ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.41
Committed: Wed Jan 21 15:20:35 2004 UTC (20 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.40: +41 -41 lines
Log Message:
doc improvements; consistent conventions for nested classes

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.21 * (default 16), which is used as a hint for internal sizing. The
43     * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52     * appropriate when it is known that only one thread will modify
53     * and all others will only read.
54 tim 1.1 *
55 dl 1.23 * <p>This class implements all of the <em>optional</em> methods
56     * of the {@link Map} and {@link Iterator} interfaces.
57     *
58 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
59     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60     * used as a key or value.
61 tim 1.1 *
62 dl 1.8 * @since 1.5
63     * @author Doug Lea
64 dl 1.27 * @param <K> the type of keys maintained by this map
65     * @param <V> the type of mapped values
66 dl 1.8 */
67 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
68     implements ConcurrentMap<K, V>, Cloneable, Serializable {
69 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
70 tim 1.1
71     /*
72 dl 1.4 * The basic strategy is to subdivide the table among Segments,
73     * each of which itself is a concurrently readable hash table.
74     */
75 tim 1.1
76 dl 1.4 /* ---------------- Constants -------------- */
77 tim 1.11
78 dl 1.4 /**
79 dl 1.19 * The default initial number of table slots for this table.
80 dl 1.4 * Used when not otherwise specified in constructor.
81     */
82 dl 1.41 static int DEFAULT_INITIAL_CAPACITY = 16;
83 tim 1.1
84     /**
85 dl 1.4 * The maximum capacity, used if a higher value is implicitly
86     * specified by either of the constructors with arguments. MUST
87 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
88     * using ints.
89 dl 1.4 */
90 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
91 tim 1.11
92 tim 1.1 /**
93 dl 1.4 * The default load factor for this table. Used when not
94     * otherwise specified in constructor.
95     */
96 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97 tim 1.1
98     /**
99 dl 1.4 * The default number of concurrency control segments.
100 tim 1.1 **/
101 dl 1.41 static final int DEFAULT_SEGMENTS = 16;
102 tim 1.1
103 dl 1.21 /**
104 dl 1.37 * The maximum number of segments to allow; used to bound
105     * constructor arguments.
106 dl 1.21 */
107 dl 1.41 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
108 dl 1.21
109 dl 1.4 /* ---------------- Fields -------------- */
110 tim 1.1
111     /**
112 dl 1.9 * Mask value for indexing into segments. The upper bits of a
113     * key's hash code are used to choose the segment.
114 tim 1.1 **/
115 dl 1.41 final int segmentMask;
116 tim 1.1
117     /**
118 dl 1.4 * Shift value for indexing within segments.
119 tim 1.1 **/
120 dl 1.41 final int segmentShift;
121 tim 1.1
122     /**
123 dl 1.4 * The segments, each of which is a specialized hash table
124 tim 1.1 */
125 dl 1.41 final Segment[] segments;
126 dl 1.4
127 dl 1.41 transient Set<K> keySet;
128     transient Set<Map.Entry<K,V>> entrySet;
129     transient Collection<V> values;
130 dl 1.4
131     /* ---------------- Small Utilities -------------- */
132 tim 1.1
133     /**
134 tim 1.11 * Return a hash code for non-null Object x.
135 dl 1.37 * Uses the same hash code spreader as most other java.util hash tables.
136 dl 1.8 * @param x the object serving as a key
137     * @return the hash code
138 tim 1.1 */
139 dl 1.41 static int hash(Object x) {
140 dl 1.4 int h = x.hashCode();
141     h += ~(h << 9);
142     h ^= (h >>> 14);
143     h += (h << 4);
144     h ^= (h >>> 10);
145     return h;
146     }
147    
148 tim 1.1 /**
149 dl 1.4 * Return the segment that should be used for key with given hash
150 tim 1.1 */
151 dl 1.41 final Segment<K,V> segmentFor(int hash) {
152 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
153 dl 1.4 }
154 tim 1.1
155 dl 1.4 /* ---------------- Inner Classes -------------- */
156 tim 1.1
157     /**
158 dl 1.6 * Segments are specialized versions of hash tables. This
159 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
160     * simplify some locking and avoid separate construction.
161 tim 1.1 **/
162 dl 1.41 static final class Segment<K,V> extends ReentrantLock implements Serializable {
163 dl 1.4 /*
164     * Segments maintain a table of entry lists that are ALWAYS
165     * kept in a consistent state, so can be read without locking.
166     * Next fields of nodes are immutable (final). All list
167     * additions are performed at the front of each bin. This
168     * makes it easy to check changes, and also fast to traverse.
169     * When nodes would otherwise be changed, new nodes are
170     * created to replace them. This works well for hash tables
171     * since the bin lists tend to be short. (The average length
172     * is less than two for the default load factor threshold.)
173     *
174     * Read operations can thus proceed without locking, but rely
175     * on a memory barrier to ensure that completed write
176     * operations performed by other threads are
177     * noticed. Conveniently, the "count" field, tracking the
178     * number of elements, can also serve as the volatile variable
179     * providing proper read/write barriers. This is convenient
180     * because this field needs to be read in many read operations
181 dl 1.19 * anyway.
182 dl 1.4 *
183     * Implementors note. The basic rules for all this are:
184     *
185     * - All unsynchronized read operations must first read the
186     * "count" field, and should not look at table entries if
187     * it is 0.
188 tim 1.11 *
189 dl 1.4 * - All synchronized write operations should write to
190     * the "count" field after updating. The operations must not
191     * take any action that could even momentarily cause
192     * a concurrent read operation to see inconsistent
193     * data. This is made easier by the nature of the read
194     * operations in Map. For example, no operation
195     * can reveal that the table has grown but the threshold
196     * has not yet been updated, so there are no atomicity
197     * requirements for this with respect to reads.
198     *
199     * As a guide, all critical volatile reads and writes are marked
200     * in code comments.
201     */
202 tim 1.11
203 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
204    
205 dl 1.4 /**
206     * The number of elements in this segment's region.
207     **/
208     transient volatile int count;
209    
210     /**
211 dl 1.21 * Number of updates; used for checking lack of modifications
212     * in bulk-read methods.
213     */
214     transient int modCount;
215    
216     /**
217 dl 1.4 * The table is rehashed when its size exceeds this threshold.
218     * (The value of this field is always (int)(capacity *
219     * loadFactor).)
220     */
221 dl 1.41 transient int threshold;
222 dl 1.4
223     /**
224     * The per-segment table
225     */
226 tim 1.11 transient HashEntry[] table;
227 dl 1.4
228     /**
229     * The load factor for the hash table. Even though this value
230     * is same for all segments, it is replicated to avoid needing
231     * links to outer object.
232     * @serial
233     */
234 dl 1.41 final float loadFactor;
235 tim 1.1
236 dl 1.4 Segment(int initialCapacity, float lf) {
237     loadFactor = lf;
238 tim 1.11 setTable(new HashEntry[initialCapacity]);
239 dl 1.4 }
240 tim 1.1
241 dl 1.4 /**
242 tim 1.11 * Set table to new HashEntry array.
243 dl 1.4 * Call only while holding lock or in constructor.
244     **/
245 dl 1.41 void setTable(HashEntry[] newTable) {
246 dl 1.4 table = newTable;
247     threshold = (int)(newTable.length * loadFactor);
248     count = count; // write-volatile
249 tim 1.11 }
250 dl 1.4
251     /* Specialized implementations of map methods */
252 tim 1.11
253 dl 1.29 V get(Object key, int hash) {
254 dl 1.4 if (count != 0) { // read-volatile
255 tim 1.11 HashEntry[] tab = table;
256 dl 1.9 int index = hash & (tab.length - 1);
257 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
258 dl 1.4 while (e != null) {
259 tim 1.11 if (e.hash == hash && key.equals(e.key))
260 dl 1.4 return e.value;
261     e = e.next;
262     }
263     }
264     return null;
265     }
266    
267     boolean containsKey(Object key, int hash) {
268     if (count != 0) { // read-volatile
269 tim 1.11 HashEntry[] tab = table;
270 dl 1.9 int index = hash & (tab.length - 1);
271 tim 1.11 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
272 dl 1.4 while (e != null) {
273 tim 1.11 if (e.hash == hash && key.equals(e.key))
274 dl 1.4 return true;
275     e = e.next;
276     }
277     }
278     return false;
279     }
280 tim 1.11
281 dl 1.4 boolean containsValue(Object value) {
282     if (count != 0) { // read-volatile
283 tim 1.11 HashEntry[] tab = table;
284 dl 1.4 int len = tab.length;
285 tim 1.11 for (int i = 0 ; i < len; i++)
286 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
287 dl 1.4 if (value.equals(e.value))
288     return true;
289     }
290     return false;
291     }
292    
293 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
294     lock();
295     try {
296     int c = count;
297     HashEntry[] tab = table;
298     int index = hash & (tab.length - 1);
299     HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
300     HashEntry<K,V> e = first;
301     for (;;) {
302     if (e == null)
303     return false;
304     if (e.hash == hash && key.equals(e.key))
305     break;
306     e = e.next;
307     }
308    
309 dl 1.33 V v = e.value;
310     if (v == null || !oldValue.equals(v))
311     return false;
312    
313     e.value = newValue;
314     count = c; // write-volatile
315     return true;
316    
317     } finally {
318     unlock();
319     }
320     }
321    
322     V replace(K key, int hash, V newValue) {
323     lock();
324     try {
325     int c = count;
326     HashEntry[] tab = table;
327     int index = hash & (tab.length - 1);
328     HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
329     HashEntry<K,V> e = first;
330     for (;;) {
331     if (e == null)
332     return null;
333     if (e.hash == hash && key.equals(e.key))
334     break;
335     e = e.next;
336 dl 1.32 }
337 dl 1.31
338 dl 1.33 V v = e.value;
339 dl 1.31 e.value = newValue;
340     count = c; // write-volatile
341 dl 1.33 return v;
342 dl 1.31
343     } finally {
344     unlock();
345     }
346     }
347    
348 dl 1.32
349 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
350 dl 1.4 lock();
351     try {
352 dl 1.9 int c = count;
353 tim 1.11 HashEntry[] tab = table;
354 dl 1.9 int index = hash & (tab.length - 1);
355 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
356    
357     for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
358 dl 1.9 if (e.hash == hash && key.equals(e.key)) {
359 tim 1.11 V oldValue = e.value;
360 dl 1.4 if (!onlyIfAbsent)
361     e.value = value;
362 dl 1.21 ++modCount;
363 dl 1.9 count = c; // write-volatile
364 dl 1.4 return oldValue;
365     }
366     }
367 tim 1.11
368 dl 1.4 tab[index] = new HashEntry<K,V>(hash, key, value, first);
369 dl 1.21 ++modCount;
370 dl 1.9 ++c;
371     count = c; // write-volatile
372 tim 1.11 if (c > threshold)
373 dl 1.9 setTable(rehash(tab));
374 dl 1.4 return null;
375 tim 1.16 } finally {
376 dl 1.4 unlock();
377     }
378     }
379    
380 dl 1.41 HashEntry[] rehash(HashEntry[] oldTable) {
381 dl 1.4 int oldCapacity = oldTable.length;
382     if (oldCapacity >= MAXIMUM_CAPACITY)
383 dl 1.9 return oldTable;
384 dl 1.4
385     /*
386     * Reclassify nodes in each list to new Map. Because we are
387     * using power-of-two expansion, the elements from each bin
388     * must either stay at same index, or move with a power of two
389     * offset. We eliminate unnecessary node creation by catching
390     * cases where old nodes can be reused because their next
391     * fields won't change. Statistically, at the default
392 dl 1.29 * threshold, only about one-sixth of them need cloning when
393 dl 1.4 * a table doubles. The nodes they replace will be garbage
394     * collectable as soon as they are no longer referenced by any
395     * reader thread that may be in the midst of traversing table
396     * right now.
397     */
398 tim 1.11
399     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
400 dl 1.4 int sizeMask = newTable.length - 1;
401     for (int i = 0; i < oldCapacity ; i++) {
402     // We need to guarantee that any existing reads of old Map can
403 tim 1.11 // proceed. So we cannot yet null out each bin.
404 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
405 tim 1.11
406 dl 1.4 if (e != null) {
407     HashEntry<K,V> next = e.next;
408     int idx = e.hash & sizeMask;
409 tim 1.11
410 dl 1.4 // Single node on list
411 tim 1.11 if (next == null)
412 dl 1.4 newTable[idx] = e;
413 tim 1.11
414     else {
415 dl 1.4 // Reuse trailing consecutive sequence at same slot
416     HashEntry<K,V> lastRun = e;
417     int lastIdx = idx;
418 tim 1.11 for (HashEntry<K,V> last = next;
419     last != null;
420 dl 1.4 last = last.next) {
421     int k = last.hash & sizeMask;
422     if (k != lastIdx) {
423     lastIdx = k;
424     lastRun = last;
425     }
426     }
427     newTable[lastIdx] = lastRun;
428 tim 1.11
429 dl 1.4 // Clone all remaining nodes
430     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
431     int k = p.hash & sizeMask;
432 tim 1.11 newTable[k] = new HashEntry<K,V>(p.hash,
433     p.key,
434     p.value,
435     (HashEntry<K,V>) newTable[k]);
436 dl 1.4 }
437     }
438     }
439     }
440 dl 1.9 return newTable;
441 dl 1.4 }
442 dl 1.6
443     /**
444     * Remove; match on key only if value null, else match both.
445     */
446 dl 1.4 V remove(Object key, int hash, Object value) {
447 tim 1.11 lock();
448 dl 1.4 try {
449 dl 1.9 int c = count;
450 dl 1.4 HashEntry[] tab = table;
451 dl 1.9 int index = hash & (tab.length - 1);
452 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
453 tim 1.11
454 dl 1.4 HashEntry<K,V> e = first;
455 dl 1.9 for (;;) {
456 dl 1.4 if (e == null)
457     return null;
458 dl 1.9 if (e.hash == hash && key.equals(e.key))
459 dl 1.4 break;
460     e = e.next;
461     }
462    
463     V oldValue = e.value;
464     if (value != null && !value.equals(oldValue))
465     return null;
466 dl 1.9
467 dl 1.4 // All entries following removed node can stay in list, but
468 dl 1.29 // all preceding ones need to be cloned.
469 dl 1.4 HashEntry<K,V> newFirst = e.next;
470 tim 1.11 for (HashEntry<K,V> p = first; p != e; p = p.next)
471     newFirst = new HashEntry<K,V>(p.hash, p.key,
472 dl 1.8 p.value, newFirst);
473 dl 1.4 tab[index] = newFirst;
474 dl 1.21 ++modCount;
475 dl 1.9 count = c-1; // write-volatile
476     return oldValue;
477 tim 1.16 } finally {
478 dl 1.4 unlock();
479     }
480     }
481    
482     void clear() {
483     lock();
484     try {
485 tim 1.11 HashEntry[] tab = table;
486     for (int i = 0; i < tab.length ; i++)
487 dl 1.4 tab[i] = null;
488 dl 1.21 ++modCount;
489 dl 1.4 count = 0; // write-volatile
490 tim 1.16 } finally {
491 dl 1.4 unlock();
492     }
493     }
494 tim 1.1 }
495    
496     /**
497 dl 1.30 * ConcurrentHashMap list entry. Note that this is never exported
498     * out as a user-visible Map.Entry
499 tim 1.1 */
500 dl 1.41 static final class HashEntry<K,V> {
501     final K key;
502     V value;
503     final int hash;
504     final HashEntry<K,V> next;
505 dl 1.4
506     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
507     this.value = value;
508     this.hash = hash;
509     this.key = key;
510     this.next = next;
511     }
512 tim 1.1 }
513    
514 tim 1.11
515 dl 1.4 /* ---------------- Public operations -------------- */
516 tim 1.1
517     /**
518     * Constructs a new, empty map with the specified initial
519     * capacity and the specified load factor.
520     *
521 dl 1.19 * @param initialCapacity the initial capacity. The implementation
522     * performs internal sizing to accommodate this many elements.
523 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
524 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
525     * updating threads. The implementation performs internal sizing
526 dl 1.21 * to try to accommodate this many threads.
527 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
528 dl 1.19 * negative or the load factor or concurrencyLevel are
529 dl 1.4 * nonpositive.
530     */
531 tim 1.11 public ConcurrentHashMap(int initialCapacity,
532 dl 1.19 float loadFactor, int concurrencyLevel) {
533     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
534 dl 1.4 throw new IllegalArgumentException();
535    
536 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
537     concurrencyLevel = MAX_SEGMENTS;
538    
539 dl 1.4 // Find power-of-two sizes best matching arguments
540     int sshift = 0;
541     int ssize = 1;
542 dl 1.19 while (ssize < concurrencyLevel) {
543 dl 1.4 ++sshift;
544     ssize <<= 1;
545     }
546 dl 1.9 segmentShift = 32 - sshift;
547 dl 1.8 segmentMask = ssize - 1;
548 tim 1.11 this.segments = new Segment[ssize];
549 dl 1.4
550     if (initialCapacity > MAXIMUM_CAPACITY)
551     initialCapacity = MAXIMUM_CAPACITY;
552     int c = initialCapacity / ssize;
553 tim 1.11 if (c * ssize < initialCapacity)
554 dl 1.4 ++c;
555     int cap = 1;
556     while (cap < c)
557     cap <<= 1;
558    
559     for (int i = 0; i < this.segments.length; ++i)
560     this.segments[i] = new Segment<K,V>(cap, loadFactor);
561 tim 1.1 }
562    
563     /**
564     * Constructs a new, empty map with the specified initial
565 dl 1.19 * capacity, and with default load factor and concurrencyLevel.
566 tim 1.1 *
567 dl 1.19 * @param initialCapacity The implementation performs internal
568     * sizing to accommodate this many elements.
569 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
570     * elements is negative.
571 tim 1.1 */
572     public ConcurrentHashMap(int initialCapacity) {
573 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
574 tim 1.1 }
575    
576     /**
577 dl 1.4 * Constructs a new, empty map with a default initial capacity,
578 dl 1.23 * load factor, and concurrencyLevel.
579 tim 1.1 */
580     public ConcurrentHashMap() {
581 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
582 tim 1.1 }
583    
584     /**
585     * Constructs a new map with the same mappings as the given map. The
586     * map is created with a capacity of twice the number of mappings in
587 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
588 dl 1.40 * @param t the map
589 tim 1.1 */
590 tim 1.39 public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
591 tim 1.1 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
592 dl 1.4 11),
593     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
594     putAll(t);
595 tim 1.1 }
596    
597 dl 1.4 // inherit Map javadoc
598 tim 1.1 public boolean isEmpty() {
599 dl 1.35 final Segment[] segments = this.segments;
600 dl 1.21 /*
601     * We need to keep track of per-segment modCounts to avoid ABA
602     * problems in which an element in one segment was added and
603     * in another removed during traversal, in which case the
604     * table was never actually empty at any point. Note the
605     * similar use of modCounts in the size() and containsValue()
606     * methods, which are the only other methods also susceptible
607     * to ABA problems.
608     */
609     int[] mc = new int[segments.length];
610     int mcsum = 0;
611     for (int i = 0; i < segments.length; ++i) {
612 dl 1.4 if (segments[i].count != 0)
613 tim 1.1 return false;
614 dl 1.21 else
615     mcsum += mc[i] = segments[i].modCount;
616     }
617     // If mcsum happens to be zero, then we know we got a snapshot
618     // before any modifications at all were made. This is
619     // probably common enough to bother tracking.
620     if (mcsum != 0) {
621     for (int i = 0; i < segments.length; ++i) {
622     if (segments[i].count != 0 ||
623     mc[i] != segments[i].modCount)
624     return false;
625     }
626     }
627 tim 1.1 return true;
628     }
629    
630 dl 1.21 // inherit Map javadoc
631     public int size() {
632 dl 1.35 final Segment[] segments = this.segments;
633 dl 1.21 int[] mc = new int[segments.length];
634     for (;;) {
635 dl 1.23 long sum = 0;
636 dl 1.21 int mcsum = 0;
637     for (int i = 0; i < segments.length; ++i) {
638     sum += segments[i].count;
639     mcsum += mc[i] = segments[i].modCount;
640     }
641     int check = 0;
642     if (mcsum != 0) {
643     for (int i = 0; i < segments.length; ++i) {
644     check += segments[i].count;
645     if (mc[i] != segments[i].modCount) {
646     check = -1; // force retry
647     break;
648     }
649     }
650     }
651 dl 1.23 if (check == sum) {
652     if (sum > Integer.MAX_VALUE)
653     return Integer.MAX_VALUE;
654     else
655     return (int)sum;
656     }
657 dl 1.21 }
658     }
659    
660    
661 tim 1.1 /**
662     * Returns the value to which the specified key is mapped in this table.
663     *
664     * @param key a key in the table.
665     * @return the value to which the key is mapped in this table;
666 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
667 tim 1.1 * this table.
668 dl 1.8 * @throws NullPointerException if the key is
669 dl 1.19 * <tt>null</tt>.
670 tim 1.1 */
671 tim 1.11 public V get(Object key) {
672 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
673 dl 1.29 return segmentFor(hash).get(key, hash);
674 tim 1.1 }
675    
676     /**
677     * Tests if the specified object is a key in this table.
678 tim 1.11 *
679 tim 1.1 * @param key possible key.
680 dl 1.19 * @return <tt>true</tt> if and only if the specified object
681 tim 1.11 * is a key in this table, as determined by the
682 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
683 dl 1.8 * @throws NullPointerException if the key is
684 dl 1.19 * <tt>null</tt>.
685 tim 1.1 */
686     public boolean containsKey(Object key) {
687 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
688 dl 1.9 return segmentFor(hash).containsKey(key, hash);
689 tim 1.1 }
690    
691     /**
692     * Returns <tt>true</tt> if this map maps one or more keys to the
693     * specified value. Note: This method requires a full internal
694     * traversal of the hash table, and so is much slower than
695     * method <tt>containsKey</tt>.
696     *
697     * @param value value whose presence in this map is to be tested.
698     * @return <tt>true</tt> if this map maps one or more keys to the
699 tim 1.11 * specified value.
700 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
701 tim 1.1 */
702     public boolean containsValue(Object value) {
703 tim 1.11 if (value == null)
704 dl 1.4 throw new NullPointerException();
705 tim 1.1
706 dl 1.35 final Segment[] segments = this.segments;
707 dl 1.21 int[] mc = new int[segments.length];
708     for (;;) {
709     int sum = 0;
710     int mcsum = 0;
711     for (int i = 0; i < segments.length; ++i) {
712     int c = segments[i].count;
713     mcsum += mc[i] = segments[i].modCount;
714     if (segments[i].containsValue(value))
715     return true;
716     }
717     boolean cleanSweep = true;
718     if (mcsum != 0) {
719     for (int i = 0; i < segments.length; ++i) {
720     int c = segments[i].count;
721     if (mc[i] != segments[i].modCount) {
722     cleanSweep = false;
723     break;
724     }
725     }
726     }
727     if (cleanSweep)
728     return false;
729 tim 1.1 }
730     }
731 dl 1.19
732 tim 1.1 /**
733 dl 1.18 * Legacy method testing if some key maps into the specified value
734 dl 1.23 * in this table. This method is identical in functionality to
735     * {@link #containsValue}, and exists solely to ensure
736 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
737 dl 1.18 * which supported this method prior to introduction of the
738 dl 1.23 * Java Collections framework.
739 dl 1.17
740 tim 1.1 * @param value a value to search for.
741 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
742     * <tt>value</tt> argument in this table as
743 tim 1.1 * determined by the <tt>equals</tt> method;
744 dl 1.19 * <tt>false</tt> otherwise.
745     * @throws NullPointerException if the value is <tt>null</tt>.
746 tim 1.1 */
747 dl 1.4 public boolean contains(Object value) {
748 tim 1.1 return containsValue(value);
749     }
750    
751     /**
752 dl 1.19 * Maps the specified <tt>key</tt> to the specified
753     * <tt>value</tt> in this table. Neither the key nor the
754     * value can be <tt>null</tt>. <p>
755 dl 1.4 *
756 dl 1.19 * The value can be retrieved by calling the <tt>get</tt> method
757 tim 1.11 * with a key that is equal to the original key.
758 dl 1.4 *
759     * @param key the table key.
760     * @param value the value.
761     * @return the previous value of the specified key in this table,
762 dl 1.19 * or <tt>null</tt> if it did not have one.
763 dl 1.8 * @throws NullPointerException if the key or value is
764 dl 1.19 * <tt>null</tt>.
765 dl 1.4 */
766 tim 1.11 public V put(K key, V value) {
767     if (value == null)
768 dl 1.4 throw new NullPointerException();
769 tim 1.11 int hash = hash(key);
770 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
771 dl 1.4 }
772    
773     /**
774     * If the specified key is not already associated
775     * with a value, associate it with the given value.
776     * This is equivalent to
777     * <pre>
778 dl 1.17 * if (!map.containsKey(key))
779     * return map.put(key, value);
780     * else
781     * return map.get(key);
782 dl 1.4 * </pre>
783     * Except that the action is performed atomically.
784     * @param key key with which the specified value is to be associated.
785     * @param value value to be associated with the specified key.
786     * @return previous value associated with specified key, or <tt>null</tt>
787     * if there was no mapping for key. A <tt>null</tt> return can
788     * also indicate that the map previously associated <tt>null</tt>
789     * with the specified key, if the implementation supports
790     * <tt>null</tt> values.
791     *
792 dl 1.17 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
793     * not supported by this map.
794     * @throws ClassCastException if the class of the specified key or value
795     * prevents it from being stored in this map.
796     * @throws NullPointerException if the specified key or value is
797 dl 1.4 * <tt>null</tt>.
798     *
799     **/
800 tim 1.11 public V putIfAbsent(K key, V value) {
801     if (value == null)
802 dl 1.4 throw new NullPointerException();
803 tim 1.11 int hash = hash(key);
804 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
805 dl 1.4 }
806    
807    
808     /**
809 tim 1.1 * Copies all of the mappings from the specified map to this one.
810     *
811     * These mappings replace any mappings that this map had for any of the
812     * keys currently in the specified Map.
813     *
814     * @param t Mappings to be stored in this map.
815     */
816 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
817 dl 1.23 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
818 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
819 dl 1.4 put(e.getKey(), e.getValue());
820 tim 1.1 }
821 dl 1.4 }
822    
823     /**
824 tim 1.11 * Removes the key (and its corresponding value) from this
825 dl 1.4 * table. This method does nothing if the key is not in the table.
826     *
827     * @param key the key that needs to be removed.
828     * @return the value to which the key had been mapped in this table,
829 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
830 dl 1.8 * @throws NullPointerException if the key is
831 dl 1.19 * <tt>null</tt>.
832 dl 1.4 */
833     public V remove(Object key) {
834     int hash = hash(key);
835 dl 1.9 return segmentFor(hash).remove(key, hash, null);
836 dl 1.4 }
837 tim 1.1
838 dl 1.4 /**
839 dl 1.17 * Remove entry for key only if currently mapped to given value.
840     * Acts as
841     * <pre>
842     * if (map.get(key).equals(value)) {
843     * map.remove(key);
844     * return true;
845     * } else return false;
846     * </pre>
847     * except that the action is performed atomically.
848     * @param key key with which the specified value is associated.
849     * @param value value associated with the specified key.
850     * @return true if the value was removed
851     * @throws NullPointerException if the specified key is
852     * <tt>null</tt>.
853 dl 1.4 */
854 dl 1.13 public boolean remove(Object key, Object value) {
855 dl 1.4 int hash = hash(key);
856 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
857 tim 1.1 }
858 dl 1.31
859 dl 1.32
860 dl 1.31 /**
861     * Replace entry for key only if currently mapped to given value.
862     * Acts as
863     * <pre>
864     * if (map.get(key).equals(oldValue)) {
865     * map.put(key, newValue);
866     * return true;
867     * } else return false;
868     * </pre>
869     * except that the action is performed atomically.
870     * @param key key with which the specified value is associated.
871     * @param oldValue value expected to be associated with the specified key.
872     * @param newValue value to be associated with the specified key.
873     * @return true if the value was replaced
874     * @throws NullPointerException if the specified key or values are
875     * <tt>null</tt>.
876     */
877     public boolean replace(K key, V oldValue, V newValue) {
878     if (oldValue == null || newValue == null)
879     throw new NullPointerException();
880     int hash = hash(key);
881     return segmentFor(hash).replace(key, hash, oldValue, newValue);
882 dl 1.32 }
883    
884     /**
885 dl 1.33 * Replace entry for key only if currently mapped to some value.
886 dl 1.32 * Acts as
887     * <pre>
888     * if ((map.containsKey(key)) {
889 dl 1.33 * return map.put(key, value);
890     * } else return null;
891 dl 1.32 * </pre>
892     * except that the action is performed atomically.
893     * @param key key with which the specified value is associated.
894     * @param value value to be associated with the specified key.
895 dl 1.33 * @return previous value associated with specified key, or <tt>null</tt>
896     * if there was no mapping for key.
897 dl 1.32 * @throws NullPointerException if the specified key or value is
898     * <tt>null</tt>.
899     */
900 dl 1.33 public V replace(K key, V value) {
901 dl 1.32 if (value == null)
902     throw new NullPointerException();
903     int hash = hash(key);
904 dl 1.33 return segmentFor(hash).replace(key, hash, value);
905 dl 1.31 }
906    
907 tim 1.1
908     /**
909     * Removes all mappings from this map.
910     */
911     public void clear() {
912 tim 1.11 for (int i = 0; i < segments.length; ++i)
913 dl 1.4 segments[i].clear();
914 tim 1.1 }
915    
916 dl 1.4
917 tim 1.1 /**
918     * Returns a shallow copy of this
919     * <tt>ConcurrentHashMap</tt> instance: the keys and
920     * values themselves are not cloned.
921     *
922     * @return a shallow copy of this map.
923     */
924     public Object clone() {
925 dl 1.4 // We cannot call super.clone, since it would share final
926     // segments array, and there's no way to reassign finals.
927    
928     float lf = segments[0].loadFactor;
929     int segs = segments.length;
930     int cap = (int)(size() / lf);
931     if (cap < segs) cap = segs;
932 tim 1.12 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
933 dl 1.4 t.putAll(this);
934     return t;
935 tim 1.1 }
936    
937     /**
938     * Returns a set view of the keys contained in this map. The set is
939     * backed by the map, so changes to the map are reflected in the set, and
940     * vice-versa. The set supports element removal, which removes the
941     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
942     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
943     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
944     * <tt>addAll</tt> operations.
945 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
946     * will never throw {@link java.util.ConcurrentModificationException},
947     * and guarantees to traverse elements as they existed upon
948     * construction of the iterator, and may (but is not guaranteed to)
949     * reflect any modifications subsequent to construction.
950 tim 1.1 *
951     * @return a set view of the keys contained in this map.
952     */
953     public Set<K> keySet() {
954     Set<K> ks = keySet;
955 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
956 tim 1.1 }
957    
958    
959     /**
960     * Returns a collection view of the values contained in this map. The
961     * collection is backed by the map, so changes to the map are reflected in
962     * the collection, and vice-versa. The collection supports element
963     * removal, which removes the corresponding mapping from this map, via the
964     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
965     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
966     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
967 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
968     * will never throw {@link java.util.ConcurrentModificationException},
969     * and guarantees to traverse elements as they existed upon
970     * construction of the iterator, and may (but is not guaranteed to)
971     * reflect any modifications subsequent to construction.
972 tim 1.1 *
973     * @return a collection view of the values contained in this map.
974     */
975     public Collection<V> values() {
976     Collection<V> vs = values;
977 dl 1.8 return (vs != null) ? vs : (values = new Values());
978 tim 1.1 }
979    
980    
981     /**
982     * Returns a collection view of the mappings contained in this map. Each
983     * element in the returned collection is a <tt>Map.Entry</tt>. The
984     * collection is backed by the map, so changes to the map are reflected in
985     * the collection, and vice-versa. The collection supports element
986     * removal, which removes the corresponding mapping from the map, via the
987     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
988     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
989     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
990 dl 1.14 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
991     * will never throw {@link java.util.ConcurrentModificationException},
992     * and guarantees to traverse elements as they existed upon
993     * construction of the iterator, and may (but is not guaranteed to)
994     * reflect any modifications subsequent to construction.
995 tim 1.1 *
996     * @return a collection view of the mappings contained in this map.
997     */
998     public Set<Map.Entry<K,V>> entrySet() {
999     Set<Map.Entry<K,V>> es = entrySet;
1000 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1001 tim 1.1 }
1002    
1003    
1004     /**
1005     * Returns an enumeration of the keys in this table.
1006     *
1007     * @return an enumeration of the keys in this table.
1008 dl 1.23 * @see #keySet
1009 tim 1.1 */
1010 dl 1.4 public Enumeration<K> keys() {
1011 tim 1.1 return new KeyIterator();
1012     }
1013    
1014     /**
1015     * Returns an enumeration of the values in this table.
1016     *
1017     * @return an enumeration of the values in this table.
1018 dl 1.23 * @see #values
1019 tim 1.1 */
1020 dl 1.4 public Enumeration<V> elements() {
1021 tim 1.1 return new ValueIterator();
1022     }
1023    
1024 dl 1.4 /* ---------------- Iterator Support -------------- */
1025 tim 1.11
1026 dl 1.41 abstract class HashIterator {
1027     int nextSegmentIndex;
1028     int nextTableIndex;
1029     HashEntry[] currentTable;
1030     HashEntry<K, V> nextEntry;
1031 dl 1.30 HashEntry<K, V> lastReturned;
1032 tim 1.1
1033 dl 1.41 HashIterator() {
1034 dl 1.8 nextSegmentIndex = segments.length - 1;
1035 dl 1.4 nextTableIndex = -1;
1036     advance();
1037 tim 1.1 }
1038    
1039     public boolean hasMoreElements() { return hasNext(); }
1040    
1041 dl 1.41 final void advance() {
1042 dl 1.4 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1043     return;
1044 tim 1.11
1045 dl 1.4 while (nextTableIndex >= 0) {
1046 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1047 dl 1.4 return;
1048     }
1049 tim 1.11
1050 dl 1.4 while (nextSegmentIndex >= 0) {
1051 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1052 dl 1.4 if (seg.count != 0) {
1053     currentTable = seg.table;
1054 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1055 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1056 dl 1.8 nextTableIndex = j - 1;
1057 dl 1.4 return;
1058     }
1059 tim 1.1 }
1060     }
1061     }
1062     }
1063    
1064 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1065 tim 1.1
1066 dl 1.4 HashEntry<K,V> nextEntry() {
1067     if (nextEntry == null)
1068 tim 1.1 throw new NoSuchElementException();
1069 dl 1.4 lastReturned = nextEntry;
1070     advance();
1071     return lastReturned;
1072 tim 1.1 }
1073    
1074     public void remove() {
1075     if (lastReturned == null)
1076     throw new IllegalStateException();
1077     ConcurrentHashMap.this.remove(lastReturned.key);
1078     lastReturned = null;
1079     }
1080 dl 1.4 }
1081    
1082 dl 1.41 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1083 dl 1.4 public K next() { return super.nextEntry().key; }
1084     public K nextElement() { return super.nextEntry().key; }
1085     }
1086    
1087 dl 1.41 final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1088 dl 1.4 public V next() { return super.nextEntry().value; }
1089     public V nextElement() { return super.nextEntry().value; }
1090     }
1091 tim 1.1
1092 dl 1.30
1093    
1094     /**
1095 dl 1.41 * Entry iterator. Exported Entry objects must write-through
1096     * changes in setValue, even if the nodes have been cloned. So we
1097     * cannot return internal HashEntry objects. Instead, the iterator
1098     * itself acts as a forwarding pseudo-entry.
1099 dl 1.30 */
1100 dl 1.41 final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1101 dl 1.30 public Map.Entry<K,V> next() {
1102     nextEntry();
1103     return this;
1104     }
1105    
1106     public K getKey() {
1107     if (lastReturned == null)
1108     throw new IllegalStateException("Entry was removed");
1109     return lastReturned.key;
1110     }
1111    
1112     public V getValue() {
1113     if (lastReturned == null)
1114     throw new IllegalStateException("Entry was removed");
1115     return ConcurrentHashMap.this.get(lastReturned.key);
1116     }
1117    
1118     public V setValue(V value) {
1119     if (lastReturned == null)
1120     throw new IllegalStateException("Entry was removed");
1121     return ConcurrentHashMap.this.put(lastReturned.key, value);
1122     }
1123    
1124     public boolean equals(Object o) {
1125     if (!(o instanceof Map.Entry))
1126     return false;
1127 tim 1.39 Map.Entry e = (Map.Entry)o;
1128     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1129     }
1130 dl 1.30
1131     public int hashCode() {
1132     Object k = getKey();
1133     Object v = getValue();
1134     return ((k == null) ? 0 : k.hashCode()) ^
1135     ((v == null) ? 0 : v.hashCode());
1136     }
1137    
1138     public String toString() {
1139 dl 1.34 // If not acting as entry, just use default toString.
1140     if (lastReturned == null)
1141     return super.toString();
1142     else
1143     return getKey() + "=" + getValue();
1144 dl 1.30 }
1145    
1146 dl 1.41 boolean eq(Object o1, Object o2) {
1147 dl 1.30 return (o1 == null ? o2 == null : o1.equals(o2));
1148     }
1149    
1150 tim 1.1 }
1151    
1152 dl 1.41 final class KeySet extends AbstractSet<K> {
1153 dl 1.4 public Iterator<K> iterator() {
1154     return new KeyIterator();
1155     }
1156     public int size() {
1157     return ConcurrentHashMap.this.size();
1158     }
1159     public boolean contains(Object o) {
1160     return ConcurrentHashMap.this.containsKey(o);
1161     }
1162     public boolean remove(Object o) {
1163     return ConcurrentHashMap.this.remove(o) != null;
1164     }
1165     public void clear() {
1166     ConcurrentHashMap.this.clear();
1167     }
1168 tim 1.1 }
1169    
1170 dl 1.41 final class Values extends AbstractCollection<V> {
1171 dl 1.4 public Iterator<V> iterator() {
1172     return new ValueIterator();
1173     }
1174     public int size() {
1175     return ConcurrentHashMap.this.size();
1176     }
1177     public boolean contains(Object o) {
1178     return ConcurrentHashMap.this.containsValue(o);
1179     }
1180     public void clear() {
1181     ConcurrentHashMap.this.clear();
1182     }
1183 tim 1.1 }
1184    
1185 dl 1.41 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1186 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1187     return new EntryIterator();
1188     }
1189     public boolean contains(Object o) {
1190     if (!(o instanceof Map.Entry))
1191     return false;
1192     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1193     V v = ConcurrentHashMap.this.get(e.getKey());
1194     return v != null && v.equals(e.getValue());
1195     }
1196     public boolean remove(Object o) {
1197     if (!(o instanceof Map.Entry))
1198     return false;
1199     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1200 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1201 dl 1.4 }
1202     public int size() {
1203     return ConcurrentHashMap.this.size();
1204     }
1205     public void clear() {
1206     ConcurrentHashMap.this.clear();
1207 dl 1.30 }
1208     public Object[] toArray() {
1209     // Since we don't ordinarily have distinct Entry objects, we
1210     // must pack elements using exportable SimpleEntry
1211     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1212     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1213     c.add(new SimpleEntry<K,V>(i.next()));
1214     return c.toArray();
1215     }
1216     public <T> T[] toArray(T[] a) {
1217     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1218     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1219     c.add(new SimpleEntry<K,V>(i.next()));
1220     return c.toArray(a);
1221     }
1222    
1223     }
1224    
1225     /**
1226     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1227     * is made accessible.
1228     */
1229 dl 1.41 static final class SimpleEntry<K,V> implements Entry<K,V> {
1230 tim 1.39 K key;
1231     V value;
1232 dl 1.30
1233 tim 1.39 public SimpleEntry(K key, V value) {
1234     this.key = key;
1235 dl 1.30 this.value = value;
1236 tim 1.39 }
1237 dl 1.30
1238 tim 1.39 public SimpleEntry(Entry<K,V> e) {
1239     this.key = e.getKey();
1240 dl 1.30 this.value = e.getValue();
1241 tim 1.39 }
1242    
1243     public K getKey() {
1244     return key;
1245     }
1246 dl 1.30
1247 tim 1.39 public V getValue() {
1248     return value;
1249     }
1250    
1251     public V setValue(V value) {
1252     V oldValue = this.value;
1253     this.value = value;
1254     return oldValue;
1255     }
1256    
1257     public boolean equals(Object o) {
1258     if (!(o instanceof Map.Entry))
1259     return false;
1260     Map.Entry e = (Map.Entry)o;
1261     return eq(key, e.getKey()) && eq(value, e.getValue());
1262     }
1263    
1264     public int hashCode() {
1265     return ((key == null) ? 0 : key.hashCode()) ^
1266     ((value == null) ? 0 : value.hashCode());
1267     }
1268    
1269     public String toString() {
1270     return key + "=" + value;
1271     }
1272 dl 1.30
1273 dl 1.41 static boolean eq(Object o1, Object o2) {
1274 dl 1.30 return (o1 == null ? o2 == null : o1.equals(o2));
1275 dl 1.4 }
1276 tim 1.1 }
1277    
1278 dl 1.4 /* ---------------- Serialization Support -------------- */
1279    
1280 tim 1.1 /**
1281     * Save the state of the <tt>ConcurrentHashMap</tt>
1282     * instance to a stream (i.e.,
1283     * serialize it).
1284 dl 1.8 * @param s the stream
1285 tim 1.1 * @serialData
1286     * the key (Object) and value (Object)
1287     * for each key-value mapping, followed by a null pair.
1288     * The key-value mappings are emitted in no particular order.
1289     */
1290     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1291     s.defaultWriteObject();
1292    
1293     for (int k = 0; k < segments.length; ++k) {
1294 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1295 dl 1.2 seg.lock();
1296     try {
1297 tim 1.11 HashEntry[] tab = seg.table;
1298 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1299 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1300 dl 1.4 s.writeObject(e.key);
1301     s.writeObject(e.value);
1302     }
1303     }
1304 tim 1.16 } finally {
1305 dl 1.2 seg.unlock();
1306     }
1307 tim 1.1 }
1308     s.writeObject(null);
1309     s.writeObject(null);
1310     }
1311    
1312     /**
1313     * Reconstitute the <tt>ConcurrentHashMap</tt>
1314     * instance from a stream (i.e.,
1315     * deserialize it).
1316 dl 1.8 * @param s the stream
1317 tim 1.1 */
1318     private void readObject(java.io.ObjectInputStream s)
1319     throws IOException, ClassNotFoundException {
1320     s.defaultReadObject();
1321    
1322 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1323     for (int i = 0; i < segments.length; ++i) {
1324 tim 1.11 segments[i].setTable(new HashEntry[1]);
1325 dl 1.4 }
1326 tim 1.1
1327     // Read the keys and values, and put the mappings in the table
1328 dl 1.9 for (;;) {
1329 tim 1.1 K key = (K) s.readObject();
1330     V value = (V) s.readObject();
1331     if (key == null)
1332     break;
1333     put(key, value);
1334     }
1335     }
1336     }
1337 tim 1.11