ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.103
Committed: Fri Apr 15 11:01:48 2011 UTC (13 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.102: +1 -1 lines
Log Message:
Ensure at least one retry in containsValue

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 * However, iterators are designed to be used by only one thread at a time.
38 *
39 * <p> The allowed concurrency among update operations is guided by
40 * the optional <tt>concurrencyLevel</tt> constructor argument
41 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
42 * table is internally partitioned to try to permit the indicated
43 * number of concurrent updates without contention. Because placement
44 * in hash tables is essentially random, the actual concurrency will
45 * vary. Ideally, you should choose a value to accommodate as many
46 * threads as will ever concurrently modify the table. Using a
47 * significantly higher value than you need can waste space and time,
48 * and a significantly lower value can lead to thread contention. But
49 * overestimates and underestimates within an order of magnitude do
50 * not usually have much noticeable impact. A value of one is
51 * appropriate when it is known that only one thread will modify and
52 * all others will only read. Also, resizing this or any other kind of
53 * hash table is a relatively slow operation, so, when possible, it is
54 * a good idea to provide estimates of expected table sizes in
55 * constructors.
56 *
57 * <p>This class and its views and iterators implement all of the
58 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59 * interfaces.
60 *
61 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 *
64 * <p>This class is a member of the
65 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
66 * Java Collections Framework</a>.
67 *
68 * @since 1.5
69 * @author Doug Lea
70 * @param <K> the type of keys maintained by this map
71 * @param <V> the type of mapped values
72 */
73 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 implements ConcurrentMap<K, V>, Serializable {
75 private static final long serialVersionUID = 7249069246763182397L;
76
77 /*
78 * The basic strategy is to subdivide the table among Segments,
79 * each of which itself is a concurrently readable hash table. To
80 * reduce footprint, all but one segments are constructed only
81 * when first needed (see ensureSegment). To maintain visibility
82 * in the presence of lazy construction, accesses to segments as
83 * well as elements of segment's table must use volatile access,
84 * which is done via Unsafe within methods segmentAt etc
85 * below. These provide the functionality of AtomicReferenceArrays
86 * but reduce the levels of indirection. Additionally,
87 * volatile-writes of table elements and entry "next" fields
88 * within locked operations use the cheaper "lazySet" forms of
89 * writes (via putOrderedObject) because these writes are always
90 * followed by lock releases that maintain sequential consistency
91 * of table updates.
92 *
93 * Historical note: The previous version of this class relied
94 * heavily on "final" fields, which avoided some volatile reads at
95 * the expense of a large initial footprint. Some remnants of
96 * that design (including forced construction of segment 0) exist
97 * to ensure serialization compatibility.
98 */
99
100 /* ---------------- Constants -------------- */
101
102 /**
103 * The default initial capacity for this table,
104 * used when not otherwise specified in a constructor.
105 */
106 static final int DEFAULT_INITIAL_CAPACITY = 16;
107
108 /**
109 * The default load factor for this table, used when not
110 * otherwise specified in a constructor.
111 */
112 static final float DEFAULT_LOAD_FACTOR = 0.75f;
113
114 /**
115 * The default concurrency level for this table, used when not
116 * otherwise specified in a constructor.
117 */
118 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
119
120 /**
121 * The maximum capacity, used if a higher value is implicitly
122 * specified by either of the constructors with arguments. MUST
123 * be a power of two <= 1<<30 to ensure that entries are indexable
124 * using ints.
125 */
126 static final int MAXIMUM_CAPACITY = 1 << 30;
127
128 /**
129 * The minimum capacity for per-segment tables. Must be a power
130 * of two, at least two to avoid immediate resizing on next use
131 * after lazy construction.
132 */
133 static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
134
135 /**
136 * The maximum number of segments to allow; used to bound
137 * constructor arguments. Must be power of two less than 1 << 24.
138 */
139 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
140
141 /**
142 * Number of unsynchronized retries in size and containsValue
143 * methods before resorting to locking. This is used to avoid
144 * unbounded retries if tables undergo continuous modification
145 * which would make it impossible to obtain an accurate result.
146 */
147 static final int RETRIES_BEFORE_LOCK = 2;
148
149 /* ---------------- Fields -------------- */
150
151 /**
152 * Mask value for indexing into segments. The upper bits of a
153 * key's hash code are used to choose the segment.
154 */
155 final int segmentMask;
156
157 /**
158 * Shift value for indexing within segments.
159 */
160 final int segmentShift;
161
162 /**
163 * The segments, each of which is a specialized hash table.
164 */
165 final Segment<K,V>[] segments;
166
167 transient Set<K> keySet;
168 transient Set<Map.Entry<K,V>> entrySet;
169 transient Collection<V> values;
170
171 /**
172 * ConcurrentHashMap list entry. Note that this is never exported
173 * out as a user-visible Map.Entry.
174 */
175 static final class HashEntry<K,V> {
176 final int hash;
177 final K key;
178 volatile V value;
179 volatile HashEntry<K,V> next;
180
181 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
182 this.hash = hash;
183 this.key = key;
184 this.value = value;
185 this.next = next;
186 }
187
188 /**
189 * Sets next field with volatile write semantics. (See above
190 * about use of putOrderedObject.)
191 */
192 final void setNext(HashEntry<K,V> n) {
193 UNSAFE.putOrderedObject(this, nextOffset, n);
194 }
195
196 // Unsafe mechanics
197 static final sun.misc.Unsafe UNSAFE;
198 static final long nextOffset;
199 static {
200 try {
201 UNSAFE = sun.misc.Unsafe.getUnsafe();
202 Class k = HashEntry.class;
203 nextOffset = UNSAFE.objectFieldOffset
204 (k.getDeclaredField("next"));
205 } catch (Exception e) {
206 throw new Error(e);
207 }
208 }
209 }
210
211 /**
212 * Gets the ith element of given table (if nonnull) with volatile
213 * read semantics.
214 */
215 @SuppressWarnings("unchecked")
216 static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
217 return (tab == null) ? null :
218 (HashEntry<K,V>) UNSAFE.getObjectVolatile
219 (tab, ((long)i << TSHIFT) + TBASE);
220 }
221
222 /**
223 * Sets the ith element of given table, with volatile write
224 * semantics. (See above about use of putOrderedObject.)
225 */
226 static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
227 HashEntry<K,V> e) {
228 UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
229 }
230
231 /**
232 * Applies a supplemental hash function to a given hashCode, which
233 * defends against poor quality hash functions. This is critical
234 * because ConcurrentHashMap uses power-of-two length hash tables,
235 * that otherwise encounter collisions for hashCodes that do not
236 * differ in lower or upper bits.
237 */
238 private static int hash(int h) {
239 // Spread bits to regularize both segment and index locations,
240 // using variant of single-word Wang/Jenkins hash.
241 h += (h << 15) ^ 0xffffcd7d;
242 h ^= (h >>> 10);
243 h += (h << 3);
244 h ^= (h >>> 6);
245 h += (h << 2) + (h << 14);
246 return h ^ (h >>> 16);
247 }
248
249 /**
250 * Segments are specialized versions of hash tables. This
251 * subclasses from ReentrantLock opportunistically, just to
252 * simplify some locking and avoid separate construction.
253 */
254 static final class Segment<K,V> extends ReentrantLock implements Serializable {
255 /*
256 * Segments maintain a table of entry lists that are always
257 * kept in a consistent state, so can be read (via volatile
258 * reads of segments and tables) without locking. This
259 * requires replicating nodes when necessary during table
260 * resizing, so the old lists can be traversed by readers
261 * still using old version of table.
262 *
263 * This class defines only mutative methods requiring locking.
264 * Except as noted, the methods of this class perform the
265 * per-segment versions of ConcurrentHashMap methods. (Other
266 * methods are integrated directly into ConcurrentHashMap
267 * methods.) These mutative methods use a form of controlled
268 * spinning on contention via methods scanAndLock and
269 * scanAndLockForPut. These intersperse tryLocks with
270 * traversals to locate nodes. The main benefit is to absorb
271 * cache misses (which are very common for hash tables) while
272 * obtaining locks so that traversal is faster once
273 * acquired. We do not actually use the found nodes since they
274 * must be re-acquired under lock anyway to ensure sequential
275 * consistency of updates (and in any case may be undetectably
276 * stale), but they will normally be much faster to re-locate.
277 * Also, scanAndLockForPut speculatively creates a fresh node
278 * to use in put if no node is found.
279 */
280
281 private static final long serialVersionUID = 2249069246763182397L;
282
283 /**
284 * The maximum number of times to tryLock in a prescan before
285 * possibly blocking on acquire in preparation for a locked
286 * segment operation. On multiprocessors, using a bounded
287 * number of retries maintains cache acquired while locating
288 * nodes.
289 */
290 static final int MAX_SCAN_RETRIES =
291 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
292
293 /**
294 * The per-segment table. Elements are accessed via
295 * entryAt/setEntryAt providing volatile semantics.
296 */
297 transient volatile HashEntry<K,V>[] table;
298
299 /**
300 * The number of elements. Accessed only either within locks
301 * or among other volatile reads that maintain visibility.
302 */
303 transient int count;
304
305 /**
306 * The total number of insertions and removals in this
307 * segment. Even though this may overflows 32 bits, it
308 * provides sufficient accuracy for stability checks in CHM
309 * isEmpty() and size() methods. Accessed only either within
310 * locks or among other volatile reads that maintain
311 * visibility.
312 */
313 transient int modCount;
314
315 /**
316 * The table is rehashed when its size exceeds this threshold.
317 * (The value of this field is always <tt>(int)(capacity *
318 * loadFactor)</tt>.)
319 */
320 transient int threshold;
321
322 /**
323 * The load factor for the hash table. Even though this value
324 * is same for all segments, it is replicated to avoid needing
325 * links to outer object.
326 * @serial
327 */
328 final float loadFactor;
329
330 Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
331 this.loadFactor = lf;
332 this.threshold = threshold;
333 this.table = tab;
334 }
335
336 final V put(K key, int hash, V value, boolean onlyIfAbsent) {
337 HashEntry<K,V> node = tryLock() ? null :
338 scanAndLockForPut(key, hash, value);
339 V oldValue;
340 try {
341 HashEntry<K,V>[] tab = table;
342 int index = (tab.length - 1) & hash;
343 HashEntry<K,V> first = entryAt(tab, index);
344 for (HashEntry<K,V> e = first;;) {
345 if (e != null) {
346 K k;
347 if ((k = e.key) == key ||
348 (e.hash == hash && key.equals(k))) {
349 oldValue = e.value;
350 if (!onlyIfAbsent)
351 e.value = value;
352 break;
353 }
354 e = e.next;
355 }
356 else {
357 if (node != null)
358 node.setNext(first);
359 else
360 node = new HashEntry<K,V>(hash, key, value, first);
361 int c = count + 1;
362 if (c > threshold && first != null &&
363 tab.length < MAXIMUM_CAPACITY)
364 rehash(node);
365 else
366 setEntryAt(tab, index, node);
367 ++modCount;
368 count = c;
369 oldValue = null;
370 break;
371 }
372 }
373 } finally {
374 unlock();
375 }
376 return oldValue;
377 }
378
379 /**
380 * Doubles size of table and repacks entries, also adding the
381 * given node to new table
382 */
383 @SuppressWarnings("unchecked")
384 private void rehash(HashEntry<K,V> node) {
385 /*
386 * Reclassify nodes in each list to new table. Because we
387 * are using power-of-two expansion, the elements from
388 * each bin must either stay at same index, or move with a
389 * power of two offset. We eliminate unnecessary node
390 * creation by catching cases where old nodes can be
391 * reused because their next fields won't change.
392 * Statistically, at the default threshold, only about
393 * one-sixth of them need cloning when a table
394 * doubles. The nodes they replace will be garbage
395 * collectable as soon as they are no longer referenced by
396 * any reader thread that may be in the midst of
397 * concurrently traversing table. Entry accesses use plain
398 * array indexing because they are followed by volatile
399 * table write.
400 */
401 HashEntry<K,V>[] oldTable = table;
402 int oldCapacity = oldTable.length;
403 int newCapacity = oldCapacity << 1;
404 threshold = (int)(newCapacity * loadFactor);
405 HashEntry<K,V>[] newTable =
406 (HashEntry<K,V>[]) new HashEntry[newCapacity];
407 int sizeMask = newCapacity - 1;
408 for (int i = 0; i < oldCapacity ; i++) {
409 HashEntry<K,V> e = oldTable[i];
410 if (e != null) {
411 HashEntry<K,V> next = e.next;
412 int idx = e.hash & sizeMask;
413 if (next == null) // Single node on list
414 newTable[idx] = e;
415 else { // Reuse consecutive sequence at same slot
416 HashEntry<K,V> lastRun = e;
417 int lastIdx = idx;
418 for (HashEntry<K,V> last = next;
419 last != null;
420 last = last.next) {
421 int k = last.hash & sizeMask;
422 if (k != lastIdx) {
423 lastIdx = k;
424 lastRun = last;
425 }
426 }
427 newTable[lastIdx] = lastRun;
428 // Clone remaining nodes
429 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
430 V v = p.value;
431 int h = p.hash;
432 int k = h & sizeMask;
433 HashEntry<K,V> n = newTable[k];
434 newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
435 }
436 }
437 }
438 }
439 int nodeIndex = node.hash & sizeMask; // add the new node
440 node.setNext(newTable[nodeIndex]);
441 newTable[nodeIndex] = node;
442 table = newTable;
443 }
444
445 /**
446 * Scans for a node containing given key while trying to
447 * acquire lock, creating and returning one if not found. Upon
448 * return, guarantees that lock is held.
449 *
450 * @return a new node if key not found, else null
451 */
452 private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
453 HashEntry<K,V> first = entryForHash(this, hash);
454 HashEntry<K,V> e = first;
455 HashEntry<K,V> node = null;
456 int retries = -1; // negative while locating node
457 while (!tryLock()) {
458 HashEntry<K,V> f; // to recheck first below
459 if (retries < 0) {
460 if (e == null) {
461 if (node == null) // speculatively create node
462 node = new HashEntry<K,V>(hash, key, value, null);
463 retries = 0;
464 }
465 else if (key.equals(e.key))
466 retries = 0;
467 else
468 e = e.next;
469 }
470 else if (++retries > MAX_SCAN_RETRIES) {
471 lock();
472 break;
473 }
474 else if ((retries & 1) == 0 &&
475 (f = entryForHash(this, hash)) != first) {
476 e = first = f; // re-traverse if entry changed
477 retries = -1;
478 }
479 }
480 return node;
481 }
482
483 /**
484 * Scans for a node containing the given key while trying to
485 * acquire lock for a remove or replace operation. Upon
486 * return, guarantees that lock is held. Note that we must
487 * lock even if the key is not found, to ensure sequential
488 * consistency of updates.
489 */
490 private void scanAndLock(Object key, int hash) {
491 // similar to but simpler than scanAndLockForPut
492 HashEntry<K,V> first = entryForHash(this, hash);
493 HashEntry<K,V> e = first;
494 int retries = -1;
495 while (!tryLock()) {
496 HashEntry<K,V> f;
497 if (retries < 0) {
498 if (e == null || key.equals(e.key))
499 retries = 0;
500 else
501 e = e.next;
502 }
503 else if (++retries > MAX_SCAN_RETRIES) {
504 lock();
505 break;
506 }
507 else if ((retries & 1) == 0 &&
508 (f = entryForHash(this, hash)) != first) {
509 e = first = f;
510 retries = -1;
511 }
512 }
513 }
514
515 /**
516 * Remove; match on key only if value null, else match both.
517 */
518 final V remove(Object key, int hash, Object value) {
519 if (!tryLock())
520 scanAndLock(key, hash);
521 V oldValue = null;
522 try {
523 HashEntry<K,V>[] tab = table;
524 int index = (tab.length - 1) & hash;
525 HashEntry<K,V> e = entryAt(tab, index);
526 HashEntry<K,V> pred = null;
527 while (e != null) {
528 K k;
529 HashEntry<K,V> next = e.next;
530 if ((k = e.key) == key ||
531 (e.hash == hash && key.equals(k))) {
532 V v = e.value;
533 if (value == null || value == v || value.equals(v)) {
534 if (pred == null)
535 setEntryAt(tab, index, next);
536 else
537 pred.setNext(next);
538 ++modCount;
539 --count;
540 oldValue = v;
541 }
542 break;
543 }
544 pred = e;
545 e = next;
546 }
547 } finally {
548 unlock();
549 }
550 return oldValue;
551 }
552
553 final boolean replace(K key, int hash, V oldValue, V newValue) {
554 if (!tryLock())
555 scanAndLock(key, hash);
556 boolean replaced = false;
557 try {
558 HashEntry<K,V> e;
559 for (e = entryForHash(this, hash); e != null; e = e.next) {
560 K k;
561 if ((k = e.key) == key ||
562 (e.hash == hash && key.equals(k))) {
563 if (oldValue.equals(e.value)) {
564 e.value = newValue;
565 replaced = true;
566 }
567 break;
568 }
569 }
570 } finally {
571 unlock();
572 }
573 return replaced;
574 }
575
576 final V replace(K key, int hash, V value) {
577 if (!tryLock())
578 scanAndLock(key, hash);
579 V oldValue = null;
580 try {
581 HashEntry<K,V> e;
582 for (e = entryForHash(this, hash); e != null; e = e.next) {
583 K k;
584 if ((k = e.key) == key ||
585 (e.hash == hash && key.equals(k))) {
586 oldValue = e.value;
587 e.value = value;
588 break;
589 }
590 }
591 } finally {
592 unlock();
593 }
594 return oldValue;
595 }
596
597 final void clear() {
598 lock();
599 try {
600 HashEntry<K,V>[] tab = table;
601 for (int i = 0; i < tab.length ; i++)
602 setEntryAt(tab, i, null);
603 ++modCount;
604 count = 0;
605 } finally {
606 unlock();
607 }
608 }
609 }
610
611 // Accessing segments
612
613 /**
614 * Gets the jth element of given segment array (if nonnull) with
615 * volatile element access semantics via Unsafe.
616 */
617 @SuppressWarnings("unchecked")
618 static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
619 long u = (j << SSHIFT) + SBASE;
620 return ss == null ? null :
621 (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
622 }
623
624 /**
625 * Returns the segment for the given index, creating it and
626 * recording in segment table (via CAS) if not already present.
627 *
628 * @param k the index
629 * @return the segment
630 */
631 @SuppressWarnings("unchecked")
632 private Segment<K,V> ensureSegment(int k) {
633 final Segment<K,V>[] ss = this.segments;
634 long u = (k << SSHIFT) + SBASE; // raw offset
635 Segment<K,V> seg;
636 if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
637 Segment<K,V> proto = ss[0]; // use segment 0 as prototype
638 int cap = proto.table.length;
639 float lf = proto.loadFactor;
640 int threshold = (int)(cap * lf);
641 HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
642 if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
643 == null) { // recheck
644 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
645 while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
646 == null) {
647 if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
648 break;
649 }
650 }
651 }
652 return seg;
653 }
654
655 // Hash-based segment and entry accesses
656
657 /**
658 * Get the segment for the given hash
659 */
660 @SuppressWarnings("unchecked")
661 private Segment<K,V> segmentForHash(int h) {
662 long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
663 return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
664 }
665
666 /**
667 * Gets the table entry for the given segment and hash
668 */
669 @SuppressWarnings("unchecked")
670 static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
671 HashEntry<K,V>[] tab;
672 return (seg == null || (tab = seg.table) == null) ? null :
673 (HashEntry<K,V>) UNSAFE.getObjectVolatile
674 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
675 }
676
677 /* ---------------- Public operations -------------- */
678
679 /**
680 * Creates a new, empty map with the specified initial
681 * capacity, load factor and concurrency level.
682 *
683 * @param initialCapacity the initial capacity. The implementation
684 * performs internal sizing to accommodate this many elements.
685 * @param loadFactor the load factor threshold, used to control resizing.
686 * Resizing may be performed when the average number of elements per
687 * bin exceeds this threshold.
688 * @param concurrencyLevel the estimated number of concurrently
689 * updating threads. The implementation performs internal sizing
690 * to try to accommodate this many threads.
691 * @throws IllegalArgumentException if the initial capacity is
692 * negative or the load factor or concurrencyLevel are
693 * nonpositive.
694 */
695 @SuppressWarnings("unchecked")
696 public ConcurrentHashMap(int initialCapacity,
697 float loadFactor, int concurrencyLevel) {
698 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
699 throw new IllegalArgumentException();
700 if (concurrencyLevel > MAX_SEGMENTS)
701 concurrencyLevel = MAX_SEGMENTS;
702 // Find power-of-two sizes best matching arguments
703 int sshift = 0;
704 int ssize = 1;
705 while (ssize < concurrencyLevel) {
706 ++sshift;
707 ssize <<= 1;
708 }
709 this.segmentShift = 32 - sshift;
710 this.segmentMask = ssize - 1;
711 if (initialCapacity > MAXIMUM_CAPACITY)
712 initialCapacity = MAXIMUM_CAPACITY;
713 int c = initialCapacity / ssize;
714 if (c * ssize < initialCapacity)
715 ++c;
716 int cap = MIN_SEGMENT_TABLE_CAPACITY;
717 while (cap < c)
718 cap <<= 1;
719 // create segments and segments[0]
720 Segment<K,V> s0 =
721 new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
722 (HashEntry<K,V>[])new HashEntry[cap]);
723 Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
724 UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
725 this.segments = ss;
726 }
727
728 /**
729 * Creates a new, empty map with the specified initial capacity
730 * and load factor and with the default concurrencyLevel (16).
731 *
732 * @param initialCapacity The implementation performs internal
733 * sizing to accommodate this many elements.
734 * @param loadFactor the load factor threshold, used to control resizing.
735 * Resizing may be performed when the average number of elements per
736 * bin exceeds this threshold.
737 * @throws IllegalArgumentException if the initial capacity of
738 * elements is negative or the load factor is nonpositive
739 *
740 * @since 1.6
741 */
742 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
743 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
744 }
745
746 /**
747 * Creates a new, empty map with the specified initial capacity,
748 * and with default load factor (0.75) and concurrencyLevel (16).
749 *
750 * @param initialCapacity the initial capacity. The implementation
751 * performs internal sizing to accommodate this many elements.
752 * @throws IllegalArgumentException if the initial capacity of
753 * elements is negative.
754 */
755 public ConcurrentHashMap(int initialCapacity) {
756 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
757 }
758
759 /**
760 * Creates a new, empty map with a default initial capacity (16),
761 * load factor (0.75) and concurrencyLevel (16).
762 */
763 public ConcurrentHashMap() {
764 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
765 }
766
767 /**
768 * Creates a new map with the same mappings as the given map.
769 * The map is created with a capacity of 1.5 times the number
770 * of mappings in the given map or 16 (whichever is greater),
771 * and a default load factor (0.75) and concurrencyLevel (16).
772 *
773 * @param m the map
774 */
775 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
776 this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
777 DEFAULT_INITIAL_CAPACITY),
778 DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
779 putAll(m);
780 }
781
782 /**
783 * Returns <tt>true</tt> if this map contains no key-value mappings.
784 *
785 * @return <tt>true</tt> if this map contains no key-value mappings
786 */
787 public boolean isEmpty() {
788 /*
789 * Sum per-segment modCounts to avoid mis-reporting when
790 * elements are concurrently added and removed in one segment
791 * while checking another, in which case the table was never
792 * actually empty at any point. (The sum ensures accuracy up
793 * through at least 1<<31 per-segment modifications before
794 * recheck.) Methods size() and containsValue() use similar
795 * constructions for stability checks.
796 */
797 long sum = 0L;
798 final Segment<K,V>[] segments = this.segments;
799 for (int j = 0; j < segments.length; ++j) {
800 Segment<K,V> seg = segmentAt(segments, j);
801 if (seg != null) {
802 if (seg.count != 0)
803 return false;
804 sum += seg.modCount;
805 }
806 }
807 if (sum != 0L) { // recheck unless no modifications
808 for (int j = 0; j < segments.length; ++j) {
809 Segment<K,V> seg = segmentAt(segments, j);
810 if (seg != null) {
811 if (seg.count != 0)
812 return false;
813 sum -= seg.modCount;
814 }
815 }
816 if (sum != 0L)
817 return false;
818 }
819 return true;
820 }
821
822 /**
823 * Returns the number of key-value mappings in this map. If the
824 * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
825 * <tt>Integer.MAX_VALUE</tt>.
826 *
827 * @return the number of key-value mappings in this map
828 */
829 public int size() {
830 // Try a few times to get accurate count. On failure due to
831 // continuous async changes in table, resort to locking.
832 final Segment<K,V>[] segments = this.segments;
833 int size;
834 boolean overflow; // true if size overflows 32 bits
835 long sum; // sum of modCounts
836 long last = 0L; // previous sum
837 int retries = -1; // first iteration isn't retry
838 try {
839 for (;;) {
840 if (retries++ == RETRIES_BEFORE_LOCK) {
841 for (int j = 0; j < segments.length; ++j)
842 ensureSegment(j).lock(); // force creation
843 }
844 sum = 0L;
845 size = 0;
846 overflow = false;
847 for (int j = 0; j < segments.length; ++j) {
848 Segment<K,V> seg = segmentAt(segments, j);
849 if (seg != null) {
850 sum += seg.modCount;
851 int c = seg.count;
852 if (c < 0 || (size += c) < 0)
853 overflow = true;
854 }
855 }
856 if (sum == last)
857 break;
858 last = sum;
859 }
860 } finally {
861 if (retries > RETRIES_BEFORE_LOCK) {
862 for (int j = 0; j < segments.length; ++j)
863 segmentAt(segments, j).unlock();
864 }
865 }
866 return overflow ? Integer.MAX_VALUE : size;
867 }
868
869 /**
870 * Returns the value to which the specified key is mapped,
871 * or {@code null} if this map contains no mapping for the key.
872 *
873 * <p>More formally, if this map contains a mapping from a key
874 * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 * then this method returns {@code v}; otherwise it returns
876 * {@code null}. (There can be at most one such mapping.)
877 *
878 * @throws NullPointerException if the specified key is null
879 */
880 public V get(Object key) {
881 int hash = hash(key.hashCode());
882 for (HashEntry<K,V> e = entryForHash(segmentForHash(hash), hash);
883 e != null; e = e.next) {
884 K k;
885 if ((k = e.key) == key || (e.hash == hash && key.equals(k)))
886 return e.value;
887 }
888 return null;
889 }
890
891 /**
892 * Tests if the specified object is a key in this table.
893 *
894 * @param key possible key
895 * @return <tt>true</tt> if and only if the specified object
896 * is a key in this table, as determined by the
897 * <tt>equals</tt> method; <tt>false</tt> otherwise.
898 * @throws NullPointerException if the specified key is null
899 */
900 public boolean containsKey(Object key) {
901 int hash = hash(key.hashCode());
902 for (HashEntry<K,V> e = entryForHash(segmentForHash(hash), hash);
903 e != null; e = e.next) {
904 K k;
905 if ((k = e.key) == key || (e.hash == hash && key.equals(k)))
906 return true;
907 }
908 return false;
909 }
910
911 /**
912 * Returns <tt>true</tt> if this map maps one or more keys to the
913 * specified value. Note: This method requires a full internal
914 * traversal of the hash table, and so is much slower than
915 * method <tt>containsKey</tt>.
916 *
917 * @param value value whose presence in this map is to be tested
918 * @return <tt>true</tt> if this map maps one or more keys to the
919 * specified value
920 * @throws NullPointerException if the specified value is null
921 */
922 public boolean containsValue(Object value) {
923 // Same idea as size() but using hashes as checksum
924 if (value == null)
925 throw new NullPointerException();
926 final Segment<K,V>[] segments = this.segments;
927 boolean found = false;
928 long last = 0L;
929 int retries = -1;
930 try {
931 outer: for (;;) {
932 if (retries++ == RETRIES_BEFORE_LOCK) {
933 for (int j = 0; j < segments.length; ++j)
934 ensureSegment(j).lock(); // force creation
935 }
936 long sum = 0L;
937 for (int j = 0; j < segments.length; ++j) {
938 HashEntry<K,V>[] tab;
939 Segment<K,V> seg = segmentAt(segments, j);
940 if (seg != null && (tab = seg.table) != null) {
941 for (int i = 0 ; i < tab.length; i++) {
942 HashEntry<K,V> e;
943 for (e = entryAt(tab, i); e != null; e = e.next) {
944 V v = e.value;
945 if (v != null && value.equals(v)) {
946 found = true;
947 break outer;
948 }
949 sum += e.hash;
950 }
951 }
952 }
953 }
954 if (retries > 0 && sum == last)
955 break;
956 last = sum;
957 }
958 } finally {
959 if (retries > RETRIES_BEFORE_LOCK) {
960 for (int j = 0; j < segments.length; ++j)
961 segmentAt(segments, j).unlock();
962 }
963 }
964 return found;
965 }
966
967 /**
968 * Legacy method testing if some key maps into the specified value
969 * in this table. This method is identical in functionality to
970 * {@link #containsValue}, and exists solely to ensure
971 * full compatibility with class {@link java.util.Hashtable},
972 * which supported this method prior to introduction of the
973 * Java Collections framework.
974
975 * @param value a value to search for
976 * @return <tt>true</tt> if and only if some key maps to the
977 * <tt>value</tt> argument in this table as
978 * determined by the <tt>equals</tt> method;
979 * <tt>false</tt> otherwise
980 * @throws NullPointerException if the specified value is null
981 */
982 public boolean contains(Object value) {
983 return containsValue(value);
984 }
985
986 /**
987 * Maps the specified key to the specified value in this table.
988 * Neither the key nor the value can be null.
989 *
990 * <p> The value can be retrieved by calling the <tt>get</tt> method
991 * with a key that is equal to the original key.
992 *
993 * @param key key with which the specified value is to be associated
994 * @param value value to be associated with the specified key
995 * @return the previous value associated with <tt>key</tt>, or
996 * <tt>null</tt> if there was no mapping for <tt>key</tt>
997 * @throws NullPointerException if the specified key or value is null
998 */
999 public V put(K key, V value) {
1000 if (value == null)
1001 throw new NullPointerException();
1002 int hash = hash(key.hashCode());
1003 int j = (hash >>> segmentShift) & segmentMask;
1004 Segment<K,V> s = segmentAt(segments, j);
1005 if (s == null)
1006 s = ensureSegment(j);
1007 return s.put(key, hash, value, false);
1008 }
1009
1010 /**
1011 * {@inheritDoc}
1012 *
1013 * @return the previous value associated with the specified key,
1014 * or <tt>null</tt> if there was no mapping for the key
1015 * @throws NullPointerException if the specified key or value is null
1016 */
1017 public V putIfAbsent(K key, V value) {
1018 if (value == null)
1019 throw new NullPointerException();
1020 int hash = hash(key.hashCode());
1021 int j = (hash >>> segmentShift) & segmentMask;
1022 Segment<K,V> s = segmentAt(segments, j);
1023 if (s == null)
1024 s = ensureSegment(j);
1025 return s.put(key, hash, value, true);
1026 }
1027
1028 /**
1029 * Copies all of the mappings from the specified map to this one.
1030 * These mappings replace any mappings that this map had for any of the
1031 * keys currently in the specified map.
1032 *
1033 * @param m mappings to be stored in this map
1034 */
1035 public void putAll(Map<? extends K, ? extends V> m) {
1036 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1037 put(e.getKey(), e.getValue());
1038 }
1039
1040 /**
1041 * Removes the key (and its corresponding value) from this map.
1042 * This method does nothing if the key is not in the map.
1043 *
1044 * @param key the key that needs to be removed
1045 * @return the previous value associated with <tt>key</tt>, or
1046 * <tt>null</tt> if there was no mapping for <tt>key</tt>
1047 * @throws NullPointerException if the specified key is null
1048 */
1049 public V remove(Object key) {
1050 int hash = hash(key.hashCode());
1051 Segment<K,V> s = segmentForHash(hash);
1052 return s == null ? null : s.remove(key, hash, null);
1053 }
1054
1055 /**
1056 * {@inheritDoc}
1057 *
1058 * @throws NullPointerException if the specified key is null
1059 */
1060 public boolean remove(Object key, Object value) {
1061 int hash = hash(key.hashCode());
1062 Segment<K,V> s;
1063 return value != null && (s = segmentForHash(hash)) != null &&
1064 s.remove(key, hash, value) != null;
1065 }
1066
1067 /**
1068 * {@inheritDoc}
1069 *
1070 * @throws NullPointerException if any of the arguments are null
1071 */
1072 public boolean replace(K key, V oldValue, V newValue) {
1073 int hash = hash(key.hashCode());
1074 if (oldValue == null || newValue == null)
1075 throw new NullPointerException();
1076 Segment<K,V> s = segmentForHash(hash);
1077 return s != null && s.replace(key, hash, oldValue, newValue);
1078 }
1079
1080 /**
1081 * {@inheritDoc}
1082 *
1083 * @return the previous value associated with the specified key,
1084 * or <tt>null</tt> if there was no mapping for the key
1085 * @throws NullPointerException if the specified key or value is null
1086 */
1087 public V replace(K key, V value) {
1088 int hash = hash(key.hashCode());
1089 if (value == null)
1090 throw new NullPointerException();
1091 Segment<K,V> s = segmentForHash(hash);
1092 return s == null ? null : s.replace(key, hash, value);
1093 }
1094
1095 /**
1096 * Removes all of the mappings from this map.
1097 */
1098 public void clear() {
1099 final Segment<K,V>[] segments = this.segments;
1100 for (int j = 0; j < segments.length; ++j) {
1101 Segment<K,V> s = segmentAt(segments, j);
1102 if (s != null)
1103 s.clear();
1104 }
1105 }
1106
1107 /**
1108 * Returns a {@link Set} view of the keys contained in this map.
1109 * The set is backed by the map, so changes to the map are
1110 * reflected in the set, and vice-versa. The set supports element
1111 * removal, which removes the corresponding mapping from this map,
1112 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1113 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1114 * operations. It does not support the <tt>add</tt> or
1115 * <tt>addAll</tt> operations.
1116 *
1117 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1118 * that will never throw {@link ConcurrentModificationException},
1119 * and guarantees to traverse elements as they existed upon
1120 * construction of the iterator, and may (but is not guaranteed to)
1121 * reflect any modifications subsequent to construction.
1122 */
1123 public Set<K> keySet() {
1124 Set<K> ks = keySet;
1125 return (ks != null) ? ks : (keySet = new KeySet());
1126 }
1127
1128 /**
1129 * Returns a {@link Collection} view of the values contained in this map.
1130 * The collection is backed by the map, so changes to the map are
1131 * reflected in the collection, and vice-versa. The collection
1132 * supports element removal, which removes the corresponding
1133 * mapping from this map, via the <tt>Iterator.remove</tt>,
1134 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1135 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
1136 * support the <tt>add</tt> or <tt>addAll</tt> operations.
1137 *
1138 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1139 * that will never throw {@link ConcurrentModificationException},
1140 * and guarantees to traverse elements as they existed upon
1141 * construction of the iterator, and may (but is not guaranteed to)
1142 * reflect any modifications subsequent to construction.
1143 */
1144 public Collection<V> values() {
1145 Collection<V> vs = values;
1146 return (vs != null) ? vs : (values = new Values());
1147 }
1148
1149 /**
1150 * Returns a {@link Set} view of the mappings contained in this map.
1151 * The set is backed by the map, so changes to the map are
1152 * reflected in the set, and vice-versa. The set supports element
1153 * removal, which removes the corresponding mapping from the map,
1154 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1155 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1156 * operations. It does not support the <tt>add</tt> or
1157 * <tt>addAll</tt> operations.
1158 *
1159 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1160 * that will never throw {@link ConcurrentModificationException},
1161 * and guarantees to traverse elements as they existed upon
1162 * construction of the iterator, and may (but is not guaranteed to)
1163 * reflect any modifications subsequent to construction.
1164 */
1165 public Set<Map.Entry<K,V>> entrySet() {
1166 Set<Map.Entry<K,V>> es = entrySet;
1167 return (es != null) ? es : (entrySet = new EntrySet());
1168 }
1169
1170 /**
1171 * Returns an enumeration of the keys in this table.
1172 *
1173 * @return an enumeration of the keys in this table
1174 * @see #keySet()
1175 */
1176 public Enumeration<K> keys() {
1177 return new KeyIterator();
1178 }
1179
1180 /**
1181 * Returns an enumeration of the values in this table.
1182 *
1183 * @return an enumeration of the values in this table
1184 * @see #values()
1185 */
1186 public Enumeration<V> elements() {
1187 return new ValueIterator();
1188 }
1189
1190 /* ---------------- Iterator Support -------------- */
1191
1192 abstract class HashIterator {
1193 int nextSegmentIndex;
1194 int nextTableIndex;
1195 HashEntry<K,V>[] currentTable;
1196 HashEntry<K, V> nextEntry;
1197 HashEntry<K, V> lastReturned;
1198
1199 HashIterator() {
1200 nextSegmentIndex = segments.length - 1;
1201 nextTableIndex = -1;
1202 advance();
1203 }
1204
1205 /**
1206 * Set nextEntry to first node of next non-empty table
1207 * (in backwards order, to simplify checks).
1208 */
1209 final void advance() {
1210 for (;;) {
1211 if (nextTableIndex >= 0) {
1212 if ((nextEntry = entryAt(currentTable,
1213 nextTableIndex--)) != null)
1214 break;
1215 }
1216 else if (nextSegmentIndex >= 0) {
1217 Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1218 if (seg != null && (currentTable = seg.table) != null)
1219 nextTableIndex = currentTable.length - 1;
1220 }
1221 else
1222 break;
1223 }
1224 }
1225
1226 final HashEntry<K,V> nextEntry() {
1227 HashEntry<K,V> e = nextEntry;
1228 if (e == null)
1229 throw new NoSuchElementException();
1230 lastReturned = e; // cannot assign until after null check
1231 if ((nextEntry = e.next) == null)
1232 advance();
1233 return e;
1234 }
1235
1236 public final boolean hasNext() { return nextEntry != null; }
1237 public final boolean hasMoreElements() { return nextEntry != null; }
1238
1239 public final void remove() {
1240 if (lastReturned == null)
1241 throw new IllegalStateException();
1242 ConcurrentHashMap.this.remove(lastReturned.key);
1243 lastReturned = null;
1244 }
1245 }
1246
1247 final class KeyIterator
1248 extends HashIterator
1249 implements Iterator<K>, Enumeration<K>
1250 {
1251 public final K next() { return super.nextEntry().key; }
1252 public final K nextElement() { return super.nextEntry().key; }
1253 }
1254
1255 final class ValueIterator
1256 extends HashIterator
1257 implements Iterator<V>, Enumeration<V>
1258 {
1259 public final V next() { return super.nextEntry().value; }
1260 public final V nextElement() { return super.nextEntry().value; }
1261 }
1262
1263 /**
1264 * Custom Entry class used by EntryIterator.next(), that relays
1265 * setValue changes to the underlying map.
1266 */
1267 final class WriteThroughEntry
1268 extends AbstractMap.SimpleEntry<K,V>
1269 {
1270 WriteThroughEntry(K k, V v) {
1271 super(k,v);
1272 }
1273
1274 /**
1275 * Set our entry's value and write through to the map. The
1276 * value to return is somewhat arbitrary here. Since a
1277 * WriteThroughEntry does not necessarily track asynchronous
1278 * changes, the most recent "previous" value could be
1279 * different from what we return (or could even have been
1280 * removed in which case the put will re-establish). We do not
1281 * and cannot guarantee more.
1282 */
1283 public V setValue(V value) {
1284 if (value == null) throw new NullPointerException();
1285 V v = super.setValue(value);
1286 ConcurrentHashMap.this.put(getKey(), value);
1287 return v;
1288 }
1289 }
1290
1291 final class EntryIterator
1292 extends HashIterator
1293 implements Iterator<Entry<K,V>>
1294 {
1295 public Map.Entry<K,V> next() {
1296 HashEntry<K,V> e = super.nextEntry();
1297 return new WriteThroughEntry(e.key, e.value);
1298 }
1299 }
1300
1301 final class KeySet extends AbstractSet<K> {
1302 public Iterator<K> iterator() {
1303 return new KeyIterator();
1304 }
1305 public int size() {
1306 return ConcurrentHashMap.this.size();
1307 }
1308 public boolean isEmpty() {
1309 return ConcurrentHashMap.this.isEmpty();
1310 }
1311 public boolean contains(Object o) {
1312 return ConcurrentHashMap.this.containsKey(o);
1313 }
1314 public boolean remove(Object o) {
1315 return ConcurrentHashMap.this.remove(o) != null;
1316 }
1317 public void clear() {
1318 ConcurrentHashMap.this.clear();
1319 }
1320 }
1321
1322 final class Values extends AbstractCollection<V> {
1323 public Iterator<V> iterator() {
1324 return new ValueIterator();
1325 }
1326 public int size() {
1327 return ConcurrentHashMap.this.size();
1328 }
1329 public boolean isEmpty() {
1330 return ConcurrentHashMap.this.isEmpty();
1331 }
1332 public boolean contains(Object o) {
1333 return ConcurrentHashMap.this.containsValue(o);
1334 }
1335 public void clear() {
1336 ConcurrentHashMap.this.clear();
1337 }
1338 }
1339
1340 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1341 public Iterator<Map.Entry<K,V>> iterator() {
1342 return new EntryIterator();
1343 }
1344 public boolean contains(Object o) {
1345 if (!(o instanceof Map.Entry))
1346 return false;
1347 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1348 V v = ConcurrentHashMap.this.get(e.getKey());
1349 return v != null && v.equals(e.getValue());
1350 }
1351 public boolean remove(Object o) {
1352 if (!(o instanceof Map.Entry))
1353 return false;
1354 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1355 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1356 }
1357 public int size() {
1358 return ConcurrentHashMap.this.size();
1359 }
1360 public boolean isEmpty() {
1361 return ConcurrentHashMap.this.isEmpty();
1362 }
1363 public void clear() {
1364 ConcurrentHashMap.this.clear();
1365 }
1366 }
1367
1368 /* ---------------- Serialization Support -------------- */
1369
1370 /**
1371 * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1372 * stream (i.e., serialize it).
1373 * @param s the stream
1374 * @serialData
1375 * the key (Object) and value (Object)
1376 * for each key-value mapping, followed by a null pair.
1377 * The key-value mappings are emitted in no particular order.
1378 */
1379 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1380 // force all segments for serialization compatibility
1381 for (int k = 0; k < segments.length; ++k)
1382 ensureSegment(k);
1383 s.defaultWriteObject();
1384
1385 final Segment<K,V>[] segments = this.segments;
1386 for (int k = 0; k < segments.length; ++k) {
1387 Segment<K,V> seg = segmentAt(segments, k);
1388 seg.lock();
1389 try {
1390 HashEntry<K,V>[] tab = seg.table;
1391 for (int i = 0; i < tab.length; ++i) {
1392 HashEntry<K,V> e;
1393 for (e = entryAt(tab, i); e != null; e = e.next) {
1394 s.writeObject(e.key);
1395 s.writeObject(e.value);
1396 }
1397 }
1398 } finally {
1399 seg.unlock();
1400 }
1401 }
1402 s.writeObject(null);
1403 s.writeObject(null);
1404 }
1405
1406 /**
1407 * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1408 * stream (i.e., deserialize it).
1409 * @param s the stream
1410 */
1411 @SuppressWarnings("unchecked")
1412 private void readObject(java.io.ObjectInputStream s)
1413 throws IOException, ClassNotFoundException {
1414 s.defaultReadObject();
1415
1416 // Re-initialize segments to be minimally sized, and let grow.
1417 int cap = MIN_SEGMENT_TABLE_CAPACITY;
1418 final Segment<K,V>[] segments = this.segments;
1419 for (int k = 0; k < segments.length; ++k) {
1420 Segment<K,V> seg = segments[k];
1421 if (seg != null) {
1422 seg.threshold = (int)(cap * seg.loadFactor);
1423 seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
1424 }
1425 }
1426
1427 // Read the keys and values, and put the mappings in the table
1428 for (;;) {
1429 K key = (K) s.readObject();
1430 V value = (V) s.readObject();
1431 if (key == null)
1432 break;
1433 put(key, value);
1434 }
1435 }
1436
1437 // Unsafe mechanics
1438 private static final sun.misc.Unsafe UNSAFE;
1439 private static final long SBASE;
1440 private static final int SSHIFT;
1441 private static final long TBASE;
1442 private static final int TSHIFT;
1443
1444 static {
1445 int ss, ts;
1446 try {
1447 UNSAFE = sun.misc.Unsafe.getUnsafe();
1448 Class tc = HashEntry[].class;
1449 Class sc = Segment[].class;
1450 TBASE = UNSAFE.arrayBaseOffset(tc);
1451 SBASE = UNSAFE.arrayBaseOffset(sc);
1452 ts = UNSAFE.arrayIndexScale(tc);
1453 ss = UNSAFE.arrayIndexScale(sc);
1454 } catch (Exception e) {
1455 throw new Error(e);
1456 }
1457 if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1458 throw new Error("data type scale not a power of two");
1459 SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1460 TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1461 }
1462
1463 }