ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.31
Committed: Fri Nov 28 12:37:00 2003 UTC (20 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.30: +54 -0 lines
Log Message:
Added replace method

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.21 * (default 16), which is used as a hint for internal sizing. The
43     * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52     * appropriate when it is known that only one thread will modify
53     * and all others will only read.
54 tim 1.1 *
55 dl 1.23 * <p>This class implements all of the <em>optional</em> methods
56     * of the {@link Map} and {@link Iterator} interfaces.
57     *
58 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
59     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60     * used as a key or value.
61 tim 1.1 *
62 dl 1.8 * @since 1.5
63     * @author Doug Lea
64 dl 1.27 * @param <K> the type of keys maintained by this map
65     * @param <V> the type of mapped values
66 dl 1.8 */
67 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
68     implements ConcurrentMap<K, V>, Cloneable, Serializable {
69 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
70 tim 1.1
71     /*
72 dl 1.4 * The basic strategy is to subdivide the table among Segments,
73     * each of which itself is a concurrently readable hash table.
74     */
75 tim 1.1
76 dl 1.4 /* ---------------- Constants -------------- */
77 tim 1.11
78 dl 1.4 /**
79 dl 1.19 * The default initial number of table slots for this table.
80 dl 1.4 * Used when not otherwise specified in constructor.
81     */
82 tim 1.11 private static int DEFAULT_INITIAL_CAPACITY = 16;
83 tim 1.1
84     /**
85 dl 1.4 * The maximum capacity, used if a higher value is implicitly
86     * specified by either of the constructors with arguments. MUST
87 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
88     * using ints.
89 dl 1.4 */
90 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
91 tim 1.11
92 tim 1.1 /**
93 dl 1.4 * The default load factor for this table. Used when not
94     * otherwise specified in constructor.
95     */
96 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97 tim 1.1
98     /**
99 dl 1.4 * The default number of concurrency control segments.
100 tim 1.1 **/
101 dl 1.4 private static final int DEFAULT_SEGMENTS = 16;
102 tim 1.1
103 dl 1.21 /**
104     * The maximum number of segments to allow; used to bound ctor arguments.
105     */
106     private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
107    
108 dl 1.4 /* ---------------- Fields -------------- */
109 tim 1.1
110     /**
111 dl 1.9 * Mask value for indexing into segments. The upper bits of a
112     * key's hash code are used to choose the segment.
113 tim 1.1 **/
114 dl 1.4 private final int segmentMask;
115 tim 1.1
116     /**
117 dl 1.4 * Shift value for indexing within segments.
118 tim 1.1 **/
119 dl 1.4 private final int segmentShift;
120 tim 1.1
121     /**
122 dl 1.4 * The segments, each of which is a specialized hash table
123 tim 1.1 */
124 tim 1.11 private final Segment[] segments;
125 dl 1.4
126 dl 1.6 private transient Set<K> keySet;
127 tim 1.12 private transient Set<Map.Entry<K,V>> entrySet;
128 dl 1.6 private transient Collection<V> values;
129 dl 1.4
130     /* ---------------- Small Utilities -------------- */
131 tim 1.1
132     /**
133 tim 1.11 * Return a hash code for non-null Object x.
134 dl 1.4 * Uses the same hash code spreader as most other j.u hash tables.
135 dl 1.8 * @param x the object serving as a key
136     * @return the hash code
137 tim 1.1 */
138 dl 1.4 private static int hash(Object x) {
139     int h = x.hashCode();
140     h += ~(h << 9);
141     h ^= (h >>> 14);
142     h += (h << 4);
143     h ^= (h >>> 10);
144     return h;
145     }
146    
147 tim 1.1 /**
148 dl 1.4 * Return the segment that should be used for key with given hash
149 tim 1.1 */
150 dl 1.4 private Segment<K,V> segmentFor(int hash) {
151 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
152 dl 1.4 }
153 tim 1.1
154 dl 1.4 /* ---------------- Inner Classes -------------- */
155 tim 1.1
156     /**
157 dl 1.6 * Segments are specialized versions of hash tables. This
158 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
159     * simplify some locking and avoid separate construction.
160 tim 1.1 **/
161 dl 1.8 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
162 dl 1.4 /*
163     * Segments maintain a table of entry lists that are ALWAYS
164     * kept in a consistent state, so can be read without locking.
165     * Next fields of nodes are immutable (final). All list
166     * additions are performed at the front of each bin. This
167     * makes it easy to check changes, and also fast to traverse.
168     * When nodes would otherwise be changed, new nodes are
169     * created to replace them. This works well for hash tables
170     * since the bin lists tend to be short. (The average length
171     * is less than two for the default load factor threshold.)
172     *
173     * Read operations can thus proceed without locking, but rely
174     * on a memory barrier to ensure that completed write
175     * operations performed by other threads are
176     * noticed. Conveniently, the "count" field, tracking the
177     * number of elements, can also serve as the volatile variable
178     * providing proper read/write barriers. This is convenient
179     * because this field needs to be read in many read operations
180 dl 1.19 * anyway.
181 dl 1.4 *
182     * Implementors note. The basic rules for all this are:
183     *
184     * - All unsynchronized read operations must first read the
185     * "count" field, and should not look at table entries if
186     * it is 0.
187 tim 1.11 *
188 dl 1.4 * - All synchronized write operations should write to
189     * the "count" field after updating. The operations must not
190     * take any action that could even momentarily cause
191     * a concurrent read operation to see inconsistent
192     * data. This is made easier by the nature of the read
193     * operations in Map. For example, no operation
194     * can reveal that the table has grown but the threshold
195     * has not yet been updated, so there are no atomicity
196     * requirements for this with respect to reads.
197     *
198     * As a guide, all critical volatile reads and writes are marked
199     * in code comments.
200     */
201 tim 1.11
202 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
203    
204 dl 1.4 /**
205     * The number of elements in this segment's region.
206     **/
207     transient volatile int count;
208    
209     /**
210 dl 1.21 * Number of updates; used for checking lack of modifications
211     * in bulk-read methods.
212     */
213     transient int modCount;
214    
215     /**
216 dl 1.4 * The table is rehashed when its size exceeds this threshold.
217     * (The value of this field is always (int)(capacity *
218     * loadFactor).)
219     */
220 dl 1.8 private transient int threshold;
221 dl 1.4
222     /**
223     * The per-segment table
224     */
225 tim 1.11 transient HashEntry[] table;
226 dl 1.4
227     /**
228     * The load factor for the hash table. Even though this value
229     * is same for all segments, it is replicated to avoid needing
230     * links to outer object.
231     * @serial
232     */
233     private final float loadFactor;
234 tim 1.1
235 dl 1.4 Segment(int initialCapacity, float lf) {
236     loadFactor = lf;
237 tim 1.11 setTable(new HashEntry[initialCapacity]);
238 dl 1.4 }
239 tim 1.1
240 dl 1.4 /**
241 tim 1.11 * Set table to new HashEntry array.
242 dl 1.4 * Call only while holding lock or in constructor.
243     **/
244 tim 1.11 private void setTable(HashEntry[] newTable) {
245 dl 1.4 table = newTable;
246     threshold = (int)(newTable.length * loadFactor);
247     count = count; // write-volatile
248 tim 1.11 }
249 dl 1.4
250     /* Specialized implementations of map methods */
251 tim 1.11
252 dl 1.29 V get(Object key, int hash) {
253 dl 1.4 if (count != 0) { // read-volatile
254 tim 1.11 HashEntry[] tab = table;
255 dl 1.9 int index = hash & (tab.length - 1);
256 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
257 dl 1.4 while (e != null) {
258 tim 1.11 if (e.hash == hash && key.equals(e.key))
259 dl 1.4 return e.value;
260     e = e.next;
261     }
262     }
263     return null;
264     }
265    
266     boolean containsKey(Object key, int hash) {
267     if (count != 0) { // read-volatile
268 tim 1.11 HashEntry[] tab = table;
269 dl 1.9 int index = hash & (tab.length - 1);
270 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
271 dl 1.4 while (e != null) {
272 tim 1.11 if (e.hash == hash && key.equals(e.key))
273 dl 1.4 return true;
274     e = e.next;
275     }
276     }
277     return false;
278     }
279 tim 1.11
280 dl 1.4 boolean containsValue(Object value) {
281     if (count != 0) { // read-volatile
282 tim 1.11 HashEntry[] tab = table;
283 dl 1.4 int len = tab.length;
284 tim 1.11 for (int i = 0 ; i < len; i++)
285 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
286 dl 1.4 if (value.equals(e.value))
287     return true;
288     }
289     return false;
290     }
291    
292 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
293     lock();
294     try {
295     int c = count;
296     HashEntry[] tab = table;
297     int index = hash & (tab.length - 1);
298     HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
299     HashEntry<K,V> e = first;
300     for (;;) {
301     if (e == null)
302     return false;
303     if (e.hash == hash && key.equals(e.key))
304     break;
305     e = e.next;
306     }
307    
308     V v = e.value;
309     if (v == null || !oldValue.equals(v))
310     return false;
311    
312     e.value = newValue;
313     count = c; // write-volatile
314     return true;
315    
316     } finally {
317     unlock();
318     }
319     }
320    
321 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
322 dl 1.4 lock();
323     try {
324 dl 1.9 int c = count;
325 tim 1.11 HashEntry[] tab = table;
326 dl 1.9 int index = hash & (tab.length - 1);
327 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
328    
329     for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
330 dl 1.9 if (e.hash == hash && key.equals(e.key)) {
331 tim 1.11 V oldValue = e.value;
332 dl 1.4 if (!onlyIfAbsent)
333     e.value = value;
334 dl 1.21 ++modCount;
335 dl 1.9 count = c; // write-volatile
336 dl 1.4 return oldValue;
337     }
338     }
339 tim 1.11
340 dl 1.4 tab[index] = new HashEntry<K,V>(hash, key, value, first);
341 dl 1.21 ++modCount;
342 dl 1.9 ++c;
343     count = c; // write-volatile
344 tim 1.11 if (c > threshold)
345 dl 1.9 setTable(rehash(tab));
346 dl 1.4 return null;
347 tim 1.16 } finally {
348 dl 1.4 unlock();
349     }
350     }
351    
352 tim 1.11 private HashEntry[] rehash(HashEntry[] oldTable) {
353 dl 1.4 int oldCapacity = oldTable.length;
354     if (oldCapacity >= MAXIMUM_CAPACITY)
355 dl 1.9 return oldTable;
356 dl 1.4
357     /*
358     * Reclassify nodes in each list to new Map. Because we are
359     * using power-of-two expansion, the elements from each bin
360     * must either stay at same index, or move with a power of two
361     * offset. We eliminate unnecessary node creation by catching
362     * cases where old nodes can be reused because their next
363     * fields won't change. Statistically, at the default
364 dl 1.29 * threshold, only about one-sixth of them need cloning when
365 dl 1.4 * a table doubles. The nodes they replace will be garbage
366     * collectable as soon as they are no longer referenced by any
367     * reader thread that may be in the midst of traversing table
368     * right now.
369     */
370 tim 1.11
371     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
372 dl 1.4 int sizeMask = newTable.length - 1;
373     for (int i = 0; i < oldCapacity ; i++) {
374     // We need to guarantee that any existing reads of old Map can
375 tim 1.11 // proceed. So we cannot yet null out each bin.
376 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
377 tim 1.11
378 dl 1.4 if (e != null) {
379     HashEntry<K,V> next = e.next;
380     int idx = e.hash & sizeMask;
381 tim 1.11
382 dl 1.4 // Single node on list
383 tim 1.11 if (next == null)
384 dl 1.4 newTable[idx] = e;
385 tim 1.11
386     else {
387 dl 1.4 // Reuse trailing consecutive sequence at same slot
388     HashEntry<K,V> lastRun = e;
389     int lastIdx = idx;
390 tim 1.11 for (HashEntry<K,V> last = next;
391     last != null;
392 dl 1.4 last = last.next) {
393     int k = last.hash & sizeMask;
394     if (k != lastIdx) {
395     lastIdx = k;
396     lastRun = last;
397     }
398     }
399     newTable[lastIdx] = lastRun;
400 tim 1.11
401 dl 1.4 // Clone all remaining nodes
402     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
403     int k = p.hash & sizeMask;
404 tim 1.11 newTable[k] = new HashEntry<K,V>(p.hash,
405     p.key,
406     p.value,
407     (HashEntry<K,V>) newTable[k]);
408 dl 1.4 }
409     }
410     }
411     }
412 dl 1.9 return newTable;
413 dl 1.4 }
414 dl 1.6
415     /**
416     * Remove; match on key only if value null, else match both.
417     */
418 dl 1.4 V remove(Object key, int hash, Object value) {
419 tim 1.11 lock();
420 dl 1.4 try {
421 dl 1.9 int c = count;
422 dl 1.4 HashEntry[] tab = table;
423 dl 1.9 int index = hash & (tab.length - 1);
424 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
425 tim 1.11
426 dl 1.4 HashEntry<K,V> e = first;
427 dl 1.9 for (;;) {
428 dl 1.4 if (e == null)
429     return null;
430 dl 1.9 if (e.hash == hash && key.equals(e.key))
431 dl 1.4 break;
432     e = e.next;
433     }
434    
435     V oldValue = e.value;
436     if (value != null && !value.equals(oldValue))
437     return null;
438 dl 1.9
439 dl 1.4 // All entries following removed node can stay in list, but
440 dl 1.29 // all preceding ones need to be cloned.
441 dl 1.4 HashEntry<K,V> newFirst = e.next;
442 tim 1.11 for (HashEntry<K,V> p = first; p != e; p = p.next)
443     newFirst = new HashEntry<K,V>(p.hash, p.key,
444 dl 1.8 p.value, newFirst);
445 dl 1.4 tab[index] = newFirst;
446 dl 1.21 ++modCount;
447 dl 1.9 count = c-1; // write-volatile
448     return oldValue;
449 tim 1.16 } finally {
450 dl 1.4 unlock();
451     }
452     }
453    
454     void clear() {
455     lock();
456     try {
457 tim 1.11 HashEntry[] tab = table;
458     for (int i = 0; i < tab.length ; i++)
459 dl 1.4 tab[i] = null;
460 dl 1.21 ++modCount;
461 dl 1.4 count = 0; // write-volatile
462 tim 1.16 } finally {
463 dl 1.4 unlock();
464     }
465     }
466 tim 1.1 }
467    
468     /**
469 dl 1.30 * ConcurrentHashMap list entry. Note that this is never exported
470     * out as a user-visible Map.Entry
471 tim 1.1 */
472 dl 1.30 private static class HashEntry<K,V> {
473 dl 1.4 private final K key;
474     private V value;
475     private final int hash;
476     private final HashEntry<K,V> next;
477    
478     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
479     this.value = value;
480     this.hash = hash;
481     this.key = key;
482     this.next = next;
483     }
484 tim 1.1 }
485    
486 tim 1.11
487 dl 1.4 /* ---------------- Public operations -------------- */
488 tim 1.1
489     /**
490     * Constructs a new, empty map with the specified initial
491     * capacity and the specified load factor.
492     *
493 dl 1.19 * @param initialCapacity the initial capacity. The implementation
494     * performs internal sizing to accommodate this many elements.
495 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
496 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
497     * updating threads. The implementation performs internal sizing
498 dl 1.21 * to try to accommodate this many threads.
499 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
500 dl 1.19 * negative or the load factor or concurrencyLevel are
501 dl 1.4 * nonpositive.
502     */
503 tim 1.11 public ConcurrentHashMap(int initialCapacity,
504 dl 1.19 float loadFactor, int concurrencyLevel) {
505     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
506 dl 1.4 throw new IllegalArgumentException();
507    
508 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
509     concurrencyLevel = MAX_SEGMENTS;
510    
511 dl 1.4 // Find power-of-two sizes best matching arguments
512     int sshift = 0;
513     int ssize = 1;
514 dl 1.19 while (ssize < concurrencyLevel) {
515 dl 1.4 ++sshift;
516     ssize <<= 1;
517     }
518 dl 1.9 segmentShift = 32 - sshift;
519 dl 1.8 segmentMask = ssize - 1;
520 tim 1.11 this.segments = new Segment[ssize];
521 dl 1.4
522     if (initialCapacity > MAXIMUM_CAPACITY)
523     initialCapacity = MAXIMUM_CAPACITY;
524     int c = initialCapacity / ssize;
525 tim 1.11 if (c * ssize < initialCapacity)
526 dl 1.4 ++c;
527     int cap = 1;
528     while (cap < c)
529     cap <<= 1;
530    
531     for (int i = 0; i < this.segments.length; ++i)
532     this.segments[i] = new Segment<K,V>(cap, loadFactor);
533 tim 1.1 }
534    
535     /**
536     * Constructs a new, empty map with the specified initial
537 dl 1.19 * capacity, and with default load factor and concurrencyLevel.
538 tim 1.1 *
539 dl 1.19 * @param initialCapacity The implementation performs internal
540     * sizing to accommodate this many elements.
541 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
542     * elements is negative.
543 tim 1.1 */
544     public ConcurrentHashMap(int initialCapacity) {
545 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
546 tim 1.1 }
547    
548     /**
549 dl 1.4 * Constructs a new, empty map with a default initial capacity,
550 dl 1.23 * load factor, and concurrencyLevel.
551 tim 1.1 */
552     public ConcurrentHashMap() {
553 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
554 tim 1.1 }
555    
556     /**
557     * Constructs a new map with the same mappings as the given map. The
558     * map is created with a capacity of twice the number of mappings in
559 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
560 tim 1.1 */
561     public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
562     this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
563 dl 1.4 11),
564     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
565     putAll(t);
566 tim 1.1 }
567    
568 dl 1.4 // inherit Map javadoc
569 tim 1.1 public boolean isEmpty() {
570 dl 1.21 /*
571     * We need to keep track of per-segment modCounts to avoid ABA
572     * problems in which an element in one segment was added and
573     * in another removed during traversal, in which case the
574     * table was never actually empty at any point. Note the
575     * similar use of modCounts in the size() and containsValue()
576     * methods, which are the only other methods also susceptible
577     * to ABA problems.
578     */
579     int[] mc = new int[segments.length];
580     int mcsum = 0;
581     for (int i = 0; i < segments.length; ++i) {
582 dl 1.4 if (segments[i].count != 0)
583 tim 1.1 return false;
584 dl 1.21 else
585     mcsum += mc[i] = segments[i].modCount;
586     }
587     // If mcsum happens to be zero, then we know we got a snapshot
588     // before any modifications at all were made. This is
589     // probably common enough to bother tracking.
590     if (mcsum != 0) {
591     for (int i = 0; i < segments.length; ++i) {
592     if (segments[i].count != 0 ||
593     mc[i] != segments[i].modCount)
594     return false;
595     }
596     }
597 tim 1.1 return true;
598     }
599    
600 dl 1.21 // inherit Map javadoc
601     public int size() {
602     int[] mc = new int[segments.length];
603     for (;;) {
604 dl 1.23 long sum = 0;
605 dl 1.21 int mcsum = 0;
606     for (int i = 0; i < segments.length; ++i) {
607     sum += segments[i].count;
608     mcsum += mc[i] = segments[i].modCount;
609     }
610     int check = 0;
611     if (mcsum != 0) {
612     for (int i = 0; i < segments.length; ++i) {
613     check += segments[i].count;
614     if (mc[i] != segments[i].modCount) {
615     check = -1; // force retry
616     break;
617     }
618     }
619     }
620 dl 1.23 if (check == sum) {
621     if (sum > Integer.MAX_VALUE)
622     return Integer.MAX_VALUE;
623     else
624     return (int)sum;
625     }
626 dl 1.21 }
627     }
628    
629    
630 tim 1.1 /**
631     * Returns the value to which the specified key is mapped in this table.
632     *
633     * @param key a key in the table.
634     * @return the value to which the key is mapped in this table;
635 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
636 tim 1.1 * this table.
637 dl 1.8 * @throws NullPointerException if the key is
638 dl 1.19 * <tt>null</tt>.
639 tim 1.1 */
640 tim 1.11 public V get(Object key) {
641 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
642 dl 1.29 return segmentFor(hash).get(key, hash);
643 tim 1.1 }
644    
645     /**
646     * Tests if the specified object is a key in this table.
647 tim 1.11 *
648 tim 1.1 * @param key possible key.
649 dl 1.19 * @return <tt>true</tt> if and only if the specified object
650 tim 1.11 * is a key in this table, as determined by the
651 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
652 dl 1.8 * @throws NullPointerException if the key is
653 dl 1.19 * <tt>null</tt>.
654 tim 1.1 */
655     public boolean containsKey(Object key) {
656 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
657 dl 1.9 return segmentFor(hash).containsKey(key, hash);
658 tim 1.1 }
659    
660     /**
661     * Returns <tt>true</tt> if this map maps one or more keys to the
662     * specified value. Note: This method requires a full internal
663     * traversal of the hash table, and so is much slower than
664     * method <tt>containsKey</tt>.
665     *
666     * @param value value whose presence in this map is to be tested.
667     * @return <tt>true</tt> if this map maps one or more keys to the
668 tim 1.11 * specified value.
669 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
670 tim 1.1 */
671     public boolean containsValue(Object value) {
672 tim 1.11 if (value == null)
673 dl 1.4 throw new NullPointerException();
674 tim 1.1
675 dl 1.21 int[] mc = new int[segments.length];
676     for (;;) {
677     int sum = 0;
678     int mcsum = 0;
679     for (int i = 0; i < segments.length; ++i) {
680     int c = segments[i].count;
681     mcsum += mc[i] = segments[i].modCount;
682     if (segments[i].containsValue(value))
683     return true;
684     }
685     boolean cleanSweep = true;
686     if (mcsum != 0) {
687     for (int i = 0; i < segments.length; ++i) {
688     int c = segments[i].count;
689     if (mc[i] != segments[i].modCount) {
690     cleanSweep = false;
691     break;
692     }
693     }
694     }
695     if (cleanSweep)
696     return false;
697 tim 1.1 }
698     }
699 dl 1.19
700 tim 1.1 /**
701 dl 1.18 * Legacy method testing if some key maps into the specified value
702 dl 1.23 * in this table. This method is identical in functionality to
703     * {@link #containsValue}, and exists solely to ensure
704 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
705 dl 1.18 * which supported this method prior to introduction of the
706 dl 1.23 * Java Collections framework.
707 dl 1.17
708 tim 1.1 * @param value a value to search for.
709 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
710     * <tt>value</tt> argument in this table as
711 tim 1.1 * determined by the <tt>equals</tt> method;
712 dl 1.19 * <tt>false</tt> otherwise.
713     * @throws NullPointerException if the value is <tt>null</tt>.
714 tim 1.1 */
715 dl 1.4 public boolean contains(Object value) {
716 tim 1.1 return containsValue(value);
717     }
718    
719     /**
720 dl 1.19 * Maps the specified <tt>key</tt> to the specified
721     * <tt>value</tt> in this table. Neither the key nor the
722     * value can be <tt>null</tt>. <p>
723 dl 1.4 *
724 dl 1.19 * The value can be retrieved by calling the <tt>get</tt> method
725 tim 1.11 * with a key that is equal to the original key.
726 dl 1.4 *
727     * @param key the table key.
728     * @param value the value.
729     * @return the previous value of the specified key in this table,
730 dl 1.19 * or <tt>null</tt> if it did not have one.
731 dl 1.8 * @throws NullPointerException if the key or value is
732 dl 1.19 * <tt>null</tt>.
733 dl 1.4 */
734 tim 1.11 public V put(K key, V value) {
735     if (value == null)
736 dl 1.4 throw new NullPointerException();
737 tim 1.11 int hash = hash(key);
738 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
739 dl 1.4 }
740    
741     /**
742     * If the specified key is not already associated
743     * with a value, associate it with the given value.
744     * This is equivalent to
745     * <pre>
746 dl 1.17 * if (!map.containsKey(key))
747     * return map.put(key, value);
748     * else
749     * return map.get(key);
750 dl 1.4 * </pre>
751     * Except that the action is performed atomically.
752     * @param key key with which the specified value is to be associated.
753     * @param value value to be associated with the specified key.
754     * @return previous value associated with specified key, or <tt>null</tt>
755     * if there was no mapping for key. A <tt>null</tt> return can
756     * also indicate that the map previously associated <tt>null</tt>
757     * with the specified key, if the implementation supports
758     * <tt>null</tt> values.
759     *
760 dl 1.17 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
761     * not supported by this map.
762     * @throws ClassCastException if the class of the specified key or value
763     * prevents it from being stored in this map.
764     * @throws NullPointerException if the specified key or value is
765 dl 1.4 * <tt>null</tt>.
766     *
767     **/
768 tim 1.11 public V putIfAbsent(K key, V value) {
769     if (value == null)
770 dl 1.4 throw new NullPointerException();
771 tim 1.11 int hash = hash(key);
772 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
773 dl 1.4 }
774    
775    
776     /**
777 tim 1.1 * Copies all of the mappings from the specified map to this one.
778     *
779     * These mappings replace any mappings that this map had for any of the
780     * keys currently in the specified Map.
781     *
782     * @param t Mappings to be stored in this map.
783     */
784 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
785 dl 1.23 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
786 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
787 dl 1.4 put(e.getKey(), e.getValue());
788 tim 1.1 }
789 dl 1.4 }
790    
791     /**
792 tim 1.11 * Removes the key (and its corresponding value) from this
793 dl 1.4 * table. This method does nothing if the key is not in the table.
794     *
795     * @param key the key that needs to be removed.
796     * @return the value to which the key had been mapped in this table,
797 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
798 dl 1.8 * @throws NullPointerException if the key is
799 dl 1.19 * <tt>null</tt>.
800 dl 1.4 */
801     public V remove(Object key) {
802     int hash = hash(key);
803 dl 1.9 return segmentFor(hash).remove(key, hash, null);
804 dl 1.4 }
805 tim 1.1
806 dl 1.4 /**
807 dl 1.17 * Remove entry for key only if currently mapped to given value.
808     * Acts as
809     * <pre>
810     * if (map.get(key).equals(value)) {
811     * map.remove(key);
812     * return true;
813     * } else return false;
814     * </pre>
815     * except that the action is performed atomically.
816     * @param key key with which the specified value is associated.
817     * @param value value associated with the specified key.
818     * @return true if the value was removed
819     * @throws NullPointerException if the specified key is
820     * <tt>null</tt>.
821 dl 1.4 */
822 dl 1.13 public boolean remove(Object key, Object value) {
823 dl 1.4 int hash = hash(key);
824 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
825 tim 1.1 }
826 dl 1.31
827     /**
828     * Replace entry for key only if currently mapped to given value.
829     * Acts as
830     * <pre>
831     * if (map.get(key).equals(oldValue)) {
832     * map.put(key, newValue);
833     * return true;
834     * } else return false;
835     * </pre>
836     * except that the action is performed atomically.
837     * @param key key with which the specified value is associated.
838     * @param oldValue value expected to be associated with the specified key.
839     * @param newValue value to be associated with the specified key.
840     * @return true if the value was replaced
841     * @throws NullPointerException if the specified key or values are
842     * <tt>null</tt>.
843     */
844     public boolean replace(K key, V oldValue, V newValue) {
845     if (oldValue == null || newValue == null)
846     throw new NullPointerException();
847     int hash = hash(key);
848     return segmentFor(hash).replace(key, hash, oldValue, newValue);
849     }
850    
851 tim 1.1
852     /**
853     * Removes all mappings from this map.
854     */
855     public void clear() {
856 tim 1.11 for (int i = 0; i < segments.length; ++i)
857 dl 1.4 segments[i].clear();
858 tim 1.1 }
859    
860 dl 1.4
861 tim 1.1 /**
862     * Returns a shallow copy of this
863     * <tt>ConcurrentHashMap</tt> instance: the keys and
864     * values themselves are not cloned.
865     *
866     * @return a shallow copy of this map.
867     */
868     public Object clone() {
869 dl 1.4 // We cannot call super.clone, since it would share final
870     // segments array, and there's no way to reassign finals.
871    
872     float lf = segments[0].loadFactor;
873     int segs = segments.length;
874     int cap = (int)(size() / lf);
875     if (cap < segs) cap = segs;
876 tim 1.12 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
877 dl 1.4 t.putAll(this);
878     return t;
879 tim 1.1 }
880    
881     /**
882     * Returns a set view of the keys contained in this map. The set is
883     * backed by the map, so changes to the map are reflected in the set, and
884     * vice-versa. The set supports element removal, which removes the
885     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
886     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
887     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
888     * <tt>addAll</tt> operations.
889 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
890     * will never throw {@link java.util.ConcurrentModificationException},
891     * and guarantees to traverse elements as they existed upon
892     * construction of the iterator, and may (but is not guaranteed to)
893     * reflect any modifications subsequent to construction.
894 tim 1.1 *
895     * @return a set view of the keys contained in this map.
896     */
897     public Set<K> keySet() {
898     Set<K> ks = keySet;
899 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
900 tim 1.1 }
901    
902    
903     /**
904     * Returns a collection view of the values contained in this map. The
905     * collection is backed by the map, so changes to the map are reflected in
906     * the collection, and vice-versa. The collection supports element
907     * removal, which removes the corresponding mapping from this map, via the
908     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
909     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
910     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
911 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
912     * will never throw {@link java.util.ConcurrentModificationException},
913     * and guarantees to traverse elements as they existed upon
914     * construction of the iterator, and may (but is not guaranteed to)
915     * reflect any modifications subsequent to construction.
916 tim 1.1 *
917     * @return a collection view of the values contained in this map.
918     */
919     public Collection<V> values() {
920     Collection<V> vs = values;
921 dl 1.8 return (vs != null) ? vs : (values = new Values());
922 tim 1.1 }
923    
924    
925     /**
926     * Returns a collection view of the mappings contained in this map. Each
927     * element in the returned collection is a <tt>Map.Entry</tt>. The
928     * collection is backed by the map, so changes to the map are reflected in
929     * the collection, and vice-versa. The collection supports element
930     * removal, which removes the corresponding mapping from the map, via the
931     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
932     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
933     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
934 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
935     * will never throw {@link java.util.ConcurrentModificationException},
936     * and guarantees to traverse elements as they existed upon
937     * construction of the iterator, and may (but is not guaranteed to)
938     * reflect any modifications subsequent to construction.
939 tim 1.1 *
940     * @return a collection view of the mappings contained in this map.
941     */
942     public Set<Map.Entry<K,V>> entrySet() {
943     Set<Map.Entry<K,V>> es = entrySet;
944 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
945 tim 1.1 }
946    
947    
948     /**
949     * Returns an enumeration of the keys in this table.
950     *
951     * @return an enumeration of the keys in this table.
952 dl 1.23 * @see #keySet
953 tim 1.1 */
954 dl 1.4 public Enumeration<K> keys() {
955 tim 1.1 return new KeyIterator();
956     }
957    
958     /**
959     * Returns an enumeration of the values in this table.
960     * Use the Enumeration methods on the returned object to fetch the elements
961     * sequentially.
962     *
963     * @return an enumeration of the values in this table.
964 dl 1.23 * @see #values
965 tim 1.1 */
966 dl 1.4 public Enumeration<V> elements() {
967 tim 1.1 return new ValueIterator();
968     }
969    
970 dl 1.4 /* ---------------- Iterator Support -------------- */
971 tim 1.11
972 dl 1.4 private abstract class HashIterator {
973     private int nextSegmentIndex;
974     private int nextTableIndex;
975 tim 1.11 private HashEntry[] currentTable;
976 dl 1.4 private HashEntry<K, V> nextEntry;
977 dl 1.30 HashEntry<K, V> lastReturned;
978 tim 1.1
979     private HashIterator() {
980 dl 1.8 nextSegmentIndex = segments.length - 1;
981 dl 1.4 nextTableIndex = -1;
982     advance();
983 tim 1.1 }
984    
985     public boolean hasMoreElements() { return hasNext(); }
986    
987 dl 1.4 private void advance() {
988     if (nextEntry != null && (nextEntry = nextEntry.next) != null)
989     return;
990 tim 1.11
991 dl 1.4 while (nextTableIndex >= 0) {
992 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
993 dl 1.4 return;
994     }
995 tim 1.11
996 dl 1.4 while (nextSegmentIndex >= 0) {
997 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
998 dl 1.4 if (seg.count != 0) {
999     currentTable = seg.table;
1000 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1001 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1002 dl 1.8 nextTableIndex = j - 1;
1003 dl 1.4 return;
1004     }
1005 tim 1.1 }
1006     }
1007     }
1008     }
1009    
1010 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1011 tim 1.1
1012 dl 1.4 HashEntry<K,V> nextEntry() {
1013     if (nextEntry == null)
1014 tim 1.1 throw new NoSuchElementException();
1015 dl 1.4 lastReturned = nextEntry;
1016     advance();
1017     return lastReturned;
1018 tim 1.1 }
1019    
1020     public void remove() {
1021     if (lastReturned == null)
1022     throw new IllegalStateException();
1023     ConcurrentHashMap.this.remove(lastReturned.key);
1024     lastReturned = null;
1025     }
1026 dl 1.4 }
1027    
1028     private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1029     public K next() { return super.nextEntry().key; }
1030     public K nextElement() { return super.nextEntry().key; }
1031     }
1032    
1033     private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1034     public V next() { return super.nextEntry().value; }
1035     public V nextElement() { return super.nextEntry().value; }
1036     }
1037 tim 1.1
1038 dl 1.30
1039    
1040     /**
1041     * Exported Entry objects must write-through changes in setValue,
1042     * even if the nodes have been cloned. So we cannot return
1043     * internal HashEntry objects. Instead, the iterator itself acts
1044     * as a forwarding pseudo-entry.
1045     */
1046     private class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1047     public Map.Entry<K,V> next() {
1048     nextEntry();
1049     return this;
1050     }
1051    
1052     public K getKey() {
1053     if (lastReturned == null)
1054     throw new IllegalStateException("Entry was removed");
1055     return lastReturned.key;
1056     }
1057    
1058     public V getValue() {
1059     if (lastReturned == null)
1060     throw new IllegalStateException("Entry was removed");
1061     return ConcurrentHashMap.this.get(lastReturned.key);
1062     }
1063    
1064     public V setValue(V value) {
1065     if (lastReturned == null)
1066     throw new IllegalStateException("Entry was removed");
1067     return ConcurrentHashMap.this.put(lastReturned.key, value);
1068     }
1069    
1070     public boolean equals(Object o) {
1071     if (!(o instanceof Map.Entry))
1072     return false;
1073     Map.Entry e = (Map.Entry)o;
1074     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1075     }
1076    
1077     public int hashCode() {
1078     Object k = getKey();
1079     Object v = getValue();
1080     return ((k == null) ? 0 : k.hashCode()) ^
1081     ((v == null) ? 0 : v.hashCode());
1082     }
1083    
1084     public String toString() {
1085     return getKey() + "=" + getValue();
1086     }
1087    
1088     private boolean eq(Object o1, Object o2) {
1089     return (o1 == null ? o2 == null : o1.equals(o2));
1090     }
1091    
1092 tim 1.1 }
1093    
1094 dl 1.4 private class KeySet extends AbstractSet<K> {
1095     public Iterator<K> iterator() {
1096     return new KeyIterator();
1097     }
1098     public int size() {
1099     return ConcurrentHashMap.this.size();
1100     }
1101     public boolean contains(Object o) {
1102     return ConcurrentHashMap.this.containsKey(o);
1103     }
1104     public boolean remove(Object o) {
1105     return ConcurrentHashMap.this.remove(o) != null;
1106     }
1107     public void clear() {
1108     ConcurrentHashMap.this.clear();
1109     }
1110 tim 1.1 }
1111    
1112 dl 1.4 private class Values extends AbstractCollection<V> {
1113     public Iterator<V> iterator() {
1114     return new ValueIterator();
1115     }
1116     public int size() {
1117     return ConcurrentHashMap.this.size();
1118     }
1119     public boolean contains(Object o) {
1120     return ConcurrentHashMap.this.containsValue(o);
1121     }
1122     public void clear() {
1123     ConcurrentHashMap.this.clear();
1124     }
1125 tim 1.1 }
1126    
1127 tim 1.12 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1128 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1129     return new EntryIterator();
1130     }
1131     public boolean contains(Object o) {
1132     if (!(o instanceof Map.Entry))
1133     return false;
1134     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1135     V v = ConcurrentHashMap.this.get(e.getKey());
1136     return v != null && v.equals(e.getValue());
1137     }
1138     public boolean remove(Object o) {
1139     if (!(o instanceof Map.Entry))
1140     return false;
1141     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1142 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1143 dl 1.4 }
1144     public int size() {
1145     return ConcurrentHashMap.this.size();
1146     }
1147     public void clear() {
1148     ConcurrentHashMap.this.clear();
1149 dl 1.30 }
1150     public Object[] toArray() {
1151     // Since we don't ordinarily have distinct Entry objects, we
1152     // must pack elements using exportable SimpleEntry
1153     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1154     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1155     c.add(new SimpleEntry<K,V>(i.next()));
1156     return c.toArray();
1157     }
1158     public <T> T[] toArray(T[] a) {
1159     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1160     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1161     c.add(new SimpleEntry<K,V>(i.next()));
1162     return c.toArray(a);
1163     }
1164    
1165     }
1166    
1167     /**
1168     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1169     * is made accessible.
1170     */
1171     static class SimpleEntry<K,V> implements Entry<K,V> {
1172     K key;
1173     V value;
1174    
1175     public SimpleEntry(K key, V value) {
1176     this.key = key;
1177     this.value = value;
1178     }
1179    
1180     public SimpleEntry(Entry<K,V> e) {
1181     this.key = e.getKey();
1182     this.value = e.getValue();
1183     }
1184    
1185     public K getKey() {
1186     return key;
1187     }
1188    
1189     public V getValue() {
1190     return value;
1191     }
1192    
1193     public V setValue(V value) {
1194     V oldValue = this.value;
1195     this.value = value;
1196     return oldValue;
1197     }
1198    
1199     public boolean equals(Object o) {
1200     if (!(o instanceof Map.Entry))
1201     return false;
1202     Map.Entry e = (Map.Entry)o;
1203     return eq(key, e.getKey()) && eq(value, e.getValue());
1204     }
1205    
1206     public int hashCode() {
1207     return ((key == null) ? 0 : key.hashCode()) ^
1208     ((value == null) ? 0 : value.hashCode());
1209     }
1210    
1211     public String toString() {
1212     return key + "=" + value;
1213     }
1214    
1215     private static boolean eq(Object o1, Object o2) {
1216     return (o1 == null ? o2 == null : o1.equals(o2));
1217 dl 1.4 }
1218 tim 1.1 }
1219    
1220 dl 1.4 /* ---------------- Serialization Support -------------- */
1221    
1222 tim 1.1 /**
1223     * Save the state of the <tt>ConcurrentHashMap</tt>
1224     * instance to a stream (i.e.,
1225     * serialize it).
1226 dl 1.8 * @param s the stream
1227 tim 1.1 * @serialData
1228     * the key (Object) and value (Object)
1229     * for each key-value mapping, followed by a null pair.
1230     * The key-value mappings are emitted in no particular order.
1231     */
1232     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1233     s.defaultWriteObject();
1234    
1235     for (int k = 0; k < segments.length; ++k) {
1236 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1237 dl 1.2 seg.lock();
1238     try {
1239 tim 1.11 HashEntry[] tab = seg.table;
1240 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1241 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1242 dl 1.4 s.writeObject(e.key);
1243     s.writeObject(e.value);
1244     }
1245     }
1246 tim 1.16 } finally {
1247 dl 1.2 seg.unlock();
1248     }
1249 tim 1.1 }
1250     s.writeObject(null);
1251     s.writeObject(null);
1252     }
1253    
1254     /**
1255     * Reconstitute the <tt>ConcurrentHashMap</tt>
1256     * instance from a stream (i.e.,
1257     * deserialize it).
1258 dl 1.8 * @param s the stream
1259 tim 1.1 */
1260     private void readObject(java.io.ObjectInputStream s)
1261     throws IOException, ClassNotFoundException {
1262     s.defaultReadObject();
1263    
1264 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1265     for (int i = 0; i < segments.length; ++i) {
1266 tim 1.11 segments[i].setTable(new HashEntry[1]);
1267 dl 1.4 }
1268 tim 1.1
1269     // Read the keys and values, and put the mappings in the table
1270 dl 1.9 for (;;) {
1271 tim 1.1 K key = (K) s.readObject();
1272     V value = (V) s.readObject();
1273     if (key == null)
1274     break;
1275     put(key, value);
1276     }
1277     }
1278     }
1279 tim 1.11