ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.7
Committed: Mon Jun 23 02:26:16 2003 UTC (20 years, 11 months ago) by brian
Branch: MAIN
Changes since 1.6: +1 -1 lines
Log Message:
Partial javadoc pass

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7 tim 1.1 package java.util.concurrent;
8    
9     import java.util.*;
10     import java.io.Serializable;
11     import java.io.IOException;
12     import java.io.ObjectInputStream;
13     import java.io.ObjectOutputStream;
14    
15     /**
16 dl 1.4 * A hash table supporting full concurrency of retrievals and
17     * adjustable expected concurrency for updates. This class obeys the
18     * same functional specification as
19     * <tt>java.util.Hashtable</tt>. However, even though all operations
20     * are thread-safe, retrieval operations do <em>not</em> entail
21     * locking, and there is <em>not</em> any support for locking the
22     * entire table in a way that prevents all access. This class is
23     * fully interoperable with Hashtable in programs that rely on its
24     * thread safety but not on its synchronization details.
25     *
26     * <p> Retrieval operations (including <tt>get</tt>) ordinarily
27 dl 1.5 * overlap with update operations (including <tt>put</tt> and
28 dl 1.4 * <tt>remove</tt>). Retrievals reflect the results of the most
29     * recently <em>completed</em> update operations holding upon their
30     * onset. For aggregate operations such as <tt>putAll</tt> and
31     * <tt>clear</tt>, concurrent retrievals may reflect insertion or
32     * removal of only some entries. Similarly, Iterators and
33     * Enumerations return elements reflecting the state of the hash table
34     * at some point at or since the creation of the iterator/enumeration.
35     * They do <em>not</em> throw ConcurrentModificationException.
36     * However, Iterators are designed to be used by only one thread at a
37     * time.
38 tim 1.1 *
39 dl 1.4 * <p> The allowed concurrency among update operations is controlled
40     * by the optional <tt>segments</tt> constructor argument (default
41 brian 1.7 * 16). The table is divided into this many independent parts, each of
42 dl 1.4 * which can be updated concurrently. Because placement in hash tables
43     * is essentially random, the actual concurrency will vary. As a rough
44     * rule of thumb, you should choose at least as many segments as you
45     * expect concurrent threads. However, using more segments than you
46     * need can waste space and time. Using a value of 1 for
47     * <tt>segments</tt> results in a table that is concurrently readable
48     * but can only be updated by one thread at a time.
49 tim 1.1 *
50 dl 1.4 * <p> Like Hashtable but unlike java.util.HashMap, this class does
51     * NOT allow <tt>null</tt> to be used as a key or value.
52 tim 1.1 *
53 dl 1.2 **/
54 tim 1.1 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
55     implements ConcurrentMap<K, V>, Cloneable, Serializable {
56    
57     /*
58 dl 1.4 * The basic strategy is to subdivide the table among Segments,
59     * each of which itself is a concurrently readable hash table.
60     */
61 tim 1.1
62 dl 1.4 /* ---------------- Constants -------------- */
63    
64     /**
65     * The default initial number of table slots for this table (32).
66     * Used when not otherwise specified in constructor.
67     */
68     static int DEFAULT_INITIAL_CAPACITY = 16;
69 tim 1.1
70     /**
71 dl 1.4 * The maximum capacity, used if a higher value is implicitly
72     * specified by either of the constructors with arguments. MUST
73     * be a power of two <= 1<<30.
74     */
75     static final int MAXIMUM_CAPACITY = 1 << 30;
76    
77 tim 1.1 /**
78 dl 1.4 * The default load factor for this table. Used when not
79     * otherwise specified in constructor.
80     */
81     static final float DEFAULT_LOAD_FACTOR = 0.75f;
82 tim 1.1
83     /**
84 dl 1.4 * The default number of concurrency control segments.
85 tim 1.1 **/
86 dl 1.4 private static final int DEFAULT_SEGMENTS = 16;
87 tim 1.1
88 dl 1.4 /* ---------------- Fields -------------- */
89 tim 1.1
90     /**
91 dl 1.4 * Mask value for indexing into segments. The lower bits of a
92     * key's hash code are used to choose the segment, and the
93     * remaining bits are used as the placement hashcode used within
94     * the segment.
95 tim 1.1 **/
96 dl 1.4 private final int segmentMask;
97 tim 1.1
98     /**
99 dl 1.4 * Shift value for indexing within segments.
100 tim 1.1 **/
101 dl 1.4 private final int segmentShift;
102 tim 1.1
103     /**
104 dl 1.4 * The segments, each of which is a specialized hash table
105 tim 1.1 */
106 dl 1.4 private final Segment<K,V>[] segments;
107    
108 dl 1.6 private transient Set<K> keySet;
109     private transient Set/*<Map.Entry<K,V>>*/ entrySet;
110     private transient Collection<V> values;
111 dl 1.4
112     /* ---------------- Small Utilities -------------- */
113 tim 1.1
114     /**
115 dl 1.4 * Return a hash code for non-null Object x.
116     * Uses the same hash code spreader as most other j.u hash tables.
117 tim 1.1 */
118 dl 1.4 private static int hash(Object x) {
119     int h = x.hashCode();
120     h += ~(h << 9);
121     h ^= (h >>> 14);
122     h += (h << 4);
123     h ^= (h >>> 10);
124     return h;
125     }
126    
127     /**
128     * Check for equality of non-null references x and y.
129     **/
130     private static boolean eq(Object x, Object y) {
131     return x == y || x.equals(y);
132     }
133 tim 1.1
134     /**
135 dl 1.4 * Return index for hash code h in table of given length.
136     */
137     private static int indexFor(int h, int length) {
138     return h & (length-1);
139     }
140 tim 1.1
141     /**
142 dl 1.4 * Return the segment that should be used for key with given hash
143 tim 1.1 */
144 dl 1.4 private Segment<K,V> segmentFor(int hash) {
145     return segments[hash & segmentMask];
146     }
147 tim 1.1
148     /**
149 dl 1.4 * Strip the segment index from hash code to use as a per-segment hash.
150 tim 1.1 */
151 dl 1.4 private int segmentHashFor(int hash) {
152     return hash >>> segmentShift;
153     }
154 tim 1.1
155 dl 1.4 /* ---------------- Inner Classes -------------- */
156 tim 1.1
157     /**
158 dl 1.6 * Segments are specialized versions of hash tables. This
159 dl 1.4 * subclasses from ReentrantLock opportunistically, just to
160     * simplify some locking and avoid separate construction.
161 tim 1.1 **/
162 dl 1.4 private final static class Segment<K,V> extends ReentrantLock implements Serializable {
163     /*
164     * Segments maintain a table of entry lists that are ALWAYS
165     * kept in a consistent state, so can be read without locking.
166     * Next fields of nodes are immutable (final). All list
167     * additions are performed at the front of each bin. This
168     * makes it easy to check changes, and also fast to traverse.
169     * When nodes would otherwise be changed, new nodes are
170     * created to replace them. This works well for hash tables
171     * since the bin lists tend to be short. (The average length
172     * is less than two for the default load factor threshold.)
173     *
174     * Read operations can thus proceed without locking, but rely
175     * on a memory barrier to ensure that completed write
176     * operations performed by other threads are
177     * noticed. Conveniently, the "count" field, tracking the
178     * number of elements, can also serve as the volatile variable
179     * providing proper read/write barriers. This is convenient
180     * because this field needs to be read in many read operations
181     * anyway. The use of volatiles for this purpose is only
182     * guaranteed to work in accord with reuirements in
183     * multithreaded environments when run on JVMs conforming to
184     * the clarified JSR133 memory model specification. This true
185     * for hotspot as of release 1.4.
186     *
187     * Implementors note. The basic rules for all this are:
188     *
189     * - All unsynchronized read operations must first read the
190     * "count" field, and should not look at table entries if
191     * it is 0.
192     *
193     * - All synchronized write operations should write to
194     * the "count" field after updating. The operations must not
195     * take any action that could even momentarily cause
196     * a concurrent read operation to see inconsistent
197     * data. This is made easier by the nature of the read
198     * operations in Map. For example, no operation
199     * can reveal that the table has grown but the threshold
200     * has not yet been updated, so there are no atomicity
201     * requirements for this with respect to reads.
202     *
203     * As a guide, all critical volatile reads and writes are marked
204     * in code comments.
205     */
206    
207     /**
208     * The number of elements in this segment's region.
209     **/
210     transient volatile int count;
211    
212     /**
213     * The table is rehashed when its size exceeds this threshold.
214     * (The value of this field is always (int)(capacity *
215     * loadFactor).)
216     */
217     transient private int threshold;
218    
219     /**
220     * The per-segment table
221     */
222     transient HashEntry<K,V>[] table;
223    
224     /**
225     * The load factor for the hash table. Even though this value
226     * is same for all segments, it is replicated to avoid needing
227     * links to outer object.
228     * @serial
229     */
230     private final float loadFactor;
231 tim 1.1
232 dl 1.4 Segment(int initialCapacity, float lf) {
233     loadFactor = lf;
234     setTable(new HashEntry<K,V>[initialCapacity]);
235     }
236 tim 1.1
237 dl 1.4 /**
238     * Set table to new HashEntry array.
239     * Call only while holding lock or in constructor.
240     **/
241     private void setTable(HashEntry<K,V>[] newTable) {
242     table = newTable;
243     threshold = (int)(newTable.length * loadFactor);
244     count = count; // write-volatile
245     }
246    
247     /* Specialized implementations of map methods */
248    
249     V get(K key, int hash) {
250     if (count != 0) { // read-volatile
251     HashEntry<K,V>[] tab = table;
252     int index = indexFor(hash, tab.length);
253     HashEntry<K,V> e = tab[index];
254     while (e != null) {
255     if (e.hash == hash && eq(key, e.key))
256     return e.value;
257     e = e.next;
258     }
259     }
260     return null;
261     }
262    
263     boolean containsKey(Object key, int hash) {
264     if (count != 0) { // read-volatile
265     HashEntry<K,V>[] tab = table;
266     int index = indexFor(hash, tab.length);
267     HashEntry<K,V> e = tab[index];
268     while (e != null) {
269     if (e.hash == hash && eq(key, e.key))
270     return true;
271     e = e.next;
272     }
273     }
274     return false;
275     }
276    
277     boolean containsValue(Object value) {
278     if (count != 0) { // read-volatile
279     HashEntry<K,V> tab[] = table;
280     int len = tab.length;
281     for (int i = 0 ; i < len; i++)
282     for (HashEntry<K,V> e = tab[i] ; e != null ; e = e.next)
283     if (value.equals(e.value))
284     return true;
285     }
286     return false;
287     }
288    
289     V put(K key, int hash, V value, boolean onlyIfAbsent) {
290     lock();
291     try {
292     HashEntry<K,V>[] tab = table;
293     int index = indexFor(hash, tab.length);
294     HashEntry<K,V> first = tab[index];
295    
296     for (HashEntry<K,V> e = first; e != null; e = e.next) {
297     if (e.hash == hash && eq(key, e.key)) {
298     V oldValue = e.value;
299     if (!onlyIfAbsent)
300     e.value = value;
301     count = count; // write-volatile
302     return oldValue;
303     }
304     }
305    
306     tab[index] = new HashEntry<K,V>(hash, key, value, first);
307     if (++count > threshold) // write-volatile
308     rehash();
309     return null;
310     }
311     finally {
312     unlock();
313     }
314     }
315    
316     private void rehash() {
317     HashEntry<K,V>[] oldTable = table;
318     int oldCapacity = oldTable.length;
319     if (oldCapacity >= MAXIMUM_CAPACITY)
320     return;
321    
322     /*
323     * Reclassify nodes in each list to new Map. Because we are
324     * using power-of-two expansion, the elements from each bin
325     * must either stay at same index, or move with a power of two
326     * offset. We eliminate unnecessary node creation by catching
327     * cases where old nodes can be reused because their next
328     * fields won't change. Statistically, at the default
329     * threshhold, only about one-sixth of them need cloning when
330     * a table doubles. The nodes they replace will be garbage
331     * collectable as soon as they are no longer referenced by any
332     * reader thread that may be in the midst of traversing table
333     * right now.
334     */
335    
336     HashEntry<K,V>[] newTable = new HashEntry<K,V>[oldCapacity << 1];
337     int sizeMask = newTable.length - 1;
338     for (int i = 0; i < oldCapacity ; i++) {
339     // We need to guarantee that any existing reads of old Map can
340     // proceed. So we cannot yet null out each bin.
341     HashEntry<K,V> e = oldTable[i];
342    
343     if (e != null) {
344     HashEntry<K,V> next = e.next;
345     int idx = e.hash & sizeMask;
346    
347     // Single node on list
348     if (next == null)
349     newTable[idx] = e;
350    
351     else {
352     // Reuse trailing consecutive sequence at same slot
353     HashEntry<K,V> lastRun = e;
354     int lastIdx = idx;
355     for (HashEntry<K,V> last = next;
356     last != null;
357     last = last.next) {
358     int k = last.hash & sizeMask;
359     if (k != lastIdx) {
360     lastIdx = k;
361     lastRun = last;
362     }
363     }
364     newTable[lastIdx] = lastRun;
365    
366     // Clone all remaining nodes
367     for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
368     int k = p.hash & sizeMask;
369     newTable[k] = new HashEntry<K,V>(p.hash, p.key,
370     p.value, newTable[k]);
371     }
372     }
373     }
374     }
375     setTable(newTable);
376     }
377 dl 1.6
378     /**
379     * Remove; match on key only if value null, else match both.
380     */
381 dl 1.4 V remove(Object key, int hash, Object value) {
382     lock();
383     try {
384     HashEntry[] tab = table;
385     int index = indexFor(hash, tab.length);
386     HashEntry<K,V> first = tab[index];
387    
388     HashEntry<K,V> e = first;
389     while (true) {
390     if (e == null)
391     return null;
392     if (e.hash == hash && eq(key, e.key))
393     break;
394     e = e.next;
395     }
396    
397     V oldValue = e.value;
398     if (value != null && !value.equals(oldValue))
399     return null;
400    
401     // All entries following removed node can stay in list, but
402     // all preceeding ones need to be cloned.
403     HashEntry<K,V> newFirst = e.next;
404     for (HashEntry<K,V> p = first; p != e; p = p.next)
405     newFirst = new HashEntry<K,V>(p.hash, p.key, p.value, newFirst);
406     tab[index] = newFirst;
407    
408     count--; // write-volatile
409     return e.value;
410     }
411     finally {
412     unlock();
413     }
414     }
415    
416     void clear() {
417     lock();
418     try {
419     HashEntry<K,V> tab[] = table;
420     for (int i = 0; i < tab.length ; i++)
421     tab[i] = null;
422     count = 0; // write-volatile
423     }
424     finally {
425     unlock();
426     }
427     }
428 tim 1.1 }
429    
430     /**
431 dl 1.4 * ConcurrentReaderHashMap list entry.
432 tim 1.1 */
433 dl 1.4 private static class HashEntry<K,V> implements Entry<K,V> {
434     private final K key;
435     private V value;
436     private final int hash;
437     private final HashEntry<K,V> next;
438    
439     HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
440     this.value = value;
441     this.hash = hash;
442     this.key = key;
443     this.next = next;
444     }
445    
446     public K getKey() {
447     return key;
448     }
449 tim 1.1
450 dl 1.4 public V getValue() {
451     return value;
452 tim 1.1 }
453    
454 dl 1.4 public V setValue(V newValue) {
455     // We aren't required to, and don't provide any
456     // visibility barriers for setting value.
457     if (newValue == null)
458     throw new NullPointerException();
459     V oldValue = this.value;
460     this.value = newValue;
461     return oldValue;
462     }
463 tim 1.1
464 dl 1.4 public boolean equals(Object o) {
465     if (!(o instanceof Entry))
466     return false;
467     Entry<K,V> e = (Entry)o;
468     return (key.equals(e.getKey()) && value.equals(e.getValue()));
469     }
470    
471     public int hashCode() {
472     return key.hashCode() ^ value.hashCode();
473     }
474 tim 1.1
475 dl 1.4 public String toString() {
476     return key + "=" + value;
477     }
478 tim 1.1 }
479    
480 dl 1.4
481     /* ---------------- Public operations -------------- */
482 tim 1.1
483     /**
484     * Constructs a new, empty map with the specified initial
485     * capacity and the specified load factor.
486     *
487 dl 1.4 * @param initialCapacity the initial capacity. The actual
488     * initial capacity is rounded up to the nearest power of two.
489 tim 1.1 * @param loadFactor the load factor threshold, used to control resizing.
490 dl 1.4 * @param segments the number of concurrently accessible segments. the
491     * actual number of segments is rounded to the next power of two.
492     * @throws IllegalArgumentException if the initial capacity is
493     * negative or the load factor or number of segments are
494     * nonpositive.
495     */
496     public ConcurrentHashMap(int initialCapacity, float loadFactor, int segments) {
497     if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
498     throw new IllegalArgumentException();
499    
500     // Find power-of-two sizes best matching arguments
501     int sshift = 0;
502     int ssize = 1;
503     while (ssize < segments) {
504     ++sshift;
505     ssize <<= 1;
506     }
507     segmentShift = sshift;
508     segmentMask = ssize-1;
509     this.segments = new Segment<K,V>[ssize];
510    
511     if (initialCapacity > MAXIMUM_CAPACITY)
512     initialCapacity = MAXIMUM_CAPACITY;
513     int c = initialCapacity / ssize;
514     if (c * ssize < initialCapacity)
515     ++c;
516     int cap = 1;
517     while (cap < c)
518     cap <<= 1;
519    
520     for (int i = 0; i < this.segments.length; ++i)
521     this.segments[i] = new Segment<K,V>(cap, loadFactor);
522 tim 1.1 }
523    
524     /**
525     * Constructs a new, empty map with the specified initial
526 dl 1.4 * capacity, and with default load factor and segments.
527 tim 1.1 *
528 dl 1.4 * @param initialCapacity the initial capacity of the
529     * ConcurrentHashMap.
530     * @throws IllegalArgumentException if the initial capacity of
531     * elements is negative.
532 tim 1.1 */
533     public ConcurrentHashMap(int initialCapacity) {
534 dl 1.4 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
535 tim 1.1 }
536    
537     /**
538 dl 1.4 * Constructs a new, empty map with a default initial capacity,
539     * load factor, and number of segments
540 tim 1.1 */
541     public ConcurrentHashMap() {
542 dl 1.4 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
543 tim 1.1 }
544    
545     /**
546     * Constructs a new map with the same mappings as the given map. The
547     * map is created with a capacity of twice the number of mappings in
548 dl 1.4 * the given map or 11 (whichever is greater), and a default load factor.
549 tim 1.1 */
550     public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
551     this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
552 dl 1.4 11),
553     DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
554     putAll(t);
555 tim 1.1 }
556    
557 dl 1.4 // inherit Map javadoc
558 tim 1.1 public int size() {
559     int c = 0;
560     for (int i = 0; i < segments.length; ++i)
561 dl 1.4 c += segments[i].count;
562 tim 1.1 return c;
563     }
564    
565 dl 1.4 // inherit Map javadoc
566 tim 1.1 public boolean isEmpty() {
567     for (int i = 0; i < segments.length; ++i)
568 dl 1.4 if (segments[i].count != 0)
569 tim 1.1 return false;
570     return true;
571     }
572    
573     /**
574     * Returns the value to which the specified key is mapped in this table.
575     *
576     * @param key a key in the table.
577     * @return the value to which the key is mapped in this table;
578     * <code>null</code> if the key is not mapped to any value in
579     * this table.
580     * @exception NullPointerException if the key is
581     * <code>null</code>.
582     * @see #put(Object, Object)
583     */
584 dl 1.4 public V get(K key) {
585     int hash = hash(key); // throws NullPointerException if key null
586     return segmentFor(hash).get(key, segmentHashFor(hash));
587 tim 1.1 }
588    
589     /**
590     * Tests if the specified object is a key in this table.
591 dl 1.4 *
592 tim 1.1 * @param key possible key.
593 dl 1.4 * @return <code>true</code> if and only if the specified object
594     * is a key in this table, as determined by the
595 tim 1.1 * <tt>equals</tt> method; <code>false</code> otherwise.
596     * @exception NullPointerException if the key is
597     * <code>null</code>.
598     * @see #contains(Object)
599     */
600     public boolean containsKey(Object key) {
601 dl 1.4 int hash = hash(key); // throws NullPointerException if key null
602     return segmentFor(hash).containsKey(key, segmentHashFor(hash));
603 tim 1.1 }
604    
605     /**
606     * Returns <tt>true</tt> if this map maps one or more keys to the
607     * specified value. Note: This method requires a full internal
608     * traversal of the hash table, and so is much slower than
609     * method <tt>containsKey</tt>.
610     *
611     * @param value value whose presence in this map is to be tested.
612     * @return <tt>true</tt> if this map maps one or more keys to the
613 dl 1.4 * specified value.
614 tim 1.1 * @exception NullPointerException if the value is <code>null</code>.
615     */
616     public boolean containsValue(Object value) {
617 dl 1.4 if (value == null)
618     throw new NullPointerException();
619 tim 1.1
620 dl 1.4 for (int i = 0; i < segments.length; ++i) {
621     if (segments[i].containsValue(value))
622     return true;
623 tim 1.1 }
624     return false;
625     }
626     /**
627     * Tests if some key maps into the specified value in this table.
628     * This operation is more expensive than the <code>containsKey</code>
629     * method.<p>
630     *
631     * Note that this method is identical in functionality to containsValue,
632     * (which is part of the Map interface in the collections framework).
633 dl 1.4 *
634 tim 1.1 * @param value a value to search for.
635     * @return <code>true</code> if and only if some key maps to the
636 dl 1.4 * <code>value</code> argument in this table as
637 tim 1.1 * determined by the <tt>equals</tt> method;
638     * <code>false</code> otherwise.
639     * @exception NullPointerException if the value is <code>null</code>.
640     * @see #containsKey(Object)
641     * @see #containsValue(Object)
642 dl 1.4 * @see Map
643 tim 1.1 */
644 dl 1.4 public boolean contains(Object value) {
645 tim 1.1 return containsValue(value);
646     }
647    
648     /**
649 dl 1.4 * Maps the specified <code>key</code> to the specified
650     * <code>value</code> in this table. Neither the key nor the
651     * value can be <code>null</code>. <p>
652     *
653     * The value can be retrieved by calling the <code>get</code> method
654     * with a key that is equal to the original key.
655     *
656     * @param key the table key.
657     * @param value the value.
658     * @return the previous value of the specified key in this table,
659     * or <code>null</code> if it did not have one.
660     * @exception NullPointerException if the key or value is
661     * <code>null</code>.
662     * @see Object#equals(Object)
663     * @see #get(Object)
664     */
665     public V put(K key, V value) {
666     if (value == null)
667     throw new NullPointerException();
668     int hash = hash(key);
669     return segmentFor(hash).put(key, segmentHashFor(hash), value, false);
670     }
671    
672     /**
673     * If the specified key is not already associated
674     * with a value, associate it with the given value.
675     * This is equivalent to
676     * <pre>
677     * if (!map.containsKey(key)) map.put(key, value);
678     * return get(key);
679     * </pre>
680     * Except that the action is performed atomically.
681     * @param key key with which the specified value is to be associated.
682     * @param value value to be associated with the specified key.
683     * @return previous value associated with specified key, or <tt>null</tt>
684     * if there was no mapping for key. A <tt>null</tt> return can
685     * also indicate that the map previously associated <tt>null</tt>
686     * with the specified key, if the implementation supports
687     * <tt>null</tt> values.
688     *
689     * @throws NullPointerException this map does not permit <tt>null</tt>
690     * keys or values, and the specified key or value is
691     * <tt>null</tt>.
692     *
693     **/
694     public V putIfAbsent(K key, V value) {
695     if (value == null)
696     throw new NullPointerException();
697     int hash = hash(key);
698     return segmentFor(hash).put(key, segmentHashFor(hash), value, true);
699     }
700    
701    
702     /**
703 tim 1.1 * Copies all of the mappings from the specified map to this one.
704     *
705     * These mappings replace any mappings that this map had for any of the
706     * keys currently in the specified Map.
707     *
708     * @param t Mappings to be stored in this map.
709     */
710 dl 1.4 public <K1 extends K, V1 extends V> void putAll(Map<K1,V1> t) {
711     Iterator<Map.Entry<K1,V1>> it = t.entrySet().iterator();
712     while (it.hasNext()) {
713     Entry<K,V> e = (Entry) it.next();
714     put(e.getKey(), e.getValue());
715 tim 1.1 }
716 dl 1.4 }
717    
718     /**
719     * Removes the key (and its corresponding value) from this
720     * table. This method does nothing if the key is not in the table.
721     *
722     * @param key the key that needs to be removed.
723     * @return the value to which the key had been mapped in this table,
724     * or <code>null</code> if the key did not have a mapping.
725     * @exception NullPointerException if the key is
726     * <code>null</code>.
727     */
728     public V remove(Object key) {
729     int hash = hash(key);
730     return segmentFor(hash).remove(key, segmentHashFor(hash), null);
731     }
732 tim 1.1
733 dl 1.4 /**
734     * Removes the (key, value) pair from this
735     * table. This method does nothing if the key is not in the table,
736 dl 1.6 * or if the key is associated with a different value.
737 dl 1.4 *
738     * @param key the key that needs to be removed.
739     * @param value the associated value. If the value is null,
740     * it means "any value".
741     * @return the value to which the key had been mapped in this table,
742     * or <code>null</code> if the key did not have a mapping.
743     * @exception NullPointerException if the key is
744     * <code>null</code>.
745     */
746     public V remove(Object key, Object value) {
747     int hash = hash(key);
748     return segmentFor(hash).remove(key, segmentHashFor(hash), value);
749 tim 1.1 }
750    
751     /**
752     * Removes all mappings from this map.
753     */
754     public void clear() {
755 dl 1.4 for (int i = 0; i < segments.length; ++i)
756     segments[i].clear();
757 tim 1.1 }
758    
759 dl 1.4
760 tim 1.1 /**
761     * Returns a shallow copy of this
762     * <tt>ConcurrentHashMap</tt> instance: the keys and
763     * values themselves are not cloned.
764     *
765     * @return a shallow copy of this map.
766     */
767     public Object clone() {
768 dl 1.4 // We cannot call super.clone, since it would share final
769     // segments array, and there's no way to reassign finals.
770    
771     float lf = segments[0].loadFactor;
772     int segs = segments.length;
773     int cap = (int)(size() / lf);
774     if (cap < segs) cap = segs;
775     ConcurrentHashMap t = new ConcurrentHashMap(cap, lf, segs);
776     t.putAll(this);
777     return t;
778 tim 1.1 }
779    
780     /**
781     * Returns a set view of the keys contained in this map. The set is
782     * backed by the map, so changes to the map are reflected in the set, and
783     * vice-versa. The set supports element removal, which removes the
784     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
785     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
786     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
787     * <tt>addAll</tt> operations.
788     *
789     * @return a set view of the keys contained in this map.
790     */
791     public Set<K> keySet() {
792     Set<K> ks = keySet;
793     return (ks != null)? ks : (keySet = new KeySet());
794     }
795    
796    
797     /**
798     * Returns a collection view of the values contained in this map. The
799     * collection is backed by the map, so changes to the map are reflected in
800     * the collection, and vice-versa. The collection supports element
801     * removal, which removes the corresponding mapping from this map, via the
802     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
803     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
804     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
805     *
806     * @return a collection view of the values contained in this map.
807     */
808     public Collection<V> values() {
809     Collection<V> vs = values;
810     return (vs != null)? vs : (values = new Values());
811     }
812    
813    
814     /**
815     * Returns a collection view of the mappings contained in this map. Each
816     * element in the returned collection is a <tt>Map.Entry</tt>. The
817     * collection is backed by the map, so changes to the map are reflected in
818     * the collection, and vice-versa. The collection supports element
819     * removal, which removes the corresponding mapping from the map, via the
820     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
821     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
822     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
823     *
824     * @return a collection view of the mappings contained in this map.
825     */
826     public Set<Map.Entry<K,V>> entrySet() {
827     Set<Map.Entry<K,V>> es = entrySet;
828     return (es != null) ? es : (entrySet = new EntrySet());
829     }
830    
831    
832     /**
833     * Returns an enumeration of the keys in this table.
834     *
835     * @return an enumeration of the keys in this table.
836     * @see Enumeration
837     * @see #elements()
838     * @see #keySet()
839     * @see Map
840     */
841 dl 1.4 public Enumeration<K> keys() {
842 tim 1.1 return new KeyIterator();
843     }
844    
845     /**
846     * Returns an enumeration of the values in this table.
847     * Use the Enumeration methods on the returned object to fetch the elements
848     * sequentially.
849     *
850     * @return an enumeration of the values in this table.
851     * @see java.util.Enumeration
852     * @see #keys()
853     * @see #values()
854     * @see Map
855     */
856 dl 1.4 public Enumeration<V> elements() {
857 tim 1.1 return new ValueIterator();
858     }
859    
860 dl 1.4 /* ---------------- Iterator Support -------------- */
861    
862     private abstract class HashIterator {
863     private int nextSegmentIndex;
864     private int nextTableIndex;
865     private HashEntry<K, V>[] currentTable;
866     private HashEntry<K, V> nextEntry;
867     private HashEntry<K, V> lastReturned;
868 tim 1.1
869     private HashIterator() {
870 dl 1.4 nextSegmentIndex = segments.length-1;
871     nextTableIndex = -1;
872     advance();
873 tim 1.1 }
874    
875     public boolean hasMoreElements() { return hasNext(); }
876    
877 dl 1.4 private void advance() {
878     if (nextEntry != null && (nextEntry = nextEntry.next) != null)
879     return;
880    
881     while (nextTableIndex >= 0) {
882     if ( (nextEntry = currentTable[nextTableIndex--]) != null)
883     return;
884     }
885    
886     while (nextSegmentIndex >= 0) {
887     Segment<K,V> seg = segments[nextSegmentIndex--];
888     if (seg.count != 0) {
889     currentTable = seg.table;
890     for (int j = currentTable.length-1; j >= 0; --j) {
891     if ( (nextEntry = currentTable[j]) != null) {
892     nextTableIndex = j-1;
893     return;
894     }
895 tim 1.1 }
896     }
897     }
898     }
899    
900 dl 1.4 public boolean hasNext() { return nextEntry != null; }
901 tim 1.1
902 dl 1.4 HashEntry<K,V> nextEntry() {
903     if (nextEntry == null)
904 tim 1.1 throw new NoSuchElementException();
905 dl 1.4 lastReturned = nextEntry;
906     advance();
907     return lastReturned;
908 tim 1.1 }
909    
910     public void remove() {
911     if (lastReturned == null)
912     throw new IllegalStateException();
913     ConcurrentHashMap.this.remove(lastReturned.key);
914     lastReturned = null;
915     }
916 dl 1.4 }
917    
918     private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
919     public K next() { return super.nextEntry().key; }
920     public K nextElement() { return super.nextEntry().key; }
921     }
922    
923     private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
924     public V next() { return super.nextEntry().value; }
925     public V nextElement() { return super.nextEntry().value; }
926     }
927 tim 1.1
928 dl 1.4 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
929     public Map.Entry<K,V> next() { return super.nextEntry(); }
930 tim 1.1 }
931    
932 dl 1.4 private class KeySet extends AbstractSet<K> {
933     public Iterator<K> iterator() {
934     return new KeyIterator();
935     }
936     public int size() {
937     return ConcurrentHashMap.this.size();
938     }
939     public boolean contains(Object o) {
940     return ConcurrentHashMap.this.containsKey(o);
941     }
942     public boolean remove(Object o) {
943     return ConcurrentHashMap.this.remove(o) != null;
944     }
945     public void clear() {
946     ConcurrentHashMap.this.clear();
947     }
948 tim 1.1 }
949    
950 dl 1.4 private class Values extends AbstractCollection<V> {
951     public Iterator<V> iterator() {
952     return new ValueIterator();
953     }
954     public int size() {
955     return ConcurrentHashMap.this.size();
956     }
957     public boolean contains(Object o) {
958     return ConcurrentHashMap.this.containsValue(o);
959     }
960     public void clear() {
961     ConcurrentHashMap.this.clear();
962     }
963 tim 1.1 }
964    
965 dl 1.4 private class EntrySet extends AbstractSet {
966     public Iterator<Map.Entry<K,V>> iterator() {
967     return new EntryIterator();
968     }
969     public boolean contains(Object o) {
970     if (!(o instanceof Map.Entry))
971     return false;
972     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
973     V v = ConcurrentHashMap.this.get(e.getKey());
974     return v != null && v.equals(e.getValue());
975     }
976     public boolean remove(Object o) {
977     if (!(o instanceof Map.Entry))
978     return false;
979     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
980     return ConcurrentHashMap.this.remove(e.getKey(), e.getValue()) != null;
981     }
982     public int size() {
983     return ConcurrentHashMap.this.size();
984     }
985     public void clear() {
986     ConcurrentHashMap.this.clear();
987     }
988 tim 1.1 }
989    
990 dl 1.4 /* ---------------- Serialization Support -------------- */
991    
992 tim 1.1 /**
993     * Save the state of the <tt>ConcurrentHashMap</tt>
994     * instance to a stream (i.e.,
995     * serialize it).
996     * @serialData
997     * the key (Object) and value (Object)
998     * for each key-value mapping, followed by a null pair.
999     * The key-value mappings are emitted in no particular order.
1000     */
1001     private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1002     s.defaultWriteObject();
1003    
1004     for (int k = 0; k < segments.length; ++k) {
1005 dl 1.4 Segment<K,V> seg = segments[k];
1006 dl 1.2 seg.lock();
1007     try {
1008 dl 1.4 HashEntry<K,V>[] tab = seg.table;
1009     for (int i = 0; i < tab.length; ++i) {
1010     for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1011     s.writeObject(e.key);
1012     s.writeObject(e.value);
1013     }
1014     }
1015 dl 1.2 }
1016     finally {
1017     seg.unlock();
1018     }
1019 tim 1.1 }
1020     s.writeObject(null);
1021     s.writeObject(null);
1022     }
1023    
1024     /**
1025     * Reconstitute the <tt>ConcurrentHashMap</tt>
1026     * instance from a stream (i.e.,
1027     * deserialize it).
1028     */
1029     private void readObject(java.io.ObjectInputStream s)
1030     throws IOException, ClassNotFoundException {
1031     s.defaultReadObject();
1032    
1033 dl 1.4 // Initialize each segment to be minimally sized, and let grow.
1034     for (int i = 0; i < segments.length; ++i) {
1035     segments[i].setTable(new HashEntry<K,V>[1]);
1036     }
1037 tim 1.1
1038     // Read the keys and values, and put the mappings in the table
1039     while (true) {
1040     K key = (K) s.readObject();
1041     V value = (V) s.readObject();
1042     if (key == null)
1043     break;
1044     put(key, value);
1045     }
1046     }
1047     }
1048 dl 1.4