ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.17
Committed: Sun Aug 24 14:47:31 2003 UTC (20 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.16: +32 -22 lines
Log Message:
Javadoc clarifications

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain. Use, modify, and
4 * redistribute this code in any way without acknowledgement.
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as
19 * <tt>java.util.Hashtable</tt>. However, even though all operations
20 * are thread-safe, retrieval operations do <em>not</em> entail
21 * locking, and there is <em>not</em> any support for locking the
22 * entire table in a way that prevents all access. This class is
23 * fully interoperable with Hashtable in programs that rely on its
24 * thread safety but not on its synchronization details.
25 *
26 * <p> Retrieval operations (including <tt>get</tt>) ordinarily
27 * overlap with update operations (including <tt>put</tt> and
28 * <tt>remove</tt>). Retrievals reflect the results of the most
29 * recently <em>completed</em> update operations holding upon their
30 * onset. For aggregate operations such as <tt>putAll</tt> and
31 * <tt>clear</tt>, concurrent retrievals may reflect insertion or
32 * removal of only some entries. Similarly, Iterators and
33 * Enumerations return elements reflecting the state of the hash table
34 * at some point at or since the creation of the iterator/enumeration.
35 * They do <em>not</em> throw ConcurrentModificationException.
36 * However, Iterators are designed to be used by only one thread at a
37 * time.
38 *
39 * <p> The allowed concurrency among update operations is controlled
40 * by the optional <tt>segments</tt> constructor argument (default
41 * 16). The table is divided into this many independent parts, each of
42 * which can be updated concurrently. Because placement in hash tables
43 * is essentially random, the actual concurrency will vary. As a rough
44 * rule of thumb, you should choose at least as many segments as you
45 * expect concurrent threads. However, using more segments than you
46 * need can waste space and time. Using a value of 1 for
47 * <tt>segments</tt> results in a table that is concurrently readable
48 * but can only be updated by one thread at a time.
49 *
50 * <p> Like Hashtable but unlike java.util.HashMap, this class does
51 * NOT allow <tt>null</tt> to be used as a key or value.
52 *
53 * @since 1.5
54 * @author Doug Lea
55 */
56 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
57 implements ConcurrentMap<K, V>, Cloneable, Serializable {
58
59 /*
60 * The basic strategy is to subdivide the table among Segments,
61 * each of which itself is a concurrently readable hash table.
62 */
63
64 /* ---------------- Constants -------------- */
65
66 /**
67 * The default initial number of table slots for this table (16).
68 * Used when not otherwise specified in constructor.
69 */
70 private static int DEFAULT_INITIAL_CAPACITY = 16;
71
72 /**
73 * The maximum capacity, used if a higher value is implicitly
74 * specified by either of the constructors with arguments. MUST
75 * be a power of two <= 1<<30.
76 */
77 static final int MAXIMUM_CAPACITY = 1 << 30;
78
79 /**
80 * The default load factor for this table. Used when not
81 * otherwise specified in constructor.
82 */
83 static final float DEFAULT_LOAD_FACTOR = 0.75f;
84
85 /**
86 * The default number of concurrency control segments.
87 **/
88 private static final int DEFAULT_SEGMENTS = 16;
89
90 /* ---------------- Fields -------------- */
91
92 /**
93 * Mask value for indexing into segments. The upper bits of a
94 * key's hash code are used to choose the segment.
95 **/
96 private final int segmentMask;
97
98 /**
99 * Shift value for indexing within segments.
100 **/
101 private final int segmentShift;
102
103 /**
104 * The segments, each of which is a specialized hash table
105 */
106 private final Segment[] segments;
107
108 private transient Set<K> keySet;
109 private transient Set<Map.Entry<K,V>> entrySet;
110 private transient Collection<V> values;
111
112 /* ---------------- Small Utilities -------------- */
113
114 /**
115 * Return a hash code for non-null Object x.
116 * Uses the same hash code spreader as most other j.u hash tables.
117 * @param x the object serving as a key
118 * @return the hash code
119 */
120 private static int hash(Object x) {
121 int h = x.hashCode();
122 h += ~(h << 9);
123 h ^= (h >>> 14);
124 h += (h << 4);
125 h ^= (h >>> 10);
126 return h;
127 }
128
129 /**
130 * Return the segment that should be used for key with given hash
131 */
132 private Segment<K,V> segmentFor(int hash) {
133 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
134 }
135
136 /* ---------------- Inner Classes -------------- */
137
138 /**
139 * Segments are specialized versions of hash tables. This
140 * subclasses from ReentrantLock opportunistically, just to
141 * simplify some locking and avoid separate construction.
142 **/
143 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
144 /*
145 * Segments maintain a table of entry lists that are ALWAYS
146 * kept in a consistent state, so can be read without locking.
147 * Next fields of nodes are immutable (final). All list
148 * additions are performed at the front of each bin. This
149 * makes it easy to check changes, and also fast to traverse.
150 * When nodes would otherwise be changed, new nodes are
151 * created to replace them. This works well for hash tables
152 * since the bin lists tend to be short. (The average length
153 * is less than two for the default load factor threshold.)
154 *
155 * Read operations can thus proceed without locking, but rely
156 * on a memory barrier to ensure that completed write
157 * operations performed by other threads are
158 * noticed. Conveniently, the "count" field, tracking the
159 * number of elements, can also serve as the volatile variable
160 * providing proper read/write barriers. This is convenient
161 * because this field needs to be read in many read operations
162 * anyway. The use of volatiles for this purpose is only
163 * guaranteed to work in accord with reuirements in
164 * multithreaded environments when run on JVMs conforming to
165 * the clarified JSR133 memory model specification. This true
166 * for hotspot as of release 1.4.
167 *
168 * Implementors note. The basic rules for all this are:
169 *
170 * - All unsynchronized read operations must first read the
171 * "count" field, and should not look at table entries if
172 * it is 0.
173 *
174 * - All synchronized write operations should write to
175 * the "count" field after updating. The operations must not
176 * take any action that could even momentarily cause
177 * a concurrent read operation to see inconsistent
178 * data. This is made easier by the nature of the read
179 * operations in Map. For example, no operation
180 * can reveal that the table has grown but the threshold
181 * has not yet been updated, so there are no atomicity
182 * requirements for this with respect to reads.
183 *
184 * As a guide, all critical volatile reads and writes are marked
185 * in code comments.
186 */
187
188 /**
189 * The number of elements in this segment's region.
190 **/
191 transient volatile int count;
192
193 /**
194 * The table is rehashed when its size exceeds this threshold.
195 * (The value of this field is always (int)(capacity *
196 * loadFactor).)
197 */
198 private transient int threshold;
199
200 /**
201 * The per-segment table
202 */
203 transient HashEntry[] table;
204
205 /**
206 * The load factor for the hash table. Even though this value
207 * is same for all segments, it is replicated to avoid needing
208 * links to outer object.
209 * @serial
210 */
211 private final float loadFactor;
212
213 Segment(int initialCapacity, float lf) {
214 loadFactor = lf;
215 setTable(new HashEntry[initialCapacity]);
216 }
217
218 /**
219 * Set table to new HashEntry array.
220 * Call only while holding lock or in constructor.
221 **/
222 private void setTable(HashEntry[] newTable) {
223 table = newTable;
224 threshold = (int)(newTable.length * loadFactor);
225 count = count; // write-volatile
226 }
227
228 /* Specialized implementations of map methods */
229
230 V get(K key, int hash) {
231 if (count != 0) { // read-volatile
232 HashEntry[] tab = table;
233 int index = hash & (tab.length - 1);
234 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
235 while (e != null) {
236 if (e.hash == hash && key.equals(e.key))
237 return e.value;
238 e = e.next;
239 }
240 }
241 return null;
242 }
243
244 boolean containsKey(Object key, int hash) {
245 if (count != 0) { // read-volatile
246 HashEntry[] tab = table;
247 int index = hash & (tab.length - 1);
248 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
249 while (e != null) {
250 if (e.hash == hash && key.equals(e.key))
251 return true;
252 e = e.next;
253 }
254 }
255 return false;
256 }
257
258 boolean containsValue(Object value) {
259 if (count != 0) { // read-volatile
260 HashEntry[] tab = table;
261 int len = tab.length;
262 for (int i = 0 ; i < len; i++)
263 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
264 if (value.equals(e.value))
265 return true;
266 }
267 return false;
268 }
269
270 V put(K key, int hash, V value, boolean onlyIfAbsent) {
271 lock();
272 try {
273 int c = count;
274 HashEntry[] tab = table;
275 int index = hash & (tab.length - 1);
276 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
277
278 for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
279 if (e.hash == hash && key.equals(e.key)) {
280 V oldValue = e.value;
281 if (!onlyIfAbsent)
282 e.value = value;
283 count = c; // write-volatile
284 return oldValue;
285 }
286 }
287
288 tab[index] = new HashEntry<K,V>(hash, key, value, first);
289 ++c;
290 count = c; // write-volatile
291 if (c > threshold)
292 setTable(rehash(tab));
293 return null;
294 } finally {
295 unlock();
296 }
297 }
298
299 private HashEntry[] rehash(HashEntry[] oldTable) {
300 int oldCapacity = oldTable.length;
301 if (oldCapacity >= MAXIMUM_CAPACITY)
302 return oldTable;
303
304 /*
305 * Reclassify nodes in each list to new Map. Because we are
306 * using power-of-two expansion, the elements from each bin
307 * must either stay at same index, or move with a power of two
308 * offset. We eliminate unnecessary node creation by catching
309 * cases where old nodes can be reused because their next
310 * fields won't change. Statistically, at the default
311 * threshhold, only about one-sixth of them need cloning when
312 * a table doubles. The nodes they replace will be garbage
313 * collectable as soon as they are no longer referenced by any
314 * reader thread that may be in the midst of traversing table
315 * right now.
316 */
317
318 HashEntry[] newTable = new HashEntry[oldCapacity << 1];
319 int sizeMask = newTable.length - 1;
320 for (int i = 0; i < oldCapacity ; i++) {
321 // We need to guarantee that any existing reads of old Map can
322 // proceed. So we cannot yet null out each bin.
323 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
324
325 if (e != null) {
326 HashEntry<K,V> next = e.next;
327 int idx = e.hash & sizeMask;
328
329 // Single node on list
330 if (next == null)
331 newTable[idx] = e;
332
333 else {
334 // Reuse trailing consecutive sequence at same slot
335 HashEntry<K,V> lastRun = e;
336 int lastIdx = idx;
337 for (HashEntry<K,V> last = next;
338 last != null;
339 last = last.next) {
340 int k = last.hash & sizeMask;
341 if (k != lastIdx) {
342 lastIdx = k;
343 lastRun = last;
344 }
345 }
346 newTable[lastIdx] = lastRun;
347
348 // Clone all remaining nodes
349 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
350 int k = p.hash & sizeMask;
351 newTable[k] = new HashEntry<K,V>(p.hash,
352 p.key,
353 p.value,
354 (HashEntry<K,V>) newTable[k]);
355 }
356 }
357 }
358 }
359 return newTable;
360 }
361
362 /**
363 * Remove; match on key only if value null, else match both.
364 */
365 V remove(Object key, int hash, Object value) {
366 lock();
367 try {
368 int c = count;
369 HashEntry[] tab = table;
370 int index = hash & (tab.length - 1);
371 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
372
373 HashEntry<K,V> e = first;
374 for (;;) {
375 if (e == null)
376 return null;
377 if (e.hash == hash && key.equals(e.key))
378 break;
379 e = e.next;
380 }
381
382 V oldValue = e.value;
383 if (value != null && !value.equals(oldValue))
384 return null;
385
386 // All entries following removed node can stay in list, but
387 // all preceeding ones need to be cloned.
388 HashEntry<K,V> newFirst = e.next;
389 for (HashEntry<K,V> p = first; p != e; p = p.next)
390 newFirst = new HashEntry<K,V>(p.hash, p.key,
391 p.value, newFirst);
392 tab[index] = newFirst;
393 count = c-1; // write-volatile
394 return oldValue;
395 } finally {
396 unlock();
397 }
398 }
399
400 void clear() {
401 lock();
402 try {
403 HashEntry[] tab = table;
404 for (int i = 0; i < tab.length ; i++)
405 tab[i] = null;
406 count = 0; // write-volatile
407 } finally {
408 unlock();
409 }
410 }
411 }
412
413 /**
414 * ConcurrentReaderHashMap list entry.
415 */
416 private static class HashEntry<K,V> implements Entry<K,V> {
417 private final K key;
418 private V value;
419 private final int hash;
420 private final HashEntry<K,V> next;
421
422 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
423 this.value = value;
424 this.hash = hash;
425 this.key = key;
426 this.next = next;
427 }
428
429 public K getKey() {
430 return key;
431 }
432
433 public V getValue() {
434 return value;
435 }
436
437 public V setValue(V newValue) {
438 // We aren't required to, and don't provide any
439 // visibility barriers for setting value.
440 if (newValue == null)
441 throw new NullPointerException();
442 V oldValue = this.value;
443 this.value = newValue;
444 return oldValue;
445 }
446
447 public boolean equals(Object o) {
448 if (!(o instanceof Entry))
449 return false;
450 Entry<K,V> e = (Entry<K,V>)o;
451 return (key.equals(e.getKey()) && value.equals(e.getValue()));
452 }
453
454 public int hashCode() {
455 return key.hashCode() ^ value.hashCode();
456 }
457
458 public String toString() {
459 return key + "=" + value;
460 }
461 }
462
463
464 /* ---------------- Public operations -------------- */
465
466 /**
467 * Constructs a new, empty map with the specified initial
468 * capacity and the specified load factor.
469 *
470 * @param initialCapacity the initial capacity. The actual
471 * initial capacity is rounded up to the nearest power of two.
472 * @param loadFactor the load factor threshold, used to control resizing.
473 * @param segments the number of concurrently accessible segments. the
474 * actual number of segments is rounded to the next power of two.
475 * @throws IllegalArgumentException if the initial capacity is
476 * negative or the load factor or number of segments are
477 * nonpositive.
478 */
479 public ConcurrentHashMap(int initialCapacity,
480 float loadFactor, int segments) {
481 if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
482 throw new IllegalArgumentException();
483
484 // Find power-of-two sizes best matching arguments
485 int sshift = 0;
486 int ssize = 1;
487 while (ssize < segments) {
488 ++sshift;
489 ssize <<= 1;
490 }
491 segmentShift = 32 - sshift;
492 segmentMask = ssize - 1;
493 this.segments = new Segment[ssize];
494
495 if (initialCapacity > MAXIMUM_CAPACITY)
496 initialCapacity = MAXIMUM_CAPACITY;
497 int c = initialCapacity / ssize;
498 if (c * ssize < initialCapacity)
499 ++c;
500 int cap = 1;
501 while (cap < c)
502 cap <<= 1;
503
504 for (int i = 0; i < this.segments.length; ++i)
505 this.segments[i] = new Segment<K,V>(cap, loadFactor);
506 }
507
508 /**
509 * Constructs a new, empty map with the specified initial
510 * capacity, and with default load factor and segments.
511 *
512 * @param initialCapacity the initial capacity of the
513 * ConcurrentHashMap.
514 * @throws IllegalArgumentException if the initial capacity of
515 * elements is negative.
516 */
517 public ConcurrentHashMap(int initialCapacity) {
518 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
519 }
520
521 /**
522 * Constructs a new, empty map with a default initial capacity,
523 * load factor, and number of segments.
524 */
525 public ConcurrentHashMap() {
526 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
527 }
528
529 /**
530 * Constructs a new map with the same mappings as the given map. The
531 * map is created with a capacity of twice the number of mappings in
532 * the given map or 11 (whichever is greater), and a default load factor.
533 */
534 public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
535 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
536 11),
537 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
538 putAll(t);
539 }
540
541 // inherit Map javadoc
542 public int size() {
543 int c = 0;
544 for (int i = 0; i < segments.length; ++i)
545 c += segments[i].count;
546 return c;
547 }
548
549 // inherit Map javadoc
550 public boolean isEmpty() {
551 for (int i = 0; i < segments.length; ++i)
552 if (segments[i].count != 0)
553 return false;
554 return true;
555 }
556
557 /**
558 * Returns the value to which the specified key is mapped in this table.
559 *
560 * @param key a key in the table.
561 * @return the value to which the key is mapped in this table;
562 * <code>null</code> if the key is not mapped to any value in
563 * this table.
564 * @throws NullPointerException if the key is
565 * <code>null</code>.
566 * @see #put(Object, Object)
567 */
568 public V get(Object key) {
569 int hash = hash(key); // throws NullPointerException if key null
570 return segmentFor(hash).get((K) key, hash);
571 }
572
573 /**
574 * Tests if the specified object is a key in this table.
575 *
576 * @param key possible key.
577 * @return <code>true</code> if and only if the specified object
578 * is a key in this table, as determined by the
579 * <tt>equals</tt> method; <code>false</code> otherwise.
580 * @throws NullPointerException if the key is
581 * <code>null</code>.
582 * @see #contains(Object)
583 */
584 public boolean containsKey(Object key) {
585 int hash = hash(key); // throws NullPointerException if key null
586 return segmentFor(hash).containsKey(key, hash);
587 }
588
589 /**
590 * Returns <tt>true</tt> if this map maps one or more keys to the
591 * specified value. Note: This method requires a full internal
592 * traversal of the hash table, and so is much slower than
593 * method <tt>containsKey</tt>.
594 *
595 * @param value value whose presence in this map is to be tested.
596 * @return <tt>true</tt> if this map maps one or more keys to the
597 * specified value.
598 * @throws NullPointerException if the value is <code>null</code>.
599 */
600 public boolean containsValue(Object value) {
601 if (value == null)
602 throw new NullPointerException();
603
604 for (int i = 0; i < segments.length; ++i) {
605 if (segments[i].containsValue(value))
606 return true;
607 }
608 return false;
609 }
610 /**
611 * Tests if some key maps into the specified value in this table.
612 * This operation is more expensive than the
613 * <code>containsKey</code> method.
614 *
615 * <p> Note that this method is identical in functionality to
616 * containsValue, This method esists solely to ensure plug-in
617 * compatibility with class <tt>Hashtable</tt>, which supported
618 * this method prior to introduction of the collections framework.
619
620 * @param value a value to search for.
621 * @return <code>true</code> if and only if some key maps to the
622 * <code>value</code> argument in this table as
623 * determined by the <tt>equals</tt> method;
624 * <code>false</code> otherwise.
625 * @throws NullPointerException if the value is <code>null</code>.
626 * @see #containsKey(Object)
627 * @see #containsValue(Object)
628 * @see Map
629 */
630 public boolean contains(Object value) {
631 return containsValue(value);
632 }
633
634 /**
635 * Maps the specified <code>key</code> to the specified
636 * <code>value</code> in this table. Neither the key nor the
637 * value can be <code>null</code>. <p>
638 *
639 * The value can be retrieved by calling the <code>get</code> method
640 * with a key that is equal to the original key.
641 *
642 * @param key the table key.
643 * @param value the value.
644 * @return the previous value of the specified key in this table,
645 * or <code>null</code> if it did not have one.
646 * @throws NullPointerException if the key or value is
647 * <code>null</code>.
648 * @see Object#equals(Object)
649 * @see #get(Object)
650 */
651 public V put(K key, V value) {
652 if (value == null)
653 throw new NullPointerException();
654 int hash = hash(key);
655 return segmentFor(hash).put(key, hash, value, false);
656 }
657
658 /**
659 * If the specified key is not already associated
660 * with a value, associate it with the given value.
661 * This is equivalent to
662 * <pre>
663 * if (!map.containsKey(key))
664 * return map.put(key, value);
665 * else
666 * return map.get(key);
667 * </pre>
668 * Except that the action is performed atomically.
669 * @param key key with which the specified value is to be associated.
670 * @param value value to be associated with the specified key.
671 * @return previous value associated with specified key, or <tt>null</tt>
672 * if there was no mapping for key. A <tt>null</tt> return can
673 * also indicate that the map previously associated <tt>null</tt>
674 * with the specified key, if the implementation supports
675 * <tt>null</tt> values.
676 *
677 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
678 * not supported by this map.
679 * @throws ClassCastException if the class of the specified key or value
680 * prevents it from being stored in this map.
681 * @throws NullPointerException if the specified key or value is
682 * <tt>null</tt>.
683 *
684 **/
685 public V putIfAbsent(K key, V value) {
686 if (value == null)
687 throw new NullPointerException();
688 int hash = hash(key);
689 return segmentFor(hash).put(key, hash, value, true);
690 }
691
692
693 /**
694 * Copies all of the mappings from the specified map to this one.
695 *
696 * These mappings replace any mappings that this map had for any of the
697 * keys currently in the specified Map.
698 *
699 * @param t Mappings to be stored in this map.
700 */
701 public void putAll(Map<? extends K, ? extends V> t) {
702 Iterator<Map.Entry<? extends K, ? extends V>> it = t.entrySet().iterator();
703 while (it.hasNext()) {
704 Entry<? extends K, ? extends V> e = it.next();
705 put(e.getKey(), e.getValue());
706 }
707 }
708
709 /**
710 * Removes the key (and its corresponding value) from this
711 * table. This method does nothing if the key is not in the table.
712 *
713 * @param key the key that needs to be removed.
714 * @return the value to which the key had been mapped in this table,
715 * or <code>null</code> if the key did not have a mapping.
716 * @throws NullPointerException if the key is
717 * <code>null</code>.
718 */
719 public V remove(Object key) {
720 int hash = hash(key);
721 return segmentFor(hash).remove(key, hash, null);
722 }
723
724 /**
725 * Remove entry for key only if currently mapped to given value.
726 * Acts as
727 * <pre>
728 * if (map.get(key).equals(value)) {
729 * map.remove(key);
730 * return true;
731 * } else return false;
732 * </pre>
733 * except that the action is performed atomically.
734 * @param key key with which the specified value is associated.
735 * @param value value associated with the specified key.
736 * @return true if the value was removed
737 * @throws NullPointerException if the specified key is
738 * <tt>null</tt>.
739 */
740 public boolean remove(Object key, Object value) {
741 int hash = hash(key);
742 return segmentFor(hash).remove(key, hash, value) != null;
743 }
744
745 /**
746 * Removes all mappings from this map.
747 */
748 public void clear() {
749 for (int i = 0; i < segments.length; ++i)
750 segments[i].clear();
751 }
752
753
754 /**
755 * Returns a shallow copy of this
756 * <tt>ConcurrentHashMap</tt> instance: the keys and
757 * values themselves are not cloned.
758 *
759 * @return a shallow copy of this map.
760 */
761 public Object clone() {
762 // We cannot call super.clone, since it would share final
763 // segments array, and there's no way to reassign finals.
764
765 float lf = segments[0].loadFactor;
766 int segs = segments.length;
767 int cap = (int)(size() / lf);
768 if (cap < segs) cap = segs;
769 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
770 t.putAll(this);
771 return t;
772 }
773
774 /**
775 * Returns a set view of the keys contained in this map. The set is
776 * backed by the map, so changes to the map are reflected in the set, and
777 * vice-versa. The set supports element removal, which removes the
778 * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
779 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
780 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
781 * <tt>addAll</tt> operations.
782 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
783 * will never throw {@link java.util.ConcurrentModificationException},
784 * and guarantees to traverse elements as they existed upon
785 * construction of the iterator, and may (but is not guaranteed to)
786 * reflect any modifications subsequent to construction.
787 *
788 * @return a set view of the keys contained in this map.
789 */
790 public Set<K> keySet() {
791 Set<K> ks = keySet;
792 return (ks != null) ? ks : (keySet = new KeySet());
793 }
794
795
796 /**
797 * Returns a collection view of the values contained in this map. The
798 * collection is backed by the map, so changes to the map are reflected in
799 * the collection, and vice-versa. The collection supports element
800 * removal, which removes the corresponding mapping from this map, via the
801 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
802 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
803 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
804 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
805 * will never throw {@link java.util.ConcurrentModificationException},
806 * and guarantees to traverse elements as they existed upon
807 * construction of the iterator, and may (but is not guaranteed to)
808 * reflect any modifications subsequent to construction.
809 *
810 * @return a collection view of the values contained in this map.
811 */
812 public Collection<V> values() {
813 Collection<V> vs = values;
814 return (vs != null) ? vs : (values = new Values());
815 }
816
817
818 /**
819 * Returns a collection view of the mappings contained in this map. Each
820 * element in the returned collection is a <tt>Map.Entry</tt>. The
821 * collection is backed by the map, so changes to the map are reflected in
822 * the collection, and vice-versa. The collection supports element
823 * removal, which removes the corresponding mapping from the map, via the
824 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
825 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
826 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
827 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
828 * will never throw {@link java.util.ConcurrentModificationException},
829 * and guarantees to traverse elements as they existed upon
830 * construction of the iterator, and may (but is not guaranteed to)
831 * reflect any modifications subsequent to construction.
832 *
833 * @return a collection view of the mappings contained in this map.
834 */
835 public Set<Map.Entry<K,V>> entrySet() {
836 Set<Map.Entry<K,V>> es = entrySet;
837 return (es != null) ? es : (entrySet = new EntrySet());
838 }
839
840
841 /**
842 * Returns an enumeration of the keys in this table.
843 *
844 * @return an enumeration of the keys in this table.
845 * @see Enumeration
846 * @see #elements()
847 * @see #keySet()
848 * @see Map
849 */
850 public Enumeration<K> keys() {
851 return new KeyIterator();
852 }
853
854 /**
855 * Returns an enumeration of the values in this table.
856 * Use the Enumeration methods on the returned object to fetch the elements
857 * sequentially.
858 *
859 * @return an enumeration of the values in this table.
860 * @see java.util.Enumeration
861 * @see #keys()
862 * @see #values()
863 * @see Map
864 */
865 public Enumeration<V> elements() {
866 return new ValueIterator();
867 }
868
869 /* ---------------- Iterator Support -------------- */
870
871 private abstract class HashIterator {
872 private int nextSegmentIndex;
873 private int nextTableIndex;
874 private HashEntry[] currentTable;
875 private HashEntry<K, V> nextEntry;
876 private HashEntry<K, V> lastReturned;
877
878 private HashIterator() {
879 nextSegmentIndex = segments.length - 1;
880 nextTableIndex = -1;
881 advance();
882 }
883
884 public boolean hasMoreElements() { return hasNext(); }
885
886 private void advance() {
887 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
888 return;
889
890 while (nextTableIndex >= 0) {
891 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
892 return;
893 }
894
895 while (nextSegmentIndex >= 0) {
896 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
897 if (seg.count != 0) {
898 currentTable = seg.table;
899 for (int j = currentTable.length - 1; j >= 0; --j) {
900 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
901 nextTableIndex = j - 1;
902 return;
903 }
904 }
905 }
906 }
907 }
908
909 public boolean hasNext() { return nextEntry != null; }
910
911 HashEntry<K,V> nextEntry() {
912 if (nextEntry == null)
913 throw new NoSuchElementException();
914 lastReturned = nextEntry;
915 advance();
916 return lastReturned;
917 }
918
919 public void remove() {
920 if (lastReturned == null)
921 throw new IllegalStateException();
922 ConcurrentHashMap.this.remove(lastReturned.key);
923 lastReturned = null;
924 }
925 }
926
927 private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
928 public K next() { return super.nextEntry().key; }
929 public K nextElement() { return super.nextEntry().key; }
930 }
931
932 private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
933 public V next() { return super.nextEntry().value; }
934 public V nextElement() { return super.nextEntry().value; }
935 }
936
937 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
938 public Map.Entry<K,V> next() { return super.nextEntry(); }
939 }
940
941 private class KeySet extends AbstractSet<K> {
942 public Iterator<K> iterator() {
943 return new KeyIterator();
944 }
945 public int size() {
946 return ConcurrentHashMap.this.size();
947 }
948 public boolean contains(Object o) {
949 return ConcurrentHashMap.this.containsKey(o);
950 }
951 public boolean remove(Object o) {
952 return ConcurrentHashMap.this.remove(o) != null;
953 }
954 public void clear() {
955 ConcurrentHashMap.this.clear();
956 }
957 }
958
959 private class Values extends AbstractCollection<V> {
960 public Iterator<V> iterator() {
961 return new ValueIterator();
962 }
963 public int size() {
964 return ConcurrentHashMap.this.size();
965 }
966 public boolean contains(Object o) {
967 return ConcurrentHashMap.this.containsValue(o);
968 }
969 public void clear() {
970 ConcurrentHashMap.this.clear();
971 }
972 }
973
974 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
975 public Iterator<Map.Entry<K,V>> iterator() {
976 return new EntryIterator();
977 }
978 public boolean contains(Object o) {
979 if (!(o instanceof Map.Entry))
980 return false;
981 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
982 V v = ConcurrentHashMap.this.get(e.getKey());
983 return v != null && v.equals(e.getValue());
984 }
985 public boolean remove(Object o) {
986 if (!(o instanceof Map.Entry))
987 return false;
988 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
989 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
990 }
991 public int size() {
992 return ConcurrentHashMap.this.size();
993 }
994 public void clear() {
995 ConcurrentHashMap.this.clear();
996 }
997 }
998
999 /* ---------------- Serialization Support -------------- */
1000
1001 /**
1002 * Save the state of the <tt>ConcurrentHashMap</tt>
1003 * instance to a stream (i.e.,
1004 * serialize it).
1005 * @param s the stream
1006 * @serialData
1007 * the key (Object) and value (Object)
1008 * for each key-value mapping, followed by a null pair.
1009 * The key-value mappings are emitted in no particular order.
1010 */
1011 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1012 s.defaultWriteObject();
1013
1014 for (int k = 0; k < segments.length; ++k) {
1015 Segment<K,V> seg = (Segment<K,V>)segments[k];
1016 seg.lock();
1017 try {
1018 HashEntry[] tab = seg.table;
1019 for (int i = 0; i < tab.length; ++i) {
1020 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1021 s.writeObject(e.key);
1022 s.writeObject(e.value);
1023 }
1024 }
1025 } finally {
1026 seg.unlock();
1027 }
1028 }
1029 s.writeObject(null);
1030 s.writeObject(null);
1031 }
1032
1033 /**
1034 * Reconstitute the <tt>ConcurrentHashMap</tt>
1035 * instance from a stream (i.e.,
1036 * deserialize it).
1037 * @param s the stream
1038 */
1039 private void readObject(java.io.ObjectInputStream s)
1040 throws IOException, ClassNotFoundException {
1041 s.defaultReadObject();
1042
1043 // Initialize each segment to be minimally sized, and let grow.
1044 for (int i = 0; i < segments.length; ++i) {
1045 segments[i].setTable(new HashEntry[1]);
1046 }
1047
1048 // Read the keys and values, and put the mappings in the table
1049 for (;;) {
1050 K key = (K) s.readObject();
1051 V value = (V) s.readObject();
1052 if (key == null)
1053 break;
1054 put(key, value);
1055 }
1056 }
1057 }
1058