerException();
3583     for (Node<K,V> p; (p = advance()) != null;)
3584     action.accept(p.val);
3585     }
3586 dl 1.119
3587 dl 1.222 public boolean tryAdvance(Consumer<? super V> action) {
3588     if (action == null) throw new NullPointerException();
3589     Node<K,V> p;
3590     if ((p = advance()) == null)
3591     return false;
3592     action.accept(p.val);
3593     return true;
3594 dl 1.119 }
3595 dl 1.222
3596     public long estimateSize() { return est; }
3597    
3598     public int characteristics() {
3599     return Spliterator.CONCURRENT | Spliterator.NONNULL;
3600 dl 1.119 }
3601 dl 1.142 }
3602 dl 1.119
3603 dl 1.222 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3604     implements Spliterator<Map.Entry<K,V>> {
3605     final ConcurrentHashMap<K,V> map; // To export MapEntry
3606     long est; // size estimate
3607     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3608     long est, ConcurrentHashMap<K,V> map) {
3609     super(tab, size, index, limit);
3610     this.map = map;
3611     this.est = est;
3612     }
3613    
3614     public Spliterator<Map.Entry<K,V>> trySplit() {
3615     int i, f, h;
3616     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3617     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3618     f, est >>>= 1, map);
3619     }
3620 dl 1.142
3621 dl 1.222 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3622     if (action == null) throw new NullPointerException();
3623     for (Node<K,V> p; (p = advance()) != null; )
3624     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3625     }
3626 dl 1.210
3627 dl 1.222 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3628     if (action == null) throw new NullPointerException();
3629     Node<K,V> p;
3630     if ((p = advance()) == null)
3631     return false;
3632     action.accept(new MapEntry<K,V>(p.key, p.val, map));
3633     return true;
3634 dl 1.210 }
3635    
3636 dl 1.222 public long estimateSize() { return est; }
3637    
3638     public int characteristics() {
3639     return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3640     Spliterator.NONNULL;
3641 dl 1.210 }
3642     }
3643    
3644     // Parallel bulk operations
3645    
3646     /**
3647     * Computes initial batch value for bulk tasks. The returned value
3648     * is approximately exp2 of the number of times (minus one) to
3649     * split task by two before executing leaf action. This value is
3650     * faster to compute and more convenient to use as a guide to
3651     * splitting than is the depth, since it is used while dividing by
3652     * two anyway.
3653     */
3654     final int batchFor(long b) {
3655     long n;
3656     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3657     return 0;
3658     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3659     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3660     }
3661 dl 1.151
3662 dl 1.119 /**
3663 dl 1.137 * Performs the given action for each (key, value).
3664 dl 1.119 *
3665 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3666 jsr166 1.213 * needed for this operation to be executed in parallel
3667 dl 1.137 * @param action the action
3668 jsr166 1.220 * @since 1.8
3669 dl 1.119 */
3670 dl 1.210 public void forEach(long parallelismThreshold,
3671     BiConsumer<? super K,? super V> action) {
3672 dl 1.151 if (action == null) throw new NullPointerException();
3673 dl 1.210 new ForEachMappingTask<K,V>
3674     (null, batchFor(parallelismThreshold), 0, 0, table,
3675     action).invoke();
3676 dl 1.119 }
3677    
3678     /**
3679 dl 1.137 * Performs the given action for each non-null transformation
3680     * of each (key, value).
3681     *
3682 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3683 jsr166 1.213 * needed for this operation to be executed in parallel
3684 dl 1.137 * @param transformer a function returning the transformation
3685 jsr166 1.169 * for an element, or null if there is no transformation (in
3686 jsr166 1.172 * which case the action is not applied)
3687 dl 1.137 * @param action the action
3688 jsr166 1.237 * @param <U> the return type of the transformer
3689 jsr166 1.220 * @since 1.8
3690 dl 1.119 */
3691 dl 1.210 public <U> void forEach(long parallelismThreshold,
3692     BiFunction<? super K, ? super V, ? extends U> transformer,
3693     Consumer<? super U> action) {
3694 dl 1.151 if (transformer == null || action == null)
3695     throw new NullPointerException();
3696 dl 1.210 new ForEachTransformedMappingTask<K,V,U>
3697     (null, batchFor(parallelismThreshold), 0, 0, table,
3698     transformer, action).invoke();
3699 dl 1.137 }
3700    
3701     /**
3702     * Returns a non-null result from applying the given search
3703 dl 1.210 * function on each (key, value), or null if none. Upon
3704     * success, further element processing is suppressed and the
3705     * results of any other parallel invocations of the search
3706     * function are ignored.
3707 dl 1.137 *
3708 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3709 jsr166 1.213 * needed for this operation to be executed in parallel
3710 dl 1.137 * @param searchFunction a function returning a non-null
3711     * result on success, else null
3712 jsr166 1.237 * @param <U> the return type of the search function
3713 dl 1.137 * @return a non-null result from applying the given search
3714     * function on each (key, value), or null if none
3715 jsr166 1.220 * @since 1.8
3716 dl 1.137 */
3717 dl 1.210 public <U> U search(long parallelismThreshold,
3718     BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3719 dl 1.151 if (searchFunction == null) throw new NullPointerException();
3720 dl 1.210 return new SearchMappingsTask<K,V,U>
3721     (null, batchFor(parallelismThreshold), 0, 0, table,
3722     searchFunction, new AtomicReference<U>()).invoke();
3723 dl 1.137 }
3724    
3725     /**
3726     * Returns the result of accumulating the given transformation
3727     * of all (key, value) pairs using the given reducer to
3728     * combine values, or null if none.
3729     *
3730 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3731 jsr166 1.213 * needed for this operation to be executed in parallel
3732 dl 1.137 * @param transformer a function returning the transformation
3733 jsr166 1.169 * for an element, or null if there is no transformation (in
3734 jsr166 1.172 * which case it is not combined)
3735 dl 1.137 * @param reducer a commutative associative combining function
3736 jsr166 1.237 * @param <U> the return type of the transformer
3737 dl 1.137 * @return the result of accumulating the given transformation
3738     * of all (key, value) pairs
3739 jsr166 1.220 * @since 1.8
3740 dl 1.137 */
3741 dl 1.210 public <U> U reduce(long parallelismThreshold,
3742     BiFunction<? super K, ? super V, ? extends U> transformer,
3743     BiFunction<? super U, ? super U, ? extends U> reducer) {
3744 dl 1.151 if (transformer == null || reducer == null)
3745     throw new NullPointerException();
3746 dl 1.210 return new MapReduceMappingsTask<K,V,U>
3747     (null, batchFor(parallelismThreshold), 0, 0, table,
3748     null, transformer, reducer).invoke();
3749 dl 1.137 }
3750    
3751     /**
3752     * Returns the result of accumulating the given transformation
3753     * of all (key, value) pairs using the given reducer to
3754     * combine values, and the given basis as an identity value.
3755     *
3756 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3757 jsr166 1.213 * needed for this operation to be executed in parallel
3758 dl 1.137 * @param transformer a function returning the transformation
3759     * for an element
3760     * @param basis the identity (initial default value) for the reduction
3761     * @param reducer a commutative associative combining function
3762     * @return the result of accumulating the given transformation
3763     * of all (key, value) pairs
3764 jsr166 1.220 * @since 1.8
3765 dl 1.137 */
3766 dl 1.231 public double reduceToDouble(long parallelismThreshold,
3767     ToDoubleBiFunction<? super K, ? super V> transformer,
3768     double basis,
3769     DoubleBinaryOperator reducer) {
3770 dl 1.151 if (transformer == null || reducer == null)
3771     throw new NullPointerException();
3772 dl 1.210 return new MapReduceMappingsToDoubleTask<K,V>
3773     (null, batchFor(parallelismThreshold), 0, 0, table,
3774     null, transformer, basis, reducer).invoke();
3775 dl 1.137 }
3776 dl 1.119
3777 dl 1.137 /**
3778     * Returns the result of accumulating the given transformation
3779     * of all (key, value) pairs using the given reducer to
3780     * combine values, and the given basis as an identity value.
3781     *
3782 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3783 jsr166 1.213 * needed for this operation to be executed in parallel
3784 dl 1.137 * @param transformer a function returning the transformation
3785     * for an element
3786     * @param basis the identity (initial default value) for the reduction
3787     * @param reducer a commutative associative combining function
3788     * @return the result of accumulating the given transformation
3789     * of all (key, value) pairs
3790 jsr166 1.220 * @since 1.8
3791 dl 1.137 */
3792 dl 1.210 public long reduceToLong(long parallelismThreshold,
3793     ToLongBiFunction<? super K, ? super V> transformer,
3794     long basis,
3795     LongBinaryOperator reducer) {
3796 dl 1.151 if (transformer == null || reducer == null)
3797     throw new NullPointerException();
3798 dl 1.210 return new MapReduceMappingsToLongTask<K,V>
3799     (null, batchFor(parallelismThreshold), 0, 0, table,
3800     null, transformer, basis, reducer).invoke();
3801 dl 1.137 }
3802    
3803     /**
3804     * Returns the result of accumulating the given transformation
3805     * of all (key, value) pairs using the given reducer to
3806     * combine values, and the given basis as an identity value.
3807     *
3808 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3809 jsr166 1.213 * needed for this operation to be executed in parallel
3810 dl 1.137 * @param transformer a function returning the transformation
3811     * for an element
3812     * @param basis the identity (initial default value) for the reduction
3813     * @param reducer a commutative associative combining function
3814     * @return the result of accumulating the given transformation
3815     * of all (key, value) pairs
3816 jsr166 1.220 * @since 1.8
3817 dl 1.137 */
3818 dl 1.210 public int reduceToInt(long parallelismThreshold,
3819     ToIntBiFunction<? super K, ? super V> transformer,
3820     int basis,
3821     IntBinaryOperator reducer) {
3822 dl 1.151 if (transformer == null || reducer == null)
3823     throw new NullPointerException();
3824 dl 1.210 return new MapReduceMappingsToIntTask<K,V>
3825     (null, batchFor(parallelismThreshold), 0, 0, table,
3826     null, transformer, basis, reducer).invoke();
3827 dl 1.137 }
3828    
3829     /**
3830     * Performs the given action for each key.
3831     *
3832 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3833 jsr166 1.213 * needed for this operation to be executed in parallel
3834 dl 1.137 * @param action the action
3835 jsr166 1.220 * @since 1.8
3836 dl 1.137 */
3837 dl 1.210 public void forEachKey(long parallelismThreshold,
3838     Consumer<? super K> action) {
3839     if (action == null) throw new NullPointerException();
3840     new ForEachKeyTask<K,V>
3841     (null, batchFor(parallelismThreshold), 0, 0, table,
3842     action).invoke();
3843 dl 1.137 }
3844 dl 1.119
3845 dl 1.137 /**
3846     * Performs the given action for each non-null transformation
3847     * of each key.
3848     *
3849 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3850 jsr166 1.213 * needed for this operation to be executed in parallel
3851 dl 1.137 * @param transformer a function returning the transformation
3852 jsr166 1.169 * for an element, or null if there is no transformation (in
3853 jsr166 1.172 * which case the action is not applied)
3854 dl 1.137 * @param action the action
3855 jsr166 1.237 * @param <U> the return type of the transformer
3856 jsr166 1.220 * @since 1.8
3857 dl 1.137 */
3858 dl 1.210 public <U> void forEachKey(long parallelismThreshold,
3859     Function<? super K, ? extends U> transformer,
3860     Consumer<? super U> action) {
3861 dl 1.151 if (transformer == null || action == null)
3862     throw new NullPointerException();
3863 dl 1.210 new ForEachTransformedKeyTask<K,V,U>
3864     (null, batchFor(parallelismThreshold), 0, 0, table,
3865     transformer, action).invoke();
3866 dl 1.137 }
3867 dl 1.119
3868 dl 1.137 /**
3869     * Returns a non-null result from applying the given search
3870 dl 1.210 * function on each key, or null if none. Upon success,
3871     * further element processing is suppressed and the results of
3872     * any other parallel invocations of the search function are
3873     * ignored.
3874 dl 1.137 *
3875 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3876 jsr166 1.213 * needed for this operation to be executed in parallel
3877 dl 1.137 * @param searchFunction a function returning a non-null
3878     * result on success, else null
3879 jsr166 1.237 * @param <U> the return type of the search function
3880 dl 1.137 * @return a non-null result from applying the given search
3881     * function on each key, or null if none
3882 jsr166 1.220 * @since 1.8
3883 dl 1.137 */
3884 dl 1.210 public <U> U searchKeys(long parallelismThreshold,
3885     Function<? super K, ? extends U> searchFunction) {
3886     if (searchFunction == null) throw new NullPointerException();
3887     return new SearchKeysTask<K,V,U>
3888     (null, batchFor(parallelismThreshold), 0, 0, table,
3889     searchFunction, new AtomicReference<U>()).invoke();
3890 dl 1.137 }
3891 dl 1.119
3892 dl 1.137 /**
3893     * Returns the result of accumulating all keys using the given
3894     * reducer to combine values, or null if none.
3895     *
3896 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3897 jsr166 1.213 * needed for this operation to be executed in parallel
3898 dl 1.137 * @param reducer a commutative associative combining function
3899     * @return the result of accumulating all keys using the given
3900     * reducer to combine values, or null if none
3901 jsr166 1.220 * @since 1.8
3902 dl 1.137 */
3903 dl 1.210 public K reduceKeys(long parallelismThreshold,
3904     BiFunction<? super K, ? super K, ? extends K> reducer) {
3905 dl 1.151 if (reducer == null) throw new NullPointerException();
3906 dl 1.210 return new ReduceKeysTask<K,V>
3907     (null, batchFor(parallelismThreshold), 0, 0, table,
3908     null, reducer).invoke();
3909 dl 1.137 }
3910 dl 1.119
3911 dl 1.137 /**
3912     * Returns the result of accumulating the given transformation
3913     * of all keys using the given reducer to combine values, or
3914     * null if none.
3915     *
3916 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3917 jsr166 1.213 * needed for this operation to be executed in parallel
3918 dl 1.137 * @param transformer a function returning the transformation
3919 jsr166 1.169 * for an element, or null if there is no transformation (in
3920 jsr166 1.172 * which case it is not combined)
3921 dl 1.137 * @param reducer a commutative associative combining function
3922 jsr166 1.237 * @param <U> the return type of the transformer
3923 dl 1.137 * @return the result of accumulating the given transformation
3924     * of all keys
3925 jsr166 1.220 * @since 1.8
3926 dl 1.137 */
3927 dl 1.210 public <U> U reduceKeys(long parallelismThreshold,
3928     Function<? super K, ? extends U> transformer,
3929 dl 1.153 BiFunction<? super U, ? super U, ? extends U> reducer) {
3930 dl 1.151 if (transformer == null || reducer == null)
3931     throw new NullPointerException();
3932 dl 1.210 return new MapReduceKeysTask<K,V,U>
3933     (null, batchFor(parallelismThreshold), 0, 0, table,
3934     null, transformer, reducer).invoke();
3935 dl 1.137 }
3936 dl 1.119
3937 dl 1.137 /**
3938     * Returns the result of accumulating the given transformation
3939     * of all keys using the given reducer to combine values, and
3940     * the given basis as an identity value.
3941     *
3942 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3943 jsr166 1.213 * needed for this operation to be executed in parallel
3944 dl 1.137 * @param transformer a function returning the transformation
3945     * for an element
3946     * @param basis the identity (initial default value) for the reduction
3947     * @param reducer a commutative associative combining function
3948 jsr166 1.157 * @return the result of accumulating the given transformation
3949 dl 1.137 * of all keys
3950 jsr166 1.220 * @since 1.8
3951 dl 1.137 */
3952 dl 1.210 public double reduceKeysToDouble(long parallelismThreshold,
3953     ToDoubleFunction<? super K> transformer,
3954     double basis,
3955     DoubleBinaryOperator reducer) {
3956 dl 1.151 if (transformer == null || reducer == null)
3957     throw new NullPointerException();
3958 dl 1.210 return new MapReduceKeysToDoubleTask<K,V>
3959     (null, batchFor(parallelismThreshold), 0, 0, table,
3960     null, transformer, basis, reducer).invoke();
3961 dl 1.137 }
3962 dl 1.119
3963 dl 1.137 /**
3964     * Returns the result of accumulating the given transformation
3965     * of all keys using the given reducer to combine values, and
3966     * the given basis as an identity value.
3967     *
3968 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3969 jsr166 1.213 * needed for this operation to be executed in parallel
3970 dl 1.137 * @param transformer a function returning the transformation
3971     * for an element
3972     * @param basis the identity (initial default value) for the reduction
3973     * @param reducer a commutative associative combining function
3974     * @return the result of accumulating the given transformation
3975     * of all keys
3976 jsr166 1.220 * @since 1.8
3977 dl 1.137 */
3978 dl 1.210 public long reduceKeysToLong(long parallelismThreshold,
3979     ToLongFunction<? super K> transformer,
3980     long basis,
3981     LongBinaryOperator reducer) {
3982 dl 1.151 if (transformer == null || reducer == null)
3983     throw new NullPointerException();
3984 dl 1.210 return new MapReduceKeysToLongTask<K,V>
3985     (null, batchFor(parallelismThreshold), 0, 0, table,
3986     null, transformer, basis, reducer).invoke();
3987 dl 1.137 }
3988 dl 1.119
3989 dl 1.137 /**
3990     * Returns the result of accumulating the given transformation
3991     * of all keys using the given reducer to combine values, and
3992     * the given basis as an identity value.
3993     *
3994 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
3995 jsr166 1.213 * needed for this operation to be executed in parallel
3996 dl 1.137 * @param transformer a function returning the transformation
3997     * for an element
3998     * @param basis the identity (initial default value) for the reduction
3999     * @param reducer a commutative associative combining function
4000     * @return the result of accumulating the given transformation
4001     * of all keys
4002 jsr166 1.220 * @since 1.8
4003 dl 1.137 */
4004 dl 1.210 public int reduceKeysToInt(long parallelismThreshold,
4005     ToIntFunction<? super K> transformer,
4006     int basis,
4007     IntBinaryOperator reducer) {
4008 dl 1.151 if (transformer == null || reducer == null)
4009     throw new NullPointerException();
4010 dl 1.210 return new MapReduceKeysToIntTask<K,V>
4011     (null, batchFor(parallelismThreshold), 0, 0, table,
4012     null, transformer, basis, reducer).invoke();
4013 dl 1.137 }
4014 dl 1.119
4015 dl 1.137 /**
4016     * Performs the given action for each value.
4017     *
4018 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4019 jsr166 1.213 * needed for this operation to be executed in parallel
4020 dl 1.137 * @param action the action
4021 jsr166 1.220 * @since 1.8
4022 dl 1.137 */
4023 dl 1.210 public void forEachValue(long parallelismThreshold,
4024     Consumer<? super V> action) {
4025     if (action == null)
4026     throw new NullPointerException();
4027     new ForEachValueTask<K,V>
4028     (null, batchFor(parallelismThreshold), 0, 0, table,
4029     action).invoke();
4030 dl 1.137 }
4031 dl 1.119
4032 dl 1.137 /**
4033     * Performs the given action for each non-null transformation
4034     * of each value.
4035     *
4036 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4037 jsr166 1.213 * needed for this operation to be executed in parallel
4038 dl 1.137 * @param transformer a function returning the transformation
4039 jsr166 1.169 * for an element, or null if there is no transformation (in
4040 jsr166 1.172 * which case the action is not applied)
4041 jsr166 1.179 * @param action the action
4042 jsr166 1.237 * @param <U> the return type of the transformer
4043 jsr166 1.220 * @since 1.8
4044 dl 1.137 */
4045 dl 1.210 public <U> void forEachValue(long parallelismThreshold,
4046     Function<? super V, ? extends U> transformer,
4047     Consumer<? super U> action) {
4048 dl 1.151 if (transformer == null || action == null)
4049     throw new NullPointerException();
4050 dl 1.210 new ForEachTransformedValueTask<K,V,U>
4051     (null, batchFor(parallelismThreshold), 0, 0, table,
4052     transformer, action).invoke();
4053 dl 1.137 }
4054 dl 1.119
4055 dl 1.137 /**
4056     * Returns a non-null result from applying the given search
4057 dl 1.210 * function on each value, or null if none. Upon success,
4058     * further element processing is suppressed and the results of
4059     * any other parallel invocations of the search function are
4060     * ignored.
4061 dl 1.137 *
4062 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4063 jsr166 1.213 * needed for this operation to be executed in parallel
4064 dl 1.137 * @param searchFunction a function returning a non-null
4065     * result on success, else null
4066 jsr166 1.237 * @param <U> the return type of the search function
4067 dl 1.137 * @return a non-null result from applying the given search
4068     * function on each value, or null if none
4069 jsr166 1.220 * @since 1.8
4070 dl 1.137 */
4071 dl 1.210 public <U> U searchValues(long parallelismThreshold,
4072     Function<? super V, ? extends U> searchFunction) {
4073 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4074 dl 1.210 return new SearchValuesTask<K,V,U>
4075     (null, batchFor(parallelismThreshold), 0, 0, table,
4076     searchFunction, new AtomicReference<U>()).invoke();
4077 dl 1.137 }
4078 dl 1.119
4079 dl 1.137 /**
4080     * Returns the result of accumulating all values using the
4081     * given reducer to combine values, or null if none.
4082     *
4083 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4084 jsr166 1.213 * needed for this operation to be executed in parallel
4085 dl 1.137 * @param reducer a commutative associative combining function
4086 jsr166 1.157 * @return the result of accumulating all values
4087 jsr166 1.220 * @since 1.8
4088 dl 1.137 */
4089 dl 1.210 public V reduceValues(long parallelismThreshold,
4090     BiFunction<? super V, ? super V, ? extends V> reducer) {
4091 dl 1.151 if (reducer == null) throw new NullPointerException();
4092 dl 1.210 return new ReduceValuesTask<K,V>
4093     (null, batchFor(parallelismThreshold), 0, 0, table,
4094     null, reducer).invoke();
4095 dl 1.137 }
4096 dl 1.119
4097 dl 1.137 /**
4098     * Returns the result of accumulating the given transformation
4099     * of all values using the given reducer to combine values, or
4100     * null if none.
4101     *
4102 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4103 jsr166 1.213 * needed for this operation to be executed in parallel
4104 dl 1.137 * @param transformer a function returning the transformation
4105 jsr166 1.169 * for an element, or null if there is no transformation (in
4106 jsr166 1.172 * which case it is not combined)
4107 dl 1.137 * @param reducer a commutative associative combining function
4108 jsr166 1.237 * @param <U> the return type of the transformer
4109 dl 1.137 * @return the result of accumulating the given transformation
4110     * of all values
4111 jsr166 1.220 * @since 1.8
4112 dl 1.137 */
4113 dl 1.210 public <U> U reduceValues(long parallelismThreshold,
4114     Function<? super V, ? extends U> transformer,
4115     BiFunction<? super U, ? super U, ? extends U> reducer) {
4116 dl 1.151 if (transformer == null || reducer == null)
4117     throw new NullPointerException();
4118 dl 1.210 return new MapReduceValuesTask<K,V,U>
4119     (null, batchFor(parallelismThreshold), 0, 0, table,
4120     null, transformer, reducer).invoke();
4121 dl 1.137 }
4122 dl 1.119
4123 dl 1.137 /**
4124     * Returns the result of accumulating the given transformation
4125     * of all values using the given reducer to combine values,
4126     * and the given basis as an identity value.
4127     *
4128 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4129 jsr166 1.213 * needed for this operation to be executed in parallel
4130 dl 1.137 * @param transformer a function returning the transformation
4131     * for an element
4132     * @param basis the identity (initial default value) for the reduction
4133     * @param reducer a commutative associative combining function
4134     * @return the result of accumulating the given transformation
4135     * of all values
4136 jsr166 1.220 * @since 1.8
4137 dl 1.137 */
4138 dl 1.210 public double reduceValuesToDouble(long parallelismThreshold,
4139     ToDoubleFunction<? super V> transformer,
4140     double basis,
4141     DoubleBinaryOperator reducer) {
4142 dl 1.151 if (transformer == null || reducer == null)
4143     throw new NullPointerException();
4144 dl 1.210 return new MapReduceValuesToDoubleTask<K,V>
4145     (null, batchFor(parallelismThreshold), 0, 0, table,
4146     null, transformer, basis, reducer).invoke();
4147 dl 1.137 }
4148 dl 1.119
4149 dl 1.137 /**
4150     * Returns the result of accumulating the given transformation
4151     * of all values using the given reducer to combine values,
4152     * and the given basis as an identity value.
4153     *
4154 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4155 jsr166 1.213 * needed for this operation to be executed in parallel
4156 dl 1.137 * @param transformer a function returning the transformation
4157     * for an element
4158     * @param basis the identity (initial default value) for the reduction
4159     * @param reducer a commutative associative combining function
4160     * @return the result of accumulating the given transformation
4161     * of all values
4162 jsr166 1.220 * @since 1.8
4163 dl 1.137 */
4164 dl 1.210 public long reduceValuesToLong(long parallelismThreshold,
4165     ToLongFunction<? super V> transformer,
4166     long basis,
4167     LongBinaryOperator reducer) {
4168 dl 1.151 if (transformer == null || reducer == null)
4169     throw new NullPointerException();
4170 dl 1.210 return new MapReduceValuesToLongTask<K,V>
4171     (null, batchFor(parallelismThreshold), 0, 0, table,
4172     null, transformer, basis, reducer).invoke();
4173 dl 1.137 }
4174 dl 1.119
4175 dl 1.137 /**
4176     * Returns the result of accumulating the given transformation
4177     * of all values using the given reducer to combine values,
4178     * and the given basis as an identity value.
4179     *
4180 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4181 jsr166 1.213 * needed for this operation to be executed in parallel
4182 dl 1.137 * @param transformer a function returning the transformation
4183     * for an element
4184     * @param basis the identity (initial default value) for the reduction
4185     * @param reducer a commutative associative combining function
4186     * @return the result of accumulating the given transformation
4187     * of all values
4188 jsr166 1.220 * @since 1.8
4189 dl 1.137 */
4190 dl 1.210 public int reduceValuesToInt(long parallelismThreshold,
4191     ToIntFunction<? super V> transformer,
4192     int basis,
4193     IntBinaryOperator reducer) {
4194 dl 1.151 if (transformer == null || reducer == null)
4195     throw new NullPointerException();
4196 dl 1.210 return new MapReduceValuesToIntTask<K,V>
4197     (null, batchFor(parallelismThreshold), 0, 0, table,
4198     null, transformer, basis, reducer).invoke();
4199 dl 1.137 }
4200 dl 1.119
4201 dl 1.137 /**
4202     * Performs the given action for each entry.
4203     *
4204 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4205 jsr166 1.213 * needed for this operation to be executed in parallel
4206 dl 1.137 * @param action the action
4207 jsr166 1.220 * @since 1.8
4208 dl 1.137 */
4209 dl 1.210 public void forEachEntry(long parallelismThreshold,
4210     Consumer<? super Map.Entry<K,V>> action) {
4211 dl 1.151 if (action == null) throw new NullPointerException();
4212 dl 1.210 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4213     action).invoke();
4214 dl 1.137 }
4215 dl 1.119
4216 dl 1.137 /**
4217     * Performs the given action for each non-null transformation
4218     * of each entry.
4219     *
4220 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4221 jsr166 1.213 * needed for this operation to be executed in parallel
4222 dl 1.137 * @param transformer a function returning the transformation
4223 jsr166 1.169 * for an element, or null if there is no transformation (in
4224 jsr166 1.172 * which case the action is not applied)
4225 dl 1.137 * @param action the action
4226 jsr166 1.237 * @param <U> the return type of the transformer
4227 jsr166 1.220 * @since 1.8
4228 dl 1.137 */
4229 dl 1.210 public <U> void forEachEntry(long parallelismThreshold,
4230     Function<Map.Entry<K,V>, ? extends U> transformer,
4231     Consumer<? super U> action) {
4232 dl 1.151 if (transformer == null || action == null)
4233     throw new NullPointerException();
4234 dl 1.210 new ForEachTransformedEntryTask<K,V,U>
4235     (null, batchFor(parallelismThreshold), 0, 0, table,
4236     transformer, action).invoke();
4237 dl 1.137 }
4238 dl 1.119
4239 dl 1.137 /**
4240     * Returns a non-null result from applying the given search
4241 dl 1.210 * function on each entry, or null if none. Upon success,
4242     * further element processing is suppressed and the results of
4243     * any other parallel invocations of the search function are
4244     * ignored.
4245 dl 1.137 *
4246 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4247 jsr166 1.213 * needed for this operation to be executed in parallel
4248 dl 1.137 * @param searchFunction a function returning a non-null
4249     * result on success, else null
4250 jsr166 1.237 * @param <U> the return type of the search function
4251 dl 1.137 * @return a non-null result from applying the given search
4252     * function on each entry, or null if none
4253 jsr166 1.220 * @since 1.8
4254 dl 1.137 */
4255 dl 1.210 public <U> U searchEntries(long parallelismThreshold,
4256     Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4257 dl 1.151 if (searchFunction == null) throw new NullPointerException();
4258 dl 1.210 return new SearchEntriesTask<K,V,U>
4259     (null, batchFor(parallelismThreshold), 0, 0, table,
4260     searchFunction, new AtomicReference<U>()).invoke();
4261 dl 1.137 }
4262 dl 1.119
4263 dl 1.137 /**
4264     * Returns the result of accumulating all entries using the
4265     * given reducer to combine values, or null if none.
4266     *
4267 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4268 jsr166 1.213 * needed for this operation to be executed in parallel
4269 dl 1.137 * @param reducer a commutative associative combining function
4270     * @return the result of accumulating all entries
4271 jsr166 1.220 * @since 1.8
4272 dl 1.137 */
4273 dl 1.210 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4274     BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4275 dl 1.151 if (reducer == null) throw new NullPointerException();
4276 dl 1.210 return new ReduceEntriesTask<K,V>
4277     (null, batchFor(parallelismThreshold), 0, 0, table,
4278     null, reducer).invoke();
4279 dl 1.137 }
4280 dl 1.119
4281 dl 1.137 /**
4282     * Returns the result of accumulating the given transformation
4283     * of all entries using the given reducer to combine values,
4284     * or null if none.
4285     *
4286 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4287 jsr166 1.213 * needed for this operation to be executed in parallel
4288 dl 1.137 * @param transformer a function returning the transformation
4289 jsr166 1.169 * for an element, or null if there is no transformation (in
4290 jsr166 1.172 * which case it is not combined)
4291 dl 1.137 * @param reducer a commutative associative combining function
4292 jsr166 1.237 * @param <U> the return type of the transformer
4293 dl 1.137 * @return the result of accumulating the given transformation
4294     * of all entries
4295 jsr166 1.220 * @since 1.8
4296 dl 1.137 */
4297 dl 1.210 public <U> U reduceEntries(long parallelismThreshold,
4298     Function<Map.Entry<K,V>, ? extends U> transformer,
4299     BiFunction<? super U, ? super U, ? extends U> reducer) {
4300 dl 1.151 if (transformer == null || reducer == null)
4301     throw new NullPointerException();
4302 dl 1.210 return new MapReduceEntriesTask<K,V,U>
4303     (null, batchFor(parallelismThreshold), 0, 0, table,
4304     null, transformer, reducer).invoke();
4305 dl 1.137 }
4306 dl 1.119
4307 dl 1.137 /**
4308     * Returns the result of accumulating the given transformation
4309     * of all entries using the given reducer to combine values,
4310     * and the given basis as an identity value.
4311     *
4312 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4313 jsr166 1.213 * needed for this operation to be executed in parallel
4314 dl 1.137 * @param transformer a function returning the transformation
4315     * for an element
4316     * @param basis the identity (initial default value) for the reduction
4317     * @param reducer a commutative associative combining function
4318     * @return the result of accumulating the given transformation
4319     * of all entries
4320 jsr166 1.220 * @since 1.8
4321 dl 1.137 */
4322 dl 1.210 public double reduceEntriesToDouble(long parallelismThreshold,
4323     ToDoubleFunction<Map.Entry<K,V>> transformer,
4324     double basis,
4325     DoubleBinaryOperator reducer) {
4326 dl 1.151 if (transformer == null || reducer == null)
4327     throw new NullPointerException();
4328 dl 1.210 return new MapReduceEntriesToDoubleTask<K,V>
4329     (null, batchFor(parallelismThreshold), 0, 0, table,
4330     null, transformer, basis, reducer).invoke();
4331 dl 1.137 }
4332 dl 1.119
4333 dl 1.137 /**
4334     * Returns the result of accumulating the given transformation
4335     * of all entries using the given reducer to combine values,
4336     * and the given basis as an identity value.
4337     *
4338 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4339 jsr166 1.213 * needed for this operation to be executed in parallel
4340 dl 1.137 * @param transformer a function returning the transformation
4341     * for an element
4342     * @param basis the identity (initial default value) for the reduction
4343     * @param reducer a commutative associative combining function
4344 jsr166 1.157 * @return the result of accumulating the given transformation
4345 dl 1.137 * of all entries
4346 jsr166 1.221 * @since 1.8
4347 dl 1.137 */
4348 dl 1.210 public long reduceEntriesToLong(long parallelismThreshold,
4349     ToLongFunction<Map.Entry<K,V>> transformer,
4350     long basis,
4351     LongBinaryOperator reducer) {
4352 dl 1.151 if (transformer == null || reducer == null)
4353     throw new NullPointerException();
4354 dl 1.210 return new MapReduceEntriesToLongTask<K,V>
4355     (null, batchFor(parallelismThreshold), 0, 0, table,
4356     null, transformer, basis, reducer).invoke();
4357 dl 1.137 }
4358 dl 1.119
4359 dl 1.137 /**
4360     * Returns the result of accumulating the given transformation
4361     * of all entries using the given reducer to combine values,
4362     * and the given basis as an identity value.
4363     *
4364 dl 1.210 * @param parallelismThreshold the (estimated) number of elements
4365 jsr166 1.213 * needed for this operation to be executed in parallel
4366 dl 1.137 * @param transformer a function returning the transformation
4367     * for an element
4368     * @param basis the identity (initial default value) for the reduction
4369     * @param reducer a commutative associative combining function
4370     * @return the result of accumulating the given transformation
4371     * of all entries
4372 jsr166 1.221 * @since 1.8
4373 dl 1.137 */
4374 dl 1.210 public int reduceEntriesToInt(long parallelismThreshold,
4375     ToIntFunction<Map.Entry<K,V>> transformer,
4376     int basis,
4377     IntBinaryOperator reducer) {
4378 dl 1.151 if (transformer == null || reducer == null)
4379     throw new NullPointerException();
4380 dl 1.210 return new MapReduceEntriesToIntTask<K,V>
4381     (null, batchFor(parallelismThreshold), 0, 0, table,
4382     null, transformer, basis, reducer).invoke();
4383 dl 1.119 }
4384    
4385 dl 1.209
4386 dl 1.210 /* ----------------Views -------------- */
4387 dl 1.142
4388     /**
4389 dl 1.210 * Base class for views.
4390 dl 1.142 */
4391 dl 1.210 abstract static class CollectionView<K,V,E>
4392     implements Collection<E>, java.io.Serializable {
4393     private static final long serialVersionUID = 7249069246763182397L;
4394     final ConcurrentHashMap<K,V> map;
4395     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4396    
4397     /**
4398     * Returns the map backing this view.
4399     *
4400     * @return the map backing this view
4401     */
4402     public ConcurrentHashMap<K,V> getMap() { return map; }
4403 dl 1.142
4404 dl 1.210 /**
4405     * Removes all of the elements from this view, by removing all
4406     * the mappings from the map backing this view.
4407 jsr166 1.184 */
4408     public final void clear() { map.clear(); }
4409     public final int size() { return map.size(); }
4410     public final boolean isEmpty() { return map.isEmpty(); }
4411 dl 1.151
4412     // implementations below rely on concrete classes supplying these
4413 jsr166 1.184 // abstract methods
4414     /**
4415 jsr166 1.242 * Returns an iterator over the elements in this collection.
4416     *
4417     * <p>The returned iterator is
4418     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4419     *
4420     * @return an iterator over the elements in this collection
4421 jsr166 1.184 */
4422     public abstract Iterator<E> iterator();
4423 jsr166 1.165 public abstract boolean contains(Object o);
4424     public abstract boolean remove(Object o);
4425 dl 1.151
4426     private static final String oomeMsg = "Required array size too large";
4427 dl 1.142
4428     public final Object[] toArray() {
4429     long sz = map.mappingCount();
4430 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4431 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4432     int n = (int)sz;
4433     Object[] r = new Object[n];
4434     int i = 0;
4435 jsr166 1.184 for (E e : this) {
4436 dl 1.142 if (i == n) {
4437     if (n >= MAX_ARRAY_SIZE)
4438     throw new OutOfMemoryError(oomeMsg);
4439     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4440     n = MAX_ARRAY_SIZE;
4441     else
4442     n += (n >>> 1) + 1;
4443     r = Arrays.copyOf(r, n);
4444     }
4445 jsr166 1.184 r[i++] = e;
4446 dl 1.142 }
4447     return (i == n) ? r : Arrays.copyOf(r, i);
4448     }
4449    
4450 dl 1.222 @SuppressWarnings("unchecked")
4451 jsr166 1.184 public final <T> T[] toArray(T[] a) {
4452 dl 1.142 long sz = map.mappingCount();
4453 jsr166 1.184 if (sz > MAX_ARRAY_SIZE)
4454 dl 1.142 throw new OutOfMemoryError(oomeMsg);
4455     int m = (int)sz;
4456     T[] r = (a.length >= m) ? a :
4457     (T[])java.lang.reflect.Array
4458     .newInstance(a.getClass().getComponentType(), m);
4459     int n = r.length;
4460     int i = 0;
4461 jsr166 1.184 for (E e : this) {
4462 dl 1.142 if (i == n) {
4463     if (n >= MAX_ARRAY_SIZE)
4464     throw new OutOfMemoryError(oomeMsg);
4465     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4466     n = MAX_ARRAY_SIZE;
4467     else
4468     n += (n >>> 1) + 1;
4469     r = Arrays.copyOf(r, n);
4470     }
4471 jsr166 1.184 r[i++] = (T)e;
4472 dl 1.142 }
4473     if (a == r && i < n) {
4474     r[i] = null; // null-terminate
4475     return r;
4476     }
4477     return (i == n) ? r : Arrays.copyOf(r, i);
4478     }
4479    
4480 jsr166 1.184 /**
4481     * Returns a string representation of this collection.
4482     * The string representation consists of the string representations
4483     * of the collection's elements in the order they are returned by
4484     * its iterator, enclosed in square brackets ({@code "[]"}).
4485     * Adjacent elements are separated by the characters {@code ", "}
4486     * (comma and space). Elements are converted to strings as by
4487     * {@link String#valueOf(Object)}.
4488     *
4489     * @return a string representation of this collection
4490     */
4491 dl 1.142 public final String toString() {
4492     StringBuilder sb = new StringBuilder();
4493     sb.append('[');
4494 jsr166 1.184 Iterator<E> it = iterator();
4495 dl 1.142 if (it.hasNext()) {
4496     for (;;) {
4497     Object e = it.next();
4498     sb.append(e == this ? "(this Collection)" : e);
4499     if (!it.hasNext())
4500     break;
4501     sb.append(',').append(' ');
4502     }
4503     }
4504     return sb.append(']').toString();
4505     }
4506    
4507     public final boolean containsAll(Collection<?> c) {
4508     if (c != this) {
4509 jsr166 1.184 for (Object e : c) {
4510 dl 1.142 if (e == null || !contains(e))
4511     return false;
4512     }
4513     }
4514     return true;
4515     }
4516    
4517     public final boolean removeAll(Collection<?> c) {
4518 dl 1.251 if (c == null) throw new NullPointerException();
4519 dl 1.142 boolean modified = false;
4520 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4521 dl 1.142 if (c.contains(it.next())) {
4522     it.remove();
4523     modified = true;
4524     }
4525     }
4526     return modified;
4527     }
4528    
4529     public final boolean retainAll(Collection<?> c) {
4530 dl 1.251 if (c == null) throw new NullPointerException();
4531 dl 1.142 boolean modified = false;
4532 jsr166 1.184 for (Iterator<E> it = iterator(); it.hasNext();) {
4533 dl 1.142 if (!c.contains(it.next())) {
4534     it.remove();
4535     modified = true;
4536     }
4537     }
4538     return modified;
4539     }
4540    
4541     }
4542    
4543     /**
4544     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4545     * which additions may optionally be enabled by mapping to a
4546 jsr166 1.185 * common value. This class cannot be directly instantiated.
4547     * See {@link #keySet() keySet()},
4548     * {@link #keySet(Object) keySet(V)},
4549     * {@link #newKeySet() newKeySet()},
4550     * {@link #newKeySet(int) newKeySet(int)}.
4551 jsr166 1.221 *
4552     * @since 1.8
4553 dl 1.142 */
4554 dl 1.210 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4555     implements Set<K>, java.io.Serializable {
4556 dl 1.142 private static final long serialVersionUID = 7249069246763182397L;
4557     private final V value;
4558 jsr166 1.186 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4559 dl 1.142 super(map);
4560     this.value = value;
4561     }
4562    
4563     /**
4564     * Returns the default mapped value for additions,
4565     * or {@code null} if additions are not supported.
4566     *
4567     * @return the default mapped value for additions, or {@code null}
4568 jsr166 1.172 * if not supported
4569 dl 1.142 */
4570     public V getMappedValue() { return value; }
4571    
4572 jsr166 1.184 /**
4573     * {@inheritDoc}
4574     * @throws NullPointerException if the specified key is null
4575     */
4576     public boolean contains(Object o) { return map.containsKey(o); }
4577 dl 1.142
4578 jsr166 1.184 /**
4579     * Removes the key from this map view, by removing the key (and its
4580     * corresponding value) from the backing map. This method does
4581     * nothing if the key is not in the map.
4582     *
4583     * @param o the key to be removed from the backing map
4584     * @return {@code true} if the backing map contained the specified key
4585     * @throws NullPointerException if the specified key is null
4586     */
4587     public boolean remove(Object o) { return map.remove(o) != null; }
4588    
4589     /**
4590     * @return an iterator over the keys of the backing map
4591     */
4592 dl 1.210 public Iterator<K> iterator() {
4593     Node<K,V>[] t;
4594     ConcurrentHashMap<K,V> m = map;
4595     int f = (t = m.table) == null ? 0 : t.length;
4596     return new KeyIterator<K,V>(t, f, 0, f, m);
4597     }
4598 dl 1.142
4599     /**
4600 jsr166 1.184 * Adds the specified key to this set view by mapping the key to
4601     * the default mapped value in the backing map, if defined.
4602 dl 1.142 *
4603 jsr166 1.184 * @param e key to be added
4604     * @return {@code true} if this set changed as a result of the call
4605     * @throws NullPointerException if the specified key is null
4606     * @throws UnsupportedOperationException if no default mapped value
4607     * for additions was provided
4608 dl 1.142 */
4609     public boolean add(K e) {
4610     V v;
4611     if ((v = value) == null)
4612     throw new UnsupportedOperationException();
4613 dl 1.222 return map.putVal(e, v, true) == null;
4614 dl 1.142 }
4615 jsr166 1.184
4616     /**
4617     * Adds all of the elements in the specified collection to this set,
4618     * as if by calling {@link #add} on each one.
4619     *
4620     * @param c the elements to be inserted into this set
4621     * @return {@code true} if this set changed as a result of the call
4622     * @throws NullPointerException if the collection or any of its
4623     * elements are {@code null}
4624     * @throws UnsupportedOperationException if no default mapped value
4625     * for additions was provided
4626     */
4627 dl 1.142 public boolean addAll(Collection<? extends K> c) {
4628     boolean added = false;
4629     V v;
4630     if ((v = value) == null)
4631     throw new UnsupportedOperationException();
4632     for (K e : c) {
4633 dl 1.222 if (map.putVal(e, v, true) == null)
4634 dl 1.142 added = true;
4635     }
4636     return added;
4637     }
4638 dl 1.153
4639 dl 1.210 public int hashCode() {
4640     int h = 0;
4641     for (K e : this)
4642     h += e.hashCode();
4643     return h;
4644 dl 1.191 }
4645    
4646 dl 1.210 public boolean equals(Object o) {
4647     Set<?> c;
4648     return ((o instanceof Set) &&
4649     ((c = (Set<?>)o) == this ||
4650     (containsAll(c) && c.containsAll(this))));
4651 dl 1.119 }
4652 jsr166 1.125
4653 dl 1.210 public Spliterator<K> spliterator() {
4654     Node<K,V>[] t;
4655     ConcurrentHashMap<K,V> m = map;
4656     long n = m.sumCount();
4657     int f = (t = m.table) == null ? 0 : t.length;
4658     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4659 dl 1.119 }
4660    
4661 dl 1.210 public void forEach(Consumer<? super K> action) {
4662     if (action == null) throw new NullPointerException();
4663     Node<K,V>[] t;
4664     if ((t = map.table) != null) {
4665     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4666     for (Node<K,V> p; (p = it.advance()) != null; )
4667 dl 1.222 action.accept(p.key);
4668 dl 1.210 }
4669 dl 1.119 }
4670 dl 1.210 }
4671 dl 1.119
4672 dl 1.210 /**
4673     * A view of a ConcurrentHashMap as a {@link Collection} of
4674     * values, in which additions are disabled. This class cannot be
4675     * directly instantiated. See {@link #values()}.
4676     */
4677     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4678     implements Collection<V>, java.io.Serializable {
4679     private static final long serialVersionUID = 2249069246763182397L;
4680     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4681     public final boolean contains(Object o) {
4682     return map.containsValue(o);
4683 dl 1.119 }
4684    
4685 dl 1.210 public final boolean remove(Object o) {
4686     if (o != null) {
4687     for (Iterator<V> it = iterator(); it.hasNext();) {
4688     if (o.equals(it.next())) {
4689     it.remove();
4690     return true;
4691     }
4692     }
4693     }
4694     return false;
4695 dl 1.119 }
4696    
4697 dl 1.210 public final Iterator<V> iterator() {
4698     ConcurrentHashMap<K,V> m = map;
4699     Node<K,V>[] t;
4700     int f = (t = m.table) == null ? 0 : t.length;
4701     return new ValueIterator<K,V>(t, f, 0, f, m);
4702 dl 1.119 }
4703    
4704 dl 1.210 public final boolean add(V e) {
4705     throw new UnsupportedOperationException();
4706     }
4707     public final boolean addAll(Collection<? extends V> c) {
4708     throw new UnsupportedOperationException();
4709 dl 1.119 }
4710    
4711 dl 1.272 public boolean removeIf(Predicate<? super V> filter) {
4712     return map.removeValueIf(filter);
4713     }
4714    
4715 dl 1.210 public Spliterator<V> spliterator() {
4716     Node<K,V>[] t;
4717     ConcurrentHashMap<K,V> m = map;
4718     long n = m.sumCount();
4719     int f = (t = m.table) == null ? 0 : t.length;
4720     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4721 dl 1.119 }
4722    
4723 dl 1.210 public void forEach(Consumer<? super V> action) {
4724     if (action == null) throw new NullPointerException();
4725     Node<K,V>[] t;
4726     if ((t = map.table) != null) {
4727     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4728     for (Node<K,V> p; (p = it.advance()) != null; )
4729     action.accept(p.val);
4730     }
4731 dl 1.119 }
4732 dl 1.210 }
4733    
4734     /**
4735     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4736     * entries. This class cannot be directly instantiated. See
4737     * {@link #entrySet()}.
4738     */
4739     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4740     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4741     private static final long serialVersionUID = 2249069246763182397L;
4742     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4743 dl 1.119
4744 dl 1.210 public boolean contains(Object o) {
4745     Object k, v, r; Map.Entry<?,?> e;
4746     return ((o instanceof Map.Entry) &&
4747     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4748     (r = map.get(k)) != null &&
4749     (v = e.getValue()) != null &&
4750     (v == r || v.equals(r)));
4751 dl 1.119 }
4752    
4753 dl 1.210 public boolean remove(Object o) {
4754     Object k, v; Map.Entry<?,?> e;
4755     return ((o instanceof Map.Entry) &&
4756     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4757     (v = e.getValue()) != null &&
4758     map.remove(k, v));
4759 dl 1.119 }
4760    
4761     /**
4762 dl 1.210 * @return an iterator over the entries of the backing map
4763 dl 1.119 */
4764 dl 1.210 public Iterator<Map.Entry<K,V>> iterator() {
4765     ConcurrentHashMap<K,V> m = map;
4766     Node<K,V>[] t;
4767     int f = (t = m.table) == null ? 0 : t.length;
4768     return new EntryIterator<K,V>(t, f, 0, f, m);
4769 dl 1.119 }
4770    
4771 dl 1.210 public boolean add(Entry<K,V> e) {
4772 dl 1.222 return map.putVal(e.getKey(), e.getValue(), false) == null;
4773 dl 1.119 }
4774    
4775 dl 1.210 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4776     boolean added = false;
4777     for (Entry<K,V> e : c) {
4778     if (add(e))
4779     added = true;
4780     }
4781     return added;
4782 dl 1.119 }
4783    
4784 jsr166 1.273 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4785 dl 1.271 return map.removeEntryIf(filter);
4786     }
4787    
4788 dl 1.210 public final int hashCode() {
4789     int h = 0;
4790     Node<K,V>[] t;
4791     if ((t = map.table) != null) {
4792     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4793     for (Node<K,V> p; (p = it.advance()) != null; ) {
4794     h += p.hashCode();
4795     }
4796     }
4797     return h;
4798 dl 1.119 }
4799    
4800 dl 1.210 public final boolean equals(Object o) {
4801     Set<?> c;
4802     return ((o instanceof Set) &&
4803     ((c = (Set<?>)o) == this ||
4804     (containsAll(c) && c.containsAll(this))));
4805 dl 1.119 }
4806    
4807 dl 1.210 public Spliterator<Map.Entry<K,V>> spliterator() {
4808     Node<K,V>[] t;
4809     ConcurrentHashMap<K,V> m = map;
4810     long n = m.sumCount();
4811     int f = (t = m.table) == null ? 0 : t.length;
4812     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4813 dl 1.119 }
4814    
4815 dl 1.210 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4816     if (action == null) throw new NullPointerException();
4817     Node<K,V>[] t;
4818     if ((t = map.table) != null) {
4819     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4820     for (Node<K,V> p; (p = it.advance()) != null; )
4821 dl 1.222 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4822 dl 1.210 }
4823 dl 1.119 }
4824    
4825 dl 1.210 }
4826    
4827     // -------------------------------------------------------
4828 dl 1.119
4829 dl 1.210 /**
4830     * Base class for bulk tasks. Repeats some fields and code from
4831     * class Traverser, because we need to subclass CountedCompleter.
4832     */
4833 dl 1.243 @SuppressWarnings("serial")
4834 jsr166 1.211 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4835 dl 1.210 Node<K,V>[] tab; // same as Traverser
4836     Node<K,V> next;
4837 dl 1.246 TableStack<K,V> stack, spare;
4838 dl 1.210 int index;
4839     int baseIndex;
4840     int baseLimit;
4841     final int baseSize;
4842     int batch; // split control
4843    
4844     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4845     super(par);
4846     this.batch = b;
4847     this.index = this.baseIndex = i;
4848     if ((this.tab = t) == null)
4849     this.baseSize = this.baseLimit = 0;
4850     else if (par == null)
4851     this.baseSize = this.baseLimit = t.length;
4852     else {
4853     this.baseLimit = f;
4854     this.baseSize = par.baseSize;
4855     }
4856 dl 1.119 }
4857    
4858     /**
4859 dl 1.210 * Same as Traverser version
4860 dl 1.119 */
4861 dl 1.210 final Node<K,V> advance() {
4862     Node<K,V> e;
4863     if ((e = next) != null)
4864     e = e.next;
4865     for (;;) {
4866 dl 1.246 Node<K,V>[] t; int i, n;
4867 dl 1.210 if (e != null)
4868     return next = e;
4869     if (baseIndex >= baseLimit || (t = tab) == null ||
4870     (n = t.length) <= (i = index) || i < 0)
4871     return next = null;
4872 dl 1.246 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4873 dl 1.222 if (e instanceof ForwardingNode) {
4874     tab = ((ForwardingNode<K,V>)e).nextTable;
4875 dl 1.210 e = null;
4876 dl 1.246 pushState(t, i, n);
4877 dl 1.210 continue;
4878     }
4879 dl 1.222 else if (e instanceof TreeBin)
4880     e = ((TreeBin<K,V>)e).first;
4881     else
4882     e = null;
4883 dl 1.210 }
4884 dl 1.246 if (stack != null)
4885     recoverState(n);
4886     else if ((index = i + baseSize) >= n)
4887     index = ++baseIndex;
4888     }
4889     }
4890    
4891     private void pushState(Node<K,V>[] t, int i, int n) {
4892     TableStack<K,V> s = spare;
4893     if (s != null)
4894     spare = s.next;
4895     else
4896     s = new TableStack<K,V>();
4897     s.tab = t;
4898     s.length = n;
4899     s.index = i;
4900     s.next = stack;
4901     stack = s;
4902     }
4903    
4904     private void recoverState(int n) {
4905     TableStack<K,V> s; int len;
4906     while ((s = stack) != null && (index += (len = s.length)) >= n) {
4907     n = len;
4908     index = s.index;
4909     tab = s.tab;
4910     s.tab = null;
4911     TableStack<K,V> next = s.next;
4912     s.next = spare; // save for reuse
4913     stack = next;
4914     spare = s;
4915 dl 1.210 }
4916 dl 1.246 if (s == null && (index += baseSize) >= n)
4917     index = ++baseIndex;
4918 dl 1.119 }
4919     }
4920    
4921     /*
4922     * Task classes. Coded in a regular but ugly format/style to
4923     * simplify checks that each variant differs in the right way from
4924 dl 1.149 * others. The null screenings exist because compilers cannot tell
4925     * that we've already null-checked task arguments, so we force
4926     * simplest hoisted bypass to help avoid convoluted traps.
4927 dl 1.119 */
4928 dl 1.222 @SuppressWarnings("serial")
4929 dl 1.210 static final class ForEachKeyTask<K,V>
4930     extends BulkTask<K,V,Void> {
4931 dl 1.171 final Consumer<? super K> action;
4932 dl 1.119 ForEachKeyTask
4933 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4934 dl 1.171 Consumer<? super K> action) {
4935 dl 1.210 super(p, b, i, f, t);
4936 dl 1.119 this.action = action;
4937     }
4938 jsr166 1.168 public final void compute() {
4939 dl 1.171 final Consumer<? super K> action;
4940 dl 1.149 if ((action = this.action) != null) {
4941 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4942     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4943     addToPendingCount(1);
4944     new ForEachKeyTask<K,V>
4945     (this, batch >>>= 1, baseLimit = h, f, tab,
4946     action).fork();
4947     }
4948     for (Node<K,V> p; (p = advance()) != null;)
4949 dl 1.222 action.accept(p.key);
4950 dl 1.149 propagateCompletion();
4951     }
4952 dl 1.119 }
4953     }
4954    
4955 dl 1.222 @SuppressWarnings("serial")
4956 dl 1.210 static final class ForEachValueTask<K,V>
4957     extends BulkTask<K,V,Void> {
4958 dl 1.171 final Consumer<? super V> action;
4959 dl 1.119 ForEachValueTask
4960 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4961 dl 1.171 Consumer<? super V> action) {
4962 dl 1.210 super(p, b, i, f, t);
4963 dl 1.119 this.action = action;
4964     }
4965 jsr166 1.168 public final void compute() {
4966 dl 1.171 final Consumer<? super V> action;
4967 dl 1.149 if ((action = this.action) != null) {
4968 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4969     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970     addToPendingCount(1);
4971     new ForEachValueTask<K,V>
4972     (this, batch >>>= 1, baseLimit = h, f, tab,
4973     action).fork();
4974     }
4975     for (Node<K,V> p; (p = advance()) != null;)
4976     action.accept(p.val);
4977 dl 1.149 propagateCompletion();
4978     }
4979 dl 1.119 }
4980     }
4981    
4982 dl 1.222 @SuppressWarnings("serial")
4983 dl 1.210 static final class ForEachEntryTask<K,V>
4984     extends BulkTask<K,V,Void> {
4985 dl 1.171 final Consumer<? super Entry<K,V>> action;
4986 dl 1.119 ForEachEntryTask
4987 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4988 dl 1.171 Consumer<? super Entry<K,V>> action) {
4989 dl 1.210 super(p, b, i, f, t);
4990 dl 1.119 this.action = action;
4991     }
4992 jsr166 1.168 public final void compute() {
4993 dl 1.171 final Consumer<? super Entry<K,V>> action;
4994 dl 1.149 if ((action = this.action) != null) {
4995 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
4996     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4997     addToPendingCount(1);
4998     new ForEachEntryTask<K,V>
4999     (this, batch >>>= 1, baseLimit = h, f, tab,
5000     action).fork();
5001     }
5002     for (Node<K,V> p; (p = advance()) != null; )
5003     action.accept(p);
5004 dl 1.149 propagateCompletion();
5005     }
5006 dl 1.119 }
5007     }
5008    
5009 dl 1.222 @SuppressWarnings("serial")
5010 dl 1.210 static final class ForEachMappingTask<K,V>
5011     extends BulkTask<K,V,Void> {
5012 dl 1.171 final BiConsumer<? super K, ? super V> action;
5013 dl 1.119 ForEachMappingTask
5014 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5015 dl 1.171 BiConsumer<? super K,? super V> action) {
5016 dl 1.210 super(p, b, i, f, t);
5017 dl 1.119 this.action = action;
5018     }
5019 jsr166 1.168 public final void compute() {
5020 dl 1.171 final BiConsumer<? super K, ? super V> action;
5021 dl 1.149 if ((action = this.action) != null) {
5022 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5023     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5024     addToPendingCount(1);
5025     new ForEachMappingTask<K,V>
5026     (this, batch >>>= 1, baseLimit = h, f, tab,
5027     action).fork();
5028     }
5029     for (Node<K,V> p; (p = advance()) != null; )
5030 dl 1.222 action.accept(p.key, p.val);
5031 dl 1.149 propagateCompletion();
5032     }
5033 dl 1.119 }
5034     }
5035    
5036 dl 1.222 @SuppressWarnings("serial")
5037 dl 1.210 static final class ForEachTransformedKeyTask<K,V,U>
5038     extends BulkTask<K,V,Void> {
5039 dl 1.153 final Function<? super K, ? extends U> transformer;
5040 dl 1.171 final Consumer<? super U> action;
5041 dl 1.119 ForEachTransformedKeyTask
5042 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5043 dl 1.171 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5044 dl 1.210 super(p, b, i, f, t);
5045 dl 1.146 this.transformer = transformer; this.action = action;
5046     }
5047 jsr166 1.168 public final void compute() {
5048 dl 1.153 final Function<? super K, ? extends U> transformer;
5049 dl 1.171 final Consumer<? super U> action;
5050 dl 1.149 if ((transformer = this.transformer) != null &&
5051     (action = this.action) != null) {
5052 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5053     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054     addToPendingCount(1);
5055 dl 1.149 new ForEachTransformedKeyTask<K,V,U>
5056 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5057     transformer, action).fork();
5058     }
5059     for (Node<K,V> p; (p = advance()) != null; ) {
5060     U u;
5061 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5062 dl 1.153 action.accept(u);
5063 dl 1.149 }
5064     propagateCompletion();
5065 dl 1.119 }
5066     }
5067     }
5068    
5069 dl 1.222 @SuppressWarnings("serial")
5070 dl 1.210 static final class ForEachTransformedValueTask<K,V,U>
5071     extends BulkTask<K,V,Void> {
5072 dl 1.153 final Function<? super V, ? extends U> transformer;
5073 dl 1.171 final Consumer<? super U> action;
5074 dl 1.119 ForEachTransformedValueTask
5075 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5076 dl 1.171 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5077 dl 1.210 super(p, b, i, f, t);
5078 dl 1.146 this.transformer = transformer; this.action = action;
5079     }
5080 jsr166 1.168 public final void compute() {
5081 dl 1.153 final Function<? super V, ? extends U> transformer;
5082 dl 1.171 final Consumer<? super U> action;
5083 dl 1.149 if ((transformer = this.transformer) != null &&
5084     (action = this.action) != null) {
5085 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5086     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5087     addToPendingCount(1);
5088 dl 1.149 new ForEachTransformedValueTask<K,V,U>
5089 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5090     transformer, action).fork();
5091     }
5092     for (Node<K,V> p; (p = advance()) != null; ) {
5093     U u;
5094     if ((u = transformer.apply(p.val)) != null)
5095 dl 1.153 action.accept(u);
5096 dl 1.149 }
5097     propagateCompletion();
5098 dl 1.119 }
5099     }
5100 tim 1.1 }
5101    
5102 dl 1.222 @SuppressWarnings("serial")
5103 dl 1.210 static final class ForEachTransformedEntryTask<K,V,U>
5104     extends BulkTask<K,V,Void> {
5105 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5106 dl 1.171 final Consumer<? super U> action;
5107 dl 1.119 ForEachTransformedEntryTask
5108 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5109 dl 1.171 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5110 dl 1.210 super(p, b, i, f, t);
5111 dl 1.146 this.transformer = transformer; this.action = action;
5112     }
5113 jsr166 1.168 public final void compute() {
5114 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5115 dl 1.171 final Consumer<? super U> action;
5116 dl 1.149 if ((transformer = this.transformer) != null &&
5117     (action = this.action) != null) {
5118 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5119     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5120     addToPendingCount(1);
5121 dl 1.149 new ForEachTransformedEntryTask<K,V,U>
5122 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5123     transformer, action).fork();
5124     }
5125     for (Node<K,V> p; (p = advance()) != null; ) {
5126     U u;
5127     if ((u = transformer.apply(p)) != null)
5128 dl 1.153 action.accept(u);
5129 dl 1.149 }
5130     propagateCompletion();
5131 dl 1.119 }
5132     }
5133 tim 1.1 }
5134    
5135 dl 1.222 @SuppressWarnings("serial")
5136 dl 1.210 static final class ForEachTransformedMappingTask<K,V,U>
5137     extends BulkTask<K,V,Void> {
5138 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5139 dl 1.171 final Consumer<? super U> action;
5140 dl 1.119 ForEachTransformedMappingTask
5141 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5142 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5143 dl 1.171 Consumer<? super U> action) {
5144 dl 1.210 super(p, b, i, f, t);
5145 dl 1.146 this.transformer = transformer; this.action = action;
5146 dl 1.119 }
5147 jsr166 1.168 public final void compute() {
5148 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5149 dl 1.171 final Consumer<? super U> action;
5150 dl 1.149 if ((transformer = this.transformer) != null &&
5151     (action = this.action) != null) {
5152 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5153     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5154     addToPendingCount(1);
5155 dl 1.149 new ForEachTransformedMappingTask<K,V,U>
5156 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5157     transformer, action).fork();
5158     }
5159     for (Node<K,V> p; (p = advance()) != null; ) {
5160     U u;
5161 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5162 dl 1.153 action.accept(u);
5163 dl 1.149 }
5164     propagateCompletion();
5165 dl 1.119 }
5166     }
5167 tim 1.1 }
5168    
5169 dl 1.222 @SuppressWarnings("serial")
5170 dl 1.210 static final class SearchKeysTask<K,V,U>
5171     extends BulkTask<K,V,U> {
5172 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5173 dl 1.119 final AtomicReference<U> result;
5174     SearchKeysTask
5175 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 dl 1.153 Function<? super K, ? extends U> searchFunction,
5177 dl 1.119 AtomicReference<U> result) {
5178 dl 1.210 super(p, b, i, f, t);
5179 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5180     }
5181 dl 1.146 public final U getRawResult() { return result.get(); }
5182 jsr166 1.168 public final void compute() {
5183 dl 1.153 final Function<? super K, ? extends U> searchFunction;
5184 dl 1.146 final AtomicReference<U> result;
5185 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5186     (result = this.result) != null) {
5187 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5188     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5189 dl 1.149 if (result.get() != null)
5190     return;
5191 dl 1.210 addToPendingCount(1);
5192 dl 1.149 new SearchKeysTask<K,V,U>
5193 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5194     searchFunction, result).fork();
5195 dl 1.128 }
5196 dl 1.149 while (result.get() == null) {
5197 dl 1.210 U u;
5198     Node<K,V> p;
5199     if ((p = advance()) == null) {
5200 dl 1.149 propagateCompletion();
5201     break;
5202     }
5203 dl 1.222 if ((u = searchFunction.apply(p.key)) != null) {
5204 dl 1.149 if (result.compareAndSet(null, u))
5205     quietlyCompleteRoot();
5206     break;
5207     }
5208 dl 1.119 }
5209     }
5210     }
5211 tim 1.1 }
5212    
5213 dl 1.222 @SuppressWarnings("serial")
5214 dl 1.210 static final class SearchValuesTask<K,V,U>
5215     extends BulkTask<K,V,U> {
5216 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5217 dl 1.119 final AtomicReference<U> result;
5218     SearchValuesTask
5219 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5220 dl 1.153 Function<? super V, ? extends U> searchFunction,
5221 dl 1.119 AtomicReference<U> result) {
5222 dl 1.210 super(p, b, i, f, t);
5223 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5224     }
5225 dl 1.146 public final U getRawResult() { return result.get(); }
5226 jsr166 1.168 public final void compute() {
5227 dl 1.153 final Function<? super V, ? extends U> searchFunction;
5228 dl 1.146 final AtomicReference<U> result;
5229 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5230     (result = this.result) != null) {
5231 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5232     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5233 dl 1.149 if (result.get() != null)
5234     return;
5235 dl 1.210 addToPendingCount(1);
5236 dl 1.149 new SearchValuesTask<K,V,U>
5237 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5238     searchFunction, result).fork();
5239 dl 1.128 }
5240 dl 1.149 while (result.get() == null) {
5241 dl 1.210 U u;
5242     Node<K,V> p;
5243     if ((p = advance()) == null) {
5244 dl 1.149 propagateCompletion();
5245     break;
5246     }
5247 dl 1.210 if ((u = searchFunction.apply(p.val)) != null) {
5248 dl 1.149 if (result.compareAndSet(null, u))
5249     quietlyCompleteRoot();
5250     break;
5251     }
5252 dl 1.119 }
5253     }
5254     }
5255     }
5256 tim 1.11
5257 dl 1.222 @SuppressWarnings("serial")
5258 dl 1.210 static final class SearchEntriesTask<K,V,U>
5259     extends BulkTask<K,V,U> {
5260 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5261 dl 1.119 final AtomicReference<U> result;
5262     SearchEntriesTask
5263 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5264 dl 1.153 Function<Entry<K,V>, ? extends U> searchFunction,
5265 dl 1.119 AtomicReference<U> result) {
5266 dl 1.210 super(p, b, i, f, t);
5267 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5268     }
5269 dl 1.146 public final U getRawResult() { return result.get(); }
5270 jsr166 1.168 public final void compute() {
5271 dl 1.153 final Function<Entry<K,V>, ? extends U> searchFunction;
5272 dl 1.146 final AtomicReference<U> result;
5273 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5274     (result = this.result) != null) {
5275 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5276     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5277 dl 1.149 if (result.get() != null)
5278     return;
5279 dl 1.210 addToPendingCount(1);
5280 dl 1.149 new SearchEntriesTask<K,V,U>
5281 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5282     searchFunction, result).fork();
5283 dl 1.128 }
5284 dl 1.149 while (result.get() == null) {
5285 dl 1.210 U u;
5286     Node<K,V> p;
5287     if ((p = advance()) == null) {
5288 dl 1.149 propagateCompletion();
5289     break;
5290     }
5291 dl 1.210 if ((u = searchFunction.apply(p)) != null) {
5292 dl 1.149 if (result.compareAndSet(null, u))
5293     quietlyCompleteRoot();
5294     return;
5295     }
5296 dl 1.119 }
5297     }
5298     }
5299     }
5300 tim 1.1
5301 dl 1.222 @SuppressWarnings("serial")
5302 dl 1.210 static final class SearchMappingsTask<K,V,U>
5303     extends BulkTask<K,V,U> {
5304 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5305 dl 1.119 final AtomicReference<U> result;
5306     SearchMappingsTask
5307 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5308 dl 1.153 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5309 dl 1.119 AtomicReference<U> result) {
5310 dl 1.210 super(p, b, i, f, t);
5311 dl 1.119 this.searchFunction = searchFunction; this.result = result;
5312     }
5313 dl 1.146 public final U getRawResult() { return result.get(); }
5314 jsr166 1.168 public final void compute() {
5315 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5316 dl 1.146 final AtomicReference<U> result;
5317 dl 1.149 if ((searchFunction = this.searchFunction) != null &&
5318     (result = this.result) != null) {
5319 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5320     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5321 dl 1.149 if (result.get() != null)
5322     return;
5323 dl 1.210 addToPendingCount(1);
5324 dl 1.149 new SearchMappingsTask<K,V,U>
5325 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5326     searchFunction, result).fork();
5327 dl 1.128 }
5328 dl 1.149 while (result.get() == null) {
5329 dl 1.210 U u;
5330     Node<K,V> p;
5331     if ((p = advance()) == null) {
5332 dl 1.149 propagateCompletion();
5333     break;
5334     }
5335 dl 1.222 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5336 dl 1.149 if (result.compareAndSet(null, u))
5337     quietlyCompleteRoot();
5338     break;
5339     }
5340 dl 1.119 }
5341     }
5342 tim 1.1 }
5343 dl 1.119 }
5344 tim 1.1
5345 dl 1.222 @SuppressWarnings("serial")
5346 dl 1.210 static final class ReduceKeysTask<K,V>
5347     extends BulkTask<K,V,K> {
5348 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5349 dl 1.119 K result;
5350 dl 1.128 ReduceKeysTask<K,V> rights, nextRight;
5351 dl 1.119 ReduceKeysTask
5352 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5353 dl 1.128 ReduceKeysTask<K,V> nextRight,
5354 dl 1.153 BiFunction<? super K, ? super K, ? extends K> reducer) {
5355 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5356 dl 1.119 this.reducer = reducer;
5357     }
5358 dl 1.146 public final K getRawResult() { return result; }
5359 dl 1.210 public final void compute() {
5360 dl 1.153 final BiFunction<? super K, ? super K, ? extends K> reducer;
5361 dl 1.149 if ((reducer = this.reducer) != null) {
5362 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5363     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5364     addToPendingCount(1);
5365 dl 1.149 (rights = new ReduceKeysTask<K,V>
5366 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5367     rights, reducer)).fork();
5368     }
5369     K r = null;
5370     for (Node<K,V> p; (p = advance()) != null; ) {
5371 dl 1.222 K u = p.key;
5372 jsr166 1.154 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5373 dl 1.149 }
5374     result = r;
5375     CountedCompleter<?> c;
5376     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5377 dl 1.246 @SuppressWarnings("unchecked")
5378     ReduceKeysTask<K,V>
5379 dl 1.149 t = (ReduceKeysTask<K,V>)c,
5380     s = t.rights;
5381     while (s != null) {
5382     K tr, sr;
5383     if ((sr = s.result) != null)
5384     t.result = (((tr = t.result) == null) ? sr :
5385     reducer.apply(tr, sr));
5386     s = t.rights = s.nextRight;
5387     }
5388 dl 1.99 }
5389 dl 1.138 }
5390 tim 1.1 }
5391 dl 1.119 }
5392 tim 1.1
5393 dl 1.222 @SuppressWarnings("serial")
5394 dl 1.210 static final class ReduceValuesTask<K,V>
5395     extends BulkTask<K,V,V> {
5396 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5397 dl 1.119 V result;
5398 dl 1.128 ReduceValuesTask<K,V> rights, nextRight;
5399 dl 1.119 ReduceValuesTask
5400 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5401 dl 1.128 ReduceValuesTask<K,V> nextRight,
5402 dl 1.153 BiFunction<? super V, ? super V, ? extends V> reducer) {
5403 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5404 dl 1.119 this.reducer = reducer;
5405     }
5406 dl 1.146 public final V getRawResult() { return result; }
5407 dl 1.210 public final void compute() {
5408 dl 1.153 final BiFunction<? super V, ? super V, ? extends V> reducer;
5409 dl 1.149 if ((reducer = this.reducer) != null) {
5410 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5411     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5412     addToPendingCount(1);
5413 dl 1.149 (rights = new ReduceValuesTask<K,V>
5414 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5415     rights, reducer)).fork();
5416     }
5417     V r = null;
5418     for (Node<K,V> p; (p = advance()) != null; ) {
5419     V v = p.val;
5420 dl 1.156 r = (r == null) ? v : reducer.apply(r, v);
5421 dl 1.210 }
5422 dl 1.149 result = r;
5423     CountedCompleter<?> c;
5424     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5425 dl 1.246 @SuppressWarnings("unchecked")
5426     ReduceValuesTask<K,V>
5427 dl 1.149 t = (ReduceValuesTask<K,V>)c,
5428     s = t.rights;
5429     while (s != null) {
5430     V tr, sr;
5431     if ((sr = s.result) != null)
5432     t.result = (((tr = t.result) == null) ? sr :
5433     reducer.apply(tr, sr));
5434     s = t.rights = s.nextRight;
5435     }
5436 dl 1.119 }
5437     }
5438 tim 1.1 }
5439 dl 1.119 }
5440 tim 1.1
5441 dl 1.222 @SuppressWarnings("serial")
5442 dl 1.210 static final class ReduceEntriesTask<K,V>
5443     extends BulkTask<K,V,Map.Entry<K,V>> {
5444 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5445 dl 1.119 Map.Entry<K,V> result;
5446 dl 1.128 ReduceEntriesTask<K,V> rights, nextRight;
5447 dl 1.119 ReduceEntriesTask
5448 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5449 dl 1.130 ReduceEntriesTask<K,V> nextRight,
5450 dl 1.153 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5451 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5452 dl 1.119 this.reducer = reducer;
5453     }
5454 dl 1.146 public final Map.Entry<K,V> getRawResult() { return result; }
5455 dl 1.210 public final void compute() {
5456 dl 1.153 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5457 dl 1.149 if ((reducer = this.reducer) != null) {
5458 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5459     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5460     addToPendingCount(1);
5461 dl 1.149 (rights = new ReduceEntriesTask<K,V>
5462 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5463     rights, reducer)).fork();
5464     }
5465 dl 1.149 Map.Entry<K,V> r = null;
5466 dl 1.210 for (Node<K,V> p; (p = advance()) != null; )
5467     r = (r == null) ? p : reducer.apply(r, p);
5468 dl 1.149 result = r;
5469     CountedCompleter<?> c;
5470     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5471 dl 1.246 @SuppressWarnings("unchecked")
5472     ReduceEntriesTask<K,V>
5473 dl 1.149 t = (ReduceEntriesTask<K,V>)c,
5474     s = t.rights;
5475     while (s != null) {
5476     Map.Entry<K,V> tr, sr;
5477     if ((sr = s.result) != null)
5478     t.result = (((tr = t.result) == null) ? sr :
5479     reducer.apply(tr, sr));
5480     s = t.rights = s.nextRight;
5481     }
5482 dl 1.119 }
5483 dl 1.138 }
5484 dl 1.119 }
5485     }
5486 dl 1.99
5487 dl 1.222 @SuppressWarnings("serial")
5488 dl 1.210 static final class MapReduceKeysTask<K,V,U>
5489     extends BulkTask<K,V,U> {
5490 dl 1.153 final Function<? super K, ? extends U> transformer;
5491     final BiFunction<? super U, ? super U, ? extends U> reducer;
5492 dl 1.119 U result;
5493 dl 1.128 MapReduceKeysTask<K,V,U> rights, nextRight;
5494 dl 1.119 MapReduceKeysTask
5495 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5496 dl 1.128 MapReduceKeysTask<K,V,U> nextRight,
5497 dl 1.153 Function<? super K, ? extends U> transformer,
5498     BiFunction<? super U, ? super U, ? extends U> reducer) {
5499 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5500 dl 1.119 this.transformer = transformer;
5501     this.reducer = reducer;
5502     }
5503 dl 1.146 public final U getRawResult() { return result; }
5504 dl 1.210 public final void compute() {
5505 dl 1.153 final Function<? super K, ? extends U> transformer;
5506     final BiFunction<? super U, ? super U, ? extends U> reducer;
5507 dl 1.149 if ((transformer = this.transformer) != null &&
5508     (reducer = this.reducer) != null) {
5509 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5510     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5511     addToPendingCount(1);
5512 dl 1.149 (rights = new MapReduceKeysTask<K,V,U>
5513 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5514     rights, transformer, reducer)).fork();
5515     }
5516     U r = null;
5517     for (Node<K,V> p; (p = advance()) != null; ) {
5518     U u;
5519 dl 1.222 if ((u = transformer.apply(p.key)) != null)
5520 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5521     }
5522     result = r;
5523     CountedCompleter<?> c;
5524     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5525 dl 1.246 @SuppressWarnings("unchecked")
5526     MapReduceKeysTask<K,V,U>
5527 dl 1.149 t = (MapReduceKeysTask<K,V,U>)c,
5528     s = t.rights;
5529     while (s != null) {
5530     U tr, sr;
5531     if ((sr = s.result) != null)
5532     t.result = (((tr = t.result) == null) ? sr :
5533     reducer.apply(tr, sr));
5534     s = t.rights = s.nextRight;
5535     }
5536 dl 1.119 }
5537 dl 1.138 }
5538 tim 1.1 }
5539 dl 1.4 }
5540    
5541 dl 1.222 @SuppressWarnings("serial")
5542 dl 1.210 static final class MapReduceValuesTask<K,V,U>
5543     extends BulkTask<K,V,U> {
5544 dl 1.153 final Function<? super V, ? extends U> transformer;
5545     final BiFunction<? super U, ? super U, ? extends U> reducer;
5546 dl 1.119 U result;
5547 dl 1.128 MapReduceValuesTask<K,V,U> rights, nextRight;
5548 dl 1.119 MapReduceValuesTask
5549 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5550 dl 1.128 MapReduceValuesTask<K,V,U> nextRight,
5551 dl 1.153 Function<? super V, ? extends U> transformer,
5552     BiFunction<? super U, ? super U, ? extends U> reducer) {
5553 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5554 dl 1.119 this.transformer = transformer;
5555     this.reducer = reducer;
5556     }
5557 dl 1.146 public final U getRawResult() { return result; }
5558 dl 1.210 public final void compute() {
5559 dl 1.153 final Function<? super V, ? extends U> transformer;
5560     final BiFunction<? super U, ? super U, ? extends U> reducer;
5561 dl 1.149 if ((transformer = this.transformer) != null &&
5562     (reducer = this.reducer) != null) {
5563 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5564     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5565     addToPendingCount(1);
5566 dl 1.149 (rights = new MapReduceValuesTask<K,V,U>
5567 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5568     rights, transformer, reducer)).fork();
5569     }
5570     U r = null;
5571     for (Node<K,V> p; (p = advance()) != null; ) {
5572     U u;
5573     if ((u = transformer.apply(p.val)) != null)
5574 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5575     }
5576     result = r;
5577     CountedCompleter<?> c;
5578     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5579 dl 1.246 @SuppressWarnings("unchecked")
5580     MapReduceValuesTask<K,V,U>
5581 dl 1.149 t = (MapReduceValuesTask<K,V,U>)c,
5582     s = t.rights;
5583     while (s != null) {
5584     U tr, sr;
5585     if ((sr = s.result) != null)
5586     t.result = (((tr = t.result) == null) ? sr :
5587     reducer.apply(tr, sr));
5588     s = t.rights = s.nextRight;
5589     }
5590 dl 1.119 }
5591     }
5592     }
5593 dl 1.4 }
5594    
5595 dl 1.222 @SuppressWarnings("serial")
5596 dl 1.210 static final class MapReduceEntriesTask<K,V,U>
5597     extends BulkTask<K,V,U> {
5598 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5599     final BiFunction<? super U, ? super U, ? extends U> reducer;
5600 dl 1.119 U result;
5601 dl 1.128 MapReduceEntriesTask<K,V,U> rights, nextRight;
5602 dl 1.119 MapReduceEntriesTask
5603 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5604 dl 1.128 MapReduceEntriesTask<K,V,U> nextRight,
5605 dl 1.153 Function<Map.Entry<K,V>, ? extends U> transformer,
5606     BiFunction<? super U, ? super U, ? extends U> reducer) {
5607 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5608 dl 1.119 this.transformer = transformer;
5609     this.reducer = reducer;
5610     }
5611 dl 1.146 public final U getRawResult() { return result; }
5612 dl 1.210 public final void compute() {
5613 dl 1.153 final Function<Map.Entry<K,V>, ? extends U> transformer;
5614     final BiFunction<? super U, ? super U, ? extends U> reducer;
5615 dl 1.149 if ((transformer = this.transformer) != null &&
5616     (reducer = this.reducer) != null) {
5617 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5618     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5619     addToPendingCount(1);
5620 dl 1.149 (rights = new MapReduceEntriesTask<K,V,U>
5621 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5622     rights, transformer, reducer)).fork();
5623     }
5624     U r = null;
5625     for (Node<K,V> p; (p = advance()) != null; ) {
5626     U u;
5627     if ((u = transformer.apply(p)) != null)
5628 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5629     }
5630     result = r;
5631     CountedCompleter<?> c;
5632     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5633 dl 1.246 @SuppressWarnings("unchecked")
5634     MapReduceEntriesTask<K,V,U>
5635 dl 1.149 t = (MapReduceEntriesTask<K,V,U>)c,
5636     s = t.rights;
5637     while (s != null) {
5638     U tr, sr;
5639     if ((sr = s.result) != null)
5640     t.result = (((tr = t.result) == null) ? sr :
5641     reducer.apply(tr, sr));
5642     s = t.rights = s.nextRight;
5643     }
5644 dl 1.119 }
5645 dl 1.138 }
5646 dl 1.119 }
5647 dl 1.4 }
5648 tim 1.1
5649 dl 1.222 @SuppressWarnings("serial")
5650 dl 1.210 static final class MapReduceMappingsTask<K,V,U>
5651     extends BulkTask<K,V,U> {
5652 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5653     final BiFunction<? super U, ? super U, ? extends U> reducer;
5654 dl 1.119 U result;
5655 dl 1.128 MapReduceMappingsTask<K,V,U> rights, nextRight;
5656 dl 1.119 MapReduceMappingsTask
5657 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5658 dl 1.128 MapReduceMappingsTask<K,V,U> nextRight,
5659 dl 1.153 BiFunction<? super K, ? super V, ? extends U> transformer,
5660     BiFunction<? super U, ? super U, ? extends U> reducer) {
5661 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5662 dl 1.119 this.transformer = transformer;
5663     this.reducer = reducer;
5664     }
5665 dl 1.146 public final U getRawResult() { return result; }
5666 dl 1.210 public final void compute() {
5667 dl 1.153 final BiFunction<? super K, ? super V, ? extends U> transformer;
5668     final BiFunction<? super U, ? super U, ? extends U> reducer;
5669 dl 1.149 if ((transformer = this.transformer) != null &&
5670     (reducer = this.reducer) != null) {
5671 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5672     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5673     addToPendingCount(1);
5674 dl 1.149 (rights = new MapReduceMappingsTask<K,V,U>
5675 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5676     rights, transformer, reducer)).fork();
5677     }
5678     U r = null;
5679     for (Node<K,V> p; (p = advance()) != null; ) {
5680     U u;
5681 dl 1.222 if ((u = transformer.apply(p.key, p.val)) != null)
5682 dl 1.149 r = (r == null) ? u : reducer.apply(r, u);
5683     }
5684     result = r;
5685     CountedCompleter<?> c;
5686     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5687 dl 1.246 @SuppressWarnings("unchecked")
5688     MapReduceMappingsTask<K,V,U>
5689 dl 1.149 t = (MapReduceMappingsTask<K,V,U>)c,
5690     s = t.rights;
5691     while (s != null) {
5692     U tr, sr;
5693     if ((sr = s.result) != null)
5694     t.result = (((tr = t.result) == null) ? sr :
5695     reducer.apply(tr, sr));
5696     s = t.rights = s.nextRight;
5697     }
5698 dl 1.119 }
5699     }
5700     }
5701     }
5702 jsr166 1.114
5703 dl 1.222 @SuppressWarnings("serial")
5704 dl 1.210 static final class MapReduceKeysToDoubleTask<K,V>
5705     extends BulkTask<K,V,Double> {
5706 dl 1.171 final ToDoubleFunction<? super K> transformer;
5707 dl 1.153 final DoubleBinaryOperator reducer;
5708 dl 1.119 final double basis;
5709     double result;
5710 dl 1.128 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5711 dl 1.119 MapReduceKeysToDoubleTask
5712 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5713 dl 1.128 MapReduceKeysToDoubleTask<K,V> nextRight,
5714 dl 1.171 ToDoubleFunction<? super K> transformer,
5715 dl 1.119 double basis,
5716 dl 1.153 DoubleBinaryOperator reducer) {
5717 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5718 dl 1.119 this.transformer = transformer;
5719     this.basis = basis; this.reducer = reducer;
5720     }
5721 dl 1.146 public final Double getRawResult() { return result; }
5722 dl 1.210 public final void compute() {
5723 dl 1.171 final ToDoubleFunction<? super K> transformer;
5724 dl 1.153 final DoubleBinaryOperator reducer;
5725 dl 1.149 if ((transformer = this.transformer) != null &&
5726     (reducer = this.reducer) != null) {
5727     double r = this.basis;
5728 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5729     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5730     addToPendingCount(1);
5731 dl 1.149 (rights = new MapReduceKeysToDoubleTask<K,V>
5732 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5733     rights, transformer, r, reducer)).fork();
5734     }
5735     for (Node<K,V> p; (p = advance()) != null; )
5736 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5737 dl 1.149 result = r;
5738     CountedCompleter<?> c;
5739     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5740 dl 1.246 @SuppressWarnings("unchecked")
5741     MapReduceKeysToDoubleTask<K,V>
5742 dl 1.149 t = (MapReduceKeysToDoubleTask<K,V>)c,
5743     s = t.rights;
5744     while (s != null) {
5745 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5746 dl 1.149 s = t.rights = s.nextRight;
5747     }
5748 dl 1.119 }
5749 dl 1.138 }
5750 dl 1.79 }
5751 dl 1.119 }
5752 dl 1.79
5753 dl 1.222 @SuppressWarnings("serial")
5754 dl 1.210 static final class MapReduceValuesToDoubleTask<K,V>
5755     extends BulkTask<K,V,Double> {
5756 dl 1.171 final ToDoubleFunction<? super V> transformer;
5757 dl 1.153 final DoubleBinaryOperator reducer;
5758 dl 1.119 final double basis;
5759     double result;
5760 dl 1.128 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5761 dl 1.119 MapReduceValuesToDoubleTask
5762 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5763 dl 1.128 MapReduceValuesToDoubleTask<K,V> nextRight,
5764 dl 1.171 ToDoubleFunction<? super V> transformer,
5765 dl 1.119 double basis,
5766 dl 1.153 DoubleBinaryOperator reducer) {
5767 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5768 dl 1.119 this.transformer = transformer;
5769     this.basis = basis; this.reducer = reducer;
5770     }
5771 dl 1.146 public final Double getRawResult() { return result; }
5772 dl 1.210 public final void compute() {
5773 dl 1.171 final ToDoubleFunction<? super V> transformer;
5774 dl 1.153 final DoubleBinaryOperator reducer;
5775 dl 1.149 if ((transformer = this.transformer) != null &&
5776     (reducer = this.reducer) != null) {
5777     double r = this.basis;
5778 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5779     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5780     addToPendingCount(1);
5781 dl 1.149 (rights = new MapReduceValuesToDoubleTask<K,V>
5782 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5783     rights, transformer, r, reducer)).fork();
5784     }
5785     for (Node<K,V> p; (p = advance()) != null; )
5786     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5787 dl 1.149 result = r;
5788     CountedCompleter<?> c;
5789     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5790 dl 1.246 @SuppressWarnings("unchecked")
5791     MapReduceValuesToDoubleTask<K,V>
5792 dl 1.149 t = (MapReduceValuesToDoubleTask<K,V>)c,
5793     s = t.rights;
5794     while (s != null) {
5795 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5796 dl 1.149 s = t.rights = s.nextRight;
5797     }
5798 dl 1.119 }
5799     }
5800 dl 1.30 }
5801 dl 1.79 }
5802 dl 1.30
5803 dl 1.222 @SuppressWarnings("serial")
5804 dl 1.210 static final class MapReduceEntriesToDoubleTask<K,V>
5805     extends BulkTask<K,V,Double> {
5806 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5807 dl 1.153 final DoubleBinaryOperator reducer;
5808 dl 1.119 final double basis;
5809     double result;
5810 dl 1.128 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5811 dl 1.119 MapReduceEntriesToDoubleTask
5812 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5813 dl 1.128 MapReduceEntriesToDoubleTask<K,V> nextRight,
5814 dl 1.171 ToDoubleFunction<Map.Entry<K,V>> transformer,
5815 dl 1.119 double basis,
5816 dl 1.153 DoubleBinaryOperator reducer) {
5817 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5818 dl 1.119 this.transformer = transformer;
5819     this.basis = basis; this.reducer = reducer;
5820     }
5821 dl 1.146 public final Double getRawResult() { return result; }
5822 dl 1.210 public final void compute() {
5823 dl 1.171 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5824 dl 1.153 final DoubleBinaryOperator reducer;
5825 dl 1.149 if ((transformer = this.transformer) != null &&
5826     (reducer = this.reducer) != null) {
5827     double r = this.basis;
5828 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5829     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5830     addToPendingCount(1);
5831 dl 1.149 (rights = new MapReduceEntriesToDoubleTask<K,V>
5832 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5833     rights, transformer, r, reducer)).fork();
5834     }
5835     for (Node<K,V> p; (p = advance()) != null; )
5836     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5837 dl 1.149 result = r;
5838     CountedCompleter<?> c;
5839     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5840 dl 1.246 @SuppressWarnings("unchecked")
5841     MapReduceEntriesToDoubleTask<K,V>
5842 dl 1.149 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5843     s = t.rights;
5844     while (s != null) {
5845 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5846 dl 1.149 s = t.rights = s.nextRight;
5847     }
5848 dl 1.119 }
5849 dl 1.138 }
5850 dl 1.30 }
5851 tim 1.1 }
5852    
5853 dl 1.222 @SuppressWarnings("serial")
5854 dl 1.210 static final class MapReduceMappingsToDoubleTask<K,V>
5855     extends BulkTask<K,V,Double> {
5856 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5857 dl 1.153 final DoubleBinaryOperator reducer;
5858 dl 1.119 final double basis;
5859     double result;
5860 dl 1.128 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5861 dl 1.119 MapReduceMappingsToDoubleTask
5862 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5863 dl 1.128 MapReduceMappingsToDoubleTask<K,V> nextRight,
5864 dl 1.171 ToDoubleBiFunction<? super K, ? super V> transformer,
5865 dl 1.119 double basis,
5866 dl 1.153 DoubleBinaryOperator reducer) {
5867 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5868 dl 1.119 this.transformer = transformer;
5869     this.basis = basis; this.reducer = reducer;
5870     }
5871 dl 1.146 public final Double getRawResult() { return result; }
5872 dl 1.210 public final void compute() {
5873 dl 1.171 final ToDoubleBiFunction<? super K, ? super V> transformer;
5874 dl 1.153 final DoubleBinaryOperator reducer;
5875 dl 1.149 if ((transformer = this.transformer) != null &&
5876     (reducer = this.reducer) != null) {
5877     double r = this.basis;
5878 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5879     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5880     addToPendingCount(1);
5881 dl 1.149 (rights = new MapReduceMappingsToDoubleTask<K,V>
5882 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5883     rights, transformer, r, reducer)).fork();
5884     }
5885     for (Node<K,V> p; (p = advance()) != null; )
5886 dl 1.222 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5887 dl 1.149 result = r;
5888     CountedCompleter<?> c;
5889     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5890 dl 1.246 @SuppressWarnings("unchecked")
5891     MapReduceMappingsToDoubleTask<K,V>
5892 dl 1.149 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5893     s = t.rights;
5894     while (s != null) {
5895 dl 1.153 t.result = reducer.applyAsDouble(t.result, s.result);
5896 dl 1.149 s = t.rights = s.nextRight;
5897     }
5898 dl 1.119 }
5899     }
5900 dl 1.4 }
5901 dl 1.119 }
5902    
5903 dl 1.222 @SuppressWarnings("serial")
5904 dl 1.210 static final class MapReduceKeysToLongTask<K,V>
5905     extends BulkTask<K,V,Long> {
5906 dl 1.171 final ToLongFunction<? super K> transformer;
5907 dl 1.153 final LongBinaryOperator reducer;
5908 dl 1.119 final long basis;
5909     long result;
5910 dl 1.128 MapReduceKeysToLongTask<K,V> rights, nextRight;
5911 dl 1.119 MapReduceKeysToLongTask
5912 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5913 dl 1.128 MapReduceKeysToLongTask<K,V> nextRight,
5914 dl 1.171 ToLongFunction<? super K> transformer,
5915 dl 1.119 long basis,
5916 dl 1.153 LongBinaryOperator reducer) {
5917 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5918 dl 1.119 this.transformer = transformer;
5919     this.basis = basis; this.reducer = reducer;
5920     }
5921 dl 1.146 public final Long getRawResult() { return result; }
5922 dl 1.210 public final void compute() {
5923 dl 1.171 final ToLongFunction<? super K> transformer;
5924 dl 1.153 final LongBinaryOperator reducer;
5925 dl 1.149 if ((transformer = this.transformer) != null &&
5926     (reducer = this.reducer) != null) {
5927     long r = this.basis;
5928 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5929     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5930     addToPendingCount(1);
5931 dl 1.149 (rights = new MapReduceKeysToLongTask<K,V>
5932 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5933     rights, transformer, r, reducer)).fork();
5934     }
5935     for (Node<K,V> p; (p = advance()) != null; )
5936 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5937 dl 1.149 result = r;
5938     CountedCompleter<?> c;
5939     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5940 dl 1.246 @SuppressWarnings("unchecked")
5941     MapReduceKeysToLongTask<K,V>
5942 dl 1.149 t = (MapReduceKeysToLongTask<K,V>)c,
5943     s = t.rights;
5944     while (s != null) {
5945 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5946 dl 1.149 s = t.rights = s.nextRight;
5947     }
5948 dl 1.119 }
5949 dl 1.138 }
5950 dl 1.4 }
5951 dl 1.119 }
5952    
5953 dl 1.222 @SuppressWarnings("serial")
5954 dl 1.210 static final class MapReduceValuesToLongTask<K,V>
5955     extends BulkTask<K,V,Long> {
5956 dl 1.171 final ToLongFunction<? super V> transformer;
5957 dl 1.153 final LongBinaryOperator reducer;
5958 dl 1.119 final long basis;
5959     long result;
5960 dl 1.128 MapReduceValuesToLongTask<K,V> rights, nextRight;
5961 dl 1.119 MapReduceValuesToLongTask
5962 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 dl 1.128 MapReduceValuesToLongTask<K,V> nextRight,
5964 dl 1.171 ToLongFunction<? super V> transformer,
5965 dl 1.119 long basis,
5966 dl 1.153 LongBinaryOperator reducer) {
5967 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
5968 dl 1.119 this.transformer = transformer;
5969     this.basis = basis; this.reducer = reducer;
5970     }
5971 dl 1.146 public final Long getRawResult() { return result; }
5972 dl 1.210 public final void compute() {
5973 dl 1.171 final ToLongFunction<? super V> transformer;
5974 dl 1.153 final LongBinaryOperator reducer;
5975 dl 1.149 if ((transformer = this.transformer) != null &&
5976     (reducer = this.reducer) != null) {
5977     long r = this.basis;
5978 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
5979     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980     addToPendingCount(1);
5981 dl 1.149 (rights = new MapReduceValuesToLongTask<K,V>
5982 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
5983     rights, transformer, r, reducer)).fork();
5984     }
5985     for (Node<K,V> p; (p = advance()) != null; )
5986     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5987 dl 1.149 result = r;
5988     CountedCompleter<?> c;
5989     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 dl 1.246 @SuppressWarnings("unchecked")
5991     MapReduceValuesToLongTask<K,V>
5992 dl 1.149 t = (MapReduceValuesToLongTask<K,V>)c,
5993     s = t.rights;
5994     while (s != null) {
5995 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
5996 dl 1.149 s = t.rights = s.nextRight;
5997     }
5998 dl 1.119 }
5999     }
6000 jsr166 1.95 }
6001 dl 1.119 }
6002    
6003 dl 1.222 @SuppressWarnings("serial")
6004 dl 1.210 static final class MapReduceEntriesToLongTask<K,V>
6005     extends BulkTask<K,V,Long> {
6006 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6007 dl 1.153 final LongBinaryOperator reducer;
6008 dl 1.119 final long basis;
6009     long result;
6010 dl 1.128 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6011 dl 1.119 MapReduceEntriesToLongTask
6012 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 dl 1.128 MapReduceEntriesToLongTask<K,V> nextRight,
6014 dl 1.171 ToLongFunction<Map.Entry<K,V>> transformer,
6015 dl 1.119 long basis,
6016 dl 1.153 LongBinaryOperator reducer) {
6017 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6018 dl 1.119 this.transformer = transformer;
6019     this.basis = basis; this.reducer = reducer;
6020     }
6021 dl 1.146 public final Long getRawResult() { return result; }
6022 dl 1.210 public final void compute() {
6023 dl 1.171 final ToLongFunction<Map.Entry<K,V>> transformer;
6024 dl 1.153 final LongBinaryOperator reducer;
6025 dl 1.149 if ((transformer = this.transformer) != null &&
6026     (reducer = this.reducer) != null) {
6027     long r = this.basis;
6028 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6029     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030     addToPendingCount(1);
6031 dl 1.149 (rights = new MapReduceEntriesToLongTask<K,V>
6032 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6033     rights, transformer, r, reducer)).fork();
6034     }
6035     for (Node<K,V> p; (p = advance()) != null; )
6036     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6037 dl 1.149 result = r;
6038     CountedCompleter<?> c;
6039     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 dl 1.246 @SuppressWarnings("unchecked")
6041     MapReduceEntriesToLongTask<K,V>
6042 dl 1.149 t = (MapReduceEntriesToLongTask<K,V>)c,
6043     s = t.rights;
6044     while (s != null) {
6045 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6046 dl 1.149 s = t.rights = s.nextRight;
6047     }
6048 dl 1.119 }
6049 dl 1.138 }
6050 dl 1.4 }
6051 tim 1.1 }
6052    
6053 dl 1.222 @SuppressWarnings("serial")
6054 dl 1.210 static final class MapReduceMappingsToLongTask<K,V>
6055     extends BulkTask<K,V,Long> {
6056 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6057 dl 1.153 final LongBinaryOperator reducer;
6058 dl 1.119 final long basis;
6059     long result;
6060 dl 1.128 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6061 dl 1.119 MapReduceMappingsToLongTask
6062 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6063 dl 1.128 MapReduceMappingsToLongTask<K,V> nextRight,
6064 dl 1.171 ToLongBiFunction<? super K, ? super V> transformer,
6065 dl 1.119 long basis,
6066 dl 1.153 LongBinaryOperator reducer) {
6067 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6068 dl 1.119 this.transformer = transformer;
6069     this.basis = basis; this.reducer = reducer;
6070     }
6071 dl 1.146 public final Long getRawResult() { return result; }
6072 dl 1.210 public final void compute() {
6073 dl 1.171 final ToLongBiFunction<? super K, ? super V> transformer;
6074 dl 1.153 final LongBinaryOperator reducer;
6075 dl 1.149 if ((transformer = this.transformer) != null &&
6076     (reducer = this.reducer) != null) {
6077     long r = this.basis;
6078 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6079     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6080     addToPendingCount(1);
6081 dl 1.149 (rights = new MapReduceMappingsToLongTask<K,V>
6082 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6083     rights, transformer, r, reducer)).fork();
6084     }
6085     for (Node<K,V> p; (p = advance()) != null; )
6086 dl 1.222 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6087 dl 1.149 result = r;
6088     CountedCompleter<?> c;
6089     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6090 dl 1.246 @SuppressWarnings("unchecked")
6091     MapReduceMappingsToLongTask<K,V>
6092 dl 1.149 t = (MapReduceMappingsToLongTask<K,V>)c,
6093     s = t.rights;
6094     while (s != null) {
6095 dl 1.153 t.result = reducer.applyAsLong(t.result, s.result);
6096 dl 1.149 s = t.rights = s.nextRight;
6097     }
6098 dl 1.119 }
6099     }
6100 dl 1.4 }
6101 tim 1.1 }
6102    
6103 dl 1.222 @SuppressWarnings("serial")
6104 dl 1.210 static final class MapReduceKeysToIntTask<K,V>
6105     extends BulkTask<K,V,Integer> {
6106 dl 1.171 final ToIntFunction<? super K> transformer;
6107 dl 1.153 final IntBinaryOperator reducer;
6108 dl 1.119 final int basis;
6109     int result;
6110 dl 1.128 MapReduceKeysToIntTask<K,V> rights, nextRight;
6111 dl 1.119 MapReduceKeysToIntTask
6112 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6113 dl 1.128 MapReduceKeysToIntTask<K,V> nextRight,
6114 dl 1.171 ToIntFunction<? super K> transformer,
6115 dl 1.119 int basis,
6116 dl 1.153 IntBinaryOperator reducer) {
6117 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6118 dl 1.119 this.transformer = transformer;
6119     this.basis = basis; this.reducer = reducer;
6120     }
6121 dl 1.146 public final Integer getRawResult() { return result; }
6122 dl 1.210 public final void compute() {
6123 dl 1.171 final ToIntFunction<? super K> transformer;
6124 dl 1.153 final IntBinaryOperator reducer;
6125 dl 1.149 if ((transformer = this.transformer) != null &&
6126     (reducer = this.reducer) != null) {
6127     int r = this.basis;
6128 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6129     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6130     addToPendingCount(1);
6131 dl 1.149 (rights = new MapReduceKeysToIntTask<K,V>
6132 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6133     rights, transformer, r, reducer)).fork();
6134     }
6135     for (Node<K,V> p; (p = advance()) != null; )
6136 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6137 dl 1.149 result = r;
6138     CountedCompleter<?> c;
6139     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6140 dl 1.246 @SuppressWarnings("unchecked")
6141     MapReduceKeysToIntTask<K,V>
6142 dl 1.149 t = (MapReduceKeysToIntTask<K,V>)c,
6143     s = t.rights;
6144     while (s != null) {
6145 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6146 dl 1.149 s = t.rights = s.nextRight;
6147     }
6148 dl 1.119 }
6149 dl 1.138 }
6150 dl 1.30 }
6151     }
6152    
6153 dl 1.222 @SuppressWarnings("serial")
6154 dl 1.210 static final class MapReduceValuesToIntTask<K,V>
6155     extends BulkTask<K,V,Integer> {
6156 dl 1.171 final ToIntFunction<? super V> transformer;
6157 dl 1.153 final IntBinaryOperator reducer;
6158 dl 1.119 final int basis;
6159     int result;
6160 dl 1.128 MapReduceValuesToIntTask<K,V> rights, nextRight;
6161 dl 1.119 MapReduceValuesToIntTask
6162 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6163 dl 1.128 MapReduceValuesToIntTask<K,V> nextRight,
6164 dl 1.171 ToIntFunction<? super V> transformer,
6165 dl 1.119 int basis,
6166 dl 1.153 IntBinaryOperator reducer) {
6167 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6168 dl 1.119 this.transformer = transformer;
6169     this.basis = basis; this.reducer = reducer;
6170     }
6171 dl 1.146 public final Integer getRawResult() { return result; }
6172 dl 1.210 public final void compute() {
6173 dl 1.171 final ToIntFunction<? super V> transformer;
6174 dl 1.153 final IntBinaryOperator reducer;
6175 dl 1.149 if ((transformer = this.transformer) != null &&
6176     (reducer = this.reducer) != null) {
6177     int r = this.basis;
6178 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6179     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6180     addToPendingCount(1);
6181 dl 1.149 (rights = new MapReduceValuesToIntTask<K,V>
6182 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6183     rights, transformer, r, reducer)).fork();
6184     }
6185     for (Node<K,V> p; (p = advance()) != null; )
6186     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6187 dl 1.149 result = r;
6188     CountedCompleter<?> c;
6189     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6190 dl 1.246 @SuppressWarnings("unchecked")
6191     MapReduceValuesToIntTask<K,V>
6192 dl 1.149 t = (MapReduceValuesToIntTask<K,V>)c,
6193     s = t.rights;
6194     while (s != null) {
6195 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6196 dl 1.149 s = t.rights = s.nextRight;
6197     }
6198 dl 1.119 }
6199 dl 1.2 }
6200 tim 1.1 }
6201     }
6202    
6203 dl 1.222 @SuppressWarnings("serial")
6204 dl 1.210 static final class MapReduceEntriesToIntTask<K,V>
6205     extends BulkTask<K,V,Integer> {
6206 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6207 dl 1.153 final IntBinaryOperator reducer;
6208 dl 1.119 final int basis;
6209     int result;
6210 dl 1.128 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6211 dl 1.119 MapReduceEntriesToIntTask
6212 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6213 dl 1.128 MapReduceEntriesToIntTask<K,V> nextRight,
6214 dl 1.171 ToIntFunction<Map.Entry<K,V>> transformer,
6215 dl 1.119 int basis,
6216 dl 1.153 IntBinaryOperator reducer) {
6217 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6218 dl 1.119 this.transformer = transformer;
6219     this.basis = basis; this.reducer = reducer;
6220     }
6221 dl 1.146 public final Integer getRawResult() { return result; }
6222 dl 1.210 public final void compute() {
6223 dl 1.171 final ToIntFunction<Map.Entry<K,V>> transformer;
6224 dl 1.153 final IntBinaryOperator reducer;
6225 dl 1.149 if ((transformer = this.transformer) != null &&
6226     (reducer = this.reducer) != null) {
6227     int r = this.basis;
6228 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6229     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6230     addToPendingCount(1);
6231 dl 1.149 (rights = new MapReduceEntriesToIntTask<K,V>
6232 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6233     rights, transformer, r, reducer)).fork();
6234     }
6235     for (Node<K,V> p; (p = advance()) != null; )
6236     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6237 dl 1.149 result = r;
6238     CountedCompleter<?> c;
6239     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 dl 1.246 @SuppressWarnings("unchecked")
6241     MapReduceEntriesToIntTask<K,V>
6242 dl 1.149 t = (MapReduceEntriesToIntTask<K,V>)c,
6243     s = t.rights;
6244     while (s != null) {
6245 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6246 dl 1.149 s = t.rights = s.nextRight;
6247     }
6248 dl 1.119 }
6249 dl 1.138 }
6250 dl 1.4 }
6251 dl 1.119 }
6252 tim 1.1
6253 dl 1.222 @SuppressWarnings("serial")
6254 dl 1.210 static final class MapReduceMappingsToIntTask<K,V>
6255     extends BulkTask<K,V,Integer> {
6256 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6257 dl 1.153 final IntBinaryOperator reducer;
6258 dl 1.119 final int basis;
6259     int result;
6260 dl 1.128 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6261 dl 1.119 MapReduceMappingsToIntTask
6262 dl 1.210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6263 dl 1.146 MapReduceMappingsToIntTask<K,V> nextRight,
6264 dl 1.171 ToIntBiFunction<? super K, ? super V> transformer,
6265 dl 1.119 int basis,
6266 dl 1.153 IntBinaryOperator reducer) {
6267 dl 1.210 super(p, b, i, f, t); this.nextRight = nextRight;
6268 dl 1.119 this.transformer = transformer;
6269     this.basis = basis; this.reducer = reducer;
6270     }
6271 dl 1.146 public final Integer getRawResult() { return result; }
6272 dl 1.210 public final void compute() {
6273 dl 1.171 final ToIntBiFunction<? super K, ? super V> transformer;
6274 dl 1.153 final IntBinaryOperator reducer;
6275 dl 1.149 if ((transformer = this.transformer) != null &&
6276     (reducer = this.reducer) != null) {
6277     int r = this.basis;
6278 dl 1.210 for (int i = baseIndex, f, h; batch > 0 &&
6279     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6280     addToPendingCount(1);
6281 dl 1.149 (rights = new MapReduceMappingsToIntTask<K,V>
6282 dl 1.210 (this, batch >>>= 1, baseLimit = h, f, tab,
6283     rights, transformer, r, reducer)).fork();
6284     }
6285     for (Node<K,V> p; (p = advance()) != null; )
6286 dl 1.222 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6287 dl 1.149 result = r;
6288     CountedCompleter<?> c;
6289     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6290 dl 1.246 @SuppressWarnings("unchecked")
6291     MapReduceMappingsToIntTask<K,V>
6292 dl 1.149 t = (MapReduceMappingsToIntTask<K,V>)c,
6293     s = t.rights;
6294     while (s != null) {
6295 dl 1.153 t.result = reducer.applyAsInt(t.result, s.result);
6296 dl 1.149 s = t.rights = s.nextRight;
6297     }
6298 dl 1.119 }
6299 dl 1.138 }
6300 tim 1.1 }
6301     }
6302 dl 1.99
6303     // Unsafe mechanics
6304 jsr166 1.264 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6305 dl 1.149 private static final long SIZECTL;
6306     private static final long TRANSFERINDEX;
6307     private static final long BASECOUNT;
6308 dl 1.153 private static final long CELLSBUSY;
6309 dl 1.149 private static final long CELLVALUE;
6310 jsr166 1.264 private static final int ABASE;
6311 dl 1.119 private static final int ASHIFT;
6312 dl 1.99
6313     static {
6314     try {
6315 dl 1.149 SIZECTL = U.objectFieldOffset
6316 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6317 dl 1.149 TRANSFERINDEX = U.objectFieldOffset
6318 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6319 dl 1.149 BASECOUNT = U.objectFieldOffset
6320 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6321 dl 1.153 CELLSBUSY = U.objectFieldOffset
6322 jsr166 1.264 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6323    
6324 dl 1.149 CELLVALUE = U.objectFieldOffset
6325 jsr166 1.264 (CounterCell.class.getDeclaredField("value"));
6326    
6327     ABASE = U.arrayBaseOffset(Node[].class);
6328     int scale = U.arrayIndexScale(Node[].class);
6329 jsr166 1.167 if ((scale & (scale - 1)) != 0)
6330 jsr166 1.263 throw new Error("array index scale not a power of two");
6331 jsr166 1.167 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6332 jsr166 1.262 } catch (ReflectiveOperationException e) {
6333 dl 1.99 throw new Error(e);
6334     }
6335 jsr166 1.269
6336     // Reduce the risk of rare disastrous classloading in first call to
6337     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6338     Class<?> ensureLoaded = LockSupport.class;
6339 dl 1.99 }
6340 jsr166 1.152 }