ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.50
Committed: Thu Jun 24 23:55:01 2004 UTC (19 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.49: +5 -6 lines
Log Message:
Documentation wording fixes

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.36 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 dl 1.10 import java.util.concurrent.locks.*;
9 tim 1.1 import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18 dl 1.22 * same functional specification as {@link java.util.Hashtable}, and
19 dl 1.19 * includes versions of methods corresponding to each method of
20 dl 1.25 * <tt>Hashtable</tt>. However, even though all operations are
21 dl 1.19 * thread-safe, retrieval operations do <em>not</em> entail locking,
22     * and there is <em>not</em> any support for locking the entire table
23     * in a way that prevents all access. This class is fully
24     * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 dl 1.4 * thread safety but not on its synchronization details.
26 tim 1.11 *
27 dl 1.25 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28     * block, so may overlap with update operations (including
29     * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30     * of the most recently <em>completed</em> update operations holding
31     * upon their onset. For aggregate operations such as <tt>putAll</tt>
32     * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 dl 1.4 * removal of only some entries. Similarly, Iterators and
34     * Enumerations return elements reflecting the state of the hash table
35     * at some point at or since the creation of the iterator/enumeration.
36 dl 1.25 * They do <em>not</em> throw
37 dl 1.28 * {@link ConcurrentModificationException}. However, iterators are
38 dl 1.25 * designed to be used by only one thread at a time.
39 tim 1.1 *
40 dl 1.19 * <p> The allowed concurrency among update operations is guided by
41     * the optional <tt>concurrencyLevel</tt> constructor argument
42 dl 1.21 * (default 16), which is used as a hint for internal sizing. The
43     * table is internally partitioned to try to permit the indicated
44     * number of concurrent updates without contention. Because placement
45     * in hash tables is essentially random, the actual concurrency will
46     * vary. Ideally, you should choose a value to accommodate as many
47 dl 1.25 * threads as will ever concurrently modify the table. Using a
48 dl 1.21 * significantly higher value than you need can waste space and time,
49     * and a significantly lower value can lead to thread contention. But
50     * overestimates and underestimates within an order of magnitude do
51 dl 1.25 * not usually have much noticeable impact. A value of one is
52 dl 1.45 * appropriate when it is known that only one thread will modify and
53     * all others will only read. Also, resizing this or any other kind of
54     * hash table is a relatively slow operation, so, when possible, it is
55     * a good idea to provide estimates of expected table sizes in
56     * constructors.
57 tim 1.1 *
58 dl 1.45 * <p>This class and its views and iterators implement all of the
59     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
60     * interfaces.
61 dl 1.23 *
62 dl 1.22 * <p> Like {@link java.util.Hashtable} but unlike {@link
63     * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
64     * used as a key or value.
65 tim 1.1 *
66 dl 1.42 * <p>This class is a member of the
67     * <a href="{@docRoot}/../guide/collections/index.html">
68     * Java Collections Framework</a>.
69     *
70 dl 1.8 * @since 1.5
71     * @author Doug Lea
72 dl 1.27 * @param <K> the type of keys maintained by this map
73     * @param <V> the type of mapped values
74 dl 1.8 */
75 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
76 dl 1.48 implements ConcurrentMap<K, V>, Serializable {
77 dl 1.20 private static final long serialVersionUID = 7249069246763182397L;
78 tim 1.1
79     /*
80 dl 1.4 * The basic strategy is to subdivide the table among Segments,
81     * each of which itself is a concurrently readable hash table.
82     */
83 tim 1.1
84 dl 1.4 /* ---------------- Constants -------------- */
85 tim 1.11
86 dl 1.4 /**
87 dl 1.19 * The default initial number of table slots for this table.
88 dl 1.4 * Used when not otherwise specified in constructor.
89     */
90 dl 1.41 static int DEFAULT_INITIAL_CAPACITY = 16;
91 tim 1.1
92     /**
93 dl 1.4 * The maximum capacity, used if a higher value is implicitly
94     * specified by either of the constructors with arguments. MUST
95 dl 1.21 * be a power of two <= 1<<30 to ensure that entries are indexible
96     * using ints.
97 dl 1.4 */
98 dl 1.21 static final int MAXIMUM_CAPACITY = 1 << 30;
99 tim 1.11
100 tim 1.1 /**
101 dl 1.4 * The default load factor for this table. Used when not
102     * otherwise specified in constructor.
103     */
104 tim 1.11 static final float DEFAULT_LOAD_FACTOR = 0.75f;
105 tim 1.1
106     /**
107 dl 1.4 * The default number of concurrency control segments.
108 tim 1.1 **/
109 dl 1.41 static final int DEFAULT_SEGMENTS = 16;
110 tim 1.1
111 dl 1.21 /**
112 dl 1.37 * The maximum number of segments to allow; used to bound
113     * constructor arguments.
114 dl 1.21 */
115 dl 1.41 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
116 dl 1.21
117 dl 1.46 /**
118     * Number of unsynchronized retries in size and containsValue
119     * methods before resorting to locking. This is used to avoid
120     * unbounded retries if tables undergo continuous modification
121     * which would make it impossible to obtain an accurate result.
122     */
123     static final int RETRIES_BEFORE_LOCK = 2;
124    
125 dl 1.4 /* ---------------- Fields -------------- */
126 tim 1.1
127     /**
128 dl 1.9 * Mask value for indexing into segments. The upper bits of a
129     * key's hash code are used to choose the segment.
130 tim 1.1 **/
131 dl 1.41 final int segmentMask;
132 tim 1.1
133     /**
134 dl 1.4 * Shift value for indexing within segments.
135 tim 1.1 **/
136 dl 1.41 final int segmentShift;
137 tim 1.1
138     /**
139 dl 1.4 * The segments, each of which is a specialized hash table
140 tim 1.1 */
141 dl 1.41 final Segment[] segments;
142 dl 1.4
143 dl 1.41 transient Set<K> keySet;
144     transient Set<Map.Entry<K,V>> entrySet;
145     transient Collection<V> values;
146 dl 1.4
147     /* ---------------- Small Utilities -------------- */
148 tim 1.1
149     /**
150 dl 1.44 * Returns a hash code for non-null Object x.
151 dl 1.37 * Uses the same hash code spreader as most other java.util hash tables.
152 dl 1.8 * @param x the object serving as a key
153     * @return the hash code
154 tim 1.1 */
155 dl 1.41 static int hash(Object x) {
156 dl 1.4 int h = x.hashCode();
157     h += ~(h << 9);
158     h ^= (h >>> 14);
159     h += (h << 4);
160     h ^= (h >>> 10);
161     return h;
162     }
163    
164 tim 1.1 /**
165 dl 1.44 * Returns the segment that should be used for key with given hash
166     * @param hash the hash code for the key
167     * @return the segment
168 tim 1.1 */
169 dl 1.41 final Segment<K,V> segmentFor(int hash) {
170 tim 1.12 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
171 dl 1.4 }
172 tim 1.1
173 dl 1.4 /* ---------------- Inner Classes -------------- */
174 tim 1.1
175     /**
176 dl 1.46 * ConcurrentHashMap list entry. Note that this is never exported
177     * out as a user-visible Map.Entry.
178     *
179     * Because the value field is volatile, not final, it is legal wrt
180     * the Java Memory Model for an unsynchronized reader to see null
181     * instead of initial value when read via a data race. Although a
182     * reordering leading to this is not likely to ever actually
183     * occur, the Segment.readValueUnderLock method is used as a
184     * backup in case a null (pre-initialized) value is ever seen in
185     * an unsynchronized access method.
186     */
187     static final class HashEntry<K,V> {
188     final K key;
189     final int hash;
190     volatile V value;
191     final HashEntry<K,V> next;
192    
193     HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
194     this.key = key;
195     this.hash = hash;
196     this.next = next;
197     this.value = value;
198     }
199     }
200    
201     /**
202 dl 1.6 * Segments are specialized versions of hash tables. This
203 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
204     * simplify some locking and avoid separate construction.
205 tim 1.1 **/
206 dl 1.41 static final class Segment<K,V> extends ReentrantLock implements Serializable {
207 dl 1.4 /*
208     * Segments maintain a table of entry lists that are ALWAYS
209     * kept in a consistent state, so can be read without locking.
210     * Next fields of nodes are immutable (final). All list
211     * additions are performed at the front of each bin. This
212     * makes it easy to check changes, and also fast to traverse.
213     * When nodes would otherwise be changed, new nodes are
214     * created to replace them. This works well for hash tables
215     * since the bin lists tend to be short. (The average length
216     * is less than two for the default load factor threshold.)
217     *
218     * Read operations can thus proceed without locking, but rely
219 dl 1.45 * on selected uses of volatiles to ensure that completed
220     * write operations performed by other threads are
221     * noticed. For most purposes, the "count" field, tracking the
222     * number of elements, serves as that volatile variable
223     * ensuring visibility. This is convenient because this field
224     * needs to be read in many read operations anyway:
225 dl 1.4 *
226 dl 1.45 * - All (unsynchronized) read operations must first read the
227 dl 1.4 * "count" field, and should not look at table entries if
228     * it is 0.
229 tim 1.11 *
230 dl 1.45 * - All (synchronized) write operations should write to
231     * the "count" field after structurally changing any bin.
232     * The operations must not take any action that could even
233     * momentarily cause a concurrent read operation to see
234     * inconsistent data. This is made easier by the nature of
235     * the read operations in Map. For example, no operation
236 dl 1.4 * can reveal that the table has grown but the threshold
237     * has not yet been updated, so there are no atomicity
238     * requirements for this with respect to reads.
239     *
240 dl 1.45 * As a guide, all critical volatile reads and writes to the
241     * count field are marked in code comments.
242 dl 1.4 */
243 tim 1.11
244 dl 1.24 private static final long serialVersionUID = 2249069246763182397L;
245    
246 dl 1.4 /**
247     * The number of elements in this segment's region.
248     **/
249     transient volatile int count;
250    
251     /**
252 dl 1.45 * Number of updates that alter the size of the table. This is
253     * used during bulk-read methods to make sure they see a
254     * consistent snapshot: If modCounts change during a traversal
255 dl 1.46 * of segments computing size or checking containsValue, then
256 dl 1.45 * we might have an inconsistent view of state so (usually)
257     * must retry.
258 dl 1.21 */
259     transient int modCount;
260    
261     /**
262 dl 1.4 * The table is rehashed when its size exceeds this threshold.
263     * (The value of this field is always (int)(capacity *
264     * loadFactor).)
265     */
266 dl 1.41 transient int threshold;
267 dl 1.4
268     /**
269 dl 1.45 * The per-segment table. Declared as a raw type, casted
270     * to HashEntry<K,V> on each use.
271 dl 1.4 */
272 dl 1.45 transient volatile HashEntry[] table;
273 dl 1.4
274     /**
275     * The load factor for the hash table. Even though this value
276     * is same for all segments, it is replicated to avoid needing
277     * links to outer object.
278     * @serial
279     */
280 dl 1.41 final float loadFactor;
281 tim 1.1
282 dl 1.4 Segment(int initialCapacity, float lf) {
283     loadFactor = lf;
284 tim 1.11 setTable(new HashEntry[initialCapacity]);
285 dl 1.4 }
286 tim 1.1
287 dl 1.4 /**
288 tim 1.11 * Set table to new HashEntry array.
289 dl 1.4 * Call only while holding lock or in constructor.
290     **/
291 dl 1.41 void setTable(HashEntry[] newTable) {
292 dl 1.45 threshold = (int)(newTable.length * loadFactor);
293 dl 1.4 table = newTable;
294 dl 1.45 }
295    
296     /**
297     * Return properly casted first entry of bin for given hash
298     */
299     HashEntry<K,V> getFirst(int hash) {
300     HashEntry[] tab = table;
301     return (HashEntry<K,V>) tab[hash & (tab.length - 1)];
302     }
303    
304     /**
305     * Read value field of an entry under lock. Called if value
306     * field ever appears to be null. This is possible only if a
307     * compiler happens to reorder a HashEntry initialization with
308     * its table assignment, which is legal under memory model
309     * but is not known to ever occur.
310     */
311     V readValueUnderLock(HashEntry<K,V> e) {
312     lock();
313     try {
314     return e.value;
315     } finally {
316     unlock();
317     }
318 tim 1.11 }
319 dl 1.4
320     /* Specialized implementations of map methods */
321 tim 1.11
322 dl 1.29 V get(Object key, int hash) {
323 dl 1.4 if (count != 0) { // read-volatile
324 dl 1.45 HashEntry<K,V> e = getFirst(hash);
325 dl 1.4 while (e != null) {
326 dl 1.45 if (e.hash == hash && key.equals(e.key)) {
327     V v = e.value;
328     if (v != null)
329     return v;
330     return readValueUnderLock(e); // recheck
331     }
332 dl 1.4 e = e.next;
333     }
334     }
335     return null;
336     }
337    
338     boolean containsKey(Object key, int hash) {
339     if (count != 0) { // read-volatile
340 dl 1.45 HashEntry<K,V> e = getFirst(hash);
341 dl 1.4 while (e != null) {
342 tim 1.11 if (e.hash == hash && key.equals(e.key))
343 dl 1.4 return true;
344     e = e.next;
345     }
346     }
347     return false;
348     }
349 tim 1.11
350 dl 1.4 boolean containsValue(Object value) {
351     if (count != 0) { // read-volatile
352 tim 1.11 HashEntry[] tab = table;
353 dl 1.4 int len = tab.length;
354 dl 1.45 for (int i = 0 ; i < len; i++) {
355     for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i];
356     e != null ;
357     e = e.next) {
358     V v = e.value;
359     if (v == null) // recheck
360     v = readValueUnderLock(e);
361     if (value.equals(v))
362 dl 1.4 return true;
363 dl 1.45 }
364     }
365 dl 1.4 }
366     return false;
367     }
368    
369 dl 1.31 boolean replace(K key, int hash, V oldValue, V newValue) {
370     lock();
371     try {
372 dl 1.45 HashEntry<K,V> e = getFirst(hash);
373     while (e != null && (e.hash != hash || !key.equals(e.key)))
374 dl 1.31 e = e.next;
375 dl 1.45
376     boolean replaced = false;
377     if (e != null && oldValue.equals(e.value)) {
378     replaced = true;
379     e.value = newValue;
380 dl 1.31 }
381 dl 1.45 return replaced;
382 dl 1.33 } finally {
383     unlock();
384     }
385     }
386    
387     V replace(K key, int hash, V newValue) {
388     lock();
389     try {
390 dl 1.45 HashEntry<K,V> e = getFirst(hash);
391     while (e != null && (e.hash != hash || !key.equals(e.key)))
392 dl 1.33 e = e.next;
393 dl 1.45
394     V oldValue = null;
395     if (e != null) {
396     oldValue = e.value;
397     e.value = newValue;
398 dl 1.32 }
399 dl 1.45 return oldValue;
400 dl 1.31 } finally {
401     unlock();
402     }
403     }
404    
405 dl 1.32
406 tim 1.11 V put(K key, int hash, V value, boolean onlyIfAbsent) {
407 dl 1.4 lock();
408     try {
409 dl 1.9 int c = count;
410 dl 1.45 if (c++ > threshold) // ensure capacity
411     rehash();
412 tim 1.11 HashEntry[] tab = table;
413 dl 1.9 int index = hash & (tab.length - 1);
414 tim 1.11 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
415 dl 1.45 HashEntry<K,V> e = first;
416     while (e != null && (e.hash != hash || !key.equals(e.key)))
417     e = e.next;
418 tim 1.11
419 dl 1.45 V oldValue;
420     if (e != null) {
421     oldValue = e.value;
422     if (!onlyIfAbsent)
423     e.value = value;
424     }
425     else {
426     oldValue = null;
427     ++modCount;
428     tab[index] = new HashEntry<K,V>(key, hash, first, value);
429     count = c; // write-volatile
430 dl 1.4 }
431 dl 1.45 return oldValue;
432 tim 1.16 } finally {
433 dl 1.4 unlock();
434     }
435     }
436    
437 dl 1.45 void rehash() {
438     HashEntry[] oldTable = table;
439 dl 1.4 int oldCapacity = oldTable.length;
440     if (oldCapacity >= MAXIMUM_CAPACITY)
441 dl 1.45 return;
442 dl 1.4
443     /*
444     * Reclassify nodes in each list to new Map. Because we are
445     * using power-of-two expansion, the elements from each bin
446     * must either stay at same index, or move with a power of two
447     * offset. We eliminate unnecessary node creation by catching
448     * cases where old nodes can be reused because their next
449     * fields won't change. Statistically, at the default
450 dl 1.29 * threshold, only about one-sixth of them need cloning when
451 dl 1.4 * a table doubles. The nodes they replace will be garbage
452     * collectable as soon as they are no longer referenced by any
453     * reader thread that may be in the midst of traversing table
454     * right now.
455     */
456 tim 1.11
457     HashEntry[] newTable = new HashEntry[oldCapacity << 1];
458 dl 1.45 threshold = (int)(newTable.length * loadFactor);
459 dl 1.4 int sizeMask = newTable.length - 1;
460     for (int i = 0; i < oldCapacity ; i++) {
461     // We need to guarantee that any existing reads of old Map can
462 tim 1.11 // proceed. So we cannot yet null out each bin.
463 tim 1.12 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
464 tim 1.11
465 dl 1.4 if (e != null) {
466     HashEntry<K,V> next = e.next;
467     int idx = e.hash & sizeMask;
468 tim 1.11
469 dl 1.4 // Single node on list
470 tim 1.11 if (next == null)
471 dl 1.4 newTable[idx] = e;
472 tim 1.11
473     else {
474 dl 1.4 // Reuse trailing consecutive sequence at same slot
475     HashEntry<K,V> lastRun = e;
476     int lastIdx = idx;
477 tim 1.11 for (HashEntry<K,V> last = next;
478     last != null;
479 dl 1.4 last = last.next) {
480     int k = last.hash & sizeMask;
481     if (k != lastIdx) {
482     lastIdx = k;
483     lastRun = last;
484     }
485     }
486     newTable[lastIdx] = lastRun;
487 tim 1.11
488 dl 1.4 // Clone all remaining nodes
489     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
490     int k = p.hash & sizeMask;
491 dl 1.45 HashEntry<K,V> n = (HashEntry<K,V>)newTable[k];
492     newTable[k] = new HashEntry<K,V>(p.key, p.hash,
493     n, p.value);
494 dl 1.4 }
495     }
496     }
497     }
498 dl 1.45 table = newTable;
499 dl 1.4 }
500 dl 1.6
501     /**
502     * Remove; match on key only if value null, else match both.
503     */
504 dl 1.4 V remove(Object key, int hash, Object value) {
505 tim 1.11 lock();
506 dl 1.4 try {
507 dl 1.45 int c = count - 1;
508 dl 1.4 HashEntry[] tab = table;
509 dl 1.9 int index = hash & (tab.length - 1);
510 tim 1.12 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
511 dl 1.4 HashEntry<K,V> e = first;
512 dl 1.45 while (e != null && (e.hash != hash || !key.equals(e.key)))
513 dl 1.4 e = e.next;
514 dl 1.45
515     V oldValue = null;
516     if (e != null) {
517     V v = e.value;
518     if (value == null || value.equals(v)) {
519     oldValue = v;
520     // All entries following removed node can stay
521     // in list, but all preceding ones need to be
522     // cloned.
523     ++modCount;
524     HashEntry<K,V> newFirst = e.next;
525     for (HashEntry<K,V> p = first; p != e; p = p.next)
526     newFirst = new HashEntry<K,V>(p.key, p.hash,
527     newFirst, p.value);
528     tab[index] = newFirst;
529     count = c; // write-volatile
530     }
531 dl 1.4 }
532 dl 1.9 return oldValue;
533 tim 1.16 } finally {
534 dl 1.4 unlock();
535     }
536     }
537    
538     void clear() {
539 dl 1.45 if (count != 0) {
540     lock();
541     try {
542     HashEntry[] tab = table;
543     for (int i = 0; i < tab.length ; i++)
544     tab[i] = null;
545     ++modCount;
546     count = 0; // write-volatile
547     } finally {
548     unlock();
549     }
550 dl 1.4 }
551     }
552 tim 1.1 }
553    
554    
555 tim 1.11
556 dl 1.4 /* ---------------- Public operations -------------- */
557 tim 1.1
558     /**
559 dl 1.44 * Creates a new, empty map with the specified initial
560 tim 1.1 * capacity and the specified load factor.
561     *
562 dl 1.19 * @param initialCapacity the initial capacity. The implementation
563     * performs internal sizing to accommodate this many elements.
564 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
565 dl 1.19 * @param concurrencyLevel the estimated number of concurrently
566     * updating threads. The implementation performs internal sizing
567 dl 1.21 * to try to accommodate this many threads.
568 dl 1.4 * @throws IllegalArgumentException if the initial capacity is
569 dl 1.19 * negative or the load factor or concurrencyLevel are
570 dl 1.4 * nonpositive.
571     */
572 tim 1.11 public ConcurrentHashMap(int initialCapacity,
573 dl 1.19 float loadFactor, int concurrencyLevel) {
574     if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
575 dl 1.4 throw new IllegalArgumentException();
576    
577 dl 1.21 if (concurrencyLevel > MAX_SEGMENTS)
578     concurrencyLevel = MAX_SEGMENTS;
579    
580 dl 1.4 // Find power-of-two sizes best matching arguments
581     int sshift = 0;
582     int ssize = 1;
583 dl 1.19 while (ssize < concurrencyLevel) {
584 dl 1.4 ++sshift;
585     ssize <<= 1;
586     }
587 dl 1.9 segmentShift = 32 - sshift;
588 dl 1.8 segmentMask = ssize - 1;
589 tim 1.11 this.segments = new Segment[ssize];
590 dl 1.4
591     if (initialCapacity > MAXIMUM_CAPACITY)
592     initialCapacity = MAXIMUM_CAPACITY;
593     int c = initialCapacity / ssize;
594 tim 1.11 if (c * ssize < initialCapacity)
595 dl 1.4 ++c;
596     int cap = 1;
597     while (cap < c)
598     cap <<= 1;
599    
600     for (int i = 0; i < this.segments.length; ++i)
601     this.segments[i] = new Segment<K,V>(cap, loadFactor);
602 tim 1.1 }
603    
604     /**
605 dl 1.44 * Creates a new, empty map with the specified initial
606 dl 1.19 * capacity, and with default load factor and concurrencyLevel.
607 tim 1.1 *
608 dl 1.19 * @param initialCapacity The implementation performs internal
609     * sizing to accommodate this many elements.
610 dl 1.4 * @throws IllegalArgumentException if the initial capacity of
611     * elements is negative.
612 tim 1.1 */
613     public ConcurrentHashMap(int initialCapacity) {
614 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
615 tim 1.1 }
616    
617     /**
618 dl 1.44 * Creates a new, empty map with a default initial capacity,
619 dl 1.23 * load factor, and concurrencyLevel.
620 tim 1.1 */
621     public ConcurrentHashMap() {
622 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
623 tim 1.1 }
624    
625     /**
626 dl 1.44 * Creates a new map with the same mappings as the given map. The
627 tim 1.1 * map is created with a capacity of twice the number of mappings in
628 dl 1.50 * the given map or 11 (whichever is greater), and a default load factor
629     * and concurrencyLevel.
630 dl 1.40 * @param t the map
631 tim 1.1 */
632 tim 1.39 public ConcurrentHashMap(Map<? extends K, ? extends V> t) {
633 tim 1.1 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
634 dl 1.4 11),
635     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
636     putAll(t);
637 tim 1.1 }
638    
639 dl 1.4 // inherit Map javadoc
640 tim 1.1 public boolean isEmpty() {
641 dl 1.35 final Segment[] segments = this.segments;
642 dl 1.21 /*
643 dl 1.45 * We keep track of per-segment modCounts to avoid ABA
644 dl 1.21 * problems in which an element in one segment was added and
645     * in another removed during traversal, in which case the
646     * table was never actually empty at any point. Note the
647     * similar use of modCounts in the size() and containsValue()
648     * methods, which are the only other methods also susceptible
649     * to ABA problems.
650     */
651     int[] mc = new int[segments.length];
652     int mcsum = 0;
653     for (int i = 0; i < segments.length; ++i) {
654 dl 1.4 if (segments[i].count != 0)
655 tim 1.1 return false;
656 dl 1.21 else
657     mcsum += mc[i] = segments[i].modCount;
658     }
659     // If mcsum happens to be zero, then we know we got a snapshot
660     // before any modifications at all were made. This is
661     // probably common enough to bother tracking.
662     if (mcsum != 0) {
663     for (int i = 0; i < segments.length; ++i) {
664     if (segments[i].count != 0 ||
665     mc[i] != segments[i].modCount)
666     return false;
667     }
668     }
669 tim 1.1 return true;
670     }
671    
672 dl 1.21 // inherit Map javadoc
673     public int size() {
674 dl 1.35 final Segment[] segments = this.segments;
675 dl 1.45 long sum = 0;
676     long check = 0;
677 dl 1.21 int[] mc = new int[segments.length];
678 dl 1.46 // Try a few times to get accurate count. On failure due to
679 dl 1.45 // continuous async changes in table, resort to locking.
680 dl 1.46 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
681 dl 1.45 check = 0;
682     sum = 0;
683 dl 1.21 int mcsum = 0;
684     for (int i = 0; i < segments.length; ++i) {
685     sum += segments[i].count;
686     mcsum += mc[i] = segments[i].modCount;
687     }
688     if (mcsum != 0) {
689     for (int i = 0; i < segments.length; ++i) {
690     check += segments[i].count;
691     if (mc[i] != segments[i].modCount) {
692     check = -1; // force retry
693     break;
694     }
695     }
696     }
697 dl 1.45 if (check == sum)
698     break;
699     }
700     if (check != sum) { // Resort to locking all segments
701     sum = 0;
702     for (int i = 0; i < segments.length; ++i)
703     segments[i].lock();
704     for (int i = 0; i < segments.length; ++i)
705     sum += segments[i].count;
706     for (int i = 0; i < segments.length; ++i)
707     segments[i].unlock();
708 dl 1.21 }
709 dl 1.45 if (sum > Integer.MAX_VALUE)
710     return Integer.MAX_VALUE;
711     else
712     return (int)sum;
713 dl 1.21 }
714    
715    
716 tim 1.1 /**
717     * Returns the value to which the specified key is mapped in this table.
718     *
719     * @param key a key in the table.
720     * @return the value to which the key is mapped in this table;
721 dl 1.19 * <tt>null</tt> if the key is not mapped to any value in
722 tim 1.1 * this table.
723 dl 1.8 * @throws NullPointerException if the key is
724 dl 1.19 * <tt>null</tt>.
725 tim 1.1 */
726 tim 1.11 public V get(Object key) {
727 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
728 dl 1.29 return segmentFor(hash).get(key, hash);
729 tim 1.1 }
730    
731     /**
732     * Tests if the specified object is a key in this table.
733 tim 1.11 *
734 tim 1.1 * @param key possible key.
735 dl 1.19 * @return <tt>true</tt> if and only if the specified object
736 tim 1.11 * is a key in this table, as determined by the
737 dl 1.19 * <tt>equals</tt> method; <tt>false</tt> otherwise.
738 dl 1.8 * @throws NullPointerException if the key is
739 dl 1.19 * <tt>null</tt>.
740 tim 1.1 */
741     public boolean containsKey(Object key) {
742 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
743 dl 1.9 return segmentFor(hash).containsKey(key, hash);
744 tim 1.1 }
745    
746     /**
747     * Returns <tt>true</tt> if this map maps one or more keys to the
748     * specified value. Note: This method requires a full internal
749     * traversal of the hash table, and so is much slower than
750     * method <tt>containsKey</tt>.
751     *
752     * @param value value whose presence in this map is to be tested.
753     * @return <tt>true</tt> if this map maps one or more keys to the
754 tim 1.11 * specified value.
755 dl 1.19 * @throws NullPointerException if the value is <tt>null</tt>.
756 tim 1.1 */
757     public boolean containsValue(Object value) {
758 tim 1.11 if (value == null)
759 dl 1.4 throw new NullPointerException();
760 dl 1.45
761     // See explanation of modCount use above
762 tim 1.1
763 dl 1.35 final Segment[] segments = this.segments;
764 dl 1.21 int[] mc = new int[segments.length];
765 dl 1.45
766 dl 1.46 // Try a few times without locking
767     for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
768 dl 1.21 int sum = 0;
769     int mcsum = 0;
770     for (int i = 0; i < segments.length; ++i) {
771     int c = segments[i].count;
772     mcsum += mc[i] = segments[i].modCount;
773     if (segments[i].containsValue(value))
774     return true;
775     }
776     boolean cleanSweep = true;
777     if (mcsum != 0) {
778     for (int i = 0; i < segments.length; ++i) {
779     int c = segments[i].count;
780     if (mc[i] != segments[i].modCount) {
781     cleanSweep = false;
782     break;
783     }
784     }
785     }
786     if (cleanSweep)
787     return false;
788 tim 1.1 }
789 dl 1.45 // Resort to locking all segments
790     for (int i = 0; i < segments.length; ++i)
791     segments[i].lock();
792     boolean found = false;
793     try {
794     for (int i = 0; i < segments.length; ++i) {
795     if (segments[i].containsValue(value)) {
796     found = true;
797     break;
798     }
799     }
800     } finally {
801     for (int i = 0; i < segments.length; ++i)
802     segments[i].unlock();
803     }
804     return found;
805 tim 1.1 }
806 dl 1.19
807 tim 1.1 /**
808 dl 1.18 * Legacy method testing if some key maps into the specified value
809 dl 1.23 * in this table. This method is identical in functionality to
810     * {@link #containsValue}, and exists solely to ensure
811 dl 1.19 * full compatibility with class {@link java.util.Hashtable},
812 dl 1.18 * which supported this method prior to introduction of the
813 dl 1.23 * Java Collections framework.
814 dl 1.17
815 tim 1.1 * @param value a value to search for.
816 dl 1.19 * @return <tt>true</tt> if and only if some key maps to the
817     * <tt>value</tt> argument in this table as
818 tim 1.1 * determined by the <tt>equals</tt> method;
819 dl 1.19 * <tt>false</tt> otherwise.
820     * @throws NullPointerException if the value is <tt>null</tt>.
821 tim 1.1 */
822 dl 1.4 public boolean contains(Object value) {
823 tim 1.1 return containsValue(value);
824     }
825    
826     /**
827 dl 1.19 * Maps the specified <tt>key</tt> to the specified
828     * <tt>value</tt> in this table. Neither the key nor the
829 dl 1.44 * value can be <tt>null</tt>.
830 dl 1.4 *
831 dl 1.44 * <p> The value can be retrieved by calling the <tt>get</tt> method
832 tim 1.11 * with a key that is equal to the original key.
833 dl 1.4 *
834     * @param key the table key.
835     * @param value the value.
836     * @return the previous value of the specified key in this table,
837 dl 1.19 * or <tt>null</tt> if it did not have one.
838 dl 1.8 * @throws NullPointerException if the key or value is
839 dl 1.19 * <tt>null</tt>.
840 dl 1.4 */
841 tim 1.11 public V put(K key, V value) {
842     if (value == null)
843 dl 1.4 throw new NullPointerException();
844 tim 1.11 int hash = hash(key);
845 dl 1.9 return segmentFor(hash).put(key, hash, value, false);
846 dl 1.4 }
847    
848     /**
849     * If the specified key is not already associated
850     * with a value, associate it with the given value.
851     * This is equivalent to
852     * <pre>
853 dl 1.17 * if (!map.containsKey(key))
854     * return map.put(key, value);
855     * else
856     * return map.get(key);
857 dl 1.4 * </pre>
858     * Except that the action is performed atomically.
859     * @param key key with which the specified value is to be associated.
860     * @param value value to be associated with the specified key.
861     * @return previous value associated with specified key, or <tt>null</tt>
862     * if there was no mapping for key. A <tt>null</tt> return can
863     * also indicate that the map previously associated <tt>null</tt>
864     * with the specified key, if the implementation supports
865     * <tt>null</tt> values.
866     *
867 dl 1.17 * @throws ClassCastException if the class of the specified key or value
868     * prevents it from being stored in this map.
869     * @throws NullPointerException if the specified key or value is
870 dl 1.4 * <tt>null</tt>.
871     *
872     **/
873 tim 1.11 public V putIfAbsent(K key, V value) {
874     if (value == null)
875 dl 1.4 throw new NullPointerException();
876 tim 1.11 int hash = hash(key);
877 dl 1.9 return segmentFor(hash).put(key, hash, value, true);
878 dl 1.4 }
879    
880    
881     /**
882 tim 1.1 * Copies all of the mappings from the specified map to this one.
883     *
884     * These mappings replace any mappings that this map had for any of the
885     * keys currently in the specified Map.
886     *
887     * @param t Mappings to be stored in this map.
888     */
889 tim 1.11 public void putAll(Map<? extends K, ? extends V> t) {
890 dl 1.47 for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
891 tim 1.12 Entry<? extends K, ? extends V> e = it.next();
892 dl 1.4 put(e.getKey(), e.getValue());
893 tim 1.1 }
894 dl 1.4 }
895    
896     /**
897 tim 1.11 * Removes the key (and its corresponding value) from this
898 dl 1.4 * table. This method does nothing if the key is not in the table.
899     *
900     * @param key the key that needs to be removed.
901     * @return the value to which the key had been mapped in this table,
902 dl 1.19 * or <tt>null</tt> if the key did not have a mapping.
903 dl 1.8 * @throws NullPointerException if the key is
904 dl 1.19 * <tt>null</tt>.
905 dl 1.4 */
906     public V remove(Object key) {
907     int hash = hash(key);
908 dl 1.9 return segmentFor(hash).remove(key, hash, null);
909 dl 1.4 }
910 tim 1.1
911 dl 1.4 /**
912 dl 1.17 * Remove entry for key only if currently mapped to given value.
913     * Acts as
914     * <pre>
915     * if (map.get(key).equals(value)) {
916     * map.remove(key);
917     * return true;
918     * } else return false;
919     * </pre>
920     * except that the action is performed atomically.
921     * @param key key with which the specified value is associated.
922     * @param value value associated with the specified key.
923     * @return true if the value was removed
924     * @throws NullPointerException if the specified key is
925     * <tt>null</tt>.
926 dl 1.4 */
927 dl 1.13 public boolean remove(Object key, Object value) {
928 dl 1.4 int hash = hash(key);
929 dl 1.13 return segmentFor(hash).remove(key, hash, value) != null;
930 tim 1.1 }
931 dl 1.31
932 dl 1.32
933 dl 1.31 /**
934     * Replace entry for key only if currently mapped to given value.
935     * Acts as
936     * <pre>
937     * if (map.get(key).equals(oldValue)) {
938     * map.put(key, newValue);
939     * return true;
940     * } else return false;
941     * </pre>
942     * except that the action is performed atomically.
943     * @param key key with which the specified value is associated.
944     * @param oldValue value expected to be associated with the specified key.
945     * @param newValue value to be associated with the specified key.
946     * @return true if the value was replaced
947     * @throws NullPointerException if the specified key or values are
948     * <tt>null</tt>.
949     */
950     public boolean replace(K key, V oldValue, V newValue) {
951     if (oldValue == null || newValue == null)
952     throw new NullPointerException();
953     int hash = hash(key);
954     return segmentFor(hash).replace(key, hash, oldValue, newValue);
955 dl 1.32 }
956    
957     /**
958 dl 1.33 * Replace entry for key only if currently mapped to some value.
959 dl 1.32 * Acts as
960     * <pre>
961     * if ((map.containsKey(key)) {
962 dl 1.33 * return map.put(key, value);
963     * } else return null;
964 dl 1.32 * </pre>
965     * except that the action is performed atomically.
966     * @param key key with which the specified value is associated.
967     * @param value value to be associated with the specified key.
968 dl 1.33 * @return previous value associated with specified key, or <tt>null</tt>
969     * if there was no mapping for key.
970 dl 1.32 * @throws NullPointerException if the specified key or value is
971     * <tt>null</tt>.
972     */
973 dl 1.33 public V replace(K key, V value) {
974 dl 1.32 if (value == null)
975     throw new NullPointerException();
976     int hash = hash(key);
977 dl 1.33 return segmentFor(hash).replace(key, hash, value);
978 dl 1.31 }
979    
980 tim 1.1
981     /**
982     * Removes all mappings from this map.
983     */
984     public void clear() {
985 tim 1.11 for (int i = 0; i < segments.length; ++i)
986 dl 1.4 segments[i].clear();
987 tim 1.1 }
988    
989     /**
990     * Returns a set view of the keys contained in this map. The set is
991     * backed by the map, so changes to the map are reflected in the set, and
992     * vice-versa. The set supports element removal, which removes the
993     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
994     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
995     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
996     * <tt>addAll</tt> operations.
997 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
998 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
999     * and guarantees to traverse elements as they existed upon
1000     * construction of the iterator, and may (but is not guaranteed to)
1001     * reflect any modifications subsequent to construction.
1002 tim 1.1 *
1003     * @return a set view of the keys contained in this map.
1004     */
1005     public Set<K> keySet() {
1006     Set<K> ks = keySet;
1007 dl 1.8 return (ks != null) ? ks : (keySet = new KeySet());
1008 tim 1.1 }
1009    
1010    
1011     /**
1012     * Returns a collection view of the values contained in this map. The
1013     * collection is backed by the map, so changes to the map are reflected in
1014     * the collection, and vice-versa. The collection supports element
1015     * removal, which removes the corresponding mapping from this map, via the
1016     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1017     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1018     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1019 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1020 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1021     * and guarantees to traverse elements as they existed upon
1022     * construction of the iterator, and may (but is not guaranteed to)
1023     * reflect any modifications subsequent to construction.
1024 tim 1.1 *
1025     * @return a collection view of the values contained in this map.
1026     */
1027     public Collection<V> values() {
1028     Collection<V> vs = values;
1029 dl 1.8 return (vs != null) ? vs : (values = new Values());
1030 tim 1.1 }
1031    
1032    
1033     /**
1034     * Returns a collection view of the mappings contained in this map. Each
1035     * element in the returned collection is a <tt>Map.Entry</tt>. The
1036     * collection is backed by the map, so changes to the map are reflected in
1037     * the collection, and vice-versa. The collection supports element
1038     * removal, which removes the corresponding mapping from the map, via the
1039     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1040     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
1041     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
1042 dl 1.50 * The view's returned <tt>iterator</tt> is a "weakly consistent" iterator that
1043 dl 1.14 * will never throw {@link java.util.ConcurrentModificationException},
1044     * and guarantees to traverse elements as they existed upon
1045     * construction of the iterator, and may (but is not guaranteed to)
1046     * reflect any modifications subsequent to construction.
1047 tim 1.1 *
1048     * @return a collection view of the mappings contained in this map.
1049     */
1050     public Set<Map.Entry<K,V>> entrySet() {
1051     Set<Map.Entry<K,V>> es = entrySet;
1052 dl 1.23 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
1053 tim 1.1 }
1054    
1055    
1056     /**
1057     * Returns an enumeration of the keys in this table.
1058     *
1059     * @return an enumeration of the keys in this table.
1060 dl 1.23 * @see #keySet
1061 tim 1.1 */
1062 dl 1.4 public Enumeration<K> keys() {
1063 tim 1.1 return new KeyIterator();
1064     }
1065    
1066     /**
1067     * Returns an enumeration of the values in this table.
1068     *
1069     * @return an enumeration of the values in this table.
1070 dl 1.23 * @see #values
1071 tim 1.1 */
1072 dl 1.4 public Enumeration<V> elements() {
1073 tim 1.1 return new ValueIterator();
1074     }
1075    
1076 dl 1.4 /* ---------------- Iterator Support -------------- */
1077 tim 1.11
1078 dl 1.41 abstract class HashIterator {
1079     int nextSegmentIndex;
1080     int nextTableIndex;
1081     HashEntry[] currentTable;
1082     HashEntry<K, V> nextEntry;
1083 dl 1.30 HashEntry<K, V> lastReturned;
1084 tim 1.1
1085 dl 1.41 HashIterator() {
1086 dl 1.8 nextSegmentIndex = segments.length - 1;
1087 dl 1.4 nextTableIndex = -1;
1088     advance();
1089 tim 1.1 }
1090    
1091     public boolean hasMoreElements() { return hasNext(); }
1092    
1093 dl 1.41 final void advance() {
1094 dl 1.4 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1095     return;
1096 tim 1.11
1097 dl 1.4 while (nextTableIndex >= 0) {
1098 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
1099 dl 1.4 return;
1100     }
1101 tim 1.11
1102 dl 1.4 while (nextSegmentIndex >= 0) {
1103 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
1104 dl 1.4 if (seg.count != 0) {
1105     currentTable = seg.table;
1106 dl 1.8 for (int j = currentTable.length - 1; j >= 0; --j) {
1107 tim 1.12 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
1108 dl 1.8 nextTableIndex = j - 1;
1109 dl 1.4 return;
1110     }
1111 tim 1.1 }
1112     }
1113     }
1114     }
1115    
1116 dl 1.4 public boolean hasNext() { return nextEntry != null; }
1117 tim 1.1
1118 dl 1.4 HashEntry<K,V> nextEntry() {
1119     if (nextEntry == null)
1120 tim 1.1 throw new NoSuchElementException();
1121 dl 1.4 lastReturned = nextEntry;
1122     advance();
1123     return lastReturned;
1124 tim 1.1 }
1125    
1126     public void remove() {
1127     if (lastReturned == null)
1128     throw new IllegalStateException();
1129     ConcurrentHashMap.this.remove(lastReturned.key);
1130     lastReturned = null;
1131     }
1132 dl 1.4 }
1133    
1134 dl 1.41 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1135 dl 1.4 public K next() { return super.nextEntry().key; }
1136     public K nextElement() { return super.nextEntry().key; }
1137     }
1138    
1139 dl 1.41 final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1140 dl 1.4 public V next() { return super.nextEntry().value; }
1141     public V nextElement() { return super.nextEntry().value; }
1142     }
1143 tim 1.1
1144 dl 1.30
1145    
1146     /**
1147 dl 1.41 * Entry iterator. Exported Entry objects must write-through
1148     * changes in setValue, even if the nodes have been cloned. So we
1149     * cannot return internal HashEntry objects. Instead, the iterator
1150     * itself acts as a forwarding pseudo-entry.
1151 dl 1.30 */
1152 dl 1.41 final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1153 dl 1.30 public Map.Entry<K,V> next() {
1154     nextEntry();
1155     return this;
1156     }
1157    
1158     public K getKey() {
1159     if (lastReturned == null)
1160     throw new IllegalStateException("Entry was removed");
1161     return lastReturned.key;
1162     }
1163    
1164     public V getValue() {
1165     if (lastReturned == null)
1166     throw new IllegalStateException("Entry was removed");
1167     return ConcurrentHashMap.this.get(lastReturned.key);
1168     }
1169    
1170     public V setValue(V value) {
1171     if (lastReturned == null)
1172     throw new IllegalStateException("Entry was removed");
1173     return ConcurrentHashMap.this.put(lastReturned.key, value);
1174     }
1175    
1176     public boolean equals(Object o) {
1177 dl 1.43 // If not acting as entry, just use default.
1178     if (lastReturned == null)
1179     return super.equals(o);
1180 dl 1.30 if (!(o instanceof Map.Entry))
1181     return false;
1182 tim 1.39 Map.Entry e = (Map.Entry)o;
1183     return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1184     }
1185 dl 1.30
1186     public int hashCode() {
1187 dl 1.43 // If not acting as entry, just use default.
1188     if (lastReturned == null)
1189     return super.hashCode();
1190    
1191 dl 1.30 Object k = getKey();
1192     Object v = getValue();
1193     return ((k == null) ? 0 : k.hashCode()) ^
1194     ((v == null) ? 0 : v.hashCode());
1195     }
1196    
1197     public String toString() {
1198 dl 1.43 // If not acting as entry, just use default.
1199 dl 1.34 if (lastReturned == null)
1200     return super.toString();
1201     else
1202     return getKey() + "=" + getValue();
1203 dl 1.30 }
1204    
1205 dl 1.41 boolean eq(Object o1, Object o2) {
1206 dl 1.30 return (o1 == null ? o2 == null : o1.equals(o2));
1207     }
1208    
1209 tim 1.1 }
1210    
1211 dl 1.41 final class KeySet extends AbstractSet<K> {
1212 dl 1.4 public Iterator<K> iterator() {
1213     return new KeyIterator();
1214     }
1215     public int size() {
1216     return ConcurrentHashMap.this.size();
1217     }
1218     public boolean contains(Object o) {
1219     return ConcurrentHashMap.this.containsKey(o);
1220     }
1221     public boolean remove(Object o) {
1222     return ConcurrentHashMap.this.remove(o) != null;
1223     }
1224     public void clear() {
1225     ConcurrentHashMap.this.clear();
1226     }
1227 dl 1.49 public Object[] toArray() {
1228     Collection<K> c = new ArrayList<K>();
1229     for (Iterator<K> i = iterator(); i.hasNext(); )
1230     c.add(i.next());
1231     return c.toArray();
1232     }
1233     public <T> T[] toArray(T[] a) {
1234     Collection<K> c = new ArrayList<K>();
1235     for (Iterator<K> i = iterator(); i.hasNext(); )
1236     c.add(i.next());
1237     return c.toArray(a);
1238     }
1239 tim 1.1 }
1240    
1241 dl 1.41 final class Values extends AbstractCollection<V> {
1242 dl 1.4 public Iterator<V> iterator() {
1243     return new ValueIterator();
1244     }
1245     public int size() {
1246     return ConcurrentHashMap.this.size();
1247     }
1248     public boolean contains(Object o) {
1249     return ConcurrentHashMap.this.containsValue(o);
1250     }
1251     public void clear() {
1252     ConcurrentHashMap.this.clear();
1253     }
1254 dl 1.49 public Object[] toArray() {
1255     Collection<V> c = new ArrayList<V>();
1256     for (Iterator<V> i = iterator(); i.hasNext(); )
1257     c.add(i.next());
1258     return c.toArray();
1259     }
1260     public <T> T[] toArray(T[] a) {
1261     Collection<V> c = new ArrayList<V>();
1262     for (Iterator<V> i = iterator(); i.hasNext(); )
1263     c.add(i.next());
1264     return c.toArray(a);
1265     }
1266 tim 1.1 }
1267    
1268 dl 1.41 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1269 dl 1.4 public Iterator<Map.Entry<K,V>> iterator() {
1270     return new EntryIterator();
1271     }
1272     public boolean contains(Object o) {
1273     if (!(o instanceof Map.Entry))
1274     return false;
1275     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1276     V v = ConcurrentHashMap.this.get(e.getKey());
1277     return v != null && v.equals(e.getValue());
1278     }
1279     public boolean remove(Object o) {
1280     if (!(o instanceof Map.Entry))
1281     return false;
1282     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1283 dl 1.13 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1284 dl 1.4 }
1285     public int size() {
1286     return ConcurrentHashMap.this.size();
1287     }
1288     public void clear() {
1289     ConcurrentHashMap.this.clear();
1290 dl 1.30 }
1291     public Object[] toArray() {
1292     // Since we don't ordinarily have distinct Entry objects, we
1293     // must pack elements using exportable SimpleEntry
1294     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1295     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1296     c.add(new SimpleEntry<K,V>(i.next()));
1297     return c.toArray();
1298     }
1299     public <T> T[] toArray(T[] a) {
1300     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1301     for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1302     c.add(new SimpleEntry<K,V>(i.next()));
1303     return c.toArray(a);
1304     }
1305    
1306     }
1307    
1308     /**
1309     * This duplicates java.util.AbstractMap.SimpleEntry until this class
1310     * is made accessible.
1311     */
1312 dl 1.41 static final class SimpleEntry<K,V> implements Entry<K,V> {
1313 tim 1.39 K key;
1314     V value;
1315 dl 1.30
1316 tim 1.39 public SimpleEntry(K key, V value) {
1317     this.key = key;
1318 dl 1.30 this.value = value;
1319 tim 1.39 }
1320 dl 1.30
1321 tim 1.39 public SimpleEntry(Entry<K,V> e) {
1322     this.key = e.getKey();
1323 dl 1.30 this.value = e.getValue();
1324 tim 1.39 }
1325    
1326     public K getKey() {
1327     return key;
1328     }
1329 dl 1.30
1330 tim 1.39 public V getValue() {
1331     return value;
1332     }
1333    
1334     public V setValue(V value) {
1335     V oldValue = this.value;
1336     this.value = value;
1337     return oldValue;
1338     }
1339    
1340     public boolean equals(Object o) {
1341     if (!(o instanceof Map.Entry))
1342     return false;
1343     Map.Entry e = (Map.Entry)o;
1344     return eq(key, e.getKey()) && eq(value, e.getValue());
1345     }
1346    
1347     public int hashCode() {
1348     return ((key == null) ? 0 : key.hashCode()) ^
1349     ((value == null) ? 0 : value.hashCode());
1350     }
1351    
1352     public String toString() {
1353     return key + "=" + value;
1354     }
1355 dl 1.30
1356 dl 1.41 static boolean eq(Object o1, Object o2) {
1357 dl 1.30 return (o1 == null ? o2 == null : o1.equals(o2));
1358 dl 1.4 }
1359 tim 1.1 }
1360    
1361 dl 1.4 /* ---------------- Serialization Support -------------- */
1362    
1363 tim 1.1 /**
1364     * Save the state of the <tt>ConcurrentHashMap</tt>
1365     * instance to a stream (i.e.,
1366     * serialize it).
1367 dl 1.8 * @param s the stream
1368 tim 1.1 * @serialData
1369     * the key (Object) and value (Object)
1370     * for each key-value mapping, followed by a null pair.
1371     * The key-value mappings are emitted in no particular order.
1372     */
1373     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1374     s.defaultWriteObject();
1375    
1376     for (int k = 0; k < segments.length; ++k) {
1377 tim 1.12 Segment<K,V> seg = (Segment<K,V>)segments[k];
1378 dl 1.2 seg.lock();
1379     try {
1380 tim 1.11 HashEntry[] tab = seg.table;
1381 dl 1.4 for (int i = 0; i < tab.length; ++i) {
1382 tim 1.12 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1383 dl 1.4 s.writeObject(e.key);
1384     s.writeObject(e.value);
1385     }
1386     }
1387 tim 1.16 } finally {
1388 dl 1.2 seg.unlock();
1389     }
1390 tim 1.1 }
1391     s.writeObject(null);
1392     s.writeObject(null);
1393     }
1394    
1395     /**
1396     * Reconstitute the <tt>ConcurrentHashMap</tt>
1397     * instance from a stream (i.e.,
1398     * deserialize it).
1399 dl 1.8 * @param s the stream
1400 tim 1.1 */
1401     private void readObject(java.io.ObjectInputStream s)
1402     throws IOException, ClassNotFoundException {
1403     s.defaultReadObject();
1404    
1405 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1406     for (int i = 0; i < segments.length; ++i) {
1407 tim 1.11 segments[i].setTable(new HashEntry[1]);
1408 dl 1.4 }
1409 tim 1.1
1410     // Read the keys and values, and put the mappings in the table
1411 dl 1.9 for (;;) {
1412 tim 1.1 K key = (K) s.readObject();
1413     V value = (V) s.readObject();
1414     if (key == null)
1415     break;
1416     put(key, value);
1417     }
1418     }
1419     }
1420 tim 1.11