ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.147
Committed: Sat Nov 24 03:46:28 2012 UTC (11 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.146: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.atomic.LongAdder;
9 import java.util.concurrent.ForkJoinPool;
10 import java.util.concurrent.CountedCompleter;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p>Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. (More formally, an update operation for a given key bears a
51 * <em>happens-before</em> relation with any (non-null) retrieval for
52 * that key reporting the updated value.) For aggregate operations
53 * such as {@code putAll} and {@code clear}, concurrent retrievals may
54 * reflect insertion or removal of only some entries. Similarly,
55 * Iterators and Enumerations return elements reflecting the state of
56 * the hash table at some point at or since the creation of the
57 * iterator/enumeration. They do <em>not</em> throw {@link
58 * ConcurrentModificationException}. However, iterators are designed
59 * to be used by only one thread at a time. Bear in mind that the
60 * results of aggregate status methods including {@code size}, {@code
61 * isEmpty}, and {@code containsValue} are typically useful only when
62 * a map is not undergoing concurrent updates in other threads.
63 * Otherwise the results of these methods reflect transient states
64 * that may be adequate for monitoring or estimation purposes, but not
65 * for program control.
66 *
67 * <p>The table is dynamically expanded when there are too many
68 * collisions (i.e., keys that have distinct hash codes but fall into
69 * the same slot modulo the table size), with the expected average
70 * effect of maintaining roughly two bins per mapping (corresponding
71 * to a 0.75 load factor threshold for resizing). There may be much
72 * variance around this average as mappings are added and removed, but
73 * overall, this maintains a commonly accepted time/space tradeoff for
74 * hash tables. However, resizing this or any other kind of hash
75 * table may be a relatively slow operation. When possible, it is a
76 * good idea to provide a size estimate as an optional {@code
77 * initialCapacity} constructor argument. An additional optional
78 * {@code loadFactor} constructor argument provides a further means of
79 * customizing initial table capacity by specifying the table density
80 * to be used in calculating the amount of space to allocate for the
81 * given number of elements. Also, for compatibility with previous
82 * versions of this class, constructors may optionally specify an
83 * expected {@code concurrencyLevel} as an additional hint for
84 * internal sizing. Note that using many keys with exactly the same
85 * {@code hashCode()} is a sure way to slow down performance of any
86 * hash table.
87 *
88 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
89 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 * (using {@link #keySet(Object)} when only keys are of interest, and the
91 * mapped values are (perhaps transiently) not used or all take the
92 * same mapping value.
93 *
94 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
95 * form of histogram or multiset) by using {@link LongAdder} values
96 * and initializing via {@link #computeIfAbsent}. For example, to add
97 * a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you
98 * can use {@code freqs.computeIfAbsent(k -> new
99 * LongAdder()).increment();}
100 *
101 * <p>This class and its views and iterators implement all of the
102 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
103 * interfaces.
104 *
105 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
106 * does <em>not</em> allow {@code null} to be used as a key or value.
107 *
108 * <p>ConcurrentHashMaps support parallel operations using the {@link
109 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
110 * are available in class {@link ForkJoinTasks}). These operations are
111 * designed to be safely, and often sensibly, applied even with maps
112 * that are being concurrently updated by other threads; for example,
113 * when computing a snapshot summary of the values in a shared
114 * registry. There are three kinds of operation, each with four
115 * forms, accepting functions with Keys, Values, Entries, and (Key,
116 * Value) arguments and/or return values. (The first three forms are
117 * also available via the {@link #keySet()}, {@link #values()} and
118 * {@link #entrySet()} views). Because the elements of a
119 * ConcurrentHashMap are not ordered in any particular way, and may be
120 * processed in different orders in different parallel executions, the
121 * correctness of supplied functions should not depend on any
122 * ordering, or on any other objects or values that may transiently
123 * change while computation is in progress; and except for forEach
124 * actions, should ideally be side-effect-free.
125 *
126 * <ul>
127 * <li> forEach: Perform a given action on each element.
128 * A variant form applies a given transformation on each element
129 * before performing the action.</li>
130 *
131 * <li> search: Return the first available non-null result of
132 * applying a given function on each element; skipping further
133 * search when a result is found.</li>
134 *
135 * <li> reduce: Accumulate each element. The supplied reduction
136 * function cannot rely on ordering (more formally, it should be
137 * both associative and commutative). There are five variants:
138 *
139 * <ul>
140 *
141 * <li> Plain reductions. (There is not a form of this method for
142 * (key, value) function arguments since there is no corresponding
143 * return type.)</li>
144 *
145 * <li> Mapped reductions that accumulate the results of a given
146 * function applied to each element.</li>
147 *
148 * <li> Reductions to scalar doubles, longs, and ints, using a
149 * given basis value.</li>
150 *
151 * </li>
152 * </ul>
153 * </ul>
154 *
155 * <p>The concurrency properties of bulk operations follow
156 * from those of ConcurrentHashMap: Any non-null result returned
157 * from {@code get(key)} and related access methods bears a
158 * happens-before relation with the associated insertion or
159 * update. The result of any bulk operation reflects the
160 * composition of these per-element relations (but is not
161 * necessarily atomic with respect to the map as a whole unless it
162 * is somehow known to be quiescent). Conversely, because keys
163 * and values in the map are never null, null serves as a reliable
164 * atomic indicator of the current lack of any result. To
165 * maintain this property, null serves as an implicit basis for
166 * all non-scalar reduction operations. For the double, long, and
167 * int versions, the basis should be one that, when combined with
168 * any other value, returns that other value (more formally, it
169 * should be the identity element for the reduction). Most common
170 * reductions have these properties; for example, computing a sum
171 * with basis 0 or a minimum with basis MAX_VALUE.
172 *
173 * <p>Search and transformation functions provided as arguments
174 * should similarly return null to indicate the lack of any result
175 * (in which case it is not used). In the case of mapped
176 * reductions, this also enables transformations to serve as
177 * filters, returning null (or, in the case of primitive
178 * specializations, the identity basis) if the element should not
179 * be combined. You can create compound transformations and
180 * filterings by composing them yourself under this "null means
181 * there is nothing there now" rule before using them in search or
182 * reduce operations.
183 *
184 * <p>Methods accepting and/or returning Entry arguments maintain
185 * key-value associations. They may be useful for example when
186 * finding the key for the greatest value. Note that "plain" Entry
187 * arguments can be supplied using {@code new
188 * AbstractMap.SimpleEntry(k,v)}.
189 *
190 * <p>Bulk operations may complete abruptly, throwing an
191 * exception encountered in the application of a supplied
192 * function. Bear in mind when handling such exceptions that other
193 * concurrently executing functions could also have thrown
194 * exceptions, or would have done so if the first exception had
195 * not occurred.
196 *
197 * <p>Parallel speedups for bulk operations compared to sequential
198 * processing are common but not guaranteed. Operations involving
199 * brief functions on small maps may execute more slowly than
200 * sequential loops if the underlying work to parallelize the
201 * computation is more expensive than the computation itself.
202 * Similarly, parallelization may not lead to much actual parallelism
203 * if all processors are busy performing unrelated tasks.
204 *
205 * <p>All arguments to all task methods must be non-null.
206 *
207 * <p><em>jsr166e note: During transition, this class
208 * uses nested functional interfaces with different names but the
209 * same forms as those expected for JDK8.</em>
210 *
211 * <p>This class is a member of the
212 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213 * Java Collections Framework</a>.
214 *
215 * @since 1.5
216 * @author Doug Lea
217 * @param <K> the type of keys maintained by this map
218 * @param <V> the type of mapped values
219 */
220 public class ConcurrentHashMap<K, V>
221 implements ConcurrentMap<K, V>, Serializable {
222 private static final long serialVersionUID = 7249069246763182397L;
223
224 /**
225 * A partitionable iterator. A Spliterator can be traversed
226 * directly, but can also be partitioned (before traversal) by
227 * creating another Spliterator that covers a non-overlapping
228 * portion of the elements, and so may be amenable to parallel
229 * execution.
230 *
231 * <p>This interface exports a subset of expected JDK8
232 * functionality.
233 *
234 * <p>Sample usage: Here is one (of the several) ways to compute
235 * the sum of the values held in a map using the ForkJoin
236 * framework. As illustrated here, Spliterators are well suited to
237 * designs in which a task repeatedly splits off half its work
238 * into forked subtasks until small enough to process directly,
239 * and then joins these subtasks. Variants of this style can also
240 * be used in completion-based designs.
241 *
242 * <pre>
243 * {@code ConcurrentHashMap<String, Long> m = ...
244 * // split as if have 8 * parallelism, for load balance
245 * int n = m.size();
246 * int p = aForkJoinPool.getParallelism() * 8;
247 * int split = (n < p)? n : p;
248 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
249 * // ...
250 * static class SumValues extends RecursiveTask<Long> {
251 * final Spliterator<Long> s;
252 * final int split; // split while > 1
253 * final SumValues nextJoin; // records forked subtasks to join
254 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
255 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
256 * }
257 * public Long compute() {
258 * long sum = 0;
259 * SumValues subtasks = null; // fork subtasks
260 * for (int s = split >>> 1; s > 0; s >>>= 1)
261 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
262 * while (s.hasNext()) // directly process remaining elements
263 * sum += s.next();
264 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
265 * sum += t.join(); // collect subtask results
266 * return sum;
267 * }
268 * }
269 * }</pre>
270 */
271 public static interface Spliterator<T> extends Iterator<T> {
272 /**
273 * Returns a Spliterator covering approximately half of the
274 * elements, guaranteed not to overlap with those subsequently
275 * returned by this Spliterator. After invoking this method,
276 * the current Spliterator will <em>not</em> produce any of
277 * the elements of the returned Spliterator, but the two
278 * Spliterators together will produce all of the elements that
279 * would have been produced by this Spliterator had this
280 * method not been called. The exact number of elements
281 * produced by the returned Spliterator is not guaranteed, and
282 * may be zero (i.e., with {@code hasNext()} reporting {@code
283 * false}) if this Spliterator cannot be further split.
284 *
285 * @return a Spliterator covering approximately half of the
286 * elements
287 * @throws IllegalStateException if this Spliterator has
288 * already commenced traversing elements
289 */
290 Spliterator<T> split();
291 }
292
293
294 /*
295 * Overview:
296 *
297 * The primary design goal of this hash table is to maintain
298 * concurrent readability (typically method get(), but also
299 * iterators and related methods) while minimizing update
300 * contention. Secondary goals are to keep space consumption about
301 * the same or better than java.util.HashMap, and to support high
302 * initial insertion rates on an empty table by many threads.
303 *
304 * Each key-value mapping is held in a Node. Because Node fields
305 * can contain special values, they are defined using plain Object
306 * types. Similarly in turn, all internal methods that use them
307 * work off Object types. And similarly, so do the internal
308 * methods of auxiliary iterator and view classes. All public
309 * generic typed methods relay in/out of these internal methods,
310 * supplying null-checks and casts as needed. This also allows
311 * many of the public methods to be factored into a smaller number
312 * of internal methods (although sadly not so for the five
313 * variants of put-related operations). The validation-based
314 * approach explained below leads to a lot of code sprawl because
315 * retry-control precludes factoring into smaller methods.
316 *
317 * The table is lazily initialized to a power-of-two size upon the
318 * first insertion. Each bin in the table normally contains a
319 * list of Nodes (most often, the list has only zero or one Node).
320 * Table accesses require volatile/atomic reads, writes, and
321 * CASes. Because there is no other way to arrange this without
322 * adding further indirections, we use intrinsics
323 * (sun.misc.Unsafe) operations. The lists of nodes within bins
324 * are always accurately traversable under volatile reads, so long
325 * as lookups check hash code and non-nullness of value before
326 * checking key equality.
327 *
328 * We use the top two bits of Node hash fields for control
329 * purposes -- they are available anyway because of addressing
330 * constraints. As explained further below, these top bits are
331 * used as follows:
332 * 00 - Normal
333 * 01 - Locked
334 * 11 - Locked and may have a thread waiting for lock
335 * 10 - Node is a forwarding node
336 *
337 * The lower 30 bits of each Node's hash field contain a
338 * transformation of the key's hash code, except for forwarding
339 * nodes, for which the lower bits are zero (and so always have
340 * hash field == MOVED).
341 *
342 * Insertion (via put or its variants) of the first node in an
343 * empty bin is performed by just CASing it to the bin. This is
344 * by far the most common case for put operations under most
345 * key/hash distributions. Other update operations (insert,
346 * delete, and replace) require locks. We do not want to waste
347 * the space required to associate a distinct lock object with
348 * each bin, so instead use the first node of a bin list itself as
349 * a lock. Blocking support for these locks relies on the builtin
350 * "synchronized" monitors. However, we also need a tryLock
351 * construction, so we overlay these by using bits of the Node
352 * hash field for lock control (see above), and so normally use
353 * builtin monitors only for blocking and signalling using
354 * wait/notifyAll constructions. See Node.tryAwaitLock.
355 *
356 * Using the first node of a list as a lock does not by itself
357 * suffice though: When a node is locked, any update must first
358 * validate that it is still the first node after locking it, and
359 * retry if not. Because new nodes are always appended to lists,
360 * once a node is first in a bin, it remains first until deleted
361 * or the bin becomes invalidated (upon resizing). However,
362 * operations that only conditionally update may inspect nodes
363 * until the point of update. This is a converse of sorts to the
364 * lazy locking technique described by Herlihy & Shavit.
365 *
366 * The main disadvantage of per-bin locks is that other update
367 * operations on other nodes in a bin list protected by the same
368 * lock can stall, for example when user equals() or mapping
369 * functions take a long time. However, statistically, under
370 * random hash codes, this is not a common problem. Ideally, the
371 * frequency of nodes in bins follows a Poisson distribution
372 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
373 * parameter of about 0.5 on average, given the resizing threshold
374 * of 0.75, although with a large variance because of resizing
375 * granularity. Ignoring variance, the expected occurrences of
376 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
377 * first values are:
378 *
379 * 0: 0.60653066
380 * 1: 0.30326533
381 * 2: 0.07581633
382 * 3: 0.01263606
383 * 4: 0.00157952
384 * 5: 0.00015795
385 * 6: 0.00001316
386 * 7: 0.00000094
387 * 8: 0.00000006
388 * more: less than 1 in ten million
389 *
390 * Lock contention probability for two threads accessing distinct
391 * elements is roughly 1 / (8 * #elements) under random hashes.
392 *
393 * Actual hash code distributions encountered in practice
394 * sometimes deviate significantly from uniform randomness. This
395 * includes the case when N > (1<<30), so some keys MUST collide.
396 * Similarly for dumb or hostile usages in which multiple keys are
397 * designed to have identical hash codes. Also, although we guard
398 * against the worst effects of this (see method spread), sets of
399 * hashes may differ only in bits that do not impact their bin
400 * index for a given power-of-two mask. So we use a secondary
401 * strategy that applies when the number of nodes in a bin exceeds
402 * a threshold, and at least one of the keys implements
403 * Comparable. These TreeBins use a balanced tree to hold nodes
404 * (a specialized form of red-black trees), bounding search time
405 * to O(log N). Each search step in a TreeBin is around twice as
406 * slow as in a regular list, but given that N cannot exceed
407 * (1<<64) (before running out of addresses) this bounds search
408 * steps, lock hold times, etc, to reasonable constants (roughly
409 * 100 nodes inspected per operation worst case) so long as keys
410 * are Comparable (which is very common -- String, Long, etc).
411 * TreeBin nodes (TreeNodes) also maintain the same "next"
412 * traversal pointers as regular nodes, so can be traversed in
413 * iterators in the same way.
414 *
415 * The table is resized when occupancy exceeds a percentage
416 * threshold (nominally, 0.75, but see below). Only a single
417 * thread performs the resize (using field "sizeCtl", to arrange
418 * exclusion), but the table otherwise remains usable for reads
419 * and updates. Resizing proceeds by transferring bins, one by
420 * one, from the table to the next table. Because we are using
421 * power-of-two expansion, the elements from each bin must either
422 * stay at same index, or move with a power of two offset. We
423 * eliminate unnecessary node creation by catching cases where old
424 * nodes can be reused because their next fields won't change. On
425 * average, only about one-sixth of them need cloning when a table
426 * doubles. The nodes they replace will be garbage collectable as
427 * soon as they are no longer referenced by any reader thread that
428 * may be in the midst of concurrently traversing table. Upon
429 * transfer, the old table bin contains only a special forwarding
430 * node (with hash field "MOVED") that contains the next table as
431 * its key. On encountering a forwarding node, access and update
432 * operations restart, using the new table.
433 *
434 * Each bin transfer requires its bin lock. However, unlike other
435 * cases, a transfer can skip a bin if it fails to acquire its
436 * lock, and revisit it later (unless it is a TreeBin). Method
437 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
438 * have been skipped because of failure to acquire a lock, and
439 * blocks only if none are available (i.e., only very rarely).
440 * The transfer operation must also ensure that all accessible
441 * bins in both the old and new table are usable by any traversal.
442 * When there are no lock acquisition failures, this is arranged
443 * simply by proceeding from the last bin (table.length - 1) up
444 * towards the first. Upon seeing a forwarding node, traversals
445 * (see class Iter) arrange to move to the new table
446 * without revisiting nodes. However, when any node is skipped
447 * during a transfer, all earlier table bins may have become
448 * visible, so are initialized with a reverse-forwarding node back
449 * to the old table until the new ones are established. (This
450 * sometimes requires transiently locking a forwarding node, which
451 * is possible under the above encoding.) These more expensive
452 * mechanics trigger only when necessary.
453 *
454 * The traversal scheme also applies to partial traversals of
455 * ranges of bins (via an alternate Traverser constructor)
456 * to support partitioned aggregate operations. Also, read-only
457 * operations give up if ever forwarded to a null table, which
458 * provides support for shutdown-style clearing, which is also not
459 * currently implemented.
460 *
461 * Lazy table initialization minimizes footprint until first use,
462 * and also avoids resizings when the first operation is from a
463 * putAll, constructor with map argument, or deserialization.
464 * These cases attempt to override the initial capacity settings,
465 * but harmlessly fail to take effect in cases of races.
466 *
467 * The element count is maintained using a LongAdder, which avoids
468 * contention on updates but can encounter cache thrashing if read
469 * too frequently during concurrent access. To avoid reading so
470 * often, resizing is attempted either when a bin lock is
471 * contended, or upon adding to a bin already holding two or more
472 * nodes (checked before adding in the xIfAbsent methods, after
473 * adding in others). Under uniform hash distributions, the
474 * probability of this occurring at threshold is around 13%,
475 * meaning that only about 1 in 8 puts check threshold (and after
476 * resizing, many fewer do so). But this approximation has high
477 * variance for small table sizes, so we check on any collision
478 * for sizes <= 64. The bulk putAll operation further reduces
479 * contention by only committing count updates upon these size
480 * checks.
481 *
482 * Maintaining API and serialization compatibility with previous
483 * versions of this class introduces several oddities. Mainly: We
484 * leave untouched but unused constructor arguments refering to
485 * concurrencyLevel. We accept a loadFactor constructor argument,
486 * but apply it only to initial table capacity (which is the only
487 * time that we can guarantee to honor it.) We also declare an
488 * unused "Segment" class that is instantiated in minimal form
489 * only when serializing.
490 */
491
492 /* ---------------- Constants -------------- */
493
494 /**
495 * The largest possible table capacity. This value must be
496 * exactly 1<<30 to stay within Java array allocation and indexing
497 * bounds for power of two table sizes, and is further required
498 * because the top two bits of 32bit hash fields are used for
499 * control purposes.
500 */
501 private static final int MAXIMUM_CAPACITY = 1 << 30;
502
503 /**
504 * The default initial table capacity. Must be a power of 2
505 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
506 */
507 private static final int DEFAULT_CAPACITY = 16;
508
509 /**
510 * The largest possible (non-power of two) array size.
511 * Needed by toArray and related methods.
512 */
513 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
514
515 /**
516 * The default concurrency level for this table. Unused but
517 * defined for compatibility with previous versions of this class.
518 */
519 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
520
521 /**
522 * The load factor for this table. Overrides of this value in
523 * constructors affect only the initial table capacity. The
524 * actual floating point value isn't normally used -- it is
525 * simpler to use expressions such as {@code n - (n >>> 2)} for
526 * the associated resizing threshold.
527 */
528 private static final float LOAD_FACTOR = 0.75f;
529
530 /**
531 * The buffer size for skipped bins during transfers. The
532 * value is arbitrary but should be large enough to avoid
533 * most locking stalls during resizes.
534 */
535 private static final int TRANSFER_BUFFER_SIZE = 32;
536
537 /**
538 * The bin count threshold for using a tree rather than list for a
539 * bin. The value reflects the approximate break-even point for
540 * using tree-based operations.
541 */
542 private static final int TREE_THRESHOLD = 8;
543
544 /*
545 * Encodings for special uses of Node hash fields. See above for
546 * explanation.
547 */
548 static final int MOVED = 0x80000000; // hash field for forwarding nodes
549 static final int LOCKED = 0x40000000; // set/tested only as a bit
550 static final int WAITING = 0xc0000000; // both bits set/tested together
551 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
552
553 /* ---------------- Fields -------------- */
554
555 /**
556 * The array of bins. Lazily initialized upon first insertion.
557 * Size is always a power of two. Accessed directly by iterators.
558 */
559 transient volatile Node[] table;
560
561 /**
562 * The counter maintaining number of elements.
563 */
564 private transient final LongAdder counter;
565
566 /**
567 * Table initialization and resizing control. When negative, the
568 * table is being initialized or resized. Otherwise, when table is
569 * null, holds the initial table size to use upon creation, or 0
570 * for default. After initialization, holds the next element count
571 * value upon which to resize the table.
572 */
573 private transient volatile int sizeCtl;
574
575 // views
576 private transient KeySetView<K,V> keySet;
577 private transient ValuesView<K,V> values;
578 private transient EntrySetView<K,V> entrySet;
579
580 /** For serialization compatibility. Null unless serialized; see below */
581 private Segment<K,V>[] segments;
582
583 /* ---------------- Table element access -------------- */
584
585 /*
586 * Volatile access methods are used for table elements as well as
587 * elements of in-progress next table while resizing. Uses are
588 * null checked by callers, and implicitly bounds-checked, relying
589 * on the invariants that tab arrays have non-zero size, and all
590 * indices are masked with (tab.length - 1) which is never
591 * negative and always less than length. Note that, to be correct
592 * wrt arbitrary concurrency errors by users, bounds checks must
593 * operate on local variables, which accounts for some odd-looking
594 * inline assignments below.
595 */
596
597 static final Node tabAt(Node[] tab, int i) { // used by Iter
598 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
599 }
600
601 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
602 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
603 }
604
605 private static final void setTabAt(Node[] tab, int i, Node v) {
606 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
607 }
608
609 /* ---------------- Nodes -------------- */
610
611 /**
612 * Key-value entry. Note that this is never exported out as a
613 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
614 * field of MOVED are special, and do not contain user keys or
615 * values. Otherwise, keys are never null, and null val fields
616 * indicate that a node is in the process of being deleted or
617 * created. For purposes of read-only access, a key may be read
618 * before a val, but can only be used after checking val to be
619 * non-null.
620 */
621 static class Node {
622 volatile int hash;
623 final Object key;
624 volatile Object val;
625 volatile Node next;
626
627 Node(int hash, Object key, Object val, Node next) {
628 this.hash = hash;
629 this.key = key;
630 this.val = val;
631 this.next = next;
632 }
633
634 /** CompareAndSet the hash field */
635 final boolean casHash(int cmp, int val) {
636 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
637 }
638
639 /** The number of spins before blocking for a lock */
640 static final int MAX_SPINS =
641 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
642
643 /**
644 * Spins a while if LOCKED bit set and this node is the first
645 * of its bin, and then sets WAITING bits on hash field and
646 * blocks (once) if they are still set. It is OK for this
647 * method to return even if lock is not available upon exit,
648 * which enables these simple single-wait mechanics.
649 *
650 * The corresponding signalling operation is performed within
651 * callers: Upon detecting that WAITING has been set when
652 * unlocking lock (via a failed CAS from non-waiting LOCKED
653 * state), unlockers acquire the sync lock and perform a
654 * notifyAll.
655 *
656 * The initial sanity check on tab and bounds is not currently
657 * necessary in the only usages of this method, but enables
658 * use in other future contexts.
659 */
660 final void tryAwaitLock(Node[] tab, int i) {
661 if (tab != null && i >= 0 && i < tab.length) { // sanity check
662 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
663 int spins = MAX_SPINS, h;
664 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
665 if (spins >= 0) {
666 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
667 if (r >= 0 && --spins == 0)
668 Thread.yield(); // yield before block
669 }
670 else if (casHash(h, h | WAITING)) {
671 synchronized (this) {
672 if (tabAt(tab, i) == this &&
673 (hash & WAITING) == WAITING) {
674 try {
675 wait();
676 } catch (InterruptedException ie) {
677 try {
678 Thread.currentThread().interrupt();
679 } catch (SecurityException ignore) {
680 }
681 }
682 }
683 else
684 notifyAll(); // possibly won race vs signaller
685 }
686 break;
687 }
688 }
689 }
690 }
691
692 // Unsafe mechanics for casHash
693 private static final sun.misc.Unsafe UNSAFE;
694 private static final long hashOffset;
695
696 static {
697 try {
698 UNSAFE = sun.misc.Unsafe.getUnsafe();
699 Class<?> k = Node.class;
700 hashOffset = UNSAFE.objectFieldOffset
701 (k.getDeclaredField("hash"));
702 } catch (Exception e) {
703 throw new Error(e);
704 }
705 }
706 }
707
708 /* ---------------- TreeBins -------------- */
709
710 /**
711 * Nodes for use in TreeBins
712 */
713 static final class TreeNode extends Node {
714 TreeNode parent; // red-black tree links
715 TreeNode left;
716 TreeNode right;
717 TreeNode prev; // needed to unlink next upon deletion
718 boolean red;
719
720 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
721 super(hash, key, val, next);
722 this.parent = parent;
723 }
724 }
725
726 /**
727 * A specialized form of red-black tree for use in bins
728 * whose size exceeds a threshold.
729 *
730 * TreeBins use a special form of comparison for search and
731 * related operations (which is the main reason we cannot use
732 * existing collections such as TreeMaps). TreeBins contain
733 * Comparable elements, but may contain others, as well as
734 * elements that are Comparable but not necessarily Comparable<T>
735 * for the same T, so we cannot invoke compareTo among them. To
736 * handle this, the tree is ordered primarily by hash value, then
737 * by getClass().getName() order, and then by Comparator order
738 * among elements of the same class. On lookup at a node, if
739 * elements are not comparable or compare as 0, both left and
740 * right children may need to be searched in the case of tied hash
741 * values. (This corresponds to the full list search that would be
742 * necessary if all elements were non-Comparable and had tied
743 * hashes.) The red-black balancing code is updated from
744 * pre-jdk-collections
745 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
746 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
747 * Algorithms" (CLR).
748 *
749 * TreeBins also maintain a separate locking discipline than
750 * regular bins. Because they are forwarded via special MOVED
751 * nodes at bin heads (which can never change once established),
752 * we cannot use those nodes as locks. Instead, TreeBin
753 * extends AbstractQueuedSynchronizer to support a simple form of
754 * read-write lock. For update operations and table validation,
755 * the exclusive form of lock behaves in the same way as bin-head
756 * locks. However, lookups use shared read-lock mechanics to allow
757 * multiple readers in the absence of writers. Additionally,
758 * these lookups do not ever block: While the lock is not
759 * available, they proceed along the slow traversal path (via
760 * next-pointers) until the lock becomes available or the list is
761 * exhausted, whichever comes first. (These cases are not fast,
762 * but maximize aggregate expected throughput.) The AQS mechanics
763 * for doing this are straightforward. The lock state is held as
764 * AQS getState(). Read counts are negative; the write count (1)
765 * is positive. There are no signalling preferences among readers
766 * and writers. Since we don't need to export full Lock API, we
767 * just override the minimal AQS methods and use them directly.
768 */
769 static final class TreeBin extends AbstractQueuedSynchronizer {
770 private static final long serialVersionUID = 2249069246763182397L;
771 transient TreeNode root; // root of tree
772 transient TreeNode first; // head of next-pointer list
773
774 /* AQS overrides */
775 public final boolean isHeldExclusively() { return getState() > 0; }
776 public final boolean tryAcquire(int ignore) {
777 if (compareAndSetState(0, 1)) {
778 setExclusiveOwnerThread(Thread.currentThread());
779 return true;
780 }
781 return false;
782 }
783 public final boolean tryRelease(int ignore) {
784 setExclusiveOwnerThread(null);
785 setState(0);
786 return true;
787 }
788 public final int tryAcquireShared(int ignore) {
789 for (int c;;) {
790 if ((c = getState()) > 0)
791 return -1;
792 if (compareAndSetState(c, c -1))
793 return 1;
794 }
795 }
796 public final boolean tryReleaseShared(int ignore) {
797 int c;
798 do {} while (!compareAndSetState(c = getState(), c + 1));
799 return c == -1;
800 }
801
802 /** From CLR */
803 private void rotateLeft(TreeNode p) {
804 if (p != null) {
805 TreeNode r = p.right, pp, rl;
806 if ((rl = p.right = r.left) != null)
807 rl.parent = p;
808 if ((pp = r.parent = p.parent) == null)
809 root = r;
810 else if (pp.left == p)
811 pp.left = r;
812 else
813 pp.right = r;
814 r.left = p;
815 p.parent = r;
816 }
817 }
818
819 /** From CLR */
820 private void rotateRight(TreeNode p) {
821 if (p != null) {
822 TreeNode l = p.left, pp, lr;
823 if ((lr = p.left = l.right) != null)
824 lr.parent = p;
825 if ((pp = l.parent = p.parent) == null)
826 root = l;
827 else if (pp.right == p)
828 pp.right = l;
829 else
830 pp.left = l;
831 l.right = p;
832 p.parent = l;
833 }
834 }
835
836 /**
837 * Returns the TreeNode (or null if not found) for the given key
838 * starting at given root.
839 */
840 @SuppressWarnings("unchecked") final TreeNode getTreeNode
841 (int h, Object k, TreeNode p) {
842 Class<?> c = k.getClass();
843 while (p != null) {
844 int dir, ph; Object pk; Class<?> pc;
845 if ((ph = p.hash) == h) {
846 if ((pk = p.key) == k || k.equals(pk))
847 return p;
848 if (c != (pc = pk.getClass()) ||
849 !(k instanceof Comparable) ||
850 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
851 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
852 TreeNode r = null, s = null, pl, pr;
853 if (dir >= 0) {
854 if ((pl = p.left) != null && h <= pl.hash)
855 s = pl;
856 }
857 else if ((pr = p.right) != null && h >= pr.hash)
858 s = pr;
859 if (s != null && (r = getTreeNode(h, k, s)) != null)
860 return r;
861 }
862 }
863 else
864 dir = (h < ph) ? -1 : 1;
865 p = (dir > 0) ? p.right : p.left;
866 }
867 return null;
868 }
869
870 /**
871 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
872 * read-lock to call getTreeNode, but during failure to get
873 * lock, searches along next links.
874 */
875 final Object getValue(int h, Object k) {
876 Node r = null;
877 int c = getState(); // Must read lock state first
878 for (Node e = first; e != null; e = e.next) {
879 if (c <= 0 && compareAndSetState(c, c - 1)) {
880 try {
881 r = getTreeNode(h, k, root);
882 } finally {
883 releaseShared(0);
884 }
885 break;
886 }
887 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
888 r = e;
889 break;
890 }
891 else
892 c = getState();
893 }
894 return r == null ? null : r.val;
895 }
896
897 /**
898 * Finds or adds a node.
899 * @return null if added
900 */
901 @SuppressWarnings("unchecked") final TreeNode putTreeNode
902 (int h, Object k, Object v) {
903 Class<?> c = k.getClass();
904 TreeNode pp = root, p = null;
905 int dir = 0;
906 while (pp != null) { // find existing node or leaf to insert at
907 int ph; Object pk; Class<?> pc;
908 p = pp;
909 if ((ph = p.hash) == h) {
910 if ((pk = p.key) == k || k.equals(pk))
911 return p;
912 if (c != (pc = pk.getClass()) ||
913 !(k instanceof Comparable) ||
914 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
915 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
916 TreeNode r = null, s = null, pl, pr;
917 if (dir >= 0) {
918 if ((pl = p.left) != null && h <= pl.hash)
919 s = pl;
920 }
921 else if ((pr = p.right) != null && h >= pr.hash)
922 s = pr;
923 if (s != null && (r = getTreeNode(h, k, s)) != null)
924 return r;
925 }
926 }
927 else
928 dir = (h < ph) ? -1 : 1;
929 pp = (dir > 0) ? p.right : p.left;
930 }
931
932 TreeNode f = first;
933 TreeNode x = first = new TreeNode(h, k, v, f, p);
934 if (p == null)
935 root = x;
936 else { // attach and rebalance; adapted from CLR
937 TreeNode xp, xpp;
938 if (f != null)
939 f.prev = x;
940 if (dir <= 0)
941 p.left = x;
942 else
943 p.right = x;
944 x.red = true;
945 while (x != null && (xp = x.parent) != null && xp.red &&
946 (xpp = xp.parent) != null) {
947 TreeNode xppl = xpp.left;
948 if (xp == xppl) {
949 TreeNode y = xpp.right;
950 if (y != null && y.red) {
951 y.red = false;
952 xp.red = false;
953 xpp.red = true;
954 x = xpp;
955 }
956 else {
957 if (x == xp.right) {
958 rotateLeft(x = xp);
959 xpp = (xp = x.parent) == null ? null : xp.parent;
960 }
961 if (xp != null) {
962 xp.red = false;
963 if (xpp != null) {
964 xpp.red = true;
965 rotateRight(xpp);
966 }
967 }
968 }
969 }
970 else {
971 TreeNode y = xppl;
972 if (y != null && y.red) {
973 y.red = false;
974 xp.red = false;
975 xpp.red = true;
976 x = xpp;
977 }
978 else {
979 if (x == xp.left) {
980 rotateRight(x = xp);
981 xpp = (xp = x.parent) == null ? null : xp.parent;
982 }
983 if (xp != null) {
984 xp.red = false;
985 if (xpp != null) {
986 xpp.red = true;
987 rotateLeft(xpp);
988 }
989 }
990 }
991 }
992 }
993 TreeNode r = root;
994 if (r != null && r.red)
995 r.red = false;
996 }
997 return null;
998 }
999
1000 /**
1001 * Removes the given node, that must be present before this
1002 * call. This is messier than typical red-black deletion code
1003 * because we cannot swap the contents of an interior node
1004 * with a leaf successor that is pinned by "next" pointers
1005 * that are accessible independently of lock. So instead we
1006 * swap the tree linkages.
1007 */
1008 final void deleteTreeNode(TreeNode p) {
1009 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1010 TreeNode pred = p.prev;
1011 if (pred == null)
1012 first = next;
1013 else
1014 pred.next = next;
1015 if (next != null)
1016 next.prev = pred;
1017 TreeNode replacement;
1018 TreeNode pl = p.left;
1019 TreeNode pr = p.right;
1020 if (pl != null && pr != null) {
1021 TreeNode s = pr, sl;
1022 while ((sl = s.left) != null) // find successor
1023 s = sl;
1024 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1025 TreeNode sr = s.right;
1026 TreeNode pp = p.parent;
1027 if (s == pr) { // p was s's direct parent
1028 p.parent = s;
1029 s.right = p;
1030 }
1031 else {
1032 TreeNode sp = s.parent;
1033 if ((p.parent = sp) != null) {
1034 if (s == sp.left)
1035 sp.left = p;
1036 else
1037 sp.right = p;
1038 }
1039 if ((s.right = pr) != null)
1040 pr.parent = s;
1041 }
1042 p.left = null;
1043 if ((p.right = sr) != null)
1044 sr.parent = p;
1045 if ((s.left = pl) != null)
1046 pl.parent = s;
1047 if ((s.parent = pp) == null)
1048 root = s;
1049 else if (p == pp.left)
1050 pp.left = s;
1051 else
1052 pp.right = s;
1053 replacement = sr;
1054 }
1055 else
1056 replacement = (pl != null) ? pl : pr;
1057 TreeNode pp = p.parent;
1058 if (replacement == null) {
1059 if (pp == null) {
1060 root = null;
1061 return;
1062 }
1063 replacement = p;
1064 }
1065 else {
1066 replacement.parent = pp;
1067 if (pp == null)
1068 root = replacement;
1069 else if (p == pp.left)
1070 pp.left = replacement;
1071 else
1072 pp.right = replacement;
1073 p.left = p.right = p.parent = null;
1074 }
1075 if (!p.red) { // rebalance, from CLR
1076 TreeNode x = replacement;
1077 while (x != null) {
1078 TreeNode xp, xpl;
1079 if (x.red || (xp = x.parent) == null) {
1080 x.red = false;
1081 break;
1082 }
1083 if (x == (xpl = xp.left)) {
1084 TreeNode sib = xp.right;
1085 if (sib != null && sib.red) {
1086 sib.red = false;
1087 xp.red = true;
1088 rotateLeft(xp);
1089 sib = (xp = x.parent) == null ? null : xp.right;
1090 }
1091 if (sib == null)
1092 x = xp;
1093 else {
1094 TreeNode sl = sib.left, sr = sib.right;
1095 if ((sr == null || !sr.red) &&
1096 (sl == null || !sl.red)) {
1097 sib.red = true;
1098 x = xp;
1099 }
1100 else {
1101 if (sr == null || !sr.red) {
1102 if (sl != null)
1103 sl.red = false;
1104 sib.red = true;
1105 rotateRight(sib);
1106 sib = (xp = x.parent) == null ? null : xp.right;
1107 }
1108 if (sib != null) {
1109 sib.red = (xp == null) ? false : xp.red;
1110 if ((sr = sib.right) != null)
1111 sr.red = false;
1112 }
1113 if (xp != null) {
1114 xp.red = false;
1115 rotateLeft(xp);
1116 }
1117 x = root;
1118 }
1119 }
1120 }
1121 else { // symmetric
1122 TreeNode sib = xpl;
1123 if (sib != null && sib.red) {
1124 sib.red = false;
1125 xp.red = true;
1126 rotateRight(xp);
1127 sib = (xp = x.parent) == null ? null : xp.left;
1128 }
1129 if (sib == null)
1130 x = xp;
1131 else {
1132 TreeNode sl = sib.left, sr = sib.right;
1133 if ((sl == null || !sl.red) &&
1134 (sr == null || !sr.red)) {
1135 sib.red = true;
1136 x = xp;
1137 }
1138 else {
1139 if (sl == null || !sl.red) {
1140 if (sr != null)
1141 sr.red = false;
1142 sib.red = true;
1143 rotateLeft(sib);
1144 sib = (xp = x.parent) == null ? null : xp.left;
1145 }
1146 if (sib != null) {
1147 sib.red = (xp == null) ? false : xp.red;
1148 if ((sl = sib.left) != null)
1149 sl.red = false;
1150 }
1151 if (xp != null) {
1152 xp.red = false;
1153 rotateRight(xp);
1154 }
1155 x = root;
1156 }
1157 }
1158 }
1159 }
1160 }
1161 if (p == replacement && (pp = p.parent) != null) {
1162 if (p == pp.left) // detach pointers
1163 pp.left = null;
1164 else if (p == pp.right)
1165 pp.right = null;
1166 p.parent = null;
1167 }
1168 }
1169 }
1170
1171 /* ---------------- Collision reduction methods -------------- */
1172
1173 /**
1174 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1175 * Because the table uses power-of-two masking, sets of hashes
1176 * that vary only in bits above the current mask will always
1177 * collide. (Among known examples are sets of Float keys holding
1178 * consecutive whole numbers in small tables.) To counter this,
1179 * we apply a transform that spreads the impact of higher bits
1180 * downward. There is a tradeoff between speed, utility, and
1181 * quality of bit-spreading. Because many common sets of hashes
1182 * are already reasonably distributed across bits (so don't benefit
1183 * from spreading), and because we use trees to handle large sets
1184 * of collisions in bins, we don't need excessively high quality.
1185 */
1186 private static final int spread(int h) {
1187 h ^= (h >>> 18) ^ (h >>> 12);
1188 return (h ^ (h >>> 10)) & HASH_BITS;
1189 }
1190
1191 /**
1192 * Replaces a list bin with a tree bin. Call only when locked.
1193 * Fails to replace if the given key is non-comparable or table
1194 * is, or needs, resizing.
1195 */
1196 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1197 if ((key instanceof Comparable) &&
1198 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1199 TreeBin t = new TreeBin();
1200 for (Node e = tabAt(tab, index); e != null; e = e.next)
1201 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1202 setTabAt(tab, index, new Node(MOVED, t, null, null));
1203 }
1204 }
1205
1206 /* ---------------- Internal access and update methods -------------- */
1207
1208 /** Implementation for get and containsKey */
1209 private final Object internalGet(Object k) {
1210 int h = spread(k.hashCode());
1211 retry: for (Node[] tab = table; tab != null;) {
1212 Node e, p; Object ek, ev; int eh; // locals to read fields once
1213 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1214 if ((eh = e.hash) == MOVED) {
1215 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1216 return ((TreeBin)ek).getValue(h, k);
1217 else { // restart with new table
1218 tab = (Node[])ek;
1219 continue retry;
1220 }
1221 }
1222 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1223 ((ek = e.key) == k || k.equals(ek)))
1224 return ev;
1225 }
1226 break;
1227 }
1228 return null;
1229 }
1230
1231 /**
1232 * Implementation for the four public remove/replace methods:
1233 * Replaces node value with v, conditional upon match of cv if
1234 * non-null. If resulting value is null, delete.
1235 */
1236 private final Object internalReplace(Object k, Object v, Object cv) {
1237 int h = spread(k.hashCode());
1238 Object oldVal = null;
1239 for (Node[] tab = table;;) {
1240 Node f; int i, fh; Object fk;
1241 if (tab == null ||
1242 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1243 break;
1244 else if ((fh = f.hash) == MOVED) {
1245 if ((fk = f.key) instanceof TreeBin) {
1246 TreeBin t = (TreeBin)fk;
1247 boolean validated = false;
1248 boolean deleted = false;
1249 t.acquire(0);
1250 try {
1251 if (tabAt(tab, i) == f) {
1252 validated = true;
1253 TreeNode p = t.getTreeNode(h, k, t.root);
1254 if (p != null) {
1255 Object pv = p.val;
1256 if (cv == null || cv == pv || cv.equals(pv)) {
1257 oldVal = pv;
1258 if ((p.val = v) == null) {
1259 deleted = true;
1260 t.deleteTreeNode(p);
1261 }
1262 }
1263 }
1264 }
1265 } finally {
1266 t.release(0);
1267 }
1268 if (validated) {
1269 if (deleted)
1270 counter.add(-1L);
1271 break;
1272 }
1273 }
1274 else
1275 tab = (Node[])fk;
1276 }
1277 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1278 break; // rules out possible existence
1279 else if ((fh & LOCKED) != 0) {
1280 checkForResize(); // try resizing if can't get lock
1281 f.tryAwaitLock(tab, i);
1282 }
1283 else if (f.casHash(fh, fh | LOCKED)) {
1284 boolean validated = false;
1285 boolean deleted = false;
1286 try {
1287 if (tabAt(tab, i) == f) {
1288 validated = true;
1289 for (Node e = f, pred = null;;) {
1290 Object ek, ev;
1291 if ((e.hash & HASH_BITS) == h &&
1292 ((ev = e.val) != null) &&
1293 ((ek = e.key) == k || k.equals(ek))) {
1294 if (cv == null || cv == ev || cv.equals(ev)) {
1295 oldVal = ev;
1296 if ((e.val = v) == null) {
1297 deleted = true;
1298 Node en = e.next;
1299 if (pred != null)
1300 pred.next = en;
1301 else
1302 setTabAt(tab, i, en);
1303 }
1304 }
1305 break;
1306 }
1307 pred = e;
1308 if ((e = e.next) == null)
1309 break;
1310 }
1311 }
1312 } finally {
1313 if (!f.casHash(fh | LOCKED, fh)) {
1314 f.hash = fh;
1315 synchronized (f) { f.notifyAll(); };
1316 }
1317 }
1318 if (validated) {
1319 if (deleted)
1320 counter.add(-1L);
1321 break;
1322 }
1323 }
1324 }
1325 return oldVal;
1326 }
1327
1328 /*
1329 * Internal versions of the six insertion methods, each a
1330 * little more complicated than the last. All have
1331 * the same basic structure as the first (internalPut):
1332 * 1. If table uninitialized, create
1333 * 2. If bin empty, try to CAS new node
1334 * 3. If bin stale, use new table
1335 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1336 * 5. Lock and validate; if valid, scan and add or update
1337 *
1338 * The others interweave other checks and/or alternative actions:
1339 * * Plain put checks for and performs resize after insertion.
1340 * * putIfAbsent prescans for mapping without lock (and fails to add
1341 * if present), which also makes pre-emptive resize checks worthwhile.
1342 * * computeIfAbsent extends form used in putIfAbsent with additional
1343 * mechanics to deal with, calls, potential exceptions and null
1344 * returns from function call.
1345 * * compute uses the same function-call mechanics, but without
1346 * the prescans
1347 * * merge acts as putIfAbsent in the absent case, but invokes the
1348 * update function if present
1349 * * putAll attempts to pre-allocate enough table space
1350 * and more lazily performs count updates and checks.
1351 *
1352 * Someday when details settle down a bit more, it might be worth
1353 * some factoring to reduce sprawl.
1354 */
1355
1356 /** Implementation for put */
1357 private final Object internalPut(Object k, Object v) {
1358 int h = spread(k.hashCode());
1359 int count = 0;
1360 for (Node[] tab = table;;) {
1361 int i; Node f; int fh; Object fk;
1362 if (tab == null)
1363 tab = initTable();
1364 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1365 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1366 break; // no lock when adding to empty bin
1367 }
1368 else if ((fh = f.hash) == MOVED) {
1369 if ((fk = f.key) instanceof TreeBin) {
1370 TreeBin t = (TreeBin)fk;
1371 Object oldVal = null;
1372 t.acquire(0);
1373 try {
1374 if (tabAt(tab, i) == f) {
1375 count = 2;
1376 TreeNode p = t.putTreeNode(h, k, v);
1377 if (p != null) {
1378 oldVal = p.val;
1379 p.val = v;
1380 }
1381 }
1382 } finally {
1383 t.release(0);
1384 }
1385 if (count != 0) {
1386 if (oldVal != null)
1387 return oldVal;
1388 break;
1389 }
1390 }
1391 else
1392 tab = (Node[])fk;
1393 }
1394 else if ((fh & LOCKED) != 0) {
1395 checkForResize();
1396 f.tryAwaitLock(tab, i);
1397 }
1398 else if (f.casHash(fh, fh | LOCKED)) {
1399 Object oldVal = null;
1400 try { // needed in case equals() throws
1401 if (tabAt(tab, i) == f) {
1402 count = 1;
1403 for (Node e = f;; ++count) {
1404 Object ek, ev;
1405 if ((e.hash & HASH_BITS) == h &&
1406 (ev = e.val) != null &&
1407 ((ek = e.key) == k || k.equals(ek))) {
1408 oldVal = ev;
1409 e.val = v;
1410 break;
1411 }
1412 Node last = e;
1413 if ((e = e.next) == null) {
1414 last.next = new Node(h, k, v, null);
1415 if (count >= TREE_THRESHOLD)
1416 replaceWithTreeBin(tab, i, k);
1417 break;
1418 }
1419 }
1420 }
1421 } finally { // unlock and signal if needed
1422 if (!f.casHash(fh | LOCKED, fh)) {
1423 f.hash = fh;
1424 synchronized (f) { f.notifyAll(); };
1425 }
1426 }
1427 if (count != 0) {
1428 if (oldVal != null)
1429 return oldVal;
1430 if (tab.length <= 64)
1431 count = 2;
1432 break;
1433 }
1434 }
1435 }
1436 counter.add(1L);
1437 if (count > 1)
1438 checkForResize();
1439 return null;
1440 }
1441
1442 /** Implementation for putIfAbsent */
1443 private final Object internalPutIfAbsent(Object k, Object v) {
1444 int h = spread(k.hashCode());
1445 int count = 0;
1446 for (Node[] tab = table;;) {
1447 int i; Node f; int fh; Object fk, fv;
1448 if (tab == null)
1449 tab = initTable();
1450 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1452 break;
1453 }
1454 else if ((fh = f.hash) == MOVED) {
1455 if ((fk = f.key) instanceof TreeBin) {
1456 TreeBin t = (TreeBin)fk;
1457 Object oldVal = null;
1458 t.acquire(0);
1459 try {
1460 if (tabAt(tab, i) == f) {
1461 count = 2;
1462 TreeNode p = t.putTreeNode(h, k, v);
1463 if (p != null)
1464 oldVal = p.val;
1465 }
1466 } finally {
1467 t.release(0);
1468 }
1469 if (count != 0) {
1470 if (oldVal != null)
1471 return oldVal;
1472 break;
1473 }
1474 }
1475 else
1476 tab = (Node[])fk;
1477 }
1478 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1479 ((fk = f.key) == k || k.equals(fk)))
1480 return fv;
1481 else {
1482 Node g = f.next;
1483 if (g != null) { // at least 2 nodes -- search and maybe resize
1484 for (Node e = g;;) {
1485 Object ek, ev;
1486 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1487 ((ek = e.key) == k || k.equals(ek)))
1488 return ev;
1489 if ((e = e.next) == null) {
1490 checkForResize();
1491 break;
1492 }
1493 }
1494 }
1495 if (((fh = f.hash) & LOCKED) != 0) {
1496 checkForResize();
1497 f.tryAwaitLock(tab, i);
1498 }
1499 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1500 Object oldVal = null;
1501 try {
1502 if (tabAt(tab, i) == f) {
1503 count = 1;
1504 for (Node e = f;; ++count) {
1505 Object ek, ev;
1506 if ((e.hash & HASH_BITS) == h &&
1507 (ev = e.val) != null &&
1508 ((ek = e.key) == k || k.equals(ek))) {
1509 oldVal = ev;
1510 break;
1511 }
1512 Node last = e;
1513 if ((e = e.next) == null) {
1514 last.next = new Node(h, k, v, null);
1515 if (count >= TREE_THRESHOLD)
1516 replaceWithTreeBin(tab, i, k);
1517 break;
1518 }
1519 }
1520 }
1521 } finally {
1522 if (!f.casHash(fh | LOCKED, fh)) {
1523 f.hash = fh;
1524 synchronized (f) { f.notifyAll(); };
1525 }
1526 }
1527 if (count != 0) {
1528 if (oldVal != null)
1529 return oldVal;
1530 if (tab.length <= 64)
1531 count = 2;
1532 break;
1533 }
1534 }
1535 }
1536 }
1537 counter.add(1L);
1538 if (count > 1)
1539 checkForResize();
1540 return null;
1541 }
1542
1543 /** Implementation for computeIfAbsent */
1544 private final Object internalComputeIfAbsent(K k,
1545 Fun<? super K, ?> mf) {
1546 int h = spread(k.hashCode());
1547 Object val = null;
1548 int count = 0;
1549 for (Node[] tab = table;;) {
1550 Node f; int i, fh; Object fk, fv;
1551 if (tab == null)
1552 tab = initTable();
1553 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1554 Node node = new Node(fh = h | LOCKED, k, null, null);
1555 if (casTabAt(tab, i, null, node)) {
1556 count = 1;
1557 try {
1558 if ((val = mf.apply(k)) != null)
1559 node.val = val;
1560 } finally {
1561 if (val == null)
1562 setTabAt(tab, i, null);
1563 if (!node.casHash(fh, h)) {
1564 node.hash = h;
1565 synchronized (node) { node.notifyAll(); };
1566 }
1567 }
1568 }
1569 if (count != 0)
1570 break;
1571 }
1572 else if ((fh = f.hash) == MOVED) {
1573 if ((fk = f.key) instanceof TreeBin) {
1574 TreeBin t = (TreeBin)fk;
1575 boolean added = false;
1576 t.acquire(0);
1577 try {
1578 if (tabAt(tab, i) == f) {
1579 count = 1;
1580 TreeNode p = t.getTreeNode(h, k, t.root);
1581 if (p != null)
1582 val = p.val;
1583 else if ((val = mf.apply(k)) != null) {
1584 added = true;
1585 count = 2;
1586 t.putTreeNode(h, k, val);
1587 }
1588 }
1589 } finally {
1590 t.release(0);
1591 }
1592 if (count != 0) {
1593 if (!added)
1594 return val;
1595 break;
1596 }
1597 }
1598 else
1599 tab = (Node[])fk;
1600 }
1601 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1602 ((fk = f.key) == k || k.equals(fk)))
1603 return fv;
1604 else {
1605 Node g = f.next;
1606 if (g != null) {
1607 for (Node e = g;;) {
1608 Object ek, ev;
1609 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1610 ((ek = e.key) == k || k.equals(ek)))
1611 return ev;
1612 if ((e = e.next) == null) {
1613 checkForResize();
1614 break;
1615 }
1616 }
1617 }
1618 if (((fh = f.hash) & LOCKED) != 0) {
1619 checkForResize();
1620 f.tryAwaitLock(tab, i);
1621 }
1622 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1623 boolean added = false;
1624 try {
1625 if (tabAt(tab, i) == f) {
1626 count = 1;
1627 for (Node e = f;; ++count) {
1628 Object ek, ev;
1629 if ((e.hash & HASH_BITS) == h &&
1630 (ev = e.val) != null &&
1631 ((ek = e.key) == k || k.equals(ek))) {
1632 val = ev;
1633 break;
1634 }
1635 Node last = e;
1636 if ((e = e.next) == null) {
1637 if ((val = mf.apply(k)) != null) {
1638 added = true;
1639 last.next = new Node(h, k, val, null);
1640 if (count >= TREE_THRESHOLD)
1641 replaceWithTreeBin(tab, i, k);
1642 }
1643 break;
1644 }
1645 }
1646 }
1647 } finally {
1648 if (!f.casHash(fh | LOCKED, fh)) {
1649 f.hash = fh;
1650 synchronized (f) { f.notifyAll(); };
1651 }
1652 }
1653 if (count != 0) {
1654 if (!added)
1655 return val;
1656 if (tab.length <= 64)
1657 count = 2;
1658 break;
1659 }
1660 }
1661 }
1662 }
1663 if (val != null) {
1664 counter.add(1L);
1665 if (count > 1)
1666 checkForResize();
1667 }
1668 return val;
1669 }
1670
1671 /** Implementation for compute */
1672 @SuppressWarnings("unchecked") private final Object internalCompute
1673 (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1674 int h = spread(k.hashCode());
1675 Object val = null;
1676 int delta = 0;
1677 int count = 0;
1678 for (Node[] tab = table;;) {
1679 Node f; int i, fh; Object fk;
1680 if (tab == null)
1681 tab = initTable();
1682 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1683 if (onlyIfPresent)
1684 break;
1685 Node node = new Node(fh = h | LOCKED, k, null, null);
1686 if (casTabAt(tab, i, null, node)) {
1687 try {
1688 count = 1;
1689 if ((val = mf.apply(k, null)) != null) {
1690 node.val = val;
1691 delta = 1;
1692 }
1693 } finally {
1694 if (delta == 0)
1695 setTabAt(tab, i, null);
1696 if (!node.casHash(fh, h)) {
1697 node.hash = h;
1698 synchronized (node) { node.notifyAll(); };
1699 }
1700 }
1701 }
1702 if (count != 0)
1703 break;
1704 }
1705 else if ((fh = f.hash) == MOVED) {
1706 if ((fk = f.key) instanceof TreeBin) {
1707 TreeBin t = (TreeBin)fk;
1708 t.acquire(0);
1709 try {
1710 if (tabAt(tab, i) == f) {
1711 count = 1;
1712 TreeNode p = t.getTreeNode(h, k, t.root);
1713 Object pv = (p == null) ? null : p.val;
1714 if ((val = mf.apply(k, (V)pv)) != null) {
1715 if (p != null)
1716 p.val = val;
1717 else {
1718 count = 2;
1719 delta = 1;
1720 t.putTreeNode(h, k, val);
1721 }
1722 }
1723 else if (p != null) {
1724 delta = -1;
1725 t.deleteTreeNode(p);
1726 }
1727 }
1728 } finally {
1729 t.release(0);
1730 }
1731 if (count != 0)
1732 break;
1733 }
1734 else
1735 tab = (Node[])fk;
1736 }
1737 else if ((fh & LOCKED) != 0) {
1738 checkForResize();
1739 f.tryAwaitLock(tab, i);
1740 }
1741 else if (f.casHash(fh, fh | LOCKED)) {
1742 try {
1743 if (tabAt(tab, i) == f) {
1744 count = 1;
1745 for (Node e = f, pred = null;; ++count) {
1746 Object ek, ev;
1747 if ((e.hash & HASH_BITS) == h &&
1748 (ev = e.val) != null &&
1749 ((ek = e.key) == k || k.equals(ek))) {
1750 val = mf.apply(k, (V)ev);
1751 if (val != null)
1752 e.val = val;
1753 else {
1754 delta = -1;
1755 Node en = e.next;
1756 if (pred != null)
1757 pred.next = en;
1758 else
1759 setTabAt(tab, i, en);
1760 }
1761 break;
1762 }
1763 pred = e;
1764 if ((e = e.next) == null) {
1765 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1766 pred.next = new Node(h, k, val, null);
1767 delta = 1;
1768 if (count >= TREE_THRESHOLD)
1769 replaceWithTreeBin(tab, i, k);
1770 }
1771 break;
1772 }
1773 }
1774 }
1775 } finally {
1776 if (!f.casHash(fh | LOCKED, fh)) {
1777 f.hash = fh;
1778 synchronized (f) { f.notifyAll(); };
1779 }
1780 }
1781 if (count != 0) {
1782 if (tab.length <= 64)
1783 count = 2;
1784 break;
1785 }
1786 }
1787 }
1788 if (delta != 0) {
1789 counter.add((long)delta);
1790 if (count > 1)
1791 checkForResize();
1792 }
1793 return val;
1794 }
1795
1796 /** Implementation for merge */
1797 @SuppressWarnings("unchecked") private final Object internalMerge
1798 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1799 int h = spread(k.hashCode());
1800 Object val = null;
1801 int delta = 0;
1802 int count = 0;
1803 for (Node[] tab = table;;) {
1804 int i; Node f; int fh; Object fk, fv;
1805 if (tab == null)
1806 tab = initTable();
1807 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1808 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1809 delta = 1;
1810 val = v;
1811 break;
1812 }
1813 }
1814 else if ((fh = f.hash) == MOVED) {
1815 if ((fk = f.key) instanceof TreeBin) {
1816 TreeBin t = (TreeBin)fk;
1817 t.acquire(0);
1818 try {
1819 if (tabAt(tab, i) == f) {
1820 count = 1;
1821 TreeNode p = t.getTreeNode(h, k, t.root);
1822 val = (p == null) ? v : mf.apply((V)p.val, v);
1823 if (val != null) {
1824 if (p != null)
1825 p.val = val;
1826 else {
1827 count = 2;
1828 delta = 1;
1829 t.putTreeNode(h, k, val);
1830 }
1831 }
1832 else if (p != null) {
1833 delta = -1;
1834 t.deleteTreeNode(p);
1835 }
1836 }
1837 } finally {
1838 t.release(0);
1839 }
1840 if (count != 0)
1841 break;
1842 }
1843 else
1844 tab = (Node[])fk;
1845 }
1846 else if ((fh & LOCKED) != 0) {
1847 checkForResize();
1848 f.tryAwaitLock(tab, i);
1849 }
1850 else if (f.casHash(fh, fh | LOCKED)) {
1851 try {
1852 if (tabAt(tab, i) == f) {
1853 count = 1;
1854 for (Node e = f, pred = null;; ++count) {
1855 Object ek, ev;
1856 if ((e.hash & HASH_BITS) == h &&
1857 (ev = e.val) != null &&
1858 ((ek = e.key) == k || k.equals(ek))) {
1859 val = mf.apply(v, (V)ev);
1860 if (val != null)
1861 e.val = val;
1862 else {
1863 delta = -1;
1864 Node en = e.next;
1865 if (pred != null)
1866 pred.next = en;
1867 else
1868 setTabAt(tab, i, en);
1869 }
1870 break;
1871 }
1872 pred = e;
1873 if ((e = e.next) == null) {
1874 val = v;
1875 pred.next = new Node(h, k, val, null);
1876 delta = 1;
1877 if (count >= TREE_THRESHOLD)
1878 replaceWithTreeBin(tab, i, k);
1879 break;
1880 }
1881 }
1882 }
1883 } finally {
1884 if (!f.casHash(fh | LOCKED, fh)) {
1885 f.hash = fh;
1886 synchronized (f) { f.notifyAll(); };
1887 }
1888 }
1889 if (count != 0) {
1890 if (tab.length <= 64)
1891 count = 2;
1892 break;
1893 }
1894 }
1895 }
1896 if (delta != 0) {
1897 counter.add((long)delta);
1898 if (count > 1)
1899 checkForResize();
1900 }
1901 return val;
1902 }
1903
1904 /** Implementation for putAll */
1905 private final void internalPutAll(Map<?, ?> m) {
1906 tryPresize(m.size());
1907 long delta = 0L; // number of uncommitted additions
1908 boolean npe = false; // to throw exception on exit for nulls
1909 try { // to clean up counts on other exceptions
1910 for (Map.Entry<?, ?> entry : m.entrySet()) {
1911 Object k, v;
1912 if (entry == null || (k = entry.getKey()) == null ||
1913 (v = entry.getValue()) == null) {
1914 npe = true;
1915 break;
1916 }
1917 int h = spread(k.hashCode());
1918 for (Node[] tab = table;;) {
1919 int i; Node f; int fh; Object fk;
1920 if (tab == null)
1921 tab = initTable();
1922 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1923 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1924 ++delta;
1925 break;
1926 }
1927 }
1928 else if ((fh = f.hash) == MOVED) {
1929 if ((fk = f.key) instanceof TreeBin) {
1930 TreeBin t = (TreeBin)fk;
1931 boolean validated = false;
1932 t.acquire(0);
1933 try {
1934 if (tabAt(tab, i) == f) {
1935 validated = true;
1936 TreeNode p = t.getTreeNode(h, k, t.root);
1937 if (p != null)
1938 p.val = v;
1939 else {
1940 t.putTreeNode(h, k, v);
1941 ++delta;
1942 }
1943 }
1944 } finally {
1945 t.release(0);
1946 }
1947 if (validated)
1948 break;
1949 }
1950 else
1951 tab = (Node[])fk;
1952 }
1953 else if ((fh & LOCKED) != 0) {
1954 counter.add(delta);
1955 delta = 0L;
1956 checkForResize();
1957 f.tryAwaitLock(tab, i);
1958 }
1959 else if (f.casHash(fh, fh | LOCKED)) {
1960 int count = 0;
1961 try {
1962 if (tabAt(tab, i) == f) {
1963 count = 1;
1964 for (Node e = f;; ++count) {
1965 Object ek, ev;
1966 if ((e.hash & HASH_BITS) == h &&
1967 (ev = e.val) != null &&
1968 ((ek = e.key) == k || k.equals(ek))) {
1969 e.val = v;
1970 break;
1971 }
1972 Node last = e;
1973 if ((e = e.next) == null) {
1974 ++delta;
1975 last.next = new Node(h, k, v, null);
1976 if (count >= TREE_THRESHOLD)
1977 replaceWithTreeBin(tab, i, k);
1978 break;
1979 }
1980 }
1981 }
1982 } finally {
1983 if (!f.casHash(fh | LOCKED, fh)) {
1984 f.hash = fh;
1985 synchronized (f) { f.notifyAll(); };
1986 }
1987 }
1988 if (count != 0) {
1989 if (count > 1) {
1990 counter.add(delta);
1991 delta = 0L;
1992 checkForResize();
1993 }
1994 break;
1995 }
1996 }
1997 }
1998 }
1999 } finally {
2000 if (delta != 0)
2001 counter.add(delta);
2002 }
2003 if (npe)
2004 throw new NullPointerException();
2005 }
2006
2007 /* ---------------- Table Initialization and Resizing -------------- */
2008
2009 /**
2010 * Returns a power of two table size for the given desired capacity.
2011 * See Hackers Delight, sec 3.2
2012 */
2013 private static final int tableSizeFor(int c) {
2014 int n = c - 1;
2015 n |= n >>> 1;
2016 n |= n >>> 2;
2017 n |= n >>> 4;
2018 n |= n >>> 8;
2019 n |= n >>> 16;
2020 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2021 }
2022
2023 /**
2024 * Initializes table, using the size recorded in sizeCtl.
2025 */
2026 private final Node[] initTable() {
2027 Node[] tab; int sc;
2028 while ((tab = table) == null) {
2029 if ((sc = sizeCtl) < 0)
2030 Thread.yield(); // lost initialization race; just spin
2031 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2032 try {
2033 if ((tab = table) == null) {
2034 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2035 tab = table = new Node[n];
2036 sc = n - (n >>> 2);
2037 }
2038 } finally {
2039 sizeCtl = sc;
2040 }
2041 break;
2042 }
2043 }
2044 return tab;
2045 }
2046
2047 /**
2048 * If table is too small and not already resizing, creates next
2049 * table and transfers bins. Rechecks occupancy after a transfer
2050 * to see if another resize is already needed because resizings
2051 * are lagging additions.
2052 */
2053 private final void checkForResize() {
2054 Node[] tab; int n, sc;
2055 while ((tab = table) != null &&
2056 (n = tab.length) < MAXIMUM_CAPACITY &&
2057 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2058 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2059 try {
2060 if (tab == table) {
2061 table = rebuild(tab);
2062 sc = (n << 1) - (n >>> 1);
2063 }
2064 } finally {
2065 sizeCtl = sc;
2066 }
2067 }
2068 }
2069
2070 /**
2071 * Tries to presize table to accommodate the given number of elements.
2072 *
2073 * @param size number of elements (doesn't need to be perfectly accurate)
2074 */
2075 private final void tryPresize(int size) {
2076 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2077 tableSizeFor(size + (size >>> 1) + 1);
2078 int sc;
2079 while ((sc = sizeCtl) >= 0) {
2080 Node[] tab = table; int n;
2081 if (tab == null || (n = tab.length) == 0) {
2082 n = (sc > c) ? sc : c;
2083 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2084 try {
2085 if (table == tab) {
2086 table = new Node[n];
2087 sc = n - (n >>> 2);
2088 }
2089 } finally {
2090 sizeCtl = sc;
2091 }
2092 }
2093 }
2094 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2095 break;
2096 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2097 try {
2098 if (table == tab) {
2099 table = rebuild(tab);
2100 sc = (n << 1) - (n >>> 1);
2101 }
2102 } finally {
2103 sizeCtl = sc;
2104 }
2105 }
2106 }
2107 }
2108
2109 /*
2110 * Moves and/or copies the nodes in each bin to new table. See
2111 * above for explanation.
2112 *
2113 * @return the new table
2114 */
2115 private static final Node[] rebuild(Node[] tab) {
2116 int n = tab.length;
2117 Node[] nextTab = new Node[n << 1];
2118 Node fwd = new Node(MOVED, nextTab, null, null);
2119 int[] buffer = null; // holds bins to revisit; null until needed
2120 Node rev = null; // reverse forwarder; null until needed
2121 int nbuffered = 0; // the number of bins in buffer list
2122 int bufferIndex = 0; // buffer index of current buffered bin
2123 int bin = n - 1; // current non-buffered bin or -1 if none
2124
2125 for (int i = bin;;) { // start upwards sweep
2126 int fh; Node f;
2127 if ((f = tabAt(tab, i)) == null) {
2128 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2129 if (!casTabAt(tab, i, f, fwd))
2130 continue;
2131 }
2132 else { // transiently use a locked forwarding node
2133 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2134 if (!casTabAt(tab, i, f, g))
2135 continue;
2136 setTabAt(nextTab, i, null);
2137 setTabAt(nextTab, i + n, null);
2138 setTabAt(tab, i, fwd);
2139 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2140 g.hash = MOVED;
2141 synchronized (g) { g.notifyAll(); }
2142 }
2143 }
2144 }
2145 else if ((fh = f.hash) == MOVED) {
2146 Object fk = f.key;
2147 if (fk instanceof TreeBin) {
2148 TreeBin t = (TreeBin)fk;
2149 boolean validated = false;
2150 t.acquire(0);
2151 try {
2152 if (tabAt(tab, i) == f) {
2153 validated = true;
2154 splitTreeBin(nextTab, i, t);
2155 setTabAt(tab, i, fwd);
2156 }
2157 } finally {
2158 t.release(0);
2159 }
2160 if (!validated)
2161 continue;
2162 }
2163 }
2164 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2165 boolean validated = false;
2166 try { // split to lo and hi lists; copying as needed
2167 if (tabAt(tab, i) == f) {
2168 validated = true;
2169 splitBin(nextTab, i, f);
2170 setTabAt(tab, i, fwd);
2171 }
2172 } finally {
2173 if (!f.casHash(fh | LOCKED, fh)) {
2174 f.hash = fh;
2175 synchronized (f) { f.notifyAll(); };
2176 }
2177 }
2178 if (!validated)
2179 continue;
2180 }
2181 else {
2182 if (buffer == null) // initialize buffer for revisits
2183 buffer = new int[TRANSFER_BUFFER_SIZE];
2184 if (bin < 0 && bufferIndex > 0) {
2185 int j = buffer[--bufferIndex];
2186 buffer[bufferIndex] = i;
2187 i = j; // swap with another bin
2188 continue;
2189 }
2190 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2191 f.tryAwaitLock(tab, i);
2192 continue; // no other options -- block
2193 }
2194 if (rev == null) // initialize reverse-forwarder
2195 rev = new Node(MOVED, tab, null, null);
2196 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2197 continue; // recheck before adding to list
2198 buffer[nbuffered++] = i;
2199 setTabAt(nextTab, i, rev); // install place-holders
2200 setTabAt(nextTab, i + n, rev);
2201 }
2202
2203 if (bin > 0)
2204 i = --bin;
2205 else if (buffer != null && nbuffered > 0) {
2206 bin = -1;
2207 i = buffer[bufferIndex = --nbuffered];
2208 }
2209 else
2210 return nextTab;
2211 }
2212 }
2213
2214 /**
2215 * Splits a normal bin with list headed by e into lo and hi parts;
2216 * installs in given table.
2217 */
2218 private static void splitBin(Node[] nextTab, int i, Node e) {
2219 int bit = nextTab.length >>> 1; // bit to split on
2220 int runBit = e.hash & bit;
2221 Node lastRun = e, lo = null, hi = null;
2222 for (Node p = e.next; p != null; p = p.next) {
2223 int b = p.hash & bit;
2224 if (b != runBit) {
2225 runBit = b;
2226 lastRun = p;
2227 }
2228 }
2229 if (runBit == 0)
2230 lo = lastRun;
2231 else
2232 hi = lastRun;
2233 for (Node p = e; p != lastRun; p = p.next) {
2234 int ph = p.hash & HASH_BITS;
2235 Object pk = p.key, pv = p.val;
2236 if ((ph & bit) == 0)
2237 lo = new Node(ph, pk, pv, lo);
2238 else
2239 hi = new Node(ph, pk, pv, hi);
2240 }
2241 setTabAt(nextTab, i, lo);
2242 setTabAt(nextTab, i + bit, hi);
2243 }
2244
2245 /**
2246 * Splits a tree bin into lo and hi parts; installs in given table.
2247 */
2248 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2249 int bit = nextTab.length >>> 1;
2250 TreeBin lt = new TreeBin();
2251 TreeBin ht = new TreeBin();
2252 int lc = 0, hc = 0;
2253 for (Node e = t.first; e != null; e = e.next) {
2254 int h = e.hash & HASH_BITS;
2255 Object k = e.key, v = e.val;
2256 if ((h & bit) == 0) {
2257 ++lc;
2258 lt.putTreeNode(h, k, v);
2259 }
2260 else {
2261 ++hc;
2262 ht.putTreeNode(h, k, v);
2263 }
2264 }
2265 Node ln, hn; // throw away trees if too small
2266 if (lc <= (TREE_THRESHOLD >>> 1)) {
2267 ln = null;
2268 for (Node p = lt.first; p != null; p = p.next)
2269 ln = new Node(p.hash, p.key, p.val, ln);
2270 }
2271 else
2272 ln = new Node(MOVED, lt, null, null);
2273 setTabAt(nextTab, i, ln);
2274 if (hc <= (TREE_THRESHOLD >>> 1)) {
2275 hn = null;
2276 for (Node p = ht.first; p != null; p = p.next)
2277 hn = new Node(p.hash, p.key, p.val, hn);
2278 }
2279 else
2280 hn = new Node(MOVED, ht, null, null);
2281 setTabAt(nextTab, i + bit, hn);
2282 }
2283
2284 /**
2285 * Implementation for clear. Steps through each bin, removing all
2286 * nodes.
2287 */
2288 private final void internalClear() {
2289 long delta = 0L; // negative number of deletions
2290 int i = 0;
2291 Node[] tab = table;
2292 while (tab != null && i < tab.length) {
2293 int fh; Object fk;
2294 Node f = tabAt(tab, i);
2295 if (f == null)
2296 ++i;
2297 else if ((fh = f.hash) == MOVED) {
2298 if ((fk = f.key) instanceof TreeBin) {
2299 TreeBin t = (TreeBin)fk;
2300 t.acquire(0);
2301 try {
2302 if (tabAt(tab, i) == f) {
2303 for (Node p = t.first; p != null; p = p.next) {
2304 if (p.val != null) { // (currently always true)
2305 p.val = null;
2306 --delta;
2307 }
2308 }
2309 t.first = null;
2310 t.root = null;
2311 ++i;
2312 }
2313 } finally {
2314 t.release(0);
2315 }
2316 }
2317 else
2318 tab = (Node[])fk;
2319 }
2320 else if ((fh & LOCKED) != 0) {
2321 counter.add(delta); // opportunistically update count
2322 delta = 0L;
2323 f.tryAwaitLock(tab, i);
2324 }
2325 else if (f.casHash(fh, fh | LOCKED)) {
2326 try {
2327 if (tabAt(tab, i) == f) {
2328 for (Node e = f; e != null; e = e.next) {
2329 if (e.val != null) { // (currently always true)
2330 e.val = null;
2331 --delta;
2332 }
2333 }
2334 setTabAt(tab, i, null);
2335 ++i;
2336 }
2337 } finally {
2338 if (!f.casHash(fh | LOCKED, fh)) {
2339 f.hash = fh;
2340 synchronized (f) { f.notifyAll(); };
2341 }
2342 }
2343 }
2344 }
2345 if (delta != 0)
2346 counter.add(delta);
2347 }
2348
2349 /* ----------------Table Traversal -------------- */
2350
2351 /**
2352 * Encapsulates traversal for methods such as containsValue; also
2353 * serves as a base class for other iterators and bulk tasks.
2354 *
2355 * At each step, the iterator snapshots the key ("nextKey") and
2356 * value ("nextVal") of a valid node (i.e., one that, at point of
2357 * snapshot, has a non-null user value). Because val fields can
2358 * change (including to null, indicating deletion), field nextVal
2359 * might not be accurate at point of use, but still maintains the
2360 * weak consistency property of holding a value that was once
2361 * valid. To support iterator.remove, the nextKey field is not
2362 * updated (nulled out) when the iterator cannot advance.
2363 *
2364 * Internal traversals directly access these fields, as in:
2365 * {@code while (it.advance() != null) { process(it.nextKey); }}
2366 *
2367 * Exported iterators must track whether the iterator has advanced
2368 * (in hasNext vs next) (by setting/checking/nulling field
2369 * nextVal), and then extract key, value, or key-value pairs as
2370 * return values of next().
2371 *
2372 * The iterator visits once each still-valid node that was
2373 * reachable upon iterator construction. It might miss some that
2374 * were added to a bin after the bin was visited, which is OK wrt
2375 * consistency guarantees. Maintaining this property in the face
2376 * of possible ongoing resizes requires a fair amount of
2377 * bookkeeping state that is difficult to optimize away amidst
2378 * volatile accesses. Even so, traversal maintains reasonable
2379 * throughput.
2380 *
2381 * Normally, iteration proceeds bin-by-bin traversing lists.
2382 * However, if the table has been resized, then all future steps
2383 * must traverse both the bin at the current index as well as at
2384 * (index + baseSize); and so on for further resizings. To
2385 * paranoically cope with potential sharing by users of iterators
2386 * across threads, iteration terminates if a bounds checks fails
2387 * for a table read.
2388 *
2389 * This class extends CountedCompleter to streamline parallel
2390 * iteration in bulk operations. This adds only a few fields of
2391 * space overhead, which is small enough in cases where it is not
2392 * needed to not worry about it. Because CountedCompleter is
2393 * Serializable, but iterators need not be, we need to add warning
2394 * suppressions.
2395 */
2396 @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2397 final ConcurrentHashMap<K, V> map;
2398 Node next; // the next entry to use
2399 Object nextKey; // cached key field of next
2400 Object nextVal; // cached val field of next
2401 Node[] tab; // current table; updated if resized
2402 int index; // index of bin to use next
2403 int baseIndex; // current index of initial table
2404 int baseLimit; // index bound for initial table
2405 int baseSize; // initial table size
2406 int batch; // split control
2407
2408 /** Creates iterator for all entries in the table. */
2409 Traverser(ConcurrentHashMap<K, V> map) {
2410 this.map = map;
2411 }
2412
2413 /** Creates iterator for split() methods and task constructors */
2414 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2415 super(it);
2416 this.batch = batch;
2417 if ((this.map = map) != null && it != null) { // split parent
2418 Node[] t;
2419 if ((t = it.tab) == null &&
2420 (t = it.tab = map.table) != null)
2421 it.baseLimit = it.baseSize = t.length;
2422 this.tab = t;
2423 this.baseSize = it.baseSize;
2424 int hi = this.baseLimit = it.baseLimit;
2425 it.baseLimit = this.index = this.baseIndex =
2426 (hi + it.baseIndex + 1) >>> 1;
2427 }
2428 }
2429
2430 /**
2431 * Advances next; returns nextVal or null if terminated.
2432 * See above for explanation.
2433 */
2434 final Object advance() {
2435 Node e = next;
2436 Object ev = null;
2437 outer: do {
2438 if (e != null) // advance past used/skipped node
2439 e = e.next;
2440 while (e == null) { // get to next non-null bin
2441 ConcurrentHashMap<K, V> m;
2442 Node[] t; int b, i, n; Object ek; // checks must use locals
2443 if ((t = tab) != null)
2444 n = t.length;
2445 else if ((m = map) != null && (t = tab = m.table) != null)
2446 n = baseLimit = baseSize = t.length;
2447 else
2448 break outer;
2449 if ((b = baseIndex) >= baseLimit ||
2450 (i = index) < 0 || i >= n)
2451 break outer;
2452 if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2453 if ((ek = e.key) instanceof TreeBin)
2454 e = ((TreeBin)ek).first;
2455 else {
2456 tab = (Node[])ek;
2457 continue; // restarts due to null val
2458 }
2459 } // visit upper slots if present
2460 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2461 }
2462 nextKey = e.key;
2463 } while ((ev = e.val) == null); // skip deleted or special nodes
2464 next = e;
2465 return nextVal = ev;
2466 }
2467
2468 public final void remove() {
2469 Object k = nextKey;
2470 if (k == null && (advance() == null || (k = nextKey) == null))
2471 throw new IllegalStateException();
2472 map.internalReplace(k, null, null);
2473 }
2474
2475 public final boolean hasNext() {
2476 return nextVal != null || advance() != null;
2477 }
2478
2479 public final boolean hasMoreElements() { return hasNext(); }
2480
2481 public void compute() { } // default no-op CountedCompleter body
2482
2483 /**
2484 * Returns a batch value > 0 if this task should (and must) be
2485 * split, if so, adding to pending count, and in any case
2486 * updating batch value. The initial batch value is approx
2487 * exp2 of the number of times (minus one) to split task by
2488 * two before executing leaf action. This value is faster to
2489 * compute and more convenient to use as a guide to splitting
2490 * than is the depth, since it is used while dividing by two
2491 * anyway.
2492 */
2493 final int preSplit() {
2494 ConcurrentHashMap<K, V> m; int b; Node[] t; ForkJoinPool pool;
2495 if ((b = batch) < 0 && (m = map) != null) { // force initialization
2496 if ((t = tab) == null && (t = tab = m.table) != null)
2497 baseLimit = baseSize = t.length;
2498 if (t != null) {
2499 long n = m.counter.sum();
2500 int par = ((pool = getPool()) == null) ?
2501 ForkJoinPool.getCommonPoolParallelism() :
2502 pool.getParallelism();
2503 int sp = par << 3; // slack of 8
2504 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2505 }
2506 }
2507 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2508 if ((batch = b) > 0)
2509 addToPendingCount(1);
2510 return b;
2511 }
2512
2513 }
2514
2515 /* ---------------- Public operations -------------- */
2516
2517 /**
2518 * Creates a new, empty map with the default initial table size (16).
2519 */
2520 public ConcurrentHashMap() {
2521 this.counter = new LongAdder();
2522 }
2523
2524 /**
2525 * Creates a new, empty map with an initial table size
2526 * accommodating the specified number of elements without the need
2527 * to dynamically resize.
2528 *
2529 * @param initialCapacity The implementation performs internal
2530 * sizing to accommodate this many elements.
2531 * @throws IllegalArgumentException if the initial capacity of
2532 * elements is negative
2533 */
2534 public ConcurrentHashMap(int initialCapacity) {
2535 if (initialCapacity < 0)
2536 throw new IllegalArgumentException();
2537 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2538 MAXIMUM_CAPACITY :
2539 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2540 this.counter = new LongAdder();
2541 this.sizeCtl = cap;
2542 }
2543
2544 /**
2545 * Creates a new map with the same mappings as the given map.
2546 *
2547 * @param m the map
2548 */
2549 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2550 this.counter = new LongAdder();
2551 this.sizeCtl = DEFAULT_CAPACITY;
2552 internalPutAll(m);
2553 }
2554
2555 /**
2556 * Creates a new, empty map with an initial table size based on
2557 * the given number of elements ({@code initialCapacity}) and
2558 * initial table density ({@code loadFactor}).
2559 *
2560 * @param initialCapacity the initial capacity. The implementation
2561 * performs internal sizing to accommodate this many elements,
2562 * given the specified load factor.
2563 * @param loadFactor the load factor (table density) for
2564 * establishing the initial table size
2565 * @throws IllegalArgumentException if the initial capacity of
2566 * elements is negative or the load factor is nonpositive
2567 *
2568 * @since 1.6
2569 */
2570 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2571 this(initialCapacity, loadFactor, 1);
2572 }
2573
2574 /**
2575 * Creates a new, empty map with an initial table size based on
2576 * the given number of elements ({@code initialCapacity}), table
2577 * density ({@code loadFactor}), and number of concurrently
2578 * updating threads ({@code concurrencyLevel}).
2579 *
2580 * @param initialCapacity the initial capacity. The implementation
2581 * performs internal sizing to accommodate this many elements,
2582 * given the specified load factor.
2583 * @param loadFactor the load factor (table density) for
2584 * establishing the initial table size
2585 * @param concurrencyLevel the estimated number of concurrently
2586 * updating threads. The implementation may use this value as
2587 * a sizing hint.
2588 * @throws IllegalArgumentException if the initial capacity is
2589 * negative or the load factor or concurrencyLevel are
2590 * nonpositive
2591 */
2592 public ConcurrentHashMap(int initialCapacity,
2593 float loadFactor, int concurrencyLevel) {
2594 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2595 throw new IllegalArgumentException();
2596 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2597 initialCapacity = concurrencyLevel; // as estimated threads
2598 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2599 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2600 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2601 this.counter = new LongAdder();
2602 this.sizeCtl = cap;
2603 }
2604
2605 /**
2606 * Creates a new {@link Set} backed by a ConcurrentHashMap
2607 * from the given type to {@code Boolean.TRUE}.
2608 *
2609 * @return the new set
2610 */
2611 public static <K> KeySetView<K,Boolean> newKeySet() {
2612 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2613 Boolean.TRUE);
2614 }
2615
2616 /**
2617 * Creates a new {@link Set} backed by a ConcurrentHashMap
2618 * from the given type to {@code Boolean.TRUE}.
2619 *
2620 * @param initialCapacity The implementation performs internal
2621 * sizing to accommodate this many elements.
2622 * @throws IllegalArgumentException if the initial capacity of
2623 * elements is negative
2624 * @return the new set
2625 */
2626 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2627 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(initialCapacity),
2628 Boolean.TRUE);
2629 }
2630
2631 /**
2632 * {@inheritDoc}
2633 */
2634 public boolean isEmpty() {
2635 return counter.sum() <= 0L; // ignore transient negative values
2636 }
2637
2638 /**
2639 * {@inheritDoc}
2640 */
2641 public int size() {
2642 long n = counter.sum();
2643 return ((n < 0L) ? 0 :
2644 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2645 (int)n);
2646 }
2647
2648 /**
2649 * Returns the number of mappings. This method should be used
2650 * instead of {@link #size} because a ConcurrentHashMap may
2651 * contain more mappings than can be represented as an int. The
2652 * value returned is an estimate; the actual count may differ if
2653 * there are concurrent insertions or removals.
2654 *
2655 * @return the number of mappings
2656 */
2657 public long mappingCount() {
2658 long n = counter.sum();
2659 return (n < 0L) ? 0L : n; // ignore transient negative values
2660 }
2661
2662 /**
2663 * Returns the value to which the specified key is mapped,
2664 * or {@code null} if this map contains no mapping for the key.
2665 *
2666 * <p>More formally, if this map contains a mapping from a key
2667 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2668 * then this method returns {@code v}; otherwise it returns
2669 * {@code null}. (There can be at most one such mapping.)
2670 *
2671 * @throws NullPointerException if the specified key is null
2672 */
2673 @SuppressWarnings("unchecked") public V get(Object key) {
2674 if (key == null)
2675 throw new NullPointerException();
2676 return (V)internalGet(key);
2677 }
2678
2679 /**
2680 * Returns the value to which the specified key is mapped,
2681 * or the given defaultValue if this map contains no mapping for the key.
2682 *
2683 * @param key the key
2684 * @param defaultValue the value to return if this map contains
2685 * no mapping for the given key
2686 * @return the mapping for the key, if present; else the defaultValue
2687 * @throws NullPointerException if the specified key is null
2688 */
2689 @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2690 if (key == null)
2691 throw new NullPointerException();
2692 V v = (V) internalGet(key);
2693 return v == null ? defaultValue : v;
2694 }
2695
2696 /**
2697 * Tests if the specified object is a key in this table.
2698 *
2699 * @param key possible key
2700 * @return {@code true} if and only if the specified object
2701 * is a key in this table, as determined by the
2702 * {@code equals} method; {@code false} otherwise
2703 * @throws NullPointerException if the specified key is null
2704 */
2705 public boolean containsKey(Object key) {
2706 if (key == null)
2707 throw new NullPointerException();
2708 return internalGet(key) != null;
2709 }
2710
2711 /**
2712 * Returns {@code true} if this map maps one or more keys to the
2713 * specified value. Note: This method may require a full traversal
2714 * of the map, and is much slower than method {@code containsKey}.
2715 *
2716 * @param value value whose presence in this map is to be tested
2717 * @return {@code true} if this map maps one or more keys to the
2718 * specified value
2719 * @throws NullPointerException if the specified value is null
2720 */
2721 public boolean containsValue(Object value) {
2722 if (value == null)
2723 throw new NullPointerException();
2724 Object v;
2725 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2726 while ((v = it.advance()) != null) {
2727 if (v == value || value.equals(v))
2728 return true;
2729 }
2730 return false;
2731 }
2732
2733 /**
2734 * Legacy method testing if some key maps into the specified value
2735 * in this table. This method is identical in functionality to
2736 * {@link #containsValue}, and exists solely to ensure
2737 * full compatibility with class {@link java.util.Hashtable},
2738 * which supported this method prior to introduction of the
2739 * Java Collections framework.
2740 *
2741 * @param value a value to search for
2742 * @return {@code true} if and only if some key maps to the
2743 * {@code value} argument in this table as
2744 * determined by the {@code equals} method;
2745 * {@code false} otherwise
2746 * @throws NullPointerException if the specified value is null
2747 */
2748 public boolean contains(Object value) {
2749 return containsValue(value);
2750 }
2751
2752 /**
2753 * Maps the specified key to the specified value in this table.
2754 * Neither the key nor the value can be null.
2755 *
2756 * <p>The value can be retrieved by calling the {@code get} method
2757 * with a key that is equal to the original key.
2758 *
2759 * @param key key with which the specified value is to be associated
2760 * @param value value to be associated with the specified key
2761 * @return the previous value associated with {@code key}, or
2762 * {@code null} if there was no mapping for {@code key}
2763 * @throws NullPointerException if the specified key or value is null
2764 */
2765 @SuppressWarnings("unchecked") public V put(K key, V value) {
2766 if (key == null || value == null)
2767 throw new NullPointerException();
2768 return (V)internalPut(key, value);
2769 }
2770
2771 /**
2772 * {@inheritDoc}
2773 *
2774 * @return the previous value associated with the specified key,
2775 * or {@code null} if there was no mapping for the key
2776 * @throws NullPointerException if the specified key or value is null
2777 */
2778 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2779 if (key == null || value == null)
2780 throw new NullPointerException();
2781 return (V)internalPutIfAbsent(key, value);
2782 }
2783
2784 /**
2785 * Copies all of the mappings from the specified map to this one.
2786 * These mappings replace any mappings that this map had for any of the
2787 * keys currently in the specified map.
2788 *
2789 * @param m mappings to be stored in this map
2790 */
2791 public void putAll(Map<? extends K, ? extends V> m) {
2792 internalPutAll(m);
2793 }
2794
2795 /**
2796 * If the specified key is not already associated with a value,
2797 * computes its value using the given mappingFunction and enters
2798 * it into the map unless null. This is equivalent to
2799 * <pre> {@code
2800 * if (map.containsKey(key))
2801 * return map.get(key);
2802 * value = mappingFunction.apply(key);
2803 * if (value != null)
2804 * map.put(key, value);
2805 * return value;}</pre>
2806 *
2807 * except that the action is performed atomically. If the
2808 * function returns {@code null} no mapping is recorded. If the
2809 * function itself throws an (unchecked) exception, the exception
2810 * is rethrown to its caller, and no mapping is recorded. Some
2811 * attempted update operations on this map by other threads may be
2812 * blocked while computation is in progress, so the computation
2813 * should be short and simple, and must not attempt to update any
2814 * other mappings of this Map. The most appropriate usage is to
2815 * construct a new object serving as an initial mapped value, or
2816 * memoized result, as in:
2817 *
2818 * <pre> {@code
2819 * map.computeIfAbsent(key, new Fun<K, V>() {
2820 * public V map(K k) { return new Value(f(k)); }});}</pre>
2821 *
2822 * @param key key with which the specified value is to be associated
2823 * @param mappingFunction the function to compute a value
2824 * @return the current (existing or computed) value associated with
2825 * the specified key, or null if the computed value is null
2826 * @throws NullPointerException if the specified key or mappingFunction
2827 * is null
2828 * @throws IllegalStateException if the computation detectably
2829 * attempts a recursive update to this map that would
2830 * otherwise never complete
2831 * @throws RuntimeException or Error if the mappingFunction does so,
2832 * in which case the mapping is left unestablished
2833 */
2834 @SuppressWarnings("unchecked") public V computeIfAbsent
2835 (K key, Fun<? super K, ? extends V> mappingFunction) {
2836 if (key == null || mappingFunction == null)
2837 throw new NullPointerException();
2838 return (V)internalComputeIfAbsent(key, mappingFunction);
2839 }
2840
2841 /**
2842 * If the given key is present, computes a new mapping value given a key and
2843 * its current mapped value. This is equivalent to
2844 * <pre> {@code
2845 * if (map.containsKey(key)) {
2846 * value = remappingFunction.apply(key, map.get(key));
2847 * if (value != null)
2848 * map.put(key, value);
2849 * else
2850 * map.remove(key);
2851 * }
2852 * }</pre>
2853 *
2854 * except that the action is performed atomically. If the
2855 * function returns {@code null}, the mapping is removed. If the
2856 * function itself throws an (unchecked) exception, the exception
2857 * is rethrown to its caller, and the current mapping is left
2858 * unchanged. Some attempted update operations on this map by
2859 * other threads may be blocked while computation is in progress,
2860 * so the computation should be short and simple, and must not
2861 * attempt to update any other mappings of this Map. For example,
2862 * to either create or append new messages to a value mapping:
2863 *
2864 * @param key key with which the specified value is to be associated
2865 * @param remappingFunction the function to compute a value
2866 * @return the new value associated with the specified key, or null if none
2867 * @throws NullPointerException if the specified key or remappingFunction
2868 * is null
2869 * @throws IllegalStateException if the computation detectably
2870 * attempts a recursive update to this map that would
2871 * otherwise never complete
2872 * @throws RuntimeException or Error if the remappingFunction does so,
2873 * in which case the mapping is unchanged
2874 */
2875 @SuppressWarnings("unchecked") public V computeIfPresent
2876 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2877 if (key == null || remappingFunction == null)
2878 throw new NullPointerException();
2879 return (V)internalCompute(key, true, remappingFunction);
2880 }
2881
2882 /**
2883 * Computes a new mapping value given a key and
2884 * its current mapped value (or {@code null} if there is no current
2885 * mapping). This is equivalent to
2886 * <pre> {@code
2887 * value = remappingFunction.apply(key, map.get(key));
2888 * if (value != null)
2889 * map.put(key, value);
2890 * else
2891 * map.remove(key);
2892 * }</pre>
2893 *
2894 * except that the action is performed atomically. If the
2895 * function returns {@code null}, the mapping is removed. If the
2896 * function itself throws an (unchecked) exception, the exception
2897 * is rethrown to its caller, and the current mapping is left
2898 * unchanged. Some attempted update operations on this map by
2899 * other threads may be blocked while computation is in progress,
2900 * so the computation should be short and simple, and must not
2901 * attempt to update any other mappings of this Map. For example,
2902 * to either create or append new messages to a value mapping:
2903 *
2904 * <pre> {@code
2905 * Map<Key, String> map = ...;
2906 * final String msg = ...;
2907 * map.compute(key, new BiFun<Key, String, String>() {
2908 * public String apply(Key k, String v) {
2909 * return (v == null) ? msg : v + msg;});}}</pre>
2910 *
2911 * @param key key with which the specified value is to be associated
2912 * @param remappingFunction the function to compute a value
2913 * @return the new value associated with the specified key, or null if none
2914 * @throws NullPointerException if the specified key or remappingFunction
2915 * is null
2916 * @throws IllegalStateException if the computation detectably
2917 * attempts a recursive update to this map that would
2918 * otherwise never complete
2919 * @throws RuntimeException or Error if the remappingFunction does so,
2920 * in which case the mapping is unchanged
2921 */
2922 @SuppressWarnings("unchecked") public V compute
2923 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2924 if (key == null || remappingFunction == null)
2925 throw new NullPointerException();
2926 return (V)internalCompute(key, false, remappingFunction);
2927 }
2928
2929 /**
2930 * If the specified key is not already associated
2931 * with a value, associate it with the given value.
2932 * Otherwise, replace the value with the results of
2933 * the given remapping function. This is equivalent to:
2934 * <pre> {@code
2935 * if (!map.containsKey(key))
2936 * map.put(value);
2937 * else {
2938 * newValue = remappingFunction.apply(map.get(key), value);
2939 * if (value != null)
2940 * map.put(key, value);
2941 * else
2942 * map.remove(key);
2943 * }
2944 * }</pre>
2945 * except that the action is performed atomically. If the
2946 * function returns {@code null}, the mapping is removed. If the
2947 * function itself throws an (unchecked) exception, the exception
2948 * is rethrown to its caller, and the current mapping is left
2949 * unchanged. Some attempted update operations on this map by
2950 * other threads may be blocked while computation is in progress,
2951 * so the computation should be short and simple, and must not
2952 * attempt to update any other mappings of this Map.
2953 */
2954 @SuppressWarnings("unchecked") public V merge
2955 (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2956 if (key == null || value == null || remappingFunction == null)
2957 throw new NullPointerException();
2958 return (V)internalMerge(key, value, remappingFunction);
2959 }
2960
2961 /**
2962 * Removes the key (and its corresponding value) from this map.
2963 * This method does nothing if the key is not in the map.
2964 *
2965 * @param key the key that needs to be removed
2966 * @return the previous value associated with {@code key}, or
2967 * {@code null} if there was no mapping for {@code key}
2968 * @throws NullPointerException if the specified key is null
2969 */
2970 @SuppressWarnings("unchecked") public V remove(Object key) {
2971 if (key == null)
2972 throw new NullPointerException();
2973 return (V)internalReplace(key, null, null);
2974 }
2975
2976 /**
2977 * {@inheritDoc}
2978 *
2979 * @throws NullPointerException if the specified key is null
2980 */
2981 public boolean remove(Object key, Object value) {
2982 if (key == null)
2983 throw new NullPointerException();
2984 if (value == null)
2985 return false;
2986 return internalReplace(key, null, value) != null;
2987 }
2988
2989 /**
2990 * {@inheritDoc}
2991 *
2992 * @throws NullPointerException if any of the arguments are null
2993 */
2994 public boolean replace(K key, V oldValue, V newValue) {
2995 if (key == null || oldValue == null || newValue == null)
2996 throw new NullPointerException();
2997 return internalReplace(key, newValue, oldValue) != null;
2998 }
2999
3000 /**
3001 * {@inheritDoc}
3002 *
3003 * @return the previous value associated with the specified key,
3004 * or {@code null} if there was no mapping for the key
3005 * @throws NullPointerException if the specified key or value is null
3006 */
3007 @SuppressWarnings("unchecked") public V replace(K key, V value) {
3008 if (key == null || value == null)
3009 throw new NullPointerException();
3010 return (V)internalReplace(key, value, null);
3011 }
3012
3013 /**
3014 * Removes all of the mappings from this map.
3015 */
3016 public void clear() {
3017 internalClear();
3018 }
3019
3020 /**
3021 * Returns a {@link Set} view of the keys contained in this map.
3022 * The set is backed by the map, so changes to the map are
3023 * reflected in the set, and vice-versa.
3024 *
3025 * @return the set view
3026 */
3027 public KeySetView<K,V> keySet() {
3028 KeySetView<K,V> ks = keySet;
3029 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3030 }
3031
3032 /**
3033 * Returns a {@link Set} view of the keys in this map, using the
3034 * given common mapped value for any additions (i.e., {@link
3035 * Collection#add} and {@link Collection#addAll}). This is of
3036 * course only appropriate if it is acceptable to use the same
3037 * value for all additions from this view.
3038 *
3039 * @param mappedValue the mapped value to use for any
3040 * additions.
3041 * @return the set view
3042 * @throws NullPointerException if the mappedValue is null
3043 */
3044 public KeySetView<K,V> keySet(V mappedValue) {
3045 if (mappedValue == null)
3046 throw new NullPointerException();
3047 return new KeySetView<K,V>(this, mappedValue);
3048 }
3049
3050 /**
3051 * Returns a {@link Collection} view of the values contained in this map.
3052 * The collection is backed by the map, so changes to the map are
3053 * reflected in the collection, and vice-versa.
3054 */
3055 public ValuesView<K,V> values() {
3056 ValuesView<K,V> vs = values;
3057 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3058 }
3059
3060 /**
3061 * Returns a {@link Set} view of the mappings contained in this map.
3062 * The set is backed by the map, so changes to the map are
3063 * reflected in the set, and vice-versa. The set supports element
3064 * removal, which removes the corresponding mapping from the map,
3065 * via the {@code Iterator.remove}, {@code Set.remove},
3066 * {@code removeAll}, {@code retainAll}, and {@code clear}
3067 * operations. It does not support the {@code add} or
3068 * {@code addAll} operations.
3069 *
3070 * <p>The view's {@code iterator} is a "weakly consistent" iterator
3071 * that will never throw {@link ConcurrentModificationException},
3072 * and guarantees to traverse elements as they existed upon
3073 * construction of the iterator, and may (but is not guaranteed to)
3074 * reflect any modifications subsequent to construction.
3075 */
3076 public Set<Map.Entry<K,V>> entrySet() {
3077 EntrySetView<K,V> es = entrySet;
3078 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3079 }
3080
3081 /**
3082 * Returns an enumeration of the keys in this table.
3083 *
3084 * @return an enumeration of the keys in this table
3085 * @see #keySet()
3086 */
3087 public Enumeration<K> keys() {
3088 return new KeyIterator<K,V>(this);
3089 }
3090
3091 /**
3092 * Returns an enumeration of the values in this table.
3093 *
3094 * @return an enumeration of the values in this table
3095 * @see #values()
3096 */
3097 public Enumeration<V> elements() {
3098 return new ValueIterator<K,V>(this);
3099 }
3100
3101 /**
3102 * Returns a partitionable iterator of the keys in this map.
3103 *
3104 * @return a partitionable iterator of the keys in this map
3105 */
3106 public Spliterator<K> keySpliterator() {
3107 return new KeyIterator<K,V>(this);
3108 }
3109
3110 /**
3111 * Returns a partitionable iterator of the values in this map.
3112 *
3113 * @return a partitionable iterator of the values in this map
3114 */
3115 public Spliterator<V> valueSpliterator() {
3116 return new ValueIterator<K,V>(this);
3117 }
3118
3119 /**
3120 * Returns a partitionable iterator of the entries in this map.
3121 *
3122 * @return a partitionable iterator of the entries in this map
3123 */
3124 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3125 return new EntryIterator<K,V>(this);
3126 }
3127
3128 /**
3129 * Returns the hash code value for this {@link Map}, i.e.,
3130 * the sum of, for each key-value pair in the map,
3131 * {@code key.hashCode() ^ value.hashCode()}.
3132 *
3133 * @return the hash code value for this map
3134 */
3135 public int hashCode() {
3136 int h = 0;
3137 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3138 Object v;
3139 while ((v = it.advance()) != null) {
3140 h += it.nextKey.hashCode() ^ v.hashCode();
3141 }
3142 return h;
3143 }
3144
3145 /**
3146 * Returns a string representation of this map. The string
3147 * representation consists of a list of key-value mappings (in no
3148 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3149 * mappings are separated by the characters {@code ", "} (comma
3150 * and space). Each key-value mapping is rendered as the key
3151 * followed by an equals sign ("{@code =}") followed by the
3152 * associated value.
3153 *
3154 * @return a string representation of this map
3155 */
3156 public String toString() {
3157 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3158 StringBuilder sb = new StringBuilder();
3159 sb.append('{');
3160 Object v;
3161 if ((v = it.advance()) != null) {
3162 for (;;) {
3163 Object k = it.nextKey;
3164 sb.append(k == this ? "(this Map)" : k);
3165 sb.append('=');
3166 sb.append(v == this ? "(this Map)" : v);
3167 if ((v = it.advance()) == null)
3168 break;
3169 sb.append(',').append(' ');
3170 }
3171 }
3172 return sb.append('}').toString();
3173 }
3174
3175 /**
3176 * Compares the specified object with this map for equality.
3177 * Returns {@code true} if the given object is a map with the same
3178 * mappings as this map. This operation may return misleading
3179 * results if either map is concurrently modified during execution
3180 * of this method.
3181 *
3182 * @param o object to be compared for equality with this map
3183 * @return {@code true} if the specified object is equal to this map
3184 */
3185 public boolean equals(Object o) {
3186 if (o != this) {
3187 if (!(o instanceof Map))
3188 return false;
3189 Map<?,?> m = (Map<?,?>) o;
3190 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3191 Object val;
3192 while ((val = it.advance()) != null) {
3193 Object v = m.get(it.nextKey);
3194 if (v == null || (v != val && !v.equals(val)))
3195 return false;
3196 }
3197 for (Map.Entry<?,?> e : m.entrySet()) {
3198 Object mk, mv, v;
3199 if ((mk = e.getKey()) == null ||
3200 (mv = e.getValue()) == null ||
3201 (v = internalGet(mk)) == null ||
3202 (mv != v && !mv.equals(v)))
3203 return false;
3204 }
3205 }
3206 return true;
3207 }
3208
3209 /* ----------------Iterators -------------- */
3210
3211 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3212 implements Spliterator<K>, Enumeration<K> {
3213 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3214 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3215 super(map, it, -1);
3216 }
3217 public KeyIterator<K,V> split() {
3218 if (nextKey != null)
3219 throw new IllegalStateException();
3220 return new KeyIterator<K,V>(map, this);
3221 }
3222 @SuppressWarnings("unchecked") public final K next() {
3223 if (nextVal == null && advance() == null)
3224 throw new NoSuchElementException();
3225 Object k = nextKey;
3226 nextVal = null;
3227 return (K) k;
3228 }
3229
3230 public final K nextElement() { return next(); }
3231 }
3232
3233 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3234 implements Spliterator<V>, Enumeration<V> {
3235 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3236 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3237 super(map, it, -1);
3238 }
3239 public ValueIterator<K,V> split() {
3240 if (nextKey != null)
3241 throw new IllegalStateException();
3242 return new ValueIterator<K,V>(map, this);
3243 }
3244
3245 @SuppressWarnings("unchecked") public final V next() {
3246 Object v;
3247 if ((v = nextVal) == null && (v = advance()) == null)
3248 throw new NoSuchElementException();
3249 nextVal = null;
3250 return (V) v;
3251 }
3252
3253 public final V nextElement() { return next(); }
3254 }
3255
3256 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3257 implements Spliterator<Map.Entry<K,V>> {
3258 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3259 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3260 super(map, it, -1);
3261 }
3262 public EntryIterator<K,V> split() {
3263 if (nextKey != null)
3264 throw new IllegalStateException();
3265 return new EntryIterator<K,V>(map, this);
3266 }
3267
3268 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3269 Object v;
3270 if ((v = nextVal) == null && (v = advance()) == null)
3271 throw new NoSuchElementException();
3272 Object k = nextKey;
3273 nextVal = null;
3274 return new MapEntry<K,V>((K)k, (V)v, map);
3275 }
3276 }
3277
3278 /**
3279 * Exported Entry for iterators
3280 */
3281 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3282 final K key; // non-null
3283 V val; // non-null
3284 final ConcurrentHashMap<K, V> map;
3285 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3286 this.key = key;
3287 this.val = val;
3288 this.map = map;
3289 }
3290 public final K getKey() { return key; }
3291 public final V getValue() { return val; }
3292 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3293 public final String toString(){ return key + "=" + val; }
3294
3295 public final boolean equals(Object o) {
3296 Object k, v; Map.Entry<?,?> e;
3297 return ((o instanceof Map.Entry) &&
3298 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3299 (v = e.getValue()) != null &&
3300 (k == key || k.equals(key)) &&
3301 (v == val || v.equals(val)));
3302 }
3303
3304 /**
3305 * Sets our entry's value and writes through to the map. The
3306 * value to return is somewhat arbitrary here. Since we do not
3307 * necessarily track asynchronous changes, the most recent
3308 * "previous" value could be different from what we return (or
3309 * could even have been removed in which case the put will
3310 * re-establish). We do not and cannot guarantee more.
3311 */
3312 public final V setValue(V value) {
3313 if (value == null) throw new NullPointerException();
3314 V v = val;
3315 val = value;
3316 map.put(key, value);
3317 return v;
3318 }
3319 }
3320
3321 /**
3322 * Returns exportable snapshot entry for the given key and value
3323 * when write-through can't or shouldn't be used.
3324 */
3325 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3326 return new AbstractMap.SimpleEntry<K,V>(k, v);
3327 }
3328
3329 /* ---------------- Serialization Support -------------- */
3330
3331 /**
3332 * Stripped-down version of helper class used in previous version,
3333 * declared for the sake of serialization compatibility
3334 */
3335 static class Segment<K,V> implements Serializable {
3336 private static final long serialVersionUID = 2249069246763182397L;
3337 final float loadFactor;
3338 Segment(float lf) { this.loadFactor = lf; }
3339 }
3340
3341 /**
3342 * Saves the state of the {@code ConcurrentHashMap} instance to a
3343 * stream (i.e., serializes it).
3344 * @param s the stream
3345 * @serialData
3346 * the key (Object) and value (Object)
3347 * for each key-value mapping, followed by a null pair.
3348 * The key-value mappings are emitted in no particular order.
3349 */
3350 @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3351 throws java.io.IOException {
3352 if (segments == null) { // for serialization compatibility
3353 segments = (Segment<K,V>[])
3354 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3355 for (int i = 0; i < segments.length; ++i)
3356 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3357 }
3358 s.defaultWriteObject();
3359 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3360 Object v;
3361 while ((v = it.advance()) != null) {
3362 s.writeObject(it.nextKey);
3363 s.writeObject(v);
3364 }
3365 s.writeObject(null);
3366 s.writeObject(null);
3367 segments = null; // throw away
3368 }
3369
3370 /**
3371 * Reconstitutes the instance from a stream (that is, deserializes it).
3372 * @param s the stream
3373 */
3374 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3375 throws java.io.IOException, ClassNotFoundException {
3376 s.defaultReadObject();
3377 this.segments = null; // unneeded
3378 // initialize transient final field
3379 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3380
3381 // Create all nodes, then place in table once size is known
3382 long size = 0L;
3383 Node p = null;
3384 for (;;) {
3385 K k = (K) s.readObject();
3386 V v = (V) s.readObject();
3387 if (k != null && v != null) {
3388 int h = spread(k.hashCode());
3389 p = new Node(h, k, v, p);
3390 ++size;
3391 }
3392 else
3393 break;
3394 }
3395 if (p != null) {
3396 boolean init = false;
3397 int n;
3398 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3399 n = MAXIMUM_CAPACITY;
3400 else {
3401 int sz = (int)size;
3402 n = tableSizeFor(sz + (sz >>> 1) + 1);
3403 }
3404 int sc = sizeCtl;
3405 boolean collide = false;
3406 if (n > sc &&
3407 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3408 try {
3409 if (table == null) {
3410 init = true;
3411 Node[] tab = new Node[n];
3412 int mask = n - 1;
3413 while (p != null) {
3414 int j = p.hash & mask;
3415 Node next = p.next;
3416 Node q = p.next = tabAt(tab, j);
3417 setTabAt(tab, j, p);
3418 if (!collide && q != null && q.hash == p.hash)
3419 collide = true;
3420 p = next;
3421 }
3422 table = tab;
3423 counter.add(size);
3424 sc = n - (n >>> 2);
3425 }
3426 } finally {
3427 sizeCtl = sc;
3428 }
3429 if (collide) { // rescan and convert to TreeBins
3430 Node[] tab = table;
3431 for (int i = 0; i < tab.length; ++i) {
3432 int c = 0;
3433 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3434 if (++c > TREE_THRESHOLD &&
3435 (e.key instanceof Comparable)) {
3436 replaceWithTreeBin(tab, i, e.key);
3437 break;
3438 }
3439 }
3440 }
3441 }
3442 }
3443 if (!init) { // Can only happen if unsafely published.
3444 while (p != null) {
3445 internalPut(p.key, p.val);
3446 p = p.next;
3447 }
3448 }
3449 }
3450 }
3451
3452
3453 // -------------------------------------------------------
3454
3455 // Sams
3456 /** Interface describing a void action of one argument */
3457 public interface Action<A> { void apply(A a); }
3458 /** Interface describing a void action of two arguments */
3459 public interface BiAction<A,B> { void apply(A a, B b); }
3460 /** Interface describing a function of one argument */
3461 public interface Fun<A,T> { T apply(A a); }
3462 /** Interface describing a function of two arguments */
3463 public interface BiFun<A,B,T> { T apply(A a, B b); }
3464 /** Interface describing a function of no arguments */
3465 public interface Generator<T> { T apply(); }
3466 /** Interface describing a function mapping its argument to a double */
3467 public interface ObjectToDouble<A> { double apply(A a); }
3468 /** Interface describing a function mapping its argument to a long */
3469 public interface ObjectToLong<A> { long apply(A a); }
3470 /** Interface describing a function mapping its argument to an int */
3471 public interface ObjectToInt<A> {int apply(A a); }
3472 /** Interface describing a function mapping two arguments to a double */
3473 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3474 /** Interface describing a function mapping two arguments to a long */
3475 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3476 /** Interface describing a function mapping two arguments to an int */
3477 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3478 /** Interface describing a function mapping a double to a double */
3479 public interface DoubleToDouble { double apply(double a); }
3480 /** Interface describing a function mapping a long to a long */
3481 public interface LongToLong { long apply(long a); }
3482 /** Interface describing a function mapping an int to an int */
3483 public interface IntToInt { int apply(int a); }
3484 /** Interface describing a function mapping two doubles to a double */
3485 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3486 /** Interface describing a function mapping two longs to a long */
3487 public interface LongByLongToLong { long apply(long a, long b); }
3488 /** Interface describing a function mapping two ints to an int */
3489 public interface IntByIntToInt { int apply(int a, int b); }
3490
3491
3492 // -------------------------------------------------------
3493
3494 /**
3495 * Performs the given action for each (key, value).
3496 *
3497 * @param action the action
3498 */
3499 public void forEach(BiAction<K,V> action) {
3500 ForkJoinTasks.forEach
3501 (this, action).invoke();
3502 }
3503
3504 /**
3505 * Performs the given action for each non-null transformation
3506 * of each (key, value).
3507 *
3508 * @param transformer a function returning the transformation
3509 * for an element, or null of there is no transformation (in
3510 * which case the action is not applied).
3511 * @param action the action
3512 */
3513 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3514 Action<U> action) {
3515 ForkJoinTasks.forEach
3516 (this, transformer, action).invoke();
3517 }
3518
3519 /**
3520 * Returns a non-null result from applying the given search
3521 * function on each (key, value), or null if none. Upon
3522 * success, further element processing is suppressed and the
3523 * results of any other parallel invocations of the search
3524 * function are ignored.
3525 *
3526 * @param searchFunction a function returning a non-null
3527 * result on success, else null
3528 * @return a non-null result from applying the given search
3529 * function on each (key, value), or null if none
3530 */
3531 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3532 return ForkJoinTasks.search
3533 (this, searchFunction).invoke();
3534 }
3535
3536 /**
3537 * Returns the result of accumulating the given transformation
3538 * of all (key, value) pairs using the given reducer to
3539 * combine values, or null if none.
3540 *
3541 * @param transformer a function returning the transformation
3542 * for an element, or null of there is no transformation (in
3543 * which case it is not combined).
3544 * @param reducer a commutative associative combining function
3545 * @return the result of accumulating the given transformation
3546 * of all (key, value) pairs
3547 */
3548 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3549 BiFun<? super U, ? super U, ? extends U> reducer) {
3550 return ForkJoinTasks.reduce
3551 (this, transformer, reducer).invoke();
3552 }
3553
3554 /**
3555 * Returns the result of accumulating the given transformation
3556 * of all (key, value) pairs using the given reducer to
3557 * combine values, and the given basis as an identity value.
3558 *
3559 * @param transformer a function returning the transformation
3560 * for an element
3561 * @param basis the identity (initial default value) for the reduction
3562 * @param reducer a commutative associative combining function
3563 * @return the result of accumulating the given transformation
3564 * of all (key, value) pairs
3565 */
3566 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3567 double basis,
3568 DoubleByDoubleToDouble reducer) {
3569 return ForkJoinTasks.reduceToDouble
3570 (this, transformer, basis, reducer).invoke();
3571 }
3572
3573 /**
3574 * Returns the result of accumulating the given transformation
3575 * of all (key, value) pairs using the given reducer to
3576 * combine values, and the given basis as an identity value.
3577 *
3578 * @param transformer a function returning the transformation
3579 * for an element
3580 * @param basis the identity (initial default value) for the reduction
3581 * @param reducer a commutative associative combining function
3582 * @return the result of accumulating the given transformation
3583 * of all (key, value) pairs
3584 */
3585 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3586 long basis,
3587 LongByLongToLong reducer) {
3588 return ForkJoinTasks.reduceToLong
3589 (this, transformer, basis, reducer).invoke();
3590 }
3591
3592 /**
3593 * Returns the result of accumulating the given transformation
3594 * of all (key, value) pairs using the given reducer to
3595 * combine values, and the given basis as an identity value.
3596 *
3597 * @param transformer a function returning the transformation
3598 * for an element
3599 * @param basis the identity (initial default value) for the reduction
3600 * @param reducer a commutative associative combining function
3601 * @return the result of accumulating the given transformation
3602 * of all (key, value) pairs
3603 */
3604 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3605 int basis,
3606 IntByIntToInt reducer) {
3607 return ForkJoinTasks.reduceToInt
3608 (this, transformer, basis, reducer).invoke();
3609 }
3610
3611 /**
3612 * Performs the given action for each key.
3613 *
3614 * @param action the action
3615 */
3616 public void forEachKey(Action<K> action) {
3617 ForkJoinTasks.forEachKey
3618 (this, action).invoke();
3619 }
3620
3621 /**
3622 * Performs the given action for each non-null transformation
3623 * of each key.
3624 *
3625 * @param transformer a function returning the transformation
3626 * for an element, or null of there is no transformation (in
3627 * which case the action is not applied).
3628 * @param action the action
3629 */
3630 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3631 Action<U> action) {
3632 ForkJoinTasks.forEachKey
3633 (this, transformer, action).invoke();
3634 }
3635
3636 /**
3637 * Returns a non-null result from applying the given search
3638 * function on each key, or null if none. Upon success,
3639 * further element processing is suppressed and the results of
3640 * any other parallel invocations of the search function are
3641 * ignored.
3642 *
3643 * @param searchFunction a function returning a non-null
3644 * result on success, else null
3645 * @return a non-null result from applying the given search
3646 * function on each key, or null if none
3647 */
3648 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3649 return ForkJoinTasks.searchKeys
3650 (this, searchFunction).invoke();
3651 }
3652
3653 /**
3654 * Returns the result of accumulating all keys using the given
3655 * reducer to combine values, or null if none.
3656 *
3657 * @param reducer a commutative associative combining function
3658 * @return the result of accumulating all keys using the given
3659 * reducer to combine values, or null if none
3660 */
3661 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3662 return ForkJoinTasks.reduceKeys
3663 (this, reducer).invoke();
3664 }
3665
3666 /**
3667 * Returns the result of accumulating the given transformation
3668 * of all keys using the given reducer to combine values, or
3669 * null if none.
3670 *
3671 * @param transformer a function returning the transformation
3672 * for an element, or null of there is no transformation (in
3673 * which case it is not combined).
3674 * @param reducer a commutative associative combining function
3675 * @return the result of accumulating the given transformation
3676 * of all keys
3677 */
3678 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3679 BiFun<? super U, ? super U, ? extends U> reducer) {
3680 return ForkJoinTasks.reduceKeys
3681 (this, transformer, reducer).invoke();
3682 }
3683
3684 /**
3685 * Returns the result of accumulating the given transformation
3686 * of all keys using the given reducer to combine values, and
3687 * the given basis as an identity value.
3688 *
3689 * @param transformer a function returning the transformation
3690 * for an element
3691 * @param basis the identity (initial default value) for the reduction
3692 * @param reducer a commutative associative combining function
3693 * @return the result of accumulating the given transformation
3694 * of all keys
3695 */
3696 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3697 double basis,
3698 DoubleByDoubleToDouble reducer) {
3699 return ForkJoinTasks.reduceKeysToDouble
3700 (this, transformer, basis, reducer).invoke();
3701 }
3702
3703 /**
3704 * Returns the result of accumulating the given transformation
3705 * of all keys using the given reducer to combine values, and
3706 * the given basis as an identity value.
3707 *
3708 * @param transformer a function returning the transformation
3709 * for an element
3710 * @param basis the identity (initial default value) for the reduction
3711 * @param reducer a commutative associative combining function
3712 * @return the result of accumulating the given transformation
3713 * of all keys
3714 */
3715 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3716 long basis,
3717 LongByLongToLong reducer) {
3718 return ForkJoinTasks.reduceKeysToLong
3719 (this, transformer, basis, reducer).invoke();
3720 }
3721
3722 /**
3723 * Returns the result of accumulating the given transformation
3724 * of all keys using the given reducer to combine values, and
3725 * the given basis as an identity value.
3726 *
3727 * @param transformer a function returning the transformation
3728 * for an element
3729 * @param basis the identity (initial default value) for the reduction
3730 * @param reducer a commutative associative combining function
3731 * @return the result of accumulating the given transformation
3732 * of all keys
3733 */
3734 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3735 int basis,
3736 IntByIntToInt reducer) {
3737 return ForkJoinTasks.reduceKeysToInt
3738 (this, transformer, basis, reducer).invoke();
3739 }
3740
3741 /**
3742 * Performs the given action for each value.
3743 *
3744 * @param action the action
3745 */
3746 public void forEachValue(Action<V> action) {
3747 ForkJoinTasks.forEachValue
3748 (this, action).invoke();
3749 }
3750
3751 /**
3752 * Performs the given action for each non-null transformation
3753 * of each value.
3754 *
3755 * @param transformer a function returning the transformation
3756 * for an element, or null of there is no transformation (in
3757 * which case the action is not applied).
3758 */
3759 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3760 Action<U> action) {
3761 ForkJoinTasks.forEachValue
3762 (this, transformer, action).invoke();
3763 }
3764
3765 /**
3766 * Returns a non-null result from applying the given search
3767 * function on each value, or null if none. Upon success,
3768 * further element processing is suppressed and the results of
3769 * any other parallel invocations of the search function are
3770 * ignored.
3771 *
3772 * @param searchFunction a function returning a non-null
3773 * result on success, else null
3774 * @return a non-null result from applying the given search
3775 * function on each value, or null if none
3776 *
3777 */
3778 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3779 return ForkJoinTasks.searchValues
3780 (this, searchFunction).invoke();
3781 }
3782
3783 /**
3784 * Returns the result of accumulating all values using the
3785 * given reducer to combine values, or null if none.
3786 *
3787 * @param reducer a commutative associative combining function
3788 * @return the result of accumulating all values
3789 */
3790 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3791 return ForkJoinTasks.reduceValues
3792 (this, reducer).invoke();
3793 }
3794
3795 /**
3796 * Returns the result of accumulating the given transformation
3797 * of all values using the given reducer to combine values, or
3798 * null if none.
3799 *
3800 * @param transformer a function returning the transformation
3801 * for an element, or null of there is no transformation (in
3802 * which case it is not combined).
3803 * @param reducer a commutative associative combining function
3804 * @return the result of accumulating the given transformation
3805 * of all values
3806 */
3807 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3808 BiFun<? super U, ? super U, ? extends U> reducer) {
3809 return ForkJoinTasks.reduceValues
3810 (this, transformer, reducer).invoke();
3811 }
3812
3813 /**
3814 * Returns the result of accumulating the given transformation
3815 * of all values using the given reducer to combine values,
3816 * and the given basis as an identity value.
3817 *
3818 * @param transformer a function returning the transformation
3819 * for an element
3820 * @param basis the identity (initial default value) for the reduction
3821 * @param reducer a commutative associative combining function
3822 * @return the result of accumulating the given transformation
3823 * of all values
3824 */
3825 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3826 double basis,
3827 DoubleByDoubleToDouble reducer) {
3828 return ForkJoinTasks.reduceValuesToDouble
3829 (this, transformer, basis, reducer).invoke();
3830 }
3831
3832 /**
3833 * Returns the result of accumulating the given transformation
3834 * of all values using the given reducer to combine values,
3835 * and the given basis as an identity value.
3836 *
3837 * @param transformer a function returning the transformation
3838 * for an element
3839 * @param basis the identity (initial default value) for the reduction
3840 * @param reducer a commutative associative combining function
3841 * @return the result of accumulating the given transformation
3842 * of all values
3843 */
3844 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3845 long basis,
3846 LongByLongToLong reducer) {
3847 return ForkJoinTasks.reduceValuesToLong
3848 (this, transformer, basis, reducer).invoke();
3849 }
3850
3851 /**
3852 * Returns the result of accumulating the given transformation
3853 * of all values using the given reducer to combine values,
3854 * and the given basis as an identity value.
3855 *
3856 * @param transformer a function returning the transformation
3857 * for an element
3858 * @param basis the identity (initial default value) for the reduction
3859 * @param reducer a commutative associative combining function
3860 * @return the result of accumulating the given transformation
3861 * of all values
3862 */
3863 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3864 int basis,
3865 IntByIntToInt reducer) {
3866 return ForkJoinTasks.reduceValuesToInt
3867 (this, transformer, basis, reducer).invoke();
3868 }
3869
3870 /**
3871 * Performs the given action for each entry.
3872 *
3873 * @param action the action
3874 */
3875 public void forEachEntry(Action<Map.Entry<K,V>> action) {
3876 ForkJoinTasks.forEachEntry
3877 (this, action).invoke();
3878 }
3879
3880 /**
3881 * Performs the given action for each non-null transformation
3882 * of each entry.
3883 *
3884 * @param transformer a function returning the transformation
3885 * for an element, or null of there is no transformation (in
3886 * which case the action is not applied).
3887 * @param action the action
3888 */
3889 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3890 Action<U> action) {
3891 ForkJoinTasks.forEachEntry
3892 (this, transformer, action).invoke();
3893 }
3894
3895 /**
3896 * Returns a non-null result from applying the given search
3897 * function on each entry, or null if none. Upon success,
3898 * further element processing is suppressed and the results of
3899 * any other parallel invocations of the search function are
3900 * ignored.
3901 *
3902 * @param searchFunction a function returning a non-null
3903 * result on success, else null
3904 * @return a non-null result from applying the given search
3905 * function on each entry, or null if none
3906 */
3907 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3908 return ForkJoinTasks.searchEntries
3909 (this, searchFunction).invoke();
3910 }
3911
3912 /**
3913 * Returns the result of accumulating all entries using the
3914 * given reducer to combine values, or null if none.
3915 *
3916 * @param reducer a commutative associative combining function
3917 * @return the result of accumulating all entries
3918 */
3919 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3920 return ForkJoinTasks.reduceEntries
3921 (this, reducer).invoke();
3922 }
3923
3924 /**
3925 * Returns the result of accumulating the given transformation
3926 * of all entries using the given reducer to combine values,
3927 * or null if none.
3928 *
3929 * @param transformer a function returning the transformation
3930 * for an element, or null of there is no transformation (in
3931 * which case it is not combined).
3932 * @param reducer a commutative associative combining function
3933 * @return the result of accumulating the given transformation
3934 * of all entries
3935 */
3936 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3937 BiFun<? super U, ? super U, ? extends U> reducer) {
3938 return ForkJoinTasks.reduceEntries
3939 (this, transformer, reducer).invoke();
3940 }
3941
3942 /**
3943 * Returns the result of accumulating the given transformation
3944 * of all entries using the given reducer to combine values,
3945 * and the given basis as an identity value.
3946 *
3947 * @param transformer a function returning the transformation
3948 * for an element
3949 * @param basis the identity (initial default value) for the reduction
3950 * @param reducer a commutative associative combining function
3951 * @return the result of accumulating the given transformation
3952 * of all entries
3953 */
3954 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3955 double basis,
3956 DoubleByDoubleToDouble reducer) {
3957 return ForkJoinTasks.reduceEntriesToDouble
3958 (this, transformer, basis, reducer).invoke();
3959 }
3960
3961 /**
3962 * Returns the result of accumulating the given transformation
3963 * of all entries using the given reducer to combine values,
3964 * and the given basis as an identity value.
3965 *
3966 * @param transformer a function returning the transformation
3967 * for an element
3968 * @param basis the identity (initial default value) for the reduction
3969 * @param reducer a commutative associative combining function
3970 * @return the result of accumulating the given transformation
3971 * of all entries
3972 */
3973 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3974 long basis,
3975 LongByLongToLong reducer) {
3976 return ForkJoinTasks.reduceEntriesToLong
3977 (this, transformer, basis, reducer).invoke();
3978 }
3979
3980 /**
3981 * Returns the result of accumulating the given transformation
3982 * of all entries using the given reducer to combine values,
3983 * and the given basis as an identity value.
3984 *
3985 * @param transformer a function returning the transformation
3986 * for an element
3987 * @param basis the identity (initial default value) for the reduction
3988 * @param reducer a commutative associative combining function
3989 * @return the result of accumulating the given transformation
3990 * of all entries
3991 */
3992 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3993 int basis,
3994 IntByIntToInt reducer) {
3995 return ForkJoinTasks.reduceEntriesToInt
3996 (this, transformer, basis, reducer).invoke();
3997 }
3998
3999 /* ----------------Views -------------- */
4000
4001 /**
4002 * Base class for views.
4003 */
4004 static abstract class CHMView<K, V> {
4005 final ConcurrentHashMap<K, V> map;
4006 CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4007
4008 /**
4009 * Returns the map backing this view.
4010 *
4011 * @return the map backing this view
4012 */
4013 public ConcurrentHashMap<K,V> getMap() { return map; }
4014
4015 public final int size() { return map.size(); }
4016 public final boolean isEmpty() { return map.isEmpty(); }
4017 public final void clear() { map.clear(); }
4018
4019 // implementations below rely on concrete classes supplying these
4020 abstract public Iterator<?> iterator();
4021 abstract public boolean contains(Object o);
4022 abstract public boolean remove(Object o);
4023
4024 private static final String oomeMsg = "Required array size too large";
4025
4026 public final Object[] toArray() {
4027 long sz = map.mappingCount();
4028 if (sz > (long)(MAX_ARRAY_SIZE))
4029 throw new OutOfMemoryError(oomeMsg);
4030 int n = (int)sz;
4031 Object[] r = new Object[n];
4032 int i = 0;
4033 Iterator<?> it = iterator();
4034 while (it.hasNext()) {
4035 if (i == n) {
4036 if (n >= MAX_ARRAY_SIZE)
4037 throw new OutOfMemoryError(oomeMsg);
4038 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4039 n = MAX_ARRAY_SIZE;
4040 else
4041 n += (n >>> 1) + 1;
4042 r = Arrays.copyOf(r, n);
4043 }
4044 r[i++] = it.next();
4045 }
4046 return (i == n) ? r : Arrays.copyOf(r, i);
4047 }
4048
4049 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4050 long sz = map.mappingCount();
4051 if (sz > (long)(MAX_ARRAY_SIZE))
4052 throw new OutOfMemoryError(oomeMsg);
4053 int m = (int)sz;
4054 T[] r = (a.length >= m) ? a :
4055 (T[])java.lang.reflect.Array
4056 .newInstance(a.getClass().getComponentType(), m);
4057 int n = r.length;
4058 int i = 0;
4059 Iterator<?> it = iterator();
4060 while (it.hasNext()) {
4061 if (i == n) {
4062 if (n >= MAX_ARRAY_SIZE)
4063 throw new OutOfMemoryError(oomeMsg);
4064 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4065 n = MAX_ARRAY_SIZE;
4066 else
4067 n += (n >>> 1) + 1;
4068 r = Arrays.copyOf(r, n);
4069 }
4070 r[i++] = (T)it.next();
4071 }
4072 if (a == r && i < n) {
4073 r[i] = null; // null-terminate
4074 return r;
4075 }
4076 return (i == n) ? r : Arrays.copyOf(r, i);
4077 }
4078
4079 public final int hashCode() {
4080 int h = 0;
4081 for (Iterator<?> it = iterator(); it.hasNext();)
4082 h += it.next().hashCode();
4083 return h;
4084 }
4085
4086 public final String toString() {
4087 StringBuilder sb = new StringBuilder();
4088 sb.append('[');
4089 Iterator<?> it = iterator();
4090 if (it.hasNext()) {
4091 for (;;) {
4092 Object e = it.next();
4093 sb.append(e == this ? "(this Collection)" : e);
4094 if (!it.hasNext())
4095 break;
4096 sb.append(',').append(' ');
4097 }
4098 }
4099 return sb.append(']').toString();
4100 }
4101
4102 public final boolean containsAll(Collection<?> c) {
4103 if (c != this) {
4104 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4105 Object e = it.next();
4106 if (e == null || !contains(e))
4107 return false;
4108 }
4109 }
4110 return true;
4111 }
4112
4113 public final boolean removeAll(Collection<?> c) {
4114 boolean modified = false;
4115 for (Iterator<?> it = iterator(); it.hasNext();) {
4116 if (c.contains(it.next())) {
4117 it.remove();
4118 modified = true;
4119 }
4120 }
4121 return modified;
4122 }
4123
4124 public final boolean retainAll(Collection<?> c) {
4125 boolean modified = false;
4126 for (Iterator<?> it = iterator(); it.hasNext();) {
4127 if (!c.contains(it.next())) {
4128 it.remove();
4129 modified = true;
4130 }
4131 }
4132 return modified;
4133 }
4134
4135 }
4136
4137 /**
4138 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4139 * which additions may optionally be enabled by mapping to a
4140 * common value. This class cannot be directly instantiated. See
4141 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4142 * {@link #newKeySet(int)}.
4143 */
4144 public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4145 private static final long serialVersionUID = 7249069246763182397L;
4146 private final V value;
4147 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4148 super(map);
4149 this.value = value;
4150 }
4151
4152 /**
4153 * Returns the default mapped value for additions,
4154 * or {@code null} if additions are not supported.
4155 *
4156 * @return the default mapped value for additions, or {@code null}
4157 * if not supported.
4158 */
4159 public V getMappedValue() { return value; }
4160
4161 // implement Set API
4162
4163 public boolean contains(Object o) { return map.containsKey(o); }
4164 public boolean remove(Object o) { return map.remove(o) != null; }
4165
4166 /**
4167 * Returns a "weakly consistent" iterator that will never
4168 * throw {@link ConcurrentModificationException}, and
4169 * guarantees to traverse elements as they existed upon
4170 * construction of the iterator, and may (but is not
4171 * guaranteed to) reflect any modifications subsequent to
4172 * construction.
4173 *
4174 * @return an iterator over the keys of this map
4175 */
4176 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4177 public boolean add(K e) {
4178 V v;
4179 if ((v = value) == null)
4180 throw new UnsupportedOperationException();
4181 if (e == null)
4182 throw new NullPointerException();
4183 return map.internalPutIfAbsent(e, v) == null;
4184 }
4185 public boolean addAll(Collection<? extends K> c) {
4186 boolean added = false;
4187 V v;
4188 if ((v = value) == null)
4189 throw new UnsupportedOperationException();
4190 for (K e : c) {
4191 if (e == null)
4192 throw new NullPointerException();
4193 if (map.internalPutIfAbsent(e, v) == null)
4194 added = true;
4195 }
4196 return added;
4197 }
4198 public boolean equals(Object o) {
4199 Set<?> c;
4200 return ((o instanceof Set) &&
4201 ((c = (Set<?>)o) == this ||
4202 (containsAll(c) && c.containsAll(this))));
4203 }
4204
4205 /**
4206 * Performs the given action for each key.
4207 *
4208 * @param action the action
4209 */
4210 public void forEach(Action<K> action) {
4211 ForkJoinTasks.forEachKey
4212 (map, action).invoke();
4213 }
4214
4215 /**
4216 * Performs the given action for each non-null transformation
4217 * of each key.
4218 *
4219 * @param transformer a function returning the transformation
4220 * for an element, or null of there is no transformation (in
4221 * which case the action is not applied).
4222 * @param action the action
4223 */
4224 public <U> void forEach(Fun<? super K, ? extends U> transformer,
4225 Action<U> action) {
4226 ForkJoinTasks.forEachKey
4227 (map, transformer, action).invoke();
4228 }
4229
4230 /**
4231 * Returns a non-null result from applying the given search
4232 * function on each key, or null if none. Upon success,
4233 * further element processing is suppressed and the results of
4234 * any other parallel invocations of the search function are
4235 * ignored.
4236 *
4237 * @param searchFunction a function returning a non-null
4238 * result on success, else null
4239 * @return a non-null result from applying the given search
4240 * function on each key, or null if none
4241 */
4242 public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4243 return ForkJoinTasks.searchKeys
4244 (map, searchFunction).invoke();
4245 }
4246
4247 /**
4248 * Returns the result of accumulating all keys using the given
4249 * reducer to combine values, or null if none.
4250 *
4251 * @param reducer a commutative associative combining function
4252 * @return the result of accumulating all keys using the given
4253 * reducer to combine values, or null if none
4254 */
4255 public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4256 return ForkJoinTasks.reduceKeys
4257 (map, reducer).invoke();
4258 }
4259
4260 /**
4261 * Returns the result of accumulating the given transformation
4262 * of all keys using the given reducer to combine values, and
4263 * the given basis as an identity value.
4264 *
4265 * @param transformer a function returning the transformation
4266 * for an element
4267 * @param basis the identity (initial default value) for the reduction
4268 * @param reducer a commutative associative combining function
4269 * @return the result of accumulating the given transformation
4270 * of all keys
4271 */
4272 public double reduceToDouble(ObjectToDouble<? super K> transformer,
4273 double basis,
4274 DoubleByDoubleToDouble reducer) {
4275 return ForkJoinTasks.reduceKeysToDouble
4276 (map, transformer, basis, reducer).invoke();
4277 }
4278
4279
4280 /**
4281 * Returns the result of accumulating the given transformation
4282 * of all keys using the given reducer to combine values, and
4283 * the given basis as an identity value.
4284 *
4285 * @param transformer a function returning the transformation
4286 * for an element
4287 * @param basis the identity (initial default value) for the reduction
4288 * @param reducer a commutative associative combining function
4289 * @return the result of accumulating the given transformation
4290 * of all keys
4291 */
4292 public long reduceToLong(ObjectToLong<? super K> transformer,
4293 long basis,
4294 LongByLongToLong reducer) {
4295 return ForkJoinTasks.reduceKeysToLong
4296 (map, transformer, basis, reducer).invoke();
4297 }
4298
4299 /**
4300 * Returns the result of accumulating the given transformation
4301 * of all keys using the given reducer to combine values, and
4302 * the given basis as an identity value.
4303 *
4304 * @param transformer a function returning the transformation
4305 * for an element
4306 * @param basis the identity (initial default value) for the reduction
4307 * @param reducer a commutative associative combining function
4308 * @return the result of accumulating the given transformation
4309 * of all keys
4310 */
4311 public int reduceToInt(ObjectToInt<? super K> transformer,
4312 int basis,
4313 IntByIntToInt reducer) {
4314 return ForkJoinTasks.reduceKeysToInt
4315 (map, transformer, basis, reducer).invoke();
4316 }
4317
4318 }
4319
4320 /**
4321 * A view of a ConcurrentHashMap as a {@link Collection} of
4322 * values, in which additions are disabled. This class cannot be
4323 * directly instantiated. See {@link #values},
4324 *
4325 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4326 * that will never throw {@link ConcurrentModificationException},
4327 * and guarantees to traverse elements as they existed upon
4328 * construction of the iterator, and may (but is not guaranteed to)
4329 * reflect any modifications subsequent to construction.
4330 */
4331 public static final class ValuesView<K,V> extends CHMView<K,V>
4332 implements Collection<V> {
4333 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4334 public final boolean contains(Object o) { return map.containsValue(o); }
4335 public final boolean remove(Object o) {
4336 if (o != null) {
4337 Iterator<V> it = new ValueIterator<K,V>(map);
4338 while (it.hasNext()) {
4339 if (o.equals(it.next())) {
4340 it.remove();
4341 return true;
4342 }
4343 }
4344 }
4345 return false;
4346 }
4347
4348 /**
4349 * Returns a "weakly consistent" iterator that will never
4350 * throw {@link ConcurrentModificationException}, and
4351 * guarantees to traverse elements as they existed upon
4352 * construction of the iterator, and may (but is not
4353 * guaranteed to) reflect any modifications subsequent to
4354 * construction.
4355 *
4356 * @return an iterator over the values of this map
4357 */
4358 public final Iterator<V> iterator() {
4359 return new ValueIterator<K,V>(map);
4360 }
4361 public final boolean add(V e) {
4362 throw new UnsupportedOperationException();
4363 }
4364 public final boolean addAll(Collection<? extends V> c) {
4365 throw new UnsupportedOperationException();
4366 }
4367
4368 /**
4369 * Performs the given action for each value.
4370 *
4371 * @param action the action
4372 */
4373 public void forEach(Action<V> action) {
4374 ForkJoinTasks.forEachValue
4375 (map, action).invoke();
4376 }
4377
4378 /**
4379 * Performs the given action for each non-null transformation
4380 * of each value.
4381 *
4382 * @param transformer a function returning the transformation
4383 * for an element, or null of there is no transformation (in
4384 * which case the action is not applied).
4385 */
4386 public <U> void forEach(Fun<? super V, ? extends U> transformer,
4387 Action<U> action) {
4388 ForkJoinTasks.forEachValue
4389 (map, transformer, action).invoke();
4390 }
4391
4392 /**
4393 * Returns a non-null result from applying the given search
4394 * function on each value, or null if none. Upon success,
4395 * further element processing is suppressed and the results of
4396 * any other parallel invocations of the search function are
4397 * ignored.
4398 *
4399 * @param searchFunction a function returning a non-null
4400 * result on success, else null
4401 * @return a non-null result from applying the given search
4402 * function on each value, or null if none
4403 *
4404 */
4405 public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4406 return ForkJoinTasks.searchValues
4407 (map, searchFunction).invoke();
4408 }
4409
4410 /**
4411 * Returns the result of accumulating all values using the
4412 * given reducer to combine values, or null if none.
4413 *
4414 * @param reducer a commutative associative combining function
4415 * @return the result of accumulating all values
4416 */
4417 public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4418 return ForkJoinTasks.reduceValues
4419 (map, reducer).invoke();
4420 }
4421
4422 /**
4423 * Returns the result of accumulating the given transformation
4424 * of all values using the given reducer to combine values, or
4425 * null if none.
4426 *
4427 * @param transformer a function returning the transformation
4428 * for an element, or null of there is no transformation (in
4429 * which case it is not combined).
4430 * @param reducer a commutative associative combining function
4431 * @return the result of accumulating the given transformation
4432 * of all values
4433 */
4434 public <U> U reduce(Fun<? super V, ? extends U> transformer,
4435 BiFun<? super U, ? super U, ? extends U> reducer) {
4436 return ForkJoinTasks.reduceValues
4437 (map, transformer, reducer).invoke();
4438 }
4439
4440 /**
4441 * Returns the result of accumulating the given transformation
4442 * of all values using the given reducer to combine values,
4443 * and the given basis as an identity value.
4444 *
4445 * @param transformer a function returning the transformation
4446 * for an element
4447 * @param basis the identity (initial default value) for the reduction
4448 * @param reducer a commutative associative combining function
4449 * @return the result of accumulating the given transformation
4450 * of all values
4451 */
4452 public double reduceToDouble(ObjectToDouble<? super V> transformer,
4453 double basis,
4454 DoubleByDoubleToDouble reducer) {
4455 return ForkJoinTasks.reduceValuesToDouble
4456 (map, transformer, basis, reducer).invoke();
4457 }
4458
4459 /**
4460 * Returns the result of accumulating the given transformation
4461 * of all values using the given reducer to combine values,
4462 * and the given basis as an identity value.
4463 *
4464 * @param transformer a function returning the transformation
4465 * for an element
4466 * @param basis the identity (initial default value) for the reduction
4467 * @param reducer a commutative associative combining function
4468 * @return the result of accumulating the given transformation
4469 * of all values
4470 */
4471 public long reduceToLong(ObjectToLong<? super V> transformer,
4472 long basis,
4473 LongByLongToLong reducer) {
4474 return ForkJoinTasks.reduceValuesToLong
4475 (map, transformer, basis, reducer).invoke();
4476 }
4477
4478 /**
4479 * Returns the result of accumulating the given transformation
4480 * of all values using the given reducer to combine values,
4481 * and the given basis as an identity value.
4482 *
4483 * @param transformer a function returning the transformation
4484 * for an element
4485 * @param basis the identity (initial default value) for the reduction
4486 * @param reducer a commutative associative combining function
4487 * @return the result of accumulating the given transformation
4488 * of all values
4489 */
4490 public int reduceToInt(ObjectToInt<? super V> transformer,
4491 int basis,
4492 IntByIntToInt reducer) {
4493 return ForkJoinTasks.reduceValuesToInt
4494 (map, transformer, basis, reducer).invoke();
4495 }
4496
4497 }
4498
4499 /**
4500 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4501 * entries. This class cannot be directly instantiated. See
4502 * {@link #entrySet}.
4503 */
4504 public static final class EntrySetView<K,V> extends CHMView<K,V>
4505 implements Set<Map.Entry<K,V>> {
4506 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4507 public final boolean contains(Object o) {
4508 Object k, v, r; Map.Entry<?,?> e;
4509 return ((o instanceof Map.Entry) &&
4510 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4511 (r = map.get(k)) != null &&
4512 (v = e.getValue()) != null &&
4513 (v == r || v.equals(r)));
4514 }
4515 public final boolean remove(Object o) {
4516 Object k, v; Map.Entry<?,?> e;
4517 return ((o instanceof Map.Entry) &&
4518 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4519 (v = e.getValue()) != null &&
4520 map.remove(k, v));
4521 }
4522
4523 /**
4524 * Returns a "weakly consistent" iterator that will never
4525 * throw {@link ConcurrentModificationException}, and
4526 * guarantees to traverse elements as they existed upon
4527 * construction of the iterator, and may (but is not
4528 * guaranteed to) reflect any modifications subsequent to
4529 * construction.
4530 *
4531 * @return an iterator over the entries of this map
4532 */
4533 public final Iterator<Map.Entry<K,V>> iterator() {
4534 return new EntryIterator<K,V>(map);
4535 }
4536
4537 public final boolean add(Entry<K,V> e) {
4538 K key = e.getKey();
4539 V value = e.getValue();
4540 if (key == null || value == null)
4541 throw new NullPointerException();
4542 return map.internalPut(key, value) == null;
4543 }
4544 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4545 boolean added = false;
4546 for (Entry<K,V> e : c) {
4547 if (add(e))
4548 added = true;
4549 }
4550 return added;
4551 }
4552 public boolean equals(Object o) {
4553 Set<?> c;
4554 return ((o instanceof Set) &&
4555 ((c = (Set<?>)o) == this ||
4556 (containsAll(c) && c.containsAll(this))));
4557 }
4558
4559 /**
4560 * Performs the given action for each entry.
4561 *
4562 * @param action the action
4563 */
4564 public void forEach(Action<Map.Entry<K,V>> action) {
4565 ForkJoinTasks.forEachEntry
4566 (map, action).invoke();
4567 }
4568
4569 /**
4570 * Performs the given action for each non-null transformation
4571 * of each entry.
4572 *
4573 * @param transformer a function returning the transformation
4574 * for an element, or null of there is no transformation (in
4575 * which case the action is not applied).
4576 * @param action the action
4577 */
4578 public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4579 Action<U> action) {
4580 ForkJoinTasks.forEachEntry
4581 (map, transformer, action).invoke();
4582 }
4583
4584 /**
4585 * Returns a non-null result from applying the given search
4586 * function on each entry, or null if none. Upon success,
4587 * further element processing is suppressed and the results of
4588 * any other parallel invocations of the search function are
4589 * ignored.
4590 *
4591 * @param searchFunction a function returning a non-null
4592 * result on success, else null
4593 * @return a non-null result from applying the given search
4594 * function on each entry, or null if none
4595 */
4596 public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4597 return ForkJoinTasks.searchEntries
4598 (map, searchFunction).invoke();
4599 }
4600
4601 /**
4602 * Returns the result of accumulating all entries using the
4603 * given reducer to combine values, or null if none.
4604 *
4605 * @param reducer a commutative associative combining function
4606 * @return the result of accumulating all entries
4607 */
4608 public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4609 return ForkJoinTasks.reduceEntries
4610 (map, reducer).invoke();
4611 }
4612
4613 /**
4614 * Returns the result of accumulating the given transformation
4615 * of all entries using the given reducer to combine values,
4616 * or null if none.
4617 *
4618 * @param transformer a function returning the transformation
4619 * for an element, or null of there is no transformation (in
4620 * which case it is not combined).
4621 * @param reducer a commutative associative combining function
4622 * @return the result of accumulating the given transformation
4623 * of all entries
4624 */
4625 public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4626 BiFun<? super U, ? super U, ? extends U> reducer) {
4627 return ForkJoinTasks.reduceEntries
4628 (map, transformer, reducer).invoke();
4629 }
4630
4631 /**
4632 * Returns the result of accumulating the given transformation
4633 * of all entries using the given reducer to combine values,
4634 * and the given basis as an identity value.
4635 *
4636 * @param transformer a function returning the transformation
4637 * for an element
4638 * @param basis the identity (initial default value) for the reduction
4639 * @param reducer a commutative associative combining function
4640 * @return the result of accumulating the given transformation
4641 * of all entries
4642 */
4643 public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4644 double basis,
4645 DoubleByDoubleToDouble reducer) {
4646 return ForkJoinTasks.reduceEntriesToDouble
4647 (map, transformer, basis, reducer).invoke();
4648 }
4649
4650 /**
4651 * Returns the result of accumulating the given transformation
4652 * of all entries using the given reducer to combine values,
4653 * and the given basis as an identity value.
4654 *
4655 * @param transformer a function returning the transformation
4656 * for an element
4657 * @param basis the identity (initial default value) for the reduction
4658 * @param reducer a commutative associative combining function
4659 * @return the result of accumulating the given transformation
4660 * of all entries
4661 */
4662 public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4663 long basis,
4664 LongByLongToLong reducer) {
4665 return ForkJoinTasks.reduceEntriesToLong
4666 (map, transformer, basis, reducer).invoke();
4667 }
4668
4669 /**
4670 * Returns the result of accumulating the given transformation
4671 * of all entries using the given reducer to combine values,
4672 * and the given basis as an identity value.
4673 *
4674 * @param transformer a function returning the transformation
4675 * for an element
4676 * @param basis the identity (initial default value) for the reduction
4677 * @param reducer a commutative associative combining function
4678 * @return the result of accumulating the given transformation
4679 * of all entries
4680 */
4681 public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4682 int basis,
4683 IntByIntToInt reducer) {
4684 return ForkJoinTasks.reduceEntriesToInt
4685 (map, transformer, basis, reducer).invoke();
4686 }
4687
4688 }
4689
4690 // ---------------------------------------------------------------------
4691
4692 /**
4693 * Predefined tasks for performing bulk parallel operations on
4694 * ConcurrentHashMaps. These tasks follow the forms and rules used
4695 * for bulk operations. Each method has the same name, but returns
4696 * a task rather than invoking it. These methods may be useful in
4697 * custom applications such as submitting a task without waiting
4698 * for completion, using a custom pool, or combining with other
4699 * tasks.
4700 */
4701 public static class ForkJoinTasks {
4702 private ForkJoinTasks() {}
4703
4704 /**
4705 * Returns a task that when invoked, performs the given
4706 * action for each (key, value)
4707 *
4708 * @param map the map
4709 * @param action the action
4710 * @return the task
4711 */
4712 public static <K,V> ForkJoinTask<Void> forEach
4713 (ConcurrentHashMap<K,V> map,
4714 BiAction<K,V> action) {
4715 if (action == null) throw new NullPointerException();
4716 return new ForEachMappingTask<K,V>(map, null, -1, action);
4717 }
4718
4719 /**
4720 * Returns a task that when invoked, performs the given
4721 * action for each non-null transformation of each (key, value)
4722 *
4723 * @param map the map
4724 * @param transformer a function returning the transformation
4725 * for an element, or null if there is no transformation (in
4726 * which case the action is not applied)
4727 * @param action the action
4728 * @return the task
4729 */
4730 public static <K,V,U> ForkJoinTask<Void> forEach
4731 (ConcurrentHashMap<K,V> map,
4732 BiFun<? super K, ? super V, ? extends U> transformer,
4733 Action<U> action) {
4734 if (transformer == null || action == null)
4735 throw new NullPointerException();
4736 return new ForEachTransformedMappingTask<K,V,U>
4737 (map, null, -1, transformer, action);
4738 }
4739
4740 /**
4741 * Returns a task that when invoked, returns a non-null result
4742 * from applying the given search function on each (key,
4743 * value), or null if none. Upon success, further element
4744 * processing is suppressed and the results of any other
4745 * parallel invocations of the search function are ignored.
4746 *
4747 * @param map the map
4748 * @param searchFunction a function returning a non-null
4749 * result on success, else null
4750 * @return the task
4751 */
4752 public static <K,V,U> ForkJoinTask<U> search
4753 (ConcurrentHashMap<K,V> map,
4754 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4755 if (searchFunction == null) throw new NullPointerException();
4756 return new SearchMappingsTask<K,V,U>
4757 (map, null, -1, searchFunction,
4758 new AtomicReference<U>());
4759 }
4760
4761 /**
4762 * Returns a task that when invoked, returns the result of
4763 * accumulating the given transformation of all (key, value) pairs
4764 * using the given reducer to combine values, or null if none.
4765 *
4766 * @param map the map
4767 * @param transformer a function returning the transformation
4768 * for an element, or null if there is no transformation (in
4769 * which case it is not combined).
4770 * @param reducer a commutative associative combining function
4771 * @return the task
4772 */
4773 public static <K,V,U> ForkJoinTask<U> reduce
4774 (ConcurrentHashMap<K,V> map,
4775 BiFun<? super K, ? super V, ? extends U> transformer,
4776 BiFun<? super U, ? super U, ? extends U> reducer) {
4777 if (transformer == null || reducer == null)
4778 throw new NullPointerException();
4779 return new MapReduceMappingsTask<K,V,U>
4780 (map, null, -1, null, transformer, reducer);
4781 }
4782
4783 /**
4784 * Returns a task that when invoked, returns the result of
4785 * accumulating the given transformation of all (key, value) pairs
4786 * using the given reducer to combine values, and the given
4787 * basis as an identity value.
4788 *
4789 * @param map the map
4790 * @param transformer a function returning the transformation
4791 * for an element
4792 * @param basis the identity (initial default value) for the reduction
4793 * @param reducer a commutative associative combining function
4794 * @return the task
4795 */
4796 public static <K,V> ForkJoinTask<Double> reduceToDouble
4797 (ConcurrentHashMap<K,V> map,
4798 ObjectByObjectToDouble<? super K, ? super V> transformer,
4799 double basis,
4800 DoubleByDoubleToDouble reducer) {
4801 if (transformer == null || reducer == null)
4802 throw new NullPointerException();
4803 return new MapReduceMappingsToDoubleTask<K,V>
4804 (map, null, -1, null, transformer, basis, reducer);
4805 }
4806
4807 /**
4808 * Returns a task that when invoked, returns the result of
4809 * accumulating the given transformation of all (key, value) pairs
4810 * using the given reducer to combine values, and the given
4811 * basis as an identity value.
4812 *
4813 * @param map the map
4814 * @param transformer a function returning the transformation
4815 * for an element
4816 * @param basis the identity (initial default value) for the reduction
4817 * @param reducer a commutative associative combining function
4818 * @return the task
4819 */
4820 public static <K,V> ForkJoinTask<Long> reduceToLong
4821 (ConcurrentHashMap<K,V> map,
4822 ObjectByObjectToLong<? super K, ? super V> transformer,
4823 long basis,
4824 LongByLongToLong reducer) {
4825 if (transformer == null || reducer == null)
4826 throw new NullPointerException();
4827 return new MapReduceMappingsToLongTask<K,V>
4828 (map, null, -1, null, transformer, basis, reducer);
4829 }
4830
4831 /**
4832 * Returns a task that when invoked, returns the result of
4833 * accumulating the given transformation of all (key, value) pairs
4834 * using the given reducer to combine values, and the given
4835 * basis as an identity value.
4836 *
4837 * @param transformer a function returning the transformation
4838 * for an element
4839 * @param basis the identity (initial default value) for the reduction
4840 * @param reducer a commutative associative combining function
4841 * @return the task
4842 */
4843 public static <K,V> ForkJoinTask<Integer> reduceToInt
4844 (ConcurrentHashMap<K,V> map,
4845 ObjectByObjectToInt<? super K, ? super V> transformer,
4846 int basis,
4847 IntByIntToInt reducer) {
4848 if (transformer == null || reducer == null)
4849 throw new NullPointerException();
4850 return new MapReduceMappingsToIntTask<K,V>
4851 (map, null, -1, null, transformer, basis, reducer);
4852 }
4853
4854 /**
4855 * Returns a task that when invoked, performs the given action
4856 * for each key.
4857 *
4858 * @param map the map
4859 * @param action the action
4860 * @return the task
4861 */
4862 public static <K,V> ForkJoinTask<Void> forEachKey
4863 (ConcurrentHashMap<K,V> map,
4864 Action<K> action) {
4865 if (action == null) throw new NullPointerException();
4866 return new ForEachKeyTask<K,V>(map, null, -1, action);
4867 }
4868
4869 /**
4870 * Returns a task that when invoked, performs the given action
4871 * for each non-null transformation of each key.
4872 *
4873 * @param map the map
4874 * @param transformer a function returning the transformation
4875 * for an element, or null if there is no transformation (in
4876 * which case the action is not applied)
4877 * @param action the action
4878 * @return the task
4879 */
4880 public static <K,V,U> ForkJoinTask<Void> forEachKey
4881 (ConcurrentHashMap<K,V> map,
4882 Fun<? super K, ? extends U> transformer,
4883 Action<U> action) {
4884 if (transformer == null || action == null)
4885 throw new NullPointerException();
4886 return new ForEachTransformedKeyTask<K,V,U>
4887 (map, null, -1, transformer, action);
4888 }
4889
4890 /**
4891 * Returns a task that when invoked, returns a non-null result
4892 * from applying the given search function on each key, or
4893 * null if none. Upon success, further element processing is
4894 * suppressed and the results of any other parallel
4895 * invocations of the search function are ignored.
4896 *
4897 * @param map the map
4898 * @param searchFunction a function returning a non-null
4899 * result on success, else null
4900 * @return the task
4901 */
4902 public static <K,V,U> ForkJoinTask<U> searchKeys
4903 (ConcurrentHashMap<K,V> map,
4904 Fun<? super K, ? extends U> searchFunction) {
4905 if (searchFunction == null) throw new NullPointerException();
4906 return new SearchKeysTask<K,V,U>
4907 (map, null, -1, searchFunction,
4908 new AtomicReference<U>());
4909 }
4910
4911 /**
4912 * Returns a task that when invoked, returns the result of
4913 * accumulating all keys using the given reducer to combine
4914 * values, or null if none.
4915 *
4916 * @param map the map
4917 * @param reducer a commutative associative combining function
4918 * @return the task
4919 */
4920 public static <K,V> ForkJoinTask<K> reduceKeys
4921 (ConcurrentHashMap<K,V> map,
4922 BiFun<? super K, ? super K, ? extends K> reducer) {
4923 if (reducer == null) throw new NullPointerException();
4924 return new ReduceKeysTask<K,V>
4925 (map, null, -1, null, reducer);
4926 }
4927
4928 /**
4929 * Returns a task that when invoked, returns the result of
4930 * accumulating the given transformation of all keys using the given
4931 * reducer to combine values, or null if none.
4932 *
4933 * @param map the map
4934 * @param transformer a function returning the transformation
4935 * for an element, or null if there is no transformation (in
4936 * which case it is not combined).
4937 * @param reducer a commutative associative combining function
4938 * @return the task
4939 */
4940 public static <K,V,U> ForkJoinTask<U> reduceKeys
4941 (ConcurrentHashMap<K,V> map,
4942 Fun<? super K, ? extends U> transformer,
4943 BiFun<? super U, ? super U, ? extends U> reducer) {
4944 if (transformer == null || reducer == null)
4945 throw new NullPointerException();
4946 return new MapReduceKeysTask<K,V,U>
4947 (map, null, -1, null, transformer, reducer);
4948 }
4949
4950 /**
4951 * Returns a task that when invoked, returns the result of
4952 * accumulating the given transformation of all keys using the given
4953 * reducer to combine values, and the given basis as an
4954 * identity value.
4955 *
4956 * @param map the map
4957 * @param transformer a function returning the transformation
4958 * for an element
4959 * @param basis the identity (initial default value) for the reduction
4960 * @param reducer a commutative associative combining function
4961 * @return the task
4962 */
4963 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4964 (ConcurrentHashMap<K,V> map,
4965 ObjectToDouble<? super K> transformer,
4966 double basis,
4967 DoubleByDoubleToDouble reducer) {
4968 if (transformer == null || reducer == null)
4969 throw new NullPointerException();
4970 return new MapReduceKeysToDoubleTask<K,V>
4971 (map, null, -1, null, transformer, basis, reducer);
4972 }
4973
4974 /**
4975 * Returns a task that when invoked, returns the result of
4976 * accumulating the given transformation of all keys using the given
4977 * reducer to combine values, and the given basis as an
4978 * identity value.
4979 *
4980 * @param map the map
4981 * @param transformer a function returning the transformation
4982 * for an element
4983 * @param basis the identity (initial default value) for the reduction
4984 * @param reducer a commutative associative combining function
4985 * @return the task
4986 */
4987 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4988 (ConcurrentHashMap<K,V> map,
4989 ObjectToLong<? super K> transformer,
4990 long basis,
4991 LongByLongToLong reducer) {
4992 if (transformer == null || reducer == null)
4993 throw new NullPointerException();
4994 return new MapReduceKeysToLongTask<K,V>
4995 (map, null, -1, null, transformer, basis, reducer);
4996 }
4997
4998 /**
4999 * Returns a task that when invoked, returns the result of
5000 * accumulating the given transformation of all keys using the given
5001 * reducer to combine values, and the given basis as an
5002 * identity value.
5003 *
5004 * @param map the map
5005 * @param transformer a function returning the transformation
5006 * for an element
5007 * @param basis the identity (initial default value) for the reduction
5008 * @param reducer a commutative associative combining function
5009 * @return the task
5010 */
5011 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5012 (ConcurrentHashMap<K,V> map,
5013 ObjectToInt<? super K> transformer,
5014 int basis,
5015 IntByIntToInt reducer) {
5016 if (transformer == null || reducer == null)
5017 throw new NullPointerException();
5018 return new MapReduceKeysToIntTask<K,V>
5019 (map, null, -1, null, transformer, basis, reducer);
5020 }
5021
5022 /**
5023 * Returns a task that when invoked, performs the given action
5024 * for each value.
5025 *
5026 * @param map the map
5027 * @param action the action
5028 */
5029 public static <K,V> ForkJoinTask<Void> forEachValue
5030 (ConcurrentHashMap<K,V> map,
5031 Action<V> action) {
5032 if (action == null) throw new NullPointerException();
5033 return new ForEachValueTask<K,V>(map, null, -1, action);
5034 }
5035
5036 /**
5037 * Returns a task that when invoked, performs the given action
5038 * for each non-null transformation of each value.
5039 *
5040 * @param map the map
5041 * @param transformer a function returning the transformation
5042 * for an element, or null if there is no transformation (in
5043 * which case the action is not applied)
5044 * @param action the action
5045 */
5046 public static <K,V,U> ForkJoinTask<Void> forEachValue
5047 (ConcurrentHashMap<K,V> map,
5048 Fun<? super V, ? extends U> transformer,
5049 Action<U> action) {
5050 if (transformer == null || action == null)
5051 throw new NullPointerException();
5052 return new ForEachTransformedValueTask<K,V,U>
5053 (map, null, -1, transformer, action);
5054 }
5055
5056 /**
5057 * Returns a task that when invoked, returns a non-null result
5058 * from applying the given search function on each value, or
5059 * null if none. Upon success, further element processing is
5060 * suppressed and the results of any other parallel
5061 * invocations of the search function are ignored.
5062 *
5063 * @param map the map
5064 * @param searchFunction a function returning a non-null
5065 * result on success, else null
5066 * @return the task
5067 */
5068 public static <K,V,U> ForkJoinTask<U> searchValues
5069 (ConcurrentHashMap<K,V> map,
5070 Fun<? super V, ? extends U> searchFunction) {
5071 if (searchFunction == null) throw new NullPointerException();
5072 return new SearchValuesTask<K,V,U>
5073 (map, null, -1, searchFunction,
5074 new AtomicReference<U>());
5075 }
5076
5077 /**
5078 * Returns a task that when invoked, returns the result of
5079 * accumulating all values using the given reducer to combine
5080 * values, or null if none.
5081 *
5082 * @param map the map
5083 * @param reducer a commutative associative combining function
5084 * @return the task
5085 */
5086 public static <K,V> ForkJoinTask<V> reduceValues
5087 (ConcurrentHashMap<K,V> map,
5088 BiFun<? super V, ? super V, ? extends V> reducer) {
5089 if (reducer == null) throw new NullPointerException();
5090 return new ReduceValuesTask<K,V>
5091 (map, null, -1, null, reducer);
5092 }
5093
5094 /**
5095 * Returns a task that when invoked, returns the result of
5096 * accumulating the given transformation of all values using the
5097 * given reducer to combine values, or null if none.
5098 *
5099 * @param map the map
5100 * @param transformer a function returning the transformation
5101 * for an element, or null if there is no transformation (in
5102 * which case it is not combined).
5103 * @param reducer a commutative associative combining function
5104 * @return the task
5105 */
5106 public static <K,V,U> ForkJoinTask<U> reduceValues
5107 (ConcurrentHashMap<K,V> map,
5108 Fun<? super V, ? extends U> transformer,
5109 BiFun<? super U, ? super U, ? extends U> reducer) {
5110 if (transformer == null || reducer == null)
5111 throw new NullPointerException();
5112 return new MapReduceValuesTask<K,V,U>
5113 (map, null, -1, null, transformer, reducer);
5114 }
5115
5116 /**
5117 * Returns a task that when invoked, returns the result of
5118 * accumulating the given transformation of all values using the
5119 * given reducer to combine values, and the given basis as an
5120 * identity value.
5121 *
5122 * @param map the map
5123 * @param transformer a function returning the transformation
5124 * for an element
5125 * @param basis the identity (initial default value) for the reduction
5126 * @param reducer a commutative associative combining function
5127 * @return the task
5128 */
5129 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5130 (ConcurrentHashMap<K,V> map,
5131 ObjectToDouble<? super V> transformer,
5132 double basis,
5133 DoubleByDoubleToDouble reducer) {
5134 if (transformer == null || reducer == null)
5135 throw new NullPointerException();
5136 return new MapReduceValuesToDoubleTask<K,V>
5137 (map, null, -1, null, transformer, basis, reducer);
5138 }
5139
5140 /**
5141 * Returns a task that when invoked, returns the result of
5142 * accumulating the given transformation of all values using the
5143 * given reducer to combine values, and the given basis as an
5144 * identity value.
5145 *
5146 * @param map the map
5147 * @param transformer a function returning the transformation
5148 * for an element
5149 * @param basis the identity (initial default value) for the reduction
5150 * @param reducer a commutative associative combining function
5151 * @return the task
5152 */
5153 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5154 (ConcurrentHashMap<K,V> map,
5155 ObjectToLong<? super V> transformer,
5156 long basis,
5157 LongByLongToLong reducer) {
5158 if (transformer == null || reducer == null)
5159 throw new NullPointerException();
5160 return new MapReduceValuesToLongTask<K,V>
5161 (map, null, -1, null, transformer, basis, reducer);
5162 }
5163
5164 /**
5165 * Returns a task that when invoked, returns the result of
5166 * accumulating the given transformation of all values using the
5167 * given reducer to combine values, and the given basis as an
5168 * identity value.
5169 *
5170 * @param map the map
5171 * @param transformer a function returning the transformation
5172 * for an element
5173 * @param basis the identity (initial default value) for the reduction
5174 * @param reducer a commutative associative combining function
5175 * @return the task
5176 */
5177 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5178 (ConcurrentHashMap<K,V> map,
5179 ObjectToInt<? super V> transformer,
5180 int basis,
5181 IntByIntToInt reducer) {
5182 if (transformer == null || reducer == null)
5183 throw new NullPointerException();
5184 return new MapReduceValuesToIntTask<K,V>
5185 (map, null, -1, null, transformer, basis, reducer);
5186 }
5187
5188 /**
5189 * Returns a task that when invoked, perform the given action
5190 * for each entry.
5191 *
5192 * @param map the map
5193 * @param action the action
5194 */
5195 public static <K,V> ForkJoinTask<Void> forEachEntry
5196 (ConcurrentHashMap<K,V> map,
5197 Action<Map.Entry<K,V>> action) {
5198 if (action == null) throw new NullPointerException();
5199 return new ForEachEntryTask<K,V>(map, null, -1, action);
5200 }
5201
5202 /**
5203 * Returns a task that when invoked, perform the given action
5204 * for each non-null transformation of each entry.
5205 *
5206 * @param map the map
5207 * @param transformer a function returning the transformation
5208 * for an element, or null if there is no transformation (in
5209 * which case the action is not applied)
5210 * @param action the action
5211 */
5212 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5213 (ConcurrentHashMap<K,V> map,
5214 Fun<Map.Entry<K,V>, ? extends U> transformer,
5215 Action<U> action) {
5216 if (transformer == null || action == null)
5217 throw new NullPointerException();
5218 return new ForEachTransformedEntryTask<K,V,U>
5219 (map, null, -1, transformer, action);
5220 }
5221
5222 /**
5223 * Returns a task that when invoked, returns a non-null result
5224 * from applying the given search function on each entry, or
5225 * null if none. Upon success, further element processing is
5226 * suppressed and the results of any other parallel
5227 * invocations of the search function are ignored.
5228 *
5229 * @param map the map
5230 * @param searchFunction a function returning a non-null
5231 * result on success, else null
5232 * @return the task
5233 */
5234 public static <K,V,U> ForkJoinTask<U> searchEntries
5235 (ConcurrentHashMap<K,V> map,
5236 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5237 if (searchFunction == null) throw new NullPointerException();
5238 return new SearchEntriesTask<K,V,U>
5239 (map, null, -1, searchFunction,
5240 new AtomicReference<U>());
5241 }
5242
5243 /**
5244 * Returns a task that when invoked, returns the result of
5245 * accumulating all entries using the given reducer to combine
5246 * values, or null if none.
5247 *
5248 * @param map the map
5249 * @param reducer a commutative associative combining function
5250 * @return the task
5251 */
5252 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5253 (ConcurrentHashMap<K,V> map,
5254 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5255 if (reducer == null) throw new NullPointerException();
5256 return new ReduceEntriesTask<K,V>
5257 (map, null, -1, null, reducer);
5258 }
5259
5260 /**
5261 * Returns a task that when invoked, returns the result of
5262 * accumulating the given transformation of all entries using the
5263 * given reducer to combine values, or null if none.
5264 *
5265 * @param map the map
5266 * @param transformer a function returning the transformation
5267 * for an element, or null if there is no transformation (in
5268 * which case it is not combined).
5269 * @param reducer a commutative associative combining function
5270 * @return the task
5271 */
5272 public static <K,V,U> ForkJoinTask<U> reduceEntries
5273 (ConcurrentHashMap<K,V> map,
5274 Fun<Map.Entry<K,V>, ? extends U> transformer,
5275 BiFun<? super U, ? super U, ? extends U> reducer) {
5276 if (transformer == null || reducer == null)
5277 throw new NullPointerException();
5278 return new MapReduceEntriesTask<K,V,U>
5279 (map, null, -1, null, transformer, reducer);
5280 }
5281
5282 /**
5283 * Returns a task that when invoked, returns the result of
5284 * accumulating the given transformation of all entries using the
5285 * given reducer to combine values, and the given basis as an
5286 * identity value.
5287 *
5288 * @param map the map
5289 * @param transformer a function returning the transformation
5290 * for an element
5291 * @param basis the identity (initial default value) for the reduction
5292 * @param reducer a commutative associative combining function
5293 * @return the task
5294 */
5295 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5296 (ConcurrentHashMap<K,V> map,
5297 ObjectToDouble<Map.Entry<K,V>> transformer,
5298 double basis,
5299 DoubleByDoubleToDouble reducer) {
5300 if (transformer == null || reducer == null)
5301 throw new NullPointerException();
5302 return new MapReduceEntriesToDoubleTask<K,V>
5303 (map, null, -1, null, transformer, basis, reducer);
5304 }
5305
5306 /**
5307 * Returns a task that when invoked, returns the result of
5308 * accumulating the given transformation of all entries using the
5309 * given reducer to combine values, and the given basis as an
5310 * identity value.
5311 *
5312 * @param map the map
5313 * @param transformer a function returning the transformation
5314 * for an element
5315 * @param basis the identity (initial default value) for the reduction
5316 * @param reducer a commutative associative combining function
5317 * @return the task
5318 */
5319 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5320 (ConcurrentHashMap<K,V> map,
5321 ObjectToLong<Map.Entry<K,V>> transformer,
5322 long basis,
5323 LongByLongToLong reducer) {
5324 if (transformer == null || reducer == null)
5325 throw new NullPointerException();
5326 return new MapReduceEntriesToLongTask<K,V>
5327 (map, null, -1, null, transformer, basis, reducer);
5328 }
5329
5330 /**
5331 * Returns a task that when invoked, returns the result of
5332 * accumulating the given transformation of all entries using the
5333 * given reducer to combine values, and the given basis as an
5334 * identity value.
5335 *
5336 * @param map the map
5337 * @param transformer a function returning the transformation
5338 * for an element
5339 * @param basis the identity (initial default value) for the reduction
5340 * @param reducer a commutative associative combining function
5341 * @return the task
5342 */
5343 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5344 (ConcurrentHashMap<K,V> map,
5345 ObjectToInt<Map.Entry<K,V>> transformer,
5346 int basis,
5347 IntByIntToInt reducer) {
5348 if (transformer == null || reducer == null)
5349 throw new NullPointerException();
5350 return new MapReduceEntriesToIntTask<K,V>
5351 (map, null, -1, null, transformer, basis, reducer);
5352 }
5353 }
5354
5355 // -------------------------------------------------------
5356
5357 /*
5358 * Task classes. Coded in a regular but ugly format/style to
5359 * simplify checks that each variant differs in the right way from
5360 * others.
5361 */
5362
5363 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5364 extends Traverser<K,V,Void> {
5365 final Action<K> action;
5366 ForEachKeyTask
5367 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5368 Action<K> action) {
5369 super(m, p, b);
5370 this.action = action;
5371 }
5372 @SuppressWarnings("unchecked") public final void compute() {
5373 final Action<K> action;
5374 if ((action = this.action) == null)
5375 throw new NullPointerException();
5376 for (int b; (b = preSplit()) > 0;)
5377 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5378 while (advance() != null)
5379 action.apply((K)nextKey);
5380 propagateCompletion();
5381 }
5382 }
5383
5384 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5385 extends Traverser<K,V,Void> {
5386 final Action<V> action;
5387 ForEachValueTask
5388 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5389 Action<V> action) {
5390 super(m, p, b);
5391 this.action = action;
5392 }
5393 @SuppressWarnings("unchecked") public final void compute() {
5394 final Action<V> action;
5395 if ((action = this.action) == null)
5396 throw new NullPointerException();
5397 for (int b; (b = preSplit()) > 0;)
5398 new ForEachValueTask<K,V>(map, this, b, action).fork();
5399 Object v;
5400 while ((v = advance()) != null)
5401 action.apply((V)v);
5402 propagateCompletion();
5403 }
5404 }
5405
5406 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5407 extends Traverser<K,V,Void> {
5408 final Action<Entry<K,V>> action;
5409 ForEachEntryTask
5410 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5411 Action<Entry<K,V>> action) {
5412 super(m, p, b);
5413 this.action = action;
5414 }
5415 @SuppressWarnings("unchecked") public final void compute() {
5416 final Action<Entry<K,V>> action;
5417 if ((action = this.action) == null)
5418 throw new NullPointerException();
5419 for (int b; (b = preSplit()) > 0;)
5420 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5421 Object v;
5422 while ((v = advance()) != null)
5423 action.apply(entryFor((K)nextKey, (V)v));
5424 propagateCompletion();
5425 }
5426 }
5427
5428 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5429 extends Traverser<K,V,Void> {
5430 final BiAction<K,V> action;
5431 ForEachMappingTask
5432 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5433 BiAction<K,V> action) {
5434 super(m, p, b);
5435 this.action = action;
5436 }
5437 @SuppressWarnings("unchecked") public final void compute() {
5438 final BiAction<K,V> action;
5439 if ((action = this.action) == null)
5440 throw new NullPointerException();
5441 for (int b; (b = preSplit()) > 0;)
5442 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5443 Object v;
5444 while ((v = advance()) != null)
5445 action.apply((K)nextKey, (V)v);
5446 propagateCompletion();
5447 }
5448 }
5449
5450 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5451 extends Traverser<K,V,Void> {
5452 final Fun<? super K, ? extends U> transformer;
5453 final Action<U> action;
5454 ForEachTransformedKeyTask
5455 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5456 Fun<? super K, ? extends U> transformer, Action<U> action) {
5457 super(m, p, b);
5458 this.transformer = transformer; this.action = action;
5459 }
5460 @SuppressWarnings("unchecked") public final void compute() {
5461 final Fun<? super K, ? extends U> transformer;
5462 final Action<U> action;
5463 if ((transformer = this.transformer) == null ||
5464 (action = this.action) == null)
5465 throw new NullPointerException();
5466 for (int b; (b = preSplit()) > 0;)
5467 new ForEachTransformedKeyTask<K,V,U>
5468 (map, this, b, transformer, action).fork();
5469 U u;
5470 while (advance() != null) {
5471 if ((u = transformer.apply((K)nextKey)) != null)
5472 action.apply(u);
5473 }
5474 propagateCompletion();
5475 }
5476 }
5477
5478 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5479 extends Traverser<K,V,Void> {
5480 final Fun<? super V, ? extends U> transformer;
5481 final Action<U> action;
5482 ForEachTransformedValueTask
5483 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5484 Fun<? super V, ? extends U> transformer, Action<U> action) {
5485 super(m, p, b);
5486 this.transformer = transformer; this.action = action;
5487 }
5488 @SuppressWarnings("unchecked") public final void compute() {
5489 final Fun<? super V, ? extends U> transformer;
5490 final Action<U> action;
5491 if ((transformer = this.transformer) == null ||
5492 (action = this.action) == null)
5493 throw new NullPointerException();
5494 for (int b; (b = preSplit()) > 0;)
5495 new ForEachTransformedValueTask<K,V,U>
5496 (map, this, b, transformer, action).fork();
5497 Object v; U u;
5498 while ((v = advance()) != null) {
5499 if ((u = transformer.apply((V)v)) != null)
5500 action.apply(u);
5501 }
5502 propagateCompletion();
5503 }
5504 }
5505
5506 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5507 extends Traverser<K,V,Void> {
5508 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5509 final Action<U> action;
5510 ForEachTransformedEntryTask
5511 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5512 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5513 super(m, p, b);
5514 this.transformer = transformer; this.action = action;
5515 }
5516 @SuppressWarnings("unchecked") public final void compute() {
5517 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5518 final Action<U> action;
5519 if ((transformer = this.transformer) == null ||
5520 (action = this.action) == null)
5521 throw new NullPointerException();
5522 for (int b; (b = preSplit()) > 0;)
5523 new ForEachTransformedEntryTask<K,V,U>
5524 (map, this, b, transformer, action).fork();
5525 Object v; U u;
5526 while ((v = advance()) != null) {
5527 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5528 action.apply(u);
5529 }
5530 propagateCompletion();
5531 }
5532 }
5533
5534 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5535 extends Traverser<K,V,Void> {
5536 final BiFun<? super K, ? super V, ? extends U> transformer;
5537 final Action<U> action;
5538 ForEachTransformedMappingTask
5539 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5540 BiFun<? super K, ? super V, ? extends U> transformer,
5541 Action<U> action) {
5542 super(m, p, b);
5543 this.transformer = transformer; this.action = action;
5544 }
5545 @SuppressWarnings("unchecked") public final void compute() {
5546 final BiFun<? super K, ? super V, ? extends U> transformer;
5547 final Action<U> action;
5548 if ((transformer = this.transformer) == null ||
5549 (action = this.action) == null)
5550 throw new NullPointerException();
5551 for (int b; (b = preSplit()) > 0;)
5552 new ForEachTransformedMappingTask<K,V,U>
5553 (map, this, b, transformer, action).fork();
5554 Object v; U u;
5555 while ((v = advance()) != null) {
5556 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5557 action.apply(u);
5558 }
5559 propagateCompletion();
5560 }
5561 }
5562
5563 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5564 extends Traverser<K,V,U> {
5565 final Fun<? super K, ? extends U> searchFunction;
5566 final AtomicReference<U> result;
5567 SearchKeysTask
5568 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5569 Fun<? super K, ? extends U> searchFunction,
5570 AtomicReference<U> result) {
5571 super(m, p, b);
5572 this.searchFunction = searchFunction; this.result = result;
5573 }
5574 public final U getRawResult() { return result.get(); }
5575 @SuppressWarnings("unchecked") public final void compute() {
5576 final Fun<? super K, ? extends U> searchFunction;
5577 final AtomicReference<U> result;
5578 if ((searchFunction = this.searchFunction) == null ||
5579 (result = this.result) == null)
5580 throw new NullPointerException();
5581 for (int b;;) {
5582 if (result.get() != null)
5583 return;
5584 if ((b = preSplit()) <= 0)
5585 break;
5586 new SearchKeysTask<K,V,U>
5587 (map, this, b, searchFunction, result).fork();
5588 }
5589 while (result.get() == null) {
5590 U u;
5591 if (advance() == null) {
5592 propagateCompletion();
5593 break;
5594 }
5595 if ((u = searchFunction.apply((K)nextKey)) != null) {
5596 if (result.compareAndSet(null, u))
5597 quietlyCompleteRoot();
5598 break;
5599 }
5600 }
5601 }
5602 }
5603
5604 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5605 extends Traverser<K,V,U> {
5606 final Fun<? super V, ? extends U> searchFunction;
5607 final AtomicReference<U> result;
5608 SearchValuesTask
5609 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5610 Fun<? super V, ? extends U> searchFunction,
5611 AtomicReference<U> result) {
5612 super(m, p, b);
5613 this.searchFunction = searchFunction; this.result = result;
5614 }
5615 public final U getRawResult() { return result.get(); }
5616 @SuppressWarnings("unchecked") public final void compute() {
5617 final Fun<? super V, ? extends U> searchFunction;
5618 final AtomicReference<U> result;
5619 if ((searchFunction = this.searchFunction) == null ||
5620 (result = this.result) == null)
5621 throw new NullPointerException();
5622 for (int b;;) {
5623 if (result.get() != null)
5624 return;
5625 if ((b = preSplit()) <= 0)
5626 break;
5627 new SearchValuesTask<K,V,U>
5628 (map, this, b, searchFunction, result).fork();
5629 }
5630 while (result.get() == null) {
5631 Object v; U u;
5632 if ((v = advance()) == null) {
5633 propagateCompletion();
5634 break;
5635 }
5636 if ((u = searchFunction.apply((V)v)) != null) {
5637 if (result.compareAndSet(null, u))
5638 quietlyCompleteRoot();
5639 break;
5640 }
5641 }
5642 }
5643 }
5644
5645 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5646 extends Traverser<K,V,U> {
5647 final Fun<Entry<K,V>, ? extends U> searchFunction;
5648 final AtomicReference<U> result;
5649 SearchEntriesTask
5650 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5651 Fun<Entry<K,V>, ? extends U> searchFunction,
5652 AtomicReference<U> result) {
5653 super(m, p, b);
5654 this.searchFunction = searchFunction; this.result = result;
5655 }
5656 public final U getRawResult() { return result.get(); }
5657 @SuppressWarnings("unchecked") public final void compute() {
5658 final Fun<Entry<K,V>, ? extends U> searchFunction;
5659 final AtomicReference<U> result;
5660 if ((searchFunction = this.searchFunction) == null ||
5661 (result = this.result) == null)
5662 throw new NullPointerException();
5663 for (int b;;) {
5664 if (result.get() != null)
5665 return;
5666 if ((b = preSplit()) <= 0)
5667 break;
5668 new SearchEntriesTask<K,V,U>
5669 (map, this, b, searchFunction, result).fork();
5670 }
5671 while (result.get() == null) {
5672 Object v; U u;
5673 if ((v = advance()) == null) {
5674 propagateCompletion();
5675 break;
5676 }
5677 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5678 if (result.compareAndSet(null, u))
5679 quietlyCompleteRoot();
5680 return;
5681 }
5682 }
5683 }
5684 }
5685
5686 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5687 extends Traverser<K,V,U> {
5688 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5689 final AtomicReference<U> result;
5690 SearchMappingsTask
5691 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5692 BiFun<? super K, ? super V, ? extends U> searchFunction,
5693 AtomicReference<U> result) {
5694 super(m, p, b);
5695 this.searchFunction = searchFunction; this.result = result;
5696 }
5697 public final U getRawResult() { return result.get(); }
5698 @SuppressWarnings("unchecked") public final void compute() {
5699 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5700 final AtomicReference<U> result;
5701 if ((searchFunction = this.searchFunction) == null ||
5702 (result = this.result) == null)
5703 throw new NullPointerException();
5704 for (int b;;) {
5705 if (result.get() != null)
5706 return;
5707 if ((b = preSplit()) <= 0)
5708 break;
5709 new SearchMappingsTask<K,V,U>
5710 (map, this, b, searchFunction, result).fork();
5711 }
5712 while (result.get() == null) {
5713 Object v; U u;
5714 if ((v = advance()) == null) {
5715 propagateCompletion();
5716 break;
5717 }
5718 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5719 if (result.compareAndSet(null, u))
5720 quietlyCompleteRoot();
5721 break;
5722 }
5723 }
5724 }
5725 }
5726
5727 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5728 extends Traverser<K,V,K> {
5729 final BiFun<? super K, ? super K, ? extends K> reducer;
5730 K result;
5731 ReduceKeysTask<K,V> rights, nextRight;
5732 ReduceKeysTask
5733 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5734 ReduceKeysTask<K,V> nextRight,
5735 BiFun<? super K, ? super K, ? extends K> reducer) {
5736 super(m, p, b); this.nextRight = nextRight;
5737 this.reducer = reducer;
5738 }
5739 public final K getRawResult() { return result; }
5740 @SuppressWarnings("unchecked") public final void compute() {
5741 final BiFun<? super K, ? super K, ? extends K> reducer =
5742 this.reducer;
5743 if (reducer == null)
5744 throw new NullPointerException();
5745 for (int b; (b = preSplit()) > 0;)
5746 (rights = new ReduceKeysTask<K,V>
5747 (map, this, b, rights, reducer)).fork();
5748 K r = null;
5749 while (advance() != null) {
5750 K u = (K)nextKey;
5751 r = (r == null) ? u : reducer.apply(r, u);
5752 }
5753 result = r;
5754 CountedCompleter<?> c;
5755 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756 ReduceKeysTask<K,V>
5757 t = (ReduceKeysTask<K,V>)c,
5758 s = t.rights;
5759 while (s != null) {
5760 K tr, sr;
5761 if ((sr = s.result) != null)
5762 t.result = (((tr = t.result) == null) ? sr :
5763 reducer.apply(tr, sr));
5764 s = t.rights = s.nextRight;
5765 }
5766 }
5767 }
5768 }
5769
5770 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5771 extends Traverser<K,V,V> {
5772 final BiFun<? super V, ? super V, ? extends V> reducer;
5773 V result;
5774 ReduceValuesTask<K,V> rights, nextRight;
5775 ReduceValuesTask
5776 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5777 ReduceValuesTask<K,V> nextRight,
5778 BiFun<? super V, ? super V, ? extends V> reducer) {
5779 super(m, p, b); this.nextRight = nextRight;
5780 this.reducer = reducer;
5781 }
5782 public final V getRawResult() { return result; }
5783 @SuppressWarnings("unchecked") public final void compute() {
5784 final BiFun<? super V, ? super V, ? extends V> reducer =
5785 this.reducer;
5786 if (reducer == null)
5787 throw new NullPointerException();
5788 for (int b; (b = preSplit()) > 0;)
5789 (rights = new ReduceValuesTask<K,V>
5790 (map, this, b, rights, reducer)).fork();
5791 V r = null;
5792 Object v;
5793 while ((v = advance()) != null) {
5794 V u = (V)v;
5795 r = (r == null) ? u : reducer.apply(r, u);
5796 }
5797 result = r;
5798 CountedCompleter<?> c;
5799 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5800 ReduceValuesTask<K,V>
5801 t = (ReduceValuesTask<K,V>)c,
5802 s = t.rights;
5803 while (s != null) {
5804 V tr, sr;
5805 if ((sr = s.result) != null)
5806 t.result = (((tr = t.result) == null) ? sr :
5807 reducer.apply(tr, sr));
5808 s = t.rights = s.nextRight;
5809 }
5810 }
5811 }
5812 }
5813
5814 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5815 extends Traverser<K,V,Map.Entry<K,V>> {
5816 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5817 Map.Entry<K,V> result;
5818 ReduceEntriesTask<K,V> rights, nextRight;
5819 ReduceEntriesTask
5820 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5821 ReduceEntriesTask<K,V> nextRight,
5822 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5823 super(m, p, b); this.nextRight = nextRight;
5824 this.reducer = reducer;
5825 }
5826 public final Map.Entry<K,V> getRawResult() { return result; }
5827 @SuppressWarnings("unchecked") public final void compute() {
5828 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5829 this.reducer;
5830 if (reducer == null)
5831 throw new NullPointerException();
5832 for (int b; (b = preSplit()) > 0;)
5833 (rights = new ReduceEntriesTask<K,V>
5834 (map, this, b, rights, reducer)).fork();
5835 Map.Entry<K,V> r = null;
5836 Object v;
5837 while ((v = advance()) != null) {
5838 Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5839 r = (r == null) ? u : reducer.apply(r, u);
5840 }
5841 result = r;
5842 CountedCompleter<?> c;
5843 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844 ReduceEntriesTask<K,V>
5845 t = (ReduceEntriesTask<K,V>)c,
5846 s = t.rights;
5847 while (s != null) {
5848 Map.Entry<K,V> tr, sr;
5849 if ((sr = s.result) != null)
5850 t.result = (((tr = t.result) == null) ? sr :
5851 reducer.apply(tr, sr));
5852 s = t.rights = s.nextRight;
5853 }
5854 }
5855 }
5856 }
5857
5858 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5859 extends Traverser<K,V,U> {
5860 final Fun<? super K, ? extends U> transformer;
5861 final BiFun<? super U, ? super U, ? extends U> reducer;
5862 U result;
5863 MapReduceKeysTask<K,V,U> rights, nextRight;
5864 MapReduceKeysTask
5865 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5866 MapReduceKeysTask<K,V,U> nextRight,
5867 Fun<? super K, ? extends U> transformer,
5868 BiFun<? super U, ? super U, ? extends U> reducer) {
5869 super(m, p, b); this.nextRight = nextRight;
5870 this.transformer = transformer;
5871 this.reducer = reducer;
5872 }
5873 public final U getRawResult() { return result; }
5874 @SuppressWarnings("unchecked") public final void compute() {
5875 final Fun<? super K, ? extends U> transformer =
5876 this.transformer;
5877 final BiFun<? super U, ? super U, ? extends U> reducer =
5878 this.reducer;
5879 if (transformer == null || reducer == null)
5880 throw new NullPointerException();
5881 for (int b; (b = preSplit()) > 0;)
5882 (rights = new MapReduceKeysTask<K,V,U>
5883 (map, this, b, rights, transformer, reducer)).fork();
5884 U r = null, u;
5885 while (advance() != null) {
5886 if ((u = transformer.apply((K)nextKey)) != null)
5887 r = (r == null) ? u : reducer.apply(r, u);
5888 }
5889 result = r;
5890 CountedCompleter<?> c;
5891 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 MapReduceKeysTask<K,V,U>
5893 t = (MapReduceKeysTask<K,V,U>)c,
5894 s = t.rights;
5895 while (s != null) {
5896 U tr, sr;
5897 if ((sr = s.result) != null)
5898 t.result = (((tr = t.result) == null) ? sr :
5899 reducer.apply(tr, sr));
5900 s = t.rights = s.nextRight;
5901 }
5902 }
5903 }
5904 }
5905
5906 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5907 extends Traverser<K,V,U> {
5908 final Fun<? super V, ? extends U> transformer;
5909 final BiFun<? super U, ? super U, ? extends U> reducer;
5910 U result;
5911 MapReduceValuesTask<K,V,U> rights, nextRight;
5912 MapReduceValuesTask
5913 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5914 MapReduceValuesTask<K,V,U> nextRight,
5915 Fun<? super V, ? extends U> transformer,
5916 BiFun<? super U, ? super U, ? extends U> reducer) {
5917 super(m, p, b); this.nextRight = nextRight;
5918 this.transformer = transformer;
5919 this.reducer = reducer;
5920 }
5921 public final U getRawResult() { return result; }
5922 @SuppressWarnings("unchecked") public final void compute() {
5923 final Fun<? super V, ? extends U> transformer =
5924 this.transformer;
5925 final BiFun<? super U, ? super U, ? extends U> reducer =
5926 this.reducer;
5927 if (transformer == null || reducer == null)
5928 throw new NullPointerException();
5929 for (int b; (b = preSplit()) > 0;)
5930 (rights = new MapReduceValuesTask<K,V,U>
5931 (map, this, b, rights, transformer, reducer)).fork();
5932 U r = null, u;
5933 Object v;
5934 while ((v = advance()) != null) {
5935 if ((u = transformer.apply((V)v)) != null)
5936 r = (r == null) ? u : reducer.apply(r, u);
5937 }
5938 result = r;
5939 CountedCompleter<?> c;
5940 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 MapReduceValuesTask<K,V,U>
5942 t = (MapReduceValuesTask<K,V,U>)c,
5943 s = t.rights;
5944 while (s != null) {
5945 U tr, sr;
5946 if ((sr = s.result) != null)
5947 t.result = (((tr = t.result) == null) ? sr :
5948 reducer.apply(tr, sr));
5949 s = t.rights = s.nextRight;
5950 }
5951 }
5952 }
5953 }
5954
5955 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5956 extends Traverser<K,V,U> {
5957 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5958 final BiFun<? super U, ? super U, ? extends U> reducer;
5959 U result;
5960 MapReduceEntriesTask<K,V,U> rights, nextRight;
5961 MapReduceEntriesTask
5962 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5963 MapReduceEntriesTask<K,V,U> nextRight,
5964 Fun<Map.Entry<K,V>, ? extends U> transformer,
5965 BiFun<? super U, ? super U, ? extends U> reducer) {
5966 super(m, p, b); this.nextRight = nextRight;
5967 this.transformer = transformer;
5968 this.reducer = reducer;
5969 }
5970 public final U getRawResult() { return result; }
5971 @SuppressWarnings("unchecked") public final void compute() {
5972 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5973 this.transformer;
5974 final BiFun<? super U, ? super U, ? extends U> reducer =
5975 this.reducer;
5976 if (transformer == null || reducer == null)
5977 throw new NullPointerException();
5978 for (int b; (b = preSplit()) > 0;)
5979 (rights = new MapReduceEntriesTask<K,V,U>
5980 (map, this, b, rights, transformer, reducer)).fork();
5981 U r = null, u;
5982 Object v;
5983 while ((v = advance()) != null) {
5984 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5985 r = (r == null) ? u : reducer.apply(r, u);
5986 }
5987 result = r;
5988 CountedCompleter<?> c;
5989 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 MapReduceEntriesTask<K,V,U>
5991 t = (MapReduceEntriesTask<K,V,U>)c,
5992 s = t.rights;
5993 while (s != null) {
5994 U tr, sr;
5995 if ((sr = s.result) != null)
5996 t.result = (((tr = t.result) == null) ? sr :
5997 reducer.apply(tr, sr));
5998 s = t.rights = s.nextRight;
5999 }
6000 }
6001 }
6002 }
6003
6004 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6005 extends Traverser<K,V,U> {
6006 final BiFun<? super K, ? super V, ? extends U> transformer;
6007 final BiFun<? super U, ? super U, ? extends U> reducer;
6008 U result;
6009 MapReduceMappingsTask<K,V,U> rights, nextRight;
6010 MapReduceMappingsTask
6011 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6012 MapReduceMappingsTask<K,V,U> nextRight,
6013 BiFun<? super K, ? super V, ? extends U> transformer,
6014 BiFun<? super U, ? super U, ? extends U> reducer) {
6015 super(m, p, b); this.nextRight = nextRight;
6016 this.transformer = transformer;
6017 this.reducer = reducer;
6018 }
6019 public final U getRawResult() { return result; }
6020 @SuppressWarnings("unchecked") public final void compute() {
6021 final BiFun<? super K, ? super V, ? extends U> transformer =
6022 this.transformer;
6023 final BiFun<? super U, ? super U, ? extends U> reducer =
6024 this.reducer;
6025 if (transformer == null || reducer == null)
6026 throw new NullPointerException();
6027 for (int b; (b = preSplit()) > 0;)
6028 (rights = new MapReduceMappingsTask<K,V,U>
6029 (map, this, b, rights, transformer, reducer)).fork();
6030 U r = null, u;
6031 Object v;
6032 while ((v = advance()) != null) {
6033 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6034 r = (r == null) ? u : reducer.apply(r, u);
6035 }
6036 result = r;
6037 CountedCompleter<?> c;
6038 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039 MapReduceMappingsTask<K,V,U>
6040 t = (MapReduceMappingsTask<K,V,U>)c,
6041 s = t.rights;
6042 while (s != null) {
6043 U tr, sr;
6044 if ((sr = s.result) != null)
6045 t.result = (((tr = t.result) == null) ? sr :
6046 reducer.apply(tr, sr));
6047 s = t.rights = s.nextRight;
6048 }
6049 }
6050 }
6051 }
6052
6053 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6054 extends Traverser<K,V,Double> {
6055 final ObjectToDouble<? super K> transformer;
6056 final DoubleByDoubleToDouble reducer;
6057 final double basis;
6058 double result;
6059 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6060 MapReduceKeysToDoubleTask
6061 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6062 MapReduceKeysToDoubleTask<K,V> nextRight,
6063 ObjectToDouble<? super K> transformer,
6064 double basis,
6065 DoubleByDoubleToDouble reducer) {
6066 super(m, p, b); this.nextRight = nextRight;
6067 this.transformer = transformer;
6068 this.basis = basis; this.reducer = reducer;
6069 }
6070 public final Double getRawResult() { return result; }
6071 @SuppressWarnings("unchecked") public final void compute() {
6072 final ObjectToDouble<? super K> transformer =
6073 this.transformer;
6074 final DoubleByDoubleToDouble reducer = this.reducer;
6075 if (transformer == null || reducer == null)
6076 throw new NullPointerException();
6077 double r = this.basis;
6078 for (int b; (b = preSplit()) > 0;)
6079 (rights = new MapReduceKeysToDoubleTask<K,V>
6080 (map, this, b, rights, transformer, r, reducer)).fork();
6081 while (advance() != null)
6082 r = reducer.apply(r, transformer.apply((K)nextKey));
6083 result = r;
6084 CountedCompleter<?> c;
6085 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6086 MapReduceKeysToDoubleTask<K,V>
6087 t = (MapReduceKeysToDoubleTask<K,V>)c,
6088 s = t.rights;
6089 while (s != null) {
6090 t.result = reducer.apply(t.result, s.result);
6091 s = t.rights = s.nextRight;
6092 }
6093 }
6094 }
6095 }
6096
6097 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6098 extends Traverser<K,V,Double> {
6099 final ObjectToDouble<? super V> transformer;
6100 final DoubleByDoubleToDouble reducer;
6101 final double basis;
6102 double result;
6103 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6104 MapReduceValuesToDoubleTask
6105 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6106 MapReduceValuesToDoubleTask<K,V> nextRight,
6107 ObjectToDouble<? super V> transformer,
6108 double basis,
6109 DoubleByDoubleToDouble reducer) {
6110 super(m, p, b); this.nextRight = nextRight;
6111 this.transformer = transformer;
6112 this.basis = basis; this.reducer = reducer;
6113 }
6114 public final Double getRawResult() { return result; }
6115 @SuppressWarnings("unchecked") public final void compute() {
6116 final ObjectToDouble<? super V> transformer =
6117 this.transformer;
6118 final DoubleByDoubleToDouble reducer = this.reducer;
6119 if (transformer == null || reducer == null)
6120 throw new NullPointerException();
6121 double r = this.basis;
6122 for (int b; (b = preSplit()) > 0;)
6123 (rights = new MapReduceValuesToDoubleTask<K,V>
6124 (map, this, b, rights, transformer, r, reducer)).fork();
6125 Object v;
6126 while ((v = advance()) != null)
6127 r = reducer.apply(r, transformer.apply((V)v));
6128 result = r;
6129 CountedCompleter<?> c;
6130 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6131 MapReduceValuesToDoubleTask<K,V>
6132 t = (MapReduceValuesToDoubleTask<K,V>)c,
6133 s = t.rights;
6134 while (s != null) {
6135 t.result = reducer.apply(t.result, s.result);
6136 s = t.rights = s.nextRight;
6137 }
6138 }
6139 }
6140 }
6141
6142 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6143 extends Traverser<K,V,Double> {
6144 final ObjectToDouble<Map.Entry<K,V>> transformer;
6145 final DoubleByDoubleToDouble reducer;
6146 final double basis;
6147 double result;
6148 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6149 MapReduceEntriesToDoubleTask
6150 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6151 MapReduceEntriesToDoubleTask<K,V> nextRight,
6152 ObjectToDouble<Map.Entry<K,V>> transformer,
6153 double basis,
6154 DoubleByDoubleToDouble reducer) {
6155 super(m, p, b); this.nextRight = nextRight;
6156 this.transformer = transformer;
6157 this.basis = basis; this.reducer = reducer;
6158 }
6159 public final Double getRawResult() { return result; }
6160 @SuppressWarnings("unchecked") public final void compute() {
6161 final ObjectToDouble<Map.Entry<K,V>> transformer =
6162 this.transformer;
6163 final DoubleByDoubleToDouble reducer = this.reducer;
6164 if (transformer == null || reducer == null)
6165 throw new NullPointerException();
6166 double r = this.basis;
6167 for (int b; (b = preSplit()) > 0;)
6168 (rights = new MapReduceEntriesToDoubleTask<K,V>
6169 (map, this, b, rights, transformer, r, reducer)).fork();
6170 Object v;
6171 while ((v = advance()) != null)
6172 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6173 result = r;
6174 CountedCompleter<?> c;
6175 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6176 MapReduceEntriesToDoubleTask<K,V>
6177 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6178 s = t.rights;
6179 while (s != null) {
6180 t.result = reducer.apply(t.result, s.result);
6181 s = t.rights = s.nextRight;
6182 }
6183 }
6184 }
6185 }
6186
6187 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6188 extends Traverser<K,V,Double> {
6189 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6190 final DoubleByDoubleToDouble reducer;
6191 final double basis;
6192 double result;
6193 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6194 MapReduceMappingsToDoubleTask
6195 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6196 MapReduceMappingsToDoubleTask<K,V> nextRight,
6197 ObjectByObjectToDouble<? super K, ? super V> transformer,
6198 double basis,
6199 DoubleByDoubleToDouble reducer) {
6200 super(m, p, b); this.nextRight = nextRight;
6201 this.transformer = transformer;
6202 this.basis = basis; this.reducer = reducer;
6203 }
6204 public final Double getRawResult() { return result; }
6205 @SuppressWarnings("unchecked") public final void compute() {
6206 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6207 this.transformer;
6208 final DoubleByDoubleToDouble reducer = this.reducer;
6209 if (transformer == null || reducer == null)
6210 throw new NullPointerException();
6211 double r = this.basis;
6212 for (int b; (b = preSplit()) > 0;)
6213 (rights = new MapReduceMappingsToDoubleTask<K,V>
6214 (map, this, b, rights, transformer, r, reducer)).fork();
6215 Object v;
6216 while ((v = advance()) != null)
6217 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6218 result = r;
6219 CountedCompleter<?> c;
6220 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6221 MapReduceMappingsToDoubleTask<K,V>
6222 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6223 s = t.rights;
6224 while (s != null) {
6225 t.result = reducer.apply(t.result, s.result);
6226 s = t.rights = s.nextRight;
6227 }
6228 }
6229 }
6230 }
6231
6232 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6233 extends Traverser<K,V,Long> {
6234 final ObjectToLong<? super K> transformer;
6235 final LongByLongToLong reducer;
6236 final long basis;
6237 long result;
6238 MapReduceKeysToLongTask<K,V> rights, nextRight;
6239 MapReduceKeysToLongTask
6240 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6241 MapReduceKeysToLongTask<K,V> nextRight,
6242 ObjectToLong<? super K> transformer,
6243 long basis,
6244 LongByLongToLong reducer) {
6245 super(m, p, b); this.nextRight = nextRight;
6246 this.transformer = transformer;
6247 this.basis = basis; this.reducer = reducer;
6248 }
6249 public final Long getRawResult() { return result; }
6250 @SuppressWarnings("unchecked") public final void compute() {
6251 final ObjectToLong<? super K> transformer =
6252 this.transformer;
6253 final LongByLongToLong reducer = this.reducer;
6254 if (transformer == null || reducer == null)
6255 throw new NullPointerException();
6256 long r = this.basis;
6257 for (int b; (b = preSplit()) > 0;)
6258 (rights = new MapReduceKeysToLongTask<K,V>
6259 (map, this, b, rights, transformer, r, reducer)).fork();
6260 while (advance() != null)
6261 r = reducer.apply(r, transformer.apply((K)nextKey));
6262 result = r;
6263 CountedCompleter<?> c;
6264 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6265 MapReduceKeysToLongTask<K,V>
6266 t = (MapReduceKeysToLongTask<K,V>)c,
6267 s = t.rights;
6268 while (s != null) {
6269 t.result = reducer.apply(t.result, s.result);
6270 s = t.rights = s.nextRight;
6271 }
6272 }
6273 }
6274 }
6275
6276 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6277 extends Traverser<K,V,Long> {
6278 final ObjectToLong<? super V> transformer;
6279 final LongByLongToLong reducer;
6280 final long basis;
6281 long result;
6282 MapReduceValuesToLongTask<K,V> rights, nextRight;
6283 MapReduceValuesToLongTask
6284 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6285 MapReduceValuesToLongTask<K,V> nextRight,
6286 ObjectToLong<? super V> transformer,
6287 long basis,
6288 LongByLongToLong reducer) {
6289 super(m, p, b); this.nextRight = nextRight;
6290 this.transformer = transformer;
6291 this.basis = basis; this.reducer = reducer;
6292 }
6293 public final Long getRawResult() { return result; }
6294 @SuppressWarnings("unchecked") public final void compute() {
6295 final ObjectToLong<? super V> transformer =
6296 this.transformer;
6297 final LongByLongToLong reducer = this.reducer;
6298 if (transformer == null || reducer == null)
6299 throw new NullPointerException();
6300 long r = this.basis;
6301 for (int b; (b = preSplit()) > 0;)
6302 (rights = new MapReduceValuesToLongTask<K,V>
6303 (map, this, b, rights, transformer, r, reducer)).fork();
6304 Object v;
6305 while ((v = advance()) != null)
6306 r = reducer.apply(r, transformer.apply((V)v));
6307 result = r;
6308 CountedCompleter<?> c;
6309 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6310 MapReduceValuesToLongTask<K,V>
6311 t = (MapReduceValuesToLongTask<K,V>)c,
6312 s = t.rights;
6313 while (s != null) {
6314 t.result = reducer.apply(t.result, s.result);
6315 s = t.rights = s.nextRight;
6316 }
6317 }
6318 }
6319 }
6320
6321 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6322 extends Traverser<K,V,Long> {
6323 final ObjectToLong<Map.Entry<K,V>> transformer;
6324 final LongByLongToLong reducer;
6325 final long basis;
6326 long result;
6327 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6328 MapReduceEntriesToLongTask
6329 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6330 MapReduceEntriesToLongTask<K,V> nextRight,
6331 ObjectToLong<Map.Entry<K,V>> transformer,
6332 long basis,
6333 LongByLongToLong reducer) {
6334 super(m, p, b); this.nextRight = nextRight;
6335 this.transformer = transformer;
6336 this.basis = basis; this.reducer = reducer;
6337 }
6338 public final Long getRawResult() { return result; }
6339 @SuppressWarnings("unchecked") public final void compute() {
6340 final ObjectToLong<Map.Entry<K,V>> transformer =
6341 this.transformer;
6342 final LongByLongToLong reducer = this.reducer;
6343 if (transformer == null || reducer == null)
6344 throw new NullPointerException();
6345 long r = this.basis;
6346 for (int b; (b = preSplit()) > 0;)
6347 (rights = new MapReduceEntriesToLongTask<K,V>
6348 (map, this, b, rights, transformer, r, reducer)).fork();
6349 Object v;
6350 while ((v = advance()) != null)
6351 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6352 result = r;
6353 CountedCompleter<?> c;
6354 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6355 MapReduceEntriesToLongTask<K,V>
6356 t = (MapReduceEntriesToLongTask<K,V>)c,
6357 s = t.rights;
6358 while (s != null) {
6359 t.result = reducer.apply(t.result, s.result);
6360 s = t.rights = s.nextRight;
6361 }
6362 }
6363 }
6364 }
6365
6366 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6367 extends Traverser<K,V,Long> {
6368 final ObjectByObjectToLong<? super K, ? super V> transformer;
6369 final LongByLongToLong reducer;
6370 final long basis;
6371 long result;
6372 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6373 MapReduceMappingsToLongTask
6374 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6375 MapReduceMappingsToLongTask<K,V> nextRight,
6376 ObjectByObjectToLong<? super K, ? super V> transformer,
6377 long basis,
6378 LongByLongToLong reducer) {
6379 super(m, p, b); this.nextRight = nextRight;
6380 this.transformer = transformer;
6381 this.basis = basis; this.reducer = reducer;
6382 }
6383 public final Long getRawResult() { return result; }
6384 @SuppressWarnings("unchecked") public final void compute() {
6385 final ObjectByObjectToLong<? super K, ? super V> transformer =
6386 this.transformer;
6387 final LongByLongToLong reducer = this.reducer;
6388 if (transformer == null || reducer == null)
6389 throw new NullPointerException();
6390 long r = this.basis;
6391 for (int b; (b = preSplit()) > 0;)
6392 (rights = new MapReduceMappingsToLongTask<K,V>
6393 (map, this, b, rights, transformer, r, reducer)).fork();
6394 Object v;
6395 while ((v = advance()) != null)
6396 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6397 result = r;
6398 CountedCompleter<?> c;
6399 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6400 MapReduceMappingsToLongTask<K,V>
6401 t = (MapReduceMappingsToLongTask<K,V>)c,
6402 s = t.rights;
6403 while (s != null) {
6404 t.result = reducer.apply(t.result, s.result);
6405 s = t.rights = s.nextRight;
6406 }
6407 }
6408 }
6409 }
6410
6411 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6412 extends Traverser<K,V,Integer> {
6413 final ObjectToInt<? super K> transformer;
6414 final IntByIntToInt reducer;
6415 final int basis;
6416 int result;
6417 MapReduceKeysToIntTask<K,V> rights, nextRight;
6418 MapReduceKeysToIntTask
6419 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6420 MapReduceKeysToIntTask<K,V> nextRight,
6421 ObjectToInt<? super K> transformer,
6422 int basis,
6423 IntByIntToInt reducer) {
6424 super(m, p, b); this.nextRight = nextRight;
6425 this.transformer = transformer;
6426 this.basis = basis; this.reducer = reducer;
6427 }
6428 public final Integer getRawResult() { return result; }
6429 @SuppressWarnings("unchecked") public final void compute() {
6430 final ObjectToInt<? super K> transformer =
6431 this.transformer;
6432 final IntByIntToInt reducer = this.reducer;
6433 if (transformer == null || reducer == null)
6434 throw new NullPointerException();
6435 int r = this.basis;
6436 for (int b; (b = preSplit()) > 0;)
6437 (rights = new MapReduceKeysToIntTask<K,V>
6438 (map, this, b, rights, transformer, r, reducer)).fork();
6439 while (advance() != null)
6440 r = reducer.apply(r, transformer.apply((K)nextKey));
6441 result = r;
6442 CountedCompleter<?> c;
6443 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6444 MapReduceKeysToIntTask<K,V>
6445 t = (MapReduceKeysToIntTask<K,V>)c,
6446 s = t.rights;
6447 while (s != null) {
6448 t.result = reducer.apply(t.result, s.result);
6449 s = t.rights = s.nextRight;
6450 }
6451 }
6452 }
6453 }
6454
6455 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6456 extends Traverser<K,V,Integer> {
6457 final ObjectToInt<? super V> transformer;
6458 final IntByIntToInt reducer;
6459 final int basis;
6460 int result;
6461 MapReduceValuesToIntTask<K,V> rights, nextRight;
6462 MapReduceValuesToIntTask
6463 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6464 MapReduceValuesToIntTask<K,V> nextRight,
6465 ObjectToInt<? super V> transformer,
6466 int basis,
6467 IntByIntToInt reducer) {
6468 super(m, p, b); this.nextRight = nextRight;
6469 this.transformer = transformer;
6470 this.basis = basis; this.reducer = reducer;
6471 }
6472 public final Integer getRawResult() { return result; }
6473 @SuppressWarnings("unchecked") public final void compute() {
6474 final ObjectToInt<? super V> transformer =
6475 this.transformer;
6476 final IntByIntToInt reducer = this.reducer;
6477 if (transformer == null || reducer == null)
6478 throw new NullPointerException();
6479 int r = this.basis;
6480 for (int b; (b = preSplit()) > 0;)
6481 (rights = new MapReduceValuesToIntTask<K,V>
6482 (map, this, b, rights, transformer, r, reducer)).fork();
6483 Object v;
6484 while ((v = advance()) != null)
6485 r = reducer.apply(r, transformer.apply((V)v));
6486 result = r;
6487 CountedCompleter<?> c;
6488 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6489 MapReduceValuesToIntTask<K,V>
6490 t = (MapReduceValuesToIntTask<K,V>)c,
6491 s = t.rights;
6492 while (s != null) {
6493 t.result = reducer.apply(t.result, s.result);
6494 s = t.rights = s.nextRight;
6495 }
6496 }
6497 }
6498 }
6499
6500 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6501 extends Traverser<K,V,Integer> {
6502 final ObjectToInt<Map.Entry<K,V>> transformer;
6503 final IntByIntToInt reducer;
6504 final int basis;
6505 int result;
6506 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6507 MapReduceEntriesToIntTask
6508 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6509 MapReduceEntriesToIntTask<K,V> nextRight,
6510 ObjectToInt<Map.Entry<K,V>> transformer,
6511 int basis,
6512 IntByIntToInt reducer) {
6513 super(m, p, b); this.nextRight = nextRight;
6514 this.transformer = transformer;
6515 this.basis = basis; this.reducer = reducer;
6516 }
6517 public final Integer getRawResult() { return result; }
6518 @SuppressWarnings("unchecked") public final void compute() {
6519 final ObjectToInt<Map.Entry<K,V>> transformer =
6520 this.transformer;
6521 final IntByIntToInt reducer = this.reducer;
6522 if (transformer == null || reducer == null)
6523 throw new NullPointerException();
6524 int r = this.basis;
6525 for (int b; (b = preSplit()) > 0;)
6526 (rights = new MapReduceEntriesToIntTask<K,V>
6527 (map, this, b, rights, transformer, r, reducer)).fork();
6528 Object v;
6529 while ((v = advance()) != null)
6530 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6531 result = r;
6532 CountedCompleter<?> c;
6533 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6534 MapReduceEntriesToIntTask<K,V>
6535 t = (MapReduceEntriesToIntTask<K,V>)c,
6536 s = t.rights;
6537 while (s != null) {
6538 t.result = reducer.apply(t.result, s.result);
6539 s = t.rights = s.nextRight;
6540 }
6541 }
6542 }
6543 }
6544
6545 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6546 extends Traverser<K,V,Integer> {
6547 final ObjectByObjectToInt<? super K, ? super V> transformer;
6548 final IntByIntToInt reducer;
6549 final int basis;
6550 int result;
6551 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6552 MapReduceMappingsToIntTask
6553 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6554 MapReduceMappingsToIntTask<K,V> nextRight,
6555 ObjectByObjectToInt<? super K, ? super V> transformer,
6556 int basis,
6557 IntByIntToInt reducer) {
6558 super(m, p, b); this.nextRight = nextRight;
6559 this.transformer = transformer;
6560 this.basis = basis; this.reducer = reducer;
6561 }
6562 public final Integer getRawResult() { return result; }
6563 @SuppressWarnings("unchecked") public final void compute() {
6564 final ObjectByObjectToInt<? super K, ? super V> transformer =
6565 this.transformer;
6566 final IntByIntToInt reducer = this.reducer;
6567 if (transformer == null || reducer == null)
6568 throw new NullPointerException();
6569 int r = this.basis;
6570 for (int b; (b = preSplit()) > 0;)
6571 (rights = new MapReduceMappingsToIntTask<K,V>
6572 (map, this, b, rights, transformer, r, reducer)).fork();
6573 Object v;
6574 while ((v = advance()) != null)
6575 r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6576 result = r;
6577 CountedCompleter<?> c;
6578 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6579 MapReduceMappingsToIntTask<K,V>
6580 t = (MapReduceMappingsToIntTask<K,V>)c,
6581 s = t.rights;
6582 while (s != null) {
6583 t.result = reducer.apply(t.result, s.result);
6584 s = t.rights = s.nextRight;
6585 }
6586 }
6587 }
6588 }
6589
6590
6591 // Unsafe mechanics
6592 private static final sun.misc.Unsafe UNSAFE;
6593 private static final long counterOffset;
6594 private static final long sizeCtlOffset;
6595 private static final long ABASE;
6596 private static final int ASHIFT;
6597
6598 static {
6599 int ss;
6600 try {
6601 UNSAFE = sun.misc.Unsafe.getUnsafe();
6602 Class<?> k = ConcurrentHashMap.class;
6603 counterOffset = UNSAFE.objectFieldOffset
6604 (k.getDeclaredField("counter"));
6605 sizeCtlOffset = UNSAFE.objectFieldOffset
6606 (k.getDeclaredField("sizeCtl"));
6607 Class<?> sc = Node[].class;
6608 ABASE = UNSAFE.arrayBaseOffset(sc);
6609 ss = UNSAFE.arrayIndexScale(sc);
6610 } catch (Exception e) {
6611 throw new Error(e);
6612 }
6613 if ((ss & (ss-1)) != 0)
6614 throw new Error("data type scale not a power of two");
6615 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6616 }
6617 }