ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.191
Committed: Fri Feb 22 00:58:05 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.190: +180 -136 lines
Log Message:
Spliterator updates

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </ul>
153 * </li>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K,V>
218 implements ConcurrentMap<K,V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1) {
1696 addCount(delta, len);
1697 delta = 0L;
1698 }
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 } finally {
1705 if (delta != 0L)
1706 addCount(delta, 2);
1707 }
1708 if (npe)
1709 throw new NullPointerException();
1710 }
1711
1712 /**
1713 * Implementation for clear. Steps through each bin, removing all
1714 * nodes.
1715 */
1716 @SuppressWarnings("unchecked") private final void internalClear() {
1717 long delta = 0L; // negative number of deletions
1718 int i = 0;
1719 Node<V>[] tab = table;
1720 while (tab != null && i < tab.length) {
1721 Node<V> f = tabAt(tab, i);
1722 if (f == null)
1723 ++i;
1724 else if (f.hash < 0) {
1725 Object fk;
1726 if ((fk = f.key) instanceof TreeBin) {
1727 TreeBin<V> t = (TreeBin<V>)fk;
1728 t.acquire(0);
1729 try {
1730 if (tabAt(tab, i) == f) {
1731 for (Node<V> p = t.first; p != null; p = p.next) {
1732 if (p.val != null) { // (currently always true)
1733 p.val = null;
1734 --delta;
1735 }
1736 }
1737 t.first = null;
1738 t.root = null;
1739 ++i;
1740 }
1741 } finally {
1742 t.release(0);
1743 }
1744 }
1745 else
1746 tab = (Node<V>[])fk;
1747 }
1748 else {
1749 synchronized (f) {
1750 if (tabAt(tab, i) == f) {
1751 for (Node<V> e = f; e != null; e = e.next) {
1752 if (e.val != null) { // (currently always true)
1753 e.val = null;
1754 --delta;
1755 }
1756 }
1757 setTabAt(tab, i, null);
1758 ++i;
1759 }
1760 }
1761 }
1762 }
1763 if (delta != 0L)
1764 addCount(delta, -1);
1765 }
1766
1767 /* ---------------- Table Initialization and Resizing -------------- */
1768
1769 /**
1770 * Returns a power of two table size for the given desired capacity.
1771 * See Hackers Delight, sec 3.2
1772 */
1773 private static final int tableSizeFor(int c) {
1774 int n = c - 1;
1775 n |= n >>> 1;
1776 n |= n >>> 2;
1777 n |= n >>> 4;
1778 n |= n >>> 8;
1779 n |= n >>> 16;
1780 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 }
1782
1783 /**
1784 * Initializes table, using the size recorded in sizeCtl.
1785 */
1786 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 Node<V>[] tab; int sc;
1788 while ((tab = table) == null) {
1789 if ((sc = sizeCtl) < 0)
1790 Thread.yield(); // lost initialization race; just spin
1791 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 try {
1793 if ((tab = table) == null) {
1794 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 table = tab = (Node<V>[])tb;
1797 sc = n - (n >>> 2);
1798 }
1799 } finally {
1800 sizeCtl = sc;
1801 }
1802 break;
1803 }
1804 }
1805 return tab;
1806 }
1807
1808 /**
1809 * Adds to count, and if table is too small and not already
1810 * resizing, initiates transfer. If already resizing, helps
1811 * perform transfer if work is available. Rechecks occupancy
1812 * after a transfer to see if another resize is already needed
1813 * because resizings are lagging additions.
1814 *
1815 * @param x the count to add
1816 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 */
1818 private final void addCount(long x, int check) {
1819 Cell[] as; long b, s;
1820 if ((as = counterCells) != null ||
1821 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 Cell a; long v; int m;
1823 boolean uncontended = true;
1824 if (as == null || (m = as.length - 1) < 0 ||
1825 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 !(uncontended =
1827 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 fullAddCount(x, uncontended);
1829 return;
1830 }
1831 if (check <= 1)
1832 return;
1833 s = sumCount();
1834 }
1835 if (check >= 0) {
1836 Node<V>[] tab, nt; int sc;
1837 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 tab.length < MAXIMUM_CAPACITY) {
1839 if (sc < 0) {
1840 if (sc == -1 || transferIndex <= transferOrigin ||
1841 (nt = nextTable) == null)
1842 break;
1843 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 transfer(tab, nt);
1845 }
1846 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 transfer(tab, null);
1848 s = sumCount();
1849 }
1850 }
1851 }
1852
1853 /**
1854 * Tries to presize table to accommodate the given number of elements.
1855 *
1856 * @param size number of elements (doesn't need to be perfectly accurate)
1857 */
1858 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 tableSizeFor(size + (size >>> 1) + 1);
1861 int sc;
1862 while ((sc = sizeCtl) >= 0) {
1863 Node<V>[] tab = table; int n;
1864 if (tab == null || (n = tab.length) == 0) {
1865 n = (sc > c) ? sc : c;
1866 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 try {
1868 if (table == tab) {
1869 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 table = (Node<V>[])tb;
1871 sc = n - (n >>> 2);
1872 }
1873 } finally {
1874 sizeCtl = sc;
1875 }
1876 }
1877 }
1878 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 break;
1880 else if (tab == table &&
1881 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 transfer(tab, null);
1883 }
1884 }
1885
1886 /**
1887 * Moves and/or copies the nodes in each bin to new table. See
1888 * above for explanation.
1889 */
1890 @SuppressWarnings("unchecked") private final void transfer
1891 (Node<V>[] tab, Node<V>[] nextTab) {
1892 int n = tab.length, stride;
1893 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 if (nextTab == null) { // initiating
1896 try {
1897 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 nextTab = (Node<V>[])tb;
1899 } catch (Throwable ex) { // try to cope with OOME
1900 sizeCtl = Integer.MAX_VALUE;
1901 return;
1902 }
1903 nextTable = nextTab;
1904 transferOrigin = n;
1905 transferIndex = n;
1906 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 int nextk = (k > stride) ? k - stride : 0;
1909 for (int m = nextk; m < k; ++m)
1910 nextTab[m] = rev;
1911 for (int m = n + nextk; m < n + k; ++m)
1912 nextTab[m] = rev;
1913 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 }
1915 }
1916 int nextn = nextTab.length;
1917 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 boolean advance = true;
1919 for (int i = 0, bound = 0;;) {
1920 int nextIndex, nextBound; Node<V> f; Object fk;
1921 while (advance) {
1922 if (--i >= bound)
1923 advance = false;
1924 else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 i = -1;
1926 advance = false;
1927 }
1928 else if (U.compareAndSwapInt
1929 (this, TRANSFERINDEX, nextIndex,
1930 nextBound = (nextIndex > stride ?
1931 nextIndex - stride : 0))) {
1932 bound = nextBound;
1933 i = nextIndex - 1;
1934 advance = false;
1935 }
1936 }
1937 if (i < 0 || i >= n || i + n >= nextn) {
1938 for (int sc;;) {
1939 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 if (sc == -1) {
1941 nextTable = null;
1942 table = nextTab;
1943 sizeCtl = (n << 1) - (n >>> 1);
1944 }
1945 return;
1946 }
1947 }
1948 }
1949 else if ((f = tabAt(tab, i)) == null) {
1950 if (casTabAt(tab, i, null, fwd)) {
1951 setTabAt(nextTab, i, null);
1952 setTabAt(nextTab, i + n, null);
1953 advance = true;
1954 }
1955 }
1956 else if (f.hash >= 0) {
1957 synchronized (f) {
1958 if (tabAt(tab, i) == f) {
1959 int runBit = f.hash & n;
1960 Node<V> lastRun = f, lo = null, hi = null;
1961 for (Node<V> p = f.next; p != null; p = p.next) {
1962 int b = p.hash & n;
1963 if (b != runBit) {
1964 runBit = b;
1965 lastRun = p;
1966 }
1967 }
1968 if (runBit == 0)
1969 lo = lastRun;
1970 else
1971 hi = lastRun;
1972 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 int ph = p.hash;
1974 Object pk = p.key; V pv = p.val;
1975 if ((ph & n) == 0)
1976 lo = new Node<V>(ph, pk, pv, lo);
1977 else
1978 hi = new Node<V>(ph, pk, pv, hi);
1979 }
1980 setTabAt(nextTab, i, lo);
1981 setTabAt(nextTab, i + n, hi);
1982 setTabAt(tab, i, fwd);
1983 advance = true;
1984 }
1985 }
1986 }
1987 else if ((fk = f.key) instanceof TreeBin) {
1988 TreeBin<V> t = (TreeBin<V>)fk;
1989 t.acquire(0);
1990 try {
1991 if (tabAt(tab, i) == f) {
1992 TreeBin<V> lt = new TreeBin<V>();
1993 TreeBin<V> ht = new TreeBin<V>();
1994 int lc = 0, hc = 0;
1995 for (Node<V> e = t.first; e != null; e = e.next) {
1996 int h = e.hash;
1997 Object k = e.key; V v = e.val;
1998 if ((h & n) == 0) {
1999 ++lc;
2000 lt.putTreeNode(h, k, v);
2001 }
2002 else {
2003 ++hc;
2004 ht.putTreeNode(h, k, v);
2005 }
2006 }
2007 Node<V> ln, hn; // throw away trees if too small
2008 if (lc < TREE_THRESHOLD) {
2009 ln = null;
2010 for (Node<V> p = lt.first; p != null; p = p.next)
2011 ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 }
2013 else
2014 ln = new Node<V>(MOVED, lt, null, null);
2015 setTabAt(nextTab, i, ln);
2016 if (hc < TREE_THRESHOLD) {
2017 hn = null;
2018 for (Node<V> p = ht.first; p != null; p = p.next)
2019 hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 }
2021 else
2022 hn = new Node<V>(MOVED, ht, null, null);
2023 setTabAt(nextTab, i + n, hn);
2024 setTabAt(tab, i, fwd);
2025 advance = true;
2026 }
2027 } finally {
2028 t.release(0);
2029 }
2030 }
2031 else
2032 advance = true; // already processed
2033 }
2034 }
2035
2036 /* ---------------- Counter support -------------- */
2037
2038 final long sumCount() {
2039 Cell[] as = counterCells; Cell a;
2040 long sum = baseCount;
2041 if (as != null) {
2042 for (int i = 0; i < as.length; ++i) {
2043 if ((a = as[i]) != null)
2044 sum += a.value;
2045 }
2046 }
2047 return sum;
2048 }
2049
2050 // See LongAdder version for explanation
2051 private final void fullAddCount(long x, boolean wasUncontended) {
2052 int h;
2053 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 ThreadLocalRandom.localInit(); // force initialization
2055 h = ThreadLocalRandom.getProbe();
2056 wasUncontended = true;
2057 }
2058 boolean collide = false; // True if last slot nonempty
2059 for (;;) {
2060 Cell[] as; Cell a; int n; long v;
2061 if ((as = counterCells) != null && (n = as.length) > 0) {
2062 if ((a = as[(n - 1) & h]) == null) {
2063 if (cellsBusy == 0) { // Try to attach new Cell
2064 Cell r = new Cell(x); // Optimistic create
2065 if (cellsBusy == 0 &&
2066 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 boolean created = false;
2068 try { // Recheck under lock
2069 Cell[] rs; int m, j;
2070 if ((rs = counterCells) != null &&
2071 (m = rs.length) > 0 &&
2072 rs[j = (m - 1) & h] == null) {
2073 rs[j] = r;
2074 created = true;
2075 }
2076 } finally {
2077 cellsBusy = 0;
2078 }
2079 if (created)
2080 break;
2081 continue; // Slot is now non-empty
2082 }
2083 }
2084 collide = false;
2085 }
2086 else if (!wasUncontended) // CAS already known to fail
2087 wasUncontended = true; // Continue after rehash
2088 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 break;
2090 else if (counterCells != as || n >= NCPU)
2091 collide = false; // At max size or stale
2092 else if (!collide)
2093 collide = true;
2094 else if (cellsBusy == 0 &&
2095 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 try {
2097 if (counterCells == as) {// Expand table unless stale
2098 Cell[] rs = new Cell[n << 1];
2099 for (int i = 0; i < n; ++i)
2100 rs[i] = as[i];
2101 counterCells = rs;
2102 }
2103 } finally {
2104 cellsBusy = 0;
2105 }
2106 collide = false;
2107 continue; // Retry with expanded table
2108 }
2109 h = ThreadLocalRandom.advanceProbe(h);
2110 }
2111 else if (cellsBusy == 0 && counterCells == as &&
2112 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 boolean init = false;
2114 try { // Initialize table
2115 if (counterCells == as) {
2116 Cell[] rs = new Cell[2];
2117 rs[h & 1] = new Cell(x);
2118 counterCells = rs;
2119 init = true;
2120 }
2121 } finally {
2122 cellsBusy = 0;
2123 }
2124 if (init)
2125 break;
2126 }
2127 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 break; // Fall back on using base
2129 }
2130 }
2131
2132 /* ----------------Table Traversal -------------- */
2133
2134 /**
2135 * Encapsulates traversal for methods such as containsValue; also
2136 * serves as a base class for other iterators and bulk tasks.
2137 *
2138 * At each step, the iterator snapshots the key ("nextKey") and
2139 * value ("nextVal") of a valid node (i.e., one that, at point of
2140 * snapshot, has a non-null user value). Because val fields can
2141 * change (including to null, indicating deletion), field nextVal
2142 * might not be accurate at point of use, but still maintains the
2143 * weak consistency property of holding a value that was once
2144 * valid. To support iterator.remove, the nextKey field is not
2145 * updated (nulled out) when the iterator cannot advance.
2146 *
2147 * Internal traversals directly access these fields, as in:
2148 * {@code while (it.advanceValue() != null) { process(it.nextKey); }}
2149 *
2150 * Exported iterators must track whether the iterator has advanced
2151 * (in hasNext vs next) (by setting/checking/nulling field
2152 * nextVal), and then extract key, value, or key-value pairs as
2153 * return values of next().
2154 *
2155 * The iterator visits once each still-valid node that was
2156 * reachable upon iterator construction. It might miss some that
2157 * were added to a bin after the bin was visited, which is OK wrt
2158 * consistency guarantees. Maintaining this property in the face
2159 * of possible ongoing resizes requires a fair amount of
2160 * bookkeeping state that is difficult to optimize away amidst
2161 * volatile accesses. Even so, traversal maintains reasonable
2162 * throughput.
2163 *
2164 * Normally, iteration proceeds bin-by-bin traversing lists.
2165 * However, if the table has been resized, then all future steps
2166 * must traverse both the bin at the current index as well as at
2167 * (index + baseSize); and so on for further resizings. To
2168 * paranoically cope with potential sharing by users of iterators
2169 * across threads, iteration terminates if a bounds checks fails
2170 * for a table read.
2171 *
2172 * This class supports both Spliterator-based traversal and
2173 * CountedCompleter-based bulk tasks. The same "batch" field is
2174 * used, but in slightly different ways, in the two cases. For
2175 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 * size that halves down to zero for leaf tasks, that is only
2178 * computed upon execution of the task. (Tasks can be submitted to
2179 * any pool, of any size, so we don't know scale factors until
2180 * running.)
2181 *
2182 * This class extends CountedCompleter to streamline parallel
2183 * iteration in bulk operations. This adds only a few fields of
2184 * space overhead, which is small enough in cases where it is not
2185 * needed to not worry about it. Because CountedCompleter is
2186 * Serializable, but iterators need not be, we need to add warning
2187 * suppressions.
2188 */
2189 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 extends CountedCompleter<R> {
2191 final ConcurrentHashMap<K,V> map;
2192 Node<V> next; // the next entry to use
2193 K nextKey; // cached key field of next
2194 V nextVal; // cached val field of next
2195 Node<V>[] tab; // current table; updated if resized
2196 int index; // index of bin to use next
2197 int baseIndex; // current index of initial table
2198 int baseLimit; // index bound for initial table
2199 int baseSize; // initial table size
2200 int batch; // split control
2201 /** Creates iterator for all entries in the table. */
2202 Traverser(ConcurrentHashMap<K,V> map) {
2203 this.map = map;
2204 Node<V>[] t;
2205 if ((t = tab = map.table) != null)
2206 baseLimit = baseSize = t.length;
2207 }
2208
2209 /** Task constructor */
2210 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 super(it);
2212 this.map = map;
2213 this.batch = batch; // -1 if unknown
2214 if (it == null) {
2215 Node<V>[] t;
2216 if ((t = tab = map.table) != null)
2217 baseLimit = baseSize = t.length;
2218 }
2219 else { // split parent
2220 this.tab = it.tab;
2221 this.baseSize = it.baseSize;
2222 int hi = this.baseLimit = it.baseLimit;
2223 it.baseLimit = this.index = this.baseIndex =
2224 (hi + it.baseIndex + 1) >>> 1;
2225 }
2226 }
2227
2228 /** Spliterator constructor */
2229 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 super(it);
2231 this.map = map;
2232 if (it == null) {
2233 Node<V>[] t;
2234 if ((t = tab = map.table) != null)
2235 baseLimit = baseSize = t.length;
2236 long n = map.sumCount();
2237 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 (int)n);
2239 }
2240 else {
2241 this.tab = it.tab;
2242 this.baseSize = it.baseSize;
2243 int hi = this.baseLimit = it.baseLimit;
2244 it.baseLimit = this.index = this.baseIndex =
2245 (hi + it.baseIndex + 1) >>> 1;
2246 this.batch = it.batch >>>= 1;
2247 }
2248 }
2249
2250 /**
2251 * Advances next; returns nextVal or null if terminated.
2252 * See above for explanation.
2253 */
2254 @SuppressWarnings("unchecked") final V advanceValue() {
2255 V v;
2256 Node<V> e = next;
2257 outer: do {
2258 if (e != null) // advance past used/skipped node
2259 e = e.next;
2260 while (e == null) { // get to next non-null bin
2261 Node<V>[] t; int b, i, n; Object ek; // must use locals
2262 if ((t = tab) == null || (n = t.length) <= (i = index) ||
2263 i < 0 || (b = baseIndex) >= baseLimit) {
2264 v = null;
2265 break outer;
2266 }
2267 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2268 if ((ek = e.key) instanceof TreeBin)
2269 e = ((TreeBin<V>)ek).first;
2270 else {
2271 tab = (Node<V>[])ek;
2272 continue; // restarts due to null val
2273 }
2274 } // visit upper slots if present
2275 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2276 }
2277 nextKey = (K)e.key; // skip deleted or special nodes
2278 } while ((v = e.val) == null);
2279 next = e;
2280 return nextVal = v;
2281 }
2282
2283 // Same idea, but with fewer accesses for key traversals
2284 @SuppressWarnings("unchecked") final K advanceKey() {
2285 K k;
2286 Node<V> e = next;
2287 outer: do {
2288 if (e != null)
2289 e = e.next;
2290 while (e == null) {
2291 Node<V>[] t; int b, i, n; Object ek;
2292 if ((t = tab) == null || (n = t.length) <= (i = index) ||
2293 i < 0 || (b = baseIndex) >= baseLimit) {
2294 nextVal = null;
2295 k = null;
2296 break outer;
2297 }
2298 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2299 if ((ek = e.key) instanceof TreeBin)
2300 e = ((TreeBin<V>)ek).first;
2301 else {
2302 tab = (Node<V>[])ek;
2303 continue;
2304 }
2305 }
2306 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2307 }
2308 k = (K)e.key;
2309 } while ((nextVal = e.val) == null);
2310 next = e;
2311 return nextKey = k;
2312 }
2313
2314 public final void remove() {
2315 K k = nextKey;
2316 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2317 throw new IllegalStateException();
2318 map.internalReplace(k, null, null);
2319 }
2320
2321 public final boolean hasNext() {
2322 return nextVal != null || advanceValue() != null;
2323 }
2324
2325 public final boolean hasMoreElements() { return hasNext(); }
2326
2327 public void compute() { } // default no-op CountedCompleter body
2328
2329 /**
2330 * Returns a batch value > 0 if this task should (and must) be
2331 * split, if so, adding to pending count, and in any case
2332 * updating batch value. The initial batch value is approx
2333 * exp2 of the number of times (minus one) to split task by
2334 * two before executing leaf action. This value is faster to
2335 * compute and more convenient to use as a guide to splitting
2336 * than is the depth, since it is used while dividing by two
2337 * anyway.
2338 */
2339 final int preSplit() {
2340 int b; ForkJoinPool pool;
2341 if ((b = batch) < 0) { // force initialization
2342 int sp = (((pool = getPool()) == null) ?
2343 ForkJoinPool.getCommonPoolParallelism() :
2344 pool.getParallelism()) << 3; // slack of 8
2345 long n = map.sumCount();
2346 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2347 }
2348 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2349 if ((batch = b) > 0)
2350 addToPendingCount(1);
2351 return b;
2352 }
2353
2354 // spliterator support
2355
2356 public long estimateSize() {
2357 return batch;
2358 }
2359
2360 }
2361
2362 /* ---------------- Public operations -------------- */
2363
2364 /**
2365 * Creates a new, empty map with the default initial table size (16).
2366 */
2367 public ConcurrentHashMap() {
2368 }
2369
2370 /**
2371 * Creates a new, empty map with an initial table size
2372 * accommodating the specified number of elements without the need
2373 * to dynamically resize.
2374 *
2375 * @param initialCapacity The implementation performs internal
2376 * sizing to accommodate this many elements.
2377 * @throws IllegalArgumentException if the initial capacity of
2378 * elements is negative
2379 */
2380 public ConcurrentHashMap(int initialCapacity) {
2381 if (initialCapacity < 0)
2382 throw new IllegalArgumentException();
2383 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2384 MAXIMUM_CAPACITY :
2385 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2386 this.sizeCtl = cap;
2387 }
2388
2389 /**
2390 * Creates a new map with the same mappings as the given map.
2391 *
2392 * @param m the map
2393 */
2394 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2395 this.sizeCtl = DEFAULT_CAPACITY;
2396 internalPutAll(m);
2397 }
2398
2399 /**
2400 * Creates a new, empty map with an initial table size based on
2401 * the given number of elements ({@code initialCapacity}) and
2402 * initial table density ({@code loadFactor}).
2403 *
2404 * @param initialCapacity the initial capacity. The implementation
2405 * performs internal sizing to accommodate this many elements,
2406 * given the specified load factor.
2407 * @param loadFactor the load factor (table density) for
2408 * establishing the initial table size
2409 * @throws IllegalArgumentException if the initial capacity of
2410 * elements is negative or the load factor is nonpositive
2411 *
2412 * @since 1.6
2413 */
2414 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2415 this(initialCapacity, loadFactor, 1);
2416 }
2417
2418 /**
2419 * Creates a new, empty map with an initial table size based on
2420 * the given number of elements ({@code initialCapacity}), table
2421 * density ({@code loadFactor}), and number of concurrently
2422 * updating threads ({@code concurrencyLevel}).
2423 *
2424 * @param initialCapacity the initial capacity. The implementation
2425 * performs internal sizing to accommodate this many elements,
2426 * given the specified load factor.
2427 * @param loadFactor the load factor (table density) for
2428 * establishing the initial table size
2429 * @param concurrencyLevel the estimated number of concurrently
2430 * updating threads. The implementation may use this value as
2431 * a sizing hint.
2432 * @throws IllegalArgumentException if the initial capacity is
2433 * negative or the load factor or concurrencyLevel are
2434 * nonpositive
2435 */
2436 public ConcurrentHashMap(int initialCapacity,
2437 float loadFactor, int concurrencyLevel) {
2438 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2439 throw new IllegalArgumentException();
2440 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2441 initialCapacity = concurrencyLevel; // as estimated threads
2442 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2443 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2444 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2445 this.sizeCtl = cap;
2446 }
2447
2448 /**
2449 * Creates a new {@link Set} backed by a ConcurrentHashMap
2450 * from the given type to {@code Boolean.TRUE}.
2451 *
2452 * @return the new set
2453 */
2454 public static <K> KeySetView<K,Boolean> newKeySet() {
2455 return new KeySetView<K,Boolean>
2456 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2457 }
2458
2459 /**
2460 * Creates a new {@link Set} backed by a ConcurrentHashMap
2461 * from the given type to {@code Boolean.TRUE}.
2462 *
2463 * @param initialCapacity The implementation performs internal
2464 * sizing to accommodate this many elements.
2465 * @throws IllegalArgumentException if the initial capacity of
2466 * elements is negative
2467 * @return the new set
2468 */
2469 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2470 return new KeySetView<K,Boolean>
2471 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2472 }
2473
2474 /**
2475 * {@inheritDoc}
2476 */
2477 public boolean isEmpty() {
2478 return sumCount() <= 0L; // ignore transient negative values
2479 }
2480
2481 /**
2482 * {@inheritDoc}
2483 */
2484 public int size() {
2485 long n = sumCount();
2486 return ((n < 0L) ? 0 :
2487 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2488 (int)n);
2489 }
2490
2491 /**
2492 * Returns the number of mappings. This method should be used
2493 * instead of {@link #size} because a ConcurrentHashMap may
2494 * contain more mappings than can be represented as an int. The
2495 * value returned is an estimate; the actual count may differ if
2496 * there are concurrent insertions or removals.
2497 *
2498 * @return the number of mappings
2499 */
2500 public long mappingCount() {
2501 long n = sumCount();
2502 return (n < 0L) ? 0L : n; // ignore transient negative values
2503 }
2504
2505 /**
2506 * Returns the value to which the specified key is mapped,
2507 * or {@code null} if this map contains no mapping for the key.
2508 *
2509 * <p>More formally, if this map contains a mapping from a key
2510 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2511 * then this method returns {@code v}; otherwise it returns
2512 * {@code null}. (There can be at most one such mapping.)
2513 *
2514 * @throws NullPointerException if the specified key is null
2515 */
2516 public V get(Object key) {
2517 return internalGet(key);
2518 }
2519
2520 /**
2521 * Returns the value to which the specified key is mapped,
2522 * or the given defaultValue if this map contains no mapping for the key.
2523 *
2524 * @param key the key
2525 * @param defaultValue the value to return if this map contains
2526 * no mapping for the given key
2527 * @return the mapping for the key, if present; else the defaultValue
2528 * @throws NullPointerException if the specified key is null
2529 */
2530 public V getValueOrDefault(Object key, V defaultValue) {
2531 V v;
2532 return (v = internalGet(key)) == null ? defaultValue : v;
2533 }
2534
2535 /**
2536 * Tests if the specified object is a key in this table.
2537 *
2538 * @param key possible key
2539 * @return {@code true} if and only if the specified object
2540 * is a key in this table, as determined by the
2541 * {@code equals} method; {@code false} otherwise
2542 * @throws NullPointerException if the specified key is null
2543 */
2544 public boolean containsKey(Object key) {
2545 return internalGet(key) != null;
2546 }
2547
2548 /**
2549 * Returns {@code true} if this map maps one or more keys to the
2550 * specified value. Note: This method may require a full traversal
2551 * of the map, and is much slower than method {@code containsKey}.
2552 *
2553 * @param value value whose presence in this map is to be tested
2554 * @return {@code true} if this map maps one or more keys to the
2555 * specified value
2556 * @throws NullPointerException if the specified value is null
2557 */
2558 public boolean containsValue(Object value) {
2559 if (value == null)
2560 throw new NullPointerException();
2561 V v;
2562 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2563 while ((v = it.advanceValue()) != null) {
2564 if (v == value || value.equals(v))
2565 return true;
2566 }
2567 return false;
2568 }
2569
2570 /**
2571 * Legacy method testing if some key maps into the specified value
2572 * in this table. This method is identical in functionality to
2573 * {@link #containsValue(Object)}, and exists solely to ensure
2574 * full compatibility with class {@link java.util.Hashtable},
2575 * which supported this method prior to introduction of the
2576 * Java Collections framework.
2577 *
2578 * @param value a value to search for
2579 * @return {@code true} if and only if some key maps to the
2580 * {@code value} argument in this table as
2581 * determined by the {@code equals} method;
2582 * {@code false} otherwise
2583 * @throws NullPointerException if the specified value is null
2584 */
2585 @Deprecated public boolean contains(Object value) {
2586 return containsValue(value);
2587 }
2588
2589 /**
2590 * Maps the specified key to the specified value in this table.
2591 * Neither the key nor the value can be null.
2592 *
2593 * <p>The value can be retrieved by calling the {@code get} method
2594 * with a key that is equal to the original key.
2595 *
2596 * @param key key with which the specified value is to be associated
2597 * @param value value to be associated with the specified key
2598 * @return the previous value associated with {@code key}, or
2599 * {@code null} if there was no mapping for {@code key}
2600 * @throws NullPointerException if the specified key or value is null
2601 */
2602 public V put(K key, V value) {
2603 return internalPut(key, value, false);
2604 }
2605
2606 /**
2607 * {@inheritDoc}
2608 *
2609 * @return the previous value associated with the specified key,
2610 * or {@code null} if there was no mapping for the key
2611 * @throws NullPointerException if the specified key or value is null
2612 */
2613 public V putIfAbsent(K key, V value) {
2614 return internalPut(key, value, true);
2615 }
2616
2617 /**
2618 * Copies all of the mappings from the specified map to this one.
2619 * These mappings replace any mappings that this map had for any of the
2620 * keys currently in the specified map.
2621 *
2622 * @param m mappings to be stored in this map
2623 */
2624 public void putAll(Map<? extends K, ? extends V> m) {
2625 internalPutAll(m);
2626 }
2627
2628 /**
2629 * If the specified key is not already associated with a value (or
2630 * is mapped to {@code null}), attempts to compute its value using
2631 * the given mapping function and enters it into this map unless
2632 * {@code null}. The entire method invocation is performed
2633 * atomically, so the function is applied at most once per key.
2634 * Some attempted update operations on this map by other threads
2635 * may be blocked while computation is in progress, so the
2636 * computation should be short and simple, and must not attempt to
2637 * update any other mappings of this Map.
2638 *
2639 * @param key key with which the specified value is to be associated
2640 * @param mappingFunction the function to compute a value
2641 * @return the current (existing or computed) value associated with
2642 * the specified key, or null if the computed value is null
2643 * @throws NullPointerException if the specified key or mappingFunction
2644 * is null
2645 * @throws IllegalStateException if the computation detectably
2646 * attempts a recursive update to this map that would
2647 * otherwise never complete
2648 * @throws RuntimeException or Error if the mappingFunction does so,
2649 * in which case the mapping is left unestablished
2650 */
2651 public V computeIfAbsent
2652 (K key, Function<? super K, ? extends V> mappingFunction) {
2653 return internalComputeIfAbsent(key, mappingFunction);
2654 }
2655
2656 /**
2657 * If the value for the specified key is present and non-null,
2658 * attempts to compute a new mapping given the key and its current
2659 * mapped value. The entire method invocation is performed
2660 * atomically. Some attempted update operations on this map by
2661 * other threads may be blocked while computation is in progress,
2662 * so the computation should be short and simple, and must not
2663 * attempt to update any other mappings of this Map.
2664 *
2665 * @param key key with which the specified value is to be associated
2666 * @param remappingFunction the function to compute a value
2667 * @return the new value associated with the specified key, or null if none
2668 * @throws NullPointerException if the specified key or remappingFunction
2669 * is null
2670 * @throws IllegalStateException if the computation detectably
2671 * attempts a recursive update to this map that would
2672 * otherwise never complete
2673 * @throws RuntimeException or Error if the remappingFunction does so,
2674 * in which case the mapping is unchanged
2675 */
2676 public V computeIfPresent
2677 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2678 return internalCompute(key, true, remappingFunction);
2679 }
2680
2681 /**
2682 * Attempts to compute a mapping for the specified key and its
2683 * current mapped value (or {@code null} if there is no current
2684 * mapping). The entire method invocation is performed atomically.
2685 * Some attempted update operations on this map by other threads
2686 * may be blocked while computation is in progress, so the
2687 * computation should be short and simple, and must not attempt to
2688 * update any other mappings of this Map.
2689 *
2690 * @param key key with which the specified value is to be associated
2691 * @param remappingFunction the function to compute a value
2692 * @return the new value associated with the specified key, or null if none
2693 * @throws NullPointerException if the specified key or remappingFunction
2694 * is null
2695 * @throws IllegalStateException if the computation detectably
2696 * attempts a recursive update to this map that would
2697 * otherwise never complete
2698 * @throws RuntimeException or Error if the remappingFunction does so,
2699 * in which case the mapping is unchanged
2700 */
2701 public V compute
2702 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2703 return internalCompute(key, false, remappingFunction);
2704 }
2705
2706 /**
2707 * If the specified key is not already associated with a
2708 * (non-null) value, associates it with the given value.
2709 * Otherwise, replaces the value with the results of the given
2710 * remapping function, or removes if {@code null}. The entire
2711 * method invocation is performed atomically. Some attempted
2712 * update operations on this map by other threads may be blocked
2713 * while computation is in progress, so the computation should be
2714 * short and simple, and must not attempt to update any other
2715 * mappings of this Map.
2716 *
2717 * @param key key with which the specified value is to be associated
2718 * @param value the value to use if absent
2719 * @param remappingFunction the function to recompute a value if present
2720 * @return the new value associated with the specified key, or null if none
2721 * @throws NullPointerException if the specified key or the
2722 * remappingFunction is null
2723 * @throws RuntimeException or Error if the remappingFunction does so,
2724 * in which case the mapping is unchanged
2725 */
2726 public V merge
2727 (K key, V value,
2728 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2729 return internalMerge(key, value, remappingFunction);
2730 }
2731
2732 /**
2733 * Removes the key (and its corresponding value) from this map.
2734 * This method does nothing if the key is not in the map.
2735 *
2736 * @param key the key that needs to be removed
2737 * @return the previous value associated with {@code key}, or
2738 * {@code null} if there was no mapping for {@code key}
2739 * @throws NullPointerException if the specified key is null
2740 */
2741 public V remove(Object key) {
2742 return internalReplace(key, null, null);
2743 }
2744
2745 /**
2746 * {@inheritDoc}
2747 *
2748 * @throws NullPointerException if the specified key is null
2749 */
2750 public boolean remove(Object key, Object value) {
2751 if (key == null)
2752 throw new NullPointerException();
2753 return value != null && internalReplace(key, null, value) != null;
2754 }
2755
2756 /**
2757 * {@inheritDoc}
2758 *
2759 * @throws NullPointerException if any of the arguments are null
2760 */
2761 public boolean replace(K key, V oldValue, V newValue) {
2762 if (key == null || oldValue == null || newValue == null)
2763 throw new NullPointerException();
2764 return internalReplace(key, newValue, oldValue) != null;
2765 }
2766
2767 /**
2768 * {@inheritDoc}
2769 *
2770 * @return the previous value associated with the specified key,
2771 * or {@code null} if there was no mapping for the key
2772 * @throws NullPointerException if the specified key or value is null
2773 */
2774 public V replace(K key, V value) {
2775 if (key == null || value == null)
2776 throw new NullPointerException();
2777 return internalReplace(key, value, null);
2778 }
2779
2780 /**
2781 * Removes all of the mappings from this map.
2782 */
2783 public void clear() {
2784 internalClear();
2785 }
2786
2787 /**
2788 * Returns a {@link Set} view of the keys contained in this map.
2789 * The set is backed by the map, so changes to the map are
2790 * reflected in the set, and vice-versa.
2791 *
2792 * @return the set view
2793 */
2794 public KeySetView<K,V> keySet() {
2795 KeySetView<K,V> ks = keySet;
2796 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2797 }
2798
2799 /**
2800 * Returns a {@link Set} view of the keys in this map, using the
2801 * given common mapped value for any additions (i.e., {@link
2802 * Collection#add} and {@link Collection#addAll(Collection)}).
2803 * This is of course only appropriate if it is acceptable to use
2804 * the same value for all additions from this view.
2805 *
2806 * @param mappedValue the mapped value to use for any additions
2807 * @return the set view
2808 * @throws NullPointerException if the mappedValue is null
2809 */
2810 public KeySetView<K,V> keySet(V mappedValue) {
2811 if (mappedValue == null)
2812 throw new NullPointerException();
2813 return new KeySetView<K,V>(this, mappedValue);
2814 }
2815
2816 /**
2817 * Returns a {@link Collection} view of the values contained in this map.
2818 * The collection is backed by the map, so changes to the map are
2819 * reflected in the collection, and vice-versa.
2820 *
2821 * @return the collection view
2822 */
2823 public ValuesView<K,V> values() {
2824 ValuesView<K,V> vs = values;
2825 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2826 }
2827
2828 /**
2829 * Returns a {@link Set} view of the mappings contained in this map.
2830 * The set is backed by the map, so changes to the map are
2831 * reflected in the set, and vice-versa. The set supports element
2832 * removal, which removes the corresponding mapping from the map,
2833 * via the {@code Iterator.remove}, {@code Set.remove},
2834 * {@code removeAll}, {@code retainAll}, and {@code clear}
2835 * operations. It does not support the {@code add} or
2836 * {@code addAll} operations.
2837 *
2838 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2839 * that will never throw {@link ConcurrentModificationException},
2840 * and guarantees to traverse elements as they existed upon
2841 * construction of the iterator, and may (but is not guaranteed to)
2842 * reflect any modifications subsequent to construction.
2843 *
2844 * @return the set view
2845 */
2846 public Set<Map.Entry<K,V>> entrySet() {
2847 EntrySetView<K,V> es = entrySet;
2848 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2849 }
2850
2851 /**
2852 * Returns an enumeration of the keys in this table.
2853 *
2854 * @return an enumeration of the keys in this table
2855 * @see #keySet()
2856 */
2857 public Enumeration<K> keys() {
2858 return new KeyIterator<K,V>(this);
2859 }
2860
2861 /**
2862 * Returns an enumeration of the values in this table.
2863 *
2864 * @return an enumeration of the values in this table
2865 * @see #values()
2866 */
2867 public Enumeration<V> elements() {
2868 return new ValueIterator<K,V>(this);
2869 }
2870
2871 /**
2872 * Returns the hash code value for this {@link Map}, i.e.,
2873 * the sum of, for each key-value pair in the map,
2874 * {@code key.hashCode() ^ value.hashCode()}.
2875 *
2876 * @return the hash code value for this map
2877 */
2878 public int hashCode() {
2879 int h = 0;
2880 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2881 V v;
2882 while ((v = it.advanceValue()) != null) {
2883 h += it.nextKey.hashCode() ^ v.hashCode();
2884 }
2885 return h;
2886 }
2887
2888 /**
2889 * Returns a string representation of this map. The string
2890 * representation consists of a list of key-value mappings (in no
2891 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2892 * mappings are separated by the characters {@code ", "} (comma
2893 * and space). Each key-value mapping is rendered as the key
2894 * followed by an equals sign ("{@code =}") followed by the
2895 * associated value.
2896 *
2897 * @return a string representation of this map
2898 */
2899 public String toString() {
2900 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2901 StringBuilder sb = new StringBuilder();
2902 sb.append('{');
2903 V v;
2904 if ((v = it.advanceValue()) != null) {
2905 for (;;) {
2906 K k = it.nextKey;
2907 sb.append(k == this ? "(this Map)" : k);
2908 sb.append('=');
2909 sb.append(v == this ? "(this Map)" : v);
2910 if ((v = it.advanceValue()) == null)
2911 break;
2912 sb.append(',').append(' ');
2913 }
2914 }
2915 return sb.append('}').toString();
2916 }
2917
2918 /**
2919 * Compares the specified object with this map for equality.
2920 * Returns {@code true} if the given object is a map with the same
2921 * mappings as this map. This operation may return misleading
2922 * results if either map is concurrently modified during execution
2923 * of this method.
2924 *
2925 * @param o object to be compared for equality with this map
2926 * @return {@code true} if the specified object is equal to this map
2927 */
2928 public boolean equals(Object o) {
2929 if (o != this) {
2930 if (!(o instanceof Map))
2931 return false;
2932 Map<?,?> m = (Map<?,?>) o;
2933 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2934 V val;
2935 while ((val = it.advanceValue()) != null) {
2936 Object v = m.get(it.nextKey);
2937 if (v == null || (v != val && !v.equals(val)))
2938 return false;
2939 }
2940 for (Map.Entry<?,?> e : m.entrySet()) {
2941 Object mk, mv, v;
2942 if ((mk = e.getKey()) == null ||
2943 (mv = e.getValue()) == null ||
2944 (v = internalGet(mk)) == null ||
2945 (mv != v && !mv.equals(v)))
2946 return false;
2947 }
2948 }
2949 return true;
2950 }
2951
2952 /* ----------------Iterators -------------- */
2953
2954 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2955 extends Traverser<K,V,Object>
2956 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2957 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
2958 KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
2959 super(map, it);
2960 }
2961 public KeyIterator<K,V> trySplit() {
2962 return (baseIndex == baseLimit) ? null :
2963 new KeyIterator<K,V>(map, this);
2964 }
2965 public final K next() {
2966 K k;
2967 if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
2968 throw new NoSuchElementException();
2969 nextVal = null;
2970 return k;
2971 }
2972
2973 public final K nextElement() { return next(); }
2974
2975 public Iterator<K> iterator() { return this; }
2976
2977 public void forEach(Consumer<? super K> action) {
2978 if (action == null) throw new NullPointerException();
2979 K k;
2980 while ((k = advanceKey()) != null)
2981 action.accept(k);
2982 }
2983
2984 public boolean tryAdvance(Consumer<? super K> block) {
2985 if (block == null) throw new NullPointerException();
2986 K k;
2987 if ((k = advanceKey()) == null)
2988 return false;
2989 block.accept(k);
2990 return true;
2991 }
2992
2993 public int characteristics() {
2994 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2995 Spliterator.NONNULL;
2996 }
2997
2998 }
2999
3000 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3001 extends Traverser<K,V,Object>
3002 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3003 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3004 ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3005 super(map, it);
3006 }
3007 public ValueIterator<K,V> trySplit() {
3008 return (baseIndex == baseLimit) ? null :
3009 new ValueIterator<K,V>(map, this);
3010 }
3011
3012 public final V next() {
3013 V v;
3014 if ((v = nextVal) == null && (v = advanceValue()) == null)
3015 throw new NoSuchElementException();
3016 nextVal = null;
3017 return v;
3018 }
3019
3020 public final V nextElement() { return next(); }
3021
3022 public Iterator<V> iterator() { return this; }
3023
3024 public void forEach(Consumer<? super V> action) {
3025 if (action == null) throw new NullPointerException();
3026 V v;
3027 while ((v = advanceValue()) != null)
3028 action.accept(v);
3029 }
3030
3031 public boolean tryAdvance(Consumer<? super V> block) {
3032 V v;
3033 if (block == null) throw new NullPointerException();
3034 if ((v = advanceValue()) == null)
3035 return false;
3036 block.accept(v);
3037 return true;
3038 }
3039
3040 public int characteristics() {
3041 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3042 }
3043 }
3044
3045 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3046 extends Traverser<K,V,Object>
3047 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3048 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3049 EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3050 super(map, it);
3051 }
3052 public EntryIterator<K,V> trySplit() {
3053 return (baseIndex == baseLimit) ? null :
3054 new EntryIterator<K,V>(map, this);
3055 }
3056
3057 public final Map.Entry<K,V> next() {
3058 V v;
3059 if ((v = nextVal) == null && (v = advanceValue()) == null)
3060 throw new NoSuchElementException();
3061 K k = nextKey;
3062 nextVal = null;
3063 return new MapEntry<K,V>(k, v, map);
3064 }
3065
3066 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3067
3068 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3069 if (action == null) throw new NullPointerException();
3070 V v;
3071 while ((v = advanceValue()) != null)
3072 action.accept(entryFor(nextKey, v));
3073 }
3074
3075 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3076 V v;
3077 if (block == null) throw new NullPointerException();
3078 if ((v = advanceValue()) == null)
3079 return false;
3080 block.accept(entryFor(nextKey, v));
3081 return true;
3082 }
3083
3084 public int characteristics() {
3085 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3086 Spliterator.NONNULL;
3087 }
3088 }
3089
3090 /**
3091 * Exported Entry for iterators
3092 */
3093 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3094 final K key; // non-null
3095 V val; // non-null
3096 final ConcurrentHashMap<K,V> map;
3097 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3098 this.key = key;
3099 this.val = val;
3100 this.map = map;
3101 }
3102 public final K getKey() { return key; }
3103 public final V getValue() { return val; }
3104 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3105 public final String toString(){ return key + "=" + val; }
3106
3107 public final boolean equals(Object o) {
3108 Object k, v; Map.Entry<?,?> e;
3109 return ((o instanceof Map.Entry) &&
3110 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3111 (v = e.getValue()) != null &&
3112 (k == key || k.equals(key)) &&
3113 (v == val || v.equals(val)));
3114 }
3115
3116 /**
3117 * Sets our entry's value and writes through to the map. The
3118 * value to return is somewhat arbitrary here. Since we do not
3119 * necessarily track asynchronous changes, the most recent
3120 * "previous" value could be different from what we return (or
3121 * could even have been removed in which case the put will
3122 * re-establish). We do not and cannot guarantee more.
3123 */
3124 public final V setValue(V value) {
3125 if (value == null) throw new NullPointerException();
3126 V v = val;
3127 val = value;
3128 map.put(key, value);
3129 return v;
3130 }
3131 }
3132
3133 /**
3134 * Returns exportable snapshot entry for the given key and value
3135 * when write-through can't or shouldn't be used.
3136 */
3137 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3138 return new AbstractMap.SimpleEntry<K,V>(k, v);
3139 }
3140
3141 /* ---------------- Serialization Support -------------- */
3142
3143 /**
3144 * Stripped-down version of helper class used in previous version,
3145 * declared for the sake of serialization compatibility
3146 */
3147 static class Segment<K,V> implements Serializable {
3148 private static final long serialVersionUID = 2249069246763182397L;
3149 final float loadFactor;
3150 Segment(float lf) { this.loadFactor = lf; }
3151 }
3152
3153 /**
3154 * Saves the state of the {@code ConcurrentHashMap} instance to a
3155 * stream (i.e., serializes it).
3156 * @param s the stream
3157 * @serialData
3158 * the key (Object) and value (Object)
3159 * for each key-value mapping, followed by a null pair.
3160 * The key-value mappings are emitted in no particular order.
3161 */
3162 @SuppressWarnings("unchecked") private void writeObject
3163 (java.io.ObjectOutputStream s)
3164 throws java.io.IOException {
3165 if (segments == null) { // for serialization compatibility
3166 segments = (Segment<K,V>[])
3167 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3168 for (int i = 0; i < segments.length; ++i)
3169 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3170 }
3171 s.defaultWriteObject();
3172 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3173 V v;
3174 while ((v = it.advanceValue()) != null) {
3175 s.writeObject(it.nextKey);
3176 s.writeObject(v);
3177 }
3178 s.writeObject(null);
3179 s.writeObject(null);
3180 segments = null; // throw away
3181 }
3182
3183 /**
3184 * Reconstitutes the instance from a stream (that is, deserializes it).
3185 * @param s the stream
3186 */
3187 @SuppressWarnings("unchecked") private void readObject
3188 (java.io.ObjectInputStream s)
3189 throws java.io.IOException, ClassNotFoundException {
3190 s.defaultReadObject();
3191 this.segments = null; // unneeded
3192
3193 // Create all nodes, then place in table once size is known
3194 long size = 0L;
3195 Node<V> p = null;
3196 for (;;) {
3197 K k = (K) s.readObject();
3198 V v = (V) s.readObject();
3199 if (k != null && v != null) {
3200 int h = spread(k.hashCode());
3201 p = new Node<V>(h, k, v, p);
3202 ++size;
3203 }
3204 else
3205 break;
3206 }
3207 if (p != null) {
3208 boolean init = false;
3209 int n;
3210 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3211 n = MAXIMUM_CAPACITY;
3212 else {
3213 int sz = (int)size;
3214 n = tableSizeFor(sz + (sz >>> 1) + 1);
3215 }
3216 int sc = sizeCtl;
3217 boolean collide = false;
3218 if (n > sc &&
3219 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3220 try {
3221 if (table == null) {
3222 init = true;
3223 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3224 Node<V>[] tab = (Node<V>[])rt;
3225 int mask = n - 1;
3226 while (p != null) {
3227 int j = p.hash & mask;
3228 Node<V> next = p.next;
3229 Node<V> q = p.next = tabAt(tab, j);
3230 setTabAt(tab, j, p);
3231 if (!collide && q != null && q.hash == p.hash)
3232 collide = true;
3233 p = next;
3234 }
3235 table = tab;
3236 addCount(size, -1);
3237 sc = n - (n >>> 2);
3238 }
3239 } finally {
3240 sizeCtl = sc;
3241 }
3242 if (collide) { // rescan and convert to TreeBins
3243 Node<V>[] tab = table;
3244 for (int i = 0; i < tab.length; ++i) {
3245 int c = 0;
3246 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3247 if (++c > TREE_THRESHOLD &&
3248 (e.key instanceof Comparable)) {
3249 replaceWithTreeBin(tab, i, e.key);
3250 break;
3251 }
3252 }
3253 }
3254 }
3255 }
3256 if (!init) { // Can only happen if unsafely published.
3257 while (p != null) {
3258 internalPut((K)p.key, p.val, false);
3259 p = p.next;
3260 }
3261 }
3262 }
3263 }
3264
3265 // -------------------------------------------------------
3266
3267 // Sequential bulk operations
3268
3269 /**
3270 * Performs the given action for each (key, value).
3271 *
3272 * @param action the action
3273 */
3274 public void forEachSequentially
3275 (BiConsumer<? super K, ? super V> action) {
3276 if (action == null) throw new NullPointerException();
3277 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3278 V v;
3279 while ((v = it.advanceValue()) != null)
3280 action.accept(it.nextKey, v);
3281 }
3282
3283 /**
3284 * Performs the given action for each non-null transformation
3285 * of each (key, value).
3286 *
3287 * @param transformer a function returning the transformation
3288 * for an element, or null if there is no transformation (in
3289 * which case the action is not applied)
3290 * @param action the action
3291 */
3292 public <U> void forEachSequentially
3293 (BiFunction<? super K, ? super V, ? extends U> transformer,
3294 Consumer<? super U> action) {
3295 if (transformer == null || action == null)
3296 throw new NullPointerException();
3297 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3298 V v; U u;
3299 while ((v = it.advanceValue()) != null) {
3300 if ((u = transformer.apply(it.nextKey, v)) != null)
3301 action.accept(u);
3302 }
3303 }
3304
3305 /**
3306 * Returns a non-null result from applying the given search
3307 * function on each (key, value), or null if none.
3308 *
3309 * @param searchFunction a function returning a non-null
3310 * result on success, else null
3311 * @return a non-null result from applying the given search
3312 * function on each (key, value), or null if none
3313 */
3314 public <U> U searchSequentially
3315 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3316 if (searchFunction == null) throw new NullPointerException();
3317 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3318 V v; U u;
3319 while ((v = it.advanceValue()) != null) {
3320 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3321 return u;
3322 }
3323 return null;
3324 }
3325
3326 /**
3327 * Returns the result of accumulating the given transformation
3328 * of all (key, value) pairs using the given reducer to
3329 * combine values, or null if none.
3330 *
3331 * @param transformer a function returning the transformation
3332 * for an element, or null if there is no transformation (in
3333 * which case it is not combined)
3334 * @param reducer a commutative associative combining function
3335 * @return the result of accumulating the given transformation
3336 * of all (key, value) pairs
3337 */
3338 public <U> U reduceSequentially
3339 (BiFunction<? super K, ? super V, ? extends U> transformer,
3340 BiFunction<? super U, ? super U, ? extends U> reducer) {
3341 if (transformer == null || reducer == null)
3342 throw new NullPointerException();
3343 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3344 U r = null, u; V v;
3345 while ((v = it.advanceValue()) != null) {
3346 if ((u = transformer.apply(it.nextKey, v)) != null)
3347 r = (r == null) ? u : reducer.apply(r, u);
3348 }
3349 return r;
3350 }
3351
3352 /**
3353 * Returns the result of accumulating the given transformation
3354 * of all (key, value) pairs using the given reducer to
3355 * combine values, and the given basis as an identity value.
3356 *
3357 * @param transformer a function returning the transformation
3358 * for an element
3359 * @param basis the identity (initial default value) for the reduction
3360 * @param reducer a commutative associative combining function
3361 * @return the result of accumulating the given transformation
3362 * of all (key, value) pairs
3363 */
3364 public double reduceToDoubleSequentially
3365 (ToDoubleBiFunction<? super K, ? super V> transformer,
3366 double basis,
3367 DoubleBinaryOperator reducer) {
3368 if (transformer == null || reducer == null)
3369 throw new NullPointerException();
3370 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3371 double r = basis; V v;
3372 while ((v = it.advanceValue()) != null)
3373 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3374 return r;
3375 }
3376
3377 /**
3378 * Returns the result of accumulating the given transformation
3379 * of all (key, value) pairs using the given reducer to
3380 * combine values, and the given basis as an identity value.
3381 *
3382 * @param transformer a function returning the transformation
3383 * for an element
3384 * @param basis the identity (initial default value) for the reduction
3385 * @param reducer a commutative associative combining function
3386 * @return the result of accumulating the given transformation
3387 * of all (key, value) pairs
3388 */
3389 public long reduceToLongSequentially
3390 (ToLongBiFunction<? super K, ? super V> transformer,
3391 long basis,
3392 LongBinaryOperator reducer) {
3393 if (transformer == null || reducer == null)
3394 throw new NullPointerException();
3395 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3396 long r = basis; V v;
3397 while ((v = it.advanceValue()) != null)
3398 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3399 return r;
3400 }
3401
3402 /**
3403 * Returns the result of accumulating the given transformation
3404 * of all (key, value) pairs using the given reducer to
3405 * combine values, and the given basis as an identity value.
3406 *
3407 * @param transformer a function returning the transformation
3408 * for an element
3409 * @param basis the identity (initial default value) for the reduction
3410 * @param reducer a commutative associative combining function
3411 * @return the result of accumulating the given transformation
3412 * of all (key, value) pairs
3413 */
3414 public int reduceToIntSequentially
3415 (ToIntBiFunction<? super K, ? super V> transformer,
3416 int basis,
3417 IntBinaryOperator reducer) {
3418 if (transformer == null || reducer == null)
3419 throw new NullPointerException();
3420 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3421 int r = basis; V v;
3422 while ((v = it.advanceValue()) != null)
3423 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3424 return r;
3425 }
3426
3427 /**
3428 * Performs the given action for each key.
3429 *
3430 * @param action the action
3431 */
3432 public void forEachKeySequentially
3433 (Consumer<? super K> action) {
3434 if (action == null) throw new NullPointerException();
3435 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3436 K k;
3437 while ((k = it.advanceKey()) != null)
3438 action.accept(k);
3439 }
3440
3441 /**
3442 * Performs the given action for each non-null transformation
3443 * of each key.
3444 *
3445 * @param transformer a function returning the transformation
3446 * for an element, or null if there is no transformation (in
3447 * which case the action is not applied)
3448 * @param action the action
3449 */
3450 public <U> void forEachKeySequentially
3451 (Function<? super K, ? extends U> transformer,
3452 Consumer<? super U> action) {
3453 if (transformer == null || action == null)
3454 throw new NullPointerException();
3455 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3456 K k; U u;
3457 while ((k = it.advanceKey()) != null) {
3458 if ((u = transformer.apply(k)) != null)
3459 action.accept(u);
3460 }
3461 ForkJoinTasks.forEachKey
3462 (this, transformer, action).invoke();
3463 }
3464
3465 /**
3466 * Returns a non-null result from applying the given search
3467 * function on each key, or null if none.
3468 *
3469 * @param searchFunction a function returning a non-null
3470 * result on success, else null
3471 * @return a non-null result from applying the given search
3472 * function on each key, or null if none
3473 */
3474 public <U> U searchKeysSequentially
3475 (Function<? super K, ? extends U> searchFunction) {
3476 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3477 K k; U u;
3478 while ((k = it.advanceKey()) != null) {
3479 if ((u = searchFunction.apply(k)) != null)
3480 return u;
3481 }
3482 return null;
3483 }
3484
3485 /**
3486 * Returns the result of accumulating all keys using the given
3487 * reducer to combine values, or null if none.
3488 *
3489 * @param reducer a commutative associative combining function
3490 * @return the result of accumulating all keys using the given
3491 * reducer to combine values, or null if none
3492 */
3493 public K reduceKeysSequentially
3494 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3495 if (reducer == null) throw new NullPointerException();
3496 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3497 K u, r = null;
3498 while ((u = it.advanceKey()) != null) {
3499 r = (r == null) ? u : reducer.apply(r, u);
3500 }
3501 return r;
3502 }
3503
3504 /**
3505 * Returns the result of accumulating the given transformation
3506 * of all keys using the given reducer to combine values, or
3507 * null if none.
3508 *
3509 * @param transformer a function returning the transformation
3510 * for an element, or null if there is no transformation (in
3511 * which case it is not combined)
3512 * @param reducer a commutative associative combining function
3513 * @return the result of accumulating the given transformation
3514 * of all keys
3515 */
3516 public <U> U reduceKeysSequentially
3517 (Function<? super K, ? extends U> transformer,
3518 BiFunction<? super U, ? super U, ? extends U> reducer) {
3519 if (transformer == null || reducer == null)
3520 throw new NullPointerException();
3521 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522 K k; U r = null, u;
3523 while ((k = it.advanceKey()) != null) {
3524 if ((u = transformer.apply(k)) != null)
3525 r = (r == null) ? u : reducer.apply(r, u);
3526 }
3527 return r;
3528 }
3529
3530 /**
3531 * Returns the result of accumulating the given transformation
3532 * of all keys using the given reducer to combine values, and
3533 * the given basis as an identity value.
3534 *
3535 * @param transformer a function returning the transformation
3536 * for an element
3537 * @param basis the identity (initial default value) for the reduction
3538 * @param reducer a commutative associative combining function
3539 * @return the result of accumulating the given transformation
3540 * of all keys
3541 */
3542 public double reduceKeysToDoubleSequentially
3543 (ToDoubleFunction<? super K> transformer,
3544 double basis,
3545 DoubleBinaryOperator reducer) {
3546 if (transformer == null || reducer == null)
3547 throw new NullPointerException();
3548 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3549 double r = basis;
3550 K k;
3551 while ((k = it.advanceKey()) != null)
3552 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3553 return r;
3554 }
3555
3556 /**
3557 * Returns the result of accumulating the given transformation
3558 * of all keys using the given reducer to combine values, and
3559 * the given basis as an identity value.
3560 *
3561 * @param transformer a function returning the transformation
3562 * for an element
3563 * @param basis the identity (initial default value) for the reduction
3564 * @param reducer a commutative associative combining function
3565 * @return the result of accumulating the given transformation
3566 * of all keys
3567 */
3568 public long reduceKeysToLongSequentially
3569 (ToLongFunction<? super K> transformer,
3570 long basis,
3571 LongBinaryOperator reducer) {
3572 if (transformer == null || reducer == null)
3573 throw new NullPointerException();
3574 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3575 long r = basis;
3576 K k;
3577 while ((k = it.advanceKey()) != null)
3578 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3579 return r;
3580 }
3581
3582 /**
3583 * Returns the result of accumulating the given transformation
3584 * of all keys using the given reducer to combine values, and
3585 * the given basis as an identity value.
3586 *
3587 * @param transformer a function returning the transformation
3588 * for an element
3589 * @param basis the identity (initial default value) for the reduction
3590 * @param reducer a commutative associative combining function
3591 * @return the result of accumulating the given transformation
3592 * of all keys
3593 */
3594 public int reduceKeysToIntSequentially
3595 (ToIntFunction<? super K> transformer,
3596 int basis,
3597 IntBinaryOperator reducer) {
3598 if (transformer == null || reducer == null)
3599 throw new NullPointerException();
3600 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3601 int r = basis;
3602 K k;
3603 while ((k = it.advanceKey()) != null)
3604 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3605 return r;
3606 }
3607
3608 /**
3609 * Performs the given action for each value.
3610 *
3611 * @param action the action
3612 */
3613 public void forEachValueSequentially(Consumer<? super V> action) {
3614 if (action == null) throw new NullPointerException();
3615 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3616 V v;
3617 while ((v = it.advanceValue()) != null)
3618 action.accept(v);
3619 }
3620
3621 /**
3622 * Performs the given action for each non-null transformation
3623 * of each value.
3624 *
3625 * @param transformer a function returning the transformation
3626 * for an element, or null if there is no transformation (in
3627 * which case the action is not applied)
3628 * @param action the action
3629 */
3630 public <U> void forEachValueSequentially
3631 (Function<? super V, ? extends U> transformer,
3632 Consumer<? super U> action) {
3633 if (transformer == null || action == null)
3634 throw new NullPointerException();
3635 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3636 V v; U u;
3637 while ((v = it.advanceValue()) != null) {
3638 if ((u = transformer.apply(v)) != null)
3639 action.accept(u);
3640 }
3641 }
3642
3643 /**
3644 * Returns a non-null result from applying the given search
3645 * function on each value, or null if none.
3646 *
3647 * @param searchFunction a function returning a non-null
3648 * result on success, else null
3649 * @return a non-null result from applying the given search
3650 * function on each value, or null if none
3651 */
3652 public <U> U searchValuesSequentially
3653 (Function<? super V, ? extends U> searchFunction) {
3654 if (searchFunction == null) throw new NullPointerException();
3655 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3656 V v; U u;
3657 while ((v = it.advanceValue()) != null) {
3658 if ((u = searchFunction.apply(v)) != null)
3659 return u;
3660 }
3661 return null;
3662 }
3663
3664 /**
3665 * Returns the result of accumulating all values using the
3666 * given reducer to combine values, or null if none.
3667 *
3668 * @param reducer a commutative associative combining function
3669 * @return the result of accumulating all values
3670 */
3671 public V reduceValuesSequentially
3672 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3673 if (reducer == null) throw new NullPointerException();
3674 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3675 V r = null; V v;
3676 while ((v = it.advanceValue()) != null)
3677 r = (r == null) ? v : reducer.apply(r, v);
3678 return r;
3679 }
3680
3681 /**
3682 * Returns the result of accumulating the given transformation
3683 * of all values using the given reducer to combine values, or
3684 * null if none.
3685 *
3686 * @param transformer a function returning the transformation
3687 * for an element, or null if there is no transformation (in
3688 * which case it is not combined)
3689 * @param reducer a commutative associative combining function
3690 * @return the result of accumulating the given transformation
3691 * of all values
3692 */
3693 public <U> U reduceValuesSequentially
3694 (Function<? super V, ? extends U> transformer,
3695 BiFunction<? super U, ? super U, ? extends U> reducer) {
3696 if (transformer == null || reducer == null)
3697 throw new NullPointerException();
3698 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699 U r = null, u; V v;
3700 while ((v = it.advanceValue()) != null) {
3701 if ((u = transformer.apply(v)) != null)
3702 r = (r == null) ? u : reducer.apply(r, u);
3703 }
3704 return r;
3705 }
3706
3707 /**
3708 * Returns the result of accumulating the given transformation
3709 * of all values using the given reducer to combine values,
3710 * and the given basis as an identity value.
3711 *
3712 * @param transformer a function returning the transformation
3713 * for an element
3714 * @param basis the identity (initial default value) for the reduction
3715 * @param reducer a commutative associative combining function
3716 * @return the result of accumulating the given transformation
3717 * of all values
3718 */
3719 public double reduceValuesToDoubleSequentially
3720 (ToDoubleFunction<? super V> transformer,
3721 double basis,
3722 DoubleBinaryOperator reducer) {
3723 if (transformer == null || reducer == null)
3724 throw new NullPointerException();
3725 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3726 double r = basis; V v;
3727 while ((v = it.advanceValue()) != null)
3728 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3729 return r;
3730 }
3731
3732 /**
3733 * Returns the result of accumulating the given transformation
3734 * of all values using the given reducer to combine values,
3735 * and the given basis as an identity value.
3736 *
3737 * @param transformer a function returning the transformation
3738 * for an element
3739 * @param basis the identity (initial default value) for the reduction
3740 * @param reducer a commutative associative combining function
3741 * @return the result of accumulating the given transformation
3742 * of all values
3743 */
3744 public long reduceValuesToLongSequentially
3745 (ToLongFunction<? super V> transformer,
3746 long basis,
3747 LongBinaryOperator reducer) {
3748 if (transformer == null || reducer == null)
3749 throw new NullPointerException();
3750 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3751 long r = basis; V v;
3752 while ((v = it.advanceValue()) != null)
3753 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3754 return r;
3755 }
3756
3757 /**
3758 * Returns the result of accumulating the given transformation
3759 * of all values using the given reducer to combine values,
3760 * and the given basis as an identity value.
3761 *
3762 * @param transformer a function returning the transformation
3763 * for an element
3764 * @param basis the identity (initial default value) for the reduction
3765 * @param reducer a commutative associative combining function
3766 * @return the result of accumulating the given transformation
3767 * of all values
3768 */
3769 public int reduceValuesToIntSequentially
3770 (ToIntFunction<? super V> transformer,
3771 int basis,
3772 IntBinaryOperator reducer) {
3773 if (transformer == null || reducer == null)
3774 throw new NullPointerException();
3775 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3776 int r = basis; V v;
3777 while ((v = it.advanceValue()) != null)
3778 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3779 return r;
3780 }
3781
3782 /**
3783 * Performs the given action for each entry.
3784 *
3785 * @param action the action
3786 */
3787 public void forEachEntrySequentially
3788 (Consumer<? super Map.Entry<K,V>> action) {
3789 if (action == null) throw new NullPointerException();
3790 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3791 V v;
3792 while ((v = it.advanceValue()) != null)
3793 action.accept(entryFor(it.nextKey, v));
3794 }
3795
3796 /**
3797 * Performs the given action for each non-null transformation
3798 * of each entry.
3799 *
3800 * @param transformer a function returning the transformation
3801 * for an element, or null if there is no transformation (in
3802 * which case the action is not applied)
3803 * @param action the action
3804 */
3805 public <U> void forEachEntrySequentially
3806 (Function<Map.Entry<K,V>, ? extends U> transformer,
3807 Consumer<? super U> action) {
3808 if (transformer == null || action == null)
3809 throw new NullPointerException();
3810 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3811 V v; U u;
3812 while ((v = it.advanceValue()) != null) {
3813 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3814 action.accept(u);
3815 }
3816 }
3817
3818 /**
3819 * Returns a non-null result from applying the given search
3820 * function on each entry, or null if none.
3821 *
3822 * @param searchFunction a function returning a non-null
3823 * result on success, else null
3824 * @return a non-null result from applying the given search
3825 * function on each entry, or null if none
3826 */
3827 public <U> U searchEntriesSequentially
3828 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3829 if (searchFunction == null) throw new NullPointerException();
3830 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3831 V v; U u;
3832 while ((v = it.advanceValue()) != null) {
3833 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3834 return u;
3835 }
3836 return null;
3837 }
3838
3839 /**
3840 * Returns the result of accumulating all entries using the
3841 * given reducer to combine values, or null if none.
3842 *
3843 * @param reducer a commutative associative combining function
3844 * @return the result of accumulating all entries
3845 */
3846 public Map.Entry<K,V> reduceEntriesSequentially
3847 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3848 if (reducer == null) throw new NullPointerException();
3849 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3850 Map.Entry<K,V> r = null; V v;
3851 while ((v = it.advanceValue()) != null) {
3852 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3853 r = (r == null) ? u : reducer.apply(r, u);
3854 }
3855 return r;
3856 }
3857
3858 /**
3859 * Returns the result of accumulating the given transformation
3860 * of all entries using the given reducer to combine values,
3861 * or null if none.
3862 *
3863 * @param transformer a function returning the transformation
3864 * for an element, or null if there is no transformation (in
3865 * which case it is not combined)
3866 * @param reducer a commutative associative combining function
3867 * @return the result of accumulating the given transformation
3868 * of all entries
3869 */
3870 public <U> U reduceEntriesSequentially
3871 (Function<Map.Entry<K,V>, ? extends U> transformer,
3872 BiFunction<? super U, ? super U, ? extends U> reducer) {
3873 if (transformer == null || reducer == null)
3874 throw new NullPointerException();
3875 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3876 U r = null, u; V v;
3877 while ((v = it.advanceValue()) != null) {
3878 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3879 r = (r == null) ? u : reducer.apply(r, u);
3880 }
3881 return r;
3882 }
3883
3884 /**
3885 * Returns the result of accumulating the given transformation
3886 * of all entries using the given reducer to combine values,
3887 * and the given basis as an identity value.
3888 *
3889 * @param transformer a function returning the transformation
3890 * for an element
3891 * @param basis the identity (initial default value) for the reduction
3892 * @param reducer a commutative associative combining function
3893 * @return the result of accumulating the given transformation
3894 * of all entries
3895 */
3896 public double reduceEntriesToDoubleSequentially
3897 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3898 double basis,
3899 DoubleBinaryOperator reducer) {
3900 if (transformer == null || reducer == null)
3901 throw new NullPointerException();
3902 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3903 double r = basis; V v;
3904 while ((v = it.advanceValue()) != null)
3905 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3906 return r;
3907 }
3908
3909 /**
3910 * Returns the result of accumulating the given transformation
3911 * of all entries using the given reducer to combine values,
3912 * and the given basis as an identity value.
3913 *
3914 * @param transformer a function returning the transformation
3915 * for an element
3916 * @param basis the identity (initial default value) for the reduction
3917 * @param reducer a commutative associative combining function
3918 * @return the result of accumulating the given transformation
3919 * of all entries
3920 */
3921 public long reduceEntriesToLongSequentially
3922 (ToLongFunction<Map.Entry<K,V>> transformer,
3923 long basis,
3924 LongBinaryOperator reducer) {
3925 if (transformer == null || reducer == null)
3926 throw new NullPointerException();
3927 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3928 long r = basis; V v;
3929 while ((v = it.advanceValue()) != null)
3930 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3931 return r;
3932 }
3933
3934 /**
3935 * Returns the result of accumulating the given transformation
3936 * of all entries using the given reducer to combine values,
3937 * and the given basis as an identity value.
3938 *
3939 * @param transformer a function returning the transformation
3940 * for an element
3941 * @param basis the identity (initial default value) for the reduction
3942 * @param reducer a commutative associative combining function
3943 * @return the result of accumulating the given transformation
3944 * of all entries
3945 */
3946 public int reduceEntriesToIntSequentially
3947 (ToIntFunction<Map.Entry<K,V>> transformer,
3948 int basis,
3949 IntBinaryOperator reducer) {
3950 if (transformer == null || reducer == null)
3951 throw new NullPointerException();
3952 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3953 int r = basis; V v;
3954 while ((v = it.advanceValue()) != null)
3955 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3956 return r;
3957 }
3958
3959 // Parallel bulk operations
3960
3961 /**
3962 * Performs the given action for each (key, value).
3963 *
3964 * @param action the action
3965 */
3966 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3967 ForkJoinTasks.forEach
3968 (this, action).invoke();
3969 }
3970
3971 /**
3972 * Performs the given action for each non-null transformation
3973 * of each (key, value).
3974 *
3975 * @param transformer a function returning the transformation
3976 * for an element, or null if there is no transformation (in
3977 * which case the action is not applied)
3978 * @param action the action
3979 */
3980 public <U> void forEachInParallel
3981 (BiFunction<? super K, ? super V, ? extends U> transformer,
3982 Consumer<? super U> action) {
3983 ForkJoinTasks.forEach
3984 (this, transformer, action).invoke();
3985 }
3986
3987 /**
3988 * Returns a non-null result from applying the given search
3989 * function on each (key, value), or null if none. Upon
3990 * success, further element processing is suppressed and the
3991 * results of any other parallel invocations of the search
3992 * function are ignored.
3993 *
3994 * @param searchFunction a function returning a non-null
3995 * result on success, else null
3996 * @return a non-null result from applying the given search
3997 * function on each (key, value), or null if none
3998 */
3999 public <U> U searchInParallel
4000 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4001 return ForkJoinTasks.search
4002 (this, searchFunction).invoke();
4003 }
4004
4005 /**
4006 * Returns the result of accumulating the given transformation
4007 * of all (key, value) pairs using the given reducer to
4008 * combine values, or null if none.
4009 *
4010 * @param transformer a function returning the transformation
4011 * for an element, or null if there is no transformation (in
4012 * which case it is not combined)
4013 * @param reducer a commutative associative combining function
4014 * @return the result of accumulating the given transformation
4015 * of all (key, value) pairs
4016 */
4017 public <U> U reduceInParallel
4018 (BiFunction<? super K, ? super V, ? extends U> transformer,
4019 BiFunction<? super U, ? super U, ? extends U> reducer) {
4020 return ForkJoinTasks.reduce
4021 (this, transformer, reducer).invoke();
4022 }
4023
4024 /**
4025 * Returns the result of accumulating the given transformation
4026 * of all (key, value) pairs using the given reducer to
4027 * combine values, and the given basis as an identity value.
4028 *
4029 * @param transformer a function returning the transformation
4030 * for an element
4031 * @param basis the identity (initial default value) for the reduction
4032 * @param reducer a commutative associative combining function
4033 * @return the result of accumulating the given transformation
4034 * of all (key, value) pairs
4035 */
4036 public double reduceToDoubleInParallel
4037 (ToDoubleBiFunction<? super K, ? super V> transformer,
4038 double basis,
4039 DoubleBinaryOperator reducer) {
4040 return ForkJoinTasks.reduceToDouble
4041 (this, transformer, basis, reducer).invoke();
4042 }
4043
4044 /**
4045 * Returns the result of accumulating the given transformation
4046 * of all (key, value) pairs using the given reducer to
4047 * combine values, and the given basis as an identity value.
4048 *
4049 * @param transformer a function returning the transformation
4050 * for an element
4051 * @param basis the identity (initial default value) for the reduction
4052 * @param reducer a commutative associative combining function
4053 * @return the result of accumulating the given transformation
4054 * of all (key, value) pairs
4055 */
4056 public long reduceToLongInParallel
4057 (ToLongBiFunction<? super K, ? super V> transformer,
4058 long basis,
4059 LongBinaryOperator reducer) {
4060 return ForkJoinTasks.reduceToLong
4061 (this, transformer, basis, reducer).invoke();
4062 }
4063
4064 /**
4065 * Returns the result of accumulating the given transformation
4066 * of all (key, value) pairs using the given reducer to
4067 * combine values, and the given basis as an identity value.
4068 *
4069 * @param transformer a function returning the transformation
4070 * for an element
4071 * @param basis the identity (initial default value) for the reduction
4072 * @param reducer a commutative associative combining function
4073 * @return the result of accumulating the given transformation
4074 * of all (key, value) pairs
4075 */
4076 public int reduceToIntInParallel
4077 (ToIntBiFunction<? super K, ? super V> transformer,
4078 int basis,
4079 IntBinaryOperator reducer) {
4080 return ForkJoinTasks.reduceToInt
4081 (this, transformer, basis, reducer).invoke();
4082 }
4083
4084 /**
4085 * Performs the given action for each key.
4086 *
4087 * @param action the action
4088 */
4089 public void forEachKeyInParallel(Consumer<? super K> action) {
4090 ForkJoinTasks.forEachKey
4091 (this, action).invoke();
4092 }
4093
4094 /**
4095 * Performs the given action for each non-null transformation
4096 * of each key.
4097 *
4098 * @param transformer a function returning the transformation
4099 * for an element, or null if there is no transformation (in
4100 * which case the action is not applied)
4101 * @param action the action
4102 */
4103 public <U> void forEachKeyInParallel
4104 (Function<? super K, ? extends U> transformer,
4105 Consumer<? super U> action) {
4106 ForkJoinTasks.forEachKey
4107 (this, transformer, action).invoke();
4108 }
4109
4110 /**
4111 * Returns a non-null result from applying the given search
4112 * function on each key, or null if none. Upon success,
4113 * further element processing is suppressed and the results of
4114 * any other parallel invocations of the search function are
4115 * ignored.
4116 *
4117 * @param searchFunction a function returning a non-null
4118 * result on success, else null
4119 * @return a non-null result from applying the given search
4120 * function on each key, or null if none
4121 */
4122 public <U> U searchKeysInParallel
4123 (Function<? super K, ? extends U> searchFunction) {
4124 return ForkJoinTasks.searchKeys
4125 (this, searchFunction).invoke();
4126 }
4127
4128 /**
4129 * Returns the result of accumulating all keys using the given
4130 * reducer to combine values, or null if none.
4131 *
4132 * @param reducer a commutative associative combining function
4133 * @return the result of accumulating all keys using the given
4134 * reducer to combine values, or null if none
4135 */
4136 public K reduceKeysInParallel
4137 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4138 return ForkJoinTasks.reduceKeys
4139 (this, reducer).invoke();
4140 }
4141
4142 /**
4143 * Returns the result of accumulating the given transformation
4144 * of all keys using the given reducer to combine values, or
4145 * null if none.
4146 *
4147 * @param transformer a function returning the transformation
4148 * for an element, or null if there is no transformation (in
4149 * which case it is not combined)
4150 * @param reducer a commutative associative combining function
4151 * @return the result of accumulating the given transformation
4152 * of all keys
4153 */
4154 public <U> U reduceKeysInParallel
4155 (Function<? super K, ? extends U> transformer,
4156 BiFunction<? super U, ? super U, ? extends U> reducer) {
4157 return ForkJoinTasks.reduceKeys
4158 (this, transformer, reducer).invoke();
4159 }
4160
4161 /**
4162 * Returns the result of accumulating the given transformation
4163 * of all keys using the given reducer to combine values, and
4164 * the given basis as an identity value.
4165 *
4166 * @param transformer a function returning the transformation
4167 * for an element
4168 * @param basis the identity (initial default value) for the reduction
4169 * @param reducer a commutative associative combining function
4170 * @return the result of accumulating the given transformation
4171 * of all keys
4172 */
4173 public double reduceKeysToDoubleInParallel
4174 (ToDoubleFunction<? super K> transformer,
4175 double basis,
4176 DoubleBinaryOperator reducer) {
4177 return ForkJoinTasks.reduceKeysToDouble
4178 (this, transformer, basis, reducer).invoke();
4179 }
4180
4181 /**
4182 * Returns the result of accumulating the given transformation
4183 * of all keys using the given reducer to combine values, and
4184 * the given basis as an identity value.
4185 *
4186 * @param transformer a function returning the transformation
4187 * for an element
4188 * @param basis the identity (initial default value) for the reduction
4189 * @param reducer a commutative associative combining function
4190 * @return the result of accumulating the given transformation
4191 * of all keys
4192 */
4193 public long reduceKeysToLongInParallel
4194 (ToLongFunction<? super K> transformer,
4195 long basis,
4196 LongBinaryOperator reducer) {
4197 return ForkJoinTasks.reduceKeysToLong
4198 (this, transformer, basis, reducer).invoke();
4199 }
4200
4201 /**
4202 * Returns the result of accumulating the given transformation
4203 * of all keys using the given reducer to combine values, and
4204 * the given basis as an identity value.
4205 *
4206 * @param transformer a function returning the transformation
4207 * for an element
4208 * @param basis the identity (initial default value) for the reduction
4209 * @param reducer a commutative associative combining function
4210 * @return the result of accumulating the given transformation
4211 * of all keys
4212 */
4213 public int reduceKeysToIntInParallel
4214 (ToIntFunction<? super K> transformer,
4215 int basis,
4216 IntBinaryOperator reducer) {
4217 return ForkJoinTasks.reduceKeysToInt
4218 (this, transformer, basis, reducer).invoke();
4219 }
4220
4221 /**
4222 * Performs the given action for each value.
4223 *
4224 * @param action the action
4225 */
4226 public void forEachValueInParallel(Consumer<? super V> action) {
4227 ForkJoinTasks.forEachValue
4228 (this, action).invoke();
4229 }
4230
4231 /**
4232 * Performs the given action for each non-null transformation
4233 * of each value.
4234 *
4235 * @param transformer a function returning the transformation
4236 * for an element, or null if there is no transformation (in
4237 * which case the action is not applied)
4238 * @param action the action
4239 */
4240 public <U> void forEachValueInParallel
4241 (Function<? super V, ? extends U> transformer,
4242 Consumer<? super U> action) {
4243 ForkJoinTasks.forEachValue
4244 (this, transformer, action).invoke();
4245 }
4246
4247 /**
4248 * Returns a non-null result from applying the given search
4249 * function on each value, or null if none. Upon success,
4250 * further element processing is suppressed and the results of
4251 * any other parallel invocations of the search function are
4252 * ignored.
4253 *
4254 * @param searchFunction a function returning a non-null
4255 * result on success, else null
4256 * @return a non-null result from applying the given search
4257 * function on each value, or null if none
4258 */
4259 public <U> U searchValuesInParallel
4260 (Function<? super V, ? extends U> searchFunction) {
4261 return ForkJoinTasks.searchValues
4262 (this, searchFunction).invoke();
4263 }
4264
4265 /**
4266 * Returns the result of accumulating all values using the
4267 * given reducer to combine values, or null if none.
4268 *
4269 * @param reducer a commutative associative combining function
4270 * @return the result of accumulating all values
4271 */
4272 public V reduceValuesInParallel
4273 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4274 return ForkJoinTasks.reduceValues
4275 (this, reducer).invoke();
4276 }
4277
4278 /**
4279 * Returns the result of accumulating the given transformation
4280 * of all values using the given reducer to combine values, or
4281 * null if none.
4282 *
4283 * @param transformer a function returning the transformation
4284 * for an element, or null if there is no transformation (in
4285 * which case it is not combined)
4286 * @param reducer a commutative associative combining function
4287 * @return the result of accumulating the given transformation
4288 * of all values
4289 */
4290 public <U> U reduceValuesInParallel
4291 (Function<? super V, ? extends U> transformer,
4292 BiFunction<? super U, ? super U, ? extends U> reducer) {
4293 return ForkJoinTasks.reduceValues
4294 (this, transformer, reducer).invoke();
4295 }
4296
4297 /**
4298 * Returns the result of accumulating the given transformation
4299 * of all values using the given reducer to combine values,
4300 * and the given basis as an identity value.
4301 *
4302 * @param transformer a function returning the transformation
4303 * for an element
4304 * @param basis the identity (initial default value) for the reduction
4305 * @param reducer a commutative associative combining function
4306 * @return the result of accumulating the given transformation
4307 * of all values
4308 */
4309 public double reduceValuesToDoubleInParallel
4310 (ToDoubleFunction<? super V> transformer,
4311 double basis,
4312 DoubleBinaryOperator reducer) {
4313 return ForkJoinTasks.reduceValuesToDouble
4314 (this, transformer, basis, reducer).invoke();
4315 }
4316
4317 /**
4318 * Returns the result of accumulating the given transformation
4319 * of all values using the given reducer to combine values,
4320 * and the given basis as an identity value.
4321 *
4322 * @param transformer a function returning the transformation
4323 * for an element
4324 * @param basis the identity (initial default value) for the reduction
4325 * @param reducer a commutative associative combining function
4326 * @return the result of accumulating the given transformation
4327 * of all values
4328 */
4329 public long reduceValuesToLongInParallel
4330 (ToLongFunction<? super V> transformer,
4331 long basis,
4332 LongBinaryOperator reducer) {
4333 return ForkJoinTasks.reduceValuesToLong
4334 (this, transformer, basis, reducer).invoke();
4335 }
4336
4337 /**
4338 * Returns the result of accumulating the given transformation
4339 * of all values using the given reducer to combine values,
4340 * and the given basis as an identity value.
4341 *
4342 * @param transformer a function returning the transformation
4343 * for an element
4344 * @param basis the identity (initial default value) for the reduction
4345 * @param reducer a commutative associative combining function
4346 * @return the result of accumulating the given transformation
4347 * of all values
4348 */
4349 public int reduceValuesToIntInParallel
4350 (ToIntFunction<? super V> transformer,
4351 int basis,
4352 IntBinaryOperator reducer) {
4353 return ForkJoinTasks.reduceValuesToInt
4354 (this, transformer, basis, reducer).invoke();
4355 }
4356
4357 /**
4358 * Performs the given action for each entry.
4359 *
4360 * @param action the action
4361 */
4362 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4363 ForkJoinTasks.forEachEntry
4364 (this, action).invoke();
4365 }
4366
4367 /**
4368 * Performs the given action for each non-null transformation
4369 * of each entry.
4370 *
4371 * @param transformer a function returning the transformation
4372 * for an element, or null if there is no transformation (in
4373 * which case the action is not applied)
4374 * @param action the action
4375 */
4376 public <U> void forEachEntryInParallel
4377 (Function<Map.Entry<K,V>, ? extends U> transformer,
4378 Consumer<? super U> action) {
4379 ForkJoinTasks.forEachEntry
4380 (this, transformer, action).invoke();
4381 }
4382
4383 /**
4384 * Returns a non-null result from applying the given search
4385 * function on each entry, or null if none. Upon success,
4386 * further element processing is suppressed and the results of
4387 * any other parallel invocations of the search function are
4388 * ignored.
4389 *
4390 * @param searchFunction a function returning a non-null
4391 * result on success, else null
4392 * @return a non-null result from applying the given search
4393 * function on each entry, or null if none
4394 */
4395 public <U> U searchEntriesInParallel
4396 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4397 return ForkJoinTasks.searchEntries
4398 (this, searchFunction).invoke();
4399 }
4400
4401 /**
4402 * Returns the result of accumulating all entries using the
4403 * given reducer to combine values, or null if none.
4404 *
4405 * @param reducer a commutative associative combining function
4406 * @return the result of accumulating all entries
4407 */
4408 public Map.Entry<K,V> reduceEntriesInParallel
4409 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4410 return ForkJoinTasks.reduceEntries
4411 (this, reducer).invoke();
4412 }
4413
4414 /**
4415 * Returns the result of accumulating the given transformation
4416 * of all entries using the given reducer to combine values,
4417 * or null if none.
4418 *
4419 * @param transformer a function returning the transformation
4420 * for an element, or null if there is no transformation (in
4421 * which case it is not combined)
4422 * @param reducer a commutative associative combining function
4423 * @return the result of accumulating the given transformation
4424 * of all entries
4425 */
4426 public <U> U reduceEntriesInParallel
4427 (Function<Map.Entry<K,V>, ? extends U> transformer,
4428 BiFunction<? super U, ? super U, ? extends U> reducer) {
4429 return ForkJoinTasks.reduceEntries
4430 (this, transformer, reducer).invoke();
4431 }
4432
4433 /**
4434 * Returns the result of accumulating the given transformation
4435 * of all entries using the given reducer to combine values,
4436 * and the given basis as an identity value.
4437 *
4438 * @param transformer a function returning the transformation
4439 * for an element
4440 * @param basis the identity (initial default value) for the reduction
4441 * @param reducer a commutative associative combining function
4442 * @return the result of accumulating the given transformation
4443 * of all entries
4444 */
4445 public double reduceEntriesToDoubleInParallel
4446 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4447 double basis,
4448 DoubleBinaryOperator reducer) {
4449 return ForkJoinTasks.reduceEntriesToDouble
4450 (this, transformer, basis, reducer).invoke();
4451 }
4452
4453 /**
4454 * Returns the result of accumulating the given transformation
4455 * of all entries using the given reducer to combine values,
4456 * and the given basis as an identity value.
4457 *
4458 * @param transformer a function returning the transformation
4459 * for an element
4460 * @param basis the identity (initial default value) for the reduction
4461 * @param reducer a commutative associative combining function
4462 * @return the result of accumulating the given transformation
4463 * of all entries
4464 */
4465 public long reduceEntriesToLongInParallel
4466 (ToLongFunction<Map.Entry<K,V>> transformer,
4467 long basis,
4468 LongBinaryOperator reducer) {
4469 return ForkJoinTasks.reduceEntriesToLong
4470 (this, transformer, basis, reducer).invoke();
4471 }
4472
4473 /**
4474 * Returns the result of accumulating the given transformation
4475 * of all entries using the given reducer to combine values,
4476 * and the given basis as an identity value.
4477 *
4478 * @param transformer a function returning the transformation
4479 * for an element
4480 * @param basis the identity (initial default value) for the reduction
4481 * @param reducer a commutative associative combining function
4482 * @return the result of accumulating the given transformation
4483 * of all entries
4484 */
4485 public int reduceEntriesToIntInParallel
4486 (ToIntFunction<Map.Entry<K,V>> transformer,
4487 int basis,
4488 IntBinaryOperator reducer) {
4489 return ForkJoinTasks.reduceEntriesToInt
4490 (this, transformer, basis, reducer).invoke();
4491 }
4492
4493
4494 /* ----------------Views -------------- */
4495
4496 /**
4497 * Base class for views.
4498 */
4499 abstract static class CHMCollectionView<K,V,E>
4500 implements Collection<E>, java.io.Serializable {
4501 private static final long serialVersionUID = 7249069246763182397L;
4502 final ConcurrentHashMap<K,V> map;
4503 CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4504
4505 /**
4506 * Returns the map backing this view.
4507 *
4508 * @return the map backing this view
4509 */
4510 public ConcurrentHashMap<K,V> getMap() { return map; }
4511
4512 /**
4513 * Removes all of the elements from this view, by removing all
4514 * the mappings from the map backing this view.
4515 */
4516 public final void clear() { map.clear(); }
4517 public final int size() { return map.size(); }
4518 public final boolean isEmpty() { return map.isEmpty(); }
4519
4520 // implementations below rely on concrete classes supplying these
4521 // abstract methods
4522 /**
4523 * Returns a "weakly consistent" iterator that will never
4524 * throw {@link ConcurrentModificationException}, and
4525 * guarantees to traverse elements as they existed upon
4526 * construction of the iterator, and may (but is not
4527 * guaranteed to) reflect any modifications subsequent to
4528 * construction.
4529 */
4530 public abstract Iterator<E> iterator();
4531 public abstract boolean contains(Object o);
4532 public abstract boolean remove(Object o);
4533
4534 private static final String oomeMsg = "Required array size too large";
4535
4536 public final Object[] toArray() {
4537 long sz = map.mappingCount();
4538 if (sz > MAX_ARRAY_SIZE)
4539 throw new OutOfMemoryError(oomeMsg);
4540 int n = (int)sz;
4541 Object[] r = new Object[n];
4542 int i = 0;
4543 for (E e : this) {
4544 if (i == n) {
4545 if (n >= MAX_ARRAY_SIZE)
4546 throw new OutOfMemoryError(oomeMsg);
4547 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4548 n = MAX_ARRAY_SIZE;
4549 else
4550 n += (n >>> 1) + 1;
4551 r = Arrays.copyOf(r, n);
4552 }
4553 r[i++] = e;
4554 }
4555 return (i == n) ? r : Arrays.copyOf(r, i);
4556 }
4557
4558 @SuppressWarnings("unchecked")
4559 public final <T> T[] toArray(T[] a) {
4560 long sz = map.mappingCount();
4561 if (sz > MAX_ARRAY_SIZE)
4562 throw new OutOfMemoryError(oomeMsg);
4563 int m = (int)sz;
4564 T[] r = (a.length >= m) ? a :
4565 (T[])java.lang.reflect.Array
4566 .newInstance(a.getClass().getComponentType(), m);
4567 int n = r.length;
4568 int i = 0;
4569 for (E e : this) {
4570 if (i == n) {
4571 if (n >= MAX_ARRAY_SIZE)
4572 throw new OutOfMemoryError(oomeMsg);
4573 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4574 n = MAX_ARRAY_SIZE;
4575 else
4576 n += (n >>> 1) + 1;
4577 r = Arrays.copyOf(r, n);
4578 }
4579 r[i++] = (T)e;
4580 }
4581 if (a == r && i < n) {
4582 r[i] = null; // null-terminate
4583 return r;
4584 }
4585 return (i == n) ? r : Arrays.copyOf(r, i);
4586 }
4587
4588 /**
4589 * Returns a string representation of this collection.
4590 * The string representation consists of the string representations
4591 * of the collection's elements in the order they are returned by
4592 * its iterator, enclosed in square brackets ({@code "[]"}).
4593 * Adjacent elements are separated by the characters {@code ", "}
4594 * (comma and space). Elements are converted to strings as by
4595 * {@link String#valueOf(Object)}.
4596 *
4597 * @return a string representation of this collection
4598 */
4599 public final String toString() {
4600 StringBuilder sb = new StringBuilder();
4601 sb.append('[');
4602 Iterator<E> it = iterator();
4603 if (it.hasNext()) {
4604 for (;;) {
4605 Object e = it.next();
4606 sb.append(e == this ? "(this Collection)" : e);
4607 if (!it.hasNext())
4608 break;
4609 sb.append(',').append(' ');
4610 }
4611 }
4612 return sb.append(']').toString();
4613 }
4614
4615 public final boolean containsAll(Collection<?> c) {
4616 if (c != this) {
4617 for (Object e : c) {
4618 if (e == null || !contains(e))
4619 return false;
4620 }
4621 }
4622 return true;
4623 }
4624
4625 public final boolean removeAll(Collection<?> c) {
4626 boolean modified = false;
4627 for (Iterator<E> it = iterator(); it.hasNext();) {
4628 if (c.contains(it.next())) {
4629 it.remove();
4630 modified = true;
4631 }
4632 }
4633 return modified;
4634 }
4635
4636 public final boolean retainAll(Collection<?> c) {
4637 boolean modified = false;
4638 for (Iterator<E> it = iterator(); it.hasNext();) {
4639 if (!c.contains(it.next())) {
4640 it.remove();
4641 modified = true;
4642 }
4643 }
4644 return modified;
4645 }
4646
4647 }
4648
4649 abstract static class CHMSetView<K,V,E>
4650 extends CHMCollectionView<K,V,E>
4651 implements Set<E>, java.io.Serializable {
4652 private static final long serialVersionUID = 7249069246763182397L;
4653 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4654
4655 // Implement Set API
4656
4657 /**
4658 * Implements {@link Set#hashCode()}.
4659 * @return the hash code value for this set
4660 */
4661 public final int hashCode() {
4662 int h = 0;
4663 for (E e : this)
4664 h += e.hashCode();
4665 return h;
4666 }
4667
4668 /**
4669 * Implements {@link Set#equals(Object)}.
4670 * @param o object to be compared for equality with this set
4671 * @return {@code true} if the specified object is equal to this set
4672 */
4673 public final boolean equals(Object o) {
4674 Set<?> c;
4675 return ((o instanceof Set) &&
4676 ((c = (Set<?>)o) == this ||
4677 (containsAll(c) && c.containsAll(this))));
4678 }
4679 }
4680
4681 /**
4682 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4683 * which additions may optionally be enabled by mapping to a
4684 * common value. This class cannot be directly instantiated.
4685 * See {@link #keySet() keySet()},
4686 * {@link #keySet(Object) keySet(V)},
4687 * {@link #newKeySet() newKeySet()},
4688 * {@link #newKeySet(int) newKeySet(int)}.
4689 */
4690 public static class KeySetView<K,V>
4691 extends CHMSetView<K,V,K>
4692 implements Set<K>, java.io.Serializable {
4693 private static final long serialVersionUID = 7249069246763182397L;
4694 private final V value;
4695 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4696 super(map);
4697 this.value = value;
4698 }
4699
4700 /**
4701 * Returns the default mapped value for additions,
4702 * or {@code null} if additions are not supported.
4703 *
4704 * @return the default mapped value for additions, or {@code null}
4705 * if not supported
4706 */
4707 public V getMappedValue() { return value; }
4708
4709 /**
4710 * {@inheritDoc}
4711 * @throws NullPointerException if the specified key is null
4712 */
4713 public boolean contains(Object o) { return map.containsKey(o); }
4714
4715 /**
4716 * Removes the key from this map view, by removing the key (and its
4717 * corresponding value) from the backing map. This method does
4718 * nothing if the key is not in the map.
4719 *
4720 * @param o the key to be removed from the backing map
4721 * @return {@code true} if the backing map contained the specified key
4722 * @throws NullPointerException if the specified key is null
4723 */
4724 public boolean remove(Object o) { return map.remove(o) != null; }
4725
4726 /**
4727 * @return an iterator over the keys of the backing map
4728 */
4729 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4730
4731 /**
4732 * Adds the specified key to this set view by mapping the key to
4733 * the default mapped value in the backing map, if defined.
4734 *
4735 * @param e key to be added
4736 * @return {@code true} if this set changed as a result of the call
4737 * @throws NullPointerException if the specified key is null
4738 * @throws UnsupportedOperationException if no default mapped value
4739 * for additions was provided
4740 */
4741 public boolean add(K e) {
4742 V v;
4743 if ((v = value) == null)
4744 throw new UnsupportedOperationException();
4745 return map.internalPut(e, v, true) == null;
4746 }
4747
4748 /**
4749 * Adds all of the elements in the specified collection to this set,
4750 * as if by calling {@link #add} on each one.
4751 *
4752 * @param c the elements to be inserted into this set
4753 * @return {@code true} if this set changed as a result of the call
4754 * @throws NullPointerException if the collection or any of its
4755 * elements are {@code null}
4756 * @throws UnsupportedOperationException if no default mapped value
4757 * for additions was provided
4758 */
4759 public boolean addAll(Collection<? extends K> c) {
4760 boolean added = false;
4761 V v;
4762 if ((v = value) == null)
4763 throw new UnsupportedOperationException();
4764 for (K e : c) {
4765 if (map.internalPut(e, v, true) == null)
4766 added = true;
4767 }
4768 return added;
4769 }
4770
4771 Spliterator<K> spliterator() {
4772 return new KeyIterator<>(map, null);
4773 }
4774
4775 public Stream<K> stream() {
4776 return Streams.stream(spliterator());
4777 }
4778 public Stream<K> parallelStream() {
4779 return Streams.parallelStream(spliterator());
4780 }
4781 }
4782
4783 /**
4784 * A view of a ConcurrentHashMap as a {@link Collection} of
4785 * values, in which additions are disabled. This class cannot be
4786 * directly instantiated. See {@link #values()}.
4787 *
4788 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 * that will never throw {@link ConcurrentModificationException},
4790 * and guarantees to traverse elements as they existed upon
4791 * construction of the iterator, and may (but is not guaranteed to)
4792 * reflect any modifications subsequent to construction.
4793 */
4794 public static final class ValuesView<K,V>
4795 extends CHMCollectionView<K,V,V>
4796 implements Collection<V>, java.io.Serializable {
4797 private static final long serialVersionUID = 2249069246763182397L;
4798 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4799 public final boolean contains(Object o) {
4800 return map.containsValue(o);
4801 }
4802 public final boolean remove(Object o) {
4803 if (o != null) {
4804 for (Iterator<V> it = iterator(); it.hasNext();) {
4805 if (o.equals(it.next())) {
4806 it.remove();
4807 return true;
4808 }
4809 }
4810 }
4811 return false;
4812 }
4813
4814 /**
4815 * @return an iterator over the values of the backing map
4816 */
4817 public final Iterator<V> iterator() {
4818 return new ValueIterator<K,V>(map);
4819 }
4820
4821 /** Always throws {@link UnsupportedOperationException}. */
4822 public final boolean add(V e) {
4823 throw new UnsupportedOperationException();
4824 }
4825 /** Always throws {@link UnsupportedOperationException}. */
4826 public final boolean addAll(Collection<? extends V> c) {
4827 throw new UnsupportedOperationException();
4828 }
4829
4830 Spliterator<V> spliterator() {
4831 return new ValueIterator<K,V>(map, null);
4832 }
4833
4834 public Stream<V> stream() {
4835 return Streams.stream(spliterator());
4836 }
4837
4838 public Stream<V> parallelStream() {
4839 return Streams.parallelStream(spliterator());
4840 }
4841
4842 }
4843
4844 /**
4845 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4846 * entries. This class cannot be directly instantiated. See
4847 * {@link #entrySet()}.
4848 */
4849 public static final class EntrySetView<K,V>
4850 extends CHMSetView<K,V,Map.Entry<K,V>>
4851 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4852 private static final long serialVersionUID = 2249069246763182397L;
4853 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4854
4855 public final boolean contains(Object o) {
4856 Object k, v, r; Map.Entry<?,?> e;
4857 return ((o instanceof Map.Entry) &&
4858 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4859 (r = map.get(k)) != null &&
4860 (v = e.getValue()) != null &&
4861 (v == r || v.equals(r)));
4862 }
4863 public final boolean remove(Object o) {
4864 Object k, v; Map.Entry<?,?> e;
4865 return ((o instanceof Map.Entry) &&
4866 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4867 (v = e.getValue()) != null &&
4868 map.remove(k, v));
4869 }
4870
4871 /**
4872 * @return an iterator over the entries of the backing map
4873 */
4874 public final Iterator<Map.Entry<K,V>> iterator() {
4875 return new EntryIterator<K,V>(map);
4876 }
4877
4878 /**
4879 * Adds the specified mapping to this view.
4880 *
4881 * @param e mapping to be added
4882 * @return {@code true} if this set changed as a result of the call
4883 * @throws NullPointerException if the entry, its key, or its
4884 * value is null
4885 */
4886 public final boolean add(Entry<K,V> e) {
4887 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4888 }
4889 /**
4890 * Adds all of the mappings in the specified collection to this
4891 * set, as if by calling {@link #add(Map.Entry)} on each one.
4892 * @param c the mappings to be inserted into this set
4893 * @return {@code true} if this set changed as a result of the call
4894 * @throws NullPointerException if the collection or any of its
4895 * entries, keys, or values are null
4896 */
4897 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4898 boolean added = false;
4899 for (Entry<K,V> e : c) {
4900 if (add(e))
4901 added = true;
4902 }
4903 return added;
4904 }
4905
4906 Spliterator<Map.Entry<K,V>> spliterator() {
4907 return new EntryIterator<K,V>(map, null);
4908 }
4909
4910 public Stream<Map.Entry<K,V>> stream() {
4911 return Streams.stream(spliterator());
4912 }
4913
4914 public Stream<Map.Entry<K,V>> parallelStream() {
4915 return Streams.parallelStream(spliterator());
4916 }
4917 }
4918
4919 // ---------------------------------------------------------------------
4920
4921 /**
4922 * Predefined tasks for performing bulk parallel operations on
4923 * ConcurrentHashMaps. These tasks follow the forms and rules used
4924 * for bulk operations. Each method has the same name, but returns
4925 * a task rather than invoking it. These methods may be useful in
4926 * custom applications such as submitting a task without waiting
4927 * for completion, using a custom pool, or combining with other
4928 * tasks.
4929 */
4930 public static class ForkJoinTasks {
4931 private ForkJoinTasks() {}
4932
4933 /**
4934 * Returns a task that when invoked, performs the given
4935 * action for each (key, value)
4936 *
4937 * @param map the map
4938 * @param action the action
4939 * @return the task
4940 */
4941 public static <K,V> ForkJoinTask<Void> forEach
4942 (ConcurrentHashMap<K,V> map,
4943 BiConsumer<? super K, ? super V> action) {
4944 if (action == null) throw new NullPointerException();
4945 return new ForEachMappingTask<K,V>(map, null, -1, action);
4946 }
4947
4948 /**
4949 * Returns a task that when invoked, performs the given
4950 * action for each non-null transformation of each (key, value)
4951 *
4952 * @param map the map
4953 * @param transformer a function returning the transformation
4954 * for an element, or null if there is no transformation (in
4955 * which case the action is not applied)
4956 * @param action the action
4957 * @return the task
4958 */
4959 public static <K,V,U> ForkJoinTask<Void> forEach
4960 (ConcurrentHashMap<K,V> map,
4961 BiFunction<? super K, ? super V, ? extends U> transformer,
4962 Consumer<? super U> action) {
4963 if (transformer == null || action == null)
4964 throw new NullPointerException();
4965 return new ForEachTransformedMappingTask<K,V,U>
4966 (map, null, -1, transformer, action);
4967 }
4968
4969 /**
4970 * Returns a task that when invoked, returns a non-null result
4971 * from applying the given search function on each (key,
4972 * value), or null if none. Upon success, further element
4973 * processing is suppressed and the results of any other
4974 * parallel invocations of the search function are ignored.
4975 *
4976 * @param map the map
4977 * @param searchFunction a function returning a non-null
4978 * result on success, else null
4979 * @return the task
4980 */
4981 public static <K,V,U> ForkJoinTask<U> search
4982 (ConcurrentHashMap<K,V> map,
4983 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4984 if (searchFunction == null) throw new NullPointerException();
4985 return new SearchMappingsTask<K,V,U>
4986 (map, null, -1, searchFunction,
4987 new AtomicReference<U>());
4988 }
4989
4990 /**
4991 * Returns a task that when invoked, returns the result of
4992 * accumulating the given transformation of all (key, value) pairs
4993 * using the given reducer to combine values, or null if none.
4994 *
4995 * @param map the map
4996 * @param transformer a function returning the transformation
4997 * for an element, or null if there is no transformation (in
4998 * which case it is not combined)
4999 * @param reducer a commutative associative combining function
5000 * @return the task
5001 */
5002 public static <K,V,U> ForkJoinTask<U> reduce
5003 (ConcurrentHashMap<K,V> map,
5004 BiFunction<? super K, ? super V, ? extends U> transformer,
5005 BiFunction<? super U, ? super U, ? extends U> reducer) {
5006 if (transformer == null || reducer == null)
5007 throw new NullPointerException();
5008 return new MapReduceMappingsTask<K,V,U>
5009 (map, null, -1, null, transformer, reducer);
5010 }
5011
5012 /**
5013 * Returns a task that when invoked, returns the result of
5014 * accumulating the given transformation of all (key, value) pairs
5015 * using the given reducer to combine values, and the given
5016 * basis as an identity value.
5017 *
5018 * @param map the map
5019 * @param transformer a function returning the transformation
5020 * for an element
5021 * @param basis the identity (initial default value) for the reduction
5022 * @param reducer a commutative associative combining function
5023 * @return the task
5024 */
5025 public static <K,V> ForkJoinTask<Double> reduceToDouble
5026 (ConcurrentHashMap<K,V> map,
5027 ToDoubleBiFunction<? super K, ? super V> transformer,
5028 double basis,
5029 DoubleBinaryOperator reducer) {
5030 if (transformer == null || reducer == null)
5031 throw new NullPointerException();
5032 return new MapReduceMappingsToDoubleTask<K,V>
5033 (map, null, -1, null, transformer, basis, reducer);
5034 }
5035
5036 /**
5037 * Returns a task that when invoked, returns the result of
5038 * accumulating the given transformation of all (key, value) pairs
5039 * using the given reducer to combine values, and the given
5040 * basis as an identity value.
5041 *
5042 * @param map the map
5043 * @param transformer a function returning the transformation
5044 * for an element
5045 * @param basis the identity (initial default value) for the reduction
5046 * @param reducer a commutative associative combining function
5047 * @return the task
5048 */
5049 public static <K,V> ForkJoinTask<Long> reduceToLong
5050 (ConcurrentHashMap<K,V> map,
5051 ToLongBiFunction<? super K, ? super V> transformer,
5052 long basis,
5053 LongBinaryOperator reducer) {
5054 if (transformer == null || reducer == null)
5055 throw new NullPointerException();
5056 return new MapReduceMappingsToLongTask<K,V>
5057 (map, null, -1, null, transformer, basis, reducer);
5058 }
5059
5060 /**
5061 * Returns a task that when invoked, returns the result of
5062 * accumulating the given transformation of all (key, value) pairs
5063 * using the given reducer to combine values, and the given
5064 * basis as an identity value.
5065 *
5066 * @param map the map
5067 * @param transformer a function returning the transformation
5068 * for an element
5069 * @param basis the identity (initial default value) for the reduction
5070 * @param reducer a commutative associative combining function
5071 * @return the task
5072 */
5073 public static <K,V> ForkJoinTask<Integer> reduceToInt
5074 (ConcurrentHashMap<K,V> map,
5075 ToIntBiFunction<? super K, ? super V> transformer,
5076 int basis,
5077 IntBinaryOperator reducer) {
5078 if (transformer == null || reducer == null)
5079 throw new NullPointerException();
5080 return new MapReduceMappingsToIntTask<K,V>
5081 (map, null, -1, null, transformer, basis, reducer);
5082 }
5083
5084 /**
5085 * Returns a task that when invoked, performs the given action
5086 * for each key.
5087 *
5088 * @param map the map
5089 * @param action the action
5090 * @return the task
5091 */
5092 public static <K,V> ForkJoinTask<Void> forEachKey
5093 (ConcurrentHashMap<K,V> map,
5094 Consumer<? super K> action) {
5095 if (action == null) throw new NullPointerException();
5096 return new ForEachKeyTask<K,V>(map, null, -1, action);
5097 }
5098
5099 /**
5100 * Returns a task that when invoked, performs the given action
5101 * for each non-null transformation of each key.
5102 *
5103 * @param map the map
5104 * @param transformer a function returning the transformation
5105 * for an element, or null if there is no transformation (in
5106 * which case the action is not applied)
5107 * @param action the action
5108 * @return the task
5109 */
5110 public static <K,V,U> ForkJoinTask<Void> forEachKey
5111 (ConcurrentHashMap<K,V> map,
5112 Function<? super K, ? extends U> transformer,
5113 Consumer<? super U> action) {
5114 if (transformer == null || action == null)
5115 throw new NullPointerException();
5116 return new ForEachTransformedKeyTask<K,V,U>
5117 (map, null, -1, transformer, action);
5118 }
5119
5120 /**
5121 * Returns a task that when invoked, returns a non-null result
5122 * from applying the given search function on each key, or
5123 * null if none. Upon success, further element processing is
5124 * suppressed and the results of any other parallel
5125 * invocations of the search function are ignored.
5126 *
5127 * @param map the map
5128 * @param searchFunction a function returning a non-null
5129 * result on success, else null
5130 * @return the task
5131 */
5132 public static <K,V,U> ForkJoinTask<U> searchKeys
5133 (ConcurrentHashMap<K,V> map,
5134 Function<? super K, ? extends U> searchFunction) {
5135 if (searchFunction == null) throw new NullPointerException();
5136 return new SearchKeysTask<K,V,U>
5137 (map, null, -1, searchFunction,
5138 new AtomicReference<U>());
5139 }
5140
5141 /**
5142 * Returns a task that when invoked, returns the result of
5143 * accumulating all keys using the given reducer to combine
5144 * values, or null if none.
5145 *
5146 * @param map the map
5147 * @param reducer a commutative associative combining function
5148 * @return the task
5149 */
5150 public static <K,V> ForkJoinTask<K> reduceKeys
5151 (ConcurrentHashMap<K,V> map,
5152 BiFunction<? super K, ? super K, ? extends K> reducer) {
5153 if (reducer == null) throw new NullPointerException();
5154 return new ReduceKeysTask<K,V>
5155 (map, null, -1, null, reducer);
5156 }
5157
5158 /**
5159 * Returns a task that when invoked, returns the result of
5160 * accumulating the given transformation of all keys using the given
5161 * reducer to combine values, or null if none.
5162 *
5163 * @param map the map
5164 * @param transformer a function returning the transformation
5165 * for an element, or null if there is no transformation (in
5166 * which case it is not combined)
5167 * @param reducer a commutative associative combining function
5168 * @return the task
5169 */
5170 public static <K,V,U> ForkJoinTask<U> reduceKeys
5171 (ConcurrentHashMap<K,V> map,
5172 Function<? super K, ? extends U> transformer,
5173 BiFunction<? super U, ? super U, ? extends U> reducer) {
5174 if (transformer == null || reducer == null)
5175 throw new NullPointerException();
5176 return new MapReduceKeysTask<K,V,U>
5177 (map, null, -1, null, transformer, reducer);
5178 }
5179
5180 /**
5181 * Returns a task that when invoked, returns the result of
5182 * accumulating the given transformation of all keys using the given
5183 * reducer to combine values, and the given basis as an
5184 * identity value.
5185 *
5186 * @param map the map
5187 * @param transformer a function returning the transformation
5188 * for an element
5189 * @param basis the identity (initial default value) for the reduction
5190 * @param reducer a commutative associative combining function
5191 * @return the task
5192 */
5193 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5194 (ConcurrentHashMap<K,V> map,
5195 ToDoubleFunction<? super K> transformer,
5196 double basis,
5197 DoubleBinaryOperator reducer) {
5198 if (transformer == null || reducer == null)
5199 throw new NullPointerException();
5200 return new MapReduceKeysToDoubleTask<K,V>
5201 (map, null, -1, null, transformer, basis, reducer);
5202 }
5203
5204 /**
5205 * Returns a task that when invoked, returns the result of
5206 * accumulating the given transformation of all keys using the given
5207 * reducer to combine values, and the given basis as an
5208 * identity value.
5209 *
5210 * @param map the map
5211 * @param transformer a function returning the transformation
5212 * for an element
5213 * @param basis the identity (initial default value) for the reduction
5214 * @param reducer a commutative associative combining function
5215 * @return the task
5216 */
5217 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5218 (ConcurrentHashMap<K,V> map,
5219 ToLongFunction<? super K> transformer,
5220 long basis,
5221 LongBinaryOperator reducer) {
5222 if (transformer == null || reducer == null)
5223 throw new NullPointerException();
5224 return new MapReduceKeysToLongTask<K,V>
5225 (map, null, -1, null, transformer, basis, reducer);
5226 }
5227
5228 /**
5229 * Returns a task that when invoked, returns the result of
5230 * accumulating the given transformation of all keys using the given
5231 * reducer to combine values, and the given basis as an
5232 * identity value.
5233 *
5234 * @param map the map
5235 * @param transformer a function returning the transformation
5236 * for an element
5237 * @param basis the identity (initial default value) for the reduction
5238 * @param reducer a commutative associative combining function
5239 * @return the task
5240 */
5241 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5242 (ConcurrentHashMap<K,V> map,
5243 ToIntFunction<? super K> transformer,
5244 int basis,
5245 IntBinaryOperator reducer) {
5246 if (transformer == null || reducer == null)
5247 throw new NullPointerException();
5248 return new MapReduceKeysToIntTask<K,V>
5249 (map, null, -1, null, transformer, basis, reducer);
5250 }
5251
5252 /**
5253 * Returns a task that when invoked, performs the given action
5254 * for each value.
5255 *
5256 * @param map the map
5257 * @param action the action
5258 * @return the task
5259 */
5260 public static <K,V> ForkJoinTask<Void> forEachValue
5261 (ConcurrentHashMap<K,V> map,
5262 Consumer<? super V> action) {
5263 if (action == null) throw new NullPointerException();
5264 return new ForEachValueTask<K,V>(map, null, -1, action);
5265 }
5266
5267 /**
5268 * Returns a task that when invoked, performs the given action
5269 * for each non-null transformation of each value.
5270 *
5271 * @param map the map
5272 * @param transformer a function returning the transformation
5273 * for an element, or null if there is no transformation (in
5274 * which case the action is not applied)
5275 * @param action the action
5276 * @return the task
5277 */
5278 public static <K,V,U> ForkJoinTask<Void> forEachValue
5279 (ConcurrentHashMap<K,V> map,
5280 Function<? super V, ? extends U> transformer,
5281 Consumer<? super U> action) {
5282 if (transformer == null || action == null)
5283 throw new NullPointerException();
5284 return new ForEachTransformedValueTask<K,V,U>
5285 (map, null, -1, transformer, action);
5286 }
5287
5288 /**
5289 * Returns a task that when invoked, returns a non-null result
5290 * from applying the given search function on each value, or
5291 * null if none. Upon success, further element processing is
5292 * suppressed and the results of any other parallel
5293 * invocations of the search function are ignored.
5294 *
5295 * @param map the map
5296 * @param searchFunction a function returning a non-null
5297 * result on success, else null
5298 * @return the task
5299 */
5300 public static <K,V,U> ForkJoinTask<U> searchValues
5301 (ConcurrentHashMap<K,V> map,
5302 Function<? super V, ? extends U> searchFunction) {
5303 if (searchFunction == null) throw new NullPointerException();
5304 return new SearchValuesTask<K,V,U>
5305 (map, null, -1, searchFunction,
5306 new AtomicReference<U>());
5307 }
5308
5309 /**
5310 * Returns a task that when invoked, returns the result of
5311 * accumulating all values using the given reducer to combine
5312 * values, or null if none.
5313 *
5314 * @param map the map
5315 * @param reducer a commutative associative combining function
5316 * @return the task
5317 */
5318 public static <K,V> ForkJoinTask<V> reduceValues
5319 (ConcurrentHashMap<K,V> map,
5320 BiFunction<? super V, ? super V, ? extends V> reducer) {
5321 if (reducer == null) throw new NullPointerException();
5322 return new ReduceValuesTask<K,V>
5323 (map, null, -1, null, reducer);
5324 }
5325
5326 /**
5327 * Returns a task that when invoked, returns the result of
5328 * accumulating the given transformation of all values using the
5329 * given reducer to combine values, or null if none.
5330 *
5331 * @param map the map
5332 * @param transformer a function returning the transformation
5333 * for an element, or null if there is no transformation (in
5334 * which case it is not combined)
5335 * @param reducer a commutative associative combining function
5336 * @return the task
5337 */
5338 public static <K,V,U> ForkJoinTask<U> reduceValues
5339 (ConcurrentHashMap<K,V> map,
5340 Function<? super V, ? extends U> transformer,
5341 BiFunction<? super U, ? super U, ? extends U> reducer) {
5342 if (transformer == null || reducer == null)
5343 throw new NullPointerException();
5344 return new MapReduceValuesTask<K,V,U>
5345 (map, null, -1, null, transformer, reducer);
5346 }
5347
5348 /**
5349 * Returns a task that when invoked, returns the result of
5350 * accumulating the given transformation of all values using the
5351 * given reducer to combine values, and the given basis as an
5352 * identity value.
5353 *
5354 * @param map the map
5355 * @param transformer a function returning the transformation
5356 * for an element
5357 * @param basis the identity (initial default value) for the reduction
5358 * @param reducer a commutative associative combining function
5359 * @return the task
5360 */
5361 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5362 (ConcurrentHashMap<K,V> map,
5363 ToDoubleFunction<? super V> transformer,
5364 double basis,
5365 DoubleBinaryOperator reducer) {
5366 if (transformer == null || reducer == null)
5367 throw new NullPointerException();
5368 return new MapReduceValuesToDoubleTask<K,V>
5369 (map, null, -1, null, transformer, basis, reducer);
5370 }
5371
5372 /**
5373 * Returns a task that when invoked, returns the result of
5374 * accumulating the given transformation of all values using the
5375 * given reducer to combine values, and the given basis as an
5376 * identity value.
5377 *
5378 * @param map the map
5379 * @param transformer a function returning the transformation
5380 * for an element
5381 * @param basis the identity (initial default value) for the reduction
5382 * @param reducer a commutative associative combining function
5383 * @return the task
5384 */
5385 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5386 (ConcurrentHashMap<K,V> map,
5387 ToLongFunction<? super V> transformer,
5388 long basis,
5389 LongBinaryOperator reducer) {
5390 if (transformer == null || reducer == null)
5391 throw new NullPointerException();
5392 return new MapReduceValuesToLongTask<K,V>
5393 (map, null, -1, null, transformer, basis, reducer);
5394 }
5395
5396 /**
5397 * Returns a task that when invoked, returns the result of
5398 * accumulating the given transformation of all values using the
5399 * given reducer to combine values, and the given basis as an
5400 * identity value.
5401 *
5402 * @param map the map
5403 * @param transformer a function returning the transformation
5404 * for an element
5405 * @param basis the identity (initial default value) for the reduction
5406 * @param reducer a commutative associative combining function
5407 * @return the task
5408 */
5409 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5410 (ConcurrentHashMap<K,V> map,
5411 ToIntFunction<? super V> transformer,
5412 int basis,
5413 IntBinaryOperator reducer) {
5414 if (transformer == null || reducer == null)
5415 throw new NullPointerException();
5416 return new MapReduceValuesToIntTask<K,V>
5417 (map, null, -1, null, transformer, basis, reducer);
5418 }
5419
5420 /**
5421 * Returns a task that when invoked, perform the given action
5422 * for each entry.
5423 *
5424 * @param map the map
5425 * @param action the action
5426 * @return the task
5427 */
5428 public static <K,V> ForkJoinTask<Void> forEachEntry
5429 (ConcurrentHashMap<K,V> map,
5430 Consumer<? super Map.Entry<K,V>> action) {
5431 if (action == null) throw new NullPointerException();
5432 return new ForEachEntryTask<K,V>(map, null, -1, action);
5433 }
5434
5435 /**
5436 * Returns a task that when invoked, perform the given action
5437 * for each non-null transformation of each entry.
5438 *
5439 * @param map the map
5440 * @param transformer a function returning the transformation
5441 * for an element, or null if there is no transformation (in
5442 * which case the action is not applied)
5443 * @param action the action
5444 * @return the task
5445 */
5446 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5447 (ConcurrentHashMap<K,V> map,
5448 Function<Map.Entry<K,V>, ? extends U> transformer,
5449 Consumer<? super U> action) {
5450 if (transformer == null || action == null)
5451 throw new NullPointerException();
5452 return new ForEachTransformedEntryTask<K,V,U>
5453 (map, null, -1, transformer, action);
5454 }
5455
5456 /**
5457 * Returns a task that when invoked, returns a non-null result
5458 * from applying the given search function on each entry, or
5459 * null if none. Upon success, further element processing is
5460 * suppressed and the results of any other parallel
5461 * invocations of the search function are ignored.
5462 *
5463 * @param map the map
5464 * @param searchFunction a function returning a non-null
5465 * result on success, else null
5466 * @return the task
5467 */
5468 public static <K,V,U> ForkJoinTask<U> searchEntries
5469 (ConcurrentHashMap<K,V> map,
5470 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5471 if (searchFunction == null) throw new NullPointerException();
5472 return new SearchEntriesTask<K,V,U>
5473 (map, null, -1, searchFunction,
5474 new AtomicReference<U>());
5475 }
5476
5477 /**
5478 * Returns a task that when invoked, returns the result of
5479 * accumulating all entries using the given reducer to combine
5480 * values, or null if none.
5481 *
5482 * @param map the map
5483 * @param reducer a commutative associative combining function
5484 * @return the task
5485 */
5486 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5487 (ConcurrentHashMap<K,V> map,
5488 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5489 if (reducer == null) throw new NullPointerException();
5490 return new ReduceEntriesTask<K,V>
5491 (map, null, -1, null, reducer);
5492 }
5493
5494 /**
5495 * Returns a task that when invoked, returns the result of
5496 * accumulating the given transformation of all entries using the
5497 * given reducer to combine values, or null if none.
5498 *
5499 * @param map the map
5500 * @param transformer a function returning the transformation
5501 * for an element, or null if there is no transformation (in
5502 * which case it is not combined)
5503 * @param reducer a commutative associative combining function
5504 * @return the task
5505 */
5506 public static <K,V,U> ForkJoinTask<U> reduceEntries
5507 (ConcurrentHashMap<K,V> map,
5508 Function<Map.Entry<K,V>, ? extends U> transformer,
5509 BiFunction<? super U, ? super U, ? extends U> reducer) {
5510 if (transformer == null || reducer == null)
5511 throw new NullPointerException();
5512 return new MapReduceEntriesTask<K,V,U>
5513 (map, null, -1, null, transformer, reducer);
5514 }
5515
5516 /**
5517 * Returns a task that when invoked, returns the result of
5518 * accumulating the given transformation of all entries using the
5519 * given reducer to combine values, and the given basis as an
5520 * identity value.
5521 *
5522 * @param map the map
5523 * @param transformer a function returning the transformation
5524 * for an element
5525 * @param basis the identity (initial default value) for the reduction
5526 * @param reducer a commutative associative combining function
5527 * @return the task
5528 */
5529 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5530 (ConcurrentHashMap<K,V> map,
5531 ToDoubleFunction<Map.Entry<K,V>> transformer,
5532 double basis,
5533 DoubleBinaryOperator reducer) {
5534 if (transformer == null || reducer == null)
5535 throw new NullPointerException();
5536 return new MapReduceEntriesToDoubleTask<K,V>
5537 (map, null, -1, null, transformer, basis, reducer);
5538 }
5539
5540 /**
5541 * Returns a task that when invoked, returns the result of
5542 * accumulating the given transformation of all entries using the
5543 * given reducer to combine values, and the given basis as an
5544 * identity value.
5545 *
5546 * @param map the map
5547 * @param transformer a function returning the transformation
5548 * for an element
5549 * @param basis the identity (initial default value) for the reduction
5550 * @param reducer a commutative associative combining function
5551 * @return the task
5552 */
5553 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5554 (ConcurrentHashMap<K,V> map,
5555 ToLongFunction<Map.Entry<K,V>> transformer,
5556 long basis,
5557 LongBinaryOperator reducer) {
5558 if (transformer == null || reducer == null)
5559 throw new NullPointerException();
5560 return new MapReduceEntriesToLongTask<K,V>
5561 (map, null, -1, null, transformer, basis, reducer);
5562 }
5563
5564 /**
5565 * Returns a task that when invoked, returns the result of
5566 * accumulating the given transformation of all entries using the
5567 * given reducer to combine values, and the given basis as an
5568 * identity value.
5569 *
5570 * @param map the map
5571 * @param transformer a function returning the transformation
5572 * for an element
5573 * @param basis the identity (initial default value) for the reduction
5574 * @param reducer a commutative associative combining function
5575 * @return the task
5576 */
5577 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5578 (ConcurrentHashMap<K,V> map,
5579 ToIntFunction<Map.Entry<K,V>> transformer,
5580 int basis,
5581 IntBinaryOperator reducer) {
5582 if (transformer == null || reducer == null)
5583 throw new NullPointerException();
5584 return new MapReduceEntriesToIntTask<K,V>
5585 (map, null, -1, null, transformer, basis, reducer);
5586 }
5587 }
5588
5589 // -------------------------------------------------------
5590
5591 /*
5592 * Task classes. Coded in a regular but ugly format/style to
5593 * simplify checks that each variant differs in the right way from
5594 * others. The null screenings exist because compilers cannot tell
5595 * that we've already null-checked task arguments, so we force
5596 * simplest hoisted bypass to help avoid convoluted traps.
5597 */
5598
5599 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5600 extends Traverser<K,V,Void> {
5601 final Consumer<? super K> action;
5602 ForEachKeyTask
5603 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5604 Consumer<? super K> action) {
5605 super(m, p, b);
5606 this.action = action;
5607 }
5608 public final void compute() {
5609 final Consumer<? super K> action;
5610 if ((action = this.action) != null) {
5611 for (int b; (b = preSplit()) > 0;)
5612 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5613 K k;
5614 while ((k = advanceKey()) != null)
5615 action.accept(k);
5616 propagateCompletion();
5617 }
5618 }
5619 }
5620
5621 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5622 extends Traverser<K,V,Void> {
5623 final Consumer<? super V> action;
5624 ForEachValueTask
5625 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5626 Consumer<? super V> action) {
5627 super(m, p, b);
5628 this.action = action;
5629 }
5630 public final void compute() {
5631 final Consumer<? super V> action;
5632 if ((action = this.action) != null) {
5633 for (int b; (b = preSplit()) > 0;)
5634 new ForEachValueTask<K,V>(map, this, b, action).fork();
5635 V v;
5636 while ((v = advanceValue()) != null)
5637 action.accept(v);
5638 propagateCompletion();
5639 }
5640 }
5641 }
5642
5643 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5644 extends Traverser<K,V,Void> {
5645 final Consumer<? super Entry<K,V>> action;
5646 ForEachEntryTask
5647 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5648 Consumer<? super Entry<K,V>> action) {
5649 super(m, p, b);
5650 this.action = action;
5651 }
5652 public final void compute() {
5653 final Consumer<? super Entry<K,V>> action;
5654 if ((action = this.action) != null) {
5655 for (int b; (b = preSplit()) > 0;)
5656 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5657 V v;
5658 while ((v = advanceValue()) != null)
5659 action.accept(entryFor(nextKey, v));
5660 propagateCompletion();
5661 }
5662 }
5663 }
5664
5665 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5666 extends Traverser<K,V,Void> {
5667 final BiConsumer<? super K, ? super V> action;
5668 ForEachMappingTask
5669 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5670 BiConsumer<? super K,? super V> action) {
5671 super(m, p, b);
5672 this.action = action;
5673 }
5674 public final void compute() {
5675 final BiConsumer<? super K, ? super V> action;
5676 if ((action = this.action) != null) {
5677 for (int b; (b = preSplit()) > 0;)
5678 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5679 V v;
5680 while ((v = advanceValue()) != null)
5681 action.accept(nextKey, v);
5682 propagateCompletion();
5683 }
5684 }
5685 }
5686
5687 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5688 extends Traverser<K,V,Void> {
5689 final Function<? super K, ? extends U> transformer;
5690 final Consumer<? super U> action;
5691 ForEachTransformedKeyTask
5692 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5693 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5694 super(m, p, b);
5695 this.transformer = transformer; this.action = action;
5696 }
5697 public final void compute() {
5698 final Function<? super K, ? extends U> transformer;
5699 final Consumer<? super U> action;
5700 if ((transformer = this.transformer) != null &&
5701 (action = this.action) != null) {
5702 for (int b; (b = preSplit()) > 0;)
5703 new ForEachTransformedKeyTask<K,V,U>
5704 (map, this, b, transformer, action).fork();
5705 K k; U u;
5706 while ((k = advanceKey()) != null) {
5707 if ((u = transformer.apply(k)) != null)
5708 action.accept(u);
5709 }
5710 propagateCompletion();
5711 }
5712 }
5713 }
5714
5715 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5716 extends Traverser<K,V,Void> {
5717 final Function<? super V, ? extends U> transformer;
5718 final Consumer<? super U> action;
5719 ForEachTransformedValueTask
5720 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5721 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5722 super(m, p, b);
5723 this.transformer = transformer; this.action = action;
5724 }
5725 public final void compute() {
5726 final Function<? super V, ? extends U> transformer;
5727 final Consumer<? super U> action;
5728 if ((transformer = this.transformer) != null &&
5729 (action = this.action) != null) {
5730 for (int b; (b = preSplit()) > 0;)
5731 new ForEachTransformedValueTask<K,V,U>
5732 (map, this, b, transformer, action).fork();
5733 V v; U u;
5734 while ((v = advanceValue()) != null) {
5735 if ((u = transformer.apply(v)) != null)
5736 action.accept(u);
5737 }
5738 propagateCompletion();
5739 }
5740 }
5741 }
5742
5743 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5744 extends Traverser<K,V,Void> {
5745 final Function<Map.Entry<K,V>, ? extends U> transformer;
5746 final Consumer<? super U> action;
5747 ForEachTransformedEntryTask
5748 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5749 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5750 super(m, p, b);
5751 this.transformer = transformer; this.action = action;
5752 }
5753 public final void compute() {
5754 final Function<Map.Entry<K,V>, ? extends U> transformer;
5755 final Consumer<? super U> action;
5756 if ((transformer = this.transformer) != null &&
5757 (action = this.action) != null) {
5758 for (int b; (b = preSplit()) > 0;)
5759 new ForEachTransformedEntryTask<K,V,U>
5760 (map, this, b, transformer, action).fork();
5761 V v; U u;
5762 while ((v = advanceValue()) != null) {
5763 if ((u = transformer.apply(entryFor(nextKey,
5764 v))) != null)
5765 action.accept(u);
5766 }
5767 propagateCompletion();
5768 }
5769 }
5770 }
5771
5772 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5773 extends Traverser<K,V,Void> {
5774 final BiFunction<? super K, ? super V, ? extends U> transformer;
5775 final Consumer<? super U> action;
5776 ForEachTransformedMappingTask
5777 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5778 BiFunction<? super K, ? super V, ? extends U> transformer,
5779 Consumer<? super U> action) {
5780 super(m, p, b);
5781 this.transformer = transformer; this.action = action;
5782 }
5783 public final void compute() {
5784 final BiFunction<? super K, ? super V, ? extends U> transformer;
5785 final Consumer<? super U> action;
5786 if ((transformer = this.transformer) != null &&
5787 (action = this.action) != null) {
5788 for (int b; (b = preSplit()) > 0;)
5789 new ForEachTransformedMappingTask<K,V,U>
5790 (map, this, b, transformer, action).fork();
5791 V v; U u;
5792 while ((v = advanceValue()) != null) {
5793 if ((u = transformer.apply(nextKey, v)) != null)
5794 action.accept(u);
5795 }
5796 propagateCompletion();
5797 }
5798 }
5799 }
5800
5801 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5802 extends Traverser<K,V,U> {
5803 final Function<? super K, ? extends U> searchFunction;
5804 final AtomicReference<U> result;
5805 SearchKeysTask
5806 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5807 Function<? super K, ? extends U> searchFunction,
5808 AtomicReference<U> result) {
5809 super(m, p, b);
5810 this.searchFunction = searchFunction; this.result = result;
5811 }
5812 public final U getRawResult() { return result.get(); }
5813 public final void compute() {
5814 final Function<? super K, ? extends U> searchFunction;
5815 final AtomicReference<U> result;
5816 if ((searchFunction = this.searchFunction) != null &&
5817 (result = this.result) != null) {
5818 for (int b;;) {
5819 if (result.get() != null)
5820 return;
5821 if ((b = preSplit()) <= 0)
5822 break;
5823 new SearchKeysTask<K,V,U>
5824 (map, this, b, searchFunction, result).fork();
5825 }
5826 while (result.get() == null) {
5827 K k; U u;
5828 if ((k = advanceKey()) == null) {
5829 propagateCompletion();
5830 break;
5831 }
5832 if ((u = searchFunction.apply(k)) != null) {
5833 if (result.compareAndSet(null, u))
5834 quietlyCompleteRoot();
5835 break;
5836 }
5837 }
5838 }
5839 }
5840 }
5841
5842 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5843 extends Traverser<K,V,U> {
5844 final Function<? super V, ? extends U> searchFunction;
5845 final AtomicReference<U> result;
5846 SearchValuesTask
5847 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5848 Function<? super V, ? extends U> searchFunction,
5849 AtomicReference<U> result) {
5850 super(m, p, b);
5851 this.searchFunction = searchFunction; this.result = result;
5852 }
5853 public final U getRawResult() { return result.get(); }
5854 public final void compute() {
5855 final Function<? super V, ? extends U> searchFunction;
5856 final AtomicReference<U> result;
5857 if ((searchFunction = this.searchFunction) != null &&
5858 (result = this.result) != null) {
5859 for (int b;;) {
5860 if (result.get() != null)
5861 return;
5862 if ((b = preSplit()) <= 0)
5863 break;
5864 new SearchValuesTask<K,V,U>
5865 (map, this, b, searchFunction, result).fork();
5866 }
5867 while (result.get() == null) {
5868 V v; U u;
5869 if ((v = advanceValue()) == null) {
5870 propagateCompletion();
5871 break;
5872 }
5873 if ((u = searchFunction.apply(v)) != null) {
5874 if (result.compareAndSet(null, u))
5875 quietlyCompleteRoot();
5876 break;
5877 }
5878 }
5879 }
5880 }
5881 }
5882
5883 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5884 extends Traverser<K,V,U> {
5885 final Function<Entry<K,V>, ? extends U> searchFunction;
5886 final AtomicReference<U> result;
5887 SearchEntriesTask
5888 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5889 Function<Entry<K,V>, ? extends U> searchFunction,
5890 AtomicReference<U> result) {
5891 super(m, p, b);
5892 this.searchFunction = searchFunction; this.result = result;
5893 }
5894 public final U getRawResult() { return result.get(); }
5895 public final void compute() {
5896 final Function<Entry<K,V>, ? extends U> searchFunction;
5897 final AtomicReference<U> result;
5898 if ((searchFunction = this.searchFunction) != null &&
5899 (result = this.result) != null) {
5900 for (int b;;) {
5901 if (result.get() != null)
5902 return;
5903 if ((b = preSplit()) <= 0)
5904 break;
5905 new SearchEntriesTask<K,V,U>
5906 (map, this, b, searchFunction, result).fork();
5907 }
5908 while (result.get() == null) {
5909 V v; U u;
5910 if ((v = advanceValue()) == null) {
5911 propagateCompletion();
5912 break;
5913 }
5914 if ((u = searchFunction.apply(entryFor(nextKey,
5915 v))) != null) {
5916 if (result.compareAndSet(null, u))
5917 quietlyCompleteRoot();
5918 return;
5919 }
5920 }
5921 }
5922 }
5923 }
5924
5925 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5926 extends Traverser<K,V,U> {
5927 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5928 final AtomicReference<U> result;
5929 SearchMappingsTask
5930 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5931 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5932 AtomicReference<U> result) {
5933 super(m, p, b);
5934 this.searchFunction = searchFunction; this.result = result;
5935 }
5936 public final U getRawResult() { return result.get(); }
5937 public final void compute() {
5938 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5939 final AtomicReference<U> result;
5940 if ((searchFunction = this.searchFunction) != null &&
5941 (result = this.result) != null) {
5942 for (int b;;) {
5943 if (result.get() != null)
5944 return;
5945 if ((b = preSplit()) <= 0)
5946 break;
5947 new SearchMappingsTask<K,V,U>
5948 (map, this, b, searchFunction, result).fork();
5949 }
5950 while (result.get() == null) {
5951 V v; U u;
5952 if ((v = advanceValue()) == null) {
5953 propagateCompletion();
5954 break;
5955 }
5956 if ((u = searchFunction.apply(nextKey, v)) != null) {
5957 if (result.compareAndSet(null, u))
5958 quietlyCompleteRoot();
5959 break;
5960 }
5961 }
5962 }
5963 }
5964 }
5965
5966 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5967 extends Traverser<K,V,K> {
5968 final BiFunction<? super K, ? super K, ? extends K> reducer;
5969 K result;
5970 ReduceKeysTask<K,V> rights, nextRight;
5971 ReduceKeysTask
5972 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5973 ReduceKeysTask<K,V> nextRight,
5974 BiFunction<? super K, ? super K, ? extends K> reducer) {
5975 super(m, p, b); this.nextRight = nextRight;
5976 this.reducer = reducer;
5977 }
5978 public final K getRawResult() { return result; }
5979 @SuppressWarnings("unchecked") public final void compute() {
5980 final BiFunction<? super K, ? super K, ? extends K> reducer;
5981 if ((reducer = this.reducer) != null) {
5982 for (int b; (b = preSplit()) > 0;)
5983 (rights = new ReduceKeysTask<K,V>
5984 (map, this, b, rights, reducer)).fork();
5985 K u, r = null;
5986 while ((u = advanceKey()) != null) {
5987 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5988 }
5989 result = r;
5990 CountedCompleter<?> c;
5991 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992 ReduceKeysTask<K,V>
5993 t = (ReduceKeysTask<K,V>)c,
5994 s = t.rights;
5995 while (s != null) {
5996 K tr, sr;
5997 if ((sr = s.result) != null)
5998 t.result = (((tr = t.result) == null) ? sr :
5999 reducer.apply(tr, sr));
6000 s = t.rights = s.nextRight;
6001 }
6002 }
6003 }
6004 }
6005 }
6006
6007 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6008 extends Traverser<K,V,V> {
6009 final BiFunction<? super V, ? super V, ? extends V> reducer;
6010 V result;
6011 ReduceValuesTask<K,V> rights, nextRight;
6012 ReduceValuesTask
6013 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6014 ReduceValuesTask<K,V> nextRight,
6015 BiFunction<? super V, ? super V, ? extends V> reducer) {
6016 super(m, p, b); this.nextRight = nextRight;
6017 this.reducer = reducer;
6018 }
6019 public final V getRawResult() { return result; }
6020 @SuppressWarnings("unchecked") public final void compute() {
6021 final BiFunction<? super V, ? super V, ? extends V> reducer;
6022 if ((reducer = this.reducer) != null) {
6023 for (int b; (b = preSplit()) > 0;)
6024 (rights = new ReduceValuesTask<K,V>
6025 (map, this, b, rights, reducer)).fork();
6026 V r = null, v;
6027 while ((v = advanceValue()) != null)
6028 r = (r == null) ? v : reducer.apply(r, v);
6029 result = r;
6030 CountedCompleter<?> c;
6031 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6032 ReduceValuesTask<K,V>
6033 t = (ReduceValuesTask<K,V>)c,
6034 s = t.rights;
6035 while (s != null) {
6036 V tr, sr;
6037 if ((sr = s.result) != null)
6038 t.result = (((tr = t.result) == null) ? sr :
6039 reducer.apply(tr, sr));
6040 s = t.rights = s.nextRight;
6041 }
6042 }
6043 }
6044 }
6045 }
6046
6047 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6048 extends Traverser<K,V,Map.Entry<K,V>> {
6049 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6050 Map.Entry<K,V> result;
6051 ReduceEntriesTask<K,V> rights, nextRight;
6052 ReduceEntriesTask
6053 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6054 ReduceEntriesTask<K,V> nextRight,
6055 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6056 super(m, p, b); this.nextRight = nextRight;
6057 this.reducer = reducer;
6058 }
6059 public final Map.Entry<K,V> getRawResult() { return result; }
6060 @SuppressWarnings("unchecked") public final void compute() {
6061 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6062 if ((reducer = this.reducer) != null) {
6063 for (int b; (b = preSplit()) > 0;)
6064 (rights = new ReduceEntriesTask<K,V>
6065 (map, this, b, rights, reducer)).fork();
6066 Map.Entry<K,V> r = null;
6067 V v;
6068 while ((v = advanceValue()) != null) {
6069 Map.Entry<K,V> u = entryFor(nextKey, v);
6070 r = (r == null) ? u : reducer.apply(r, u);
6071 }
6072 result = r;
6073 CountedCompleter<?> c;
6074 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6075 ReduceEntriesTask<K,V>
6076 t = (ReduceEntriesTask<K,V>)c,
6077 s = t.rights;
6078 while (s != null) {
6079 Map.Entry<K,V> tr, sr;
6080 if ((sr = s.result) != null)
6081 t.result = (((tr = t.result) == null) ? sr :
6082 reducer.apply(tr, sr));
6083 s = t.rights = s.nextRight;
6084 }
6085 }
6086 }
6087 }
6088 }
6089
6090 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6091 extends Traverser<K,V,U> {
6092 final Function<? super K, ? extends U> transformer;
6093 final BiFunction<? super U, ? super U, ? extends U> reducer;
6094 U result;
6095 MapReduceKeysTask<K,V,U> rights, nextRight;
6096 MapReduceKeysTask
6097 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6098 MapReduceKeysTask<K,V,U> nextRight,
6099 Function<? super K, ? extends U> transformer,
6100 BiFunction<? super U, ? super U, ? extends U> reducer) {
6101 super(m, p, b); this.nextRight = nextRight;
6102 this.transformer = transformer;
6103 this.reducer = reducer;
6104 }
6105 public final U getRawResult() { return result; }
6106 @SuppressWarnings("unchecked") public final void compute() {
6107 final Function<? super K, ? extends U> transformer;
6108 final BiFunction<? super U, ? super U, ? extends U> reducer;
6109 if ((transformer = this.transformer) != null &&
6110 (reducer = this.reducer) != null) {
6111 for (int b; (b = preSplit()) > 0;)
6112 (rights = new MapReduceKeysTask<K,V,U>
6113 (map, this, b, rights, transformer, reducer)).fork();
6114 K k; U r = null, u;
6115 while ((k = advanceKey()) != null) {
6116 if ((u = transformer.apply(k)) != null)
6117 r = (r == null) ? u : reducer.apply(r, u);
6118 }
6119 result = r;
6120 CountedCompleter<?> c;
6121 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6122 MapReduceKeysTask<K,V,U>
6123 t = (MapReduceKeysTask<K,V,U>)c,
6124 s = t.rights;
6125 while (s != null) {
6126 U tr, sr;
6127 if ((sr = s.result) != null)
6128 t.result = (((tr = t.result) == null) ? sr :
6129 reducer.apply(tr, sr));
6130 s = t.rights = s.nextRight;
6131 }
6132 }
6133 }
6134 }
6135 }
6136
6137 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6138 extends Traverser<K,V,U> {
6139 final Function<? super V, ? extends U> transformer;
6140 final BiFunction<? super U, ? super U, ? extends U> reducer;
6141 U result;
6142 MapReduceValuesTask<K,V,U> rights, nextRight;
6143 MapReduceValuesTask
6144 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6145 MapReduceValuesTask<K,V,U> nextRight,
6146 Function<? super V, ? extends U> transformer,
6147 BiFunction<? super U, ? super U, ? extends U> reducer) {
6148 super(m, p, b); this.nextRight = nextRight;
6149 this.transformer = transformer;
6150 this.reducer = reducer;
6151 }
6152 public final U getRawResult() { return result; }
6153 @SuppressWarnings("unchecked") public final void compute() {
6154 final Function<? super V, ? extends U> transformer;
6155 final BiFunction<? super U, ? super U, ? extends U> reducer;
6156 if ((transformer = this.transformer) != null &&
6157 (reducer = this.reducer) != null) {
6158 for (int b; (b = preSplit()) > 0;)
6159 (rights = new MapReduceValuesTask<K,V,U>
6160 (map, this, b, rights, transformer, reducer)).fork();
6161 U r = null, u;
6162 V v;
6163 while ((v = advanceValue()) != null) {
6164 if ((u = transformer.apply(v)) != null)
6165 r = (r == null) ? u : reducer.apply(r, u);
6166 }
6167 result = r;
6168 CountedCompleter<?> c;
6169 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6170 MapReduceValuesTask<K,V,U>
6171 t = (MapReduceValuesTask<K,V,U>)c,
6172 s = t.rights;
6173 while (s != null) {
6174 U tr, sr;
6175 if ((sr = s.result) != null)
6176 t.result = (((tr = t.result) == null) ? sr :
6177 reducer.apply(tr, sr));
6178 s = t.rights = s.nextRight;
6179 }
6180 }
6181 }
6182 }
6183 }
6184
6185 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6186 extends Traverser<K,V,U> {
6187 final Function<Map.Entry<K,V>, ? extends U> transformer;
6188 final BiFunction<? super U, ? super U, ? extends U> reducer;
6189 U result;
6190 MapReduceEntriesTask<K,V,U> rights, nextRight;
6191 MapReduceEntriesTask
6192 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6193 MapReduceEntriesTask<K,V,U> nextRight,
6194 Function<Map.Entry<K,V>, ? extends U> transformer,
6195 BiFunction<? super U, ? super U, ? extends U> reducer) {
6196 super(m, p, b); this.nextRight = nextRight;
6197 this.transformer = transformer;
6198 this.reducer = reducer;
6199 }
6200 public final U getRawResult() { return result; }
6201 @SuppressWarnings("unchecked") public final void compute() {
6202 final Function<Map.Entry<K,V>, ? extends U> transformer;
6203 final BiFunction<? super U, ? super U, ? extends U> reducer;
6204 if ((transformer = this.transformer) != null &&
6205 (reducer = this.reducer) != null) {
6206 for (int b; (b = preSplit()) > 0;)
6207 (rights = new MapReduceEntriesTask<K,V,U>
6208 (map, this, b, rights, transformer, reducer)).fork();
6209 U r = null, u;
6210 V v;
6211 while ((v = advanceValue()) != null) {
6212 if ((u = transformer.apply(entryFor(nextKey,
6213 v))) != null)
6214 r = (r == null) ? u : reducer.apply(r, u);
6215 }
6216 result = r;
6217 CountedCompleter<?> c;
6218 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6219 MapReduceEntriesTask<K,V,U>
6220 t = (MapReduceEntriesTask<K,V,U>)c,
6221 s = t.rights;
6222 while (s != null) {
6223 U tr, sr;
6224 if ((sr = s.result) != null)
6225 t.result = (((tr = t.result) == null) ? sr :
6226 reducer.apply(tr, sr));
6227 s = t.rights = s.nextRight;
6228 }
6229 }
6230 }
6231 }
6232 }
6233
6234 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6235 extends Traverser<K,V,U> {
6236 final BiFunction<? super K, ? super V, ? extends U> transformer;
6237 final BiFunction<? super U, ? super U, ? extends U> reducer;
6238 U result;
6239 MapReduceMappingsTask<K,V,U> rights, nextRight;
6240 MapReduceMappingsTask
6241 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6242 MapReduceMappingsTask<K,V,U> nextRight,
6243 BiFunction<? super K, ? super V, ? extends U> transformer,
6244 BiFunction<? super U, ? super U, ? extends U> reducer) {
6245 super(m, p, b); this.nextRight = nextRight;
6246 this.transformer = transformer;
6247 this.reducer = reducer;
6248 }
6249 public final U getRawResult() { return result; }
6250 @SuppressWarnings("unchecked") public final void compute() {
6251 final BiFunction<? super K, ? super V, ? extends U> transformer;
6252 final BiFunction<? super U, ? super U, ? extends U> reducer;
6253 if ((transformer = this.transformer) != null &&
6254 (reducer = this.reducer) != null) {
6255 for (int b; (b = preSplit()) > 0;)
6256 (rights = new MapReduceMappingsTask<K,V,U>
6257 (map, this, b, rights, transformer, reducer)).fork();
6258 U r = null, u;
6259 V v;
6260 while ((v = advanceValue()) != null) {
6261 if ((u = transformer.apply(nextKey, v)) != null)
6262 r = (r == null) ? u : reducer.apply(r, u);
6263 }
6264 result = r;
6265 CountedCompleter<?> c;
6266 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6267 MapReduceMappingsTask<K,V,U>
6268 t = (MapReduceMappingsTask<K,V,U>)c,
6269 s = t.rights;
6270 while (s != null) {
6271 U tr, sr;
6272 if ((sr = s.result) != null)
6273 t.result = (((tr = t.result) == null) ? sr :
6274 reducer.apply(tr, sr));
6275 s = t.rights = s.nextRight;
6276 }
6277 }
6278 }
6279 }
6280 }
6281
6282 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6283 extends Traverser<K,V,Double> {
6284 final ToDoubleFunction<? super K> transformer;
6285 final DoubleBinaryOperator reducer;
6286 final double basis;
6287 double result;
6288 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6289 MapReduceKeysToDoubleTask
6290 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6291 MapReduceKeysToDoubleTask<K,V> nextRight,
6292 ToDoubleFunction<? super K> transformer,
6293 double basis,
6294 DoubleBinaryOperator reducer) {
6295 super(m, p, b); this.nextRight = nextRight;
6296 this.transformer = transformer;
6297 this.basis = basis; this.reducer = reducer;
6298 }
6299 public final Double getRawResult() { return result; }
6300 @SuppressWarnings("unchecked") public final void compute() {
6301 final ToDoubleFunction<? super K> transformer;
6302 final DoubleBinaryOperator reducer;
6303 if ((transformer = this.transformer) != null &&
6304 (reducer = this.reducer) != null) {
6305 double r = this.basis;
6306 for (int b; (b = preSplit()) > 0;)
6307 (rights = new MapReduceKeysToDoubleTask<K,V>
6308 (map, this, b, rights, transformer, r, reducer)).fork();
6309 K k;
6310 while ((k = advanceKey()) != null)
6311 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6312 result = r;
6313 CountedCompleter<?> c;
6314 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6315 MapReduceKeysToDoubleTask<K,V>
6316 t = (MapReduceKeysToDoubleTask<K,V>)c,
6317 s = t.rights;
6318 while (s != null) {
6319 t.result = reducer.applyAsDouble(t.result, s.result);
6320 s = t.rights = s.nextRight;
6321 }
6322 }
6323 }
6324 }
6325 }
6326
6327 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6328 extends Traverser<K,V,Double> {
6329 final ToDoubleFunction<? super V> transformer;
6330 final DoubleBinaryOperator reducer;
6331 final double basis;
6332 double result;
6333 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6334 MapReduceValuesToDoubleTask
6335 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6336 MapReduceValuesToDoubleTask<K,V> nextRight,
6337 ToDoubleFunction<? super V> transformer,
6338 double basis,
6339 DoubleBinaryOperator reducer) {
6340 super(m, p, b); this.nextRight = nextRight;
6341 this.transformer = transformer;
6342 this.basis = basis; this.reducer = reducer;
6343 }
6344 public final Double getRawResult() { return result; }
6345 @SuppressWarnings("unchecked") public final void compute() {
6346 final ToDoubleFunction<? super V> transformer;
6347 final DoubleBinaryOperator reducer;
6348 if ((transformer = this.transformer) != null &&
6349 (reducer = this.reducer) != null) {
6350 double r = this.basis;
6351 for (int b; (b = preSplit()) > 0;)
6352 (rights = new MapReduceValuesToDoubleTask<K,V>
6353 (map, this, b, rights, transformer, r, reducer)).fork();
6354 V v;
6355 while ((v = advanceValue()) != null)
6356 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6357 result = r;
6358 CountedCompleter<?> c;
6359 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6360 MapReduceValuesToDoubleTask<K,V>
6361 t = (MapReduceValuesToDoubleTask<K,V>)c,
6362 s = t.rights;
6363 while (s != null) {
6364 t.result = reducer.applyAsDouble(t.result, s.result);
6365 s = t.rights = s.nextRight;
6366 }
6367 }
6368 }
6369 }
6370 }
6371
6372 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6373 extends Traverser<K,V,Double> {
6374 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6375 final DoubleBinaryOperator reducer;
6376 final double basis;
6377 double result;
6378 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6379 MapReduceEntriesToDoubleTask
6380 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6381 MapReduceEntriesToDoubleTask<K,V> nextRight,
6382 ToDoubleFunction<Map.Entry<K,V>> transformer,
6383 double basis,
6384 DoubleBinaryOperator reducer) {
6385 super(m, p, b); this.nextRight = nextRight;
6386 this.transformer = transformer;
6387 this.basis = basis; this.reducer = reducer;
6388 }
6389 public final Double getRawResult() { return result; }
6390 @SuppressWarnings("unchecked") public final void compute() {
6391 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6392 final DoubleBinaryOperator reducer;
6393 if ((transformer = this.transformer) != null &&
6394 (reducer = this.reducer) != null) {
6395 double r = this.basis;
6396 for (int b; (b = preSplit()) > 0;)
6397 (rights = new MapReduceEntriesToDoubleTask<K,V>
6398 (map, this, b, rights, transformer, r, reducer)).fork();
6399 V v;
6400 while ((v = advanceValue()) != null)
6401 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6402 v)));
6403 result = r;
6404 CountedCompleter<?> c;
6405 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6406 MapReduceEntriesToDoubleTask<K,V>
6407 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6408 s = t.rights;
6409 while (s != null) {
6410 t.result = reducer.applyAsDouble(t.result, s.result);
6411 s = t.rights = s.nextRight;
6412 }
6413 }
6414 }
6415 }
6416 }
6417
6418 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6419 extends Traverser<K,V,Double> {
6420 final ToDoubleBiFunction<? super K, ? super V> transformer;
6421 final DoubleBinaryOperator reducer;
6422 final double basis;
6423 double result;
6424 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6425 MapReduceMappingsToDoubleTask
6426 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6427 MapReduceMappingsToDoubleTask<K,V> nextRight,
6428 ToDoubleBiFunction<? super K, ? super V> transformer,
6429 double basis,
6430 DoubleBinaryOperator reducer) {
6431 super(m, p, b); this.nextRight = nextRight;
6432 this.transformer = transformer;
6433 this.basis = basis; this.reducer = reducer;
6434 }
6435 public final Double getRawResult() { return result; }
6436 @SuppressWarnings("unchecked") public final void compute() {
6437 final ToDoubleBiFunction<? super K, ? super V> transformer;
6438 final DoubleBinaryOperator reducer;
6439 if ((transformer = this.transformer) != null &&
6440 (reducer = this.reducer) != null) {
6441 double r = this.basis;
6442 for (int b; (b = preSplit()) > 0;)
6443 (rights = new MapReduceMappingsToDoubleTask<K,V>
6444 (map, this, b, rights, transformer, r, reducer)).fork();
6445 V v;
6446 while ((v = advanceValue()) != null)
6447 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6448 result = r;
6449 CountedCompleter<?> c;
6450 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6451 MapReduceMappingsToDoubleTask<K,V>
6452 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6453 s = t.rights;
6454 while (s != null) {
6455 t.result = reducer.applyAsDouble(t.result, s.result);
6456 s = t.rights = s.nextRight;
6457 }
6458 }
6459 }
6460 }
6461 }
6462
6463 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6464 extends Traverser<K,V,Long> {
6465 final ToLongFunction<? super K> transformer;
6466 final LongBinaryOperator reducer;
6467 final long basis;
6468 long result;
6469 MapReduceKeysToLongTask<K,V> rights, nextRight;
6470 MapReduceKeysToLongTask
6471 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6472 MapReduceKeysToLongTask<K,V> nextRight,
6473 ToLongFunction<? super K> transformer,
6474 long basis,
6475 LongBinaryOperator reducer) {
6476 super(m, p, b); this.nextRight = nextRight;
6477 this.transformer = transformer;
6478 this.basis = basis; this.reducer = reducer;
6479 }
6480 public final Long getRawResult() { return result; }
6481 @SuppressWarnings("unchecked") public final void compute() {
6482 final ToLongFunction<? super K> transformer;
6483 final LongBinaryOperator reducer;
6484 if ((transformer = this.transformer) != null &&
6485 (reducer = this.reducer) != null) {
6486 long r = this.basis;
6487 for (int b; (b = preSplit()) > 0;)
6488 (rights = new MapReduceKeysToLongTask<K,V>
6489 (map, this, b, rights, transformer, r, reducer)).fork();
6490 K k;
6491 while ((k = advanceKey()) != null)
6492 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6493 result = r;
6494 CountedCompleter<?> c;
6495 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6496 MapReduceKeysToLongTask<K,V>
6497 t = (MapReduceKeysToLongTask<K,V>)c,
6498 s = t.rights;
6499 while (s != null) {
6500 t.result = reducer.applyAsLong(t.result, s.result);
6501 s = t.rights = s.nextRight;
6502 }
6503 }
6504 }
6505 }
6506 }
6507
6508 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6509 extends Traverser<K,V,Long> {
6510 final ToLongFunction<? super V> transformer;
6511 final LongBinaryOperator reducer;
6512 final long basis;
6513 long result;
6514 MapReduceValuesToLongTask<K,V> rights, nextRight;
6515 MapReduceValuesToLongTask
6516 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6517 MapReduceValuesToLongTask<K,V> nextRight,
6518 ToLongFunction<? super V> transformer,
6519 long basis,
6520 LongBinaryOperator reducer) {
6521 super(m, p, b); this.nextRight = nextRight;
6522 this.transformer = transformer;
6523 this.basis = basis; this.reducer = reducer;
6524 }
6525 public final Long getRawResult() { return result; }
6526 @SuppressWarnings("unchecked") public final void compute() {
6527 final ToLongFunction<? super V> transformer;
6528 final LongBinaryOperator reducer;
6529 if ((transformer = this.transformer) != null &&
6530 (reducer = this.reducer) != null) {
6531 long r = this.basis;
6532 for (int b; (b = preSplit()) > 0;)
6533 (rights = new MapReduceValuesToLongTask<K,V>
6534 (map, this, b, rights, transformer, r, reducer)).fork();
6535 V v;
6536 while ((v = advanceValue()) != null)
6537 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6538 result = r;
6539 CountedCompleter<?> c;
6540 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6541 MapReduceValuesToLongTask<K,V>
6542 t = (MapReduceValuesToLongTask<K,V>)c,
6543 s = t.rights;
6544 while (s != null) {
6545 t.result = reducer.applyAsLong(t.result, s.result);
6546 s = t.rights = s.nextRight;
6547 }
6548 }
6549 }
6550 }
6551 }
6552
6553 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6554 extends Traverser<K,V,Long> {
6555 final ToLongFunction<Map.Entry<K,V>> transformer;
6556 final LongBinaryOperator reducer;
6557 final long basis;
6558 long result;
6559 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6560 MapReduceEntriesToLongTask
6561 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6562 MapReduceEntriesToLongTask<K,V> nextRight,
6563 ToLongFunction<Map.Entry<K,V>> transformer,
6564 long basis,
6565 LongBinaryOperator reducer) {
6566 super(m, p, b); this.nextRight = nextRight;
6567 this.transformer = transformer;
6568 this.basis = basis; this.reducer = reducer;
6569 }
6570 public final Long getRawResult() { return result; }
6571 @SuppressWarnings("unchecked") public final void compute() {
6572 final ToLongFunction<Map.Entry<K,V>> transformer;
6573 final LongBinaryOperator reducer;
6574 if ((transformer = this.transformer) != null &&
6575 (reducer = this.reducer) != null) {
6576 long r = this.basis;
6577 for (int b; (b = preSplit()) > 0;)
6578 (rights = new MapReduceEntriesToLongTask<K,V>
6579 (map, this, b, rights, transformer, r, reducer)).fork();
6580 V v;
6581 while ((v = advanceValue()) != null)
6582 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6583 result = r;
6584 CountedCompleter<?> c;
6585 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6586 MapReduceEntriesToLongTask<K,V>
6587 t = (MapReduceEntriesToLongTask<K,V>)c,
6588 s = t.rights;
6589 while (s != null) {
6590 t.result = reducer.applyAsLong(t.result, s.result);
6591 s = t.rights = s.nextRight;
6592 }
6593 }
6594 }
6595 }
6596 }
6597
6598 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6599 extends Traverser<K,V,Long> {
6600 final ToLongBiFunction<? super K, ? super V> transformer;
6601 final LongBinaryOperator reducer;
6602 final long basis;
6603 long result;
6604 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6605 MapReduceMappingsToLongTask
6606 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6607 MapReduceMappingsToLongTask<K,V> nextRight,
6608 ToLongBiFunction<? super K, ? super V> transformer,
6609 long basis,
6610 LongBinaryOperator reducer) {
6611 super(m, p, b); this.nextRight = nextRight;
6612 this.transformer = transformer;
6613 this.basis = basis; this.reducer = reducer;
6614 }
6615 public final Long getRawResult() { return result; }
6616 @SuppressWarnings("unchecked") public final void compute() {
6617 final ToLongBiFunction<? super K, ? super V> transformer;
6618 final LongBinaryOperator reducer;
6619 if ((transformer = this.transformer) != null &&
6620 (reducer = this.reducer) != null) {
6621 long r = this.basis;
6622 for (int b; (b = preSplit()) > 0;)
6623 (rights = new MapReduceMappingsToLongTask<K,V>
6624 (map, this, b, rights, transformer, r, reducer)).fork();
6625 V v;
6626 while ((v = advanceValue()) != null)
6627 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6628 result = r;
6629 CountedCompleter<?> c;
6630 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6631 MapReduceMappingsToLongTask<K,V>
6632 t = (MapReduceMappingsToLongTask<K,V>)c,
6633 s = t.rights;
6634 while (s != null) {
6635 t.result = reducer.applyAsLong(t.result, s.result);
6636 s = t.rights = s.nextRight;
6637 }
6638 }
6639 }
6640 }
6641 }
6642
6643 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6644 extends Traverser<K,V,Integer> {
6645 final ToIntFunction<? super K> transformer;
6646 final IntBinaryOperator reducer;
6647 final int basis;
6648 int result;
6649 MapReduceKeysToIntTask<K,V> rights, nextRight;
6650 MapReduceKeysToIntTask
6651 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6652 MapReduceKeysToIntTask<K,V> nextRight,
6653 ToIntFunction<? super K> transformer,
6654 int basis,
6655 IntBinaryOperator reducer) {
6656 super(m, p, b); this.nextRight = nextRight;
6657 this.transformer = transformer;
6658 this.basis = basis; this.reducer = reducer;
6659 }
6660 public final Integer getRawResult() { return result; }
6661 @SuppressWarnings("unchecked") public final void compute() {
6662 final ToIntFunction<? super K> transformer;
6663 final IntBinaryOperator reducer;
6664 if ((transformer = this.transformer) != null &&
6665 (reducer = this.reducer) != null) {
6666 int r = this.basis;
6667 for (int b; (b = preSplit()) > 0;)
6668 (rights = new MapReduceKeysToIntTask<K,V>
6669 (map, this, b, rights, transformer, r, reducer)).fork();
6670 K k;
6671 while ((k = advanceKey()) != null)
6672 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6673 result = r;
6674 CountedCompleter<?> c;
6675 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6676 MapReduceKeysToIntTask<K,V>
6677 t = (MapReduceKeysToIntTask<K,V>)c,
6678 s = t.rights;
6679 while (s != null) {
6680 t.result = reducer.applyAsInt(t.result, s.result);
6681 s = t.rights = s.nextRight;
6682 }
6683 }
6684 }
6685 }
6686 }
6687
6688 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6689 extends Traverser<K,V,Integer> {
6690 final ToIntFunction<? super V> transformer;
6691 final IntBinaryOperator reducer;
6692 final int basis;
6693 int result;
6694 MapReduceValuesToIntTask<K,V> rights, nextRight;
6695 MapReduceValuesToIntTask
6696 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6697 MapReduceValuesToIntTask<K,V> nextRight,
6698 ToIntFunction<? super V> transformer,
6699 int basis,
6700 IntBinaryOperator reducer) {
6701 super(m, p, b); this.nextRight = nextRight;
6702 this.transformer = transformer;
6703 this.basis = basis; this.reducer = reducer;
6704 }
6705 public final Integer getRawResult() { return result; }
6706 @SuppressWarnings("unchecked") public final void compute() {
6707 final ToIntFunction<? super V> transformer;
6708 final IntBinaryOperator reducer;
6709 if ((transformer = this.transformer) != null &&
6710 (reducer = this.reducer) != null) {
6711 int r = this.basis;
6712 for (int b; (b = preSplit()) > 0;)
6713 (rights = new MapReduceValuesToIntTask<K,V>
6714 (map, this, b, rights, transformer, r, reducer)).fork();
6715 V v;
6716 while ((v = advanceValue()) != null)
6717 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6718 result = r;
6719 CountedCompleter<?> c;
6720 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6721 MapReduceValuesToIntTask<K,V>
6722 t = (MapReduceValuesToIntTask<K,V>)c,
6723 s = t.rights;
6724 while (s != null) {
6725 t.result = reducer.applyAsInt(t.result, s.result);
6726 s = t.rights = s.nextRight;
6727 }
6728 }
6729 }
6730 }
6731 }
6732
6733 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6734 extends Traverser<K,V,Integer> {
6735 final ToIntFunction<Map.Entry<K,V>> transformer;
6736 final IntBinaryOperator reducer;
6737 final int basis;
6738 int result;
6739 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6740 MapReduceEntriesToIntTask
6741 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6742 MapReduceEntriesToIntTask<K,V> nextRight,
6743 ToIntFunction<Map.Entry<K,V>> transformer,
6744 int basis,
6745 IntBinaryOperator reducer) {
6746 super(m, p, b); this.nextRight = nextRight;
6747 this.transformer = transformer;
6748 this.basis = basis; this.reducer = reducer;
6749 }
6750 public final Integer getRawResult() { return result; }
6751 @SuppressWarnings("unchecked") public final void compute() {
6752 final ToIntFunction<Map.Entry<K,V>> transformer;
6753 final IntBinaryOperator reducer;
6754 if ((transformer = this.transformer) != null &&
6755 (reducer = this.reducer) != null) {
6756 int r = this.basis;
6757 for (int b; (b = preSplit()) > 0;)
6758 (rights = new MapReduceEntriesToIntTask<K,V>
6759 (map, this, b, rights, transformer, r, reducer)).fork();
6760 V v;
6761 while ((v = advanceValue()) != null)
6762 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6763 v)));
6764 result = r;
6765 CountedCompleter<?> c;
6766 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6767 MapReduceEntriesToIntTask<K,V>
6768 t = (MapReduceEntriesToIntTask<K,V>)c,
6769 s = t.rights;
6770 while (s != null) {
6771 t.result = reducer.applyAsInt(t.result, s.result);
6772 s = t.rights = s.nextRight;
6773 }
6774 }
6775 }
6776 }
6777 }
6778
6779 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6780 extends Traverser<K,V,Integer> {
6781 final ToIntBiFunction<? super K, ? super V> transformer;
6782 final IntBinaryOperator reducer;
6783 final int basis;
6784 int result;
6785 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6786 MapReduceMappingsToIntTask
6787 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6788 MapReduceMappingsToIntTask<K,V> nextRight,
6789 ToIntBiFunction<? super K, ? super V> transformer,
6790 int basis,
6791 IntBinaryOperator reducer) {
6792 super(m, p, b); this.nextRight = nextRight;
6793 this.transformer = transformer;
6794 this.basis = basis; this.reducer = reducer;
6795 }
6796 public final Integer getRawResult() { return result; }
6797 @SuppressWarnings("unchecked") public final void compute() {
6798 final ToIntBiFunction<? super K, ? super V> transformer;
6799 final IntBinaryOperator reducer;
6800 if ((transformer = this.transformer) != null &&
6801 (reducer = this.reducer) != null) {
6802 int r = this.basis;
6803 for (int b; (b = preSplit()) > 0;)
6804 (rights = new MapReduceMappingsToIntTask<K,V>
6805 (map, this, b, rights, transformer, r, reducer)).fork();
6806 V v;
6807 while ((v = advanceValue()) != null)
6808 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6809 result = r;
6810 CountedCompleter<?> c;
6811 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6812 MapReduceMappingsToIntTask<K,V>
6813 t = (MapReduceMappingsToIntTask<K,V>)c,
6814 s = t.rights;
6815 while (s != null) {
6816 t.result = reducer.applyAsInt(t.result, s.result);
6817 s = t.rights = s.nextRight;
6818 }
6819 }
6820 }
6821 }
6822 }
6823
6824 // Unsafe mechanics
6825 private static final sun.misc.Unsafe U;
6826 private static final long SIZECTL;
6827 private static final long TRANSFERINDEX;
6828 private static final long TRANSFERORIGIN;
6829 private static final long BASECOUNT;
6830 private static final long CELLSBUSY;
6831 private static final long CELLVALUE;
6832 private static final long ABASE;
6833 private static final int ASHIFT;
6834
6835 static {
6836 try {
6837 U = sun.misc.Unsafe.getUnsafe();
6838 Class<?> k = ConcurrentHashMap.class;
6839 SIZECTL = U.objectFieldOffset
6840 (k.getDeclaredField("sizeCtl"));
6841 TRANSFERINDEX = U.objectFieldOffset
6842 (k.getDeclaredField("transferIndex"));
6843 TRANSFERORIGIN = U.objectFieldOffset
6844 (k.getDeclaredField("transferOrigin"));
6845 BASECOUNT = U.objectFieldOffset
6846 (k.getDeclaredField("baseCount"));
6847 CELLSBUSY = U.objectFieldOffset
6848 (k.getDeclaredField("cellsBusy"));
6849 Class<?> ck = Cell.class;
6850 CELLVALUE = U.objectFieldOffset
6851 (ck.getDeclaredField("value"));
6852 Class<?> sc = Node[].class;
6853 ABASE = U.arrayBaseOffset(sc);
6854 int scale = U.arrayIndexScale(sc);
6855 if ((scale & (scale - 1)) != 0)
6856 throw new Error("data type scale not a power of two");
6857 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6858 } catch (Exception e) {
6859 throw new Error(e);
6860 }
6861 }
6862
6863 }