ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.143
Committed: Fri Nov 9 03:30:03 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.142: +4 -4 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.atomic.LongAdder;
9 import java.util.concurrent.ForkJoinPool;
10 import java.util.concurrent.ForkJoinTask;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p> Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. (More formally, an update operation for a given key bears a
51 * <em>happens-before</em> relation with any (non-null) retrieval for
52 * that key reporting the updated value.) For aggregate operations
53 * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 * reflect insertion or removal of only some entries. Similarly,
55 * Iterators and Enumerations return elements reflecting the state of
56 * the hash table at some point at or since the creation of the
57 * iterator/enumeration. They do <em>not</em> throw {@link
58 * ConcurrentModificationException}. However, iterators are designed
59 * to be used by only one thread at a time. Bear in mind that the
60 * results of aggregate status methods including {@code size}, {@code
61 * isEmpty}, and {@code containsValue} are typically useful only when
62 * a map is not undergoing concurrent updates in other threads.
63 * Otherwise the results of these methods reflect transient states
64 * that may be adequate for monitoring or estimation purposes, but not
65 * for program control.
66 *
67 * <p> The table is dynamically expanded when there are too many
68 * collisions (i.e., keys that have distinct hash codes but fall into
69 * the same slot modulo the table size), with the expected average
70 * effect of maintaining roughly two bins per mapping (corresponding
71 * to a 0.75 load factor threshold for resizing). There may be much
72 * variance around this average as mappings are added and removed, but
73 * overall, this maintains a commonly accepted time/space tradeoff for
74 * hash tables. However, resizing this or any other kind of hash
75 * table may be a relatively slow operation. When possible, it is a
76 * good idea to provide a size estimate as an optional {@code
77 * initialCapacity} constructor argument. An additional optional
78 * {@code loadFactor} constructor argument provides a further means of
79 * customizing initial table capacity by specifying the table density
80 * to be used in calculating the amount of space to allocate for the
81 * given number of elements. Also, for compatibility with previous
82 * versions of this class, constructors may optionally specify an
83 * expected {@code concurrencyLevel} as an additional hint for
84 * internal sizing. Note that using many keys with exactly the same
85 * {@code hashCode()} is a sure way to slow down performance of any
86 * hash table.
87 *
88 * <p> A {@link Set} projection of a ConcurrentHashMap may be created
89 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 * (using {@link #keySet(Object)} when only keys are of interest, and the
91 * mapped values are (perhaps transiently) not used or all take the
92 * same mapping value.
93 *
94 * <p> A ConcurrentHashMap can be used as scalable frequency map (a
95 * form of histogram or multiset) by using {@link LongAdder} values
96 * and initializing via {@link #computeIfAbsent}. For example, to add
97 * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
98 * can use {@code freqs.computeIfAbsent(k -> new
99 * LongAdder()).increment();}
100 *
101 * <p>This class and its views and iterators implement all of the
102 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
103 * interfaces.
104 *
105 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
106 * does <em>not</em> allow {@code null} to be used as a key or value.
107 *
108 * <p>ConcurrentHashMaps support parallel operations using the {@link
109 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
110 * are available in class {@link ForkJoinTasks}). These operations are
111 * designed to be safely, and often sensibly, applied even with maps
112 * that are being concurrently updated by other threads; for example,
113 * when computing a snapshot summary of the values in a shared
114 * registry. There are three kinds of operation, each with four
115 * forms, accepting functions with Keys, Values, Entries, and (Key,
116 * Value) arguments and/or return values. (The first three forms are
117 * also available via the {@link #keySet()}, {@link #values()} and
118 * {@link #entrySet()} views). Because the elements of a
119 * ConcurrentHashMap are not ordered in any particular way, and may be
120 * processed in different orders in different parallel executions, the
121 * correctness of supplied functions should not depend on any
122 * ordering, or on any other objects or values that may transiently
123 * change while computation is in progress; and except for forEach
124 * actions, should ideally be side-effect-free.
125 *
126 * <ul>
127 * <li> forEach: Perform a given action on each element.
128 * A variant form applies a given transformation on each element
129 * before performing the action.</li>
130 *
131 * <li> search: Return the first available non-null result of
132 * applying a given function on each element; skipping further
133 * search when a result is found.</li>
134 *
135 * <li> reduce: Accumulate each element. The supplied reduction
136 * function cannot rely on ordering (more formally, it should be
137 * both associative and commutative). There are five variants:
138 *
139 * <ul>
140 *
141 * <li> Plain reductions. (There is not a form of this method for
142 * (key, value) function arguments since there is no corresponding
143 * return type.)</li>
144 *
145 * <li> Mapped reductions that accumulate the results of a given
146 * function applied to each element.</li>
147 *
148 * <li> Reductions to scalar doubles, longs, and ints, using a
149 * given basis value.</li>
150 *
151 * </li>
152 * </ul>
153 * </ul>
154 *
155 * <p>The concurrency properties of bulk operations follow
156 * from those of ConcurrentHashMap: Any non-null result returned
157 * from {@code get(key)} and related access methods bears a
158 * happens-before relation with the associated insertion or
159 * update. The result of any bulk operation reflects the
160 * composition of these per-element relations (but is not
161 * necessarily atomic with respect to the map as a whole unless it
162 * is somehow known to be quiescent). Conversely, because keys
163 * and values in the map are never null, null serves as a reliable
164 * atomic indicator of the current lack of any result. To
165 * maintain this property, null serves as an implicit basis for
166 * all non-scalar reduction operations. For the double, long, and
167 * int versions, the basis should be one that, when combined with
168 * any other value, returns that other value (more formally, it
169 * should be the identity element for the reduction). Most common
170 * reductions have these properties; for example, computing a sum
171 * with basis 0 or a minimum with basis MAX_VALUE.
172 *
173 * <p>Search and transformation functions provided as arguments
174 * should similarly return null to indicate the lack of any result
175 * (in which case it is not used). In the case of mapped
176 * reductions, this also enables transformations to serve as
177 * filters, returning null (or, in the case of primitive
178 * specializations, the identity basis) if the element should not
179 * be combined. You can create compound transformations and
180 * filterings by composing them yourself under this "null means
181 * there is nothing there now" rule before using them in search or
182 * reduce operations.
183 *
184 * <p>Methods accepting and/or returning Entry arguments maintain
185 * key-value associations. They may be useful for example when
186 * finding the key for the greatest value. Note that "plain" Entry
187 * arguments can be supplied using {@code new
188 * AbstractMap.SimpleEntry(k,v)}.
189 *
190 * <p> Bulk operations may complete abruptly, throwing an
191 * exception encountered in the application of a supplied
192 * function. Bear in mind when handling such exceptions that other
193 * concurrently executing functions could also have thrown
194 * exceptions, or would have done so if the first exception had
195 * not occurred.
196 *
197 * <p>Parallel speedups for bulk operations compared to sequential
198 * processing are common but not guaranteed. Operations involving
199 * brief functions on small maps may execute more slowly than
200 * sequential loops if the underlying work to parallelize the
201 * computation is more expensive than the computation itself.
202 * Similarly, parallelization may not lead to much actual parallelism
203 * if all processors are busy performing unrelated tasks.
204 *
205 * <p> All arguments to all task methods must be non-null.
206 *
207 * <p><em>jsr166e note: During transition, this class
208 * uses nested functional interfaces with different names but the
209 * same forms as those expected for JDK8.<em>
210 *
211 * <p>This class is a member of the
212 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213 * Java Collections Framework</a>.
214 *
215 * @since 1.5
216 * @author Doug Lea
217 * @param <K> the type of keys maintained by this map
218 * @param <V> the type of mapped values
219 */
220 public class ConcurrentHashMap<K, V>
221 implements ConcurrentMap<K, V>, Serializable {
222 private static final long serialVersionUID = 7249069246763182397L;
223
224 /**
225 * A partitionable iterator. A Spliterator can be traversed
226 * directly, but can also be partitioned (before traversal) by
227 * creating another Spliterator that covers a non-overlapping
228 * portion of the elements, and so may be amenable to parallel
229 * execution.
230 *
231 * <p> This interface exports a subset of expected JDK8
232 * functionality.
233 *
234 * <p>Sample usage: Here is one (of the several) ways to compute
235 * the sum of the values held in a map using the ForkJoin
236 * framework. As illustrated here, Spliterators are well suited to
237 * designs in which a task repeatedly splits off half its work
238 * into forked subtasks until small enough to process directly,
239 * and then joins these subtasks. Variants of this style can also
240 * be used in completion-based designs.
241 *
242 * <pre>
243 * {@code ConcurrentHashMap<String, Long> m = ...
244 * // split as if have 8 * parallelism, for load balance
245 * int n = m.size();
246 * int p = aForkJoinPool.getParallelism() * 8;
247 * int split = (n < p)? n : p;
248 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249 * // ...
250 * static class SumValues extends RecursiveTask<Long> {
251 * final Spliterator<Long> s;
252 * final int split; // split while > 1
253 * final SumValues nextJoin; // records forked subtasks to join
254 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256 * }
257 * public Long compute() {
258 * long sum = 0;
259 * SumValues subtasks = null; // fork subtasks
260 * for (int s = split >>> 1; s > 0; s >>>= 1)
261 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262 * while (s.hasNext()) // directly process remaining elements
263 * sum += s.next();
264 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
265 * sum += t.join(); // collect subtask results
266 * return sum;
267 * }
268 * }
269 * }</pre>
270 */
271 public static interface Spliterator<T> extends Iterator<T> {
272 /**
273 * Returns a Spliterator covering approximately half of the
274 * elements, guaranteed not to overlap with those subsequently
275 * returned by this Spliterator. After invoking this method,
276 * the current Spliterator will <em>not</em> produce any of
277 * the elements of the returned Spliterator, but the two
278 * Spliterators together will produce all of the elements that
279 * would have been produced by this Spliterator had this
280 * method not been called. The exact number of elements
281 * produced by the returned Spliterator is not guaranteed, and
282 * may be zero (i.e., with {@code hasNext()} reporting {@code
283 * false}) if this Spliterator cannot be further split.
284 *
285 * @return a Spliterator covering approximately half of the
286 * elements
287 * @throws IllegalStateException if this Spliterator has
288 * already commenced traversing elements
289 */
290 Spliterator<T> split();
291 }
292
293
294 /*
295 * Overview:
296 *
297 * The primary design goal of this hash table is to maintain
298 * concurrent readability (typically method get(), but also
299 * iterators and related methods) while minimizing update
300 * contention. Secondary goals are to keep space consumption about
301 * the same or better than java.util.HashMap, and to support high
302 * initial insertion rates on an empty table by many threads.
303 *
304 * Each key-value mapping is held in a Node. Because Node fields
305 * can contain special values, they are defined using plain Object
306 * types. Similarly in turn, all internal methods that use them
307 * work off Object types. And similarly, so do the internal
308 * methods of auxiliary iterator and view classes. All public
309 * generic typed methods relay in/out of these internal methods,
310 * supplying null-checks and casts as needed. This also allows
311 * many of the public methods to be factored into a smaller number
312 * of internal methods (although sadly not so for the five
313 * variants of put-related operations). The validation-based
314 * approach explained below leads to a lot of code sprawl because
315 * retry-control precludes factoring into smaller methods.
316 *
317 * The table is lazily initialized to a power-of-two size upon the
318 * first insertion. Each bin in the table normally contains a
319 * list of Nodes (most often, the list has only zero or one Node).
320 * Table accesses require volatile/atomic reads, writes, and
321 * CASes. Because there is no other way to arrange this without
322 * adding further indirections, we use intrinsics
323 * (sun.misc.Unsafe) operations. The lists of nodes within bins
324 * are always accurately traversable under volatile reads, so long
325 * as lookups check hash code and non-nullness of value before
326 * checking key equality.
327 *
328 * We use the top two bits of Node hash fields for control
329 * purposes -- they are available anyway because of addressing
330 * constraints. As explained further below, these top bits are
331 * used as follows:
332 * 00 - Normal
333 * 01 - Locked
334 * 11 - Locked and may have a thread waiting for lock
335 * 10 - Node is a forwarding node
336 *
337 * The lower 30 bits of each Node's hash field contain a
338 * transformation of the key's hash code, except for forwarding
339 * nodes, for which the lower bits are zero (and so always have
340 * hash field == MOVED).
341 *
342 * Insertion (via put or its variants) of the first node in an
343 * empty bin is performed by just CASing it to the bin. This is
344 * by far the most common case for put operations under most
345 * key/hash distributions. Other update operations (insert,
346 * delete, and replace) require locks. We do not want to waste
347 * the space required to associate a distinct lock object with
348 * each bin, so instead use the first node of a bin list itself as
349 * a lock. Blocking support for these locks relies on the builtin
350 * "synchronized" monitors. However, we also need a tryLock
351 * construction, so we overlay these by using bits of the Node
352 * hash field for lock control (see above), and so normally use
353 * builtin monitors only for blocking and signalling using
354 * wait/notifyAll constructions. See Node.tryAwaitLock.
355 *
356 * Using the first node of a list as a lock does not by itself
357 * suffice though: When a node is locked, any update must first
358 * validate that it is still the first node after locking it, and
359 * retry if not. Because new nodes are always appended to lists,
360 * once a node is first in a bin, it remains first until deleted
361 * or the bin becomes invalidated (upon resizing). However,
362 * operations that only conditionally update may inspect nodes
363 * until the point of update. This is a converse of sorts to the
364 * lazy locking technique described by Herlihy & Shavit.
365 *
366 * The main disadvantage of per-bin locks is that other update
367 * operations on other nodes in a bin list protected by the same
368 * lock can stall, for example when user equals() or mapping
369 * functions take a long time. However, statistically, under
370 * random hash codes, this is not a common problem. Ideally, the
371 * frequency of nodes in bins follows a Poisson distribution
372 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
373 * parameter of about 0.5 on average, given the resizing threshold
374 * of 0.75, although with a large variance because of resizing
375 * granularity. Ignoring variance, the expected occurrences of
376 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
377 * first values are:
378 *
379 * 0: 0.60653066
380 * 1: 0.30326533
381 * 2: 0.07581633
382 * 3: 0.01263606
383 * 4: 0.00157952
384 * 5: 0.00015795
385 * 6: 0.00001316
386 * 7: 0.00000094
387 * 8: 0.00000006
388 * more: less than 1 in ten million
389 *
390 * Lock contention probability for two threads accessing distinct
391 * elements is roughly 1 / (8 * #elements) under random hashes.
392 *
393 * Actual hash code distributions encountered in practice
394 * sometimes deviate significantly from uniform randomness. This
395 * includes the case when N > (1<<30), so some keys MUST collide.
396 * Similarly for dumb or hostile usages in which multiple keys are
397 * designed to have identical hash codes. Also, although we guard
398 * against the worst effects of this (see method spread), sets of
399 * hashes may differ only in bits that do not impact their bin
400 * index for a given power-of-two mask. So we use a secondary
401 * strategy that applies when the number of nodes in a bin exceeds
402 * a threshold, and at least one of the keys implements
403 * Comparable. These TreeBins use a balanced tree to hold nodes
404 * (a specialized form of red-black trees), bounding search time
405 * to O(log N). Each search step in a TreeBin is around twice as
406 * slow as in a regular list, but given that N cannot exceed
407 * (1<<64) (before running out of addresses) this bounds search
408 * steps, lock hold times, etc, to reasonable constants (roughly
409 * 100 nodes inspected per operation worst case) so long as keys
410 * are Comparable (which is very common -- String, Long, etc).
411 * TreeBin nodes (TreeNodes) also maintain the same "next"
412 * traversal pointers as regular nodes, so can be traversed in
413 * iterators in the same way.
414 *
415 * The table is resized when occupancy exceeds a percentage
416 * threshold (nominally, 0.75, but see below). Only a single
417 * thread performs the resize (using field "sizeCtl", to arrange
418 * exclusion), but the table otherwise remains usable for reads
419 * and updates. Resizing proceeds by transferring bins, one by
420 * one, from the table to the next table. Because we are using
421 * power-of-two expansion, the elements from each bin must either
422 * stay at same index, or move with a power of two offset. We
423 * eliminate unnecessary node creation by catching cases where old
424 * nodes can be reused because their next fields won't change. On
425 * average, only about one-sixth of them need cloning when a table
426 * doubles. The nodes they replace will be garbage collectable as
427 * soon as they are no longer referenced by any reader thread that
428 * may be in the midst of concurrently traversing table. Upon
429 * transfer, the old table bin contains only a special forwarding
430 * node (with hash field "MOVED") that contains the next table as
431 * its key. On encountering a forwarding node, access and update
432 * operations restart, using the new table.
433 *
434 * Each bin transfer requires its bin lock. However, unlike other
435 * cases, a transfer can skip a bin if it fails to acquire its
436 * lock, and revisit it later (unless it is a TreeBin). Method
437 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
438 * have been skipped because of failure to acquire a lock, and
439 * blocks only if none are available (i.e., only very rarely).
440 * The transfer operation must also ensure that all accessible
441 * bins in both the old and new table are usable by any traversal.
442 * When there are no lock acquisition failures, this is arranged
443 * simply by proceeding from the last bin (table.length - 1) up
444 * towards the first. Upon seeing a forwarding node, traversals
445 * (see class Iter) arrange to move to the new table
446 * without revisiting nodes. However, when any node is skipped
447 * during a transfer, all earlier table bins may have become
448 * visible, so are initialized with a reverse-forwarding node back
449 * to the old table until the new ones are established. (This
450 * sometimes requires transiently locking a forwarding node, which
451 * is possible under the above encoding.) These more expensive
452 * mechanics trigger only when necessary.
453 *
454 * The traversal scheme also applies to partial traversals of
455 * ranges of bins (via an alternate Traverser constructor)
456 * to support partitioned aggregate operations. Also, read-only
457 * operations give up if ever forwarded to a null table, which
458 * provides support for shutdown-style clearing, which is also not
459 * currently implemented.
460 *
461 * Lazy table initialization minimizes footprint until first use,
462 * and also avoids resizings when the first operation is from a
463 * putAll, constructor with map argument, or deserialization.
464 * These cases attempt to override the initial capacity settings,
465 * but harmlessly fail to take effect in cases of races.
466 *
467 * The element count is maintained using a LongAdder, which avoids
468 * contention on updates but can encounter cache thrashing if read
469 * too frequently during concurrent access. To avoid reading so
470 * often, resizing is attempted either when a bin lock is
471 * contended, or upon adding to a bin already holding two or more
472 * nodes (checked before adding in the xIfAbsent methods, after
473 * adding in others). Under uniform hash distributions, the
474 * probability of this occurring at threshold is around 13%,
475 * meaning that only about 1 in 8 puts check threshold (and after
476 * resizing, many fewer do so). But this approximation has high
477 * variance for small table sizes, so we check on any collision
478 * for sizes <= 64. The bulk putAll operation further reduces
479 * contention by only committing count updates upon these size
480 * checks.
481 *
482 * Maintaining API and serialization compatibility with previous
483 * versions of this class introduces several oddities. Mainly: We
484 * leave untouched but unused constructor arguments refering to
485 * concurrencyLevel. We accept a loadFactor constructor argument,
486 * but apply it only to initial table capacity (which is the only
487 * time that we can guarantee to honor it.) We also declare an
488 * unused "Segment" class that is instantiated in minimal form
489 * only when serializing.
490 */
491
492 /* ---------------- Constants -------------- */
493
494 /**
495 * The largest possible table capacity. This value must be
496 * exactly 1<<30 to stay within Java array allocation and indexing
497 * bounds for power of two table sizes, and is further required
498 * because the top two bits of 32bit hash fields are used for
499 * control purposes.
500 */
501 private static final int MAXIMUM_CAPACITY = 1 << 30;
502
503 /**
504 * The default initial table capacity. Must be a power of 2
505 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
506 */
507 private static final int DEFAULT_CAPACITY = 16;
508
509 /**
510 * The largest possible (non-power of two) array size.
511 * Needed by toArray and related methods.
512 */
513 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
514
515 /**
516 * The default concurrency level for this table. Unused but
517 * defined for compatibility with previous versions of this class.
518 */
519 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
520
521 /**
522 * The load factor for this table. Overrides of this value in
523 * constructors affect only the initial table capacity. The
524 * actual floating point value isn't normally used -- it is
525 * simpler to use expressions such as {@code n - (n >>> 2)} for
526 * the associated resizing threshold.
527 */
528 private static final float LOAD_FACTOR = 0.75f;
529
530 /**
531 * The buffer size for skipped bins during transfers. The
532 * value is arbitrary but should be large enough to avoid
533 * most locking stalls during resizes.
534 */
535 private static final int TRANSFER_BUFFER_SIZE = 32;
536
537 /**
538 * The bin count threshold for using a tree rather than list for a
539 * bin. The value reflects the approximate break-even point for
540 * using tree-based operations.
541 */
542 private static final int TREE_THRESHOLD = 8;
543
544 /*
545 * Encodings for special uses of Node hash fields. See above for
546 * explanation.
547 */
548 static final int MOVED = 0x80000000; // hash field for forwarding nodes
549 static final int LOCKED = 0x40000000; // set/tested only as a bit
550 static final int WAITING = 0xc0000000; // both bits set/tested together
551 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
552
553 /* ---------------- Fields -------------- */
554
555 /**
556 * The array of bins. Lazily initialized upon first insertion.
557 * Size is always a power of two. Accessed directly by iterators.
558 */
559 transient volatile Node[] table;
560
561 /**
562 * The counter maintaining number of elements.
563 */
564 private transient final LongAdder counter;
565
566 /**
567 * Table initialization and resizing control. When negative, the
568 * table is being initialized or resized. Otherwise, when table is
569 * null, holds the initial table size to use upon creation, or 0
570 * for default. After initialization, holds the next element count
571 * value upon which to resize the table.
572 */
573 private transient volatile int sizeCtl;
574
575 // views
576 private transient KeySetView<K,V> keySet;
577 private transient ValuesView<K,V> values;
578 private transient EntrySetView<K,V> entrySet;
579
580 /** For serialization compatibility. Null unless serialized; see below */
581 private Segment<K,V>[] segments;
582
583 /* ---------------- Table element access -------------- */
584
585 /*
586 * Volatile access methods are used for table elements as well as
587 * elements of in-progress next table while resizing. Uses are
588 * null checked by callers, and implicitly bounds-checked, relying
589 * on the invariants that tab arrays have non-zero size, and all
590 * indices are masked with (tab.length - 1) which is never
591 * negative and always less than length. Note that, to be correct
592 * wrt arbitrary concurrency errors by users, bounds checks must
593 * operate on local variables, which accounts for some odd-looking
594 * inline assignments below.
595 */
596
597 static final Node tabAt(Node[] tab, int i) { // used by Iter
598 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
599 }
600
601 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
602 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
603 }
604
605 private static final void setTabAt(Node[] tab, int i, Node v) {
606 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
607 }
608
609 /* ---------------- Nodes -------------- */
610
611 /**
612 * Key-value entry. Note that this is never exported out as a
613 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
614 * field of MOVED are special, and do not contain user keys or
615 * values. Otherwise, keys are never null, and null val fields
616 * indicate that a node is in the process of being deleted or
617 * created. For purposes of read-only access, a key may be read
618 * before a val, but can only be used after checking val to be
619 * non-null.
620 */
621 static class Node {
622 volatile int hash;
623 final Object key;
624 volatile Object val;
625 volatile Node next;
626
627 Node(int hash, Object key, Object val, Node next) {
628 this.hash = hash;
629 this.key = key;
630 this.val = val;
631 this.next = next;
632 }
633
634 /** CompareAndSet the hash field */
635 final boolean casHash(int cmp, int val) {
636 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637 }
638
639 /** The number of spins before blocking for a lock */
640 static final int MAX_SPINS =
641 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642
643 /**
644 * Spins a while if LOCKED bit set and this node is the first
645 * of its bin, and then sets WAITING bits on hash field and
646 * blocks (once) if they are still set. It is OK for this
647 * method to return even if lock is not available upon exit,
648 * which enables these simple single-wait mechanics.
649 *
650 * The corresponding signalling operation is performed within
651 * callers: Upon detecting that WAITING has been set when
652 * unlocking lock (via a failed CAS from non-waiting LOCKED
653 * state), unlockers acquire the sync lock and perform a
654 * notifyAll.
655 *
656 * The initial sanity check on tab and bounds is not currently
657 * necessary in the only usages of this method, but enables
658 * use in other future contexts.
659 */
660 final void tryAwaitLock(Node[] tab, int i) {
661 if (tab != null && i >= 0 && i < tab.length) { // sanity check
662 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663 int spins = MAX_SPINS, h;
664 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665 if (spins >= 0) {
666 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667 if (r >= 0 && --spins == 0)
668 Thread.yield(); // yield before block
669 }
670 else if (casHash(h, h | WAITING)) {
671 synchronized (this) {
672 if (tabAt(tab, i) == this &&
673 (hash & WAITING) == WAITING) {
674 try {
675 wait();
676 } catch (InterruptedException ie) {
677 try {
678 Thread.currentThread().interrupt();
679 } catch (SecurityException ignore) {
680 }
681 }
682 }
683 else
684 notifyAll(); // possibly won race vs signaller
685 }
686 break;
687 }
688 }
689 }
690 }
691
692 // Unsafe mechanics for casHash
693 private static final sun.misc.Unsafe UNSAFE;
694 private static final long hashOffset;
695
696 static {
697 try {
698 UNSAFE = sun.misc.Unsafe.getUnsafe();
699 Class<?> k = Node.class;
700 hashOffset = UNSAFE.objectFieldOffset
701 (k.getDeclaredField("hash"));
702 } catch (Exception e) {
703 throw new Error(e);
704 }
705 }
706 }
707
708 /* ---------------- TreeBins -------------- */
709
710 /**
711 * Nodes for use in TreeBins
712 */
713 static final class TreeNode extends Node {
714 TreeNode parent; // red-black tree links
715 TreeNode left;
716 TreeNode right;
717 TreeNode prev; // needed to unlink next upon deletion
718 boolean red;
719
720 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
721 super(hash, key, val, next);
722 this.parent = parent;
723 }
724 }
725
726 /**
727 * A specialized form of red-black tree for use in bins
728 * whose size exceeds a threshold.
729 *
730 * TreeBins use a special form of comparison for search and
731 * related operations (which is the main reason we cannot use
732 * existing collections such as TreeMaps). TreeBins contain
733 * Comparable elements, but may contain others, as well as
734 * elements that are Comparable but not necessarily Comparable<T>
735 * for the same T, so we cannot invoke compareTo among them. To
736 * handle this, the tree is ordered primarily by hash value, then
737 * by getClass().getName() order, and then by Comparator order
738 * among elements of the same class. On lookup at a node, if
739 * elements are not comparable or compare as 0, both left and
740 * right children may need to be searched in the case of tied hash
741 * values. (This corresponds to the full list search that would be
742 * necessary if all elements were non-Comparable and had tied
743 * hashes.) The red-black balancing code is updated from
744 * pre-jdk-collections
745 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
746 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
747 * Algorithms" (CLR).
748 *
749 * TreeBins also maintain a separate locking discipline than
750 * regular bins. Because they are forwarded via special MOVED
751 * nodes at bin heads (which can never change once established),
752 * we cannot use those nodes as locks. Instead, TreeBin
753 * extends AbstractQueuedSynchronizer to support a simple form of
754 * read-write lock. For update operations and table validation,
755 * the exclusive form of lock behaves in the same way as bin-head
756 * locks. However, lookups use shared read-lock mechanics to allow
757 * multiple readers in the absence of writers. Additionally,
758 * these lookups do not ever block: While the lock is not
759 * available, they proceed along the slow traversal path (via
760 * next-pointers) until the lock becomes available or the list is
761 * exhausted, whichever comes first. (These cases are not fast,
762 * but maximize aggregate expected throughput.) The AQS mechanics
763 * for doing this are straightforward. The lock state is held as
764 * AQS getState(). Read counts are negative; the write count (1)
765 * is positive. There are no signalling preferences among readers
766 * and writers. Since we don't need to export full Lock API, we
767 * just override the minimal AQS methods and use them directly.
768 */
769 static final class TreeBin extends AbstractQueuedSynchronizer {
770 private static final long serialVersionUID = 2249069246763182397L;
771 transient TreeNode root; // root of tree
772 transient TreeNode first; // head of next-pointer list
773
774 /* AQS overrides */
775 public final boolean isHeldExclusively() { return getState() > 0; }
776 public final boolean tryAcquire(int ignore) {
777 if (compareAndSetState(0, 1)) {
778 setExclusiveOwnerThread(Thread.currentThread());
779 return true;
780 }
781 return false;
782 }
783 public final boolean tryRelease(int ignore) {
784 setExclusiveOwnerThread(null);
785 setState(0);
786 return true;
787 }
788 public final int tryAcquireShared(int ignore) {
789 for (int c;;) {
790 if ((c = getState()) > 0)
791 return -1;
792 if (compareAndSetState(c, c -1))
793 return 1;
794 }
795 }
796 public final boolean tryReleaseShared(int ignore) {
797 int c;
798 do {} while (!compareAndSetState(c = getState(), c + 1));
799 return c == -1;
800 }
801
802 /** From CLR */
803 private void rotateLeft(TreeNode p) {
804 if (p != null) {
805 TreeNode r = p.right, pp, rl;
806 if ((rl = p.right = r.left) != null)
807 rl.parent = p;
808 if ((pp = r.parent = p.parent) == null)
809 root = r;
810 else if (pp.left == p)
811 pp.left = r;
812 else
813 pp.right = r;
814 r.left = p;
815 p.parent = r;
816 }
817 }
818
819 /** From CLR */
820 private void rotateRight(TreeNode p) {
821 if (p != null) {
822 TreeNode l = p.left, pp, lr;
823 if ((lr = p.left = l.right) != null)
824 lr.parent = p;
825 if ((pp = l.parent = p.parent) == null)
826 root = l;
827 else if (pp.right == p)
828 pp.right = l;
829 else
830 pp.left = l;
831 l.right = p;
832 p.parent = l;
833 }
834 }
835
836 /**
837 * Returns the TreeNode (or null if not found) for the given key
838 * starting at given root.
839 */
840 @SuppressWarnings("unchecked") final TreeNode getTreeNode
841 (int h, Object k, TreeNode p) {
842 Class<?> c = k.getClass();
843 while (p != null) {
844 int dir, ph; Object pk; Class<?> pc;
845 if ((ph = p.hash) == h) {
846 if ((pk = p.key) == k || k.equals(pk))
847 return p;
848 if (c != (pc = pk.getClass()) ||
849 !(k instanceof Comparable) ||
850 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
851 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
852 TreeNode r = null, s = null, pl, pr;
853 if (dir >= 0) {
854 if ((pl = p.left) != null && h <= pl.hash)
855 s = pl;
856 }
857 else if ((pr = p.right) != null && h >= pr.hash)
858 s = pr;
859 if (s != null && (r = getTreeNode(h, k, s)) != null)
860 return r;
861 }
862 }
863 else
864 dir = (h < ph) ? -1 : 1;
865 p = (dir > 0) ? p.right : p.left;
866 }
867 return null;
868 }
869
870 /**
871 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
872 * read-lock to call getTreeNode, but during failure to get
873 * lock, searches along next links.
874 */
875 final Object getValue(int h, Object k) {
876 Node r = null;
877 int c = getState(); // Must read lock state first
878 for (Node e = first; e != null; e = e.next) {
879 if (c <= 0 && compareAndSetState(c, c - 1)) {
880 try {
881 r = getTreeNode(h, k, root);
882 } finally {
883 releaseShared(0);
884 }
885 break;
886 }
887 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
888 r = e;
889 break;
890 }
891 else
892 c = getState();
893 }
894 return r == null ? null : r.val;
895 }
896
897 /**
898 * Finds or adds a node.
899 * @return null if added
900 */
901 @SuppressWarnings("unchecked") final TreeNode putTreeNode
902 (int h, Object k, Object v) {
903 Class<?> c = k.getClass();
904 TreeNode pp = root, p = null;
905 int dir = 0;
906 while (pp != null) { // find existing node or leaf to insert at
907 int ph; Object pk; Class<?> pc;
908 p = pp;
909 if ((ph = p.hash) == h) {
910 if ((pk = p.key) == k || k.equals(pk))
911 return p;
912 if (c != (pc = pk.getClass()) ||
913 !(k instanceof Comparable) ||
914 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
915 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
916 TreeNode r = null, s = null, pl, pr;
917 if (dir >= 0) {
918 if ((pl = p.left) != null && h <= pl.hash)
919 s = pl;
920 }
921 else if ((pr = p.right) != null && h >= pr.hash)
922 s = pr;
923 if (s != null && (r = getTreeNode(h, k, s)) != null)
924 return r;
925 }
926 }
927 else
928 dir = (h < ph) ? -1 : 1;
929 pp = (dir > 0) ? p.right : p.left;
930 }
931
932 TreeNode f = first;
933 TreeNode x = first = new TreeNode(h, k, v, f, p);
934 if (p == null)
935 root = x;
936 else { // attach and rebalance; adapted from CLR
937 TreeNode xp, xpp;
938 if (f != null)
939 f.prev = x;
940 if (dir <= 0)
941 p.left = x;
942 else
943 p.right = x;
944 x.red = true;
945 while (x != null && (xp = x.parent) != null && xp.red &&
946 (xpp = xp.parent) != null) {
947 TreeNode xppl = xpp.left;
948 if (xp == xppl) {
949 TreeNode y = xpp.right;
950 if (y != null && y.red) {
951 y.red = false;
952 xp.red = false;
953 xpp.red = true;
954 x = xpp;
955 }
956 else {
957 if (x == xp.right) {
958 rotateLeft(x = xp);
959 xpp = (xp = x.parent) == null ? null : xp.parent;
960 }
961 if (xp != null) {
962 xp.red = false;
963 if (xpp != null) {
964 xpp.red = true;
965 rotateRight(xpp);
966 }
967 }
968 }
969 }
970 else {
971 TreeNode y = xppl;
972 if (y != null && y.red) {
973 y.red = false;
974 xp.red = false;
975 xpp.red = true;
976 x = xpp;
977 }
978 else {
979 if (x == xp.left) {
980 rotateRight(x = xp);
981 xpp = (xp = x.parent) == null ? null : xp.parent;
982 }
983 if (xp != null) {
984 xp.red = false;
985 if (xpp != null) {
986 xpp.red = true;
987 rotateLeft(xpp);
988 }
989 }
990 }
991 }
992 }
993 TreeNode r = root;
994 if (r != null && r.red)
995 r.red = false;
996 }
997 return null;
998 }
999
1000 /**
1001 * Removes the given node, that must be present before this
1002 * call. This is messier than typical red-black deletion code
1003 * because we cannot swap the contents of an interior node
1004 * with a leaf successor that is pinned by "next" pointers
1005 * that are accessible independently of lock. So instead we
1006 * swap the tree linkages.
1007 */
1008 final void deleteTreeNode(TreeNode p) {
1009 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1010 TreeNode pred = p.prev;
1011 if (pred == null)
1012 first = next;
1013 else
1014 pred.next = next;
1015 if (next != null)
1016 next.prev = pred;
1017 TreeNode replacement;
1018 TreeNode pl = p.left;
1019 TreeNode pr = p.right;
1020 if (pl != null && pr != null) {
1021 TreeNode s = pr, sl;
1022 while ((sl = s.left) != null) // find successor
1023 s = sl;
1024 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1025 TreeNode sr = s.right;
1026 TreeNode pp = p.parent;
1027 if (s == pr) { // p was s's direct parent
1028 p.parent = s;
1029 s.right = p;
1030 }
1031 else {
1032 TreeNode sp = s.parent;
1033 if ((p.parent = sp) != null) {
1034 if (s == sp.left)
1035 sp.left = p;
1036 else
1037 sp.right = p;
1038 }
1039 if ((s.right = pr) != null)
1040 pr.parent = s;
1041 }
1042 p.left = null;
1043 if ((p.right = sr) != null)
1044 sr.parent = p;
1045 if ((s.left = pl) != null)
1046 pl.parent = s;
1047 if ((s.parent = pp) == null)
1048 root = s;
1049 else if (p == pp.left)
1050 pp.left = s;
1051 else
1052 pp.right = s;
1053 replacement = sr;
1054 }
1055 else
1056 replacement = (pl != null) ? pl : pr;
1057 TreeNode pp = p.parent;
1058 if (replacement == null) {
1059 if (pp == null) {
1060 root = null;
1061 return;
1062 }
1063 replacement = p;
1064 }
1065 else {
1066 replacement.parent = pp;
1067 if (pp == null)
1068 root = replacement;
1069 else if (p == pp.left)
1070 pp.left = replacement;
1071 else
1072 pp.right = replacement;
1073 p.left = p.right = p.parent = null;
1074 }
1075 if (!p.red) { // rebalance, from CLR
1076 TreeNode x = replacement;
1077 while (x != null) {
1078 TreeNode xp, xpl;
1079 if (x.red || (xp = x.parent) == null) {
1080 x.red = false;
1081 break;
1082 }
1083 if (x == (xpl = xp.left)) {
1084 TreeNode sib = xp.right;
1085 if (sib != null && sib.red) {
1086 sib.red = false;
1087 xp.red = true;
1088 rotateLeft(xp);
1089 sib = (xp = x.parent) == null ? null : xp.right;
1090 }
1091 if (sib == null)
1092 x = xp;
1093 else {
1094 TreeNode sl = sib.left, sr = sib.right;
1095 if ((sr == null || !sr.red) &&
1096 (sl == null || !sl.red)) {
1097 sib.red = true;
1098 x = xp;
1099 }
1100 else {
1101 if (sr == null || !sr.red) {
1102 if (sl != null)
1103 sl.red = false;
1104 sib.red = true;
1105 rotateRight(sib);
1106 sib = (xp = x.parent) == null ? null : xp.right;
1107 }
1108 if (sib != null) {
1109 sib.red = (xp == null) ? false : xp.red;
1110 if ((sr = sib.right) != null)
1111 sr.red = false;
1112 }
1113 if (xp != null) {
1114 xp.red = false;
1115 rotateLeft(xp);
1116 }
1117 x = root;
1118 }
1119 }
1120 }
1121 else { // symmetric
1122 TreeNode sib = xpl;
1123 if (sib != null && sib.red) {
1124 sib.red = false;
1125 xp.red = true;
1126 rotateRight(xp);
1127 sib = (xp = x.parent) == null ? null : xp.left;
1128 }
1129 if (sib == null)
1130 x = xp;
1131 else {
1132 TreeNode sl = sib.left, sr = sib.right;
1133 if ((sl == null || !sl.red) &&
1134 (sr == null || !sr.red)) {
1135 sib.red = true;
1136 x = xp;
1137 }
1138 else {
1139 if (sl == null || !sl.red) {
1140 if (sr != null)
1141 sr.red = false;
1142 sib.red = true;
1143 rotateLeft(sib);
1144 sib = (xp = x.parent) == null ? null : xp.left;
1145 }
1146 if (sib != null) {
1147 sib.red = (xp == null) ? false : xp.red;
1148 if ((sl = sib.left) != null)
1149 sl.red = false;
1150 }
1151 if (xp != null) {
1152 xp.red = false;
1153 rotateRight(xp);
1154 }
1155 x = root;
1156 }
1157 }
1158 }
1159 }
1160 }
1161 if (p == replacement && (pp = p.parent) != null) {
1162 if (p == pp.left) // detach pointers
1163 pp.left = null;
1164 else if (p == pp.right)
1165 pp.right = null;
1166 p.parent = null;
1167 }
1168 }
1169 }
1170
1171 /* ---------------- Collision reduction methods -------------- */
1172
1173 /**
1174 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1175 * Because the table uses power-of-two masking, sets of hashes
1176 * that vary only in bits above the current mask will always
1177 * collide. (Among known examples are sets of Float keys holding
1178 * consecutive whole numbers in small tables.) To counter this,
1179 * we apply a transform that spreads the impact of higher bits
1180 * downward. There is a tradeoff between speed, utility, and
1181 * quality of bit-spreading. Because many common sets of hashes
1182 * are already reasonably distributed across bits (so don't benefit
1183 * from spreading), and because we use trees to handle large sets
1184 * of collisions in bins, we don't need excessively high quality.
1185 */
1186 private static final int spread(int h) {
1187 h ^= (h >>> 18) ^ (h >>> 12);
1188 return (h ^ (h >>> 10)) & HASH_BITS;
1189 }
1190
1191 /**
1192 * Replaces a list bin with a tree bin. Call only when locked.
1193 * Fails to replace if the given key is non-comparable or table
1194 * is, or needs, resizing.
1195 */
1196 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1197 if ((key instanceof Comparable) &&
1198 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1199 TreeBin t = new TreeBin();
1200 for (Node e = tabAt(tab, index); e != null; e = e.next)
1201 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202 setTabAt(tab, index, new Node(MOVED, t, null, null));
1203 }
1204 }
1205
1206 /* ---------------- Internal access and update methods -------------- */
1207
1208 /** Implementation for get and containsKey */
1209 private final Object internalGet(Object k) {
1210 int h = spread(k.hashCode());
1211 retry: for (Node[] tab = table; tab != null;) {
1212 Node e, p; Object ek, ev; int eh; // locals to read fields once
1213 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1214 if ((eh = e.hash) == MOVED) {
1215 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1216 return ((TreeBin)ek).getValue(h, k);
1217 else { // restart with new table
1218 tab = (Node[])ek;
1219 continue retry;
1220 }
1221 }
1222 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1223 ((ek = e.key) == k || k.equals(ek)))
1224 return ev;
1225 }
1226 break;
1227 }
1228 return null;
1229 }
1230
1231 /**
1232 * Implementation for the four public remove/replace methods:
1233 * Replaces node value with v, conditional upon match of cv if
1234 * non-null. If resulting value is null, delete.
1235 */
1236 private final Object internalReplace(Object k, Object v, Object cv) {
1237 int h = spread(k.hashCode());
1238 Object oldVal = null;
1239 for (Node[] tab = table;;) {
1240 Node f; int i, fh; Object fk;
1241 if (tab == null ||
1242 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1243 break;
1244 else if ((fh = f.hash) == MOVED) {
1245 if ((fk = f.key) instanceof TreeBin) {
1246 TreeBin t = (TreeBin)fk;
1247 boolean validated = false;
1248 boolean deleted = false;
1249 t.acquire(0);
1250 try {
1251 if (tabAt(tab, i) == f) {
1252 validated = true;
1253 TreeNode p = t.getTreeNode(h, k, t.root);
1254 if (p != null) {
1255 Object pv = p.val;
1256 if (cv == null || cv == pv || cv.equals(pv)) {
1257 oldVal = pv;
1258 if ((p.val = v) == null) {
1259 deleted = true;
1260 t.deleteTreeNode(p);
1261 }
1262 }
1263 }
1264 }
1265 } finally {
1266 t.release(0);
1267 }
1268 if (validated) {
1269 if (deleted)
1270 counter.add(-1L);
1271 break;
1272 }
1273 }
1274 else
1275 tab = (Node[])fk;
1276 }
1277 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1278 break; // rules out possible existence
1279 else if ((fh & LOCKED) != 0) {
1280 checkForResize(); // try resizing if can't get lock
1281 f.tryAwaitLock(tab, i);
1282 }
1283 else if (f.casHash(fh, fh | LOCKED)) {
1284 boolean validated = false;
1285 boolean deleted = false;
1286 try {
1287 if (tabAt(tab, i) == f) {
1288 validated = true;
1289 for (Node e = f, pred = null;;) {
1290 Object ek, ev;
1291 if ((e.hash & HASH_BITS) == h &&
1292 ((ev = e.val) != null) &&
1293 ((ek = e.key) == k || k.equals(ek))) {
1294 if (cv == null || cv == ev || cv.equals(ev)) {
1295 oldVal = ev;
1296 if ((e.val = v) == null) {
1297 deleted = true;
1298 Node en = e.next;
1299 if (pred != null)
1300 pred.next = en;
1301 else
1302 setTabAt(tab, i, en);
1303 }
1304 }
1305 break;
1306 }
1307 pred = e;
1308 if ((e = e.next) == null)
1309 break;
1310 }
1311 }
1312 } finally {
1313 if (!f.casHash(fh | LOCKED, fh)) {
1314 f.hash = fh;
1315 synchronized (f) { f.notifyAll(); };
1316 }
1317 }
1318 if (validated) {
1319 if (deleted)
1320 counter.add(-1L);
1321 break;
1322 }
1323 }
1324 }
1325 return oldVal;
1326 }
1327
1328 /*
1329 * Internal versions of the six insertion methods, each a
1330 * little more complicated than the last. All have
1331 * the same basic structure as the first (internalPut):
1332 * 1. If table uninitialized, create
1333 * 2. If bin empty, try to CAS new node
1334 * 3. If bin stale, use new table
1335 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1336 * 5. Lock and validate; if valid, scan and add or update
1337 *
1338 * The others interweave other checks and/or alternative actions:
1339 * * Plain put checks for and performs resize after insertion.
1340 * * putIfAbsent prescans for mapping without lock (and fails to add
1341 * if present), which also makes pre-emptive resize checks worthwhile.
1342 * * computeIfAbsent extends form used in putIfAbsent with additional
1343 * mechanics to deal with, calls, potential exceptions and null
1344 * returns from function call.
1345 * * compute uses the same function-call mechanics, but without
1346 * the prescans
1347 * * merge acts as putIfAbsent in the absent case, but invokes the
1348 * update function if present
1349 * * putAll attempts to pre-allocate enough table space
1350 * and more lazily performs count updates and checks.
1351 *
1352 * Someday when details settle down a bit more, it might be worth
1353 * some factoring to reduce sprawl.
1354 */
1355
1356 /** Implementation for put */
1357 private final Object internalPut(Object k, Object v) {
1358 int h = spread(k.hashCode());
1359 int count = 0;
1360 for (Node[] tab = table;;) {
1361 int i; Node f; int fh; Object fk;
1362 if (tab == null)
1363 tab = initTable();
1364 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1365 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1366 break; // no lock when adding to empty bin
1367 }
1368 else if ((fh = f.hash) == MOVED) {
1369 if ((fk = f.key) instanceof TreeBin) {
1370 TreeBin t = (TreeBin)fk;
1371 Object oldVal = null;
1372 t.acquire(0);
1373 try {
1374 if (tabAt(tab, i) == f) {
1375 count = 2;
1376 TreeNode p = t.putTreeNode(h, k, v);
1377 if (p != null) {
1378 oldVal = p.val;
1379 p.val = v;
1380 }
1381 }
1382 } finally {
1383 t.release(0);
1384 }
1385 if (count != 0) {
1386 if (oldVal != null)
1387 return oldVal;
1388 break;
1389 }
1390 }
1391 else
1392 tab = (Node[])fk;
1393 }
1394 else if ((fh & LOCKED) != 0) {
1395 checkForResize();
1396 f.tryAwaitLock(tab, i);
1397 }
1398 else if (f.casHash(fh, fh | LOCKED)) {
1399 Object oldVal = null;
1400 try { // needed in case equals() throws
1401 if (tabAt(tab, i) == f) {
1402 count = 1;
1403 for (Node e = f;; ++count) {
1404 Object ek, ev;
1405 if ((e.hash & HASH_BITS) == h &&
1406 (ev = e.val) != null &&
1407 ((ek = e.key) == k || k.equals(ek))) {
1408 oldVal = ev;
1409 e.val = v;
1410 break;
1411 }
1412 Node last = e;
1413 if ((e = e.next) == null) {
1414 last.next = new Node(h, k, v, null);
1415 if (count >= TREE_THRESHOLD)
1416 replaceWithTreeBin(tab, i, k);
1417 break;
1418 }
1419 }
1420 }
1421 } finally { // unlock and signal if needed
1422 if (!f.casHash(fh | LOCKED, fh)) {
1423 f.hash = fh;
1424 synchronized (f) { f.notifyAll(); };
1425 }
1426 }
1427 if (count != 0) {
1428 if (oldVal != null)
1429 return oldVal;
1430 if (tab.length <= 64)
1431 count = 2;
1432 break;
1433 }
1434 }
1435 }
1436 counter.add(1L);
1437 if (count > 1)
1438 checkForResize();
1439 return null;
1440 }
1441
1442 /** Implementation for putIfAbsent */
1443 private final Object internalPutIfAbsent(Object k, Object v) {
1444 int h = spread(k.hashCode());
1445 int count = 0;
1446 for (Node[] tab = table;;) {
1447 int i; Node f; int fh; Object fk, fv;
1448 if (tab == null)
1449 tab = initTable();
1450 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1452 break;
1453 }
1454 else if ((fh = f.hash) == MOVED) {
1455 if ((fk = f.key) instanceof TreeBin) {
1456 TreeBin t = (TreeBin)fk;
1457 Object oldVal = null;
1458 t.acquire(0);
1459 try {
1460 if (tabAt(tab, i) == f) {
1461 count = 2;
1462 TreeNode p = t.putTreeNode(h, k, v);
1463 if (p != null)
1464 oldVal = p.val;
1465 }
1466 } finally {
1467 t.release(0);
1468 }
1469 if (count != 0) {
1470 if (oldVal != null)
1471 return oldVal;
1472 break;
1473 }
1474 }
1475 else
1476 tab = (Node[])fk;
1477 }
1478 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479 ((fk = f.key) == k || k.equals(fk)))
1480 return fv;
1481 else {
1482 Node g = f.next;
1483 if (g != null) { // at least 2 nodes -- search and maybe resize
1484 for (Node e = g;;) {
1485 Object ek, ev;
1486 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487 ((ek = e.key) == k || k.equals(ek)))
1488 return ev;
1489 if ((e = e.next) == null) {
1490 checkForResize();
1491 break;
1492 }
1493 }
1494 }
1495 if (((fh = f.hash) & LOCKED) != 0) {
1496 checkForResize();
1497 f.tryAwaitLock(tab, i);
1498 }
1499 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500 Object oldVal = null;
1501 try {
1502 if (tabAt(tab, i) == f) {
1503 count = 1;
1504 for (Node e = f;; ++count) {
1505 Object ek, ev;
1506 if ((e.hash & HASH_BITS) == h &&
1507 (ev = e.val) != null &&
1508 ((ek = e.key) == k || k.equals(ek))) {
1509 oldVal = ev;
1510 break;
1511 }
1512 Node last = e;
1513 if ((e = e.next) == null) {
1514 last.next = new Node(h, k, v, null);
1515 if (count >= TREE_THRESHOLD)
1516 replaceWithTreeBin(tab, i, k);
1517 break;
1518 }
1519 }
1520 }
1521 } finally {
1522 if (!f.casHash(fh | LOCKED, fh)) {
1523 f.hash = fh;
1524 synchronized (f) { f.notifyAll(); };
1525 }
1526 }
1527 if (count != 0) {
1528 if (oldVal != null)
1529 return oldVal;
1530 if (tab.length <= 64)
1531 count = 2;
1532 break;
1533 }
1534 }
1535 }
1536 }
1537 counter.add(1L);
1538 if (count > 1)
1539 checkForResize();
1540 return null;
1541 }
1542
1543 /** Implementation for computeIfAbsent */
1544 private final Object internalComputeIfAbsent(K k,
1545 Fun<? super K, ?> mf) {
1546 int h = spread(k.hashCode());
1547 Object val = null;
1548 int count = 0;
1549 for (Node[] tab = table;;) {
1550 Node f; int i, fh; Object fk, fv;
1551 if (tab == null)
1552 tab = initTable();
1553 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1554 Node node = new Node(fh = h | LOCKED, k, null, null);
1555 if (casTabAt(tab, i, null, node)) {
1556 count = 1;
1557 try {
1558 if ((val = mf.apply(k)) != null)
1559 node.val = val;
1560 } finally {
1561 if (val == null)
1562 setTabAt(tab, i, null);
1563 if (!node.casHash(fh, h)) {
1564 node.hash = h;
1565 synchronized (node) { node.notifyAll(); };
1566 }
1567 }
1568 }
1569 if (count != 0)
1570 break;
1571 }
1572 else if ((fh = f.hash) == MOVED) {
1573 if ((fk = f.key) instanceof TreeBin) {
1574 TreeBin t = (TreeBin)fk;
1575 boolean added = false;
1576 t.acquire(0);
1577 try {
1578 if (tabAt(tab, i) == f) {
1579 count = 1;
1580 TreeNode p = t.getTreeNode(h, k, t.root);
1581 if (p != null)
1582 val = p.val;
1583 else if ((val = mf.apply(k)) != null) {
1584 added = true;
1585 count = 2;
1586 t.putTreeNode(h, k, val);
1587 }
1588 }
1589 } finally {
1590 t.release(0);
1591 }
1592 if (count != 0) {
1593 if (!added)
1594 return val;
1595 break;
1596 }
1597 }
1598 else
1599 tab = (Node[])fk;
1600 }
1601 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602 ((fk = f.key) == k || k.equals(fk)))
1603 return fv;
1604 else {
1605 Node g = f.next;
1606 if (g != null) {
1607 for (Node e = g;;) {
1608 Object ek, ev;
1609 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610 ((ek = e.key) == k || k.equals(ek)))
1611 return ev;
1612 if ((e = e.next) == null) {
1613 checkForResize();
1614 break;
1615 }
1616 }
1617 }
1618 if (((fh = f.hash) & LOCKED) != 0) {
1619 checkForResize();
1620 f.tryAwaitLock(tab, i);
1621 }
1622 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1623 boolean added = false;
1624 try {
1625 if (tabAt(tab, i) == f) {
1626 count = 1;
1627 for (Node e = f;; ++count) {
1628 Object ek, ev;
1629 if ((e.hash & HASH_BITS) == h &&
1630 (ev = e.val) != null &&
1631 ((ek = e.key) == k || k.equals(ek))) {
1632 val = ev;
1633 break;
1634 }
1635 Node last = e;
1636 if ((e = e.next) == null) {
1637 if ((val = mf.apply(k)) != null) {
1638 added = true;
1639 last.next = new Node(h, k, val, null);
1640 if (count >= TREE_THRESHOLD)
1641 replaceWithTreeBin(tab, i, k);
1642 }
1643 break;
1644 }
1645 }
1646 }
1647 } finally {
1648 if (!f.casHash(fh | LOCKED, fh)) {
1649 f.hash = fh;
1650 synchronized (f) { f.notifyAll(); };
1651 }
1652 }
1653 if (count != 0) {
1654 if (!added)
1655 return val;
1656 if (tab.length <= 64)
1657 count = 2;
1658 break;
1659 }
1660 }
1661 }
1662 }
1663 if (val != null) {
1664 counter.add(1L);
1665 if (count > 1)
1666 checkForResize();
1667 }
1668 return val;
1669 }
1670
1671 /** Implementation for compute */
1672 @SuppressWarnings("unchecked") private final Object internalCompute
1673 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1674 int h = spread(k.hashCode());
1675 Object val = null;
1676 int delta = 0;
1677 int count = 0;
1678 for (Node[] tab = table;;) {
1679 Node f; int i, fh; Object fk;
1680 if (tab == null)
1681 tab = initTable();
1682 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1683 if (onlyIfPresent)
1684 break;
1685 Node node = new Node(fh = h | LOCKED, k, null, null);
1686 if (casTabAt(tab, i, null, node)) {
1687 try {
1688 count = 1;
1689 if ((val = mf.apply(k, null)) != null) {
1690 node.val = val;
1691 delta = 1;
1692 }
1693 } finally {
1694 if (delta == 0)
1695 setTabAt(tab, i, null);
1696 if (!node.casHash(fh, h)) {
1697 node.hash = h;
1698 synchronized (node) { node.notifyAll(); };
1699 }
1700 }
1701 }
1702 if (count != 0)
1703 break;
1704 }
1705 else if ((fh = f.hash) == MOVED) {
1706 if ((fk = f.key) instanceof TreeBin) {
1707 TreeBin t = (TreeBin)fk;
1708 t.acquire(0);
1709 try {
1710 if (tabAt(tab, i) == f) {
1711 count = 1;
1712 TreeNode p = t.getTreeNode(h, k, t.root);
1713 Object pv = (p == null) ? null : p.val;
1714 if ((val = mf.apply(k, (V)pv)) != null) {
1715 if (p != null)
1716 p.val = val;
1717 else {
1718 count = 2;
1719 delta = 1;
1720 t.putTreeNode(h, k, val);
1721 }
1722 }
1723 else if (p != null) {
1724 delta = -1;
1725 t.deleteTreeNode(p);
1726 }
1727 }
1728 } finally {
1729 t.release(0);
1730 }
1731 if (count != 0)
1732 break;
1733 }
1734 else
1735 tab = (Node[])fk;
1736 }
1737 else if ((fh & LOCKED) != 0) {
1738 checkForResize();
1739 f.tryAwaitLock(tab, i);
1740 }
1741 else if (f.casHash(fh, fh | LOCKED)) {
1742 try {
1743 if (tabAt(tab, i) == f) {
1744 count = 1;
1745 for (Node e = f, pred = null;; ++count) {
1746 Object ek, ev;
1747 if ((e.hash & HASH_BITS) == h &&
1748 (ev = e.val) != null &&
1749 ((ek = e.key) == k || k.equals(ek))) {
1750 val = mf.apply(k, (V)ev);
1751 if (val != null)
1752 e.val = val;
1753 else {
1754 delta = -1;
1755 Node en = e.next;
1756 if (pred != null)
1757 pred.next = en;
1758 else
1759 setTabAt(tab, i, en);
1760 }
1761 break;
1762 }
1763 pred = e;
1764 if ((e = e.next) == null) {
1765 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1766 pred.next = new Node(h, k, val, null);
1767 delta = 1;
1768 if (count >= TREE_THRESHOLD)
1769 replaceWithTreeBin(tab, i, k);
1770 }
1771 break;
1772 }
1773 }
1774 }
1775 } finally {
1776 if (!f.casHash(fh | LOCKED, fh)) {
1777 f.hash = fh;
1778 synchronized (f) { f.notifyAll(); };
1779 }
1780 }
1781 if (count != 0) {
1782 if (tab.length <= 64)
1783 count = 2;
1784 break;
1785 }
1786 }
1787 }
1788 if (delta != 0) {
1789 counter.add((long)delta);
1790 if (count > 1)
1791 checkForResize();
1792 }
1793 return val;
1794 }
1795
1796 /** Implementation for merge */
1797 @SuppressWarnings("unchecked") private final Object internalMerge
1798 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1799 int h = spread(k.hashCode());
1800 Object val = null;
1801 int delta = 0;
1802 int count = 0;
1803 for (Node[] tab = table;;) {
1804 int i; Node f; int fh; Object fk, fv;
1805 if (tab == null)
1806 tab = initTable();
1807 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1808 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809 delta = 1;
1810 val = v;
1811 break;
1812 }
1813 }
1814 else if ((fh = f.hash) == MOVED) {
1815 if ((fk = f.key) instanceof TreeBin) {
1816 TreeBin t = (TreeBin)fk;
1817 t.acquire(0);
1818 try {
1819 if (tabAt(tab, i) == f) {
1820 count = 1;
1821 TreeNode p = t.getTreeNode(h, k, t.root);
1822 val = (p == null) ? v : mf.apply((V)p.val, v);
1823 if (val != null) {
1824 if (p != null)
1825 p.val = val;
1826 else {
1827 count = 2;
1828 delta = 1;
1829 t.putTreeNode(h, k, val);
1830 }
1831 }
1832 else if (p != null) {
1833 delta = -1;
1834 t.deleteTreeNode(p);
1835 }
1836 }
1837 } finally {
1838 t.release(0);
1839 }
1840 if (count != 0)
1841 break;
1842 }
1843 else
1844 tab = (Node[])fk;
1845 }
1846 else if ((fh & LOCKED) != 0) {
1847 checkForResize();
1848 f.tryAwaitLock(tab, i);
1849 }
1850 else if (f.casHash(fh, fh | LOCKED)) {
1851 try {
1852 if (tabAt(tab, i) == f) {
1853 count = 1;
1854 for (Node e = f, pred = null;; ++count) {
1855 Object ek, ev;
1856 if ((e.hash & HASH_BITS) == h &&
1857 (ev = e.val) != null &&
1858 ((ek = e.key) == k || k.equals(ek))) {
1859 val = mf.apply(v, (V)ev);
1860 if (val != null)
1861 e.val = val;
1862 else {
1863 delta = -1;
1864 Node en = e.next;
1865 if (pred != null)
1866 pred.next = en;
1867 else
1868 setTabAt(tab, i, en);
1869 }
1870 break;
1871 }
1872 pred = e;
1873 if ((e = e.next) == null) {
1874 val = v;
1875 pred.next = new Node(h, k, val, null);
1876 delta = 1;
1877 if (count >= TREE_THRESHOLD)
1878 replaceWithTreeBin(tab, i, k);
1879 break;
1880 }
1881 }
1882 }
1883 } finally {
1884 if (!f.casHash(fh | LOCKED, fh)) {
1885 f.hash = fh;
1886 synchronized (f) { f.notifyAll(); };
1887 }
1888 }
1889 if (count != 0) {
1890 if (tab.length <= 64)
1891 count = 2;
1892 break;
1893 }
1894 }
1895 }
1896 if (delta != 0) {
1897 counter.add((long)delta);
1898 if (count > 1)
1899 checkForResize();
1900 }
1901 return val;
1902 }
1903
1904 /** Implementation for putAll */
1905 private final void internalPutAll(Map<?, ?> m) {
1906 tryPresize(m.size());
1907 long delta = 0L; // number of uncommitted additions
1908 boolean npe = false; // to throw exception on exit for nulls
1909 try { // to clean up counts on other exceptions
1910 for (Map.Entry<?, ?> entry : m.entrySet()) {
1911 Object k, v;
1912 if (entry == null || (k = entry.getKey()) == null ||
1913 (v = entry.getValue()) == null) {
1914 npe = true;
1915 break;
1916 }
1917 int h = spread(k.hashCode());
1918 for (Node[] tab = table;;) {
1919 int i; Node f; int fh; Object fk;
1920 if (tab == null)
1921 tab = initTable();
1922 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1923 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1924 ++delta;
1925 break;
1926 }
1927 }
1928 else if ((fh = f.hash) == MOVED) {
1929 if ((fk = f.key) instanceof TreeBin) {
1930 TreeBin t = (TreeBin)fk;
1931 boolean validated = false;
1932 t.acquire(0);
1933 try {
1934 if (tabAt(tab, i) == f) {
1935 validated = true;
1936 TreeNode p = t.getTreeNode(h, k, t.root);
1937 if (p != null)
1938 p.val = v;
1939 else {
1940 t.putTreeNode(h, k, v);
1941 ++delta;
1942 }
1943 }
1944 } finally {
1945 t.release(0);
1946 }
1947 if (validated)
1948 break;
1949 }
1950 else
1951 tab = (Node[])fk;
1952 }
1953 else if ((fh & LOCKED) != 0) {
1954 counter.add(delta);
1955 delta = 0L;
1956 checkForResize();
1957 f.tryAwaitLock(tab, i);
1958 }
1959 else if (f.casHash(fh, fh | LOCKED)) {
1960 int count = 0;
1961 try {
1962 if (tabAt(tab, i) == f) {
1963 count = 1;
1964 for (Node e = f;; ++count) {
1965 Object ek, ev;
1966 if ((e.hash & HASH_BITS) == h &&
1967 (ev = e.val) != null &&
1968 ((ek = e.key) == k || k.equals(ek))) {
1969 e.val = v;
1970 break;
1971 }
1972 Node last = e;
1973 if ((e = e.next) == null) {
1974 ++delta;
1975 last.next = new Node(h, k, v, null);
1976 if (count >= TREE_THRESHOLD)
1977 replaceWithTreeBin(tab, i, k);
1978 break;
1979 }
1980 }
1981 }
1982 } finally {
1983 if (!f.casHash(fh | LOCKED, fh)) {
1984 f.hash = fh;
1985 synchronized (f) { f.notifyAll(); };
1986 }
1987 }
1988 if (count != 0) {
1989 if (count > 1) {
1990 counter.add(delta);
1991 delta = 0L;
1992 checkForResize();
1993 }
1994 break;
1995 }
1996 }
1997 }
1998 }
1999 } finally {
2000 if (delta != 0)
2001 counter.add(delta);
2002 }
2003 if (npe)
2004 throw new NullPointerException();
2005 }
2006
2007 /* ---------------- Table Initialization and Resizing -------------- */
2008
2009 /**
2010 * Returns a power of two table size for the given desired capacity.
2011 * See Hackers Delight, sec 3.2
2012 */
2013 private static final int tableSizeFor(int c) {
2014 int n = c - 1;
2015 n |= n >>> 1;
2016 n |= n >>> 2;
2017 n |= n >>> 4;
2018 n |= n >>> 8;
2019 n |= n >>> 16;
2020 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2021 }
2022
2023 /**
2024 * Initializes table, using the size recorded in sizeCtl.
2025 */
2026 private final Node[] initTable() {
2027 Node[] tab; int sc;
2028 while ((tab = table) == null) {
2029 if ((sc = sizeCtl) < 0)
2030 Thread.yield(); // lost initialization race; just spin
2031 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2032 try {
2033 if ((tab = table) == null) {
2034 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2035 tab = table = new Node[n];
2036 sc = n - (n >>> 2);
2037 }
2038 } finally {
2039 sizeCtl = sc;
2040 }
2041 break;
2042 }
2043 }
2044 return tab;
2045 }
2046
2047 /**
2048 * If table is too small and not already resizing, creates next
2049 * table and transfers bins. Rechecks occupancy after a transfer
2050 * to see if another resize is already needed because resizings
2051 * are lagging additions.
2052 */
2053 private final void checkForResize() {
2054 Node[] tab; int n, sc;
2055 while ((tab = table) != null &&
2056 (n = tab.length) < MAXIMUM_CAPACITY &&
2057 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2058 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2059 try {
2060 if (tab == table) {
2061 table = rebuild(tab);
2062 sc = (n << 1) - (n >>> 1);
2063 }
2064 } finally {
2065 sizeCtl = sc;
2066 }
2067 }
2068 }
2069
2070 /**
2071 * Tries to presize table to accommodate the given number of elements.
2072 *
2073 * @param size number of elements (doesn't need to be perfectly accurate)
2074 */
2075 private final void tryPresize(int size) {
2076 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2077 tableSizeFor(size + (size >>> 1) + 1);
2078 int sc;
2079 while ((sc = sizeCtl) >= 0) {
2080 Node[] tab = table; int n;
2081 if (tab == null || (n = tab.length) == 0) {
2082 n = (sc > c) ? sc : c;
2083 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2084 try {
2085 if (table == tab) {
2086 table = new Node[n];
2087 sc = n - (n >>> 2);
2088 }
2089 } finally {
2090 sizeCtl = sc;
2091 }
2092 }
2093 }
2094 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2095 break;
2096 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2097 try {
2098 if (table == tab) {
2099 table = rebuild(tab);
2100 sc = (n << 1) - (n >>> 1);
2101 }
2102 } finally {
2103 sizeCtl = sc;
2104 }
2105 }
2106 }
2107 }
2108
2109 /*
2110 * Moves and/or copies the nodes in each bin to new table. See
2111 * above for explanation.
2112 *
2113 * @return the new table
2114 */
2115 private static final Node[] rebuild(Node[] tab) {
2116 int n = tab.length;
2117 Node[] nextTab = new Node[n << 1];
2118 Node fwd = new Node(MOVED, nextTab, null, null);
2119 int[] buffer = null; // holds bins to revisit; null until needed
2120 Node rev = null; // reverse forwarder; null until needed
2121 int nbuffered = 0; // the number of bins in buffer list
2122 int bufferIndex = 0; // buffer index of current buffered bin
2123 int bin = n - 1; // current non-buffered bin or -1 if none
2124
2125 for (int i = bin;;) { // start upwards sweep
2126 int fh; Node f;
2127 if ((f = tabAt(tab, i)) == null) {
2128 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2129 if (!casTabAt(tab, i, f, fwd))
2130 continue;
2131 }
2132 else { // transiently use a locked forwarding node
2133 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2134 if (!casTabAt(tab, i, f, g))
2135 continue;
2136 setTabAt(nextTab, i, null);
2137 setTabAt(nextTab, i + n, null);
2138 setTabAt(tab, i, fwd);
2139 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140 g.hash = MOVED;
2141 synchronized (g) { g.notifyAll(); }
2142 }
2143 }
2144 }
2145 else if ((fh = f.hash) == MOVED) {
2146 Object fk = f.key;
2147 if (fk instanceof TreeBin) {
2148 TreeBin t = (TreeBin)fk;
2149 boolean validated = false;
2150 t.acquire(0);
2151 try {
2152 if (tabAt(tab, i) == f) {
2153 validated = true;
2154 splitTreeBin(nextTab, i, t);
2155 setTabAt(tab, i, fwd);
2156 }
2157 } finally {
2158 t.release(0);
2159 }
2160 if (!validated)
2161 continue;
2162 }
2163 }
2164 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2165 boolean validated = false;
2166 try { // split to lo and hi lists; copying as needed
2167 if (tabAt(tab, i) == f) {
2168 validated = true;
2169 splitBin(nextTab, i, f);
2170 setTabAt(tab, i, fwd);
2171 }
2172 } finally {
2173 if (!f.casHash(fh | LOCKED, fh)) {
2174 f.hash = fh;
2175 synchronized (f) { f.notifyAll(); };
2176 }
2177 }
2178 if (!validated)
2179 continue;
2180 }
2181 else {
2182 if (buffer == null) // initialize buffer for revisits
2183 buffer = new int[TRANSFER_BUFFER_SIZE];
2184 if (bin < 0 && bufferIndex > 0) {
2185 int j = buffer[--bufferIndex];
2186 buffer[bufferIndex] = i;
2187 i = j; // swap with another bin
2188 continue;
2189 }
2190 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191 f.tryAwaitLock(tab, i);
2192 continue; // no other options -- block
2193 }
2194 if (rev == null) // initialize reverse-forwarder
2195 rev = new Node(MOVED, tab, null, null);
2196 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197 continue; // recheck before adding to list
2198 buffer[nbuffered++] = i;
2199 setTabAt(nextTab, i, rev); // install place-holders
2200 setTabAt(nextTab, i + n, rev);
2201 }
2202
2203 if (bin > 0)
2204 i = --bin;
2205 else if (buffer != null && nbuffered > 0) {
2206 bin = -1;
2207 i = buffer[bufferIndex = --nbuffered];
2208 }
2209 else
2210 return nextTab;
2211 }
2212 }
2213
2214 /**
2215 * Splits a normal bin with list headed by e into lo and hi parts;
2216 * installs in given table.
2217 */
2218 private static void splitBin(Node[] nextTab, int i, Node e) {
2219 int bit = nextTab.length >>> 1; // bit to split on
2220 int runBit = e.hash & bit;
2221 Node lastRun = e, lo = null, hi = null;
2222 for (Node p = e.next; p != null; p = p.next) {
2223 int b = p.hash & bit;
2224 if (b != runBit) {
2225 runBit = b;
2226 lastRun = p;
2227 }
2228 }
2229 if (runBit == 0)
2230 lo = lastRun;
2231 else
2232 hi = lastRun;
2233 for (Node p = e; p != lastRun; p = p.next) {
2234 int ph = p.hash & HASH_BITS;
2235 Object pk = p.key, pv = p.val;
2236 if ((ph & bit) == 0)
2237 lo = new Node(ph, pk, pv, lo);
2238 else
2239 hi = new Node(ph, pk, pv, hi);
2240 }
2241 setTabAt(nextTab, i, lo);
2242 setTabAt(nextTab, i + bit, hi);
2243 }
2244
2245 /**
2246 * Splits a tree bin into lo and hi parts; installs in given table.
2247 */
2248 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2249 int bit = nextTab.length >>> 1;
2250 TreeBin lt = new TreeBin();
2251 TreeBin ht = new TreeBin();
2252 int lc = 0, hc = 0;
2253 for (Node e = t.first; e != null; e = e.next) {
2254 int h = e.hash & HASH_BITS;
2255 Object k = e.key, v = e.val;
2256 if ((h & bit) == 0) {
2257 ++lc;
2258 lt.putTreeNode(h, k, v);
2259 }
2260 else {
2261 ++hc;
2262 ht.putTreeNode(h, k, v);
2263 }
2264 }
2265 Node ln, hn; // throw away trees if too small
2266 if (lc <= (TREE_THRESHOLD >>> 1)) {
2267 ln = null;
2268 for (Node p = lt.first; p != null; p = p.next)
2269 ln = new Node(p.hash, p.key, p.val, ln);
2270 }
2271 else
2272 ln = new Node(MOVED, lt, null, null);
2273 setTabAt(nextTab, i, ln);
2274 if (hc <= (TREE_THRESHOLD >>> 1)) {
2275 hn = null;
2276 for (Node p = ht.first; p != null; p = p.next)
2277 hn = new Node(p.hash, p.key, p.val, hn);
2278 }
2279 else
2280 hn = new Node(MOVED, ht, null, null);
2281 setTabAt(nextTab, i + bit, hn);
2282 }
2283
2284 /**
2285 * Implementation for clear. Steps through each bin, removing all
2286 * nodes.
2287 */
2288 private final void internalClear() {
2289 long delta = 0L; // negative number of deletions
2290 int i = 0;
2291 Node[] tab = table;
2292 while (tab != null && i < tab.length) {
2293 int fh; Object fk;
2294 Node f = tabAt(tab, i);
2295 if (f == null)
2296 ++i;
2297 else if ((fh = f.hash) == MOVED) {
2298 if ((fk = f.key) instanceof TreeBin) {
2299 TreeBin t = (TreeBin)fk;
2300 t.acquire(0);
2301 try {
2302 if (tabAt(tab, i) == f) {
2303 for (Node p = t.first; p != null; p = p.next) {
2304 if (p.val != null) { // (currently always true)
2305 p.val = null;
2306 --delta;
2307 }
2308 }
2309 t.first = null;
2310 t.root = null;
2311 ++i;
2312 }
2313 } finally {
2314 t.release(0);
2315 }
2316 }
2317 else
2318 tab = (Node[])fk;
2319 }
2320 else if ((fh & LOCKED) != 0) {
2321 counter.add(delta); // opportunistically update count
2322 delta = 0L;
2323 f.tryAwaitLock(tab, i);
2324 }
2325 else if (f.casHash(fh, fh | LOCKED)) {
2326 try {
2327 if (tabAt(tab, i) == f) {
2328 for (Node e = f; e != null; e = e.next) {
2329 if (e.val != null) { // (currently always true)
2330 e.val = null;
2331 --delta;
2332 }
2333 }
2334 setTabAt(tab, i, null);
2335 ++i;
2336 }
2337 } finally {
2338 if (!f.casHash(fh | LOCKED, fh)) {
2339 f.hash = fh;
2340 synchronized (f) { f.notifyAll(); };
2341 }
2342 }
2343 }
2344 }
2345 if (delta != 0)
2346 counter.add(delta);
2347 }
2348
2349 /* ----------------Table Traversal -------------- */
2350
2351 /**
2352 * Encapsulates traversal for methods such as containsValue; also
2353 * serves as a base class for other iterators and bulk tasks.
2354 *
2355 * At each step, the iterator snapshots the key ("nextKey") and
2356 * value ("nextVal") of a valid node (i.e., one that, at point of
2357 * snapshot, has a non-null user value). Because val fields can
2358 * change (including to null, indicating deletion), field nextVal
2359 * might not be accurate at point of use, but still maintains the
2360 * weak consistency property of holding a value that was once
2361 * valid. To support iterator.remove, the nextKey field is not
2362 * updated (nulled out) when the iterator cannot advance.
2363 *
2364 * Internal traversals directly access these fields, as in:
2365 * {@code while (it.advance() != null) { process(it.nextKey); }}
2366 *
2367 * Exported iterators must track whether the iterator has advanced
2368 * (in hasNext vs next) (by setting/checking/nulling field
2369 * nextVal), and then extract key, value, or key-value pairs as
2370 * return values of next().
2371 *
2372 * The iterator visits once each still-valid node that was
2373 * reachable upon iterator construction. It might miss some that
2374 * were added to a bin after the bin was visited, which is OK wrt
2375 * consistency guarantees. Maintaining this property in the face
2376 * of possible ongoing resizes requires a fair amount of
2377 * bookkeeping state that is difficult to optimize away amidst
2378 * volatile accesses. Even so, traversal maintains reasonable
2379 * throughput.
2380 *
2381 * Normally, iteration proceeds bin-by-bin traversing lists.
2382 * However, if the table has been resized, then all future steps
2383 * must traverse both the bin at the current index as well as at
2384 * (index + baseSize); and so on for further resizings. To
2385 * paranoically cope with potential sharing by users of iterators
2386 * across threads, iteration terminates if a bounds checks fails
2387 * for a table read.
2388 *
2389 * This class extends ForkJoinTask to streamline parallel
2390 * iteration in bulk operations (see BulkTask). This adds only an
2391 * int of space overhead, which is close enough to negligible in
2392 * cases where it is not needed to not worry about it. Because
2393 * ForkJoinTask is Serializable, but iterators need not be, we
2394 * need to add warning suppressions.
2395 */
2396 @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2397 final ConcurrentHashMap<K, V> map;
2398 Node next; // the next entry to use
2399 Object nextKey; // cached key field of next
2400 Object nextVal; // cached val field of next
2401 Node[] tab; // current table; updated if resized
2402 int index; // index of bin to use next
2403 int baseIndex; // current index of initial table
2404 int baseLimit; // index bound for initial table
2405 int baseSize; // initial table size
2406
2407 /** Creates iterator for all entries in the table. */
2408 Traverser(ConcurrentHashMap<K, V> map) {
2409 this.map = map;
2410 }
2411
2412 /** Creates iterator for split() methods */
2413 Traverser(Traverser<K,V,?> it) {
2414 ConcurrentHashMap<K, V> m; Node[] t;
2415 if ((m = this.map = it.map) == null)
2416 t = null;
2417 else if ((t = it.tab) == null && // force parent tab initialization
2418 (t = it.tab = m.table) != null)
2419 it.baseLimit = it.baseSize = t.length;
2420 this.tab = t;
2421 this.baseSize = it.baseSize;
2422 it.baseLimit = this.index = this.baseIndex =
2423 ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2424 }
2425
2426 /**
2427 * Advances next; returns nextVal or null if terminated.
2428 * See above for explanation.
2429 */
2430 final Object advance() {
2431 Node e = next;
2432 Object ev = null;
2433 outer: do {
2434 if (e != null) // advance past used/skipped node
2435 e = e.next;
2436 while (e == null) { // get to next non-null bin
2437 ConcurrentHashMap<K, V> m;
2438 Node[] t; int b, i, n; Object ek; // checks must use locals
2439 if ((t = tab) != null)
2440 n = t.length;
2441 else if ((m = map) != null && (t = tab = m.table) != null)
2442 n = baseLimit = baseSize = t.length;
2443 else
2444 break outer;
2445 if ((b = baseIndex) >= baseLimit ||
2446 (i = index) < 0 || i >= n)
2447 break outer;
2448 if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2449 if ((ek = e.key) instanceof TreeBin)
2450 e = ((TreeBin)ek).first;
2451 else {
2452 tab = (Node[])ek;
2453 continue; // restarts due to null val
2454 }
2455 } // visit upper slots if present
2456 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2457 }
2458 nextKey = e.key;
2459 } while ((ev = e.val) == null); // skip deleted or special nodes
2460 next = e;
2461 return nextVal = ev;
2462 }
2463
2464 public final void remove() {
2465 Object k = nextKey;
2466 if (k == null && (advance() == null || (k = nextKey) == null))
2467 throw new IllegalStateException();
2468 map.internalReplace(k, null, null);
2469 }
2470
2471 public final boolean hasNext() {
2472 return nextVal != null || advance() != null;
2473 }
2474
2475 public final boolean hasMoreElements() { return hasNext(); }
2476 public final void setRawResult(Object x) { }
2477 public R getRawResult() { return null; }
2478 public boolean exec() { return true; }
2479 }
2480
2481 /* ---------------- Public operations -------------- */
2482
2483 /**
2484 * Creates a new, empty map with the default initial table size (16).
2485 */
2486 public ConcurrentHashMap() {
2487 this.counter = new LongAdder();
2488 }
2489
2490 /**
2491 * Creates a new, empty map with an initial table size
2492 * accommodating the specified number of elements without the need
2493 * to dynamically resize.
2494 *
2495 * @param initialCapacity The implementation performs internal
2496 * sizing to accommodate this many elements.
2497 * @throws IllegalArgumentException if the initial capacity of
2498 * elements is negative
2499 */
2500 public ConcurrentHashMap(int initialCapacity) {
2501 if (initialCapacity < 0)
2502 throw new IllegalArgumentException();
2503 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2504 MAXIMUM_CAPACITY :
2505 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506 this.counter = new LongAdder();
2507 this.sizeCtl = cap;
2508 }
2509
2510 /**
2511 * Creates a new map with the same mappings as the given map.
2512 *
2513 * @param m the map
2514 */
2515 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2516 this.counter = new LongAdder();
2517 this.sizeCtl = DEFAULT_CAPACITY;
2518 internalPutAll(m);
2519 }
2520
2521 /**
2522 * Creates a new, empty map with an initial table size based on
2523 * the given number of elements ({@code initialCapacity}) and
2524 * initial table density ({@code loadFactor}).
2525 *
2526 * @param initialCapacity the initial capacity. The implementation
2527 * performs internal sizing to accommodate this many elements,
2528 * given the specified load factor.
2529 * @param loadFactor the load factor (table density) for
2530 * establishing the initial table size
2531 * @throws IllegalArgumentException if the initial capacity of
2532 * elements is negative or the load factor is nonpositive
2533 *
2534 * @since 1.6
2535 */
2536 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2537 this(initialCapacity, loadFactor, 1);
2538 }
2539
2540 /**
2541 * Creates a new, empty map with an initial table size based on
2542 * the given number of elements ({@code initialCapacity}), table
2543 * density ({@code loadFactor}), and number of concurrently
2544 * updating threads ({@code concurrencyLevel}).
2545 *
2546 * @param initialCapacity the initial capacity. The implementation
2547 * performs internal sizing to accommodate this many elements,
2548 * given the specified load factor.
2549 * @param loadFactor the load factor (table density) for
2550 * establishing the initial table size
2551 * @param concurrencyLevel the estimated number of concurrently
2552 * updating threads. The implementation may use this value as
2553 * a sizing hint.
2554 * @throws IllegalArgumentException if the initial capacity is
2555 * negative or the load factor or concurrencyLevel are
2556 * nonpositive
2557 */
2558 public ConcurrentHashMap(int initialCapacity,
2559 float loadFactor, int concurrencyLevel) {
2560 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2561 throw new IllegalArgumentException();
2562 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2563 initialCapacity = concurrencyLevel; // as estimated threads
2564 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2565 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2566 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2567 this.counter = new LongAdder();
2568 this.sizeCtl = cap;
2569 }
2570
2571 /**
2572 * Creates a new {@link Set} backed by a ConcurrentHashMap
2573 * from the given type to {@code Boolean.TRUE}.
2574 *
2575 * @return the new set
2576 */
2577 public static <K> KeySetView<K,Boolean> newKeySet() {
2578 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2579 Boolean.TRUE);
2580 }
2581
2582 /**
2583 * Creates a new {@link Set} backed by a ConcurrentHashMap
2584 * from the given type to {@code Boolean.TRUE}.
2585 *
2586 * @param initialCapacity The implementation performs internal
2587 * sizing to accommodate this many elements.
2588 * @throws IllegalArgumentException if the initial capacity of
2589 * elements is negative
2590 * @return the new set
2591 */
2592 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2593 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2594 Boolean.TRUE);
2595 }
2596
2597 /**
2598 * {@inheritDoc}
2599 */
2600 public boolean isEmpty() {
2601 return counter.sum() <= 0L; // ignore transient negative values
2602 }
2603
2604 /**
2605 * {@inheritDoc}
2606 */
2607 public int size() {
2608 long n = counter.sum();
2609 return ((n < 0L) ? 0 :
2610 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2611 (int)n);
2612 }
2613
2614 /**
2615 * Returns the number of mappings. This method should be used
2616 * instead of {@link #size} because a ConcurrentHashMap may
2617 * contain more mappings than can be represented as an int. The
2618 * value returned is a snapshot; the actual count may differ if
2619 * there are ongoing concurrent insertions or removals.
2620 *
2621 * @return the number of mappings
2622 */
2623 public long mappingCount() {
2624 long n = counter.sum();
2625 return (n < 0L) ? 0L : n; // ignore transient negative values
2626 }
2627
2628 /**
2629 * Returns the value to which the specified key is mapped,
2630 * or {@code null} if this map contains no mapping for the key.
2631 *
2632 * <p>More formally, if this map contains a mapping from a key
2633 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2634 * then this method returns {@code v}; otherwise it returns
2635 * {@code null}. (There can be at most one such mapping.)
2636 *
2637 * @throws NullPointerException if the specified key is null
2638 */
2639 @SuppressWarnings("unchecked") public V get(Object key) {
2640 if (key == null)
2641 throw new NullPointerException();
2642 return (V)internalGet(key);
2643 }
2644
2645 /**
2646 * Returns the value to which the specified key is mapped,
2647 * or the given defaultValue if this map contains no mapping for the key.
2648 *
2649 * @param key the key
2650 * @param defaultValue the value to return if this map contains
2651 * no mapping for the given key
2652 * @return the mapping for the key, if present; else the defaultValue
2653 * @throws NullPointerException if the specified key is null
2654 */
2655 @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2656 if (key == null)
2657 throw new NullPointerException();
2658 V v = (V) internalGet(key);
2659 return v == null ? defaultValue : v;
2660 }
2661
2662 /**
2663 * Tests if the specified object is a key in this table.
2664 *
2665 * @param key possible key
2666 * @return {@code true} if and only if the specified object
2667 * is a key in this table, as determined by the
2668 * {@code equals} method; {@code false} otherwise
2669 * @throws NullPointerException if the specified key is null
2670 */
2671 public boolean containsKey(Object key) {
2672 if (key == null)
2673 throw new NullPointerException();
2674 return internalGet(key) != null;
2675 }
2676
2677 /**
2678 * Returns {@code true} if this map maps one or more keys to the
2679 * specified value. Note: This method may require a full traversal
2680 * of the map, and is much slower than method {@code containsKey}.
2681 *
2682 * @param value value whose presence in this map is to be tested
2683 * @return {@code true} if this map maps one or more keys to the
2684 * specified value
2685 * @throws NullPointerException if the specified value is null
2686 */
2687 public boolean containsValue(Object value) {
2688 if (value == null)
2689 throw new NullPointerException();
2690 Object v;
2691 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2692 while ((v = it.advance()) != null) {
2693 if (v == value || value.equals(v))
2694 return true;
2695 }
2696 return false;
2697 }
2698
2699 /**
2700 * Legacy method testing if some key maps into the specified value
2701 * in this table. This method is identical in functionality to
2702 * {@link #containsValue}, and exists solely to ensure
2703 * full compatibility with class {@link java.util.Hashtable},
2704 * which supported this method prior to introduction of the
2705 * Java Collections framework.
2706 *
2707 * @param value a value to search for
2708 * @return {@code true} if and only if some key maps to the
2709 * {@code value} argument in this table as
2710 * determined by the {@code equals} method;
2711 * {@code false} otherwise
2712 * @throws NullPointerException if the specified value is null
2713 */
2714 public boolean contains(Object value) {
2715 return containsValue(value);
2716 }
2717
2718 /**
2719 * Maps the specified key to the specified value in this table.
2720 * Neither the key nor the value can be null.
2721 *
2722 * <p> The value can be retrieved by calling the {@code get} method
2723 * with a key that is equal to the original key.
2724 *
2725 * @param key key with which the specified value is to be associated
2726 * @param value value to be associated with the specified key
2727 * @return the previous value associated with {@code key}, or
2728 * {@code null} if there was no mapping for {@code key}
2729 * @throws NullPointerException if the specified key or value is null
2730 */
2731 @SuppressWarnings("unchecked") public V put(K key, V value) {
2732 if (key == null || value == null)
2733 throw new NullPointerException();
2734 return (V)internalPut(key, value);
2735 }
2736
2737 /**
2738 * {@inheritDoc}
2739 *
2740 * @return the previous value associated with the specified key,
2741 * or {@code null} if there was no mapping for the key
2742 * @throws NullPointerException if the specified key or value is null
2743 */
2744 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2745 if (key == null || value == null)
2746 throw new NullPointerException();
2747 return (V)internalPutIfAbsent(key, value);
2748 }
2749
2750 /**
2751 * Copies all of the mappings from the specified map to this one.
2752 * These mappings replace any mappings that this map had for any of the
2753 * keys currently in the specified map.
2754 *
2755 * @param m mappings to be stored in this map
2756 */
2757 public void putAll(Map<? extends K, ? extends V> m) {
2758 internalPutAll(m);
2759 }
2760
2761 /**
2762 * If the specified key is not already associated with a value,
2763 * computes its value using the given mappingFunction and enters
2764 * it into the map unless null. This is equivalent to
2765 * <pre> {@code
2766 * if (map.containsKey(key))
2767 * return map.get(key);
2768 * value = mappingFunction.apply(key);
2769 * if (value != null)
2770 * map.put(key, value);
2771 * return value;}</pre>
2772 *
2773 * except that the action is performed atomically. If the
2774 * function returns {@code null} no mapping is recorded. If the
2775 * function itself throws an (unchecked) exception, the exception
2776 * is rethrown to its caller, and no mapping is recorded. Some
2777 * attempted update operations on this map by other threads may be
2778 * blocked while computation is in progress, so the computation
2779 * should be short and simple, and must not attempt to update any
2780 * other mappings of this Map. The most appropriate usage is to
2781 * construct a new object serving as an initial mapped value, or
2782 * memoized result, as in:
2783 *
2784 * <pre> {@code
2785 * map.computeIfAbsent(key, new Fun<K, V>() {
2786 * public V map(K k) { return new Value(f(k)); }});}</pre>
2787 *
2788 * @param key key with which the specified value is to be associated
2789 * @param mappingFunction the function to compute a value
2790 * @return the current (existing or computed) value associated with
2791 * the specified key, or null if the computed value is null
2792 * @throws NullPointerException if the specified key or mappingFunction
2793 * is null
2794 * @throws IllegalStateException if the computation detectably
2795 * attempts a recursive update to this map that would
2796 * otherwise never complete
2797 * @throws RuntimeException or Error if the mappingFunction does so,
2798 * in which case the mapping is left unestablished
2799 */
2800 @SuppressWarnings("unchecked") public V computeIfAbsent
2801 (K key, Fun<? super K, ? extends V> mappingFunction) {
2802 if (key == null || mappingFunction == null)
2803 throw new NullPointerException();
2804 return (V)internalComputeIfAbsent(key, mappingFunction);
2805 }
2806
2807 /**
2808 * If the given key is present, computes a new mapping value given a key and
2809 * its current mapped value. This is equivalent to
2810 * <pre> {@code
2811 * if (map.containsKey(key)) {
2812 * value = remappingFunction.apply(key, map.get(key));
2813 * if (value != null)
2814 * map.put(key, value);
2815 * else
2816 * map.remove(key);
2817 * }
2818 * }</pre>
2819 *
2820 * except that the action is performed atomically. If the
2821 * function returns {@code null}, the mapping is removed. If the
2822 * function itself throws an (unchecked) exception, the exception
2823 * is rethrown to its caller, and the current mapping is left
2824 * unchanged. Some attempted update operations on this map by
2825 * other threads may be blocked while computation is in progress,
2826 * so the computation should be short and simple, and must not
2827 * attempt to update any other mappings of this Map. For example,
2828 * to either create or append new messages to a value mapping:
2829 *
2830 * @param key key with which the specified value is to be associated
2831 * @param remappingFunction the function to compute a value
2832 * @return the new value associated with the specified key, or null if none
2833 * @throws NullPointerException if the specified key or remappingFunction
2834 * is null
2835 * @throws IllegalStateException if the computation detectably
2836 * attempts a recursive update to this map that would
2837 * otherwise never complete
2838 * @throws RuntimeException or Error if the remappingFunction does so,
2839 * in which case the mapping is unchanged
2840 */
2841 @SuppressWarnings("unchecked") public V computeIfPresent
2842 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2843 if (key == null || remappingFunction == null)
2844 throw new NullPointerException();
2845 return (V)internalCompute(key, true, remappingFunction);
2846 }
2847
2848 /**
2849 * Computes a new mapping value given a key and
2850 * its current mapped value (or {@code null} if there is no current
2851 * mapping). This is equivalent to
2852 * <pre> {@code
2853 * value = remappingFunction.apply(key, map.get(key));
2854 * if (value != null)
2855 * map.put(key, value);
2856 * else
2857 * map.remove(key);
2858 * }</pre>
2859 *
2860 * except that the action is performed atomically. If the
2861 * function returns {@code null}, the mapping is removed. If the
2862 * function itself throws an (unchecked) exception, the exception
2863 * is rethrown to its caller, and the current mapping is left
2864 * unchanged. Some attempted update operations on this map by
2865 * other threads may be blocked while computation is in progress,
2866 * so the computation should be short and simple, and must not
2867 * attempt to update any other mappings of this Map. For example,
2868 * to either create or append new messages to a value mapping:
2869 *
2870 * <pre> {@code
2871 * Map<Key, String> map = ...;
2872 * final String msg = ...;
2873 * map.compute(key, new BiFun<Key, String, String>() {
2874 * public String apply(Key k, String v) {
2875 * return (v == null) ? msg : v + msg;});}}</pre>
2876 *
2877 * @param key key with which the specified value is to be associated
2878 * @param remappingFunction the function to compute a value
2879 * @return the new value associated with the specified key, or null if none
2880 * @throws NullPointerException if the specified key or remappingFunction
2881 * is null
2882 * @throws IllegalStateException if the computation detectably
2883 * attempts a recursive update to this map that would
2884 * otherwise never complete
2885 * @throws RuntimeException or Error if the remappingFunction does so,
2886 * in which case the mapping is unchanged
2887 */
2888 @SuppressWarnings("unchecked") public V compute
2889 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2890 if (key == null || remappingFunction == null)
2891 throw new NullPointerException();
2892 return (V)internalCompute(key, false, remappingFunction);
2893 }
2894
2895 /**
2896 * If the specified key is not already associated
2897 * with a value, associate it with the given value.
2898 * Otherwise, replace the value with the results of
2899 * the given remapping function. This is equivalent to:
2900 * <pre> {@code
2901 * if (!map.containsKey(key))
2902 * map.put(value);
2903 * else {
2904 * newValue = remappingFunction.apply(map.get(key), value);
2905 * if (value != null)
2906 * map.put(key, value);
2907 * else
2908 * map.remove(key);
2909 * }
2910 * }</pre>
2911 * except that the action is performed atomically. If the
2912 * function returns {@code null}, the mapping is removed. If the
2913 * function itself throws an (unchecked) exception, the exception
2914 * is rethrown to its caller, and the current mapping is left
2915 * unchanged. Some attempted update operations on this map by
2916 * other threads may be blocked while computation is in progress,
2917 * so the computation should be short and simple, and must not
2918 * attempt to update any other mappings of this Map.
2919 */
2920 @SuppressWarnings("unchecked") public V merge
2921 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2922 if (key == null || value == null || remappingFunction == null)
2923 throw new NullPointerException();
2924 return (V)internalMerge(key, value, remappingFunction);
2925 }
2926
2927 /**
2928 * Removes the key (and its corresponding value) from this map.
2929 * This method does nothing if the key is not in the map.
2930 *
2931 * @param key the key that needs to be removed
2932 * @return the previous value associated with {@code key}, or
2933 * {@code null} if there was no mapping for {@code key}
2934 * @throws NullPointerException if the specified key is null
2935 */
2936 @SuppressWarnings("unchecked") public V remove(Object key) {
2937 if (key == null)
2938 throw new NullPointerException();
2939 return (V)internalReplace(key, null, null);
2940 }
2941
2942 /**
2943 * {@inheritDoc}
2944 *
2945 * @throws NullPointerException if the specified key is null
2946 */
2947 public boolean remove(Object key, Object value) {
2948 if (key == null)
2949 throw new NullPointerException();
2950 if (value == null)
2951 return false;
2952 return internalReplace(key, null, value) != null;
2953 }
2954
2955 /**
2956 * {@inheritDoc}
2957 *
2958 * @throws NullPointerException if any of the arguments are null
2959 */
2960 public boolean replace(K key, V oldValue, V newValue) {
2961 if (key == null || oldValue == null || newValue == null)
2962 throw new NullPointerException();
2963 return internalReplace(key, newValue, oldValue) != null;
2964 }
2965
2966 /**
2967 * {@inheritDoc}
2968 *
2969 * @return the previous value associated with the specified key,
2970 * or {@code null} if there was no mapping for the key
2971 * @throws NullPointerException if the specified key or value is null
2972 */
2973 @SuppressWarnings("unchecked") public V replace(K key, V value) {
2974 if (key == null || value == null)
2975 throw new NullPointerException();
2976 return (V)internalReplace(key, value, null);
2977 }
2978
2979 /**
2980 * Removes all of the mappings from this map.
2981 */
2982 public void clear() {
2983 internalClear();
2984 }
2985
2986 /**
2987 * Returns a {@link Set} view of the keys contained in this map.
2988 * The set is backed by the map, so changes to the map are
2989 * reflected in the set, and vice-versa.
2990 *
2991 * @return the set view
2992 */
2993 public KeySetView<K,V> keySet() {
2994 KeySetView<K,V> ks = keySet;
2995 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2996 }
2997
2998 /**
2999 * Returns a {@link Set} view of the keys in this map, using the
3000 * given common mapped value for any additions (i.e., {@link
3001 * Collection#add} and {@link Collection#addAll}). This is of
3002 * course only appropriate if it is acceptable to use the same
3003 * value for all additions from this view.
3004 *
3005 * @param mappedValue the mapped value to use for any
3006 * additions.
3007 * @return the set view
3008 * @throws NullPointerException if the mappedValue is null
3009 */
3010 public KeySetView<K,V> keySet(V mappedValue) {
3011 if (mappedValue == null)
3012 throw new NullPointerException();
3013 return new KeySetView<K,V>(this, mappedValue);
3014 }
3015
3016 /**
3017 * Returns a {@link Collection} view of the values contained in this map.
3018 * The collection is backed by the map, so changes to the map are
3019 * reflected in the collection, and vice-versa.
3020 */
3021 public ValuesView<K,V> values() {
3022 ValuesView<K,V> vs = values;
3023 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3024 }
3025
3026 /**
3027 * Returns a {@link Set} view of the mappings contained in this map.
3028 * The set is backed by the map, so changes to the map are
3029 * reflected in the set, and vice-versa. The set supports element
3030 * removal, which removes the corresponding mapping from the map,
3031 * via the {@code Iterator.remove}, {@code Set.remove},
3032 * {@code removeAll}, {@code retainAll}, and {@code clear}
3033 * operations. It does not support the {@code add} or
3034 * {@code addAll} operations.
3035 *
3036 * <p>The view's {@code iterator} is a "weakly consistent" iterator
3037 * that will never throw {@link ConcurrentModificationException},
3038 * and guarantees to traverse elements as they existed upon
3039 * construction of the iterator, and may (but is not guaranteed to)
3040 * reflect any modifications subsequent to construction.
3041 */
3042 public Set<Map.Entry<K,V>> entrySet() {
3043 EntrySetView<K,V> es = entrySet;
3044 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3045 }
3046
3047 /**
3048 * Returns an enumeration of the keys in this table.
3049 *
3050 * @return an enumeration of the keys in this table
3051 * @see #keySet()
3052 */
3053 public Enumeration<K> keys() {
3054 return new KeyIterator<K,V>(this);
3055 }
3056
3057 /**
3058 * Returns an enumeration of the values in this table.
3059 *
3060 * @return an enumeration of the values in this table
3061 * @see #values()
3062 */
3063 public Enumeration<V> elements() {
3064 return new ValueIterator<K,V>(this);
3065 }
3066
3067 /**
3068 * Returns a partitionable iterator of the keys in this map.
3069 *
3070 * @return a partitionable iterator of the keys in this map
3071 */
3072 public Spliterator<K> keySpliterator() {
3073 return new KeyIterator<K,V>(this);
3074 }
3075
3076 /**
3077 * Returns a partitionable iterator of the values in this map.
3078 *
3079 * @return a partitionable iterator of the values in this map
3080 */
3081 public Spliterator<V> valueSpliterator() {
3082 return new ValueIterator<K,V>(this);
3083 }
3084
3085 /**
3086 * Returns a partitionable iterator of the entries in this map.
3087 *
3088 * @return a partitionable iterator of the entries in this map
3089 */
3090 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3091 return new EntryIterator<K,V>(this);
3092 }
3093
3094 /**
3095 * Returns the hash code value for this {@link Map}, i.e.,
3096 * the sum of, for each key-value pair in the map,
3097 * {@code key.hashCode() ^ value.hashCode()}.
3098 *
3099 * @return the hash code value for this map
3100 */
3101 public int hashCode() {
3102 int h = 0;
3103 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3104 Object v;
3105 while ((v = it.advance()) != null) {
3106 h += it.nextKey.hashCode() ^ v.hashCode();
3107 }
3108 return h;
3109 }
3110
3111 /**
3112 * Returns a string representation of this map. The string
3113 * representation consists of a list of key-value mappings (in no
3114 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3115 * mappings are separated by the characters {@code ", "} (comma
3116 * and space). Each key-value mapping is rendered as the key
3117 * followed by an equals sign ("{@code =}") followed by the
3118 * associated value.
3119 *
3120 * @return a string representation of this map
3121 */
3122 public String toString() {
3123 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3124 StringBuilder sb = new StringBuilder();
3125 sb.append('{');
3126 Object v;
3127 if ((v = it.advance()) != null) {
3128 for (;;) {
3129 Object k = it.nextKey;
3130 sb.append(k == this ? "(this Map)" : k);
3131 sb.append('=');
3132 sb.append(v == this ? "(this Map)" : v);
3133 if ((v = it.advance()) == null)
3134 break;
3135 sb.append(',').append(' ');
3136 }
3137 }
3138 return sb.append('}').toString();
3139 }
3140
3141 /**
3142 * Compares the specified object with this map for equality.
3143 * Returns {@code true} if the given object is a map with the same
3144 * mappings as this map. This operation may return misleading
3145 * results if either map is concurrently modified during execution
3146 * of this method.
3147 *
3148 * @param o object to be compared for equality with this map
3149 * @return {@code true} if the specified object is equal to this map
3150 */
3151 public boolean equals(Object o) {
3152 if (o != this) {
3153 if (!(o instanceof Map))
3154 return false;
3155 Map<?,?> m = (Map<?,?>) o;
3156 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3157 Object val;
3158 while ((val = it.advance()) != null) {
3159 Object v = m.get(it.nextKey);
3160 if (v == null || (v != val && !v.equals(val)))
3161 return false;
3162 }
3163 for (Map.Entry<?,?> e : m.entrySet()) {
3164 Object mk, mv, v;
3165 if ((mk = e.getKey()) == null ||
3166 (mv = e.getValue()) == null ||
3167 (v = internalGet(mk)) == null ||
3168 (mv != v && !mv.equals(v)))
3169 return false;
3170 }
3171 }
3172 return true;
3173 }
3174
3175 /* ----------------Iterators -------------- */
3176
3177 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3178 implements Spliterator<K>, Enumeration<K> {
3179 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3180 KeyIterator(Traverser<K,V,Object> it) {
3181 super(it);
3182 }
3183 public KeyIterator<K,V> split() {
3184 if (nextKey != null)
3185 throw new IllegalStateException();
3186 return new KeyIterator<K,V>(this);
3187 }
3188 @SuppressWarnings("unchecked") public final K next() {
3189 if (nextVal == null && advance() == null)
3190 throw new NoSuchElementException();
3191 Object k = nextKey;
3192 nextVal = null;
3193 return (K) k;
3194 }
3195
3196 public final K nextElement() { return next(); }
3197 }
3198
3199 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3200 implements Spliterator<V>, Enumeration<V> {
3201 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3202 ValueIterator(Traverser<K,V,Object> it) {
3203 super(it);
3204 }
3205 public ValueIterator<K,V> split() {
3206 if (nextKey != null)
3207 throw new IllegalStateException();
3208 return new ValueIterator<K,V>(this);
3209 }
3210
3211 @SuppressWarnings("unchecked") public final V next() {
3212 Object v;
3213 if ((v = nextVal) == null && (v = advance()) == null)
3214 throw new NoSuchElementException();
3215 nextVal = null;
3216 return (V) v;
3217 }
3218
3219 public final V nextElement() { return next(); }
3220 }
3221
3222 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3223 implements Spliterator<Map.Entry<K,V>> {
3224 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3225 EntryIterator(Traverser<K,V,Object> it) {
3226 super(it);
3227 }
3228 public EntryIterator<K,V> split() {
3229 if (nextKey != null)
3230 throw new IllegalStateException();
3231 return new EntryIterator<K,V>(this);
3232 }
3233
3234 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3235 Object v;
3236 if ((v = nextVal) == null && (v = advance()) == null)
3237 throw new NoSuchElementException();
3238 Object k = nextKey;
3239 nextVal = null;
3240 return new MapEntry<K,V>((K)k, (V)v, map);
3241 }
3242 }
3243
3244 /**
3245 * Exported Entry for iterators
3246 */
3247 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3248 final K key; // non-null
3249 V val; // non-null
3250 final ConcurrentHashMap<K, V> map;
3251 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3252 this.key = key;
3253 this.val = val;
3254 this.map = map;
3255 }
3256 public final K getKey() { return key; }
3257 public final V getValue() { return val; }
3258 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3259 public final String toString(){ return key + "=" + val; }
3260
3261 public final boolean equals(Object o) {
3262 Object k, v; Map.Entry<?,?> e;
3263 return ((o instanceof Map.Entry) &&
3264 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3265 (v = e.getValue()) != null &&
3266 (k == key || k.equals(key)) &&
3267 (v == val || v.equals(val)));
3268 }
3269
3270 /**
3271 * Sets our entry's value and writes through to the map. The
3272 * value to return is somewhat arbitrary here. Since we do not
3273 * necessarily track asynchronous changes, the most recent
3274 * "previous" value could be different from what we return (or
3275 * could even have been removed in which case the put will
3276 * re-establish). We do not and cannot guarantee more.
3277 */
3278 public final V setValue(V value) {
3279 if (value == null) throw new NullPointerException();
3280 V v = val;
3281 val = value;
3282 map.put(key, value);
3283 return v;
3284 }
3285 }
3286
3287 /* ---------------- Serialization Support -------------- */
3288
3289 /**
3290 * Stripped-down version of helper class used in previous version,
3291 * declared for the sake of serialization compatibility
3292 */
3293 static class Segment<K,V> implements Serializable {
3294 private static final long serialVersionUID = 2249069246763182397L;
3295 final float loadFactor;
3296 Segment(float lf) { this.loadFactor = lf; }
3297 }
3298
3299 /**
3300 * Saves the state of the {@code ConcurrentHashMap} instance to a
3301 * stream (i.e., serializes it).
3302 * @param s the stream
3303 * @serialData
3304 * the key (Object) and value (Object)
3305 * for each key-value mapping, followed by a null pair.
3306 * The key-value mappings are emitted in no particular order.
3307 */
3308 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3309 throws java.io.IOException {
3310 if (segments == null) { // for serialization compatibility
3311 segments = (Segment<K,V>[])
3312 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3313 for (int i = 0; i < segments.length; ++i)
3314 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3315 }
3316 s.defaultWriteObject();
3317 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3318 Object v;
3319 while ((v = it.advance()) != null) {
3320 s.writeObject(it.nextKey);
3321 s.writeObject(v);
3322 }
3323 s.writeObject(null);
3324 s.writeObject(null);
3325 segments = null; // throw away
3326 }
3327
3328 /**
3329 * Reconstitutes the instance from a stream (that is, deserializes it).
3330 * @param s the stream
3331 */
3332 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3333 throws java.io.IOException, ClassNotFoundException {
3334 s.defaultReadObject();
3335 this.segments = null; // unneeded
3336 // initialize transient final field
3337 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3338
3339 // Create all nodes, then place in table once size is known
3340 long size = 0L;
3341 Node p = null;
3342 for (;;) {
3343 K k = (K) s.readObject();
3344 V v = (V) s.readObject();
3345 if (k != null && v != null) {
3346 int h = spread(k.hashCode());
3347 p = new Node(h, k, v, p);
3348 ++size;
3349 }
3350 else
3351 break;
3352 }
3353 if (p != null) {
3354 boolean init = false;
3355 int n;
3356 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3357 n = MAXIMUM_CAPACITY;
3358 else {
3359 int sz = (int)size;
3360 n = tableSizeFor(sz + (sz >>> 1) + 1);
3361 }
3362 int sc = sizeCtl;
3363 boolean collide = false;
3364 if (n > sc &&
3365 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3366 try {
3367 if (table == null) {
3368 init = true;
3369 Node[] tab = new Node[n];
3370 int mask = n - 1;
3371 while (p != null) {
3372 int j = p.hash & mask;
3373 Node next = p.next;
3374 Node q = p.next = tabAt(tab, j);
3375 setTabAt(tab, j, p);
3376 if (!collide && q != null && q.hash == p.hash)
3377 collide = true;
3378 p = next;
3379 }
3380 table = tab;
3381 counter.add(size);
3382 sc = n - (n >>> 2);
3383 }
3384 } finally {
3385 sizeCtl = sc;
3386 }
3387 if (collide) { // rescan and convert to TreeBins
3388 Node[] tab = table;
3389 for (int i = 0; i < tab.length; ++i) {
3390 int c = 0;
3391 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3392 if (++c > TREE_THRESHOLD &&
3393 (e.key instanceof Comparable)) {
3394 replaceWithTreeBin(tab, i, e.key);
3395 break;
3396 }
3397 }
3398 }
3399 }
3400 }
3401 if (!init) { // Can only happen if unsafely published.
3402 while (p != null) {
3403 internalPut(p.key, p.val);
3404 p = p.next;
3405 }
3406 }
3407 }
3408 }
3409
3410
3411 // -------------------------------------------------------
3412
3413 // Sams
3414 /** Interface describing a void action of one argument */
3415 public interface Action<A> { void apply(A a); }
3416 /** Interface describing a void action of two arguments */
3417 public interface BiAction<A,B> { void apply(A a, B b); }
3418 /** Interface describing a function of one argument */
3419 public interface Fun<A,T> { T apply(A a); }
3420 /** Interface describing a function of two arguments */
3421 public interface BiFun<A,B,T> { T apply(A a, B b); }
3422 /** Interface describing a function of no arguments */
3423 public interface Generator<T> { T apply(); }
3424 /** Interface describing a function mapping its argument to a double */
3425 public interface ObjectToDouble<A> { double apply(A a); }
3426 /** Interface describing a function mapping its argument to a long */
3427 public interface ObjectToLong<A> { long apply(A a); }
3428 /** Interface describing a function mapping its argument to an int */
3429 public interface ObjectToInt<A> {int apply(A a); }
3430 /** Interface describing a function mapping two arguments to a double */
3431 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3432 /** Interface describing a function mapping two arguments to a long */
3433 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3434 /** Interface describing a function mapping two arguments to an int */
3435 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3436 /** Interface describing a function mapping a double to a double */
3437 public interface DoubleToDouble { double apply(double a); }
3438 /** Interface describing a function mapping a long to a long */
3439 public interface LongToLong { long apply(long a); }
3440 /** Interface describing a function mapping an int to an int */
3441 public interface IntToInt { int apply(int a); }
3442 /** Interface describing a function mapping two doubles to a double */
3443 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3444 /** Interface describing a function mapping two longs to a long */
3445 public interface LongByLongToLong { long apply(long a, long b); }
3446 /** Interface describing a function mapping two ints to an int */
3447 public interface IntByIntToInt { int apply(int a, int b); }
3448
3449
3450 // -------------------------------------------------------
3451
3452 /**
3453 * Performs the given action for each (key, value).
3454 *
3455 * @param action the action
3456 */
3457 public void forEach(BiAction<K,V> action) {
3458 ForkJoinTasks.forEach
3459 (this, action).invoke();
3460 }
3461
3462 /**
3463 * Performs the given action for each non-null transformation
3464 * of each (key, value).
3465 *
3466 * @param transformer a function returning the transformation
3467 * for an element, or null of there is no transformation (in
3468 * which case the action is not applied).
3469 * @param action the action
3470 */
3471 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3472 Action<U> action) {
3473 ForkJoinTasks.forEach
3474 (this, transformer, action).invoke();
3475 }
3476
3477 /**
3478 * Returns a non-null result from applying the given search
3479 * function on each (key, value), or null if none. Upon
3480 * success, further element processing is suppressed and the
3481 * results of any other parallel invocations of the search
3482 * function are ignored.
3483 *
3484 * @param searchFunction a function returning a non-null
3485 * result on success, else null
3486 * @return a non-null result from applying the given search
3487 * function on each (key, value), or null if none
3488 */
3489 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3490 return ForkJoinTasks.search
3491 (this, searchFunction).invoke();
3492 }
3493
3494 /**
3495 * Returns the result of accumulating the given transformation
3496 * of all (key, value) pairs using the given reducer to
3497 * combine values, or null if none.
3498 *
3499 * @param transformer a function returning the transformation
3500 * for an element, or null of there is no transformation (in
3501 * which case it is not combined).
3502 * @param reducer a commutative associative combining function
3503 * @return the result of accumulating the given transformation
3504 * of all (key, value) pairs
3505 */
3506 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3507 BiFun<? super U, ? super U, ? extends U> reducer) {
3508 return ForkJoinTasks.reduce
3509 (this, transformer, reducer).invoke();
3510 }
3511
3512 /**
3513 * Returns the result of accumulating the given transformation
3514 * of all (key, value) pairs using the given reducer to
3515 * combine values, and the given basis as an identity value.
3516 *
3517 * @param transformer a function returning the transformation
3518 * for an element
3519 * @param basis the identity (initial default value) for the reduction
3520 * @param reducer a commutative associative combining function
3521 * @return the result of accumulating the given transformation
3522 * of all (key, value) pairs
3523 */
3524 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3525 double basis,
3526 DoubleByDoubleToDouble reducer) {
3527 return ForkJoinTasks.reduceToDouble
3528 (this, transformer, basis, reducer).invoke();
3529 }
3530
3531 /**
3532 * Returns the result of accumulating the given transformation
3533 * of all (key, value) pairs using the given reducer to
3534 * combine values, and the given basis as an identity value.
3535 *
3536 * @param transformer a function returning the transformation
3537 * for an element
3538 * @param basis the identity (initial default value) for the reduction
3539 * @param reducer a commutative associative combining function
3540 * @return the result of accumulating the given transformation
3541 * of all (key, value) pairs
3542 */
3543 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3544 long basis,
3545 LongByLongToLong reducer) {
3546 return ForkJoinTasks.reduceToLong
3547 (this, transformer, basis, reducer).invoke();
3548 }
3549
3550 /**
3551 * Returns the result of accumulating the given transformation
3552 * of all (key, value) pairs using the given reducer to
3553 * combine values, and the given basis as an identity value.
3554 *
3555 * @param transformer a function returning the transformation
3556 * for an element
3557 * @param basis the identity (initial default value) for the reduction
3558 * @param reducer a commutative associative combining function
3559 * @return the result of accumulating the given transformation
3560 * of all (key, value) pairs
3561 */
3562 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3563 int basis,
3564 IntByIntToInt reducer) {
3565 return ForkJoinTasks.reduceToInt
3566 (this, transformer, basis, reducer).invoke();
3567 }
3568
3569 /**
3570 * Performs the given action for each key.
3571 *
3572 * @param action the action
3573 */
3574 public void forEachKey(Action<K> action) {
3575 ForkJoinTasks.forEachKey
3576 (this, action).invoke();
3577 }
3578
3579 /**
3580 * Performs the given action for each non-null transformation
3581 * of each key.
3582 *
3583 * @param transformer a function returning the transformation
3584 * for an element, or null of there is no transformation (in
3585 * which case the action is not applied).
3586 * @param action the action
3587 */
3588 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3589 Action<U> action) {
3590 ForkJoinTasks.forEachKey
3591 (this, transformer, action).invoke();
3592 }
3593
3594 /**
3595 * Returns a non-null result from applying the given search
3596 * function on each key, or null if none. Upon success,
3597 * further element processing is suppressed and the results of
3598 * any other parallel invocations of the search function are
3599 * ignored.
3600 *
3601 * @param searchFunction a function returning a non-null
3602 * result on success, else null
3603 * @return a non-null result from applying the given search
3604 * function on each key, or null if none
3605 */
3606 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3607 return ForkJoinTasks.searchKeys
3608 (this, searchFunction).invoke();
3609 }
3610
3611 /**
3612 * Returns the result of accumulating all keys using the given
3613 * reducer to combine values, or null if none.
3614 *
3615 * @param reducer a commutative associative combining function
3616 * @return the result of accumulating all keys using the given
3617 * reducer to combine values, or null if none
3618 */
3619 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3620 return ForkJoinTasks.reduceKeys
3621 (this, reducer).invoke();
3622 }
3623
3624 /**
3625 * Returns the result of accumulating the given transformation
3626 * of all keys using the given reducer to combine values, or
3627 * null if none.
3628 *
3629 * @param transformer a function returning the transformation
3630 * for an element, or null of there is no transformation (in
3631 * which case it is not combined).
3632 * @param reducer a commutative associative combining function
3633 * @return the result of accumulating the given transformation
3634 * of all keys
3635 */
3636 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3637 BiFun<? super U, ? super U, ? extends U> reducer) {
3638 return ForkJoinTasks.reduceKeys
3639 (this, transformer, reducer).invoke();
3640 }
3641
3642 /**
3643 * Returns the result of accumulating the given transformation
3644 * of all keys using the given reducer to combine values, and
3645 * the given basis as an identity value.
3646 *
3647 * @param transformer a function returning the transformation
3648 * for an element
3649 * @param basis the identity (initial default value) for the reduction
3650 * @param reducer a commutative associative combining function
3651 * @return the result of accumulating the given transformation
3652 * of all keys
3653 */
3654 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3655 double basis,
3656 DoubleByDoubleToDouble reducer) {
3657 return ForkJoinTasks.reduceKeysToDouble
3658 (this, transformer, basis, reducer).invoke();
3659 }
3660
3661 /**
3662 * Returns the result of accumulating the given transformation
3663 * of all keys using the given reducer to combine values, and
3664 * the given basis as an identity value.
3665 *
3666 * @param transformer a function returning the transformation
3667 * for an element
3668 * @param basis the identity (initial default value) for the reduction
3669 * @param reducer a commutative associative combining function
3670 * @return the result of accumulating the given transformation
3671 * of all keys
3672 */
3673 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3674 long basis,
3675 LongByLongToLong reducer) {
3676 return ForkJoinTasks.reduceKeysToLong
3677 (this, transformer, basis, reducer).invoke();
3678 }
3679
3680 /**
3681 * Returns the result of accumulating the given transformation
3682 * of all keys using the given reducer to combine values, and
3683 * the given basis as an identity value.
3684 *
3685 * @param transformer a function returning the transformation
3686 * for an element
3687 * @param basis the identity (initial default value) for the reduction
3688 * @param reducer a commutative associative combining function
3689 * @return the result of accumulating the given transformation
3690 * of all keys
3691 */
3692 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3693 int basis,
3694 IntByIntToInt reducer) {
3695 return ForkJoinTasks.reduceKeysToInt
3696 (this, transformer, basis, reducer).invoke();
3697 }
3698
3699 /**
3700 * Performs the given action for each value.
3701 *
3702 * @param action the action
3703 */
3704 public void forEachValue(Action<V> action) {
3705 ForkJoinTasks.forEachValue
3706 (this, action).invoke();
3707 }
3708
3709 /**
3710 * Performs the given action for each non-null transformation
3711 * of each value.
3712 *
3713 * @param transformer a function returning the transformation
3714 * for an element, or null of there is no transformation (in
3715 * which case the action is not applied).
3716 */
3717 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3718 Action<U> action) {
3719 ForkJoinTasks.forEachValue
3720 (this, transformer, action).invoke();
3721 }
3722
3723 /**
3724 * Returns a non-null result from applying the given search
3725 * function on each value, or null if none. Upon success,
3726 * further element processing is suppressed and the results of
3727 * any other parallel invocations of the search function are
3728 * ignored.
3729 *
3730 * @param searchFunction a function returning a non-null
3731 * result on success, else null
3732 * @return a non-null result from applying the given search
3733 * function on each value, or null if none
3734 *
3735 */
3736 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3737 return ForkJoinTasks.searchValues
3738 (this, searchFunction).invoke();
3739 }
3740
3741 /**
3742 * Returns the result of accumulating all values using the
3743 * given reducer to combine values, or null if none.
3744 *
3745 * @param reducer a commutative associative combining function
3746 * @return the result of accumulating all values
3747 */
3748 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3749 return ForkJoinTasks.reduceValues
3750 (this, reducer).invoke();
3751 }
3752
3753 /**
3754 * Returns the result of accumulating the given transformation
3755 * of all values using the given reducer to combine values, or
3756 * null if none.
3757 *
3758 * @param transformer a function returning the transformation
3759 * for an element, or null of there is no transformation (in
3760 * which case it is not combined).
3761 * @param reducer a commutative associative combining function
3762 * @return the result of accumulating the given transformation
3763 * of all values
3764 */
3765 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3766 BiFun<? super U, ? super U, ? extends U> reducer) {
3767 return ForkJoinTasks.reduceValues
3768 (this, transformer, reducer).invoke();
3769 }
3770
3771 /**
3772 * Returns the result of accumulating the given transformation
3773 * of all values using the given reducer to combine values,
3774 * and the given basis as an identity value.
3775 *
3776 * @param transformer a function returning the transformation
3777 * for an element
3778 * @param basis the identity (initial default value) for the reduction
3779 * @param reducer a commutative associative combining function
3780 * @return the result of accumulating the given transformation
3781 * of all values
3782 */
3783 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3784 double basis,
3785 DoubleByDoubleToDouble reducer) {
3786 return ForkJoinTasks.reduceValuesToDouble
3787 (this, transformer, basis, reducer).invoke();
3788 }
3789
3790 /**
3791 * Returns the result of accumulating the given transformation
3792 * of all values using the given reducer to combine values,
3793 * and the given basis as an identity value.
3794 *
3795 * @param transformer a function returning the transformation
3796 * for an element
3797 * @param basis the identity (initial default value) for the reduction
3798 * @param reducer a commutative associative combining function
3799 * @return the result of accumulating the given transformation
3800 * of all values
3801 */
3802 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3803 long basis,
3804 LongByLongToLong reducer) {
3805 return ForkJoinTasks.reduceValuesToLong
3806 (this, transformer, basis, reducer).invoke();
3807 }
3808
3809 /**
3810 * Returns the result of accumulating the given transformation
3811 * of all values using the given reducer to combine values,
3812 * and the given basis as an identity value.
3813 *
3814 * @param transformer a function returning the transformation
3815 * for an element
3816 * @param basis the identity (initial default value) for the reduction
3817 * @param reducer a commutative associative combining function
3818 * @return the result of accumulating the given transformation
3819 * of all values
3820 */
3821 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3822 int basis,
3823 IntByIntToInt reducer) {
3824 return ForkJoinTasks.reduceValuesToInt
3825 (this, transformer, basis, reducer).invoke();
3826 }
3827
3828 /**
3829 * Performs the given action for each entry.
3830 *
3831 * @param action the action
3832 */
3833 public void forEachEntry(Action<Map.Entry<K,V>> action) {
3834 ForkJoinTasks.forEachEntry
3835 (this, action).invoke();
3836 }
3837
3838 /**
3839 * Performs the given action for each non-null transformation
3840 * of each entry.
3841 *
3842 * @param transformer a function returning the transformation
3843 * for an element, or null of there is no transformation (in
3844 * which case the action is not applied).
3845 * @param action the action
3846 */
3847 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3848 Action<U> action) {
3849 ForkJoinTasks.forEachEntry
3850 (this, transformer, action).invoke();
3851 }
3852
3853 /**
3854 * Returns a non-null result from applying the given search
3855 * function on each entry, or null if none. Upon success,
3856 * further element processing is suppressed and the results of
3857 * any other parallel invocations of the search function are
3858 * ignored.
3859 *
3860 * @param searchFunction a function returning a non-null
3861 * result on success, else null
3862 * @return a non-null result from applying the given search
3863 * function on each entry, or null if none
3864 */
3865 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3866 return ForkJoinTasks.searchEntries
3867 (this, searchFunction).invoke();
3868 }
3869
3870 /**
3871 * Returns the result of accumulating all entries using the
3872 * given reducer to combine values, or null if none.
3873 *
3874 * @param reducer a commutative associative combining function
3875 * @return the result of accumulating all entries
3876 */
3877 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3878 return ForkJoinTasks.reduceEntries
3879 (this, reducer).invoke();
3880 }
3881
3882 /**
3883 * Returns the result of accumulating the given transformation
3884 * of all entries using the given reducer to combine values,
3885 * or null if none.
3886 *
3887 * @param transformer a function returning the transformation
3888 * for an element, or null of there is no transformation (in
3889 * which case it is not combined).
3890 * @param reducer a commutative associative combining function
3891 * @return the result of accumulating the given transformation
3892 * of all entries
3893 */
3894 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3895 BiFun<? super U, ? super U, ? extends U> reducer) {
3896 return ForkJoinTasks.reduceEntries
3897 (this, transformer, reducer).invoke();
3898 }
3899
3900 /**
3901 * Returns the result of accumulating the given transformation
3902 * of all entries using the given reducer to combine values,
3903 * and the given basis as an identity value.
3904 *
3905 * @param transformer a function returning the transformation
3906 * for an element
3907 * @param basis the identity (initial default value) for the reduction
3908 * @param reducer a commutative associative combining function
3909 * @return the result of accumulating the given transformation
3910 * of all entries
3911 */
3912 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3913 double basis,
3914 DoubleByDoubleToDouble reducer) {
3915 return ForkJoinTasks.reduceEntriesToDouble
3916 (this, transformer, basis, reducer).invoke();
3917 }
3918
3919 /**
3920 * Returns the result of accumulating the given transformation
3921 * of all entries using the given reducer to combine values,
3922 * and the given basis as an identity value.
3923 *
3924 * @param transformer a function returning the transformation
3925 * for an element
3926 * @param basis the identity (initial default value) for the reduction
3927 * @param reducer a commutative associative combining function
3928 * @return the result of accumulating the given transformation
3929 * of all entries
3930 */
3931 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3932 long basis,
3933 LongByLongToLong reducer) {
3934 return ForkJoinTasks.reduceEntriesToLong
3935 (this, transformer, basis, reducer).invoke();
3936 }
3937
3938 /**
3939 * Returns the result of accumulating the given transformation
3940 * of all entries using the given reducer to combine values,
3941 * and the given basis as an identity value.
3942 *
3943 * @param transformer a function returning the transformation
3944 * for an element
3945 * @param basis the identity (initial default value) for the reduction
3946 * @param reducer a commutative associative combining function
3947 * @return the result of accumulating the given transformation
3948 * of all entries
3949 */
3950 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3951 int basis,
3952 IntByIntToInt reducer) {
3953 return ForkJoinTasks.reduceEntriesToInt
3954 (this, transformer, basis, reducer).invoke();
3955 }
3956
3957 /* ----------------Views -------------- */
3958
3959 /**
3960 * Base class for views.
3961 */
3962 static abstract class CHMView<K, V> {
3963 final ConcurrentHashMap<K, V> map;
3964 CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
3965
3966 /**
3967 * Returns the map backing this view.
3968 *
3969 * @return the map backing this view
3970 */
3971 public ConcurrentHashMap<K,V> getMap() { return map; }
3972
3973 public final int size() { return map.size(); }
3974 public final boolean isEmpty() { return map.isEmpty(); }
3975 public final void clear() { map.clear(); }
3976
3977 // implementations below rely on concrete classes supplying these
3978 abstract public Iterator<?> iterator();
3979 abstract public boolean contains(Object o);
3980 abstract public boolean remove(Object o);
3981
3982 private static final String oomeMsg = "Required array size too large";
3983
3984 public final Object[] toArray() {
3985 long sz = map.mappingCount();
3986 if (sz > (long)(MAX_ARRAY_SIZE))
3987 throw new OutOfMemoryError(oomeMsg);
3988 int n = (int)sz;
3989 Object[] r = new Object[n];
3990 int i = 0;
3991 Iterator<?> it = iterator();
3992 while (it.hasNext()) {
3993 if (i == n) {
3994 if (n >= MAX_ARRAY_SIZE)
3995 throw new OutOfMemoryError(oomeMsg);
3996 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3997 n = MAX_ARRAY_SIZE;
3998 else
3999 n += (n >>> 1) + 1;
4000 r = Arrays.copyOf(r, n);
4001 }
4002 r[i++] = it.next();
4003 }
4004 return (i == n) ? r : Arrays.copyOf(r, i);
4005 }
4006
4007 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4008 long sz = map.mappingCount();
4009 if (sz > (long)(MAX_ARRAY_SIZE))
4010 throw new OutOfMemoryError(oomeMsg);
4011 int m = (int)sz;
4012 T[] r = (a.length >= m) ? a :
4013 (T[])java.lang.reflect.Array
4014 .newInstance(a.getClass().getComponentType(), m);
4015 int n = r.length;
4016 int i = 0;
4017 Iterator<?> it = iterator();
4018 while (it.hasNext()) {
4019 if (i == n) {
4020 if (n >= MAX_ARRAY_SIZE)
4021 throw new OutOfMemoryError(oomeMsg);
4022 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4023 n = MAX_ARRAY_SIZE;
4024 else
4025 n += (n >>> 1) + 1;
4026 r = Arrays.copyOf(r, n);
4027 }
4028 r[i++] = (T)it.next();
4029 }
4030 if (a == r && i < n) {
4031 r[i] = null; // null-terminate
4032 return r;
4033 }
4034 return (i == n) ? r : Arrays.copyOf(r, i);
4035 }
4036
4037 public final int hashCode() {
4038 int h = 0;
4039 for (Iterator<?> it = iterator(); it.hasNext();)
4040 h += it.next().hashCode();
4041 return h;
4042 }
4043
4044 public final String toString() {
4045 StringBuilder sb = new StringBuilder();
4046 sb.append('[');
4047 Iterator<?> it = iterator();
4048 if (it.hasNext()) {
4049 for (;;) {
4050 Object e = it.next();
4051 sb.append(e == this ? "(this Collection)" : e);
4052 if (!it.hasNext())
4053 break;
4054 sb.append(',').append(' ');
4055 }
4056 }
4057 return sb.append(']').toString();
4058 }
4059
4060 public final boolean containsAll(Collection<?> c) {
4061 if (c != this) {
4062 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4063 Object e = it.next();
4064 if (e == null || !contains(e))
4065 return false;
4066 }
4067 }
4068 return true;
4069 }
4070
4071 public final boolean removeAll(Collection<?> c) {
4072 boolean modified = false;
4073 for (Iterator<?> it = iterator(); it.hasNext();) {
4074 if (c.contains(it.next())) {
4075 it.remove();
4076 modified = true;
4077 }
4078 }
4079 return modified;
4080 }
4081
4082 public final boolean retainAll(Collection<?> c) {
4083 boolean modified = false;
4084 for (Iterator<?> it = iterator(); it.hasNext();) {
4085 if (!c.contains(it.next())) {
4086 it.remove();
4087 modified = true;
4088 }
4089 }
4090 return modified;
4091 }
4092
4093 }
4094
4095 /**
4096 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4097 * which additions may optionally be enabled by mapping to a
4098 * common value. This class cannot be directly instantiated. See
4099 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4100 * {@link #newKeySet(int)}.
4101 */
4102 public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4103 private static final long serialVersionUID = 7249069246763182397L;
4104 private final V value;
4105 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4106 super(map);
4107 this.value = value;
4108 }
4109
4110 /**
4111 * Returns the default mapped value for additions,
4112 * or {@code null} if additions are not supported.
4113 *
4114 * @return the default mapped value for additions, or {@code null}
4115 * if not supported.
4116 */
4117 public V getMappedValue() { return value; }
4118
4119 // implement Set API
4120
4121 public boolean contains(Object o) { return map.containsKey(o); }
4122 public boolean remove(Object o) { return map.remove(o) != null; }
4123
4124 /**
4125 * Returns a "weakly consistent" iterator that will never
4126 * throw {@link ConcurrentModificationException}, and
4127 * guarantees to traverse elements as they existed upon
4128 * construction of the iterator, and may (but is not
4129 * guaranteed to) reflect any modifications subsequent to
4130 * construction.
4131 *
4132 * @return an iterator over the keys of this map
4133 */
4134 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4135 public boolean add(K e) {
4136 V v;
4137 if ((v = value) == null)
4138 throw new UnsupportedOperationException();
4139 if (e == null)
4140 throw new NullPointerException();
4141 return map.internalPutIfAbsent(e, v) == null;
4142 }
4143 public boolean addAll(Collection<? extends K> c) {
4144 boolean added = false;
4145 V v;
4146 if ((v = value) == null)
4147 throw new UnsupportedOperationException();
4148 for (K e : c) {
4149 if (e == null)
4150 throw new NullPointerException();
4151 if (map.internalPutIfAbsent(e, v) == null)
4152 added = true;
4153 }
4154 return added;
4155 }
4156 public boolean equals(Object o) {
4157 Set<?> c;
4158 return ((o instanceof Set) &&
4159 ((c = (Set<?>)o) == this ||
4160 (containsAll(c) && c.containsAll(this))));
4161 }
4162
4163 /**
4164 * Performs the given action for each key.
4165 *
4166 * @param action the action
4167 */
4168 public void forEach(Action<K> action) {
4169 ForkJoinTasks.forEachKey
4170 (map, action).invoke();
4171 }
4172
4173 /**
4174 * Performs the given action for each non-null transformation
4175 * of each key.
4176 *
4177 * @param transformer a function returning the transformation
4178 * for an element, or null of there is no transformation (in
4179 * which case the action is not applied).
4180 * @param action the action
4181 */
4182 public <U> void forEach(Fun<? super K, ? extends U> transformer,
4183 Action<U> action) {
4184 ForkJoinTasks.forEachKey
4185 (map, transformer, action).invoke();
4186 }
4187
4188 /**
4189 * Returns a non-null result from applying the given search
4190 * function on each key, or null if none. Upon success,
4191 * further element processing is suppressed and the results of
4192 * any other parallel invocations of the search function are
4193 * ignored.
4194 *
4195 * @param searchFunction a function returning a non-null
4196 * result on success, else null
4197 * @return a non-null result from applying the given search
4198 * function on each key, or null if none
4199 */
4200 public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4201 return ForkJoinTasks.searchKeys
4202 (map, searchFunction).invoke();
4203 }
4204
4205 /**
4206 * Returns the result of accumulating all keys using the given
4207 * reducer to combine values, or null if none.
4208 *
4209 * @param reducer a commutative associative combining function
4210 * @return the result of accumulating all keys using the given
4211 * reducer to combine values, or null if none
4212 */
4213 public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4214 return ForkJoinTasks.reduceKeys
4215 (map, reducer).invoke();
4216 }
4217
4218 /**
4219 * Returns the result of accumulating the given transformation
4220 * of all keys using the given reducer to combine values, and
4221 * the given basis as an identity value.
4222 *
4223 * @param transformer a function returning the transformation
4224 * for an element
4225 * @param basis the identity (initial default value) for the reduction
4226 * @param reducer a commutative associative combining function
4227 * @return the result of accumulating the given transformation
4228 * of all keys
4229 */
4230 public double reduceToDouble(ObjectToDouble<? super K> transformer,
4231 double basis,
4232 DoubleByDoubleToDouble reducer) {
4233 return ForkJoinTasks.reduceKeysToDouble
4234 (map, transformer, basis, reducer).invoke();
4235 }
4236
4237
4238 /**
4239 * Returns the result of accumulating the given transformation
4240 * of all keys using the given reducer to combine values, and
4241 * the given basis as an identity value.
4242 *
4243 * @param transformer a function returning the transformation
4244 * for an element
4245 * @param basis the identity (initial default value) for the reduction
4246 * @param reducer a commutative associative combining function
4247 * @return the result of accumulating the given transformation
4248 * of all keys
4249 */
4250 public long reduceToLong(ObjectToLong<? super K> transformer,
4251 long basis,
4252 LongByLongToLong reducer) {
4253 return ForkJoinTasks.reduceKeysToLong
4254 (map, transformer, basis, reducer).invoke();
4255 }
4256
4257 /**
4258 * Returns the result of accumulating the given transformation
4259 * of all keys using the given reducer to combine values, and
4260 * the given basis as an identity value.
4261 *
4262 * @param transformer a function returning the transformation
4263 * for an element
4264 * @param basis the identity (initial default value) for the reduction
4265 * @param reducer a commutative associative combining function
4266 * @return the result of accumulating the given transformation
4267 * of all keys
4268 */
4269 public int reduceToInt(ObjectToInt<? super K> transformer,
4270 int basis,
4271 IntByIntToInt reducer) {
4272 return ForkJoinTasks.reduceKeysToInt
4273 (map, transformer, basis, reducer).invoke();
4274 }
4275
4276 }
4277
4278 /**
4279 * A view of a ConcurrentHashMap as a {@link Collection} of
4280 * values, in which additions are disabled. This class cannot be
4281 * directly instantiated. See {@link #values},
4282 *
4283 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4284 * that will never throw {@link ConcurrentModificationException},
4285 * and guarantees to traverse elements as they existed upon
4286 * construction of the iterator, and may (but is not guaranteed to)
4287 * reflect any modifications subsequent to construction.
4288 */
4289 public static final class ValuesView<K,V> extends CHMView<K,V>
4290 implements Collection<V> {
4291 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4292 public final boolean contains(Object o) { return map.containsValue(o); }
4293 public final boolean remove(Object o) {
4294 if (o != null) {
4295 Iterator<V> it = new ValueIterator<K,V>(map);
4296 while (it.hasNext()) {
4297 if (o.equals(it.next())) {
4298 it.remove();
4299 return true;
4300 }
4301 }
4302 }
4303 return false;
4304 }
4305
4306 /**
4307 * Returns a "weakly consistent" iterator that will never
4308 * throw {@link ConcurrentModificationException}, and
4309 * guarantees to traverse elements as they existed upon
4310 * construction of the iterator, and may (but is not
4311 * guaranteed to) reflect any modifications subsequent to
4312 * construction.
4313 *
4314 * @return an iterator over the values of this map
4315 */
4316 public final Iterator<V> iterator() {
4317 return new ValueIterator<K,V>(map);
4318 }
4319 public final boolean add(V e) {
4320 throw new UnsupportedOperationException();
4321 }
4322 public final boolean addAll(Collection<? extends V> c) {
4323 throw new UnsupportedOperationException();
4324 }
4325
4326 /**
4327 * Performs the given action for each value.
4328 *
4329 * @param action the action
4330 */
4331 public void forEach(Action<V> action) {
4332 ForkJoinTasks.forEachValue
4333 (map, action).invoke();
4334 }
4335
4336 /**
4337 * Performs the given action for each non-null transformation
4338 * of each value.
4339 *
4340 * @param transformer a function returning the transformation
4341 * for an element, or null of there is no transformation (in
4342 * which case the action is not applied).
4343 */
4344 public <U> void forEach(Fun<? super V, ? extends U> transformer,
4345 Action<U> action) {
4346 ForkJoinTasks.forEachValue
4347 (map, transformer, action).invoke();
4348 }
4349
4350 /**
4351 * Returns a non-null result from applying the given search
4352 * function on each value, or null if none. Upon success,
4353 * further element processing is suppressed and the results of
4354 * any other parallel invocations of the search function are
4355 * ignored.
4356 *
4357 * @param searchFunction a function returning a non-null
4358 * result on success, else null
4359 * @return a non-null result from applying the given search
4360 * function on each value, or null if none
4361 *
4362 */
4363 public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4364 return ForkJoinTasks.searchValues
4365 (map, searchFunction).invoke();
4366 }
4367
4368 /**
4369 * Returns the result of accumulating all values using the
4370 * given reducer to combine values, or null if none.
4371 *
4372 * @param reducer a commutative associative combining function
4373 * @return the result of accumulating all values
4374 */
4375 public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4376 return ForkJoinTasks.reduceValues
4377 (map, reducer).invoke();
4378 }
4379
4380 /**
4381 * Returns the result of accumulating the given transformation
4382 * of all values using the given reducer to combine values, or
4383 * null if none.
4384 *
4385 * @param transformer a function returning the transformation
4386 * for an element, or null of there is no transformation (in
4387 * which case it is not combined).
4388 * @param reducer a commutative associative combining function
4389 * @return the result of accumulating the given transformation
4390 * of all values
4391 */
4392 public <U> U reduce(Fun<? super V, ? extends U> transformer,
4393 BiFun<? super U, ? super U, ? extends U> reducer) {
4394 return ForkJoinTasks.reduceValues
4395 (map, transformer, reducer).invoke();
4396 }
4397
4398 /**
4399 * Returns the result of accumulating the given transformation
4400 * of all values using the given reducer to combine values,
4401 * and the given basis as an identity value.
4402 *
4403 * @param transformer a function returning the transformation
4404 * for an element
4405 * @param basis the identity (initial default value) for the reduction
4406 * @param reducer a commutative associative combining function
4407 * @return the result of accumulating the given transformation
4408 * of all values
4409 */
4410 public double reduceToDouble(ObjectToDouble<? super V> transformer,
4411 double basis,
4412 DoubleByDoubleToDouble reducer) {
4413 return ForkJoinTasks.reduceValuesToDouble
4414 (map, transformer, basis, reducer).invoke();
4415 }
4416
4417 /**
4418 * Returns the result of accumulating the given transformation
4419 * of all values using the given reducer to combine values,
4420 * and the given basis as an identity value.
4421 *
4422 * @param transformer a function returning the transformation
4423 * for an element
4424 * @param basis the identity (initial default value) for the reduction
4425 * @param reducer a commutative associative combining function
4426 * @return the result of accumulating the given transformation
4427 * of all values
4428 */
4429 public long reduceToLong(ObjectToLong<? super V> transformer,
4430 long basis,
4431 LongByLongToLong reducer) {
4432 return ForkJoinTasks.reduceValuesToLong
4433 (map, transformer, basis, reducer).invoke();
4434 }
4435
4436 /**
4437 * Returns the result of accumulating the given transformation
4438 * of all values using the given reducer to combine values,
4439 * and the given basis as an identity value.
4440 *
4441 * @param transformer a function returning the transformation
4442 * for an element
4443 * @param basis the identity (initial default value) for the reduction
4444 * @param reducer a commutative associative combining function
4445 * @return the result of accumulating the given transformation
4446 * of all values
4447 */
4448 public int reduceToInt(ObjectToInt<? super V> transformer,
4449 int basis,
4450 IntByIntToInt reducer) {
4451 return ForkJoinTasks.reduceValuesToInt
4452 (map, transformer, basis, reducer).invoke();
4453 }
4454
4455 }
4456
4457 /**
4458 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4459 * entries. This class cannot be directly instantiated. See
4460 * {@link #entrySet}.
4461 */
4462 public static final class EntrySetView<K,V> extends CHMView<K,V>
4463 implements Set<Map.Entry<K,V>> {
4464 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4465 public final boolean contains(Object o) {
4466 Object k, v, r; Map.Entry<?,?> e;
4467 return ((o instanceof Map.Entry) &&
4468 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4469 (r = map.get(k)) != null &&
4470 (v = e.getValue()) != null &&
4471 (v == r || v.equals(r)));
4472 }
4473 public final boolean remove(Object o) {
4474 Object k, v; Map.Entry<?,?> e;
4475 return ((o instanceof Map.Entry) &&
4476 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4477 (v = e.getValue()) != null &&
4478 map.remove(k, v));
4479 }
4480
4481 /**
4482 * Returns a "weakly consistent" iterator that will never
4483 * throw {@link ConcurrentModificationException}, and
4484 * guarantees to traverse elements as they existed upon
4485 * construction of the iterator, and may (but is not
4486 * guaranteed to) reflect any modifications subsequent to
4487 * construction.
4488 *
4489 * @return an iterator over the entries of this map
4490 */
4491 public final Iterator<Map.Entry<K,V>> iterator() {
4492 return new EntryIterator<K,V>(map);
4493 }
4494
4495 public final boolean add(Entry<K,V> e) {
4496 K key = e.getKey();
4497 V value = e.getValue();
4498 if (key == null || value == null)
4499 throw new NullPointerException();
4500 return map.internalPut(key, value) == null;
4501 }
4502 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4503 boolean added = false;
4504 for (Entry<K,V> e : c) {
4505 if (add(e))
4506 added = true;
4507 }
4508 return added;
4509 }
4510 public boolean equals(Object o) {
4511 Set<?> c;
4512 return ((o instanceof Set) &&
4513 ((c = (Set<?>)o) == this ||
4514 (containsAll(c) && c.containsAll(this))));
4515 }
4516
4517 /**
4518 * Performs the given action for each entry.
4519 *
4520 * @param action the action
4521 */
4522 public void forEach(Action<Map.Entry<K,V>> action) {
4523 ForkJoinTasks.forEachEntry
4524 (map, action).invoke();
4525 }
4526
4527 /**
4528 * Performs the given action for each non-null transformation
4529 * of each entry.
4530 *
4531 * @param transformer a function returning the transformation
4532 * for an element, or null of there is no transformation (in
4533 * which case the action is not applied).
4534 * @param action the action
4535 */
4536 public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4537 Action<U> action) {
4538 ForkJoinTasks.forEachEntry
4539 (map, transformer, action).invoke();
4540 }
4541
4542 /**
4543 * Returns a non-null result from applying the given search
4544 * function on each entry, or null if none. Upon success,
4545 * further element processing is suppressed and the results of
4546 * any other parallel invocations of the search function are
4547 * ignored.
4548 *
4549 * @param searchFunction a function returning a non-null
4550 * result on success, else null
4551 * @return a non-null result from applying the given search
4552 * function on each entry, or null if none
4553 */
4554 public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4555 return ForkJoinTasks.searchEntries
4556 (map, searchFunction).invoke();
4557 }
4558
4559 /**
4560 * Returns the result of accumulating all entries using the
4561 * given reducer to combine values, or null if none.
4562 *
4563 * @param reducer a commutative associative combining function
4564 * @return the result of accumulating all entries
4565 */
4566 public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4567 return ForkJoinTasks.reduceEntries
4568 (map, reducer).invoke();
4569 }
4570
4571 /**
4572 * Returns the result of accumulating the given transformation
4573 * of all entries using the given reducer to combine values,
4574 * or null if none.
4575 *
4576 * @param transformer a function returning the transformation
4577 * for an element, or null of there is no transformation (in
4578 * which case it is not combined).
4579 * @param reducer a commutative associative combining function
4580 * @return the result of accumulating the given transformation
4581 * of all entries
4582 */
4583 public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4584 BiFun<? super U, ? super U, ? extends U> reducer) {
4585 return ForkJoinTasks.reduceEntries
4586 (map, transformer, reducer).invoke();
4587 }
4588
4589 /**
4590 * Returns the result of accumulating the given transformation
4591 * of all entries using the given reducer to combine values,
4592 * and the given basis as an identity value.
4593 *
4594 * @param transformer a function returning the transformation
4595 * for an element
4596 * @param basis the identity (initial default value) for the reduction
4597 * @param reducer a commutative associative combining function
4598 * @return the result of accumulating the given transformation
4599 * of all entries
4600 */
4601 public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4602 double basis,
4603 DoubleByDoubleToDouble reducer) {
4604 return ForkJoinTasks.reduceEntriesToDouble
4605 (map, transformer, basis, reducer).invoke();
4606 }
4607
4608 /**
4609 * Returns the result of accumulating the given transformation
4610 * of all entries using the given reducer to combine values,
4611 * and the given basis as an identity value.
4612 *
4613 * @param transformer a function returning the transformation
4614 * for an element
4615 * @param basis the identity (initial default value) for the reduction
4616 * @param reducer a commutative associative combining function
4617 * @return the result of accumulating the given transformation
4618 * of all entries
4619 */
4620 public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4621 long basis,
4622 LongByLongToLong reducer) {
4623 return ForkJoinTasks.reduceEntriesToLong
4624 (map, transformer, basis, reducer).invoke();
4625 }
4626
4627 /**
4628 * Returns the result of accumulating the given transformation
4629 * of all entries using the given reducer to combine values,
4630 * and the given basis as an identity value.
4631 *
4632 * @param transformer a function returning the transformation
4633 * for an element
4634 * @param basis the identity (initial default value) for the reduction
4635 * @param reducer a commutative associative combining function
4636 * @return the result of accumulating the given transformation
4637 * of all entries
4638 */
4639 public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4640 int basis,
4641 IntByIntToInt reducer) {
4642 return ForkJoinTasks.reduceEntriesToInt
4643 (map, transformer, basis, reducer).invoke();
4644 }
4645
4646 }
4647
4648 // ---------------------------------------------------------------------
4649
4650 /**
4651 * Predefined tasks for performing bulk parallel operations on
4652 * ConcurrentHashMaps. These tasks follow the forms and rules used
4653 * for bulk operations. Each method has the same name, but returns
4654 * a task rather than invoking it. These methods may be useful in
4655 * custom applications such as submitting a task without waiting
4656 * for completion, using a custom pool, or combining with other
4657 * tasks.
4658 */
4659 public static class ForkJoinTasks {
4660 private ForkJoinTasks() {}
4661
4662 /**
4663 * Returns a task that when invoked, performs the given
4664 * action for each (key, value)
4665 *
4666 * @param map the map
4667 * @param action the action
4668 * @return the task
4669 */
4670 public static <K,V> ForkJoinTask<Void> forEach
4671 (ConcurrentHashMap<K,V> map,
4672 BiAction<K,V> action) {
4673 if (action == null) throw new NullPointerException();
4674 return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4675 }
4676
4677 /**
4678 * Returns a task that when invoked, performs the given
4679 * action for each non-null transformation of each (key, value)
4680 *
4681 * @param map the map
4682 * @param transformer a function returning the transformation
4683 * for an element, or null if there is no transformation (in
4684 * which case the action is not applied)
4685 * @param action the action
4686 * @return the task
4687 */
4688 public static <K,V,U> ForkJoinTask<Void> forEach
4689 (ConcurrentHashMap<K,V> map,
4690 BiFun<? super K, ? super V, ? extends U> transformer,
4691 Action<U> action) {
4692 if (transformer == null || action == null)
4693 throw new NullPointerException();
4694 return new ForEachTransformedMappingTask<K,V,U>
4695 (map, null, -1, null, transformer, action);
4696 }
4697
4698 /**
4699 * Returns a task that when invoked, returns a non-null result
4700 * from applying the given search function on each (key,
4701 * value), or null if none. Upon success, further element
4702 * processing is suppressed and the results of any other
4703 * parallel invocations of the search function are ignored.
4704 *
4705 * @param map the map
4706 * @param searchFunction a function returning a non-null
4707 * result on success, else null
4708 * @return the task
4709 */
4710 public static <K,V,U> ForkJoinTask<U> search
4711 (ConcurrentHashMap<K,V> map,
4712 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4713 if (searchFunction == null) throw new NullPointerException();
4714 return new SearchMappingsTask<K,V,U>
4715 (map, null, -1, null, searchFunction,
4716 new AtomicReference<U>());
4717 }
4718
4719 /**
4720 * Returns a task that when invoked, returns the result of
4721 * accumulating the given transformation of all (key, value) pairs
4722 * using the given reducer to combine values, or null if none.
4723 *
4724 * @param map the map
4725 * @param transformer a function returning the transformation
4726 * for an element, or null if there is no transformation (in
4727 * which case it is not combined).
4728 * @param reducer a commutative associative combining function
4729 * @return the task
4730 */
4731 public static <K,V,U> ForkJoinTask<U> reduce
4732 (ConcurrentHashMap<K,V> map,
4733 BiFun<? super K, ? super V, ? extends U> transformer,
4734 BiFun<? super U, ? super U, ? extends U> reducer) {
4735 if (transformer == null || reducer == null)
4736 throw new NullPointerException();
4737 return new MapReduceMappingsTask<K,V,U>
4738 (map, null, -1, null, transformer, reducer);
4739 }
4740
4741 /**
4742 * Returns a task that when invoked, returns the result of
4743 * accumulating the given transformation of all (key, value) pairs
4744 * using the given reducer to combine values, and the given
4745 * basis as an identity value.
4746 *
4747 * @param map the map
4748 * @param transformer a function returning the transformation
4749 * for an element
4750 * @param basis the identity (initial default value) for the reduction
4751 * @param reducer a commutative associative combining function
4752 * @return the task
4753 */
4754 public static <K,V> ForkJoinTask<Double> reduceToDouble
4755 (ConcurrentHashMap<K,V> map,
4756 ObjectByObjectToDouble<? super K, ? super V> transformer,
4757 double basis,
4758 DoubleByDoubleToDouble reducer) {
4759 if (transformer == null || reducer == null)
4760 throw new NullPointerException();
4761 return new MapReduceMappingsToDoubleTask<K,V>
4762 (map, null, -1, null, transformer, basis, reducer);
4763 }
4764
4765 /**
4766 * Returns a task that when invoked, returns the result of
4767 * accumulating the given transformation of all (key, value) pairs
4768 * using the given reducer to combine values, and the given
4769 * basis as an identity value.
4770 *
4771 * @param map the map
4772 * @param transformer a function returning the transformation
4773 * for an element
4774 * @param basis the identity (initial default value) for the reduction
4775 * @param reducer a commutative associative combining function
4776 * @return the task
4777 */
4778 public static <K,V> ForkJoinTask<Long> reduceToLong
4779 (ConcurrentHashMap<K,V> map,
4780 ObjectByObjectToLong<? super K, ? super V> transformer,
4781 long basis,
4782 LongByLongToLong reducer) {
4783 if (transformer == null || reducer == null)
4784 throw new NullPointerException();
4785 return new MapReduceMappingsToLongTask<K,V>
4786 (map, null, -1, null, transformer, basis, reducer);
4787 }
4788
4789 /**
4790 * Returns a task that when invoked, returns the result of
4791 * accumulating the given transformation of all (key, value) pairs
4792 * using the given reducer to combine values, and the given
4793 * basis as an identity value.
4794 *
4795 * @param transformer a function returning the transformation
4796 * for an element
4797 * @param basis the identity (initial default value) for the reduction
4798 * @param reducer a commutative associative combining function
4799 * @return the task
4800 */
4801 public static <K,V> ForkJoinTask<Integer> reduceToInt
4802 (ConcurrentHashMap<K,V> map,
4803 ObjectByObjectToInt<? super K, ? super V> transformer,
4804 int basis,
4805 IntByIntToInt reducer) {
4806 if (transformer == null || reducer == null)
4807 throw new NullPointerException();
4808 return new MapReduceMappingsToIntTask<K,V>
4809 (map, null, -1, null, transformer, basis, reducer);
4810 }
4811
4812 /**
4813 * Returns a task that when invoked, performs the given action
4814 * for each key.
4815 *
4816 * @param map the map
4817 * @param action the action
4818 * @return the task
4819 */
4820 public static <K,V> ForkJoinTask<Void> forEachKey
4821 (ConcurrentHashMap<K,V> map,
4822 Action<K> action) {
4823 if (action == null) throw new NullPointerException();
4824 return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4825 }
4826
4827 /**
4828 * Returns a task that when invoked, performs the given action
4829 * for each non-null transformation of each key.
4830 *
4831 * @param map the map
4832 * @param transformer a function returning the transformation
4833 * for an element, or null if there is no transformation (in
4834 * which case the action is not applied)
4835 * @param action the action
4836 * @return the task
4837 */
4838 public static <K,V,U> ForkJoinTask<Void> forEachKey
4839 (ConcurrentHashMap<K,V> map,
4840 Fun<? super K, ? extends U> transformer,
4841 Action<U> action) {
4842 if (transformer == null || action == null)
4843 throw new NullPointerException();
4844 return new ForEachTransformedKeyTask<K,V,U>
4845 (map, null, -1, null, transformer, action);
4846 }
4847
4848 /**
4849 * Returns a task that when invoked, returns a non-null result
4850 * from applying the given search function on each key, or
4851 * null if none. Upon success, further element processing is
4852 * suppressed and the results of any other parallel
4853 * invocations of the search function are ignored.
4854 *
4855 * @param map the map
4856 * @param searchFunction a function returning a non-null
4857 * result on success, else null
4858 * @return the task
4859 */
4860 public static <K,V,U> ForkJoinTask<U> searchKeys
4861 (ConcurrentHashMap<K,V> map,
4862 Fun<? super K, ? extends U> searchFunction) {
4863 if (searchFunction == null) throw new NullPointerException();
4864 return new SearchKeysTask<K,V,U>
4865 (map, null, -1, null, searchFunction,
4866 new AtomicReference<U>());
4867 }
4868
4869 /**
4870 * Returns a task that when invoked, returns the result of
4871 * accumulating all keys using the given reducer to combine
4872 * values, or null if none.
4873 *
4874 * @param map the map
4875 * @param reducer a commutative associative combining function
4876 * @return the task
4877 */
4878 public static <K,V> ForkJoinTask<K> reduceKeys
4879 (ConcurrentHashMap<K,V> map,
4880 BiFun<? super K, ? super K, ? extends K> reducer) {
4881 if (reducer == null) throw new NullPointerException();
4882 return new ReduceKeysTask<K,V>
4883 (map, null, -1, null, reducer);
4884 }
4885
4886 /**
4887 * Returns a task that when invoked, returns the result of
4888 * accumulating the given transformation of all keys using the given
4889 * reducer to combine values, or null if none.
4890 *
4891 * @param map the map
4892 * @param transformer a function returning the transformation
4893 * for an element, or null if there is no transformation (in
4894 * which case it is not combined).
4895 * @param reducer a commutative associative combining function
4896 * @return the task
4897 */
4898 public static <K,V,U> ForkJoinTask<U> reduceKeys
4899 (ConcurrentHashMap<K,V> map,
4900 Fun<? super K, ? extends U> transformer,
4901 BiFun<? super U, ? super U, ? extends U> reducer) {
4902 if (transformer == null || reducer == null)
4903 throw new NullPointerException();
4904 return new MapReduceKeysTask<K,V,U>
4905 (map, null, -1, null, transformer, reducer);
4906 }
4907
4908 /**
4909 * Returns a task that when invoked, returns the result of
4910 * accumulating the given transformation of all keys using the given
4911 * reducer to combine values, and the given basis as an
4912 * identity value.
4913 *
4914 * @param map the map
4915 * @param transformer a function returning the transformation
4916 * for an element
4917 * @param basis the identity (initial default value) for the reduction
4918 * @param reducer a commutative associative combining function
4919 * @return the task
4920 */
4921 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4922 (ConcurrentHashMap<K,V> map,
4923 ObjectToDouble<? super K> transformer,
4924 double basis,
4925 DoubleByDoubleToDouble reducer) {
4926 if (transformer == null || reducer == null)
4927 throw new NullPointerException();
4928 return new MapReduceKeysToDoubleTask<K,V>
4929 (map, null, -1, null, transformer, basis, reducer);
4930 }
4931
4932 /**
4933 * Returns a task that when invoked, returns the result of
4934 * accumulating the given transformation of all keys using the given
4935 * reducer to combine values, and the given basis as an
4936 * identity value.
4937 *
4938 * @param map the map
4939 * @param transformer a function returning the transformation
4940 * for an element
4941 * @param basis the identity (initial default value) for the reduction
4942 * @param reducer a commutative associative combining function
4943 * @return the task
4944 */
4945 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4946 (ConcurrentHashMap<K,V> map,
4947 ObjectToLong<? super K> transformer,
4948 long basis,
4949 LongByLongToLong reducer) {
4950 if (transformer == null || reducer == null)
4951 throw new NullPointerException();
4952 return new MapReduceKeysToLongTask<K,V>
4953 (map, null, -1, null, transformer, basis, reducer);
4954 }
4955
4956 /**
4957 * Returns a task that when invoked, returns the result of
4958 * accumulating the given transformation of all keys using the given
4959 * reducer to combine values, and the given basis as an
4960 * identity value.
4961 *
4962 * @param map the map
4963 * @param transformer a function returning the transformation
4964 * for an element
4965 * @param basis the identity (initial default value) for the reduction
4966 * @param reducer a commutative associative combining function
4967 * @return the task
4968 */
4969 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4970 (ConcurrentHashMap<K,V> map,
4971 ObjectToInt<? super K> transformer,
4972 int basis,
4973 IntByIntToInt reducer) {
4974 if (transformer == null || reducer == null)
4975 throw new NullPointerException();
4976 return new MapReduceKeysToIntTask<K,V>
4977 (map, null, -1, null, transformer, basis, reducer);
4978 }
4979
4980 /**
4981 * Returns a task that when invoked, performs the given action
4982 * for each value.
4983 *
4984 * @param map the map
4985 * @param action the action
4986 */
4987 public static <K,V> ForkJoinTask<Void> forEachValue
4988 (ConcurrentHashMap<K,V> map,
4989 Action<V> action) {
4990 if (action == null) throw new NullPointerException();
4991 return new ForEachValueTask<K,V>(map, null, -1, null, action);
4992 }
4993
4994 /**
4995 * Returns a task that when invoked, performs the given action
4996 * for each non-null transformation of each value.
4997 *
4998 * @param map the map
4999 * @param transformer a function returning the transformation
5000 * for an element, or null if there is no transformation (in
5001 * which case the action is not applied)
5002 * @param action the action
5003 */
5004 public static <K,V,U> ForkJoinTask<Void> forEachValue
5005 (ConcurrentHashMap<K,V> map,
5006 Fun<? super V, ? extends U> transformer,
5007 Action<U> action) {
5008 if (transformer == null || action == null)
5009 throw new NullPointerException();
5010 return new ForEachTransformedValueTask<K,V,U>
5011 (map, null, -1, null, transformer, action);
5012 }
5013
5014 /**
5015 * Returns a task that when invoked, returns a non-null result
5016 * from applying the given search function on each value, or
5017 * null if none. Upon success, further element processing is
5018 * suppressed and the results of any other parallel
5019 * invocations of the search function are ignored.
5020 *
5021 * @param map the map
5022 * @param searchFunction a function returning a non-null
5023 * result on success, else null
5024 * @return the task
5025 */
5026 public static <K,V,U> ForkJoinTask<U> searchValues
5027 (ConcurrentHashMap<K,V> map,
5028 Fun<? super V, ? extends U> searchFunction) {
5029 if (searchFunction == null) throw new NullPointerException();
5030 return new SearchValuesTask<K,V,U>
5031 (map, null, -1, null, searchFunction,
5032 new AtomicReference<U>());
5033 }
5034
5035 /**
5036 * Returns a task that when invoked, returns the result of
5037 * accumulating all values using the given reducer to combine
5038 * values, or null if none.
5039 *
5040 * @param map the map
5041 * @param reducer a commutative associative combining function
5042 * @return the task
5043 */
5044 public static <K,V> ForkJoinTask<V> reduceValues
5045 (ConcurrentHashMap<K,V> map,
5046 BiFun<? super V, ? super V, ? extends V> reducer) {
5047 if (reducer == null) throw new NullPointerException();
5048 return new ReduceValuesTask<K,V>
5049 (map, null, -1, null, reducer);
5050 }
5051
5052 /**
5053 * Returns a task that when invoked, returns the result of
5054 * accumulating the given transformation of all values using the
5055 * given reducer to combine values, or null if none.
5056 *
5057 * @param map the map
5058 * @param transformer a function returning the transformation
5059 * for an element, or null if there is no transformation (in
5060 * which case it is not combined).
5061 * @param reducer a commutative associative combining function
5062 * @return the task
5063 */
5064 public static <K,V,U> ForkJoinTask<U> reduceValues
5065 (ConcurrentHashMap<K,V> map,
5066 Fun<? super V, ? extends U> transformer,
5067 BiFun<? super U, ? super U, ? extends U> reducer) {
5068 if (transformer == null || reducer == null)
5069 throw new NullPointerException();
5070 return new MapReduceValuesTask<K,V,U>
5071 (map, null, -1, null, transformer, reducer);
5072 }
5073
5074 /**
5075 * Returns a task that when invoked, returns the result of
5076 * accumulating the given transformation of all values using the
5077 * given reducer to combine values, and the given basis as an
5078 * identity value.
5079 *
5080 * @param map the map
5081 * @param transformer a function returning the transformation
5082 * for an element
5083 * @param basis the identity (initial default value) for the reduction
5084 * @param reducer a commutative associative combining function
5085 * @return the task
5086 */
5087 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5088 (ConcurrentHashMap<K,V> map,
5089 ObjectToDouble<? super V> transformer,
5090 double basis,
5091 DoubleByDoubleToDouble reducer) {
5092 if (transformer == null || reducer == null)
5093 throw new NullPointerException();
5094 return new MapReduceValuesToDoubleTask<K,V>
5095 (map, null, -1, null, transformer, basis, reducer);
5096 }
5097
5098 /**
5099 * Returns a task that when invoked, returns the result of
5100 * accumulating the given transformation of all values using the
5101 * given reducer to combine values, and the given basis as an
5102 * identity value.
5103 *
5104 * @param map the map
5105 * @param transformer a function returning the transformation
5106 * for an element
5107 * @param basis the identity (initial default value) for the reduction
5108 * @param reducer a commutative associative combining function
5109 * @return the task
5110 */
5111 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5112 (ConcurrentHashMap<K,V> map,
5113 ObjectToLong<? super V> transformer,
5114 long basis,
5115 LongByLongToLong reducer) {
5116 if (transformer == null || reducer == null)
5117 throw new NullPointerException();
5118 return new MapReduceValuesToLongTask<K,V>
5119 (map, null, -1, null, transformer, basis, reducer);
5120 }
5121
5122 /**
5123 * Returns a task that when invoked, returns the result of
5124 * accumulating the given transformation of all values using the
5125 * given reducer to combine values, and the given basis as an
5126 * identity value.
5127 *
5128 * @param map the map
5129 * @param transformer a function returning the transformation
5130 * for an element
5131 * @param basis the identity (initial default value) for the reduction
5132 * @param reducer a commutative associative combining function
5133 * @return the task
5134 */
5135 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5136 (ConcurrentHashMap<K,V> map,
5137 ObjectToInt<? super V> transformer,
5138 int basis,
5139 IntByIntToInt reducer) {
5140 if (transformer == null || reducer == null)
5141 throw new NullPointerException();
5142 return new MapReduceValuesToIntTask<K,V>
5143 (map, null, -1, null, transformer, basis, reducer);
5144 }
5145
5146 /**
5147 * Returns a task that when invoked, perform the given action
5148 * for each entry.
5149 *
5150 * @param map the map
5151 * @param action the action
5152 */
5153 public static <K,V> ForkJoinTask<Void> forEachEntry
5154 (ConcurrentHashMap<K,V> map,
5155 Action<Map.Entry<K,V>> action) {
5156 if (action == null) throw new NullPointerException();
5157 return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5158 }
5159
5160 /**
5161 * Returns a task that when invoked, perform the given action
5162 * for each non-null transformation of each entry.
5163 *
5164 * @param map the map
5165 * @param transformer a function returning the transformation
5166 * for an element, or null if there is no transformation (in
5167 * which case the action is not applied)
5168 * @param action the action
5169 */
5170 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5171 (ConcurrentHashMap<K,V> map,
5172 Fun<Map.Entry<K,V>, ? extends U> transformer,
5173 Action<U> action) {
5174 if (transformer == null || action == null)
5175 throw new NullPointerException();
5176 return new ForEachTransformedEntryTask<K,V,U>
5177 (map, null, -1, null, transformer, action);
5178 }
5179
5180 /**
5181 * Returns a task that when invoked, returns a non-null result
5182 * from applying the given search function on each entry, or
5183 * null if none. Upon success, further element processing is
5184 * suppressed and the results of any other parallel
5185 * invocations of the search function are ignored.
5186 *
5187 * @param map the map
5188 * @param searchFunction a function returning a non-null
5189 * result on success, else null
5190 * @return the task
5191 */
5192 public static <K,V,U> ForkJoinTask<U> searchEntries
5193 (ConcurrentHashMap<K,V> map,
5194 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5195 if (searchFunction == null) throw new NullPointerException();
5196 return new SearchEntriesTask<K,V,U>
5197 (map, null, -1, null, searchFunction,
5198 new AtomicReference<U>());
5199 }
5200
5201 /**
5202 * Returns a task that when invoked, returns the result of
5203 * accumulating all entries using the given reducer to combine
5204 * values, or null if none.
5205 *
5206 * @param map the map
5207 * @param reducer a commutative associative combining function
5208 * @return the task
5209 */
5210 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5211 (ConcurrentHashMap<K,V> map,
5212 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5213 if (reducer == null) throw new NullPointerException();
5214 return new ReduceEntriesTask<K,V>
5215 (map, null, -1, null, reducer);
5216 }
5217
5218 /**
5219 * Returns a task that when invoked, returns the result of
5220 * accumulating the given transformation of all entries using the
5221 * given reducer to combine values, or null if none.
5222 *
5223 * @param map the map
5224 * @param transformer a function returning the transformation
5225 * for an element, or null if there is no transformation (in
5226 * which case it is not combined).
5227 * @param reducer a commutative associative combining function
5228 * @return the task
5229 */
5230 public static <K,V,U> ForkJoinTask<U> reduceEntries
5231 (ConcurrentHashMap<K,V> map,
5232 Fun<Map.Entry<K,V>, ? extends U> transformer,
5233 BiFun<? super U, ? super U, ? extends U> reducer) {
5234 if (transformer == null || reducer == null)
5235 throw new NullPointerException();
5236 return new MapReduceEntriesTask<K,V,U>
5237 (map, null, -1, null, transformer, reducer);
5238 }
5239
5240 /**
5241 * Returns a task that when invoked, returns the result of
5242 * accumulating the given transformation of all entries using the
5243 * given reducer to combine values, and the given basis as an
5244 * identity value.
5245 *
5246 * @param map the map
5247 * @param transformer a function returning the transformation
5248 * for an element
5249 * @param basis the identity (initial default value) for the reduction
5250 * @param reducer a commutative associative combining function
5251 * @return the task
5252 */
5253 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5254 (ConcurrentHashMap<K,V> map,
5255 ObjectToDouble<Map.Entry<K,V>> transformer,
5256 double basis,
5257 DoubleByDoubleToDouble reducer) {
5258 if (transformer == null || reducer == null)
5259 throw new NullPointerException();
5260 return new MapReduceEntriesToDoubleTask<K,V>
5261 (map, null, -1, null, transformer, basis, reducer);
5262 }
5263
5264 /**
5265 * Returns a task that when invoked, returns the result of
5266 * accumulating the given transformation of all entries using the
5267 * given reducer to combine values, and the given basis as an
5268 * identity value.
5269 *
5270 * @param map the map
5271 * @param transformer a function returning the transformation
5272 * for an element
5273 * @param basis the identity (initial default value) for the reduction
5274 * @param reducer a commutative associative combining function
5275 * @return the task
5276 */
5277 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5278 (ConcurrentHashMap<K,V> map,
5279 ObjectToLong<Map.Entry<K,V>> transformer,
5280 long basis,
5281 LongByLongToLong reducer) {
5282 if (transformer == null || reducer == null)
5283 throw new NullPointerException();
5284 return new MapReduceEntriesToLongTask<K,V>
5285 (map, null, -1, null, transformer, basis, reducer);
5286 }
5287
5288 /**
5289 * Returns a task that when invoked, returns the result of
5290 * accumulating the given transformation of all entries using the
5291 * given reducer to combine values, and the given basis as an
5292 * identity value.
5293 *
5294 * @param map the map
5295 * @param transformer a function returning the transformation
5296 * for an element
5297 * @param basis the identity (initial default value) for the reduction
5298 * @param reducer a commutative associative combining function
5299 * @return the task
5300 */
5301 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5302 (ConcurrentHashMap<K,V> map,
5303 ObjectToInt<Map.Entry<K,V>> transformer,
5304 int basis,
5305 IntByIntToInt reducer) {
5306 if (transformer == null || reducer == null)
5307 throw new NullPointerException();
5308 return new MapReduceEntriesToIntTask<K,V>
5309 (map, null, -1, null, transformer, basis, reducer);
5310 }
5311 }
5312
5313 // -------------------------------------------------------
5314
5315 /**
5316 * Base for FJ tasks for bulk operations. This adds a variant of
5317 * CountedCompleters and some split and merge bookkeeping to
5318 * iterator functionality. The forEach and reduce methods are
5319 * similar to those illustrated in CountedCompleter documentation,
5320 * except that bottom-up reduction completions perform them within
5321 * their compute methods. The search methods are like forEach
5322 * except they continually poll for success and exit early. Also,
5323 * exceptions are handled in a simpler manner, by just trying to
5324 * complete root task exceptionally.
5325 */
5326 @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5327 final BulkTask<K,V,?> parent; // completion target
5328 int batch; // split control; -1 for unknown
5329 int pending; // completion control
5330
5331 BulkTask(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5332 int batch) {
5333 super(map);
5334 this.parent = parent;
5335 this.batch = batch;
5336 if (parent != null && map != null) { // split parent
5337 Node[] t;
5338 if ((t = parent.tab) == null &&
5339 (t = parent.tab = map.table) != null)
5340 parent.baseLimit = parent.baseSize = t.length;
5341 this.tab = t;
5342 this.baseSize = parent.baseSize;
5343 int hi = this.baseLimit = parent.baseLimit;
5344 parent.baseLimit = this.index = this.baseIndex =
5345 (hi + parent.baseIndex + 1) >>> 1;
5346 }
5347 }
5348
5349 /**
5350 * Forces root task to complete.
5351 * @param ex if null, complete normally, else exceptionally
5352 * @return false to simplify use
5353 */
5354 final boolean tryCompleteComputation(Throwable ex) {
5355 for (BulkTask<K,V,?> a = this;;) {
5356 BulkTask<K,V,?> p = a.parent;
5357 if (p == null) {
5358 if (ex != null)
5359 a.completeExceptionally(ex);
5360 else
5361 a.quietlyComplete();
5362 return false;
5363 }
5364 a = p;
5365 }
5366 }
5367
5368 /**
5369 * Version of tryCompleteComputation for function screening checks
5370 */
5371 final boolean abortOnNullFunction() {
5372 return tryCompleteComputation(new Error("Unexpected null function"));
5373 }
5374
5375 // utilities
5376
5377 /** CompareAndSet pending count */
5378 final boolean casPending(int cmp, int val) {
5379 return U.compareAndSwapInt(this, PENDING, cmp, val);
5380 }
5381
5382 /**
5383 * Returns approx exp2 of the number of times (minus one) to
5384 * split task by two before executing leaf action. This value
5385 * is faster to compute and more convenient to use as a guide
5386 * to splitting than is the depth, since it is used while
5387 * dividing by two anyway.
5388 */
5389 final int batch() {
5390 ConcurrentHashMap<K, V> m; int b; Node[] t; ForkJoinPool pool;
5391 if ((b = batch) < 0 && (m = map) != null) { // force initialization
5392 if ((t = tab) == null && (t = tab = m.table) != null)
5393 baseLimit = baseSize = t.length;
5394 if (t != null) {
5395 long n = m.counter.sum();
5396 int par = ((pool = getPool()) == null) ?
5397 ForkJoinPool.getCommonPoolParallelism() :
5398 pool.getParallelism();
5399 int sp = par << 3; // slack of 8
5400 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5401 }
5402 }
5403 return b;
5404 }
5405
5406 /**
5407 * Returns exportable snapshot entry.
5408 */
5409 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5410 return new AbstractMap.SimpleEntry<K,V>(k, v);
5411 }
5412
5413 // Unsafe mechanics
5414 private static final sun.misc.Unsafe U;
5415 private static final long PENDING;
5416 static {
5417 try {
5418 U = sun.misc.Unsafe.getUnsafe();
5419 PENDING = U.objectFieldOffset
5420 (BulkTask.class.getDeclaredField("pending"));
5421 } catch (Exception e) {
5422 throw new Error(e);
5423 }
5424 }
5425 }
5426
5427 /**
5428 * Base class for non-reductive actions
5429 */
5430 @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5431 BulkAction<K,V,?> nextTask;
5432 BulkAction(ConcurrentHashMap<K,V> map, BulkTask<K,V,?> parent,
5433 int batch, BulkAction<K,V,?> nextTask) {
5434 super(map, parent, batch);
5435 this.nextTask = nextTask;
5436 }
5437
5438 /**
5439 * Try to complete task and upward parents. Upon hitting
5440 * non-completed parent, if a non-FJ task, try to help out the
5441 * computation.
5442 */
5443 final void tryComplete(BulkAction<K,V,?> subtasks) {
5444 BulkTask<K,V,?> a = this, s = a;
5445 for (int c;;) {
5446 if ((c = a.pending) == 0) {
5447 if ((a = (s = a).parent) == null) {
5448 s.quietlyComplete();
5449 break;
5450 }
5451 }
5452 else if (a.casPending(c, c - 1)) {
5453 if (subtasks != null && !inForkJoinPool()) {
5454 while ((s = a.parent) != null)
5455 a = s;
5456 while (!a.isDone()) {
5457 BulkAction<K,V,?> next = subtasks.nextTask;
5458 if (subtasks.tryUnfork())
5459 subtasks.exec();
5460 if ((subtasks = next) == null)
5461 break;
5462 }
5463 }
5464 break;
5465 }
5466 }
5467 }
5468
5469 }
5470
5471 /*
5472 * Task classes. Coded in a regular but ugly format/style to
5473 * simplify checks that each variant differs in the right way from
5474 * others.
5475 */
5476
5477 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5478 extends BulkAction<K,V,Void> {
5479 final Action<K> action;
5480 ForEachKeyTask
5481 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5482 ForEachKeyTask<K,V> nextTask,
5483 Action<K> action) {
5484 super(m, p, b, nextTask);
5485 this.action = action;
5486 }
5487 @SuppressWarnings("unchecked") public final boolean exec() {
5488 final Action<K> action = this.action;
5489 if (action == null)
5490 return abortOnNullFunction();
5491 ForEachKeyTask<K,V> subtasks = null;
5492 try {
5493 int b = batch(), c;
5494 while (b > 1 && baseIndex != baseLimit) {
5495 do {} while (!casPending(c = pending, c+1));
5496 (subtasks = new ForEachKeyTask<K,V>
5497 (map, this, b >>>= 1, subtasks, action)).fork();
5498 }
5499 while (advance() != null)
5500 action.apply((K)nextKey);
5501 } catch (Throwable ex) {
5502 return tryCompleteComputation(ex);
5503 }
5504 tryComplete(subtasks);
5505 return false;
5506 }
5507 }
5508
5509 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5510 extends BulkAction<K,V,Void> {
5511 final Action<V> action;
5512 ForEachValueTask
5513 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5514 ForEachValueTask<K,V> nextTask,
5515 Action<V> action) {
5516 super(m, p, b, nextTask);
5517 this.action = action;
5518 }
5519 @SuppressWarnings("unchecked") public final boolean exec() {
5520 final Action<V> action = this.action;
5521 if (action == null)
5522 return abortOnNullFunction();
5523 ForEachValueTask<K,V> subtasks = null;
5524 try {
5525 int b = batch(), c;
5526 while (b > 1 && baseIndex != baseLimit) {
5527 do {} while (!casPending(c = pending, c+1));
5528 (subtasks = new ForEachValueTask<K,V>
5529 (map, this, b >>>= 1, subtasks, action)).fork();
5530 }
5531 Object v;
5532 while ((v = advance()) != null)
5533 action.apply((V)v);
5534 } catch (Throwable ex) {
5535 return tryCompleteComputation(ex);
5536 }
5537 tryComplete(subtasks);
5538 return false;
5539 }
5540 }
5541
5542 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5543 extends BulkAction<K,V,Void> {
5544 final Action<Entry<K,V>> action;
5545 ForEachEntryTask
5546 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5547 ForEachEntryTask<K,V> nextTask,
5548 Action<Entry<K,V>> action) {
5549 super(m, p, b, nextTask);
5550 this.action = action;
5551 }
5552 @SuppressWarnings("unchecked") public final boolean exec() {
5553 final Action<Entry<K,V>> action = this.action;
5554 if (action == null)
5555 return abortOnNullFunction();
5556 ForEachEntryTask<K,V> subtasks = null;
5557 try {
5558 int b = batch(), c;
5559 while (b > 1 && baseIndex != baseLimit) {
5560 do {} while (!casPending(c = pending, c+1));
5561 (subtasks = new ForEachEntryTask<K,V>
5562 (map, this, b >>>= 1, subtasks, action)).fork();
5563 }
5564 Object v;
5565 while ((v = advance()) != null)
5566 action.apply(entryFor((K)nextKey, (V)v));
5567 } catch (Throwable ex) {
5568 return tryCompleteComputation(ex);
5569 }
5570 tryComplete(subtasks);
5571 return false;
5572 }
5573 }
5574
5575 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5576 extends BulkAction<K,V,Void> {
5577 final BiAction<K,V> action;
5578 ForEachMappingTask
5579 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5580 ForEachMappingTask<K,V> nextTask,
5581 BiAction<K,V> action) {
5582 super(m, p, b, nextTask);
5583 this.action = action;
5584 }
5585 @SuppressWarnings("unchecked") public final boolean exec() {
5586 final BiAction<K,V> action = this.action;
5587 if (action == null)
5588 return abortOnNullFunction();
5589 ForEachMappingTask<K,V> subtasks = null;
5590 try {
5591 int b = batch(), c;
5592 while (b > 1 && baseIndex != baseLimit) {
5593 do {} while (!casPending(c = pending, c+1));
5594 (subtasks = new ForEachMappingTask<K,V>
5595 (map, this, b >>>= 1, subtasks, action)).fork();
5596 }
5597 Object v;
5598 while ((v = advance()) != null)
5599 action.apply((K)nextKey, (V)v);
5600 } catch (Throwable ex) {
5601 return tryCompleteComputation(ex);
5602 }
5603 tryComplete(subtasks);
5604 return false;
5605 }
5606 }
5607
5608 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5609 extends BulkAction<K,V,Void> {
5610 final Fun<? super K, ? extends U> transformer;
5611 final Action<U> action;
5612 ForEachTransformedKeyTask
5613 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5614 ForEachTransformedKeyTask<K,V,U> nextTask,
5615 Fun<? super K, ? extends U> transformer,
5616 Action<U> action) {
5617 super(m, p, b, nextTask);
5618 this.transformer = transformer;
5619 this.action = action;
5620
5621 }
5622 @SuppressWarnings("unchecked") public final boolean exec() {
5623 final Fun<? super K, ? extends U> transformer =
5624 this.transformer;
5625 final Action<U> action = this.action;
5626 if (transformer == null || action == null)
5627 return abortOnNullFunction();
5628 ForEachTransformedKeyTask<K,V,U> subtasks = null;
5629 try {
5630 int b = batch(), c;
5631 while (b > 1 && baseIndex != baseLimit) {
5632 do {} while (!casPending(c = pending, c+1));
5633 (subtasks = new ForEachTransformedKeyTask<K,V,U>
5634 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5635 }
5636 U u;
5637 while (advance() != null) {
5638 if ((u = transformer.apply((K)nextKey)) != null)
5639 action.apply(u);
5640 }
5641 } catch (Throwable ex) {
5642 return tryCompleteComputation(ex);
5643 }
5644 tryComplete(subtasks);
5645 return false;
5646 }
5647 }
5648
5649 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5650 extends BulkAction<K,V,Void> {
5651 final Fun<? super V, ? extends U> transformer;
5652 final Action<U> action;
5653 ForEachTransformedValueTask
5654 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5655 ForEachTransformedValueTask<K,V,U> nextTask,
5656 Fun<? super V, ? extends U> transformer,
5657 Action<U> action) {
5658 super(m, p, b, nextTask);
5659 this.transformer = transformer;
5660 this.action = action;
5661
5662 }
5663 @SuppressWarnings("unchecked") public final boolean exec() {
5664 final Fun<? super V, ? extends U> transformer =
5665 this.transformer;
5666 final Action<U> action = this.action;
5667 if (transformer == null || action == null)
5668 return abortOnNullFunction();
5669 ForEachTransformedValueTask<K,V,U> subtasks = null;
5670 try {
5671 int b = batch(), c;
5672 while (b > 1 && baseIndex != baseLimit) {
5673 do {} while (!casPending(c = pending, c+1));
5674 (subtasks = new ForEachTransformedValueTask<K,V,U>
5675 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5676 }
5677 Object v; U u;
5678 while ((v = advance()) != null) {
5679 if ((u = transformer.apply((V)v)) != null)
5680 action.apply(u);
5681 }
5682 } catch (Throwable ex) {
5683 return tryCompleteComputation(ex);
5684 }
5685 tryComplete(subtasks);
5686 return false;
5687 }
5688 }
5689
5690 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5691 extends BulkAction<K,V,Void> {
5692 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5693 final Action<U> action;
5694 ForEachTransformedEntryTask
5695 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5696 ForEachTransformedEntryTask<K,V,U> nextTask,
5697 Fun<Map.Entry<K,V>, ? extends U> transformer,
5698 Action<U> action) {
5699 super(m, p, b, nextTask);
5700 this.transformer = transformer;
5701 this.action = action;
5702
5703 }
5704 @SuppressWarnings("unchecked") public final boolean exec() {
5705 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5706 this.transformer;
5707 final Action<U> action = this.action;
5708 if (transformer == null || action == null)
5709 return abortOnNullFunction();
5710 ForEachTransformedEntryTask<K,V,U> subtasks = null;
5711 try {
5712 int b = batch(), c;
5713 while (b > 1 && baseIndex != baseLimit) {
5714 do {} while (!casPending(c = pending, c+1));
5715 (subtasks = new ForEachTransformedEntryTask<K,V,U>
5716 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5717 }
5718 Object v; U u;
5719 while ((v = advance()) != null) {
5720 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5721 action.apply(u);
5722 }
5723 } catch (Throwable ex) {
5724 return tryCompleteComputation(ex);
5725 }
5726 tryComplete(subtasks);
5727 return false;
5728 }
5729 }
5730
5731 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5732 extends BulkAction<K,V,Void> {
5733 final BiFun<? super K, ? super V, ? extends U> transformer;
5734 final Action<U> action;
5735 ForEachTransformedMappingTask
5736 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5737 ForEachTransformedMappingTask<K,V,U> nextTask,
5738 BiFun<? super K, ? super V, ? extends U> transformer,
5739 Action<U> action) {
5740 super(m, p, b, nextTask);
5741 this.transformer = transformer;
5742 this.action = action;
5743
5744 }
5745 @SuppressWarnings("unchecked") public final boolean exec() {
5746 final BiFun<? super K, ? super V, ? extends U> transformer =
5747 this.transformer;
5748 final Action<U> action = this.action;
5749 if (transformer == null || action == null)
5750 return abortOnNullFunction();
5751 ForEachTransformedMappingTask<K,V,U> subtasks = null;
5752 try {
5753 int b = batch(), c;
5754 while (b > 1 && baseIndex != baseLimit) {
5755 do {} while (!casPending(c = pending, c+1));
5756 (subtasks = new ForEachTransformedMappingTask<K,V,U>
5757 (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5758 }
5759 Object v; U u;
5760 while ((v = advance()) != null) {
5761 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5762 action.apply(u);
5763 }
5764 } catch (Throwable ex) {
5765 return tryCompleteComputation(ex);
5766 }
5767 tryComplete(subtasks);
5768 return false;
5769 }
5770 }
5771
5772 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5773 extends BulkAction<K,V,U> {
5774 final Fun<? super K, ? extends U> searchFunction;
5775 final AtomicReference<U> result;
5776 SearchKeysTask
5777 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5778 SearchKeysTask<K,V,U> nextTask,
5779 Fun<? super K, ? extends U> searchFunction,
5780 AtomicReference<U> result) {
5781 super(m, p, b, nextTask);
5782 this.searchFunction = searchFunction; this.result = result;
5783 }
5784 @SuppressWarnings("unchecked") public final boolean exec() {
5785 AtomicReference<U> result = this.result;
5786 final Fun<? super K, ? extends U> searchFunction =
5787 this.searchFunction;
5788 if (searchFunction == null || result == null)
5789 return abortOnNullFunction();
5790 SearchKeysTask<K,V,U> subtasks = null;
5791 try {
5792 int b = batch(), c;
5793 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5794 do {} while (!casPending(c = pending, c+1));
5795 (subtasks = new SearchKeysTask<K,V,U>
5796 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5797 }
5798 U u;
5799 while (result.get() == null && advance() != null) {
5800 if ((u = searchFunction.apply((K)nextKey)) != null) {
5801 if (result.compareAndSet(null, u))
5802 tryCompleteComputation(null);
5803 break;
5804 }
5805 }
5806 } catch (Throwable ex) {
5807 return tryCompleteComputation(ex);
5808 }
5809 tryComplete(subtasks);
5810 return false;
5811 }
5812 public final U getRawResult() { return result.get(); }
5813 }
5814
5815 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5816 extends BulkAction<K,V,U> {
5817 final Fun<? super V, ? extends U> searchFunction;
5818 final AtomicReference<U> result;
5819 SearchValuesTask
5820 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5821 SearchValuesTask<K,V,U> nextTask,
5822 Fun<? super V, ? extends U> searchFunction,
5823 AtomicReference<U> result) {
5824 super(m, p, b, nextTask);
5825 this.searchFunction = searchFunction; this.result = result;
5826 }
5827 @SuppressWarnings("unchecked") public final boolean exec() {
5828 AtomicReference<U> result = this.result;
5829 final Fun<? super V, ? extends U> searchFunction =
5830 this.searchFunction;
5831 if (searchFunction == null || result == null)
5832 return abortOnNullFunction();
5833 SearchValuesTask<K,V,U> subtasks = null;
5834 try {
5835 int b = batch(), c;
5836 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5837 do {} while (!casPending(c = pending, c+1));
5838 (subtasks = new SearchValuesTask<K,V,U>
5839 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5840 }
5841 Object v; U u;
5842 while (result.get() == null && (v = advance()) != null) {
5843 if ((u = searchFunction.apply((V)v)) != null) {
5844 if (result.compareAndSet(null, u))
5845 tryCompleteComputation(null);
5846 break;
5847 }
5848 }
5849 } catch (Throwable ex) {
5850 return tryCompleteComputation(ex);
5851 }
5852 tryComplete(subtasks);
5853 return false;
5854 }
5855 public final U getRawResult() { return result.get(); }
5856 }
5857
5858 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5859 extends BulkAction<K,V,U> {
5860 final Fun<Entry<K,V>, ? extends U> searchFunction;
5861 final AtomicReference<U> result;
5862 SearchEntriesTask
5863 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5864 SearchEntriesTask<K,V,U> nextTask,
5865 Fun<Entry<K,V>, ? extends U> searchFunction,
5866 AtomicReference<U> result) {
5867 super(m, p, b, nextTask);
5868 this.searchFunction = searchFunction; this.result = result;
5869 }
5870 @SuppressWarnings("unchecked") public final boolean exec() {
5871 AtomicReference<U> result = this.result;
5872 final Fun<Entry<K,V>, ? extends U> searchFunction =
5873 this.searchFunction;
5874 if (searchFunction == null || result == null)
5875 return abortOnNullFunction();
5876 SearchEntriesTask<K,V,U> subtasks = null;
5877 try {
5878 int b = batch(), c;
5879 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5880 do {} while (!casPending(c = pending, c+1));
5881 (subtasks = new SearchEntriesTask<K,V,U>
5882 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5883 }
5884 Object v; U u;
5885 while (result.get() == null && (v = advance()) != null) {
5886 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5887 if (result.compareAndSet(null, u))
5888 tryCompleteComputation(null);
5889 break;
5890 }
5891 }
5892 } catch (Throwable ex) {
5893 return tryCompleteComputation(ex);
5894 }
5895 tryComplete(subtasks);
5896 return false;
5897 }
5898 public final U getRawResult() { return result.get(); }
5899 }
5900
5901 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5902 extends BulkAction<K,V,U> {
5903 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5904 final AtomicReference<U> result;
5905 SearchMappingsTask
5906 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5907 SearchMappingsTask<K,V,U> nextTask,
5908 BiFun<? super K, ? super V, ? extends U> searchFunction,
5909 AtomicReference<U> result) {
5910 super(m, p, b, nextTask);
5911 this.searchFunction = searchFunction; this.result = result;
5912 }
5913 @SuppressWarnings("unchecked") public final boolean exec() {
5914 AtomicReference<U> result = this.result;
5915 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5916 this.searchFunction;
5917 if (searchFunction == null || result == null)
5918 return abortOnNullFunction();
5919 SearchMappingsTask<K,V,U> subtasks = null;
5920 try {
5921 int b = batch(), c;
5922 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5923 do {} while (!casPending(c = pending, c+1));
5924 (subtasks = new SearchMappingsTask<K,V,U>
5925 (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5926 }
5927 Object v; U u;
5928 while (result.get() == null && (v = advance()) != null) {
5929 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5930 if (result.compareAndSet(null, u))
5931 tryCompleteComputation(null);
5932 break;
5933 }
5934 }
5935 } catch (Throwable ex) {
5936 return tryCompleteComputation(ex);
5937 }
5938 tryComplete(subtasks);
5939 return false;
5940 }
5941 public final U getRawResult() { return result.get(); }
5942 }
5943
5944 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5945 extends BulkTask<K,V,K> {
5946 final BiFun<? super K, ? super K, ? extends K> reducer;
5947 K result;
5948 ReduceKeysTask<K,V> rights, nextRight;
5949 ReduceKeysTask
5950 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
5951 ReduceKeysTask<K,V> nextRight,
5952 BiFun<? super K, ? super K, ? extends K> reducer) {
5953 super(m, p, b); this.nextRight = nextRight;
5954 this.reducer = reducer;
5955 }
5956 @SuppressWarnings("unchecked") public final boolean exec() {
5957 final BiFun<? super K, ? super K, ? extends K> reducer =
5958 this.reducer;
5959 if (reducer == null)
5960 return abortOnNullFunction();
5961 try {
5962 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5963 do {} while (!casPending(c = pending, c+1));
5964 (rights = new ReduceKeysTask<K,V>
5965 (map, this, b >>>= 1, rights, reducer)).fork();
5966 }
5967 K r = null;
5968 while (advance() != null) {
5969 K u = (K)nextKey;
5970 r = (r == null) ? u : reducer.apply(r, u);
5971 }
5972 result = r;
5973 for (ReduceKeysTask<K,V> t = this, s;;) {
5974 int c; BulkTask<K,V,?> par; K tr, sr;
5975 if ((c = t.pending) == 0) {
5976 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5977 if ((sr = s.result) != null)
5978 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5979 }
5980 if ((par = t.parent) == null ||
5981 !(par instanceof ReduceKeysTask)) {
5982 t.quietlyComplete();
5983 break;
5984 }
5985 t = (ReduceKeysTask<K,V>)par;
5986 }
5987 else if (t.casPending(c, c - 1))
5988 break;
5989 }
5990 } catch (Throwable ex) {
5991 return tryCompleteComputation(ex);
5992 }
5993 ReduceKeysTask<K,V> s = rights;
5994 if (s != null && !inForkJoinPool()) {
5995 do {
5996 if (s.tryUnfork())
5997 s.exec();
5998 } while ((s = s.nextRight) != null);
5999 }
6000 return false;
6001 }
6002 public final K getRawResult() { return result; }
6003 }
6004
6005 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6006 extends BulkTask<K,V,V> {
6007 final BiFun<? super V, ? super V, ? extends V> reducer;
6008 V result;
6009 ReduceValuesTask<K,V> rights, nextRight;
6010 ReduceValuesTask
6011 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6012 ReduceValuesTask<K,V> nextRight,
6013 BiFun<? super V, ? super V, ? extends V> reducer) {
6014 super(m, p, b); this.nextRight = nextRight;
6015 this.reducer = reducer;
6016 }
6017 @SuppressWarnings("unchecked") public final boolean exec() {
6018 final BiFun<? super V, ? super V, ? extends V> reducer =
6019 this.reducer;
6020 if (reducer == null)
6021 return abortOnNullFunction();
6022 try {
6023 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6024 do {} while (!casPending(c = pending, c+1));
6025 (rights = new ReduceValuesTask<K,V>
6026 (map, this, b >>>= 1, rights, reducer)).fork();
6027 }
6028 V r = null;
6029 Object v;
6030 while ((v = advance()) != null) {
6031 V u = (V)v;
6032 r = (r == null) ? u : reducer.apply(r, u);
6033 }
6034 result = r;
6035 for (ReduceValuesTask<K,V> t = this, s;;) {
6036 int c; BulkTask<K,V,?> par; V tr, sr;
6037 if ((c = t.pending) == 0) {
6038 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6039 if ((sr = s.result) != null)
6040 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6041 }
6042 if ((par = t.parent) == null ||
6043 !(par instanceof ReduceValuesTask)) {
6044 t.quietlyComplete();
6045 break;
6046 }
6047 t = (ReduceValuesTask<K,V>)par;
6048 }
6049 else if (t.casPending(c, c - 1))
6050 break;
6051 }
6052 } catch (Throwable ex) {
6053 return tryCompleteComputation(ex);
6054 }
6055 ReduceValuesTask<K,V> s = rights;
6056 if (s != null && !inForkJoinPool()) {
6057 do {
6058 if (s.tryUnfork())
6059 s.exec();
6060 } while ((s = s.nextRight) != null);
6061 }
6062 return false;
6063 }
6064 public final V getRawResult() { return result; }
6065 }
6066
6067 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6068 extends BulkTask<K,V,Map.Entry<K,V>> {
6069 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6070 Map.Entry<K,V> result;
6071 ReduceEntriesTask<K,V> rights, nextRight;
6072 ReduceEntriesTask
6073 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6074 ReduceEntriesTask<K,V> nextRight,
6075 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6076 super(m, p, b); this.nextRight = nextRight;
6077 this.reducer = reducer;
6078 }
6079 @SuppressWarnings("unchecked") public final boolean exec() {
6080 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
6081 this.reducer;
6082 if (reducer == null)
6083 return abortOnNullFunction();
6084 try {
6085 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6086 do {} while (!casPending(c = pending, c+1));
6087 (rights = new ReduceEntriesTask<K,V>
6088 (map, this, b >>>= 1, rights, reducer)).fork();
6089 }
6090 Map.Entry<K,V> r = null;
6091 Object v;
6092 while ((v = advance()) != null) {
6093 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6094 r = (r == null) ? u : reducer.apply(r, u);
6095 }
6096 result = r;
6097 for (ReduceEntriesTask<K,V> t = this, s;;) {
6098 int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
6099 if ((c = t.pending) == 0) {
6100 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6101 if ((sr = s.result) != null)
6102 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6103 }
6104 if ((par = t.parent) == null ||
6105 !(par instanceof ReduceEntriesTask)) {
6106 t.quietlyComplete();
6107 break;
6108 }
6109 t = (ReduceEntriesTask<K,V>)par;
6110 }
6111 else if (t.casPending(c, c - 1))
6112 break;
6113 }
6114 } catch (Throwable ex) {
6115 return tryCompleteComputation(ex);
6116 }
6117 ReduceEntriesTask<K,V> s = rights;
6118 if (s != null && !inForkJoinPool()) {
6119 do {
6120 if (s.tryUnfork())
6121 s.exec();
6122 } while ((s = s.nextRight) != null);
6123 }
6124 return false;
6125 }
6126 public final Map.Entry<K,V> getRawResult() { return result; }
6127 }
6128
6129 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6130 extends BulkTask<K,V,U> {
6131 final Fun<? super K, ? extends U> transformer;
6132 final BiFun<? super U, ? super U, ? extends U> reducer;
6133 U result;
6134 MapReduceKeysTask<K,V,U> rights, nextRight;
6135 MapReduceKeysTask
6136 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6137 MapReduceKeysTask<K,V,U> nextRight,
6138 Fun<? super K, ? extends U> transformer,
6139 BiFun<? super U, ? super U, ? extends U> reducer) {
6140 super(m, p, b); this.nextRight = nextRight;
6141 this.transformer = transformer;
6142 this.reducer = reducer;
6143 }
6144 @SuppressWarnings("unchecked") public final boolean exec() {
6145 final Fun<? super K, ? extends U> transformer =
6146 this.transformer;
6147 final BiFun<? super U, ? super U, ? extends U> reducer =
6148 this.reducer;
6149 if (transformer == null || reducer == null)
6150 return abortOnNullFunction();
6151 try {
6152 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6153 do {} while (!casPending(c = pending, c+1));
6154 (rights = new MapReduceKeysTask<K,V,U>
6155 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6156 }
6157 U r = null, u;
6158 while (advance() != null) {
6159 if ((u = transformer.apply((K)nextKey)) != null)
6160 r = (r == null) ? u : reducer.apply(r, u);
6161 }
6162 result = r;
6163 for (MapReduceKeysTask<K,V,U> t = this, s;;) {
6164 int c; BulkTask<K,V,?> par; U tr, sr;
6165 if ((c = t.pending) == 0) {
6166 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6167 if ((sr = s.result) != null)
6168 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6169 }
6170 if ((par = t.parent) == null ||
6171 !(par instanceof MapReduceKeysTask)) {
6172 t.quietlyComplete();
6173 break;
6174 }
6175 t = (MapReduceKeysTask<K,V,U>)par;
6176 }
6177 else if (t.casPending(c, c - 1))
6178 break;
6179 }
6180 } catch (Throwable ex) {
6181 return tryCompleteComputation(ex);
6182 }
6183 MapReduceKeysTask<K,V,U> s = rights;
6184 if (s != null && !inForkJoinPool()) {
6185 do {
6186 if (s.tryUnfork())
6187 s.exec();
6188 } while ((s = s.nextRight) != null);
6189 }
6190 return false;
6191 }
6192 public final U getRawResult() { return result; }
6193 }
6194
6195 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6196 extends BulkTask<K,V,U> {
6197 final Fun<? super V, ? extends U> transformer;
6198 final BiFun<? super U, ? super U, ? extends U> reducer;
6199 U result;
6200 MapReduceValuesTask<K,V,U> rights, nextRight;
6201 MapReduceValuesTask
6202 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6203 MapReduceValuesTask<K,V,U> nextRight,
6204 Fun<? super V, ? extends U> transformer,
6205 BiFun<? super U, ? super U, ? extends U> reducer) {
6206 super(m, p, b); this.nextRight = nextRight;
6207 this.transformer = transformer;
6208 this.reducer = reducer;
6209 }
6210 @SuppressWarnings("unchecked") public final boolean exec() {
6211 final Fun<? super V, ? extends U> transformer =
6212 this.transformer;
6213 final BiFun<? super U, ? super U, ? extends U> reducer =
6214 this.reducer;
6215 if (transformer == null || reducer == null)
6216 return abortOnNullFunction();
6217 try {
6218 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6219 do {} while (!casPending(c = pending, c+1));
6220 (rights = new MapReduceValuesTask<K,V,U>
6221 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6222 }
6223 U r = null, u;
6224 Object v;
6225 while ((v = advance()) != null) {
6226 if ((u = transformer.apply((V)v)) != null)
6227 r = (r == null) ? u : reducer.apply(r, u);
6228 }
6229 result = r;
6230 for (MapReduceValuesTask<K,V,U> t = this, s;;) {
6231 int c; BulkTask<K,V,?> par; U tr, sr;
6232 if ((c = t.pending) == 0) {
6233 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6234 if ((sr = s.result) != null)
6235 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6236 }
6237 if ((par = t.parent) == null ||
6238 !(par instanceof MapReduceValuesTask)) {
6239 t.quietlyComplete();
6240 break;
6241 }
6242 t = (MapReduceValuesTask<K,V,U>)par;
6243 }
6244 else if (t.casPending(c, c - 1))
6245 break;
6246 }
6247 } catch (Throwable ex) {
6248 return tryCompleteComputation(ex);
6249 }
6250 MapReduceValuesTask<K,V,U> s = rights;
6251 if (s != null && !inForkJoinPool()) {
6252 do {
6253 if (s.tryUnfork())
6254 s.exec();
6255 } while ((s = s.nextRight) != null);
6256 }
6257 return false;
6258 }
6259 public final U getRawResult() { return result; }
6260 }
6261
6262 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6263 extends BulkTask<K,V,U> {
6264 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6265 final BiFun<? super U, ? super U, ? extends U> reducer;
6266 U result;
6267 MapReduceEntriesTask<K,V,U> rights, nextRight;
6268 MapReduceEntriesTask
6269 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6270 MapReduceEntriesTask<K,V,U> nextRight,
6271 Fun<Map.Entry<K,V>, ? extends U> transformer,
6272 BiFun<? super U, ? super U, ? extends U> reducer) {
6273 super(m, p, b); this.nextRight = nextRight;
6274 this.transformer = transformer;
6275 this.reducer = reducer;
6276 }
6277 @SuppressWarnings("unchecked") public final boolean exec() {
6278 final Fun<Map.Entry<K,V>, ? extends U> transformer =
6279 this.transformer;
6280 final BiFun<? super U, ? super U, ? extends U> reducer =
6281 this.reducer;
6282 if (transformer == null || reducer == null)
6283 return abortOnNullFunction();
6284 try {
6285 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6286 do {} while (!casPending(c = pending, c+1));
6287 (rights = new MapReduceEntriesTask<K,V,U>
6288 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6289 }
6290 U r = null, u;
6291 Object v;
6292 while ((v = advance()) != null) {
6293 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6294 r = (r == null) ? u : reducer.apply(r, u);
6295 }
6296 result = r;
6297 for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
6298 int c; BulkTask<K,V,?> par; U tr, sr;
6299 if ((c = t.pending) == 0) {
6300 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6301 if ((sr = s.result) != null)
6302 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6303 }
6304 if ((par = t.parent) == null ||
6305 !(par instanceof MapReduceEntriesTask)) {
6306 t.quietlyComplete();
6307 break;
6308 }
6309 t = (MapReduceEntriesTask<K,V,U>)par;
6310 }
6311 else if (t.casPending(c, c - 1))
6312 break;
6313 }
6314 } catch (Throwable ex) {
6315 return tryCompleteComputation(ex);
6316 }
6317 MapReduceEntriesTask<K,V,U> s = rights;
6318 if (s != null && !inForkJoinPool()) {
6319 do {
6320 if (s.tryUnfork())
6321 s.exec();
6322 } while ((s = s.nextRight) != null);
6323 }
6324 return false;
6325 }
6326 public final U getRawResult() { return result; }
6327 }
6328
6329 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6330 extends BulkTask<K,V,U> {
6331 final BiFun<? super K, ? super V, ? extends U> transformer;
6332 final BiFun<? super U, ? super U, ? extends U> reducer;
6333 U result;
6334 MapReduceMappingsTask<K,V,U> rights, nextRight;
6335 MapReduceMappingsTask
6336 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6337 MapReduceMappingsTask<K,V,U> nextRight,
6338 BiFun<? super K, ? super V, ? extends U> transformer,
6339 BiFun<? super U, ? super U, ? extends U> reducer) {
6340 super(m, p, b); this.nextRight = nextRight;
6341 this.transformer = transformer;
6342 this.reducer = reducer;
6343 }
6344 @SuppressWarnings("unchecked") public final boolean exec() {
6345 final BiFun<? super K, ? super V, ? extends U> transformer =
6346 this.transformer;
6347 final BiFun<? super U, ? super U, ? extends U> reducer =
6348 this.reducer;
6349 if (transformer == null || reducer == null)
6350 return abortOnNullFunction();
6351 try {
6352 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6353 do {} while (!casPending(c = pending, c+1));
6354 (rights = new MapReduceMappingsTask<K,V,U>
6355 (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6356 }
6357 U r = null, u;
6358 Object v;
6359 while ((v = advance()) != null) {
6360 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6361 r = (r == null) ? u : reducer.apply(r, u);
6362 }
6363 result = r;
6364 for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
6365 int c; BulkTask<K,V,?> par; U tr, sr;
6366 if ((c = t.pending) == 0) {
6367 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6368 if ((sr = s.result) != null)
6369 t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6370 }
6371 if ((par = t.parent) == null ||
6372 !(par instanceof MapReduceMappingsTask)) {
6373 t.quietlyComplete();
6374 break;
6375 }
6376 t = (MapReduceMappingsTask<K,V,U>)par;
6377 }
6378 else if (t.casPending(c, c - 1))
6379 break;
6380 }
6381 } catch (Throwable ex) {
6382 return tryCompleteComputation(ex);
6383 }
6384 MapReduceMappingsTask<K,V,U> s = rights;
6385 if (s != null && !inForkJoinPool()) {
6386 do {
6387 if (s.tryUnfork())
6388 s.exec();
6389 } while ((s = s.nextRight) != null);
6390 }
6391 return false;
6392 }
6393 public final U getRawResult() { return result; }
6394 }
6395
6396 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6397 extends BulkTask<K,V,Double> {
6398 final ObjectToDouble<? super K> transformer;
6399 final DoubleByDoubleToDouble reducer;
6400 final double basis;
6401 double result;
6402 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6403 MapReduceKeysToDoubleTask
6404 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6405 MapReduceKeysToDoubleTask<K,V> nextRight,
6406 ObjectToDouble<? super K> transformer,
6407 double basis,
6408 DoubleByDoubleToDouble reducer) {
6409 super(m, p, b); this.nextRight = nextRight;
6410 this.transformer = transformer;
6411 this.basis = basis; this.reducer = reducer;
6412 }
6413 @SuppressWarnings("unchecked") public final boolean exec() {
6414 final ObjectToDouble<? super K> transformer =
6415 this.transformer;
6416 final DoubleByDoubleToDouble reducer = this.reducer;
6417 if (transformer == null || reducer == null)
6418 return abortOnNullFunction();
6419 try {
6420 final double id = this.basis;
6421 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6422 do {} while (!casPending(c = pending, c+1));
6423 (rights = new MapReduceKeysToDoubleTask<K,V>
6424 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6425 }
6426 double r = id;
6427 while (advance() != null)
6428 r = reducer.apply(r, transformer.apply((K)nextKey));
6429 result = r;
6430 for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6431 int c; BulkTask<K,V,?> par;
6432 if ((c = t.pending) == 0) {
6433 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6434 t.result = reducer.apply(t.result, s.result);
6435 }
6436 if ((par = t.parent) == null ||
6437 !(par instanceof MapReduceKeysToDoubleTask)) {
6438 t.quietlyComplete();
6439 break;
6440 }
6441 t = (MapReduceKeysToDoubleTask<K,V>)par;
6442 }
6443 else if (t.casPending(c, c - 1))
6444 break;
6445 }
6446 } catch (Throwable ex) {
6447 return tryCompleteComputation(ex);
6448 }
6449 MapReduceKeysToDoubleTask<K,V> s = rights;
6450 if (s != null && !inForkJoinPool()) {
6451 do {
6452 if (s.tryUnfork())
6453 s.exec();
6454 } while ((s = s.nextRight) != null);
6455 }
6456 return false;
6457 }
6458 public final Double getRawResult() { return result; }
6459 }
6460
6461 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6462 extends BulkTask<K,V,Double> {
6463 final ObjectToDouble<? super V> transformer;
6464 final DoubleByDoubleToDouble reducer;
6465 final double basis;
6466 double result;
6467 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6468 MapReduceValuesToDoubleTask
6469 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6470 MapReduceValuesToDoubleTask<K,V> nextRight,
6471 ObjectToDouble<? super V> transformer,
6472 double basis,
6473 DoubleByDoubleToDouble reducer) {
6474 super(m, p, b); this.nextRight = nextRight;
6475 this.transformer = transformer;
6476 this.basis = basis; this.reducer = reducer;
6477 }
6478 @SuppressWarnings("unchecked") public final boolean exec() {
6479 final ObjectToDouble<? super V> transformer =
6480 this.transformer;
6481 final DoubleByDoubleToDouble reducer = this.reducer;
6482 if (transformer == null || reducer == null)
6483 return abortOnNullFunction();
6484 try {
6485 final double id = this.basis;
6486 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6487 do {} while (!casPending(c = pending, c+1));
6488 (rights = new MapReduceValuesToDoubleTask<K,V>
6489 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6490 }
6491 double r = id;
6492 Object v;
6493 while ((v = advance()) != null)
6494 r = reducer.apply(r, transformer.apply((V)v));
6495 result = r;
6496 for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6497 int c; BulkTask<K,V,?> par;
6498 if ((c = t.pending) == 0) {
6499 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6500 t.result = reducer.apply(t.result, s.result);
6501 }
6502 if ((par = t.parent) == null ||
6503 !(par instanceof MapReduceValuesToDoubleTask)) {
6504 t.quietlyComplete();
6505 break;
6506 }
6507 t = (MapReduceValuesToDoubleTask<K,V>)par;
6508 }
6509 else if (t.casPending(c, c - 1))
6510 break;
6511 }
6512 } catch (Throwable ex) {
6513 return tryCompleteComputation(ex);
6514 }
6515 MapReduceValuesToDoubleTask<K,V> s = rights;
6516 if (s != null && !inForkJoinPool()) {
6517 do {
6518 if (s.tryUnfork())
6519 s.exec();
6520 } while ((s = s.nextRight) != null);
6521 }
6522 return false;
6523 }
6524 public final Double getRawResult() { return result; }
6525 }
6526
6527 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6528 extends BulkTask<K,V,Double> {
6529 final ObjectToDouble<Map.Entry<K,V>> transformer;
6530 final DoubleByDoubleToDouble reducer;
6531 final double basis;
6532 double result;
6533 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6534 MapReduceEntriesToDoubleTask
6535 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6536 MapReduceEntriesToDoubleTask<K,V> nextRight,
6537 ObjectToDouble<Map.Entry<K,V>> transformer,
6538 double basis,
6539 DoubleByDoubleToDouble reducer) {
6540 super(m, p, b); this.nextRight = nextRight;
6541 this.transformer = transformer;
6542 this.basis = basis; this.reducer = reducer;
6543 }
6544 @SuppressWarnings("unchecked") public final boolean exec() {
6545 final ObjectToDouble<Map.Entry<K,V>> transformer =
6546 this.transformer;
6547 final DoubleByDoubleToDouble reducer = this.reducer;
6548 if (transformer == null || reducer == null)
6549 return abortOnNullFunction();
6550 try {
6551 final double id = this.basis;
6552 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6553 do {} while (!casPending(c = pending, c+1));
6554 (rights = new MapReduceEntriesToDoubleTask<K,V>
6555 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6556 }
6557 double r = id;
6558 Object v;
6559 while ((v = advance()) != null)
6560 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6561 result = r;
6562 for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6563 int c; BulkTask<K,V,?> par;
6564 if ((c = t.pending) == 0) {
6565 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6566 t.result = reducer.apply(t.result, s.result);
6567 }
6568 if ((par = t.parent) == null ||
6569 !(par instanceof MapReduceEntriesToDoubleTask)) {
6570 t.quietlyComplete();
6571 break;
6572 }
6573 t = (MapReduceEntriesToDoubleTask<K,V>)par;
6574 }
6575 else if (t.casPending(c, c - 1))
6576 break;
6577 }
6578 } catch (Throwable ex) {
6579 return tryCompleteComputation(ex);
6580 }
6581 MapReduceEntriesToDoubleTask<K,V> s = rights;
6582 if (s != null && !inForkJoinPool()) {
6583 do {
6584 if (s.tryUnfork())
6585 s.exec();
6586 } while ((s = s.nextRight) != null);
6587 }
6588 return false;
6589 }
6590 public final Double getRawResult() { return result; }
6591 }
6592
6593 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6594 extends BulkTask<K,V,Double> {
6595 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6596 final DoubleByDoubleToDouble reducer;
6597 final double basis;
6598 double result;
6599 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6600 MapReduceMappingsToDoubleTask
6601 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6602 MapReduceMappingsToDoubleTask<K,V> nextRight,
6603 ObjectByObjectToDouble<? super K, ? super V> transformer,
6604 double basis,
6605 DoubleByDoubleToDouble reducer) {
6606 super(m, p, b); this.nextRight = nextRight;
6607 this.transformer = transformer;
6608 this.basis = basis; this.reducer = reducer;
6609 }
6610 @SuppressWarnings("unchecked") public final boolean exec() {
6611 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6612 this.transformer;
6613 final DoubleByDoubleToDouble reducer = this.reducer;
6614 if (transformer == null || reducer == null)
6615 return abortOnNullFunction();
6616 try {
6617 final double id = this.basis;
6618 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6619 do {} while (!casPending(c = pending, c+1));
6620 (rights = new MapReduceMappingsToDoubleTask<K,V>
6621 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6622 }
6623 double r = id;
6624 Object v;
6625 while ((v = advance()) != null)
6626 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6627 result = r;
6628 for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6629 int c; BulkTask<K,V,?> par;
6630 if ((c = t.pending) == 0) {
6631 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6632 t.result = reducer.apply(t.result, s.result);
6633 }
6634 if ((par = t.parent) == null ||
6635 !(par instanceof MapReduceMappingsToDoubleTask)) {
6636 t.quietlyComplete();
6637 break;
6638 }
6639 t = (MapReduceMappingsToDoubleTask<K,V>)par;
6640 }
6641 else if (t.casPending(c, c - 1))
6642 break;
6643 }
6644 } catch (Throwable ex) {
6645 return tryCompleteComputation(ex);
6646 }
6647 MapReduceMappingsToDoubleTask<K,V> s = rights;
6648 if (s != null && !inForkJoinPool()) {
6649 do {
6650 if (s.tryUnfork())
6651 s.exec();
6652 } while ((s = s.nextRight) != null);
6653 }
6654 return false;
6655 }
6656 public final Double getRawResult() { return result; }
6657 }
6658
6659 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6660 extends BulkTask<K,V,Long> {
6661 final ObjectToLong<? super K> transformer;
6662 final LongByLongToLong reducer;
6663 final long basis;
6664 long result;
6665 MapReduceKeysToLongTask<K,V> rights, nextRight;
6666 MapReduceKeysToLongTask
6667 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6668 MapReduceKeysToLongTask<K,V> nextRight,
6669 ObjectToLong<? super K> transformer,
6670 long basis,
6671 LongByLongToLong reducer) {
6672 super(m, p, b); this.nextRight = nextRight;
6673 this.transformer = transformer;
6674 this.basis = basis; this.reducer = reducer;
6675 }
6676 @SuppressWarnings("unchecked") public final boolean exec() {
6677 final ObjectToLong<? super K> transformer =
6678 this.transformer;
6679 final LongByLongToLong reducer = this.reducer;
6680 if (transformer == null || reducer == null)
6681 return abortOnNullFunction();
6682 try {
6683 final long id = this.basis;
6684 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6685 do {} while (!casPending(c = pending, c+1));
6686 (rights = new MapReduceKeysToLongTask<K,V>
6687 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6688 }
6689 long r = id;
6690 while (advance() != null)
6691 r = reducer.apply(r, transformer.apply((K)nextKey));
6692 result = r;
6693 for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6694 int c; BulkTask<K,V,?> par;
6695 if ((c = t.pending) == 0) {
6696 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6697 t.result = reducer.apply(t.result, s.result);
6698 }
6699 if ((par = t.parent) == null ||
6700 !(par instanceof MapReduceKeysToLongTask)) {
6701 t.quietlyComplete();
6702 break;
6703 }
6704 t = (MapReduceKeysToLongTask<K,V>)par;
6705 }
6706 else if (t.casPending(c, c - 1))
6707 break;
6708 }
6709 } catch (Throwable ex) {
6710 return tryCompleteComputation(ex);
6711 }
6712 MapReduceKeysToLongTask<K,V> s = rights;
6713 if (s != null && !inForkJoinPool()) {
6714 do {
6715 if (s.tryUnfork())
6716 s.exec();
6717 } while ((s = s.nextRight) != null);
6718 }
6719 return false;
6720 }
6721 public final Long getRawResult() { return result; }
6722 }
6723
6724 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6725 extends BulkTask<K,V,Long> {
6726 final ObjectToLong<? super V> transformer;
6727 final LongByLongToLong reducer;
6728 final long basis;
6729 long result;
6730 MapReduceValuesToLongTask<K,V> rights, nextRight;
6731 MapReduceValuesToLongTask
6732 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6733 MapReduceValuesToLongTask<K,V> nextRight,
6734 ObjectToLong<? super V> transformer,
6735 long basis,
6736 LongByLongToLong reducer) {
6737 super(m, p, b); this.nextRight = nextRight;
6738 this.transformer = transformer;
6739 this.basis = basis; this.reducer = reducer;
6740 }
6741 @SuppressWarnings("unchecked") public final boolean exec() {
6742 final ObjectToLong<? super V> transformer =
6743 this.transformer;
6744 final LongByLongToLong reducer = this.reducer;
6745 if (transformer == null || reducer == null)
6746 return abortOnNullFunction();
6747 try {
6748 final long id = this.basis;
6749 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6750 do {} while (!casPending(c = pending, c+1));
6751 (rights = new MapReduceValuesToLongTask<K,V>
6752 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6753 }
6754 long r = id;
6755 Object v;
6756 while ((v = advance()) != null)
6757 r = reducer.apply(r, transformer.apply((V)v));
6758 result = r;
6759 for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6760 int c; BulkTask<K,V,?> par;
6761 if ((c = t.pending) == 0) {
6762 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6763 t.result = reducer.apply(t.result, s.result);
6764 }
6765 if ((par = t.parent) == null ||
6766 !(par instanceof MapReduceValuesToLongTask)) {
6767 t.quietlyComplete();
6768 break;
6769 }
6770 t = (MapReduceValuesToLongTask<K,V>)par;
6771 }
6772 else if (t.casPending(c, c - 1))
6773 break;
6774 }
6775 } catch (Throwable ex) {
6776 return tryCompleteComputation(ex);
6777 }
6778 MapReduceValuesToLongTask<K,V> s = rights;
6779 if (s != null && !inForkJoinPool()) {
6780 do {
6781 if (s.tryUnfork())
6782 s.exec();
6783 } while ((s = s.nextRight) != null);
6784 }
6785 return false;
6786 }
6787 public final Long getRawResult() { return result; }
6788 }
6789
6790 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6791 extends BulkTask<K,V,Long> {
6792 final ObjectToLong<Map.Entry<K,V>> transformer;
6793 final LongByLongToLong reducer;
6794 final long basis;
6795 long result;
6796 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6797 MapReduceEntriesToLongTask
6798 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6799 MapReduceEntriesToLongTask<K,V> nextRight,
6800 ObjectToLong<Map.Entry<K,V>> transformer,
6801 long basis,
6802 LongByLongToLong reducer) {
6803 super(m, p, b); this.nextRight = nextRight;
6804 this.transformer = transformer;
6805 this.basis = basis; this.reducer = reducer;
6806 }
6807 @SuppressWarnings("unchecked") public final boolean exec() {
6808 final ObjectToLong<Map.Entry<K,V>> transformer =
6809 this.transformer;
6810 final LongByLongToLong reducer = this.reducer;
6811 if (transformer == null || reducer == null)
6812 return abortOnNullFunction();
6813 try {
6814 final long id = this.basis;
6815 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6816 do {} while (!casPending(c = pending, c+1));
6817 (rights = new MapReduceEntriesToLongTask<K,V>
6818 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6819 }
6820 long r = id;
6821 Object v;
6822 while ((v = advance()) != null)
6823 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6824 result = r;
6825 for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6826 int c; BulkTask<K,V,?> par;
6827 if ((c = t.pending) == 0) {
6828 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6829 t.result = reducer.apply(t.result, s.result);
6830 }
6831 if ((par = t.parent) == null ||
6832 !(par instanceof MapReduceEntriesToLongTask)) {
6833 t.quietlyComplete();
6834 break;
6835 }
6836 t = (MapReduceEntriesToLongTask<K,V>)par;
6837 }
6838 else if (t.casPending(c, c - 1))
6839 break;
6840 }
6841 } catch (Throwable ex) {
6842 return tryCompleteComputation(ex);
6843 }
6844 MapReduceEntriesToLongTask<K,V> s = rights;
6845 if (s != null && !inForkJoinPool()) {
6846 do {
6847 if (s.tryUnfork())
6848 s.exec();
6849 } while ((s = s.nextRight) != null);
6850 }
6851 return false;
6852 }
6853 public final Long getRawResult() { return result; }
6854 }
6855
6856 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6857 extends BulkTask<K,V,Long> {
6858 final ObjectByObjectToLong<? super K, ? super V> transformer;
6859 final LongByLongToLong reducer;
6860 final long basis;
6861 long result;
6862 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6863 MapReduceMappingsToLongTask
6864 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6865 MapReduceMappingsToLongTask<K,V> nextRight,
6866 ObjectByObjectToLong<? super K, ? super V> transformer,
6867 long basis,
6868 LongByLongToLong reducer) {
6869 super(m, p, b); this.nextRight = nextRight;
6870 this.transformer = transformer;
6871 this.basis = basis; this.reducer = reducer;
6872 }
6873 @SuppressWarnings("unchecked") public final boolean exec() {
6874 final ObjectByObjectToLong<? super K, ? super V> transformer =
6875 this.transformer;
6876 final LongByLongToLong reducer = this.reducer;
6877 if (transformer == null || reducer == null)
6878 return abortOnNullFunction();
6879 try {
6880 final long id = this.basis;
6881 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6882 do {} while (!casPending(c = pending, c+1));
6883 (rights = new MapReduceMappingsToLongTask<K,V>
6884 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6885 }
6886 long r = id;
6887 Object v;
6888 while ((v = advance()) != null)
6889 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6890 result = r;
6891 for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6892 int c; BulkTask<K,V,?> par;
6893 if ((c = t.pending) == 0) {
6894 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6895 t.result = reducer.apply(t.result, s.result);
6896 }
6897 if ((par = t.parent) == null ||
6898 !(par instanceof MapReduceMappingsToLongTask)) {
6899 t.quietlyComplete();
6900 break;
6901 }
6902 t = (MapReduceMappingsToLongTask<K,V>)par;
6903 }
6904 else if (t.casPending(c, c - 1))
6905 break;
6906 }
6907 } catch (Throwable ex) {
6908 return tryCompleteComputation(ex);
6909 }
6910 MapReduceMappingsToLongTask<K,V> s = rights;
6911 if (s != null && !inForkJoinPool()) {
6912 do {
6913 if (s.tryUnfork())
6914 s.exec();
6915 } while ((s = s.nextRight) != null);
6916 }
6917 return false;
6918 }
6919 public final Long getRawResult() { return result; }
6920 }
6921
6922 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6923 extends BulkTask<K,V,Integer> {
6924 final ObjectToInt<? super K> transformer;
6925 final IntByIntToInt reducer;
6926 final int basis;
6927 int result;
6928 MapReduceKeysToIntTask<K,V> rights, nextRight;
6929 MapReduceKeysToIntTask
6930 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6931 MapReduceKeysToIntTask<K,V> nextRight,
6932 ObjectToInt<? super K> transformer,
6933 int basis,
6934 IntByIntToInt reducer) {
6935 super(m, p, b); this.nextRight = nextRight;
6936 this.transformer = transformer;
6937 this.basis = basis; this.reducer = reducer;
6938 }
6939 @SuppressWarnings("unchecked") public final boolean exec() {
6940 final ObjectToInt<? super K> transformer =
6941 this.transformer;
6942 final IntByIntToInt reducer = this.reducer;
6943 if (transformer == null || reducer == null)
6944 return abortOnNullFunction();
6945 try {
6946 final int id = this.basis;
6947 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6948 do {} while (!casPending(c = pending, c+1));
6949 (rights = new MapReduceKeysToIntTask<K,V>
6950 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6951 }
6952 int r = id;
6953 while (advance() != null)
6954 r = reducer.apply(r, transformer.apply((K)nextKey));
6955 result = r;
6956 for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6957 int c; BulkTask<K,V,?> par;
6958 if ((c = t.pending) == 0) {
6959 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6960 t.result = reducer.apply(t.result, s.result);
6961 }
6962 if ((par = t.parent) == null ||
6963 !(par instanceof MapReduceKeysToIntTask)) {
6964 t.quietlyComplete();
6965 break;
6966 }
6967 t = (MapReduceKeysToIntTask<K,V>)par;
6968 }
6969 else if (t.casPending(c, c - 1))
6970 break;
6971 }
6972 } catch (Throwable ex) {
6973 return tryCompleteComputation(ex);
6974 }
6975 MapReduceKeysToIntTask<K,V> s = rights;
6976 if (s != null && !inForkJoinPool()) {
6977 do {
6978 if (s.tryUnfork())
6979 s.exec();
6980 } while ((s = s.nextRight) != null);
6981 }
6982 return false;
6983 }
6984 public final Integer getRawResult() { return result; }
6985 }
6986
6987 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6988 extends BulkTask<K,V,Integer> {
6989 final ObjectToInt<? super V> transformer;
6990 final IntByIntToInt reducer;
6991 final int basis;
6992 int result;
6993 MapReduceValuesToIntTask<K,V> rights, nextRight;
6994 MapReduceValuesToIntTask
6995 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
6996 MapReduceValuesToIntTask<K,V> nextRight,
6997 ObjectToInt<? super V> transformer,
6998 int basis,
6999 IntByIntToInt reducer) {
7000 super(m, p, b); this.nextRight = nextRight;
7001 this.transformer = transformer;
7002 this.basis = basis; this.reducer = reducer;
7003 }
7004 @SuppressWarnings("unchecked") public final boolean exec() {
7005 final ObjectToInt<? super V> transformer =
7006 this.transformer;
7007 final IntByIntToInt reducer = this.reducer;
7008 if (transformer == null || reducer == null)
7009 return abortOnNullFunction();
7010 try {
7011 final int id = this.basis;
7012 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7013 do {} while (!casPending(c = pending, c+1));
7014 (rights = new MapReduceValuesToIntTask<K,V>
7015 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7016 }
7017 int r = id;
7018 Object v;
7019 while ((v = advance()) != null)
7020 r = reducer.apply(r, transformer.apply((V)v));
7021 result = r;
7022 for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
7023 int c; BulkTask<K,V,?> par;
7024 if ((c = t.pending) == 0) {
7025 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7026 t.result = reducer.apply(t.result, s.result);
7027 }
7028 if ((par = t.parent) == null ||
7029 !(par instanceof MapReduceValuesToIntTask)) {
7030 t.quietlyComplete();
7031 break;
7032 }
7033 t = (MapReduceValuesToIntTask<K,V>)par;
7034 }
7035 else if (t.casPending(c, c - 1))
7036 break;
7037 }
7038 } catch (Throwable ex) {
7039 return tryCompleteComputation(ex);
7040 }
7041 MapReduceValuesToIntTask<K,V> s = rights;
7042 if (s != null && !inForkJoinPool()) {
7043 do {
7044 if (s.tryUnfork())
7045 s.exec();
7046 } while ((s = s.nextRight) != null);
7047 }
7048 return false;
7049 }
7050 public final Integer getRawResult() { return result; }
7051 }
7052
7053 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
7054 extends BulkTask<K,V,Integer> {
7055 final ObjectToInt<Map.Entry<K,V>> transformer;
7056 final IntByIntToInt reducer;
7057 final int basis;
7058 int result;
7059 MapReduceEntriesToIntTask<K,V> rights, nextRight;
7060 MapReduceEntriesToIntTask
7061 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
7062 MapReduceEntriesToIntTask<K,V> nextRight,
7063 ObjectToInt<Map.Entry<K,V>> transformer,
7064 int basis,
7065 IntByIntToInt reducer) {
7066 super(m, p, b); this.nextRight = nextRight;
7067 this.transformer = transformer;
7068 this.basis = basis; this.reducer = reducer;
7069 }
7070 @SuppressWarnings("unchecked") public final boolean exec() {
7071 final ObjectToInt<Map.Entry<K,V>> transformer =
7072 this.transformer;
7073 final IntByIntToInt reducer = this.reducer;
7074 if (transformer == null || reducer == null)
7075 return abortOnNullFunction();
7076 try {
7077 final int id = this.basis;
7078 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7079 do {} while (!casPending(c = pending, c+1));
7080 (rights = new MapReduceEntriesToIntTask<K,V>
7081 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7082 }
7083 int r = id;
7084 Object v;
7085 while ((v = advance()) != null)
7086 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
7087 result = r;
7088 for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
7089 int c; BulkTask<K,V,?> par;
7090 if ((c = t.pending) == 0) {
7091 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7092 t.result = reducer.apply(t.result, s.result);
7093 }
7094 if ((par = t.parent) == null ||
7095 !(par instanceof MapReduceEntriesToIntTask)) {
7096 t.quietlyComplete();
7097 break;
7098 }
7099 t = (MapReduceEntriesToIntTask<K,V>)par;
7100 }
7101 else if (t.casPending(c, c - 1))
7102 break;
7103 }
7104 } catch (Throwable ex) {
7105 return tryCompleteComputation(ex);
7106 }
7107 MapReduceEntriesToIntTask<K,V> s = rights;
7108 if (s != null && !inForkJoinPool()) {
7109 do {
7110 if (s.tryUnfork())
7111 s.exec();
7112 } while ((s = s.nextRight) != null);
7113 }
7114 return false;
7115 }
7116 public final Integer getRawResult() { return result; }
7117 }
7118
7119 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
7120 extends BulkTask<K,V,Integer> {
7121 final ObjectByObjectToInt<? super K, ? super V> transformer;
7122 final IntByIntToInt reducer;
7123 final int basis;
7124 int result;
7125 MapReduceMappingsToIntTask<K,V> rights, nextRight;
7126 MapReduceMappingsToIntTask
7127 (ConcurrentHashMap<K,V> m, BulkTask<K,V,?> p, int b,
7128 MapReduceMappingsToIntTask<K,V> rights,
7129 ObjectByObjectToInt<? super K, ? super V> transformer,
7130 int basis,
7131 IntByIntToInt reducer) {
7132 super(m, p, b); this.nextRight = nextRight;
7133 this.transformer = transformer;
7134 this.basis = basis; this.reducer = reducer;
7135 }
7136 @SuppressWarnings("unchecked") public final boolean exec() {
7137 final ObjectByObjectToInt<? super K, ? super V> transformer =
7138 this.transformer;
7139 final IntByIntToInt reducer = this.reducer;
7140 if (transformer == null || reducer == null)
7141 return abortOnNullFunction();
7142 try {
7143 final int id = this.basis;
7144 for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7145 do {} while (!casPending(c = pending, c+1));
7146 (rights = new MapReduceMappingsToIntTask<K,V>
7147 (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7148 }
7149 int r = id;
7150 Object v;
7151 while ((v = advance()) != null)
7152 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
7153 result = r;
7154 for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
7155 int c; BulkTask<K,V,?> par;
7156 if ((c = t.pending) == 0) {
7157 for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7158 t.result = reducer.apply(t.result, s.result);
7159 }
7160 if ((par = t.parent) == null ||
7161 !(par instanceof MapReduceMappingsToIntTask)) {
7162 t.quietlyComplete();
7163 break;
7164 }
7165 t = (MapReduceMappingsToIntTask<K,V>)par;
7166 }
7167 else if (t.casPending(c, c - 1))
7168 break;
7169 }
7170 } catch (Throwable ex) {
7171 return tryCompleteComputation(ex);
7172 }
7173 MapReduceMappingsToIntTask<K,V> s = rights;
7174 if (s != null && !inForkJoinPool()) {
7175 do {
7176 if (s.tryUnfork())
7177 s.exec();
7178 } while ((s = s.nextRight) != null);
7179 }
7180 return false;
7181 }
7182 public final Integer getRawResult() { return result; }
7183 }
7184
7185 // Unsafe mechanics
7186 private static final sun.misc.Unsafe UNSAFE;
7187 private static final long counterOffset;
7188 private static final long sizeCtlOffset;
7189 private static final long ABASE;
7190 private static final int ASHIFT;
7191
7192 static {
7193 int ss;
7194 try {
7195 UNSAFE = sun.misc.Unsafe.getUnsafe();
7196 Class<?> k = ConcurrentHashMap.class;
7197 counterOffset = UNSAFE.objectFieldOffset
7198 (k.getDeclaredField("counter"));
7199 sizeCtlOffset = UNSAFE.objectFieldOffset
7200 (k.getDeclaredField("sizeCtl"));
7201 Class<?> sc = Node[].class;
7202 ABASE = UNSAFE.arrayBaseOffset(sc);
7203 ss = UNSAFE.arrayIndexScale(sc);
7204 } catch (Exception e) {
7205 throw new Error(e);
7206 }
7207 if ((ss & (ss-1)) != 0)
7208 throw new Error("data type scale not a power of two");
7209 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
7210 }
7211 }