ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.163
Committed: Thu Jan 17 14:13:00 2013 UTC (11 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.162: +4 -1 lines
Log Message:
test conformance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent}. For example, to add a count to a {@code
99 * ConcurrentHashMap<String,LongAdder> freqs}, you can use {@code
100 * freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </li>
153 * </ul>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K, V>
218 implements ConcurrentMap<K, V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1)
1696 addCount(delta, len);
1697 break;
1698 }
1699 }
1700 }
1701 }
1702 } finally {
1703 if (delta != 0L)
1704 addCount(delta, 2);
1705 }
1706 if (npe)
1707 throw new NullPointerException();
1708 }
1709
1710 /**
1711 * Implementation for clear. Steps through each bin, removing all
1712 * nodes.
1713 */
1714 @SuppressWarnings("unchecked") private final void internalClear() {
1715 long delta = 0L; // negative number of deletions
1716 int i = 0;
1717 Node<V>[] tab = table;
1718 while (tab != null && i < tab.length) {
1719 Node<V> f = tabAt(tab, i);
1720 if (f == null)
1721 ++i;
1722 else if (f.hash < 0) {
1723 Object fk;
1724 if ((fk = f.key) instanceof TreeBin) {
1725 TreeBin<V> t = (TreeBin<V>)fk;
1726 t.acquire(0);
1727 try {
1728 if (tabAt(tab, i) == f) {
1729 for (Node<V> p = t.first; p != null; p = p.next) {
1730 if (p.val != null) { // (currently always true)
1731 p.val = null;
1732 --delta;
1733 }
1734 }
1735 t.first = null;
1736 t.root = null;
1737 ++i;
1738 }
1739 } finally {
1740 t.release(0);
1741 }
1742 }
1743 else
1744 tab = (Node<V>[])fk;
1745 }
1746 else {
1747 synchronized (f) {
1748 if (tabAt(tab, i) == f) {
1749 for (Node<V> e = f; e != null; e = e.next) {
1750 if (e.val != null) { // (currently always true)
1751 e.val = null;
1752 --delta;
1753 }
1754 }
1755 setTabAt(tab, i, null);
1756 ++i;
1757 }
1758 }
1759 }
1760 }
1761 if (delta != 0L)
1762 addCount(delta, -1);
1763 }
1764
1765 /* ---------------- Table Initialization and Resizing -------------- */
1766
1767 /**
1768 * Returns a power of two table size for the given desired capacity.
1769 * See Hackers Delight, sec 3.2
1770 */
1771 private static final int tableSizeFor(int c) {
1772 int n = c - 1;
1773 n |= n >>> 1;
1774 n |= n >>> 2;
1775 n |= n >>> 4;
1776 n |= n >>> 8;
1777 n |= n >>> 16;
1778 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1779 }
1780
1781 /**
1782 * Initializes table, using the size recorded in sizeCtl.
1783 */
1784 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1785 Node<V>[] tab; int sc;
1786 while ((tab = table) == null) {
1787 if ((sc = sizeCtl) < 0)
1788 Thread.yield(); // lost initialization race; just spin
1789 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1790 try {
1791 if ((tab = table) == null) {
1792 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1793 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1794 table = tab = (Node<V>[])tb;
1795 sc = n - (n >>> 2);
1796 }
1797 } finally {
1798 sizeCtl = sc;
1799 }
1800 break;
1801 }
1802 }
1803 return tab;
1804 }
1805
1806 /**
1807 * Adds to count, and if table is too small and not already
1808 * resizing, initiates transfer. If already resizing, helps
1809 * perform transfer if work is available. Rechecks occupancy
1810 * after a transfer to see if another resize is already needed
1811 * because resizings are lagging additions.
1812 *
1813 * @param x the count to add
1814 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1815 */
1816 private final void addCount(long x, int check) {
1817 Cell[] as; long b, s;
1818 if ((as = counterCells) != null ||
1819 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1820 Cell a; long v; int m;
1821 boolean uncontended = true;
1822 if (as == null || (m = as.length - 1) < 0 ||
1823 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1824 !(uncontended =
1825 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1826 fullAddCount(x, uncontended);
1827 return;
1828 }
1829 if (check <= 1)
1830 return;
1831 s = sumCount();
1832 }
1833 if (check >= 0) {
1834 Node<V>[] tab, nt; int sc;
1835 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1836 tab.length < MAXIMUM_CAPACITY) {
1837 if (sc < 0) {
1838 if (sc == -1 || transferIndex <= transferOrigin ||
1839 (nt = nextTable) == null)
1840 break;
1841 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1842 transfer(tab, nt);
1843 }
1844 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1845 transfer(tab, null);
1846 s = sumCount();
1847 }
1848 }
1849 }
1850
1851 /**
1852 * Tries to presize table to accommodate the given number of elements.
1853 *
1854 * @param size number of elements (doesn't need to be perfectly accurate)
1855 */
1856 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1857 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1858 tableSizeFor(size + (size >>> 1) + 1);
1859 int sc;
1860 while ((sc = sizeCtl) >= 0) {
1861 Node<V>[] tab = table; int n;
1862 if (tab == null || (n = tab.length) == 0) {
1863 n = (sc > c) ? sc : c;
1864 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1865 try {
1866 if (table == tab) {
1867 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1868 table = (Node<V>[])tb;
1869 sc = n - (n >>> 2);
1870 }
1871 } finally {
1872 sizeCtl = sc;
1873 }
1874 }
1875 }
1876 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1877 break;
1878 else if (tab == table &&
1879 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1880 transfer(tab, null);
1881 }
1882 }
1883
1884 /*
1885 * Moves and/or copies the nodes in each bin to new table. See
1886 * above for explanation.
1887 */
1888 @SuppressWarnings("unchecked") private final void transfer
1889 (Node<V>[] tab, Node<V>[] nextTab) {
1890 int n = tab.length, stride;
1891 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1892 stride = MIN_TRANSFER_STRIDE; // subdivide range
1893 if (nextTab == null) { // initiating
1894 try {
1895 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1896 nextTab = (Node<V>[])tb;
1897 } catch (Throwable ex) { // try to cope with OOME
1898 sizeCtl = Integer.MAX_VALUE;
1899 return;
1900 }
1901 nextTable = nextTab;
1902 transferOrigin = n;
1903 transferIndex = n;
1904 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1905 for (int k = n; k > 0;) { // progressively reveal ready slots
1906 int nextk = (k > stride) ? k - stride : 0;
1907 for (int m = nextk; m < k; ++m)
1908 nextTab[m] = rev;
1909 for (int m = n + nextk; m < n + k; ++m)
1910 nextTab[m] = rev;
1911 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1912 }
1913 }
1914 int nextn = nextTab.length;
1915 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1916 boolean advance = true;
1917 for (int i = 0, bound = 0;;) {
1918 int nextIndex, nextBound; Node<V> f; Object fk;
1919 while (advance) {
1920 if (--i >= bound)
1921 advance = false;
1922 else if ((nextIndex = transferIndex) <= transferOrigin) {
1923 i = -1;
1924 advance = false;
1925 }
1926 else if (U.compareAndSwapInt
1927 (this, TRANSFERINDEX, nextIndex,
1928 nextBound = (nextIndex > stride ?
1929 nextIndex - stride : 0))) {
1930 bound = nextBound;
1931 i = nextIndex - 1;
1932 advance = false;
1933 }
1934 }
1935 if (i < 0 || i >= n || i + n >= nextn) {
1936 for (int sc;;) {
1937 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1938 if (sc == -1) {
1939 nextTable = null;
1940 table = nextTab;
1941 sizeCtl = (n << 1) - (n >>> 1);
1942 }
1943 return;
1944 }
1945 }
1946 }
1947 else if ((f = tabAt(tab, i)) == null) {
1948 if (casTabAt(tab, i, null, fwd)) {
1949 setTabAt(nextTab, i, null);
1950 setTabAt(nextTab, i + n, null);
1951 advance = true;
1952 }
1953 }
1954 else if (f.hash >= 0) {
1955 synchronized (f) {
1956 if (tabAt(tab, i) == f) {
1957 int runBit = f.hash & n;
1958 Node<V> lastRun = f, lo = null, hi = null;
1959 for (Node<V> p = f.next; p != null; p = p.next) {
1960 int b = p.hash & n;
1961 if (b != runBit) {
1962 runBit = b;
1963 lastRun = p;
1964 }
1965 }
1966 if (runBit == 0)
1967 lo = lastRun;
1968 else
1969 hi = lastRun;
1970 for (Node<V> p = f; p != lastRun; p = p.next) {
1971 int ph = p.hash;
1972 Object pk = p.key; V pv = p.val;
1973 if ((ph & n) == 0)
1974 lo = new Node<V>(ph, pk, pv, lo);
1975 else
1976 hi = new Node<V>(ph, pk, pv, hi);
1977 }
1978 setTabAt(nextTab, i, lo);
1979 setTabAt(nextTab, i + n, hi);
1980 setTabAt(tab, i, fwd);
1981 advance = true;
1982 }
1983 }
1984 }
1985 else if ((fk = f.key) instanceof TreeBin) {
1986 TreeBin<V> t = (TreeBin<V>)fk;
1987 t.acquire(0);
1988 try {
1989 if (tabAt(tab, i) == f) {
1990 TreeBin<V> lt = new TreeBin<V>();
1991 TreeBin<V> ht = new TreeBin<V>();
1992 int lc = 0, hc = 0;
1993 for (Node<V> e = t.first; e != null; e = e.next) {
1994 int h = e.hash;
1995 Object k = e.key; V v = e.val;
1996 if ((h & n) == 0) {
1997 ++lc;
1998 lt.putTreeNode(h, k, v);
1999 }
2000 else {
2001 ++hc;
2002 ht.putTreeNode(h, k, v);
2003 }
2004 }
2005 Node<V> ln, hn; // throw away trees if too small
2006 if (lc < TREE_THRESHOLD) {
2007 ln = null;
2008 for (Node<V> p = lt.first; p != null; p = p.next)
2009 ln = new Node<V>(p.hash, p.key, p.val, ln);
2010 }
2011 else
2012 ln = new Node<V>(MOVED, lt, null, null);
2013 setTabAt(nextTab, i, ln);
2014 if (hc < TREE_THRESHOLD) {
2015 hn = null;
2016 for (Node<V> p = ht.first; p != null; p = p.next)
2017 hn = new Node<V>(p.hash, p.key, p.val, hn);
2018 }
2019 else
2020 hn = new Node<V>(MOVED, ht, null, null);
2021 setTabAt(nextTab, i + n, hn);
2022 setTabAt(tab, i, fwd);
2023 advance = true;
2024 }
2025 } finally {
2026 t.release(0);
2027 }
2028 }
2029 else
2030 advance = true; // already processed
2031 }
2032 }
2033
2034 /* ---------------- Counter support -------------- */
2035
2036 final long sumCount() {
2037 Cell[] as = counterCells; Cell a;
2038 long sum = baseCount;
2039 if (as != null) {
2040 for (int i = 0; i < as.length; ++i) {
2041 if ((a = as[i]) != null)
2042 sum += a.value;
2043 }
2044 }
2045 return sum;
2046 }
2047
2048 // See LongAdder version for explanation
2049 private final void fullAddCount(long x, boolean wasUncontended) {
2050 int h;
2051 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2052 ThreadLocalRandom.localInit(); // force initialization
2053 h = ThreadLocalRandom.getProbe();
2054 wasUncontended = true;
2055 }
2056 boolean collide = false; // True if last slot nonempty
2057 for (;;) {
2058 Cell[] as; Cell a; int n; long v;
2059 if ((as = counterCells) != null && (n = as.length) > 0) {
2060 if ((a = as[(n - 1) & h]) == null) {
2061 if (cellsBusy == 0) { // Try to attach new Cell
2062 Cell r = new Cell(x); // Optimistic create
2063 if (cellsBusy == 0 &&
2064 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2065 boolean created = false;
2066 try { // Recheck under lock
2067 Cell[] rs; int m, j;
2068 if ((rs = counterCells) != null &&
2069 (m = rs.length) > 0 &&
2070 rs[j = (m - 1) & h] == null) {
2071 rs[j] = r;
2072 created = true;
2073 }
2074 } finally {
2075 cellsBusy = 0;
2076 }
2077 if (created)
2078 break;
2079 continue; // Slot is now non-empty
2080 }
2081 }
2082 collide = false;
2083 }
2084 else if (!wasUncontended) // CAS already known to fail
2085 wasUncontended = true; // Continue after rehash
2086 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2087 break;
2088 else if (counterCells != as || n >= NCPU)
2089 collide = false; // At max size or stale
2090 else if (!collide)
2091 collide = true;
2092 else if (cellsBusy == 0 &&
2093 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2094 try {
2095 if (counterCells == as) {// Expand table unless stale
2096 Cell[] rs = new Cell[n << 1];
2097 for (int i = 0; i < n; ++i)
2098 rs[i] = as[i];
2099 counterCells = rs;
2100 }
2101 } finally {
2102 cellsBusy = 0;
2103 }
2104 collide = false;
2105 continue; // Retry with expanded table
2106 }
2107 h = ThreadLocalRandom.advanceProbe(h);
2108 }
2109 else if (cellsBusy == 0 && counterCells == as &&
2110 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2111 boolean init = false;
2112 try { // Initialize table
2113 if (counterCells == as) {
2114 Cell[] rs = new Cell[2];
2115 rs[h & 1] = new Cell(x);
2116 counterCells = rs;
2117 init = true;
2118 }
2119 } finally {
2120 cellsBusy = 0;
2121 }
2122 if (init)
2123 break;
2124 }
2125 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2126 break; // Fall back on using base
2127 }
2128 }
2129
2130 /* ----------------Table Traversal -------------- */
2131
2132 /**
2133 * Encapsulates traversal for methods such as containsValue; also
2134 * serves as a base class for other iterators and bulk tasks.
2135 *
2136 * At each step, the iterator snapshots the key ("nextKey") and
2137 * value ("nextVal") of a valid node (i.e., one that, at point of
2138 * snapshot, has a non-null user value). Because val fields can
2139 * change (including to null, indicating deletion), field nextVal
2140 * might not be accurate at point of use, but still maintains the
2141 * weak consistency property of holding a value that was once
2142 * valid. To support iterator.remove, the nextKey field is not
2143 * updated (nulled out) when the iterator cannot advance.
2144 *
2145 * Internal traversals directly access these fields, as in:
2146 * {@code while (it.advance() != null) { process(it.nextKey); }}
2147 *
2148 * Exported iterators must track whether the iterator has advanced
2149 * (in hasNext vs next) (by setting/checking/nulling field
2150 * nextVal), and then extract key, value, or key-value pairs as
2151 * return values of next().
2152 *
2153 * The iterator visits once each still-valid node that was
2154 * reachable upon iterator construction. It might miss some that
2155 * were added to a bin after the bin was visited, which is OK wrt
2156 * consistency guarantees. Maintaining this property in the face
2157 * of possible ongoing resizes requires a fair amount of
2158 * bookkeeping state that is difficult to optimize away amidst
2159 * volatile accesses. Even so, traversal maintains reasonable
2160 * throughput.
2161 *
2162 * Normally, iteration proceeds bin-by-bin traversing lists.
2163 * However, if the table has been resized, then all future steps
2164 * must traverse both the bin at the current index as well as at
2165 * (index + baseSize); and so on for further resizings. To
2166 * paranoically cope with potential sharing by users of iterators
2167 * across threads, iteration terminates if a bounds checks fails
2168 * for a table read.
2169 *
2170 * This class supports both Spliterator-based traversal and
2171 * CountedCompleter-based bulk tasks. The same "batch" field is
2172 * used, but in slightly different ways, in the two cases. For
2173 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2174 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2175 * size that halves down to zero for leaf tasks, that is only
2176 * computed upon execution of the task. (Tasks can be submitted to
2177 * any pool, of any size, so we don't know scale factors until
2178 * running.)
2179 *
2180 * This class extends CountedCompleter to streamline parallel
2181 * iteration in bulk operations. This adds only a few fields of
2182 * space overhead, which is small enough in cases where it is not
2183 * needed to not worry about it. Because CountedCompleter is
2184 * Serializable, but iterators need not be, we need to add warning
2185 * suppressions.
2186 */
2187 @SuppressWarnings("serial") static class Traverser<K,V,R>
2188 extends CountedCompleter<R> {
2189 final ConcurrentHashMap<K, V> map;
2190 Node<V> next; // the next entry to use
2191 Object nextKey; // cached key field of next
2192 V nextVal; // cached val field of next
2193 Node<V>[] tab; // current table; updated if resized
2194 int index; // index of bin to use next
2195 int baseIndex; // current index of initial table
2196 int baseLimit; // index bound for initial table
2197 int baseSize; // initial table size
2198 int batch; // split control
2199 /** Creates iterator for all entries in the table. */
2200 Traverser(ConcurrentHashMap<K, V> map) {
2201 this.map = map;
2202 Node<V>[] t;
2203 if ((t = tab = map.table) != null)
2204 baseLimit = baseSize = t.length;
2205 }
2206
2207 /** Task constructor */
2208 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2209 super(it);
2210 this.map = map;
2211 this.batch = batch; // -1 if unknown
2212 if (it == null) {
2213 Node<V>[] t;
2214 if ((t = tab = map.table) != null)
2215 baseLimit = baseSize = t.length;
2216 }
2217 else { // split parent
2218 this.tab = it.tab;
2219 this.baseSize = it.baseSize;
2220 int hi = this.baseLimit = it.baseLimit;
2221 it.baseLimit = this.index = this.baseIndex =
2222 (hi + it.baseIndex + 1) >>> 1;
2223 }
2224 }
2225
2226 /** Spliterator constructor */
2227 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2228 super(it);
2229 this.map = map;
2230 if (it == null) {
2231 Node<V>[] t;
2232 if ((t = tab = map.table) != null)
2233 baseLimit = baseSize = t.length;
2234 long n = map.sumCount();
2235 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2236 (int)n);
2237 }
2238 else {
2239 this.tab = it.tab;
2240 this.baseSize = it.baseSize;
2241 int hi = this.baseLimit = it.baseLimit;
2242 it.baseLimit = this.index = this.baseIndex =
2243 (hi + it.baseIndex + 1) >>> 1;
2244 this.batch = it.batch >>>= 1;
2245 }
2246 }
2247
2248 /**
2249 * Advances next; returns nextVal or null if terminated.
2250 * See above for explanation.
2251 */
2252 @SuppressWarnings("unchecked") final V advance() {
2253 Node<V> e = next;
2254 V ev = null;
2255 outer: do {
2256 if (e != null) // advance past used/skipped node
2257 e = e.next;
2258 while (e == null) { // get to next non-null bin
2259 ConcurrentHashMap<K, V> m;
2260 Node<V>[] t; int b, i, n; Object ek; // must use locals
2261 if ((t = tab) != null)
2262 n = t.length;
2263 else if ((m = map) != null && (t = tab = m.table) != null)
2264 n = baseLimit = baseSize = t.length;
2265 else
2266 break outer;
2267 if ((b = baseIndex) >= baseLimit ||
2268 (i = index) < 0 || i >= n)
2269 break outer;
2270 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2271 if ((ek = e.key) instanceof TreeBin)
2272 e = ((TreeBin<V>)ek).first;
2273 else {
2274 tab = (Node<V>[])ek;
2275 continue; // restarts due to null val
2276 }
2277 } // visit upper slots if present
2278 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2279 }
2280 nextKey = e.key;
2281 } while ((ev = e.val) == null); // skip deleted or special nodes
2282 next = e;
2283 return nextVal = ev;
2284 }
2285
2286 public final void remove() {
2287 Object k = nextKey;
2288 if (k == null && (advance() == null || (k = nextKey) == null))
2289 throw new IllegalStateException();
2290 map.internalReplace(k, null, null);
2291 }
2292
2293 public final boolean hasNext() {
2294 return nextVal != null || advance() != null;
2295 }
2296
2297 public final boolean hasMoreElements() { return hasNext(); }
2298
2299 public void compute() { } // default no-op CountedCompleter body
2300
2301 /**
2302 * Returns a batch value > 0 if this task should (and must) be
2303 * split, if so, adding to pending count, and in any case
2304 * updating batch value. The initial batch value is approx
2305 * exp2 of the number of times (minus one) to split task by
2306 * two before executing leaf action. This value is faster to
2307 * compute and more convenient to use as a guide to splitting
2308 * than is the depth, since it is used while dividing by two
2309 * anyway.
2310 */
2311 final int preSplit() {
2312 int b; ForkJoinPool pool;
2313 if ((b = batch) < 0) { // force initialization
2314 int sp = (((pool = getPool()) == null) ?
2315 ForkJoinPool.getCommonPoolParallelism() :
2316 pool.getParallelism()) << 3; // slack of 8
2317 long n = map.sumCount();
2318 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2319 }
2320 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2321 if ((batch = b) > 0)
2322 addToPendingCount(1);
2323 return b;
2324 }
2325
2326 // spliterator support
2327
2328 public boolean hasExactSize() {
2329 return false;
2330 }
2331
2332 public boolean hasExactSplits() {
2333 return false;
2334 }
2335
2336 public long estimateSize() {
2337 return batch;
2338 }
2339 }
2340
2341 /* ---------------- Public operations -------------- */
2342
2343 /**
2344 * Creates a new, empty map with the default initial table size (16).
2345 */
2346 public ConcurrentHashMap() {
2347 }
2348
2349 /**
2350 * Creates a new, empty map with an initial table size
2351 * accommodating the specified number of elements without the need
2352 * to dynamically resize.
2353 *
2354 * @param initialCapacity The implementation performs internal
2355 * sizing to accommodate this many elements.
2356 * @throws IllegalArgumentException if the initial capacity of
2357 * elements is negative
2358 */
2359 public ConcurrentHashMap(int initialCapacity) {
2360 if (initialCapacity < 0)
2361 throw new IllegalArgumentException();
2362 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2363 MAXIMUM_CAPACITY :
2364 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2365 this.sizeCtl = cap;
2366 }
2367
2368 /**
2369 * Creates a new map with the same mappings as the given map.
2370 *
2371 * @param m the map
2372 */
2373 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2374 this.sizeCtl = DEFAULT_CAPACITY;
2375 internalPutAll(m);
2376 }
2377
2378 /**
2379 * Creates a new, empty map with an initial table size based on
2380 * the given number of elements ({@code initialCapacity}) and
2381 * initial table density ({@code loadFactor}).
2382 *
2383 * @param initialCapacity the initial capacity. The implementation
2384 * performs internal sizing to accommodate this many elements,
2385 * given the specified load factor.
2386 * @param loadFactor the load factor (table density) for
2387 * establishing the initial table size
2388 * @throws IllegalArgumentException if the initial capacity of
2389 * elements is negative or the load factor is nonpositive
2390 *
2391 * @since 1.6
2392 */
2393 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2394 this(initialCapacity, loadFactor, 1);
2395 }
2396
2397 /**
2398 * Creates a new, empty map with an initial table size based on
2399 * the given number of elements ({@code initialCapacity}), table
2400 * density ({@code loadFactor}), and number of concurrently
2401 * updating threads ({@code concurrencyLevel}).
2402 *
2403 * @param initialCapacity the initial capacity. The implementation
2404 * performs internal sizing to accommodate this many elements,
2405 * given the specified load factor.
2406 * @param loadFactor the load factor (table density) for
2407 * establishing the initial table size
2408 * @param concurrencyLevel the estimated number of concurrently
2409 * updating threads. The implementation may use this value as
2410 * a sizing hint.
2411 * @throws IllegalArgumentException if the initial capacity is
2412 * negative or the load factor or concurrencyLevel are
2413 * nonpositive
2414 */
2415 public ConcurrentHashMap(int initialCapacity,
2416 float loadFactor, int concurrencyLevel) {
2417 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2418 throw new IllegalArgumentException();
2419 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2420 initialCapacity = concurrencyLevel; // as estimated threads
2421 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2422 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2423 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2424 this.sizeCtl = cap;
2425 }
2426
2427 /**
2428 * Creates a new {@link Set} backed by a ConcurrentHashMap
2429 * from the given type to {@code Boolean.TRUE}.
2430 *
2431 * @return the new set
2432 */
2433 public static <K> KeySetView<K,Boolean> newKeySet() {
2434 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2435 Boolean.TRUE);
2436 }
2437
2438 /**
2439 * Creates a new {@link Set} backed by a ConcurrentHashMap
2440 * from the given type to {@code Boolean.TRUE}.
2441 *
2442 * @param initialCapacity The implementation performs internal
2443 * sizing to accommodate this many elements.
2444 * @throws IllegalArgumentException if the initial capacity of
2445 * elements is negative
2446 * @return the new set
2447 */
2448 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2449 return new KeySetView<K,Boolean>
2450 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2451 }
2452
2453 /**
2454 * {@inheritDoc}
2455 */
2456 public boolean isEmpty() {
2457 return sumCount() <= 0L; // ignore transient negative values
2458 }
2459
2460 /**
2461 * {@inheritDoc}
2462 */
2463 public int size() {
2464 long n = sumCount();
2465 return ((n < 0L) ? 0 :
2466 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2467 (int)n);
2468 }
2469
2470 /**
2471 * Returns the number of mappings. This method should be used
2472 * instead of {@link #size} because a ConcurrentHashMap may
2473 * contain more mappings than can be represented as an int. The
2474 * value returned is an estimate; the actual count may differ if
2475 * there are concurrent insertions or removals.
2476 *
2477 * @return the number of mappings
2478 */
2479 public long mappingCount() {
2480 long n = sumCount();
2481 return (n < 0L) ? 0L : n; // ignore transient negative values
2482 }
2483
2484 /**
2485 * Returns the value to which the specified key is mapped,
2486 * or {@code null} if this map contains no mapping for the key.
2487 *
2488 * <p>More formally, if this map contains a mapping from a key
2489 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2490 * then this method returns {@code v}; otherwise it returns
2491 * {@code null}. (There can be at most one such mapping.)
2492 *
2493 * @throws NullPointerException if the specified key is null
2494 */
2495 public V get(Object key) {
2496 return internalGet(key);
2497 }
2498
2499 /**
2500 * Returns the value to which the specified key is mapped,
2501 * or the given defaultValue if this map contains no mapping for the key.
2502 *
2503 * @param key the key
2504 * @param defaultValue the value to return if this map contains
2505 * no mapping for the given key
2506 * @return the mapping for the key, if present; else the defaultValue
2507 * @throws NullPointerException if the specified key is null
2508 */
2509 public V getValueOrDefault(Object key, V defaultValue) {
2510 V v;
2511 return (v = internalGet(key)) == null ? defaultValue : v;
2512 }
2513
2514 /**
2515 * Tests if the specified object is a key in this table.
2516 *
2517 * @param key possible key
2518 * @return {@code true} if and only if the specified object
2519 * is a key in this table, as determined by the
2520 * {@code equals} method; {@code false} otherwise
2521 * @throws NullPointerException if the specified key is null
2522 */
2523 public boolean containsKey(Object key) {
2524 return internalGet(key) != null;
2525 }
2526
2527 /**
2528 * Returns {@code true} if this map maps one or more keys to the
2529 * specified value. Note: This method may require a full traversal
2530 * of the map, and is much slower than method {@code containsKey}.
2531 *
2532 * @param value value whose presence in this map is to be tested
2533 * @return {@code true} if this map maps one or more keys to the
2534 * specified value
2535 * @throws NullPointerException if the specified value is null
2536 */
2537 public boolean containsValue(Object value) {
2538 if (value == null)
2539 throw new NullPointerException();
2540 V v;
2541 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2542 while ((v = it.advance()) != null) {
2543 if (v == value || value.equals(v))
2544 return true;
2545 }
2546 return false;
2547 }
2548
2549 /**
2550 * Legacy method testing if some key maps into the specified value
2551 * in this table. This method is identical in functionality to
2552 * {@link #containsValue}, and exists solely to ensure
2553 * full compatibility with class {@link java.util.Hashtable},
2554 * which supported this method prior to introduction of the
2555 * Java Collections framework.
2556 *
2557 * @param value a value to search for
2558 * @return {@code true} if and only if some key maps to the
2559 * {@code value} argument in this table as
2560 * determined by the {@code equals} method;
2561 * {@code false} otherwise
2562 * @throws NullPointerException if the specified value is null
2563 */
2564 @Deprecated public boolean contains(Object value) {
2565 return containsValue(value);
2566 }
2567
2568 /**
2569 * Maps the specified key to the specified value in this table.
2570 * Neither the key nor the value can be null.
2571 *
2572 * <p>The value can be retrieved by calling the {@code get} method
2573 * with a key that is equal to the original key.
2574 *
2575 * @param key key with which the specified value is to be associated
2576 * @param value value to be associated with the specified key
2577 * @return the previous value associated with {@code key}, or
2578 * {@code null} if there was no mapping for {@code key}
2579 * @throws NullPointerException if the specified key or value is null
2580 */
2581 public V put(K key, V value) {
2582 return internalPut(key, value, false);
2583 }
2584
2585 /**
2586 * {@inheritDoc}
2587 *
2588 * @return the previous value associated with the specified key,
2589 * or {@code null} if there was no mapping for the key
2590 * @throws NullPointerException if the specified key or value is null
2591 */
2592 public V putIfAbsent(K key, V value) {
2593 return internalPut(key, value, true);
2594 }
2595
2596 /**
2597 * Copies all of the mappings from the specified map to this one.
2598 * These mappings replace any mappings that this map had for any of the
2599 * keys currently in the specified map.
2600 *
2601 * @param m mappings to be stored in this map
2602 */
2603 public void putAll(Map<? extends K, ? extends V> m) {
2604 internalPutAll(m);
2605 }
2606
2607 /**
2608 * If the specified key is not already associated with a value (or
2609 * is mapped to {@code null}), attempts to compute its value using
2610 * the given mapping function and enters it into this map unless
2611 * {@code null}. The entire method invocation is performed
2612 * atomically, so the function is applied at most once per key.
2613 * Some attempted update operations on this map by other threads
2614 * may be blocked while computation is in progress, so the
2615 * computation should be short and simple, and must not attempt to
2616 * update any other mappings of this Map.
2617 *
2618 * @param key key with which the specified value is to be associated
2619 * @param mappingFunction the function to compute a value
2620 * @return the current (existing or computed) value associated with
2621 * the specified key, or null if the computed value is null
2622 * @throws NullPointerException if the specified key or mappingFunction
2623 * is null
2624 * @throws IllegalStateException if the computation detectably
2625 * attempts a recursive update to this map that would
2626 * otherwise never complete
2627 * @throws RuntimeException or Error if the mappingFunction does so,
2628 * in which case the mapping is left unestablished
2629 */
2630 public V computeIfAbsent
2631 (K key, Function<? super K, ? extends V> mappingFunction) {
2632 return internalComputeIfAbsent(key, mappingFunction);
2633 }
2634
2635 /**
2636 * If the value for the specified key is present and non-null,
2637 * attempts to compute a new mapping given the key and its current
2638 * mapped value. The entire method invocation is performed
2639 * atomically. Some attempted update operations on this map by
2640 * other threads may be blocked while computation is in progress,
2641 * so the computation should be short and simple, and must not
2642 * attempt to update any other mappings of this Map.
2643 *
2644 * @param key key with which the specified value is to be associated
2645 * @param remappingFunction the function to compute a value
2646 * @return the new value associated with the specified key, or null if none
2647 * @throws NullPointerException if the specified key or remappingFunction
2648 * is null
2649 * @throws IllegalStateException if the computation detectably
2650 * attempts a recursive update to this map that would
2651 * otherwise never complete
2652 * @throws RuntimeException or Error if the remappingFunction does so,
2653 * in which case the mapping is unchanged
2654 */
2655 public V computeIfPresent
2656 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2657 return internalCompute(key, true, remappingFunction);
2658 }
2659
2660 /**
2661 * Attempts to compute a mapping for the specified key and its
2662 * current mapped value (or {@code null} if there is no current
2663 * mapping). The entire method invocation is performed atomically.
2664 * Some attempted update operations on this map by other threads
2665 * may be blocked while computation is in progress, so the
2666 * computation should be short and simple, and must not attempt to
2667 * update any other mappings of this Map.
2668 *
2669 * @param key key with which the specified value is to be associated
2670 * @param remappingFunction the function to compute a value
2671 * @return the new value associated with the specified key, or null if none
2672 * @throws NullPointerException if the specified key or remappingFunction
2673 * is null
2674 * @throws IllegalStateException if the computation detectably
2675 * attempts a recursive update to this map that would
2676 * otherwise never complete
2677 * @throws RuntimeException or Error if the remappingFunction does so,
2678 * in which case the mapping is unchanged
2679 */
2680 public V compute
2681 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2682 return internalCompute(key, false, remappingFunction);
2683 }
2684
2685 /**
2686 * If the specified key is not already associated with a
2687 * (non-null) value, associates it with the given value.
2688 * Otherwise, replaces the value with the results of the given
2689 * remapping function, or removes if {@code null}. The entire
2690 * method invocation is performed atomically. Some attempted
2691 * update operations on this map by other threads may be blocked
2692 * while computation is in progress, so the computation should be
2693 * short and simple, and must not attempt to update any other
2694 * mappings of this Map.
2695 *
2696 * @param key key with which the specified value is to be associated
2697 * @param value the value to use if absent
2698 * @param remappingFunction the function to recompute a value if present
2699 * @return the new value associated with the specified key, or null if none
2700 * @throws NullPointerException if the specified key or the
2701 * remappingFunction is null
2702 * @throws RuntimeException or Error if the remappingFunction does so,
2703 * in which case the mapping is unchanged
2704 */
2705 public V merge
2706 (K key, V value,
2707 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2708 return internalMerge(key, value, remappingFunction);
2709 }
2710
2711 /**
2712 * Removes the key (and its corresponding value) from this map.
2713 * This method does nothing if the key is not in the map.
2714 *
2715 * @param key the key that needs to be removed
2716 * @return the previous value associated with {@code key}, or
2717 * {@code null} if there was no mapping for {@code key}
2718 * @throws NullPointerException if the specified key is null
2719 */
2720 public V remove(Object key) {
2721 return internalReplace(key, null, null);
2722 }
2723
2724 /**
2725 * {@inheritDoc}
2726 *
2727 * @throws NullPointerException if the specified key is null
2728 */
2729 public boolean remove(Object key, Object value) {
2730 if (key == null)
2731 throw new NullPointerException();
2732 return value != null && internalReplace(key, null, value) != null;
2733 }
2734
2735 /**
2736 * {@inheritDoc}
2737 *
2738 * @throws NullPointerException if any of the arguments are null
2739 */
2740 public boolean replace(K key, V oldValue, V newValue) {
2741 if (key == null || oldValue == null || newValue == null)
2742 throw new NullPointerException();
2743 return internalReplace(key, newValue, oldValue) != null;
2744 }
2745
2746 /**
2747 * {@inheritDoc}
2748 *
2749 * @return the previous value associated with the specified key,
2750 * or {@code null} if there was no mapping for the key
2751 * @throws NullPointerException if the specified key or value is null
2752 */
2753 public V replace(K key, V value) {
2754 if (key == null || value == null)
2755 throw new NullPointerException();
2756 return internalReplace(key, value, null);
2757 }
2758
2759 /**
2760 * Removes all of the mappings from this map.
2761 */
2762 public void clear() {
2763 internalClear();
2764 }
2765
2766 /**
2767 * Returns a {@link Set} view of the keys contained in this map.
2768 * The set is backed by the map, so changes to the map are
2769 * reflected in the set, and vice-versa.
2770 *
2771 * @return the set view
2772 */
2773 public KeySetView<K,V> keySet() {
2774 KeySetView<K,V> ks = keySet;
2775 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2776 }
2777
2778 /**
2779 * Returns a {@link Set} view of the keys in this map, using the
2780 * given common mapped value for any additions (i.e., {@link
2781 * Collection#add} and {@link Collection#addAll}). This is of
2782 * course only appropriate if it is acceptable to use the same
2783 * value for all additions from this view.
2784 *
2785 * @param mappedValue the mapped value to use for any
2786 * additions.
2787 * @return the set view
2788 * @throws NullPointerException if the mappedValue is null
2789 */
2790 public KeySetView<K,V> keySet(V mappedValue) {
2791 if (mappedValue == null)
2792 throw new NullPointerException();
2793 return new KeySetView<K,V>(this, mappedValue);
2794 }
2795
2796 /**
2797 * Returns a {@link Collection} view of the values contained in this map.
2798 * The collection is backed by the map, so changes to the map are
2799 * reflected in the collection, and vice-versa.
2800 */
2801 public ValuesView<K,V> values() {
2802 ValuesView<K,V> vs = values;
2803 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2804 }
2805
2806 /**
2807 * Returns a {@link Set} view of the mappings contained in this map.
2808 * The set is backed by the map, so changes to the map are
2809 * reflected in the set, and vice-versa. The set supports element
2810 * removal, which removes the corresponding mapping from the map,
2811 * via the {@code Iterator.remove}, {@code Set.remove},
2812 * {@code removeAll}, {@code retainAll}, and {@code clear}
2813 * operations. It does not support the {@code add} or
2814 * {@code addAll} operations.
2815 *
2816 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2817 * that will never throw {@link ConcurrentModificationException},
2818 * and guarantees to traverse elements as they existed upon
2819 * construction of the iterator, and may (but is not guaranteed to)
2820 * reflect any modifications subsequent to construction.
2821 */
2822 public Set<Map.Entry<K,V>> entrySet() {
2823 EntrySetView<K,V> es = entrySet;
2824 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2825 }
2826
2827 /**
2828 * Returns an enumeration of the keys in this table.
2829 *
2830 * @return an enumeration of the keys in this table
2831 * @see #keySet()
2832 */
2833 public Enumeration<K> keys() {
2834 return new KeyIterator<K,V>(this);
2835 }
2836
2837 /**
2838 * Returns an enumeration of the values in this table.
2839 *
2840 * @return an enumeration of the values in this table
2841 * @see #values()
2842 */
2843 public Enumeration<V> elements() {
2844 return new ValueIterator<K,V>(this);
2845 }
2846
2847 /**
2848 * Returns the hash code value for this {@link Map}, i.e.,
2849 * the sum of, for each key-value pair in the map,
2850 * {@code key.hashCode() ^ value.hashCode()}.
2851 *
2852 * @return the hash code value for this map
2853 */
2854 public int hashCode() {
2855 int h = 0;
2856 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2857 V v;
2858 while ((v = it.advance()) != null) {
2859 h += it.nextKey.hashCode() ^ v.hashCode();
2860 }
2861 return h;
2862 }
2863
2864 /**
2865 * Returns a string representation of this map. The string
2866 * representation consists of a list of key-value mappings (in no
2867 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2868 * mappings are separated by the characters {@code ", "} (comma
2869 * and space). Each key-value mapping is rendered as the key
2870 * followed by an equals sign ("{@code =}") followed by the
2871 * associated value.
2872 *
2873 * @return a string representation of this map
2874 */
2875 public String toString() {
2876 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2877 StringBuilder sb = new StringBuilder();
2878 sb.append('{');
2879 V v;
2880 if ((v = it.advance()) != null) {
2881 for (;;) {
2882 Object k = it.nextKey;
2883 sb.append(k == this ? "(this Map)" : k);
2884 sb.append('=');
2885 sb.append(v == this ? "(this Map)" : v);
2886 if ((v = it.advance()) == null)
2887 break;
2888 sb.append(',').append(' ');
2889 }
2890 }
2891 return sb.append('}').toString();
2892 }
2893
2894 /**
2895 * Compares the specified object with this map for equality.
2896 * Returns {@code true} if the given object is a map with the same
2897 * mappings as this map. This operation may return misleading
2898 * results if either map is concurrently modified during execution
2899 * of this method.
2900 *
2901 * @param o object to be compared for equality with this map
2902 * @return {@code true} if the specified object is equal to this map
2903 */
2904 public boolean equals(Object o) {
2905 if (o != this) {
2906 if (!(o instanceof Map))
2907 return false;
2908 Map<?,?> m = (Map<?,?>) o;
2909 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2910 V val;
2911 while ((val = it.advance()) != null) {
2912 Object v = m.get(it.nextKey);
2913 if (v == null || (v != val && !v.equals(val)))
2914 return false;
2915 }
2916 for (Map.Entry<?,?> e : m.entrySet()) {
2917 Object mk, mv, v;
2918 if ((mk = e.getKey()) == null ||
2919 (mv = e.getValue()) == null ||
2920 (v = internalGet(mk)) == null ||
2921 (mv != v && !mv.equals(v)))
2922 return false;
2923 }
2924 }
2925 return true;
2926 }
2927
2928 /* ----------------Iterators -------------- */
2929
2930 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2931 extends Traverser<K,V,Object>
2932 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2933 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2934 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2935 super(map, it);
2936 }
2937 public KeyIterator<K,V> trySplit() {
2938 if (tab != null && baseIndex == baseLimit)
2939 return null;
2940 return new KeyIterator<K,V>(map, this);
2941 }
2942 @SuppressWarnings("unchecked") public final K next() {
2943 if (nextVal == null && advance() == null)
2944 throw new NoSuchElementException();
2945 Object k = nextKey;
2946 nextVal = null;
2947 return (K) k;
2948 }
2949
2950 public final K nextElement() { return next(); }
2951
2952 public Iterator<K> iterator() { return this; }
2953
2954 public void forEach(Block<? super K> action) {
2955 if (action == null) throw new NullPointerException();
2956 while (advance() != null)
2957 action.accept((K)nextKey);
2958 }
2959
2960 public boolean tryAdvance(Block<? super K> block) {
2961 if (block == null) throw new NullPointerException();
2962 if (advance() == null)
2963 return false;
2964 block.accept((K)nextKey);
2965 return true;
2966 }
2967 }
2968
2969 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2970 extends Traverser<K,V,Object>
2971 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2972 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2973 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2974 super(map, it);
2975 }
2976 public ValueIterator<K,V> trySplit() {
2977 if (tab != null && baseIndex == baseLimit)
2978 return null;
2979 return new ValueIterator<K,V>(map, this);
2980 }
2981
2982 public final V next() {
2983 V v;
2984 if ((v = nextVal) == null && (v = advance()) == null)
2985 throw new NoSuchElementException();
2986 nextVal = null;
2987 return v;
2988 }
2989
2990 public final V nextElement() { return next(); }
2991
2992 public Iterator<V> iterator() { return this; }
2993
2994 public void forEach(Block<? super V> action) {
2995 if (action == null) throw new NullPointerException();
2996 V v;
2997 while ((v = advance()) != null)
2998 action.accept(v);
2999 }
3000
3001 public boolean tryAdvance(Block<? super V> block) {
3002 V v;
3003 if (block == null) throw new NullPointerException();
3004 if ((v = advance()) == null)
3005 return false;
3006 block.accept(v);
3007 return true;
3008 }
3009
3010 }
3011
3012 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3013 extends Traverser<K,V,Object>
3014 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3015 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3016 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3017 super(map, it);
3018 }
3019 public EntryIterator<K,V> trySplit() {
3020 if (tab != null && baseIndex == baseLimit)
3021 return null;
3022 return new EntryIterator<K,V>(map, this);
3023 }
3024
3025 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3026 V v;
3027 if ((v = nextVal) == null && (v = advance()) == null)
3028 throw new NoSuchElementException();
3029 Object k = nextKey;
3030 nextVal = null;
3031 return new MapEntry<K,V>((K)k, v, map);
3032 }
3033
3034 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3035
3036 public void forEach(Block<? super Map.Entry<K,V>> action) {
3037 if (action == null) throw new NullPointerException();
3038 V v;
3039 while ((v = advance()) != null)
3040 action.accept(entryFor((K)nextKey, v));
3041 }
3042
3043 public boolean tryAdvance(Block<? super Map.Entry<K,V>> block) {
3044 V v;
3045 if (block == null) throw new NullPointerException();
3046 if ((v = advance()) == null)
3047 return false;
3048 block.accept(entryFor((K)nextKey, v));
3049 return true;
3050 }
3051
3052 }
3053
3054 /**
3055 * Exported Entry for iterators
3056 */
3057 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3058 final K key; // non-null
3059 V val; // non-null
3060 final ConcurrentHashMap<K, V> map;
3061 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3062 this.key = key;
3063 this.val = val;
3064 this.map = map;
3065 }
3066 public final K getKey() { return key; }
3067 public final V getValue() { return val; }
3068 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3069 public final String toString(){ return key + "=" + val; }
3070
3071 public final boolean equals(Object o) {
3072 Object k, v; Map.Entry<?,?> e;
3073 return ((o instanceof Map.Entry) &&
3074 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3075 (v = e.getValue()) != null &&
3076 (k == key || k.equals(key)) &&
3077 (v == val || v.equals(val)));
3078 }
3079
3080 /**
3081 * Sets our entry's value and writes through to the map. The
3082 * value to return is somewhat arbitrary here. Since we do not
3083 * necessarily track asynchronous changes, the most recent
3084 * "previous" value could be different from what we return (or
3085 * could even have been removed in which case the put will
3086 * re-establish). We do not and cannot guarantee more.
3087 */
3088 public final V setValue(V value) {
3089 if (value == null) throw new NullPointerException();
3090 V v = val;
3091 val = value;
3092 map.put(key, value);
3093 return v;
3094 }
3095 }
3096
3097 /**
3098 * Returns exportable snapshot entry for the given key and value
3099 * when write-through can't or shouldn't be used.
3100 */
3101 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3102 return new AbstractMap.SimpleEntry<K,V>(k, v);
3103 }
3104
3105 /* ---------------- Serialization Support -------------- */
3106
3107 /**
3108 * Stripped-down version of helper class used in previous version,
3109 * declared for the sake of serialization compatibility
3110 */
3111 static class Segment<K,V> implements Serializable {
3112 private static final long serialVersionUID = 2249069246763182397L;
3113 final float loadFactor;
3114 Segment(float lf) { this.loadFactor = lf; }
3115 }
3116
3117 /**
3118 * Saves the state of the {@code ConcurrentHashMap} instance to a
3119 * stream (i.e., serializes it).
3120 * @param s the stream
3121 * @serialData
3122 * the key (Object) and value (Object)
3123 * for each key-value mapping, followed by a null pair.
3124 * The key-value mappings are emitted in no particular order.
3125 */
3126 @SuppressWarnings("unchecked") private void writeObject
3127 (java.io.ObjectOutputStream s)
3128 throws java.io.IOException {
3129 if (segments == null) { // for serialization compatibility
3130 segments = (Segment<K,V>[])
3131 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3132 for (int i = 0; i < segments.length; ++i)
3133 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3134 }
3135 s.defaultWriteObject();
3136 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3137 V v;
3138 while ((v = it.advance()) != null) {
3139 s.writeObject(it.nextKey);
3140 s.writeObject(v);
3141 }
3142 s.writeObject(null);
3143 s.writeObject(null);
3144 segments = null; // throw away
3145 }
3146
3147 /**
3148 * Reconstitutes the instance from a stream (that is, deserializes it).
3149 * @param s the stream
3150 */
3151 @SuppressWarnings("unchecked") private void readObject
3152 (java.io.ObjectInputStream s)
3153 throws java.io.IOException, ClassNotFoundException {
3154 s.defaultReadObject();
3155 this.segments = null; // unneeded
3156
3157 // Create all nodes, then place in table once size is known
3158 long size = 0L;
3159 Node<V> p = null;
3160 for (;;) {
3161 K k = (K) s.readObject();
3162 V v = (V) s.readObject();
3163 if (k != null && v != null) {
3164 int h = spread(k.hashCode());
3165 p = new Node<V>(h, k, v, p);
3166 ++size;
3167 }
3168 else
3169 break;
3170 }
3171 if (p != null) {
3172 boolean init = false;
3173 int n;
3174 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3175 n = MAXIMUM_CAPACITY;
3176 else {
3177 int sz = (int)size;
3178 n = tableSizeFor(sz + (sz >>> 1) + 1);
3179 }
3180 int sc = sizeCtl;
3181 boolean collide = false;
3182 if (n > sc &&
3183 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3184 try {
3185 if (table == null) {
3186 init = true;
3187 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3188 Node<V>[] tab = (Node<V>[])rt;
3189 int mask = n - 1;
3190 while (p != null) {
3191 int j = p.hash & mask;
3192 Node<V> next = p.next;
3193 Node<V> q = p.next = tabAt(tab, j);
3194 setTabAt(tab, j, p);
3195 if (!collide && q != null && q.hash == p.hash)
3196 collide = true;
3197 p = next;
3198 }
3199 table = tab;
3200 addCount(size, -1);
3201 sc = n - (n >>> 2);
3202 }
3203 } finally {
3204 sizeCtl = sc;
3205 }
3206 if (collide) { // rescan and convert to TreeBins
3207 Node<V>[] tab = table;
3208 for (int i = 0; i < tab.length; ++i) {
3209 int c = 0;
3210 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3211 if (++c > TREE_THRESHOLD &&
3212 (e.key instanceof Comparable)) {
3213 replaceWithTreeBin(tab, i, e.key);
3214 break;
3215 }
3216 }
3217 }
3218 }
3219 }
3220 if (!init) { // Can only happen if unsafely published.
3221 while (p != null) {
3222 internalPut((K)p.key, p.val, false);
3223 p = p.next;
3224 }
3225 }
3226 }
3227 }
3228
3229 // -------------------------------------------------------
3230
3231 // Sequential bulk operations
3232
3233 /**
3234 * Performs the given action for each (key, value).
3235 *
3236 * @param action the action
3237 */
3238 @SuppressWarnings("unchecked") public void forEachSequentially
3239 (BiBlock<? super K, ? super V> action) {
3240 if (action == null) throw new NullPointerException();
3241 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3242 V v;
3243 while ((v = it.advance()) != null)
3244 action.accept((K)it.nextKey, v);
3245 }
3246
3247 /**
3248 * Performs the given action for each non-null transformation
3249 * of each (key, value).
3250 *
3251 * @param transformer a function returning the transformation
3252 * for an element, or null of there is no transformation (in
3253 * which case the action is not applied).
3254 * @param action the action
3255 */
3256 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3257 (BiFunction<? super K, ? super V, ? extends U> transformer,
3258 Block<? super U> action) {
3259 if (transformer == null || action == null)
3260 throw new NullPointerException();
3261 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3262 V v; U u;
3263 while ((v = it.advance()) != null) {
3264 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3265 action.accept(u);
3266 }
3267 }
3268
3269 /**
3270 * Returns a non-null result from applying the given search
3271 * function on each (key, value), or null if none.
3272 *
3273 * @param searchFunction a function returning a non-null
3274 * result on success, else null
3275 * @return a non-null result from applying the given search
3276 * function on each (key, value), or null if none
3277 */
3278 @SuppressWarnings("unchecked") public <U> U searchSequentially
3279 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3280 if (searchFunction == null) throw new NullPointerException();
3281 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3282 V v; U u;
3283 while ((v = it.advance()) != null) {
3284 if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3285 return u;
3286 }
3287 return null;
3288 }
3289
3290 /**
3291 * Returns the result of accumulating the given transformation
3292 * of all (key, value) pairs using the given reducer to
3293 * combine values, or null if none.
3294 *
3295 * @param transformer a function returning the transformation
3296 * for an element, or null of there is no transformation (in
3297 * which case it is not combined).
3298 * @param reducer a commutative associative combining function
3299 * @return the result of accumulating the given transformation
3300 * of all (key, value) pairs
3301 */
3302 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3303 (BiFunction<? super K, ? super V, ? extends U> transformer,
3304 BiFunction<? super U, ? super U, ? extends U> reducer) {
3305 if (transformer == null || reducer == null)
3306 throw new NullPointerException();
3307 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3308 U r = null, u; V v;
3309 while ((v = it.advance()) != null) {
3310 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3311 r = (r == null) ? u : reducer.apply(r, u);
3312 }
3313 return r;
3314 }
3315
3316 /**
3317 * Returns the result of accumulating the given transformation
3318 * of all (key, value) pairs using the given reducer to
3319 * combine values, and the given basis as an identity value.
3320 *
3321 * @param transformer a function returning the transformation
3322 * for an element
3323 * @param basis the identity (initial default value) for the reduction
3324 * @param reducer a commutative associative combining function
3325 * @return the result of accumulating the given transformation
3326 * of all (key, value) pairs
3327 */
3328 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3329 (DoubleBiFunction<? super K, ? super V> transformer,
3330 double basis,
3331 DoubleBinaryOperator reducer) {
3332 if (transformer == null || reducer == null)
3333 throw new NullPointerException();
3334 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3335 double r = basis; V v;
3336 while ((v = it.advance()) != null)
3337 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey, v));
3338 return r;
3339 }
3340
3341 /**
3342 * Returns the result of accumulating the given transformation
3343 * of all (key, value) pairs using the given reducer to
3344 * combine values, and the given basis as an identity value.
3345 *
3346 * @param transformer a function returning the transformation
3347 * for an element
3348 * @param basis the identity (initial default value) for the reduction
3349 * @param reducer a commutative associative combining function
3350 * @return the result of accumulating the given transformation
3351 * of all (key, value) pairs
3352 */
3353 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3354 (LongBiFunction<? super K, ? super V> transformer,
3355 long basis,
3356 LongBinaryOperator reducer) {
3357 if (transformer == null || reducer == null)
3358 throw new NullPointerException();
3359 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3360 long r = basis; V v;
3361 while ((v = it.advance()) != null)
3362 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey, v));
3363 return r;
3364 }
3365
3366 /**
3367 * Returns the result of accumulating the given transformation
3368 * of all (key, value) pairs using the given reducer to
3369 * combine values, and the given basis as an identity value.
3370 *
3371 * @param transformer a function returning the transformation
3372 * for an element
3373 * @param basis the identity (initial default value) for the reduction
3374 * @param reducer a commutative associative combining function
3375 * @return the result of accumulating the given transformation
3376 * of all (key, value) pairs
3377 */
3378 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3379 (IntBiFunction<? super K, ? super V> transformer,
3380 int basis,
3381 IntBinaryOperator reducer) {
3382 if (transformer == null || reducer == null)
3383 throw new NullPointerException();
3384 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3385 int r = basis; V v;
3386 while ((v = it.advance()) != null)
3387 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey, v));
3388 return r;
3389 }
3390
3391 /**
3392 * Performs the given action for each key.
3393 *
3394 * @param action the action
3395 */
3396 @SuppressWarnings("unchecked") public void forEachKeySequentially
3397 (Block<? super K> action) {
3398 if (action == null) throw new NullPointerException();
3399 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3400 while (it.advance() != null)
3401 action.accept((K)it.nextKey);
3402 }
3403
3404 /**
3405 * Performs the given action for each non-null transformation
3406 * of each key.
3407 *
3408 * @param transformer a function returning the transformation
3409 * for an element, or null of there is no transformation (in
3410 * which case the action is not applied).
3411 * @param action the action
3412 */
3413 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3414 (Function<? super K, ? extends U> transformer,
3415 Block<? super U> action) {
3416 if (transformer == null || action == null)
3417 throw new NullPointerException();
3418 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3419 U u;
3420 while (it.advance() != null) {
3421 if ((u = transformer.apply((K)it.nextKey)) != null)
3422 action.accept(u);
3423 }
3424 ForkJoinTasks.forEachKey
3425 (this, transformer, action).invoke();
3426 }
3427
3428 /**
3429 * Returns a non-null result from applying the given search
3430 * function on each key, or null if none.
3431 *
3432 * @param searchFunction a function returning a non-null
3433 * result on success, else null
3434 * @return a non-null result from applying the given search
3435 * function on each key, or null if none
3436 */
3437 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3438 (Function<? super K, ? extends U> searchFunction) {
3439 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3440 U u;
3441 while (it.advance() != null) {
3442 if ((u = searchFunction.apply((K)it.nextKey)) != null)
3443 return u;
3444 }
3445 return null;
3446 }
3447
3448 /**
3449 * Returns the result of accumulating all keys using the given
3450 * reducer to combine values, or null if none.
3451 *
3452 * @param reducer a commutative associative combining function
3453 * @return the result of accumulating all keys using the given
3454 * reducer to combine values, or null if none
3455 */
3456 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3457 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3458 if (reducer == null) throw new NullPointerException();
3459 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3460 K r = null;
3461 while (it.advance() != null) {
3462 K u = (K)it.nextKey;
3463 r = (r == null) ? u : reducer.apply(r, u);
3464 }
3465 return r;
3466 }
3467
3468 /**
3469 * Returns the result of accumulating the given transformation
3470 * of all keys using the given reducer to combine values, or
3471 * null if none.
3472 *
3473 * @param transformer a function returning the transformation
3474 * for an element, or null of there is no transformation (in
3475 * which case it is not combined).
3476 * @param reducer a commutative associative combining function
3477 * @return the result of accumulating the given transformation
3478 * of all keys
3479 */
3480 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3481 (Function<? super K, ? extends U> transformer,
3482 BiFunction<? super U, ? super U, ? extends U> reducer) {
3483 if (transformer == null || reducer == null)
3484 throw new NullPointerException();
3485 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3486 U r = null, u;
3487 while (it.advance() != null) {
3488 if ((u = transformer.apply((K)it.nextKey)) != null)
3489 r = (r == null) ? u : reducer.apply(r, u);
3490 }
3491 return r;
3492 }
3493
3494 /**
3495 * Returns the result of accumulating the given transformation
3496 * of all keys using the given reducer to combine values, and
3497 * the given basis as an identity value.
3498 *
3499 * @param transformer a function returning the transformation
3500 * for an element
3501 * @param basis the identity (initial default value) for the reduction
3502 * @param reducer a commutative associative combining function
3503 * @return the result of accumulating the given transformation
3504 * of all keys
3505 */
3506 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3507 (DoubleFunction<? super K> transformer,
3508 double basis,
3509 DoubleBinaryOperator reducer) {
3510 if (transformer == null || reducer == null)
3511 throw new NullPointerException();
3512 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3513 double r = basis;
3514 while (it.advance() != null)
3515 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)it.nextKey));
3516 return r;
3517 }
3518
3519 /**
3520 * Returns the result of accumulating the given transformation
3521 * of all keys using the given reducer to combine values, and
3522 * the given basis as an identity value.
3523 *
3524 * @param transformer a function returning the transformation
3525 * for an element
3526 * @param basis the identity (initial default value) for the reduction
3527 * @param reducer a commutative associative combining function
3528 * @return the result of accumulating the given transformation
3529 * of all keys
3530 */
3531 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3532 (LongFunction<? super K> transformer,
3533 long basis,
3534 LongBinaryOperator reducer) {
3535 if (transformer == null || reducer == null)
3536 throw new NullPointerException();
3537 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3538 long r = basis;
3539 while (it.advance() != null)
3540 r = reducer.applyAsLong(r, transformer.applyAsLong((K)it.nextKey));
3541 return r;
3542 }
3543
3544 /**
3545 * Returns the result of accumulating the given transformation
3546 * of all keys using the given reducer to combine values, and
3547 * the given basis as an identity value.
3548 *
3549 * @param transformer a function returning the transformation
3550 * for an element
3551 * @param basis the identity (initial default value) for the reduction
3552 * @param reducer a commutative associative combining function
3553 * @return the result of accumulating the given transformation
3554 * of all keys
3555 */
3556 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3557 (IntFunction<? super K> transformer,
3558 int basis,
3559 IntBinaryOperator reducer) {
3560 if (transformer == null || reducer == null)
3561 throw new NullPointerException();
3562 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3563 int r = basis;
3564 while (it.advance() != null)
3565 r = reducer.applyAsInt(r, transformer.applyAsInt((K)it.nextKey));
3566 return r;
3567 }
3568
3569 /**
3570 * Performs the given action for each value.
3571 *
3572 * @param action the action
3573 */
3574 public void forEachValueSequentially(Block<? super V> action) {
3575 if (action == null) throw new NullPointerException();
3576 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3577 V v;
3578 while ((v = it.advance()) != null)
3579 action.accept(v);
3580 }
3581
3582 /**
3583 * Performs the given action for each non-null transformation
3584 * of each value.
3585 *
3586 * @param transformer a function returning the transformation
3587 * for an element, or null of there is no transformation (in
3588 * which case the action is not applied).
3589 */
3590 public <U> void forEachValueSequentially
3591 (Function<? super V, ? extends U> transformer,
3592 Block<? super U> action) {
3593 if (transformer == null || action == null)
3594 throw new NullPointerException();
3595 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3596 V v; U u;
3597 while ((v = it.advance()) != null) {
3598 if ((u = transformer.apply(v)) != null)
3599 action.accept(u);
3600 }
3601 }
3602
3603 /**
3604 * Returns a non-null result from applying the given search
3605 * function on each value, or null if none.
3606 *
3607 * @param searchFunction a function returning a non-null
3608 * result on success, else null
3609 * @return a non-null result from applying the given search
3610 * function on each value, or null if none
3611 */
3612 public <U> U searchValuesSequentially
3613 (Function<? super V, ? extends U> searchFunction) {
3614 if (searchFunction == null) throw new NullPointerException();
3615 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3616 V v; U u;
3617 while ((v = it.advance()) != null) {
3618 if ((u = searchFunction.apply(v)) != null)
3619 return u;
3620 }
3621 return null;
3622 }
3623
3624 /**
3625 * Returns the result of accumulating all values using the
3626 * given reducer to combine values, or null if none.
3627 *
3628 * @param reducer a commutative associative combining function
3629 * @return the result of accumulating all values
3630 */
3631 public V reduceValuesSequentially
3632 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3633 if (reducer == null) throw new NullPointerException();
3634 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 V r = null; V v;
3636 while ((v = it.advance()) != null)
3637 r = (r == null) ? v : reducer.apply(r, v);
3638 return r;
3639 }
3640
3641 /**
3642 * Returns the result of accumulating the given transformation
3643 * of all values using the given reducer to combine values, or
3644 * null if none.
3645 *
3646 * @param transformer a function returning the transformation
3647 * for an element, or null of there is no transformation (in
3648 * which case it is not combined).
3649 * @param reducer a commutative associative combining function
3650 * @return the result of accumulating the given transformation
3651 * of all values
3652 */
3653 public <U> U reduceValuesSequentially
3654 (Function<? super V, ? extends U> transformer,
3655 BiFunction<? super U, ? super U, ? extends U> reducer) {
3656 if (transformer == null || reducer == null)
3657 throw new NullPointerException();
3658 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3659 U r = null, u; V v;
3660 while ((v = it.advance()) != null) {
3661 if ((u = transformer.apply(v)) != null)
3662 r = (r == null) ? u : reducer.apply(r, u);
3663 }
3664 return r;
3665 }
3666
3667 /**
3668 * Returns the result of accumulating the given transformation
3669 * of all values using the given reducer to combine values,
3670 * and the given basis as an identity value.
3671 *
3672 * @param transformer a function returning the transformation
3673 * for an element
3674 * @param basis the identity (initial default value) for the reduction
3675 * @param reducer a commutative associative combining function
3676 * @return the result of accumulating the given transformation
3677 * of all values
3678 */
3679 public double reduceValuesToDoubleSequentially
3680 (DoubleFunction<? super V> transformer,
3681 double basis,
3682 DoubleBinaryOperator reducer) {
3683 if (transformer == null || reducer == null)
3684 throw new NullPointerException();
3685 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3686 double r = basis; V v;
3687 while ((v = it.advance()) != null)
3688 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3689 return r;
3690 }
3691
3692 /**
3693 * Returns the result of accumulating the given transformation
3694 * of all values using the given reducer to combine values,
3695 * and the given basis as an identity value.
3696 *
3697 * @param transformer a function returning the transformation
3698 * for an element
3699 * @param basis the identity (initial default value) for the reduction
3700 * @param reducer a commutative associative combining function
3701 * @return the result of accumulating the given transformation
3702 * of all values
3703 */
3704 public long reduceValuesToLongSequentially
3705 (LongFunction<? super V> transformer,
3706 long basis,
3707 LongBinaryOperator reducer) {
3708 if (transformer == null || reducer == null)
3709 throw new NullPointerException();
3710 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3711 long r = basis; V v;
3712 while ((v = it.advance()) != null)
3713 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3714 return r;
3715 }
3716
3717 /**
3718 * Returns the result of accumulating the given transformation
3719 * of all values using the given reducer to combine values,
3720 * and the given basis as an identity value.
3721 *
3722 * @param transformer a function returning the transformation
3723 * for an element
3724 * @param basis the identity (initial default value) for the reduction
3725 * @param reducer a commutative associative combining function
3726 * @return the result of accumulating the given transformation
3727 * of all values
3728 */
3729 public int reduceValuesToIntSequentially
3730 (IntFunction<? super V> transformer,
3731 int basis,
3732 IntBinaryOperator reducer) {
3733 if (transformer == null || reducer == null)
3734 throw new NullPointerException();
3735 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3736 int r = basis; V v;
3737 while ((v = it.advance()) != null)
3738 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3739 return r;
3740 }
3741
3742 /**
3743 * Performs the given action for each entry.
3744 *
3745 * @param action the action
3746 */
3747 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3748 (Block<? super Map.Entry<K,V>> action) {
3749 if (action == null) throw new NullPointerException();
3750 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3751 V v;
3752 while ((v = it.advance()) != null)
3753 action.accept(entryFor((K)it.nextKey, v));
3754 }
3755
3756 /**
3757 * Performs the given action for each non-null transformation
3758 * of each entry.
3759 *
3760 * @param transformer a function returning the transformation
3761 * for an element, or null of there is no transformation (in
3762 * which case the action is not applied).
3763 * @param action the action
3764 */
3765 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3766 (Function<Map.Entry<K,V>, ? extends U> transformer,
3767 Block<? super U> action) {
3768 if (transformer == null || action == null)
3769 throw new NullPointerException();
3770 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3771 V v; U u;
3772 while ((v = it.advance()) != null) {
3773 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3774 action.accept(u);
3775 }
3776 }
3777
3778 /**
3779 * Returns a non-null result from applying the given search
3780 * function on each entry, or null if none.
3781 *
3782 * @param searchFunction a function returning a non-null
3783 * result on success, else null
3784 * @return a non-null result from applying the given search
3785 * function on each entry, or null if none
3786 */
3787 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3788 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3789 if (searchFunction == null) throw new NullPointerException();
3790 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3791 V v; U u;
3792 while ((v = it.advance()) != null) {
3793 if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3794 return u;
3795 }
3796 return null;
3797 }
3798
3799 /**
3800 * Returns the result of accumulating all entries using the
3801 * given reducer to combine values, or null if none.
3802 *
3803 * @param reducer a commutative associative combining function
3804 * @return the result of accumulating all entries
3805 */
3806 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3807 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3808 if (reducer == null) throw new NullPointerException();
3809 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3810 Map.Entry<K,V> r = null; V v;
3811 while ((v = it.advance()) != null) {
3812 Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3813 r = (r == null) ? u : reducer.apply(r, u);
3814 }
3815 return r;
3816 }
3817
3818 /**
3819 * Returns the result of accumulating the given transformation
3820 * of all entries using the given reducer to combine values,
3821 * or null if none.
3822 *
3823 * @param transformer a function returning the transformation
3824 * for an element, or null of there is no transformation (in
3825 * which case it is not combined).
3826 * @param reducer a commutative associative combining function
3827 * @return the result of accumulating the given transformation
3828 * of all entries
3829 */
3830 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3831 (Function<Map.Entry<K,V>, ? extends U> transformer,
3832 BiFunction<? super U, ? super U, ? extends U> reducer) {
3833 if (transformer == null || reducer == null)
3834 throw new NullPointerException();
3835 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3836 U r = null, u; V v;
3837 while ((v = it.advance()) != null) {
3838 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3839 r = (r == null) ? u : reducer.apply(r, u);
3840 }
3841 return r;
3842 }
3843
3844 /**
3845 * Returns the result of accumulating the given transformation
3846 * of all entries using the given reducer to combine values,
3847 * and the given basis as an identity value.
3848 *
3849 * @param transformer a function returning the transformation
3850 * for an element
3851 * @param basis the identity (initial default value) for the reduction
3852 * @param reducer a commutative associative combining function
3853 * @return the result of accumulating the given transformation
3854 * of all entries
3855 */
3856 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3857 (DoubleFunction<Map.Entry<K,V>> transformer,
3858 double basis,
3859 DoubleBinaryOperator reducer) {
3860 if (transformer == null || reducer == null)
3861 throw new NullPointerException();
3862 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3863 double r = basis; V v;
3864 while ((v = it.advance()) != null)
3865 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)it.nextKey, v)));
3866 return r;
3867 }
3868
3869 /**
3870 * Returns the result of accumulating the given transformation
3871 * of all entries using the given reducer to combine values,
3872 * and the given basis as an identity value.
3873 *
3874 * @param transformer a function returning the transformation
3875 * for an element
3876 * @param basis the identity (initial default value) for the reduction
3877 * @param reducer a commutative associative combining function
3878 * @return the result of accumulating the given transformation
3879 * of all entries
3880 */
3881 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3882 (LongFunction<Map.Entry<K,V>> transformer,
3883 long basis,
3884 LongBinaryOperator reducer) {
3885 if (transformer == null || reducer == null)
3886 throw new NullPointerException();
3887 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3888 long r = basis; V v;
3889 while ((v = it.advance()) != null)
3890 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)it.nextKey, v)));
3891 return r;
3892 }
3893
3894 /**
3895 * Returns the result of accumulating the given transformation
3896 * of all entries using the given reducer to combine values,
3897 * and the given basis as an identity value.
3898 *
3899 * @param transformer a function returning the transformation
3900 * for an element
3901 * @param basis the identity (initial default value) for the reduction
3902 * @param reducer a commutative associative combining function
3903 * @return the result of accumulating the given transformation
3904 * of all entries
3905 */
3906 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3907 (IntFunction<Map.Entry<K,V>> transformer,
3908 int basis,
3909 IntBinaryOperator reducer) {
3910 if (transformer == null || reducer == null)
3911 throw new NullPointerException();
3912 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913 int r = basis; V v;
3914 while ((v = it.advance()) != null)
3915 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)it.nextKey, v)));
3916 return r;
3917 }
3918
3919 // Parallel bulk operations
3920
3921 /**
3922 * Performs the given action for each (key, value).
3923 *
3924 * @param action the action
3925 */
3926 public void forEachInParallel(BiBlock<? super K,? super V> action) {
3927 ForkJoinTasks.forEach
3928 (this, action).invoke();
3929 }
3930
3931 /**
3932 * Performs the given action for each non-null transformation
3933 * of each (key, value).
3934 *
3935 * @param transformer a function returning the transformation
3936 * for an element, or null of there is no transformation (in
3937 * which case the action is not applied).
3938 * @param action the action
3939 */
3940 public <U> void forEachInParallel
3941 (BiFunction<? super K, ? super V, ? extends U> transformer,
3942 Block<? super U> action) {
3943 ForkJoinTasks.forEach
3944 (this, transformer, action).invoke();
3945 }
3946
3947 /**
3948 * Returns a non-null result from applying the given search
3949 * function on each (key, value), or null if none. Upon
3950 * success, further element processing is suppressed and the
3951 * results of any other parallel invocations of the search
3952 * function are ignored.
3953 *
3954 * @param searchFunction a function returning a non-null
3955 * result on success, else null
3956 * @return a non-null result from applying the given search
3957 * function on each (key, value), or null if none
3958 */
3959 public <U> U searchInParallel
3960 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3961 return ForkJoinTasks.search
3962 (this, searchFunction).invoke();
3963 }
3964
3965 /**
3966 * Returns the result of accumulating the given transformation
3967 * of all (key, value) pairs using the given reducer to
3968 * combine values, or null if none.
3969 *
3970 * @param transformer a function returning the transformation
3971 * for an element, or null of there is no transformation (in
3972 * which case it is not combined).
3973 * @param reducer a commutative associative combining function
3974 * @return the result of accumulating the given transformation
3975 * of all (key, value) pairs
3976 */
3977 public <U> U reduceInParallel
3978 (BiFunction<? super K, ? super V, ? extends U> transformer,
3979 BiFunction<? super U, ? super U, ? extends U> reducer) {
3980 return ForkJoinTasks.reduce
3981 (this, transformer, reducer).invoke();
3982 }
3983
3984 /**
3985 * Returns the result of accumulating the given transformation
3986 * of all (key, value) pairs using the given reducer to
3987 * combine values, and the given basis as an identity value.
3988 *
3989 * @param transformer a function returning the transformation
3990 * for an element
3991 * @param basis the identity (initial default value) for the reduction
3992 * @param reducer a commutative associative combining function
3993 * @return the result of accumulating the given transformation
3994 * of all (key, value) pairs
3995 */
3996 public double reduceToDoubleInParallel
3997 (DoubleBiFunction<? super K, ? super V> transformer,
3998 double basis,
3999 DoubleBinaryOperator reducer) {
4000 return ForkJoinTasks.reduceToDouble
4001 (this, transformer, basis, reducer).invoke();
4002 }
4003
4004 /**
4005 * Returns the result of accumulating the given transformation
4006 * of all (key, value) pairs using the given reducer to
4007 * combine values, and the given basis as an identity value.
4008 *
4009 * @param transformer a function returning the transformation
4010 * for an element
4011 * @param basis the identity (initial default value) for the reduction
4012 * @param reducer a commutative associative combining function
4013 * @return the result of accumulating the given transformation
4014 * of all (key, value) pairs
4015 */
4016 public long reduceToLongInParallel
4017 (LongBiFunction<? super K, ? super V> transformer,
4018 long basis,
4019 LongBinaryOperator reducer) {
4020 return ForkJoinTasks.reduceToLong
4021 (this, transformer, basis, reducer).invoke();
4022 }
4023
4024 /**
4025 * Returns the result of accumulating the given transformation
4026 * of all (key, value) pairs using the given reducer to
4027 * combine values, and the given basis as an identity value.
4028 *
4029 * @param transformer a function returning the transformation
4030 * for an element
4031 * @param basis the identity (initial default value) for the reduction
4032 * @param reducer a commutative associative combining function
4033 * @return the result of accumulating the given transformation
4034 * of all (key, value) pairs
4035 */
4036 public int reduceToIntInParallel
4037 (IntBiFunction<? super K, ? super V> transformer,
4038 int basis,
4039 IntBinaryOperator reducer) {
4040 return ForkJoinTasks.reduceToInt
4041 (this, transformer, basis, reducer).invoke();
4042 }
4043
4044 /**
4045 * Performs the given action for each key.
4046 *
4047 * @param action the action
4048 */
4049 public void forEachKeyInParallel(Block<? super K> action) {
4050 ForkJoinTasks.forEachKey
4051 (this, action).invoke();
4052 }
4053
4054 /**
4055 * Performs the given action for each non-null transformation
4056 * of each key.
4057 *
4058 * @param transformer a function returning the transformation
4059 * for an element, or null of there is no transformation (in
4060 * which case the action is not applied).
4061 * @param action the action
4062 */
4063 public <U> void forEachKeyInParallel
4064 (Function<? super K, ? extends U> transformer,
4065 Block<? super U> action) {
4066 ForkJoinTasks.forEachKey
4067 (this, transformer, action).invoke();
4068 }
4069
4070 /**
4071 * Returns a non-null result from applying the given search
4072 * function on each key, or null if none. Upon success,
4073 * further element processing is suppressed and the results of
4074 * any other parallel invocations of the search function are
4075 * ignored.
4076 *
4077 * @param searchFunction a function returning a non-null
4078 * result on success, else null
4079 * @return a non-null result from applying the given search
4080 * function on each key, or null if none
4081 */
4082 public <U> U searchKeysInParallel
4083 (Function<? super K, ? extends U> searchFunction) {
4084 return ForkJoinTasks.searchKeys
4085 (this, searchFunction).invoke();
4086 }
4087
4088 /**
4089 * Returns the result of accumulating all keys using the given
4090 * reducer to combine values, or null if none.
4091 *
4092 * @param reducer a commutative associative combining function
4093 * @return the result of accumulating all keys using the given
4094 * reducer to combine values, or null if none
4095 */
4096 public K reduceKeysInParallel
4097 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4098 return ForkJoinTasks.reduceKeys
4099 (this, reducer).invoke();
4100 }
4101
4102 /**
4103 * Returns the result of accumulating the given transformation
4104 * of all keys using the given reducer to combine values, or
4105 * null if none.
4106 *
4107 * @param transformer a function returning the transformation
4108 * for an element, or null of there is no transformation (in
4109 * which case it is not combined).
4110 * @param reducer a commutative associative combining function
4111 * @return the result of accumulating the given transformation
4112 * of all keys
4113 */
4114 public <U> U reduceKeysInParallel
4115 (Function<? super K, ? extends U> transformer,
4116 BiFunction<? super U, ? super U, ? extends U> reducer) {
4117 return ForkJoinTasks.reduceKeys
4118 (this, transformer, reducer).invoke();
4119 }
4120
4121 /**
4122 * Returns the result of accumulating the given transformation
4123 * of all keys using the given reducer to combine values, and
4124 * the given basis as an identity value.
4125 *
4126 * @param transformer a function returning the transformation
4127 * for an element
4128 * @param basis the identity (initial default value) for the reduction
4129 * @param reducer a commutative associative combining function
4130 * @return the result of accumulating the given transformation
4131 * of all keys
4132 */
4133 public double reduceKeysToDoubleInParallel
4134 (DoubleFunction<? super K> transformer,
4135 double basis,
4136 DoubleBinaryOperator reducer) {
4137 return ForkJoinTasks.reduceKeysToDouble
4138 (this, transformer, basis, reducer).invoke();
4139 }
4140
4141 /**
4142 * Returns the result of accumulating the given transformation
4143 * of all keys using the given reducer to combine values, and
4144 * the given basis as an identity value.
4145 *
4146 * @param transformer a function returning the transformation
4147 * for an element
4148 * @param basis the identity (initial default value) for the reduction
4149 * @param reducer a commutative associative combining function
4150 * @return the result of accumulating the given transformation
4151 * of all keys
4152 */
4153 public long reduceKeysToLongInParallel
4154 (LongFunction<? super K> transformer,
4155 long basis,
4156 LongBinaryOperator reducer) {
4157 return ForkJoinTasks.reduceKeysToLong
4158 (this, transformer, basis, reducer).invoke();
4159 }
4160
4161 /**
4162 * Returns the result of accumulating the given transformation
4163 * of all keys using the given reducer to combine values, and
4164 * the given basis as an identity value.
4165 *
4166 * @param transformer a function returning the transformation
4167 * for an element
4168 * @param basis the identity (initial default value) for the reduction
4169 * @param reducer a commutative associative combining function
4170 * @return the result of accumulating the given transformation
4171 * of all keys
4172 */
4173 public int reduceKeysToIntInParallel
4174 (IntFunction<? super K> transformer,
4175 int basis,
4176 IntBinaryOperator reducer) {
4177 return ForkJoinTasks.reduceKeysToInt
4178 (this, transformer, basis, reducer).invoke();
4179 }
4180
4181 /**
4182 * Performs the given action for each value.
4183 *
4184 * @param action the action
4185 */
4186 public void forEachValueInParallel(Block<? super V> action) {
4187 ForkJoinTasks.forEachValue
4188 (this, action).invoke();
4189 }
4190
4191 /**
4192 * Performs the given action for each non-null transformation
4193 * of each value.
4194 *
4195 * @param transformer a function returning the transformation
4196 * for an element, or null of there is no transformation (in
4197 * which case the action is not applied).
4198 */
4199 public <U> void forEachValueInParallel
4200 (Function<? super V, ? extends U> transformer,
4201 Block<? super U> action) {
4202 ForkJoinTasks.forEachValue
4203 (this, transformer, action).invoke();
4204 }
4205
4206 /**
4207 * Returns a non-null result from applying the given search
4208 * function on each value, or null if none. Upon success,
4209 * further element processing is suppressed and the results of
4210 * any other parallel invocations of the search function are
4211 * ignored.
4212 *
4213 * @param searchFunction a function returning a non-null
4214 * result on success, else null
4215 * @return a non-null result from applying the given search
4216 * function on each value, or null if none
4217 */
4218 public <U> U searchValuesInParallel
4219 (Function<? super V, ? extends U> searchFunction) {
4220 return ForkJoinTasks.searchValues
4221 (this, searchFunction).invoke();
4222 }
4223
4224 /**
4225 * Returns the result of accumulating all values using the
4226 * given reducer to combine values, or null if none.
4227 *
4228 * @param reducer a commutative associative combining function
4229 * @return the result of accumulating all values
4230 */
4231 public V reduceValuesInParallel
4232 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4233 return ForkJoinTasks.reduceValues
4234 (this, reducer).invoke();
4235 }
4236
4237 /**
4238 * Returns the result of accumulating the given transformation
4239 * of all values using the given reducer to combine values, or
4240 * null if none.
4241 *
4242 * @param transformer a function returning the transformation
4243 * for an element, or null of there is no transformation (in
4244 * which case it is not combined).
4245 * @param reducer a commutative associative combining function
4246 * @return the result of accumulating the given transformation
4247 * of all values
4248 */
4249 public <U> U reduceValuesInParallel
4250 (Function<? super V, ? extends U> transformer,
4251 BiFunction<? super U, ? super U, ? extends U> reducer) {
4252 return ForkJoinTasks.reduceValues
4253 (this, transformer, reducer).invoke();
4254 }
4255
4256 /**
4257 * Returns the result of accumulating the given transformation
4258 * of all values using the given reducer to combine values,
4259 * and the given basis as an identity value.
4260 *
4261 * @param transformer a function returning the transformation
4262 * for an element
4263 * @param basis the identity (initial default value) for the reduction
4264 * @param reducer a commutative associative combining function
4265 * @return the result of accumulating the given transformation
4266 * of all values
4267 */
4268 public double reduceValuesToDoubleInParallel
4269 (DoubleFunction<? super V> transformer,
4270 double basis,
4271 DoubleBinaryOperator reducer) {
4272 return ForkJoinTasks.reduceValuesToDouble
4273 (this, transformer, basis, reducer).invoke();
4274 }
4275
4276 /**
4277 * Returns the result of accumulating the given transformation
4278 * of all values using the given reducer to combine values,
4279 * and the given basis as an identity value.
4280 *
4281 * @param transformer a function returning the transformation
4282 * for an element
4283 * @param basis the identity (initial default value) for the reduction
4284 * @param reducer a commutative associative combining function
4285 * @return the result of accumulating the given transformation
4286 * of all values
4287 */
4288 public long reduceValuesToLongInParallel
4289 (LongFunction<? super V> transformer,
4290 long basis,
4291 LongBinaryOperator reducer) {
4292 return ForkJoinTasks.reduceValuesToLong
4293 (this, transformer, basis, reducer).invoke();
4294 }
4295
4296 /**
4297 * Returns the result of accumulating the given transformation
4298 * of all values using the given reducer to combine values,
4299 * and the given basis as an identity value.
4300 *
4301 * @param transformer a function returning the transformation
4302 * for an element
4303 * @param basis the identity (initial default value) for the reduction
4304 * @param reducer a commutative associative combining function
4305 * @return the result of accumulating the given transformation
4306 * of all values
4307 */
4308 public int reduceValuesToIntInParallel
4309 (IntFunction<? super V> transformer,
4310 int basis,
4311 IntBinaryOperator reducer) {
4312 return ForkJoinTasks.reduceValuesToInt
4313 (this, transformer, basis, reducer).invoke();
4314 }
4315
4316 /**
4317 * Performs the given action for each entry.
4318 *
4319 * @param action the action
4320 */
4321 public void forEachEntryInParallel(Block<? super Map.Entry<K,V>> action) {
4322 ForkJoinTasks.forEachEntry
4323 (this, action).invoke();
4324 }
4325
4326 /**
4327 * Performs the given action for each non-null transformation
4328 * of each entry.
4329 *
4330 * @param transformer a function returning the transformation
4331 * for an element, or null of there is no transformation (in
4332 * which case the action is not applied).
4333 * @param action the action
4334 */
4335 public <U> void forEachEntryInParallel
4336 (Function<Map.Entry<K,V>, ? extends U> transformer,
4337 Block<? super U> action) {
4338 ForkJoinTasks.forEachEntry
4339 (this, transformer, action).invoke();
4340 }
4341
4342 /**
4343 * Returns a non-null result from applying the given search
4344 * function on each entry, or null if none. Upon success,
4345 * further element processing is suppressed and the results of
4346 * any other parallel invocations of the search function are
4347 * ignored.
4348 *
4349 * @param searchFunction a function returning a non-null
4350 * result on success, else null
4351 * @return a non-null result from applying the given search
4352 * function on each entry, or null if none
4353 */
4354 public <U> U searchEntriesInParallel
4355 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4356 return ForkJoinTasks.searchEntries
4357 (this, searchFunction).invoke();
4358 }
4359
4360 /**
4361 * Returns the result of accumulating all entries using the
4362 * given reducer to combine values, or null if none.
4363 *
4364 * @param reducer a commutative associative combining function
4365 * @return the result of accumulating all entries
4366 */
4367 public Map.Entry<K,V> reduceEntriesInParallel
4368 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4369 return ForkJoinTasks.reduceEntries
4370 (this, reducer).invoke();
4371 }
4372
4373 /**
4374 * Returns the result of accumulating the given transformation
4375 * of all entries using the given reducer to combine values,
4376 * or null if none.
4377 *
4378 * @param transformer a function returning the transformation
4379 * for an element, or null of there is no transformation (in
4380 * which case it is not combined).
4381 * @param reducer a commutative associative combining function
4382 * @return the result of accumulating the given transformation
4383 * of all entries
4384 */
4385 public <U> U reduceEntriesInParallel
4386 (Function<Map.Entry<K,V>, ? extends U> transformer,
4387 BiFunction<? super U, ? super U, ? extends U> reducer) {
4388 return ForkJoinTasks.reduceEntries
4389 (this, transformer, reducer).invoke();
4390 }
4391
4392 /**
4393 * Returns the result of accumulating the given transformation
4394 * of all entries using the given reducer to combine values,
4395 * and the given basis as an identity value.
4396 *
4397 * @param transformer a function returning the transformation
4398 * for an element
4399 * @param basis the identity (initial default value) for the reduction
4400 * @param reducer a commutative associative combining function
4401 * @return the result of accumulating the given transformation
4402 * of all entries
4403 */
4404 public double reduceEntriesToDoubleInParallel
4405 (DoubleFunction<Map.Entry<K,V>> transformer,
4406 double basis,
4407 DoubleBinaryOperator reducer) {
4408 return ForkJoinTasks.reduceEntriesToDouble
4409 (this, transformer, basis, reducer).invoke();
4410 }
4411
4412 /**
4413 * Returns the result of accumulating the given transformation
4414 * of all entries using the given reducer to combine values,
4415 * and the given basis as an identity value.
4416 *
4417 * @param transformer a function returning the transformation
4418 * for an element
4419 * @param basis the identity (initial default value) for the reduction
4420 * @param reducer a commutative associative combining function
4421 * @return the result of accumulating the given transformation
4422 * of all entries
4423 */
4424 public long reduceEntriesToLongInParallel
4425 (LongFunction<Map.Entry<K,V>> transformer,
4426 long basis,
4427 LongBinaryOperator reducer) {
4428 return ForkJoinTasks.reduceEntriesToLong
4429 (this, transformer, basis, reducer).invoke();
4430 }
4431
4432 /**
4433 * Returns the result of accumulating the given transformation
4434 * of all entries using the given reducer to combine values,
4435 * and the given basis as an identity value.
4436 *
4437 * @param transformer a function returning the transformation
4438 * for an element
4439 * @param basis the identity (initial default value) for the reduction
4440 * @param reducer a commutative associative combining function
4441 * @return the result of accumulating the given transformation
4442 * of all entries
4443 */
4444 public int reduceEntriesToIntInParallel
4445 (IntFunction<Map.Entry<K,V>> transformer,
4446 int basis,
4447 IntBinaryOperator reducer) {
4448 return ForkJoinTasks.reduceEntriesToInt
4449 (this, transformer, basis, reducer).invoke();
4450 }
4451
4452
4453 /* ----------------Views -------------- */
4454
4455 /**
4456 * Base class for views.
4457 */
4458 static abstract class CHMView<K, V> implements java.io.Serializable {
4459 private static final long serialVersionUID = 7249069246763182397L;
4460 final ConcurrentHashMap<K, V> map;
4461 CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4462
4463 /**
4464 * Returns the map backing this view.
4465 *
4466 * @return the map backing this view
4467 */
4468 public ConcurrentHashMap<K,V> getMap() { return map; }
4469
4470 public final int size() { return map.size(); }
4471 public final boolean isEmpty() { return map.isEmpty(); }
4472 public final void clear() { map.clear(); }
4473
4474 // implementations below rely on concrete classes supplying these
4475 abstract public Iterator<?> iterator();
4476 abstract public boolean contains(Object o);
4477 abstract public boolean remove(Object o);
4478
4479 private static final String oomeMsg = "Required array size too large";
4480
4481 public final Object[] toArray() {
4482 long sz = map.mappingCount();
4483 if (sz > (long)(MAX_ARRAY_SIZE))
4484 throw new OutOfMemoryError(oomeMsg);
4485 int n = (int)sz;
4486 Object[] r = new Object[n];
4487 int i = 0;
4488 Iterator<?> it = iterator();
4489 while (it.hasNext()) {
4490 if (i == n) {
4491 if (n >= MAX_ARRAY_SIZE)
4492 throw new OutOfMemoryError(oomeMsg);
4493 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4494 n = MAX_ARRAY_SIZE;
4495 else
4496 n += (n >>> 1) + 1;
4497 r = Arrays.copyOf(r, n);
4498 }
4499 r[i++] = it.next();
4500 }
4501 return (i == n) ? r : Arrays.copyOf(r, i);
4502 }
4503
4504 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4505 long sz = map.mappingCount();
4506 if (sz > (long)(MAX_ARRAY_SIZE))
4507 throw new OutOfMemoryError(oomeMsg);
4508 int m = (int)sz;
4509 T[] r = (a.length >= m) ? a :
4510 (T[])java.lang.reflect.Array
4511 .newInstance(a.getClass().getComponentType(), m);
4512 int n = r.length;
4513 int i = 0;
4514 Iterator<?> it = iterator();
4515 while (it.hasNext()) {
4516 if (i == n) {
4517 if (n >= MAX_ARRAY_SIZE)
4518 throw new OutOfMemoryError(oomeMsg);
4519 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4520 n = MAX_ARRAY_SIZE;
4521 else
4522 n += (n >>> 1) + 1;
4523 r = Arrays.copyOf(r, n);
4524 }
4525 r[i++] = (T)it.next();
4526 }
4527 if (a == r && i < n) {
4528 r[i] = null; // null-terminate
4529 return r;
4530 }
4531 return (i == n) ? r : Arrays.copyOf(r, i);
4532 }
4533
4534 public final int hashCode() {
4535 int h = 0;
4536 for (Iterator<?> it = iterator(); it.hasNext();)
4537 h += it.next().hashCode();
4538 return h;
4539 }
4540
4541 public final String toString() {
4542 StringBuilder sb = new StringBuilder();
4543 sb.append('[');
4544 Iterator<?> it = iterator();
4545 if (it.hasNext()) {
4546 for (;;) {
4547 Object e = it.next();
4548 sb.append(e == this ? "(this Collection)" : e);
4549 if (!it.hasNext())
4550 break;
4551 sb.append(',').append(' ');
4552 }
4553 }
4554 return sb.append(']').toString();
4555 }
4556
4557 public final boolean containsAll(Collection<?> c) {
4558 if (c != this) {
4559 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4560 Object e = it.next();
4561 if (e == null || !contains(e))
4562 return false;
4563 }
4564 }
4565 return true;
4566 }
4567
4568 public final boolean removeAll(Collection<?> c) {
4569 boolean modified = false;
4570 for (Iterator<?> it = iterator(); it.hasNext();) {
4571 if (c.contains(it.next())) {
4572 it.remove();
4573 modified = true;
4574 }
4575 }
4576 return modified;
4577 }
4578
4579 public final boolean retainAll(Collection<?> c) {
4580 boolean modified = false;
4581 for (Iterator<?> it = iterator(); it.hasNext();) {
4582 if (!c.contains(it.next())) {
4583 it.remove();
4584 modified = true;
4585 }
4586 }
4587 return modified;
4588 }
4589
4590 }
4591
4592 /**
4593 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4594 * which additions may optionally be enabled by mapping to a
4595 * common value. This class cannot be directly instantiated. See
4596 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4597 * {@link #newKeySet(int)}.
4598 */
4599 public static class KeySetView<K,V> extends CHMView<K,V>
4600 implements Set<K>, java.io.Serializable {
4601 private static final long serialVersionUID = 7249069246763182397L;
4602 private final V value;
4603 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4604 super(map);
4605 this.value = value;
4606 }
4607
4608 /**
4609 * Returns the default mapped value for additions,
4610 * or {@code null} if additions are not supported.
4611 *
4612 * @return the default mapped value for additions, or {@code null}
4613 * if not supported.
4614 */
4615 public V getMappedValue() { return value; }
4616
4617 // implement Set API
4618
4619 public boolean contains(Object o) { return map.containsKey(o); }
4620 public boolean remove(Object o) { return map.remove(o) != null; }
4621
4622 /**
4623 * Returns a "weakly consistent" iterator that will never
4624 * throw {@link ConcurrentModificationException}, and
4625 * guarantees to traverse elements as they existed upon
4626 * construction of the iterator, and may (but is not
4627 * guaranteed to) reflect any modifications subsequent to
4628 * construction.
4629 *
4630 * @return an iterator over the keys of this map
4631 */
4632 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4633 public boolean add(K e) {
4634 V v;
4635 if ((v = value) == null)
4636 throw new UnsupportedOperationException();
4637 if (e == null)
4638 throw new NullPointerException();
4639 return map.internalPut(e, v, true) == null;
4640 }
4641 public boolean addAll(Collection<? extends K> c) {
4642 boolean added = false;
4643 V v;
4644 if ((v = value) == null)
4645 throw new UnsupportedOperationException();
4646 for (K e : c) {
4647 if (e == null)
4648 throw new NullPointerException();
4649 if (map.internalPut(e, v, true) == null)
4650 added = true;
4651 }
4652 return added;
4653 }
4654 public boolean equals(Object o) {
4655 Set<?> c;
4656 return ((o instanceof Set) &&
4657 ((c = (Set<?>)o) == this ||
4658 (containsAll(c) && c.containsAll(this))));
4659 }
4660
4661 public Stream<K> stream() {
4662 return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4663 }
4664 public Stream<K> parallelStream() {
4665 return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4666 0);
4667 }
4668 }
4669
4670 /**
4671 * A view of a ConcurrentHashMap as a {@link Collection} of
4672 * values, in which additions are disabled. This class cannot be
4673 * directly instantiated. See {@link #values},
4674 *
4675 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4676 * that will never throw {@link ConcurrentModificationException},
4677 * and guarantees to traverse elements as they existed upon
4678 * construction of the iterator, and may (but is not guaranteed to)
4679 * reflect any modifications subsequent to construction.
4680 */
4681 public static final class ValuesView<K,V> extends CHMView<K,V>
4682 implements Collection<V> {
4683 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4684 public final boolean contains(Object o) { return map.containsValue(o); }
4685 public final boolean remove(Object o) {
4686 if (o != null) {
4687 Iterator<V> it = new ValueIterator<K,V>(map);
4688 while (it.hasNext()) {
4689 if (o.equals(it.next())) {
4690 it.remove();
4691 return true;
4692 }
4693 }
4694 }
4695 return false;
4696 }
4697
4698 /**
4699 * Returns a "weakly consistent" iterator that will never
4700 * throw {@link ConcurrentModificationException}, and
4701 * guarantees to traverse elements as they existed upon
4702 * construction of the iterator, and may (but is not
4703 * guaranteed to) reflect any modifications subsequent to
4704 * construction.
4705 *
4706 * @return an iterator over the values of this map
4707 */
4708 public final Iterator<V> iterator() {
4709 return new ValueIterator<K,V>(map);
4710 }
4711 public final boolean add(V e) {
4712 throw new UnsupportedOperationException();
4713 }
4714 public final boolean addAll(Collection<? extends V> c) {
4715 throw new UnsupportedOperationException();
4716 }
4717
4718 public Stream<V> stream() {
4719 return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4720 }
4721
4722 public Stream<V> parallelStream() {
4723 return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4724 0);
4725 }
4726
4727 }
4728
4729 /**
4730 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4731 * entries. This class cannot be directly instantiated. See
4732 * {@link #entrySet}.
4733 */
4734 public static final class EntrySetView<K,V> extends CHMView<K,V>
4735 implements Set<Map.Entry<K,V>> {
4736 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4737 public final boolean contains(Object o) {
4738 Object k, v, r; Map.Entry<?,?> e;
4739 return ((o instanceof Map.Entry) &&
4740 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4741 (r = map.get(k)) != null &&
4742 (v = e.getValue()) != null &&
4743 (v == r || v.equals(r)));
4744 }
4745 public final boolean remove(Object o) {
4746 Object k, v; Map.Entry<?,?> e;
4747 return ((o instanceof Map.Entry) &&
4748 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4749 (v = e.getValue()) != null &&
4750 map.remove(k, v));
4751 }
4752
4753 /**
4754 * Returns a "weakly consistent" iterator that will never
4755 * throw {@link ConcurrentModificationException}, and
4756 * guarantees to traverse elements as they existed upon
4757 * construction of the iterator, and may (but is not
4758 * guaranteed to) reflect any modifications subsequent to
4759 * construction.
4760 *
4761 * @return an iterator over the entries of this map
4762 */
4763 public final Iterator<Map.Entry<K,V>> iterator() {
4764 return new EntryIterator<K,V>(map);
4765 }
4766
4767 public final boolean add(Entry<K,V> e) {
4768 K key = e.getKey();
4769 V value = e.getValue();
4770 if (key == null || value == null)
4771 throw new NullPointerException();
4772 return map.internalPut(key, value, false) == null;
4773 }
4774 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4775 boolean added = false;
4776 for (Entry<K,V> e : c) {
4777 if (add(e))
4778 added = true;
4779 }
4780 return added;
4781 }
4782 public boolean equals(Object o) {
4783 Set<?> c;
4784 return ((o instanceof Set) &&
4785 ((c = (Set<?>)o) == this ||
4786 (containsAll(c) && c.containsAll(this))));
4787 }
4788
4789 public Stream<Map.Entry<K,V>> stream() {
4790 return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4791 }
4792
4793 public Stream<Map.Entry<K,V>> parallelStream() {
4794 return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4795 0);
4796 }
4797 }
4798
4799 // ---------------------------------------------------------------------
4800
4801 /**
4802 * Predefined tasks for performing bulk parallel operations on
4803 * ConcurrentHashMaps. These tasks follow the forms and rules used
4804 * for bulk operations. Each method has the same name, but returns
4805 * a task rather than invoking it. These methods may be useful in
4806 * custom applications such as submitting a task without waiting
4807 * for completion, using a custom pool, or combining with other
4808 * tasks.
4809 */
4810 public static class ForkJoinTasks {
4811 private ForkJoinTasks() {}
4812
4813 /**
4814 * Returns a task that when invoked, performs the given
4815 * action for each (key, value)
4816 *
4817 * @param map the map
4818 * @param action the action
4819 * @return the task
4820 */
4821 public static <K,V> ForkJoinTask<Void> forEach
4822 (ConcurrentHashMap<K,V> map,
4823 BiBlock<? super K, ? super V> action) {
4824 if (action == null) throw new NullPointerException();
4825 return new ForEachMappingTask<K,V>(map, null, -1, action);
4826 }
4827
4828 /**
4829 * Returns a task that when invoked, performs the given
4830 * action for each non-null transformation of each (key, value)
4831 *
4832 * @param map the map
4833 * @param transformer a function returning the transformation
4834 * for an element, or null if there is no transformation (in
4835 * which case the action is not applied)
4836 * @param action the action
4837 * @return the task
4838 */
4839 public static <K,V,U> ForkJoinTask<Void> forEach
4840 (ConcurrentHashMap<K,V> map,
4841 BiFunction<? super K, ? super V, ? extends U> transformer,
4842 Block<? super U> action) {
4843 if (transformer == null || action == null)
4844 throw new NullPointerException();
4845 return new ForEachTransformedMappingTask<K,V,U>
4846 (map, null, -1, transformer, action);
4847 }
4848
4849 /**
4850 * Returns a task that when invoked, returns a non-null result
4851 * from applying the given search function on each (key,
4852 * value), or null if none. Upon success, further element
4853 * processing is suppressed and the results of any other
4854 * parallel invocations of the search function are ignored.
4855 *
4856 * @param map the map
4857 * @param searchFunction a function returning a non-null
4858 * result on success, else null
4859 * @return the task
4860 */
4861 public static <K,V,U> ForkJoinTask<U> search
4862 (ConcurrentHashMap<K,V> map,
4863 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4864 if (searchFunction == null) throw new NullPointerException();
4865 return new SearchMappingsTask<K,V,U>
4866 (map, null, -1, searchFunction,
4867 new AtomicReference<U>());
4868 }
4869
4870 /**
4871 * Returns a task that when invoked, returns the result of
4872 * accumulating the given transformation of all (key, value) pairs
4873 * using the given reducer to combine values, or null if none.
4874 *
4875 * @param map the map
4876 * @param transformer a function returning the transformation
4877 * for an element, or null if there is no transformation (in
4878 * which case it is not combined).
4879 * @param reducer a commutative associative combining function
4880 * @return the task
4881 */
4882 public static <K,V,U> ForkJoinTask<U> reduce
4883 (ConcurrentHashMap<K,V> map,
4884 BiFunction<? super K, ? super V, ? extends U> transformer,
4885 BiFunction<? super U, ? super U, ? extends U> reducer) {
4886 if (transformer == null || reducer == null)
4887 throw new NullPointerException();
4888 return new MapReduceMappingsTask<K,V,U>
4889 (map, null, -1, null, transformer, reducer);
4890 }
4891
4892 /**
4893 * Returns a task that when invoked, returns the result of
4894 * accumulating the given transformation of all (key, value) pairs
4895 * using the given reducer to combine values, and the given
4896 * basis as an identity value.
4897 *
4898 * @param map the map
4899 * @param transformer a function returning the transformation
4900 * for an element
4901 * @param basis the identity (initial default value) for the reduction
4902 * @param reducer a commutative associative combining function
4903 * @return the task
4904 */
4905 public static <K,V> ForkJoinTask<Double> reduceToDouble
4906 (ConcurrentHashMap<K,V> map,
4907 DoubleBiFunction<? super K, ? super V> transformer,
4908 double basis,
4909 DoubleBinaryOperator reducer) {
4910 if (transformer == null || reducer == null)
4911 throw new NullPointerException();
4912 return new MapReduceMappingsToDoubleTask<K,V>
4913 (map, null, -1, null, transformer, basis, reducer);
4914 }
4915
4916 /**
4917 * Returns a task that when invoked, returns the result of
4918 * accumulating the given transformation of all (key, value) pairs
4919 * using the given reducer to combine values, and the given
4920 * basis as an identity value.
4921 *
4922 * @param map the map
4923 * @param transformer a function returning the transformation
4924 * for an element
4925 * @param basis the identity (initial default value) for the reduction
4926 * @param reducer a commutative associative combining function
4927 * @return the task
4928 */
4929 public static <K,V> ForkJoinTask<Long> reduceToLong
4930 (ConcurrentHashMap<K,V> map,
4931 LongBiFunction<? super K, ? super V> transformer,
4932 long basis,
4933 LongBinaryOperator reducer) {
4934 if (transformer == null || reducer == null)
4935 throw new NullPointerException();
4936 return new MapReduceMappingsToLongTask<K,V>
4937 (map, null, -1, null, transformer, basis, reducer);
4938 }
4939
4940 /**
4941 * Returns a task that when invoked, returns the result of
4942 * accumulating the given transformation of all (key, value) pairs
4943 * using the given reducer to combine values, and the given
4944 * basis as an identity value.
4945 *
4946 * @param transformer a function returning the transformation
4947 * for an element
4948 * @param basis the identity (initial default value) for the reduction
4949 * @param reducer a commutative associative combining function
4950 * @return the task
4951 */
4952 public static <K,V> ForkJoinTask<Integer> reduceToInt
4953 (ConcurrentHashMap<K,V> map,
4954 IntBiFunction<? super K, ? super V> transformer,
4955 int basis,
4956 IntBinaryOperator reducer) {
4957 if (transformer == null || reducer == null)
4958 throw new NullPointerException();
4959 return new MapReduceMappingsToIntTask<K,V>
4960 (map, null, -1, null, transformer, basis, reducer);
4961 }
4962
4963 /**
4964 * Returns a task that when invoked, performs the given action
4965 * for each key.
4966 *
4967 * @param map the map
4968 * @param action the action
4969 * @return the task
4970 */
4971 public static <K,V> ForkJoinTask<Void> forEachKey
4972 (ConcurrentHashMap<K,V> map,
4973 Block<? super K> action) {
4974 if (action == null) throw new NullPointerException();
4975 return new ForEachKeyTask<K,V>(map, null, -1, action);
4976 }
4977
4978 /**
4979 * Returns a task that when invoked, performs the given action
4980 * for each non-null transformation of each key.
4981 *
4982 * @param map the map
4983 * @param transformer a function returning the transformation
4984 * for an element, or null if there is no transformation (in
4985 * which case the action is not applied)
4986 * @param action the action
4987 * @return the task
4988 */
4989 public static <K,V,U> ForkJoinTask<Void> forEachKey
4990 (ConcurrentHashMap<K,V> map,
4991 Function<? super K, ? extends U> transformer,
4992 Block<? super U> action) {
4993 if (transformer == null || action == null)
4994 throw new NullPointerException();
4995 return new ForEachTransformedKeyTask<K,V,U>
4996 (map, null, -1, transformer, action);
4997 }
4998
4999 /**
5000 * Returns a task that when invoked, returns a non-null result
5001 * from applying the given search function on each key, or
5002 * null if none. Upon success, further element processing is
5003 * suppressed and the results of any other parallel
5004 * invocations of the search function are ignored.
5005 *
5006 * @param map the map
5007 * @param searchFunction a function returning a non-null
5008 * result on success, else null
5009 * @return the task
5010 */
5011 public static <K,V,U> ForkJoinTask<U> searchKeys
5012 (ConcurrentHashMap<K,V> map,
5013 Function<? super K, ? extends U> searchFunction) {
5014 if (searchFunction == null) throw new NullPointerException();
5015 return new SearchKeysTask<K,V,U>
5016 (map, null, -1, searchFunction,
5017 new AtomicReference<U>());
5018 }
5019
5020 /**
5021 * Returns a task that when invoked, returns the result of
5022 * accumulating all keys using the given reducer to combine
5023 * values, or null if none.
5024 *
5025 * @param map the map
5026 * @param reducer a commutative associative combining function
5027 * @return the task
5028 */
5029 public static <K,V> ForkJoinTask<K> reduceKeys
5030 (ConcurrentHashMap<K,V> map,
5031 BiFunction<? super K, ? super K, ? extends K> reducer) {
5032 if (reducer == null) throw new NullPointerException();
5033 return new ReduceKeysTask<K,V>
5034 (map, null, -1, null, reducer);
5035 }
5036
5037 /**
5038 * Returns a task that when invoked, returns the result of
5039 * accumulating the given transformation of all keys using the given
5040 * reducer to combine values, or null if none.
5041 *
5042 * @param map the map
5043 * @param transformer a function returning the transformation
5044 * for an element, or null if there is no transformation (in
5045 * which case it is not combined).
5046 * @param reducer a commutative associative combining function
5047 * @return the task
5048 */
5049 public static <K,V,U> ForkJoinTask<U> reduceKeys
5050 (ConcurrentHashMap<K,V> map,
5051 Function<? super K, ? extends U> transformer,
5052 BiFunction<? super U, ? super U, ? extends U> reducer) {
5053 if (transformer == null || reducer == null)
5054 throw new NullPointerException();
5055 return new MapReduceKeysTask<K,V,U>
5056 (map, null, -1, null, transformer, reducer);
5057 }
5058
5059 /**
5060 * Returns a task that when invoked, returns the result of
5061 * accumulating the given transformation of all keys using the given
5062 * reducer to combine values, and the given basis as an
5063 * identity value.
5064 *
5065 * @param map the map
5066 * @param transformer a function returning the transformation
5067 * for an element
5068 * @param basis the identity (initial default value) for the reduction
5069 * @param reducer a commutative associative combining function
5070 * @return the task
5071 */
5072 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5073 (ConcurrentHashMap<K,V> map,
5074 DoubleFunction<? super K> transformer,
5075 double basis,
5076 DoubleBinaryOperator reducer) {
5077 if (transformer == null || reducer == null)
5078 throw new NullPointerException();
5079 return new MapReduceKeysToDoubleTask<K,V>
5080 (map, null, -1, null, transformer, basis, reducer);
5081 }
5082
5083 /**
5084 * Returns a task that when invoked, returns the result of
5085 * accumulating the given transformation of all keys using the given
5086 * reducer to combine values, and the given basis as an
5087 * identity value.
5088 *
5089 * @param map the map
5090 * @param transformer a function returning the transformation
5091 * for an element
5092 * @param basis the identity (initial default value) for the reduction
5093 * @param reducer a commutative associative combining function
5094 * @return the task
5095 */
5096 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5097 (ConcurrentHashMap<K,V> map,
5098 LongFunction<? super K> transformer,
5099 long basis,
5100 LongBinaryOperator reducer) {
5101 if (transformer == null || reducer == null)
5102 throw new NullPointerException();
5103 return new MapReduceKeysToLongTask<K,V>
5104 (map, null, -1, null, transformer, basis, reducer);
5105 }
5106
5107 /**
5108 * Returns a task that when invoked, returns the result of
5109 * accumulating the given transformation of all keys using the given
5110 * reducer to combine values, and the given basis as an
5111 * identity value.
5112 *
5113 * @param map the map
5114 * @param transformer a function returning the transformation
5115 * for an element
5116 * @param basis the identity (initial default value) for the reduction
5117 * @param reducer a commutative associative combining function
5118 * @return the task
5119 */
5120 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5121 (ConcurrentHashMap<K,V> map,
5122 IntFunction<? super K> transformer,
5123 int basis,
5124 IntBinaryOperator reducer) {
5125 if (transformer == null || reducer == null)
5126 throw new NullPointerException();
5127 return new MapReduceKeysToIntTask<K,V>
5128 (map, null, -1, null, transformer, basis, reducer);
5129 }
5130
5131 /**
5132 * Returns a task that when invoked, performs the given action
5133 * for each value.
5134 *
5135 * @param map the map
5136 * @param action the action
5137 */
5138 public static <K,V> ForkJoinTask<Void> forEachValue
5139 (ConcurrentHashMap<K,V> map,
5140 Block<? super V> action) {
5141 if (action == null) throw new NullPointerException();
5142 return new ForEachValueTask<K,V>(map, null, -1, action);
5143 }
5144
5145 /**
5146 * Returns a task that when invoked, performs the given action
5147 * for each non-null transformation of each value.
5148 *
5149 * @param map the map
5150 * @param transformer a function returning the transformation
5151 * for an element, or null if there is no transformation (in
5152 * which case the action is not applied)
5153 * @param action the action
5154 */
5155 public static <K,V,U> ForkJoinTask<Void> forEachValue
5156 (ConcurrentHashMap<K,V> map,
5157 Function<? super V, ? extends U> transformer,
5158 Block<? super U> action) {
5159 if (transformer == null || action == null)
5160 throw new NullPointerException();
5161 return new ForEachTransformedValueTask<K,V,U>
5162 (map, null, -1, transformer, action);
5163 }
5164
5165 /**
5166 * Returns a task that when invoked, returns a non-null result
5167 * from applying the given search function on each value, or
5168 * null if none. Upon success, further element processing is
5169 * suppressed and the results of any other parallel
5170 * invocations of the search function are ignored.
5171 *
5172 * @param map the map
5173 * @param searchFunction a function returning a non-null
5174 * result on success, else null
5175 * @return the task
5176 */
5177 public static <K,V,U> ForkJoinTask<U> searchValues
5178 (ConcurrentHashMap<K,V> map,
5179 Function<? super V, ? extends U> searchFunction) {
5180 if (searchFunction == null) throw new NullPointerException();
5181 return new SearchValuesTask<K,V,U>
5182 (map, null, -1, searchFunction,
5183 new AtomicReference<U>());
5184 }
5185
5186 /**
5187 * Returns a task that when invoked, returns the result of
5188 * accumulating all values using the given reducer to combine
5189 * values, or null if none.
5190 *
5191 * @param map the map
5192 * @param reducer a commutative associative combining function
5193 * @return the task
5194 */
5195 public static <K,V> ForkJoinTask<V> reduceValues
5196 (ConcurrentHashMap<K,V> map,
5197 BiFunction<? super V, ? super V, ? extends V> reducer) {
5198 if (reducer == null) throw new NullPointerException();
5199 return new ReduceValuesTask<K,V>
5200 (map, null, -1, null, reducer);
5201 }
5202
5203 /**
5204 * Returns a task that when invoked, returns the result of
5205 * accumulating the given transformation of all values using the
5206 * given reducer to combine values, or null if none.
5207 *
5208 * @param map the map
5209 * @param transformer a function returning the transformation
5210 * for an element, or null if there is no transformation (in
5211 * which case it is not combined).
5212 * @param reducer a commutative associative combining function
5213 * @return the task
5214 */
5215 public static <K,V,U> ForkJoinTask<U> reduceValues
5216 (ConcurrentHashMap<K,V> map,
5217 Function<? super V, ? extends U> transformer,
5218 BiFunction<? super U, ? super U, ? extends U> reducer) {
5219 if (transformer == null || reducer == null)
5220 throw new NullPointerException();
5221 return new MapReduceValuesTask<K,V,U>
5222 (map, null, -1, null, transformer, reducer);
5223 }
5224
5225 /**
5226 * Returns a task that when invoked, returns the result of
5227 * accumulating the given transformation of all values using the
5228 * given reducer to combine values, and the given basis as an
5229 * identity value.
5230 *
5231 * @param map the map
5232 * @param transformer a function returning the transformation
5233 * for an element
5234 * @param basis the identity (initial default value) for the reduction
5235 * @param reducer a commutative associative combining function
5236 * @return the task
5237 */
5238 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5239 (ConcurrentHashMap<K,V> map,
5240 DoubleFunction<? super V> transformer,
5241 double basis,
5242 DoubleBinaryOperator reducer) {
5243 if (transformer == null || reducer == null)
5244 throw new NullPointerException();
5245 return new MapReduceValuesToDoubleTask<K,V>
5246 (map, null, -1, null, transformer, basis, reducer);
5247 }
5248
5249 /**
5250 * Returns a task that when invoked, returns the result of
5251 * accumulating the given transformation of all values using the
5252 * given reducer to combine values, and the given basis as an
5253 * identity value.
5254 *
5255 * @param map the map
5256 * @param transformer a function returning the transformation
5257 * for an element
5258 * @param basis the identity (initial default value) for the reduction
5259 * @param reducer a commutative associative combining function
5260 * @return the task
5261 */
5262 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5263 (ConcurrentHashMap<K,V> map,
5264 LongFunction<? super V> transformer,
5265 long basis,
5266 LongBinaryOperator reducer) {
5267 if (transformer == null || reducer == null)
5268 throw new NullPointerException();
5269 return new MapReduceValuesToLongTask<K,V>
5270 (map, null, -1, null, transformer, basis, reducer);
5271 }
5272
5273 /**
5274 * Returns a task that when invoked, returns the result of
5275 * accumulating the given transformation of all values using the
5276 * given reducer to combine values, and the given basis as an
5277 * identity value.
5278 *
5279 * @param map the map
5280 * @param transformer a function returning the transformation
5281 * for an element
5282 * @param basis the identity (initial default value) for the reduction
5283 * @param reducer a commutative associative combining function
5284 * @return the task
5285 */
5286 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5287 (ConcurrentHashMap<K,V> map,
5288 IntFunction<? super V> transformer,
5289 int basis,
5290 IntBinaryOperator reducer) {
5291 if (transformer == null || reducer == null)
5292 throw new NullPointerException();
5293 return new MapReduceValuesToIntTask<K,V>
5294 (map, null, -1, null, transformer, basis, reducer);
5295 }
5296
5297 /**
5298 * Returns a task that when invoked, perform the given action
5299 * for each entry.
5300 *
5301 * @param map the map
5302 * @param action the action
5303 */
5304 public static <K,V> ForkJoinTask<Void> forEachEntry
5305 (ConcurrentHashMap<K,V> map,
5306 Block<? super Map.Entry<K,V>> action) {
5307 if (action == null) throw new NullPointerException();
5308 return new ForEachEntryTask<K,V>(map, null, -1, action);
5309 }
5310
5311 /**
5312 * Returns a task that when invoked, perform the given action
5313 * for each non-null transformation of each entry.
5314 *
5315 * @param map the map
5316 * @param transformer a function returning the transformation
5317 * for an element, or null if there is no transformation (in
5318 * which case the action is not applied)
5319 * @param action the action
5320 */
5321 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5322 (ConcurrentHashMap<K,V> map,
5323 Function<Map.Entry<K,V>, ? extends U> transformer,
5324 Block<? super U> action) {
5325 if (transformer == null || action == null)
5326 throw new NullPointerException();
5327 return new ForEachTransformedEntryTask<K,V,U>
5328 (map, null, -1, transformer, action);
5329 }
5330
5331 /**
5332 * Returns a task that when invoked, returns a non-null result
5333 * from applying the given search function on each entry, or
5334 * null if none. Upon success, further element processing is
5335 * suppressed and the results of any other parallel
5336 * invocations of the search function are ignored.
5337 *
5338 * @param map the map
5339 * @param searchFunction a function returning a non-null
5340 * result on success, else null
5341 * @return the task
5342 */
5343 public static <K,V,U> ForkJoinTask<U> searchEntries
5344 (ConcurrentHashMap<K,V> map,
5345 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5346 if (searchFunction == null) throw new NullPointerException();
5347 return new SearchEntriesTask<K,V,U>
5348 (map, null, -1, searchFunction,
5349 new AtomicReference<U>());
5350 }
5351
5352 /**
5353 * Returns a task that when invoked, returns the result of
5354 * accumulating all entries using the given reducer to combine
5355 * values, or null if none.
5356 *
5357 * @param map the map
5358 * @param reducer a commutative associative combining function
5359 * @return the task
5360 */
5361 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5362 (ConcurrentHashMap<K,V> map,
5363 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5364 if (reducer == null) throw new NullPointerException();
5365 return new ReduceEntriesTask<K,V>
5366 (map, null, -1, null, reducer);
5367 }
5368
5369 /**
5370 * Returns a task that when invoked, returns the result of
5371 * accumulating the given transformation of all entries using the
5372 * given reducer to combine values, or null if none.
5373 *
5374 * @param map the map
5375 * @param transformer a function returning the transformation
5376 * for an element, or null if there is no transformation (in
5377 * which case it is not combined).
5378 * @param reducer a commutative associative combining function
5379 * @return the task
5380 */
5381 public static <K,V,U> ForkJoinTask<U> reduceEntries
5382 (ConcurrentHashMap<K,V> map,
5383 Function<Map.Entry<K,V>, ? extends U> transformer,
5384 BiFunction<? super U, ? super U, ? extends U> reducer) {
5385 if (transformer == null || reducer == null)
5386 throw new NullPointerException();
5387 return new MapReduceEntriesTask<K,V,U>
5388 (map, null, -1, null, transformer, reducer);
5389 }
5390
5391 /**
5392 * Returns a task that when invoked, returns the result of
5393 * accumulating the given transformation of all entries using the
5394 * given reducer to combine values, and the given basis as an
5395 * identity value.
5396 *
5397 * @param map the map
5398 * @param transformer a function returning the transformation
5399 * for an element
5400 * @param basis the identity (initial default value) for the reduction
5401 * @param reducer a commutative associative combining function
5402 * @return the task
5403 */
5404 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5405 (ConcurrentHashMap<K,V> map,
5406 DoubleFunction<Map.Entry<K,V>> transformer,
5407 double basis,
5408 DoubleBinaryOperator reducer) {
5409 if (transformer == null || reducer == null)
5410 throw new NullPointerException();
5411 return new MapReduceEntriesToDoubleTask<K,V>
5412 (map, null, -1, null, transformer, basis, reducer);
5413 }
5414
5415 /**
5416 * Returns a task that when invoked, returns the result of
5417 * accumulating the given transformation of all entries using the
5418 * given reducer to combine values, and the given basis as an
5419 * identity value.
5420 *
5421 * @param map the map
5422 * @param transformer a function returning the transformation
5423 * for an element
5424 * @param basis the identity (initial default value) for the reduction
5425 * @param reducer a commutative associative combining function
5426 * @return the task
5427 */
5428 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5429 (ConcurrentHashMap<K,V> map,
5430 LongFunction<Map.Entry<K,V>> transformer,
5431 long basis,
5432 LongBinaryOperator reducer) {
5433 if (transformer == null || reducer == null)
5434 throw new NullPointerException();
5435 return new MapReduceEntriesToLongTask<K,V>
5436 (map, null, -1, null, transformer, basis, reducer);
5437 }
5438
5439 /**
5440 * Returns a task that when invoked, returns the result of
5441 * accumulating the given transformation of all entries using the
5442 * given reducer to combine values, and the given basis as an
5443 * identity value.
5444 *
5445 * @param map the map
5446 * @param transformer a function returning the transformation
5447 * for an element
5448 * @param basis the identity (initial default value) for the reduction
5449 * @param reducer a commutative associative combining function
5450 * @return the task
5451 */
5452 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5453 (ConcurrentHashMap<K,V> map,
5454 IntFunction<Map.Entry<K,V>> transformer,
5455 int basis,
5456 IntBinaryOperator reducer) {
5457 if (transformer == null || reducer == null)
5458 throw new NullPointerException();
5459 return new MapReduceEntriesToIntTask<K,V>
5460 (map, null, -1, null, transformer, basis, reducer);
5461 }
5462 }
5463
5464 // -------------------------------------------------------
5465
5466 /*
5467 * Task classes. Coded in a regular but ugly format/style to
5468 * simplify checks that each variant differs in the right way from
5469 * others. The null screenings exist because compilers cannot tell
5470 * that we've already null-checked task arguments, so we force
5471 * simplest hoisted bypass to help avoid convoluted traps.
5472 */
5473
5474 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5475 extends Traverser<K,V,Void> {
5476 final Block<? super K> action;
5477 ForEachKeyTask
5478 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5479 Block<? super K> action) {
5480 super(m, p, b);
5481 this.action = action;
5482 }
5483 @SuppressWarnings("unchecked") public final void compute() {
5484 final Block<? super K> action;
5485 if ((action = this.action) != null) {
5486 for (int b; (b = preSplit()) > 0;)
5487 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5488 while (advance() != null)
5489 action.accept((K)nextKey);
5490 propagateCompletion();
5491 }
5492 }
5493 }
5494
5495 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5496 extends Traverser<K,V,Void> {
5497 final Block<? super V> action;
5498 ForEachValueTask
5499 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5500 Block<? super V> action) {
5501 super(m, p, b);
5502 this.action = action;
5503 }
5504 @SuppressWarnings("unchecked") public final void compute() {
5505 final Block<? super V> action;
5506 if ((action = this.action) != null) {
5507 for (int b; (b = preSplit()) > 0;)
5508 new ForEachValueTask<K,V>(map, this, b, action).fork();
5509 V v;
5510 while ((v = advance()) != null)
5511 action.accept(v);
5512 propagateCompletion();
5513 }
5514 }
5515 }
5516
5517 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5518 extends Traverser<K,V,Void> {
5519 final Block<? super Entry<K,V>> action;
5520 ForEachEntryTask
5521 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5522 Block<? super Entry<K,V>> action) {
5523 super(m, p, b);
5524 this.action = action;
5525 }
5526 @SuppressWarnings("unchecked") public final void compute() {
5527 final Block<? super Entry<K,V>> action;
5528 if ((action = this.action) != null) {
5529 for (int b; (b = preSplit()) > 0;)
5530 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5531 V v;
5532 while ((v = advance()) != null)
5533 action.accept(entryFor((K)nextKey, v));
5534 propagateCompletion();
5535 }
5536 }
5537 }
5538
5539 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5540 extends Traverser<K,V,Void> {
5541 final BiBlock<? super K, ? super V> action;
5542 ForEachMappingTask
5543 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5544 BiBlock<? super K,? super V> action) {
5545 super(m, p, b);
5546 this.action = action;
5547 }
5548 @SuppressWarnings("unchecked") public final void compute() {
5549 final BiBlock<? super K, ? super V> action;
5550 if ((action = this.action) != null) {
5551 for (int b; (b = preSplit()) > 0;)
5552 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5553 V v;
5554 while ((v = advance()) != null)
5555 action.accept((K)nextKey, v);
5556 propagateCompletion();
5557 }
5558 }
5559 }
5560
5561 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5562 extends Traverser<K,V,Void> {
5563 final Function<? super K, ? extends U> transformer;
5564 final Block<? super U> action;
5565 ForEachTransformedKeyTask
5566 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5567 Function<? super K, ? extends U> transformer, Block<? super U> action) {
5568 super(m, p, b);
5569 this.transformer = transformer; this.action = action;
5570 }
5571 @SuppressWarnings("unchecked") public final void compute() {
5572 final Function<? super K, ? extends U> transformer;
5573 final Block<? super U> action;
5574 if ((transformer = this.transformer) != null &&
5575 (action = this.action) != null) {
5576 for (int b; (b = preSplit()) > 0;)
5577 new ForEachTransformedKeyTask<K,V,U>
5578 (map, this, b, transformer, action).fork();
5579 U u;
5580 while (advance() != null) {
5581 if ((u = transformer.apply((K)nextKey)) != null)
5582 action.accept(u);
5583 }
5584 propagateCompletion();
5585 }
5586 }
5587 }
5588
5589 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5590 extends Traverser<K,V,Void> {
5591 final Function<? super V, ? extends U> transformer;
5592 final Block<? super U> action;
5593 ForEachTransformedValueTask
5594 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5595 Function<? super V, ? extends U> transformer, Block<? super U> action) {
5596 super(m, p, b);
5597 this.transformer = transformer; this.action = action;
5598 }
5599 @SuppressWarnings("unchecked") public final void compute() {
5600 final Function<? super V, ? extends U> transformer;
5601 final Block<? super U> action;
5602 if ((transformer = this.transformer) != null &&
5603 (action = this.action) != null) {
5604 for (int b; (b = preSplit()) > 0;)
5605 new ForEachTransformedValueTask<K,V,U>
5606 (map, this, b, transformer, action).fork();
5607 V v; U u;
5608 while ((v = advance()) != null) {
5609 if ((u = transformer.apply(v)) != null)
5610 action.accept(u);
5611 }
5612 propagateCompletion();
5613 }
5614 }
5615 }
5616
5617 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5618 extends Traverser<K,V,Void> {
5619 final Function<Map.Entry<K,V>, ? extends U> transformer;
5620 final Block<? super U> action;
5621 ForEachTransformedEntryTask
5622 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5623 Function<Map.Entry<K,V>, ? extends U> transformer, Block<? super U> action) {
5624 super(m, p, b);
5625 this.transformer = transformer; this.action = action;
5626 }
5627 @SuppressWarnings("unchecked") public final void compute() {
5628 final Function<Map.Entry<K,V>, ? extends U> transformer;
5629 final Block<? super U> action;
5630 if ((transformer = this.transformer) != null &&
5631 (action = this.action) != null) {
5632 for (int b; (b = preSplit()) > 0;)
5633 new ForEachTransformedEntryTask<K,V,U>
5634 (map, this, b, transformer, action).fork();
5635 V v; U u;
5636 while ((v = advance()) != null) {
5637 if ((u = transformer.apply(entryFor((K)nextKey,
5638 v))) != null)
5639 action.accept(u);
5640 }
5641 propagateCompletion();
5642 }
5643 }
5644 }
5645
5646 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5647 extends Traverser<K,V,Void> {
5648 final BiFunction<? super K, ? super V, ? extends U> transformer;
5649 final Block<? super U> action;
5650 ForEachTransformedMappingTask
5651 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5652 BiFunction<? super K, ? super V, ? extends U> transformer,
5653 Block<? super U> action) {
5654 super(m, p, b);
5655 this.transformer = transformer; this.action = action;
5656 }
5657 @SuppressWarnings("unchecked") public final void compute() {
5658 final BiFunction<? super K, ? super V, ? extends U> transformer;
5659 final Block<? super U> action;
5660 if ((transformer = this.transformer) != null &&
5661 (action = this.action) != null) {
5662 for (int b; (b = preSplit()) > 0;)
5663 new ForEachTransformedMappingTask<K,V,U>
5664 (map, this, b, transformer, action).fork();
5665 V v; U u;
5666 while ((v = advance()) != null) {
5667 if ((u = transformer.apply((K)nextKey, v)) != null)
5668 action.accept(u);
5669 }
5670 propagateCompletion();
5671 }
5672 }
5673 }
5674
5675 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5676 extends Traverser<K,V,U> {
5677 final Function<? super K, ? extends U> searchFunction;
5678 final AtomicReference<U> result;
5679 SearchKeysTask
5680 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5681 Function<? super K, ? extends U> searchFunction,
5682 AtomicReference<U> result) {
5683 super(m, p, b);
5684 this.searchFunction = searchFunction; this.result = result;
5685 }
5686 public final U getRawResult() { return result.get(); }
5687 @SuppressWarnings("unchecked") public final void compute() {
5688 final Function<? super K, ? extends U> searchFunction;
5689 final AtomicReference<U> result;
5690 if ((searchFunction = this.searchFunction) != null &&
5691 (result = this.result) != null) {
5692 for (int b;;) {
5693 if (result.get() != null)
5694 return;
5695 if ((b = preSplit()) <= 0)
5696 break;
5697 new SearchKeysTask<K,V,U>
5698 (map, this, b, searchFunction, result).fork();
5699 }
5700 while (result.get() == null) {
5701 U u;
5702 if (advance() == null) {
5703 propagateCompletion();
5704 break;
5705 }
5706 if ((u = searchFunction.apply((K)nextKey)) != null) {
5707 if (result.compareAndSet(null, u))
5708 quietlyCompleteRoot();
5709 break;
5710 }
5711 }
5712 }
5713 }
5714 }
5715
5716 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5717 extends Traverser<K,V,U> {
5718 final Function<? super V, ? extends U> searchFunction;
5719 final AtomicReference<U> result;
5720 SearchValuesTask
5721 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5722 Function<? super V, ? extends U> searchFunction,
5723 AtomicReference<U> result) {
5724 super(m, p, b);
5725 this.searchFunction = searchFunction; this.result = result;
5726 }
5727 public final U getRawResult() { return result.get(); }
5728 @SuppressWarnings("unchecked") public final void compute() {
5729 final Function<? super V, ? extends U> searchFunction;
5730 final AtomicReference<U> result;
5731 if ((searchFunction = this.searchFunction) != null &&
5732 (result = this.result) != null) {
5733 for (int b;;) {
5734 if (result.get() != null)
5735 return;
5736 if ((b = preSplit()) <= 0)
5737 break;
5738 new SearchValuesTask<K,V,U>
5739 (map, this, b, searchFunction, result).fork();
5740 }
5741 while (result.get() == null) {
5742 V v; U u;
5743 if ((v = advance()) == null) {
5744 propagateCompletion();
5745 break;
5746 }
5747 if ((u = searchFunction.apply(v)) != null) {
5748 if (result.compareAndSet(null, u))
5749 quietlyCompleteRoot();
5750 break;
5751 }
5752 }
5753 }
5754 }
5755 }
5756
5757 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5758 extends Traverser<K,V,U> {
5759 final Function<Entry<K,V>, ? extends U> searchFunction;
5760 final AtomicReference<U> result;
5761 SearchEntriesTask
5762 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5763 Function<Entry<K,V>, ? extends U> searchFunction,
5764 AtomicReference<U> result) {
5765 super(m, p, b);
5766 this.searchFunction = searchFunction; this.result = result;
5767 }
5768 public final U getRawResult() { return result.get(); }
5769 @SuppressWarnings("unchecked") public final void compute() {
5770 final Function<Entry<K,V>, ? extends U> searchFunction;
5771 final AtomicReference<U> result;
5772 if ((searchFunction = this.searchFunction) != null &&
5773 (result = this.result) != null) {
5774 for (int b;;) {
5775 if (result.get() != null)
5776 return;
5777 if ((b = preSplit()) <= 0)
5778 break;
5779 new SearchEntriesTask<K,V,U>
5780 (map, this, b, searchFunction, result).fork();
5781 }
5782 while (result.get() == null) {
5783 V v; U u;
5784 if ((v = advance()) == null) {
5785 propagateCompletion();
5786 break;
5787 }
5788 if ((u = searchFunction.apply(entryFor((K)nextKey,
5789 v))) != null) {
5790 if (result.compareAndSet(null, u))
5791 quietlyCompleteRoot();
5792 return;
5793 }
5794 }
5795 }
5796 }
5797 }
5798
5799 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5800 extends Traverser<K,V,U> {
5801 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5802 final AtomicReference<U> result;
5803 SearchMappingsTask
5804 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5805 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5806 AtomicReference<U> result) {
5807 super(m, p, b);
5808 this.searchFunction = searchFunction; this.result = result;
5809 }
5810 public final U getRawResult() { return result.get(); }
5811 @SuppressWarnings("unchecked") public final void compute() {
5812 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5813 final AtomicReference<U> result;
5814 if ((searchFunction = this.searchFunction) != null &&
5815 (result = this.result) != null) {
5816 for (int b;;) {
5817 if (result.get() != null)
5818 return;
5819 if ((b = preSplit()) <= 0)
5820 break;
5821 new SearchMappingsTask<K,V,U>
5822 (map, this, b, searchFunction, result).fork();
5823 }
5824 while (result.get() == null) {
5825 V v; U u;
5826 if ((v = advance()) == null) {
5827 propagateCompletion();
5828 break;
5829 }
5830 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5831 if (result.compareAndSet(null, u))
5832 quietlyCompleteRoot();
5833 break;
5834 }
5835 }
5836 }
5837 }
5838 }
5839
5840 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5841 extends Traverser<K,V,K> {
5842 final BiFunction<? super K, ? super K, ? extends K> reducer;
5843 K result;
5844 ReduceKeysTask<K,V> rights, nextRight;
5845 ReduceKeysTask
5846 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5847 ReduceKeysTask<K,V> nextRight,
5848 BiFunction<? super K, ? super K, ? extends K> reducer) {
5849 super(m, p, b); this.nextRight = nextRight;
5850 this.reducer = reducer;
5851 }
5852 public final K getRawResult() { return result; }
5853 @SuppressWarnings("unchecked") public final void compute() {
5854 final BiFunction<? super K, ? super K, ? extends K> reducer;
5855 if ((reducer = this.reducer) != null) {
5856 for (int b; (b = preSplit()) > 0;)
5857 (rights = new ReduceKeysTask<K,V>
5858 (map, this, b, rights, reducer)).fork();
5859 K r = null;
5860 while (advance() != null) {
5861 K u = (K)nextKey;
5862 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5863 }
5864 result = r;
5865 CountedCompleter<?> c;
5866 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5867 ReduceKeysTask<K,V>
5868 t = (ReduceKeysTask<K,V>)c,
5869 s = t.rights;
5870 while (s != null) {
5871 K tr, sr;
5872 if ((sr = s.result) != null)
5873 t.result = (((tr = t.result) == null) ? sr :
5874 reducer.apply(tr, sr));
5875 s = t.rights = s.nextRight;
5876 }
5877 }
5878 }
5879 }
5880 }
5881
5882 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5883 extends Traverser<K,V,V> {
5884 final BiFunction<? super V, ? super V, ? extends V> reducer;
5885 V result;
5886 ReduceValuesTask<K,V> rights, nextRight;
5887 ReduceValuesTask
5888 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5889 ReduceValuesTask<K,V> nextRight,
5890 BiFunction<? super V, ? super V, ? extends V> reducer) {
5891 super(m, p, b); this.nextRight = nextRight;
5892 this.reducer = reducer;
5893 }
5894 public final V getRawResult() { return result; }
5895 @SuppressWarnings("unchecked") public final void compute() {
5896 final BiFunction<? super V, ? super V, ? extends V> reducer;
5897 if ((reducer = this.reducer) != null) {
5898 for (int b; (b = preSplit()) > 0;)
5899 (rights = new ReduceValuesTask<K,V>
5900 (map, this, b, rights, reducer)).fork();
5901 V r = null, v;
5902 while ((v = advance()) != null)
5903 r = (r == null) ? v : reducer.apply(r, v);
5904 result = r;
5905 CountedCompleter<?> c;
5906 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5907 ReduceValuesTask<K,V>
5908 t = (ReduceValuesTask<K,V>)c,
5909 s = t.rights;
5910 while (s != null) {
5911 V tr, sr;
5912 if ((sr = s.result) != null)
5913 t.result = (((tr = t.result) == null) ? sr :
5914 reducer.apply(tr, sr));
5915 s = t.rights = s.nextRight;
5916 }
5917 }
5918 }
5919 }
5920 }
5921
5922 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5923 extends Traverser<K,V,Map.Entry<K,V>> {
5924 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5925 Map.Entry<K,V> result;
5926 ReduceEntriesTask<K,V> rights, nextRight;
5927 ReduceEntriesTask
5928 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5929 ReduceEntriesTask<K,V> nextRight,
5930 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5931 super(m, p, b); this.nextRight = nextRight;
5932 this.reducer = reducer;
5933 }
5934 public final Map.Entry<K,V> getRawResult() { return result; }
5935 @SuppressWarnings("unchecked") public final void compute() {
5936 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5937 if ((reducer = this.reducer) != null) {
5938 for (int b; (b = preSplit()) > 0;)
5939 (rights = new ReduceEntriesTask<K,V>
5940 (map, this, b, rights, reducer)).fork();
5941 Map.Entry<K,V> r = null;
5942 V v;
5943 while ((v = advance()) != null) {
5944 Map.Entry<K,V> u = entryFor((K)nextKey, v);
5945 r = (r == null) ? u : reducer.apply(r, u);
5946 }
5947 result = r;
5948 CountedCompleter<?> c;
5949 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5950 ReduceEntriesTask<K,V>
5951 t = (ReduceEntriesTask<K,V>)c,
5952 s = t.rights;
5953 while (s != null) {
5954 Map.Entry<K,V> tr, sr;
5955 if ((sr = s.result) != null)
5956 t.result = (((tr = t.result) == null) ? sr :
5957 reducer.apply(tr, sr));
5958 s = t.rights = s.nextRight;
5959 }
5960 }
5961 }
5962 }
5963 }
5964
5965 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5966 extends Traverser<K,V,U> {
5967 final Function<? super K, ? extends U> transformer;
5968 final BiFunction<? super U, ? super U, ? extends U> reducer;
5969 U result;
5970 MapReduceKeysTask<K,V,U> rights, nextRight;
5971 MapReduceKeysTask
5972 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5973 MapReduceKeysTask<K,V,U> nextRight,
5974 Function<? super K, ? extends U> transformer,
5975 BiFunction<? super U, ? super U, ? extends U> reducer) {
5976 super(m, p, b); this.nextRight = nextRight;
5977 this.transformer = transformer;
5978 this.reducer = reducer;
5979 }
5980 public final U getRawResult() { return result; }
5981 @SuppressWarnings("unchecked") public final void compute() {
5982 final Function<? super K, ? extends U> transformer;
5983 final BiFunction<? super U, ? super U, ? extends U> reducer;
5984 if ((transformer = this.transformer) != null &&
5985 (reducer = this.reducer) != null) {
5986 for (int b; (b = preSplit()) > 0;)
5987 (rights = new MapReduceKeysTask<K,V,U>
5988 (map, this, b, rights, transformer, reducer)).fork();
5989 U r = null, u;
5990 while (advance() != null) {
5991 if ((u = transformer.apply((K)nextKey)) != null)
5992 r = (r == null) ? u : reducer.apply(r, u);
5993 }
5994 result = r;
5995 CountedCompleter<?> c;
5996 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5997 MapReduceKeysTask<K,V,U>
5998 t = (MapReduceKeysTask<K,V,U>)c,
5999 s = t.rights;
6000 while (s != null) {
6001 U tr, sr;
6002 if ((sr = s.result) != null)
6003 t.result = (((tr = t.result) == null) ? sr :
6004 reducer.apply(tr, sr));
6005 s = t.rights = s.nextRight;
6006 }
6007 }
6008 }
6009 }
6010 }
6011
6012 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6013 extends Traverser<K,V,U> {
6014 final Function<? super V, ? extends U> transformer;
6015 final BiFunction<? super U, ? super U, ? extends U> reducer;
6016 U result;
6017 MapReduceValuesTask<K,V,U> rights, nextRight;
6018 MapReduceValuesTask
6019 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6020 MapReduceValuesTask<K,V,U> nextRight,
6021 Function<? super V, ? extends U> transformer,
6022 BiFunction<? super U, ? super U, ? extends U> reducer) {
6023 super(m, p, b); this.nextRight = nextRight;
6024 this.transformer = transformer;
6025 this.reducer = reducer;
6026 }
6027 public final U getRawResult() { return result; }
6028 @SuppressWarnings("unchecked") public final void compute() {
6029 final Function<? super V, ? extends U> transformer;
6030 final BiFunction<? super U, ? super U, ? extends U> reducer;
6031 if ((transformer = this.transformer) != null &&
6032 (reducer = this.reducer) != null) {
6033 for (int b; (b = preSplit()) > 0;)
6034 (rights = new MapReduceValuesTask<K,V,U>
6035 (map, this, b, rights, transformer, reducer)).fork();
6036 U r = null, u;
6037 V v;
6038 while ((v = advance()) != null) {
6039 if ((u = transformer.apply(v)) != null)
6040 r = (r == null) ? u : reducer.apply(r, u);
6041 }
6042 result = r;
6043 CountedCompleter<?> c;
6044 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6045 MapReduceValuesTask<K,V,U>
6046 t = (MapReduceValuesTask<K,V,U>)c,
6047 s = t.rights;
6048 while (s != null) {
6049 U tr, sr;
6050 if ((sr = s.result) != null)
6051 t.result = (((tr = t.result) == null) ? sr :
6052 reducer.apply(tr, sr));
6053 s = t.rights = s.nextRight;
6054 }
6055 }
6056 }
6057 }
6058 }
6059
6060 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6061 extends Traverser<K,V,U> {
6062 final Function<Map.Entry<K,V>, ? extends U> transformer;
6063 final BiFunction<? super U, ? super U, ? extends U> reducer;
6064 U result;
6065 MapReduceEntriesTask<K,V,U> rights, nextRight;
6066 MapReduceEntriesTask
6067 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6068 MapReduceEntriesTask<K,V,U> nextRight,
6069 Function<Map.Entry<K,V>, ? extends U> transformer,
6070 BiFunction<? super U, ? super U, ? extends U> reducer) {
6071 super(m, p, b); this.nextRight = nextRight;
6072 this.transformer = transformer;
6073 this.reducer = reducer;
6074 }
6075 public final U getRawResult() { return result; }
6076 @SuppressWarnings("unchecked") public final void compute() {
6077 final Function<Map.Entry<K,V>, ? extends U> transformer;
6078 final BiFunction<? super U, ? super U, ? extends U> reducer;
6079 if ((transformer = this.transformer) != null &&
6080 (reducer = this.reducer) != null) {
6081 for (int b; (b = preSplit()) > 0;)
6082 (rights = new MapReduceEntriesTask<K,V,U>
6083 (map, this, b, rights, transformer, reducer)).fork();
6084 U r = null, u;
6085 V v;
6086 while ((v = advance()) != null) {
6087 if ((u = transformer.apply(entryFor((K)nextKey,
6088 v))) != null)
6089 r = (r == null) ? u : reducer.apply(r, u);
6090 }
6091 result = r;
6092 CountedCompleter<?> c;
6093 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6094 MapReduceEntriesTask<K,V,U>
6095 t = (MapReduceEntriesTask<K,V,U>)c,
6096 s = t.rights;
6097 while (s != null) {
6098 U tr, sr;
6099 if ((sr = s.result) != null)
6100 t.result = (((tr = t.result) == null) ? sr :
6101 reducer.apply(tr, sr));
6102 s = t.rights = s.nextRight;
6103 }
6104 }
6105 }
6106 }
6107 }
6108
6109 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6110 extends Traverser<K,V,U> {
6111 final BiFunction<? super K, ? super V, ? extends U> transformer;
6112 final BiFunction<? super U, ? super U, ? extends U> reducer;
6113 U result;
6114 MapReduceMappingsTask<K,V,U> rights, nextRight;
6115 MapReduceMappingsTask
6116 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6117 MapReduceMappingsTask<K,V,U> nextRight,
6118 BiFunction<? super K, ? super V, ? extends U> transformer,
6119 BiFunction<? super U, ? super U, ? extends U> reducer) {
6120 super(m, p, b); this.nextRight = nextRight;
6121 this.transformer = transformer;
6122 this.reducer = reducer;
6123 }
6124 public final U getRawResult() { return result; }
6125 @SuppressWarnings("unchecked") public final void compute() {
6126 final BiFunction<? super K, ? super V, ? extends U> transformer;
6127 final BiFunction<? super U, ? super U, ? extends U> reducer;
6128 if ((transformer = this.transformer) != null &&
6129 (reducer = this.reducer) != null) {
6130 for (int b; (b = preSplit()) > 0;)
6131 (rights = new MapReduceMappingsTask<K,V,U>
6132 (map, this, b, rights, transformer, reducer)).fork();
6133 U r = null, u;
6134 V v;
6135 while ((v = advance()) != null) {
6136 if ((u = transformer.apply((K)nextKey, v)) != null)
6137 r = (r == null) ? u : reducer.apply(r, u);
6138 }
6139 result = r;
6140 CountedCompleter<?> c;
6141 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6142 MapReduceMappingsTask<K,V,U>
6143 t = (MapReduceMappingsTask<K,V,U>)c,
6144 s = t.rights;
6145 while (s != null) {
6146 U tr, sr;
6147 if ((sr = s.result) != null)
6148 t.result = (((tr = t.result) == null) ? sr :
6149 reducer.apply(tr, sr));
6150 s = t.rights = s.nextRight;
6151 }
6152 }
6153 }
6154 }
6155 }
6156
6157 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6158 extends Traverser<K,V,Double> {
6159 final DoubleFunction<? super K> transformer;
6160 final DoubleBinaryOperator reducer;
6161 final double basis;
6162 double result;
6163 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6164 MapReduceKeysToDoubleTask
6165 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6166 MapReduceKeysToDoubleTask<K,V> nextRight,
6167 DoubleFunction<? super K> transformer,
6168 double basis,
6169 DoubleBinaryOperator reducer) {
6170 super(m, p, b); this.nextRight = nextRight;
6171 this.transformer = transformer;
6172 this.basis = basis; this.reducer = reducer;
6173 }
6174 public final Double getRawResult() { return result; }
6175 @SuppressWarnings("unchecked") public final void compute() {
6176 final DoubleFunction<? super K> transformer;
6177 final DoubleBinaryOperator reducer;
6178 if ((transformer = this.transformer) != null &&
6179 (reducer = this.reducer) != null) {
6180 double r = this.basis;
6181 for (int b; (b = preSplit()) > 0;)
6182 (rights = new MapReduceKeysToDoubleTask<K,V>
6183 (map, this, b, rights, transformer, r, reducer)).fork();
6184 while (advance() != null)
6185 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey));
6186 result = r;
6187 CountedCompleter<?> c;
6188 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6189 MapReduceKeysToDoubleTask<K,V>
6190 t = (MapReduceKeysToDoubleTask<K,V>)c,
6191 s = t.rights;
6192 while (s != null) {
6193 t.result = reducer.applyAsDouble(t.result, s.result);
6194 s = t.rights = s.nextRight;
6195 }
6196 }
6197 }
6198 }
6199 }
6200
6201 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6202 extends Traverser<K,V,Double> {
6203 final DoubleFunction<? super V> transformer;
6204 final DoubleBinaryOperator reducer;
6205 final double basis;
6206 double result;
6207 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6208 MapReduceValuesToDoubleTask
6209 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6210 MapReduceValuesToDoubleTask<K,V> nextRight,
6211 DoubleFunction<? super V> transformer,
6212 double basis,
6213 DoubleBinaryOperator reducer) {
6214 super(m, p, b); this.nextRight = nextRight;
6215 this.transformer = transformer;
6216 this.basis = basis; this.reducer = reducer;
6217 }
6218 public final Double getRawResult() { return result; }
6219 @SuppressWarnings("unchecked") public final void compute() {
6220 final DoubleFunction<? super V> transformer;
6221 final DoubleBinaryOperator reducer;
6222 if ((transformer = this.transformer) != null &&
6223 (reducer = this.reducer) != null) {
6224 double r = this.basis;
6225 for (int b; (b = preSplit()) > 0;)
6226 (rights = new MapReduceValuesToDoubleTask<K,V>
6227 (map, this, b, rights, transformer, r, reducer)).fork();
6228 V v;
6229 while ((v = advance()) != null)
6230 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6231 result = r;
6232 CountedCompleter<?> c;
6233 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6234 MapReduceValuesToDoubleTask<K,V>
6235 t = (MapReduceValuesToDoubleTask<K,V>)c,
6236 s = t.rights;
6237 while (s != null) {
6238 t.result = reducer.applyAsDouble(t.result, s.result);
6239 s = t.rights = s.nextRight;
6240 }
6241 }
6242 }
6243 }
6244 }
6245
6246 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6247 extends Traverser<K,V,Double> {
6248 final DoubleFunction<Map.Entry<K,V>> transformer;
6249 final DoubleBinaryOperator reducer;
6250 final double basis;
6251 double result;
6252 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6253 MapReduceEntriesToDoubleTask
6254 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6255 MapReduceEntriesToDoubleTask<K,V> nextRight,
6256 DoubleFunction<Map.Entry<K,V>> transformer,
6257 double basis,
6258 DoubleBinaryOperator reducer) {
6259 super(m, p, b); this.nextRight = nextRight;
6260 this.transformer = transformer;
6261 this.basis = basis; this.reducer = reducer;
6262 }
6263 public final Double getRawResult() { return result; }
6264 @SuppressWarnings("unchecked") public final void compute() {
6265 final DoubleFunction<Map.Entry<K,V>> transformer;
6266 final DoubleBinaryOperator reducer;
6267 if ((transformer = this.transformer) != null &&
6268 (reducer = this.reducer) != null) {
6269 double r = this.basis;
6270 for (int b; (b = preSplit()) > 0;)
6271 (rights = new MapReduceEntriesToDoubleTask<K,V>
6272 (map, this, b, rights, transformer, r, reducer)).fork();
6273 V v;
6274 while ((v = advance()) != null)
6275 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor((K)nextKey,
6276 v)));
6277 result = r;
6278 CountedCompleter<?> c;
6279 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6280 MapReduceEntriesToDoubleTask<K,V>
6281 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6282 s = t.rights;
6283 while (s != null) {
6284 t.result = reducer.applyAsDouble(t.result, s.result);
6285 s = t.rights = s.nextRight;
6286 }
6287 }
6288 }
6289 }
6290 }
6291
6292 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6293 extends Traverser<K,V,Double> {
6294 final DoubleBiFunction<? super K, ? super V> transformer;
6295 final DoubleBinaryOperator reducer;
6296 final double basis;
6297 double result;
6298 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6299 MapReduceMappingsToDoubleTask
6300 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6301 MapReduceMappingsToDoubleTask<K,V> nextRight,
6302 DoubleBiFunction<? super K, ? super V> transformer,
6303 double basis,
6304 DoubleBinaryOperator reducer) {
6305 super(m, p, b); this.nextRight = nextRight;
6306 this.transformer = transformer;
6307 this.basis = basis; this.reducer = reducer;
6308 }
6309 public final Double getRawResult() { return result; }
6310 @SuppressWarnings("unchecked") public final void compute() {
6311 final DoubleBiFunction<? super K, ? super V> transformer;
6312 final DoubleBinaryOperator reducer;
6313 if ((transformer = this.transformer) != null &&
6314 (reducer = this.reducer) != null) {
6315 double r = this.basis;
6316 for (int b; (b = preSplit()) > 0;)
6317 (rights = new MapReduceMappingsToDoubleTask<K,V>
6318 (map, this, b, rights, transformer, r, reducer)).fork();
6319 V v;
6320 while ((v = advance()) != null)
6321 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)nextKey, v));
6322 result = r;
6323 CountedCompleter<?> c;
6324 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6325 MapReduceMappingsToDoubleTask<K,V>
6326 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6327 s = t.rights;
6328 while (s != null) {
6329 t.result = reducer.applyAsDouble(t.result, s.result);
6330 s = t.rights = s.nextRight;
6331 }
6332 }
6333 }
6334 }
6335 }
6336
6337 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6338 extends Traverser<K,V,Long> {
6339 final LongFunction<? super K> transformer;
6340 final LongBinaryOperator reducer;
6341 final long basis;
6342 long result;
6343 MapReduceKeysToLongTask<K,V> rights, nextRight;
6344 MapReduceKeysToLongTask
6345 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6346 MapReduceKeysToLongTask<K,V> nextRight,
6347 LongFunction<? super K> transformer,
6348 long basis,
6349 LongBinaryOperator reducer) {
6350 super(m, p, b); this.nextRight = nextRight;
6351 this.transformer = transformer;
6352 this.basis = basis; this.reducer = reducer;
6353 }
6354 public final Long getRawResult() { return result; }
6355 @SuppressWarnings("unchecked") public final void compute() {
6356 final LongFunction<? super K> transformer;
6357 final LongBinaryOperator reducer;
6358 if ((transformer = this.transformer) != null &&
6359 (reducer = this.reducer) != null) {
6360 long r = this.basis;
6361 for (int b; (b = preSplit()) > 0;)
6362 (rights = new MapReduceKeysToLongTask<K,V>
6363 (map, this, b, rights, transformer, r, reducer)).fork();
6364 while (advance() != null)
6365 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey));
6366 result = r;
6367 CountedCompleter<?> c;
6368 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6369 MapReduceKeysToLongTask<K,V>
6370 t = (MapReduceKeysToLongTask<K,V>)c,
6371 s = t.rights;
6372 while (s != null) {
6373 t.result = reducer.applyAsLong(t.result, s.result);
6374 s = t.rights = s.nextRight;
6375 }
6376 }
6377 }
6378 }
6379 }
6380
6381 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6382 extends Traverser<K,V,Long> {
6383 final LongFunction<? super V> transformer;
6384 final LongBinaryOperator reducer;
6385 final long basis;
6386 long result;
6387 MapReduceValuesToLongTask<K,V> rights, nextRight;
6388 MapReduceValuesToLongTask
6389 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6390 MapReduceValuesToLongTask<K,V> nextRight,
6391 LongFunction<? super V> transformer,
6392 long basis,
6393 LongBinaryOperator reducer) {
6394 super(m, p, b); this.nextRight = nextRight;
6395 this.transformer = transformer;
6396 this.basis = basis; this.reducer = reducer;
6397 }
6398 public final Long getRawResult() { return result; }
6399 @SuppressWarnings("unchecked") public final void compute() {
6400 final LongFunction<? super V> transformer;
6401 final LongBinaryOperator reducer;
6402 if ((transformer = this.transformer) != null &&
6403 (reducer = this.reducer) != null) {
6404 long r = this.basis;
6405 for (int b; (b = preSplit()) > 0;)
6406 (rights = new MapReduceValuesToLongTask<K,V>
6407 (map, this, b, rights, transformer, r, reducer)).fork();
6408 V v;
6409 while ((v = advance()) != null)
6410 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6411 result = r;
6412 CountedCompleter<?> c;
6413 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6414 MapReduceValuesToLongTask<K,V>
6415 t = (MapReduceValuesToLongTask<K,V>)c,
6416 s = t.rights;
6417 while (s != null) {
6418 t.result = reducer.applyAsLong(t.result, s.result);
6419 s = t.rights = s.nextRight;
6420 }
6421 }
6422 }
6423 }
6424 }
6425
6426 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6427 extends Traverser<K,V,Long> {
6428 final LongFunction<Map.Entry<K,V>> transformer;
6429 final LongBinaryOperator reducer;
6430 final long basis;
6431 long result;
6432 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6433 MapReduceEntriesToLongTask
6434 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6435 MapReduceEntriesToLongTask<K,V> nextRight,
6436 LongFunction<Map.Entry<K,V>> transformer,
6437 long basis,
6438 LongBinaryOperator reducer) {
6439 super(m, p, b); this.nextRight = nextRight;
6440 this.transformer = transformer;
6441 this.basis = basis; this.reducer = reducer;
6442 }
6443 public final Long getRawResult() { return result; }
6444 @SuppressWarnings("unchecked") public final void compute() {
6445 final LongFunction<Map.Entry<K,V>> transformer;
6446 final LongBinaryOperator reducer;
6447 if ((transformer = this.transformer) != null &&
6448 (reducer = this.reducer) != null) {
6449 long r = this.basis;
6450 for (int b; (b = preSplit()) > 0;)
6451 (rights = new MapReduceEntriesToLongTask<K,V>
6452 (map, this, b, rights, transformer, r, reducer)).fork();
6453 V v;
6454 while ((v = advance()) != null)
6455 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor((K)nextKey, v)));
6456 result = r;
6457 CountedCompleter<?> c;
6458 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6459 MapReduceEntriesToLongTask<K,V>
6460 t = (MapReduceEntriesToLongTask<K,V>)c,
6461 s = t.rights;
6462 while (s != null) {
6463 t.result = reducer.applyAsLong(t.result, s.result);
6464 s = t.rights = s.nextRight;
6465 }
6466 }
6467 }
6468 }
6469 }
6470
6471 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6472 extends Traverser<K,V,Long> {
6473 final LongBiFunction<? super K, ? super V> transformer;
6474 final LongBinaryOperator reducer;
6475 final long basis;
6476 long result;
6477 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6478 MapReduceMappingsToLongTask
6479 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6480 MapReduceMappingsToLongTask<K,V> nextRight,
6481 LongBiFunction<? super K, ? super V> transformer,
6482 long basis,
6483 LongBinaryOperator reducer) {
6484 super(m, p, b); this.nextRight = nextRight;
6485 this.transformer = transformer;
6486 this.basis = basis; this.reducer = reducer;
6487 }
6488 public final Long getRawResult() { return result; }
6489 @SuppressWarnings("unchecked") public final void compute() {
6490 final LongBiFunction<? super K, ? super V> transformer;
6491 final LongBinaryOperator reducer;
6492 if ((transformer = this.transformer) != null &&
6493 (reducer = this.reducer) != null) {
6494 long r = this.basis;
6495 for (int b; (b = preSplit()) > 0;)
6496 (rights = new MapReduceMappingsToLongTask<K,V>
6497 (map, this, b, rights, transformer, r, reducer)).fork();
6498 V v;
6499 while ((v = advance()) != null)
6500 r = reducer.applyAsLong(r, transformer.applyAsLong((K)nextKey, v));
6501 result = r;
6502 CountedCompleter<?> c;
6503 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6504 MapReduceMappingsToLongTask<K,V>
6505 t = (MapReduceMappingsToLongTask<K,V>)c,
6506 s = t.rights;
6507 while (s != null) {
6508 t.result = reducer.applyAsLong(t.result, s.result);
6509 s = t.rights = s.nextRight;
6510 }
6511 }
6512 }
6513 }
6514 }
6515
6516 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6517 extends Traverser<K,V,Integer> {
6518 final IntFunction<? super K> transformer;
6519 final IntBinaryOperator reducer;
6520 final int basis;
6521 int result;
6522 MapReduceKeysToIntTask<K,V> rights, nextRight;
6523 MapReduceKeysToIntTask
6524 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6525 MapReduceKeysToIntTask<K,V> nextRight,
6526 IntFunction<? super K> transformer,
6527 int basis,
6528 IntBinaryOperator reducer) {
6529 super(m, p, b); this.nextRight = nextRight;
6530 this.transformer = transformer;
6531 this.basis = basis; this.reducer = reducer;
6532 }
6533 public final Integer getRawResult() { return result; }
6534 @SuppressWarnings("unchecked") public final void compute() {
6535 final IntFunction<? super K> transformer;
6536 final IntBinaryOperator reducer;
6537 if ((transformer = this.transformer) != null &&
6538 (reducer = this.reducer) != null) {
6539 int r = this.basis;
6540 for (int b; (b = preSplit()) > 0;)
6541 (rights = new MapReduceKeysToIntTask<K,V>
6542 (map, this, b, rights, transformer, r, reducer)).fork();
6543 while (advance() != null)
6544 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey));
6545 result = r;
6546 CountedCompleter<?> c;
6547 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6548 MapReduceKeysToIntTask<K,V>
6549 t = (MapReduceKeysToIntTask<K,V>)c,
6550 s = t.rights;
6551 while (s != null) {
6552 t.result = reducer.applyAsInt(t.result, s.result);
6553 s = t.rights = s.nextRight;
6554 }
6555 }
6556 }
6557 }
6558 }
6559
6560 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6561 extends Traverser<K,V,Integer> {
6562 final IntFunction<? super V> transformer;
6563 final IntBinaryOperator reducer;
6564 final int basis;
6565 int result;
6566 MapReduceValuesToIntTask<K,V> rights, nextRight;
6567 MapReduceValuesToIntTask
6568 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6569 MapReduceValuesToIntTask<K,V> nextRight,
6570 IntFunction<? super V> transformer,
6571 int basis,
6572 IntBinaryOperator reducer) {
6573 super(m, p, b); this.nextRight = nextRight;
6574 this.transformer = transformer;
6575 this.basis = basis; this.reducer = reducer;
6576 }
6577 public final Integer getRawResult() { return result; }
6578 @SuppressWarnings("unchecked") public final void compute() {
6579 final IntFunction<? super V> transformer;
6580 final IntBinaryOperator reducer;
6581 if ((transformer = this.transformer) != null &&
6582 (reducer = this.reducer) != null) {
6583 int r = this.basis;
6584 for (int b; (b = preSplit()) > 0;)
6585 (rights = new MapReduceValuesToIntTask<K,V>
6586 (map, this, b, rights, transformer, r, reducer)).fork();
6587 V v;
6588 while ((v = advance()) != null)
6589 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6590 result = r;
6591 CountedCompleter<?> c;
6592 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6593 MapReduceValuesToIntTask<K,V>
6594 t = (MapReduceValuesToIntTask<K,V>)c,
6595 s = t.rights;
6596 while (s != null) {
6597 t.result = reducer.applyAsInt(t.result, s.result);
6598 s = t.rights = s.nextRight;
6599 }
6600 }
6601 }
6602 }
6603 }
6604
6605 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6606 extends Traverser<K,V,Integer> {
6607 final IntFunction<Map.Entry<K,V>> transformer;
6608 final IntBinaryOperator reducer;
6609 final int basis;
6610 int result;
6611 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6612 MapReduceEntriesToIntTask
6613 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6614 MapReduceEntriesToIntTask<K,V> nextRight,
6615 IntFunction<Map.Entry<K,V>> transformer,
6616 int basis,
6617 IntBinaryOperator reducer) {
6618 super(m, p, b); this.nextRight = nextRight;
6619 this.transformer = transformer;
6620 this.basis = basis; this.reducer = reducer;
6621 }
6622 public final Integer getRawResult() { return result; }
6623 @SuppressWarnings("unchecked") public final void compute() {
6624 final IntFunction<Map.Entry<K,V>> transformer;
6625 final IntBinaryOperator reducer;
6626 if ((transformer = this.transformer) != null &&
6627 (reducer = this.reducer) != null) {
6628 int r = this.basis;
6629 for (int b; (b = preSplit()) > 0;)
6630 (rights = new MapReduceEntriesToIntTask<K,V>
6631 (map, this, b, rights, transformer, r, reducer)).fork();
6632 V v;
6633 while ((v = advance()) != null)
6634 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor((K)nextKey,
6635 v)));
6636 result = r;
6637 CountedCompleter<?> c;
6638 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6639 MapReduceEntriesToIntTask<K,V>
6640 t = (MapReduceEntriesToIntTask<K,V>)c,
6641 s = t.rights;
6642 while (s != null) {
6643 t.result = reducer.applyAsInt(t.result, s.result);
6644 s = t.rights = s.nextRight;
6645 }
6646 }
6647 }
6648 }
6649 }
6650
6651 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6652 extends Traverser<K,V,Integer> {
6653 final IntBiFunction<? super K, ? super V> transformer;
6654 final IntBinaryOperator reducer;
6655 final int basis;
6656 int result;
6657 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6658 MapReduceMappingsToIntTask
6659 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6660 MapReduceMappingsToIntTask<K,V> nextRight,
6661 IntBiFunction<? super K, ? super V> transformer,
6662 int basis,
6663 IntBinaryOperator reducer) {
6664 super(m, p, b); this.nextRight = nextRight;
6665 this.transformer = transformer;
6666 this.basis = basis; this.reducer = reducer;
6667 }
6668 public final Integer getRawResult() { return result; }
6669 @SuppressWarnings("unchecked") public final void compute() {
6670 final IntBiFunction<? super K, ? super V> transformer;
6671 final IntBinaryOperator reducer;
6672 if ((transformer = this.transformer) != null &&
6673 (reducer = this.reducer) != null) {
6674 int r = this.basis;
6675 for (int b; (b = preSplit()) > 0;)
6676 (rights = new MapReduceMappingsToIntTask<K,V>
6677 (map, this, b, rights, transformer, r, reducer)).fork();
6678 V v;
6679 while ((v = advance()) != null)
6680 r = reducer.applyAsInt(r, transformer.applyAsInt((K)nextKey, v));
6681 result = r;
6682 CountedCompleter<?> c;
6683 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6684 MapReduceMappingsToIntTask<K,V>
6685 t = (MapReduceMappingsToIntTask<K,V>)c,
6686 s = t.rights;
6687 while (s != null) {
6688 t.result = reducer.applyAsInt(t.result, s.result);
6689 s = t.rights = s.nextRight;
6690 }
6691 }
6692 }
6693 }
6694 }
6695
6696 // Unsafe mechanics
6697 private static final sun.misc.Unsafe U;
6698 private static final long SIZECTL;
6699 private static final long TRANSFERINDEX;
6700 private static final long TRANSFERORIGIN;
6701 private static final long BASECOUNT;
6702 private static final long CELLSBUSY;
6703 private static final long CELLVALUE;
6704 private static final long ABASE;
6705 private static final int ASHIFT;
6706
6707 static {
6708 int ss;
6709 try {
6710 U = sun.misc.Unsafe.getUnsafe();
6711 Class<?> k = ConcurrentHashMap.class;
6712 SIZECTL = U.objectFieldOffset
6713 (k.getDeclaredField("sizeCtl"));
6714 TRANSFERINDEX = U.objectFieldOffset
6715 (k.getDeclaredField("transferIndex"));
6716 TRANSFERORIGIN = U.objectFieldOffset
6717 (k.getDeclaredField("transferOrigin"));
6718 BASECOUNT = U.objectFieldOffset
6719 (k.getDeclaredField("baseCount"));
6720 CELLSBUSY = U.objectFieldOffset
6721 (k.getDeclaredField("cellsBusy"));
6722 Class<?> ck = Cell.class;
6723 CELLVALUE = U.objectFieldOffset
6724 (ck.getDeclaredField("value"));
6725 Class<?> sc = Node[].class;
6726 ABASE = U.arrayBaseOffset(sc);
6727 ss = U.arrayIndexScale(sc);
6728 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6729 } catch (Exception e) {
6730 throw new Error(e);
6731 }
6732 if ((ss & (ss-1)) != 0)
6733 throw new Error("data type scale not a power of two");
6734 }
6735
6736 }