ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.195
Committed: Sat Mar 16 16:03:08 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.194: +14 -10 lines
Log Message:
Sync with lambda spliterator semantics

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </ul>
153 * </li>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K,V>
218 implements ConcurrentMap<K,V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1) {
1696 addCount(delta, len);
1697 delta = 0L;
1698 }
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 } finally {
1705 if (delta != 0L)
1706 addCount(delta, 2);
1707 }
1708 if (npe)
1709 throw new NullPointerException();
1710 }
1711
1712 /**
1713 * Implementation for clear. Steps through each bin, removing all
1714 * nodes.
1715 */
1716 @SuppressWarnings("unchecked") private final void internalClear() {
1717 long delta = 0L; // negative number of deletions
1718 int i = 0;
1719 Node<V>[] tab = table;
1720 while (tab != null && i < tab.length) {
1721 Node<V> f = tabAt(tab, i);
1722 if (f == null)
1723 ++i;
1724 else if (f.hash < 0) {
1725 Object fk;
1726 if ((fk = f.key) instanceof TreeBin) {
1727 TreeBin<V> t = (TreeBin<V>)fk;
1728 t.acquire(0);
1729 try {
1730 if (tabAt(tab, i) == f) {
1731 for (Node<V> p = t.first; p != null; p = p.next) {
1732 if (p.val != null) { // (currently always true)
1733 p.val = null;
1734 --delta;
1735 }
1736 }
1737 t.first = null;
1738 t.root = null;
1739 ++i;
1740 }
1741 } finally {
1742 t.release(0);
1743 }
1744 }
1745 else
1746 tab = (Node<V>[])fk;
1747 }
1748 else {
1749 synchronized (f) {
1750 if (tabAt(tab, i) == f) {
1751 for (Node<V> e = f; e != null; e = e.next) {
1752 if (e.val != null) { // (currently always true)
1753 e.val = null;
1754 --delta;
1755 }
1756 }
1757 setTabAt(tab, i, null);
1758 ++i;
1759 }
1760 }
1761 }
1762 }
1763 if (delta != 0L)
1764 addCount(delta, -1);
1765 }
1766
1767 /* ---------------- Table Initialization and Resizing -------------- */
1768
1769 /**
1770 * Returns a power of two table size for the given desired capacity.
1771 * See Hackers Delight, sec 3.2
1772 */
1773 private static final int tableSizeFor(int c) {
1774 int n = c - 1;
1775 n |= n >>> 1;
1776 n |= n >>> 2;
1777 n |= n >>> 4;
1778 n |= n >>> 8;
1779 n |= n >>> 16;
1780 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 }
1782
1783 /**
1784 * Initializes table, using the size recorded in sizeCtl.
1785 */
1786 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 Node<V>[] tab; int sc;
1788 while ((tab = table) == null) {
1789 if ((sc = sizeCtl) < 0)
1790 Thread.yield(); // lost initialization race; just spin
1791 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 try {
1793 if ((tab = table) == null) {
1794 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 table = tab = (Node<V>[])tb;
1797 sc = n - (n >>> 2);
1798 }
1799 } finally {
1800 sizeCtl = sc;
1801 }
1802 break;
1803 }
1804 }
1805 return tab;
1806 }
1807
1808 /**
1809 * Adds to count, and if table is too small and not already
1810 * resizing, initiates transfer. If already resizing, helps
1811 * perform transfer if work is available. Rechecks occupancy
1812 * after a transfer to see if another resize is already needed
1813 * because resizings are lagging additions.
1814 *
1815 * @param x the count to add
1816 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 */
1818 private final void addCount(long x, int check) {
1819 Cell[] as; long b, s;
1820 if ((as = counterCells) != null ||
1821 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 Cell a; long v; int m;
1823 boolean uncontended = true;
1824 if (as == null || (m = as.length - 1) < 0 ||
1825 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 !(uncontended =
1827 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 fullAddCount(x, uncontended);
1829 return;
1830 }
1831 if (check <= 1)
1832 return;
1833 s = sumCount();
1834 }
1835 if (check >= 0) {
1836 Node<V>[] tab, nt; int sc;
1837 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 tab.length < MAXIMUM_CAPACITY) {
1839 if (sc < 0) {
1840 if (sc == -1 || transferIndex <= transferOrigin ||
1841 (nt = nextTable) == null)
1842 break;
1843 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 transfer(tab, nt);
1845 }
1846 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 transfer(tab, null);
1848 s = sumCount();
1849 }
1850 }
1851 }
1852
1853 /**
1854 * Tries to presize table to accommodate the given number of elements.
1855 *
1856 * @param size number of elements (doesn't need to be perfectly accurate)
1857 */
1858 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 tableSizeFor(size + (size >>> 1) + 1);
1861 int sc;
1862 while ((sc = sizeCtl) >= 0) {
1863 Node<V>[] tab = table; int n;
1864 if (tab == null || (n = tab.length) == 0) {
1865 n = (sc > c) ? sc : c;
1866 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 try {
1868 if (table == tab) {
1869 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 table = (Node<V>[])tb;
1871 sc = n - (n >>> 2);
1872 }
1873 } finally {
1874 sizeCtl = sc;
1875 }
1876 }
1877 }
1878 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 break;
1880 else if (tab == table &&
1881 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 transfer(tab, null);
1883 }
1884 }
1885
1886 /**
1887 * Moves and/or copies the nodes in each bin to new table. See
1888 * above for explanation.
1889 */
1890 @SuppressWarnings("unchecked") private final void transfer
1891 (Node<V>[] tab, Node<V>[] nextTab) {
1892 int n = tab.length, stride;
1893 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 if (nextTab == null) { // initiating
1896 try {
1897 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 nextTab = (Node<V>[])tb;
1899 } catch (Throwable ex) { // try to cope with OOME
1900 sizeCtl = Integer.MAX_VALUE;
1901 return;
1902 }
1903 nextTable = nextTab;
1904 transferOrigin = n;
1905 transferIndex = n;
1906 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 int nextk = (k > stride) ? k - stride : 0;
1909 for (int m = nextk; m < k; ++m)
1910 nextTab[m] = rev;
1911 for (int m = n + nextk; m < n + k; ++m)
1912 nextTab[m] = rev;
1913 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 }
1915 }
1916 int nextn = nextTab.length;
1917 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 boolean advance = true;
1919 for (int i = 0, bound = 0;;) {
1920 int nextIndex, nextBound; Node<V> f; Object fk;
1921 while (advance) {
1922 if (--i >= bound)
1923 advance = false;
1924 else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 i = -1;
1926 advance = false;
1927 }
1928 else if (U.compareAndSwapInt
1929 (this, TRANSFERINDEX, nextIndex,
1930 nextBound = (nextIndex > stride ?
1931 nextIndex - stride : 0))) {
1932 bound = nextBound;
1933 i = nextIndex - 1;
1934 advance = false;
1935 }
1936 }
1937 if (i < 0 || i >= n || i + n >= nextn) {
1938 for (int sc;;) {
1939 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 if (sc == -1) {
1941 nextTable = null;
1942 table = nextTab;
1943 sizeCtl = (n << 1) - (n >>> 1);
1944 }
1945 return;
1946 }
1947 }
1948 }
1949 else if ((f = tabAt(tab, i)) == null) {
1950 if (casTabAt(tab, i, null, fwd)) {
1951 setTabAt(nextTab, i, null);
1952 setTabAt(nextTab, i + n, null);
1953 advance = true;
1954 }
1955 }
1956 else if (f.hash >= 0) {
1957 synchronized (f) {
1958 if (tabAt(tab, i) == f) {
1959 int runBit = f.hash & n;
1960 Node<V> lastRun = f, lo = null, hi = null;
1961 for (Node<V> p = f.next; p != null; p = p.next) {
1962 int b = p.hash & n;
1963 if (b != runBit) {
1964 runBit = b;
1965 lastRun = p;
1966 }
1967 }
1968 if (runBit == 0)
1969 lo = lastRun;
1970 else
1971 hi = lastRun;
1972 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 int ph = p.hash;
1974 Object pk = p.key; V pv = p.val;
1975 if ((ph & n) == 0)
1976 lo = new Node<V>(ph, pk, pv, lo);
1977 else
1978 hi = new Node<V>(ph, pk, pv, hi);
1979 }
1980 setTabAt(nextTab, i, lo);
1981 setTabAt(nextTab, i + n, hi);
1982 setTabAt(tab, i, fwd);
1983 advance = true;
1984 }
1985 }
1986 }
1987 else if ((fk = f.key) instanceof TreeBin) {
1988 TreeBin<V> t = (TreeBin<V>)fk;
1989 t.acquire(0);
1990 try {
1991 if (tabAt(tab, i) == f) {
1992 TreeBin<V> lt = new TreeBin<V>();
1993 TreeBin<V> ht = new TreeBin<V>();
1994 int lc = 0, hc = 0;
1995 for (Node<V> e = t.first; e != null; e = e.next) {
1996 int h = e.hash;
1997 Object k = e.key; V v = e.val;
1998 if ((h & n) == 0) {
1999 ++lc;
2000 lt.putTreeNode(h, k, v);
2001 }
2002 else {
2003 ++hc;
2004 ht.putTreeNode(h, k, v);
2005 }
2006 }
2007 Node<V> ln, hn; // throw away trees if too small
2008 if (lc < TREE_THRESHOLD) {
2009 ln = null;
2010 for (Node<V> p = lt.first; p != null; p = p.next)
2011 ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 }
2013 else
2014 ln = new Node<V>(MOVED, lt, null, null);
2015 setTabAt(nextTab, i, ln);
2016 if (hc < TREE_THRESHOLD) {
2017 hn = null;
2018 for (Node<V> p = ht.first; p != null; p = p.next)
2019 hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 }
2021 else
2022 hn = new Node<V>(MOVED, ht, null, null);
2023 setTabAt(nextTab, i + n, hn);
2024 setTabAt(tab, i, fwd);
2025 advance = true;
2026 }
2027 } finally {
2028 t.release(0);
2029 }
2030 }
2031 else
2032 advance = true; // already processed
2033 }
2034 }
2035
2036 /* ---------------- Counter support -------------- */
2037
2038 final long sumCount() {
2039 Cell[] as = counterCells; Cell a;
2040 long sum = baseCount;
2041 if (as != null) {
2042 for (int i = 0; i < as.length; ++i) {
2043 if ((a = as[i]) != null)
2044 sum += a.value;
2045 }
2046 }
2047 return sum;
2048 }
2049
2050 // See LongAdder version for explanation
2051 private final void fullAddCount(long x, boolean wasUncontended) {
2052 int h;
2053 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 ThreadLocalRandom.localInit(); // force initialization
2055 h = ThreadLocalRandom.getProbe();
2056 wasUncontended = true;
2057 }
2058 boolean collide = false; // True if last slot nonempty
2059 for (;;) {
2060 Cell[] as; Cell a; int n; long v;
2061 if ((as = counterCells) != null && (n = as.length) > 0) {
2062 if ((a = as[(n - 1) & h]) == null) {
2063 if (cellsBusy == 0) { // Try to attach new Cell
2064 Cell r = new Cell(x); // Optimistic create
2065 if (cellsBusy == 0 &&
2066 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 boolean created = false;
2068 try { // Recheck under lock
2069 Cell[] rs; int m, j;
2070 if ((rs = counterCells) != null &&
2071 (m = rs.length) > 0 &&
2072 rs[j = (m - 1) & h] == null) {
2073 rs[j] = r;
2074 created = true;
2075 }
2076 } finally {
2077 cellsBusy = 0;
2078 }
2079 if (created)
2080 break;
2081 continue; // Slot is now non-empty
2082 }
2083 }
2084 collide = false;
2085 }
2086 else if (!wasUncontended) // CAS already known to fail
2087 wasUncontended = true; // Continue after rehash
2088 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 break;
2090 else if (counterCells != as || n >= NCPU)
2091 collide = false; // At max size or stale
2092 else if (!collide)
2093 collide = true;
2094 else if (cellsBusy == 0 &&
2095 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 try {
2097 if (counterCells == as) {// Expand table unless stale
2098 Cell[] rs = new Cell[n << 1];
2099 for (int i = 0; i < n; ++i)
2100 rs[i] = as[i];
2101 counterCells = rs;
2102 }
2103 } finally {
2104 cellsBusy = 0;
2105 }
2106 collide = false;
2107 continue; // Retry with expanded table
2108 }
2109 h = ThreadLocalRandom.advanceProbe(h);
2110 }
2111 else if (cellsBusy == 0 && counterCells == as &&
2112 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 boolean init = false;
2114 try { // Initialize table
2115 if (counterCells == as) {
2116 Cell[] rs = new Cell[2];
2117 rs[h & 1] = new Cell(x);
2118 counterCells = rs;
2119 init = true;
2120 }
2121 } finally {
2122 cellsBusy = 0;
2123 }
2124 if (init)
2125 break;
2126 }
2127 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 break; // Fall back on using base
2129 }
2130 }
2131
2132 /* ----------------Table Traversal -------------- */
2133
2134 /**
2135 * Encapsulates traversal for methods such as containsValue; also
2136 * serves as a base class for other iterators and bulk tasks.
2137 *
2138 * At each step, the iterator snapshots the key ("nextKey") and
2139 * value ("nextVal") of a valid node (i.e., one that, at point of
2140 * snapshot, has a non-null user value). Because val fields can
2141 * change (including to null, indicating deletion), field nextVal
2142 * might not be accurate at point of use, but still maintains the
2143 * weak consistency property of holding a value that was once
2144 * valid. To support iterator.remove, the nextKey field is not
2145 * updated (nulled out) when the iterator cannot advance.
2146 *
2147 * Exported iterators must track whether the iterator has advanced
2148 * (in hasNext vs next) (by setting/checking/nulling field
2149 * nextVal), and then extract key, value, or key-value pairs as
2150 * return values of next().
2151 *
2152 * Method advance visits once each still-valid node that was
2153 * reachable upon iterator construction. It might miss some that
2154 * were added to a bin after the bin was visited, which is OK wrt
2155 * consistency guarantees. Maintaining this property in the face
2156 * of possible ongoing resizes requires a fair amount of
2157 * bookkeeping state that is difficult to optimize away amidst
2158 * volatile accesses. Even so, traversal maintains reasonable
2159 * throughput.
2160 *
2161 * Normally, iteration proceeds bin-by-bin traversing lists.
2162 * However, if the table has been resized, then all future steps
2163 * must traverse both the bin at the current index as well as at
2164 * (index + baseSize); and so on for further resizings. To
2165 * paranoically cope with potential sharing by users of iterators
2166 * across threads, iteration terminates if a bounds checks fails
2167 * for a table read.
2168 *
2169 * Methods advanceKey and advanceValue are specializations of the
2170 * common cases of advance, relaying to the full version
2171 * otherwise. The forEachKey and forEachValue methods further
2172 * specialize, bypassing all incremental field updates in most cases.
2173 *
2174 * This class supports both Spliterator-based traversal and
2175 * CountedCompleter-based bulk tasks. The same "batch" field is
2176 * used, but in slightly different ways, in the two cases. For
2177 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2178 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2179 * size that halves down to zero for leaf tasks, that is only
2180 * computed upon execution of the task. (Tasks can be submitted to
2181 * any pool, of any size, so we don't know scale factors until
2182 * running.)
2183 *
2184 * This class extends CountedCompleter to streamline parallel
2185 * iteration in bulk operations. This adds only a few fields of
2186 * space overhead, which is small enough in cases where it is not
2187 * needed to not worry about it. Because CountedCompleter is
2188 * Serializable, but iterators need not be, we need to add warning
2189 * suppressions.
2190 */
2191 @SuppressWarnings("serial") static class Traverser<K,V,R>
2192 extends CountedCompleter<R> {
2193 final ConcurrentHashMap<K,V> map;
2194 Node<V> next; // the next entry to use
2195 K nextKey; // cached key field of next
2196 V nextVal; // cached val field of next
2197 Node<V>[] tab; // current table; updated if resized
2198 int index; // index of bin to use next
2199 int baseIndex; // current index of initial table
2200 int baseLimit; // index bound for initial table
2201 final int baseSize; // initial table size
2202 int batch; // split control
2203
2204 /** Creates iterator for all entries in the table. */
2205 Traverser(ConcurrentHashMap<K,V> map) {
2206 this.map = map;
2207 Node<V>[] t = this.tab = map.table;
2208 baseLimit = baseSize = (t == null) ? 0 : t.length;
2209 }
2210
2211 /** Task constructor */
2212 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2213 super(it);
2214 this.map = map;
2215 this.batch = batch; // -1 if unknown
2216 if (it == null) {
2217 Node<V>[] t = this.tab = map.table;
2218 baseLimit = baseSize = (t == null) ? 0 : t.length;
2219 }
2220 else { // split parent
2221 this.tab = it.tab;
2222 this.baseSize = it.baseSize;
2223 int hi = this.baseLimit = it.baseLimit;
2224 it.baseLimit = this.index = this.baseIndex =
2225 (hi + it.baseIndex) >>> 1;
2226 }
2227 }
2228
2229 /** Spliterator constructor */
2230 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2231 super(it);
2232 this.map = map;
2233 if (it == null) {
2234 Node<V>[] t = this.tab = map.table;
2235 baseLimit = baseSize = (t == null) ? 0 : t.length;
2236 long n = map.sumCount();
2237 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 (int)n);
2239 }
2240 else {
2241 this.tab = it.tab;
2242 this.baseSize = it.baseSize;
2243 int hi = this.baseLimit = it.baseLimit;
2244 it.baseLimit = this.index = this.baseIndex =
2245 (hi + it.baseIndex) >>> 1;
2246 this.batch = it.batch >>>= 1;
2247 }
2248 }
2249
2250 /**
2251 * Advances if possible, returning next valid value, or null if none.
2252 */
2253 @SuppressWarnings("unchecked") final V advance() {
2254 for (Node<V> e = next;;) {
2255 if (e != null) // advance past used/skipped node
2256 e = next = e.next;
2257 while (e == null) { // get to next non-null bin
2258 Node<V>[] t; int i, n; // must use locals in checks
2259 if (baseIndex >= baseLimit || (t = tab) == null ||
2260 (n = t.length) <= (i = index) || i < 0)
2261 return nextVal = null;
2262 if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2263 Object ek;
2264 if ((ek = e.key) instanceof TreeBin)
2265 e = ((TreeBin<V>)ek).first;
2266 else {
2267 tab = (Node<V>[])ek;
2268 continue; // restarts due to null val
2269 }
2270 }
2271 if ((index += baseSize) >= n)
2272 index = ++baseIndex; // visit upper slots if present
2273 }
2274 nextKey = (K)e.key;
2275 if ((nextVal = e.val) != null) // skip deleted or special nodes
2276 return nextVal;
2277 }
2278 }
2279
2280 /**
2281 * Common case version for value traversal
2282 */
2283 @SuppressWarnings("unchecked") final V advanceValue() {
2284 outer: for (Node<V> e = next;;) {
2285 if (e == null || (e = e.next) == null) {
2286 Node<V>[] t; int i, len, n; Object ek;
2287 if ((t = tab) == null ||
2288 baseSize != (len = t.length) ||
2289 len < (n = baseLimit) ||
2290 baseIndex != (i = index))
2291 break;
2292 do {
2293 if (i < 0 || i >= n) {
2294 index = baseIndex = n;
2295 next = null;
2296 return nextVal = null;
2297 }
2298 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2299 if ((ek = e.key) instanceof TreeBin)
2300 e = ((TreeBin<V>)ek).first;
2301 else {
2302 index = baseIndex = i;
2303 next = null;
2304 tab = (Node<V>[])ek;
2305 break outer;
2306 }
2307 }
2308 ++i;
2309 } while (e == null);
2310 index = baseIndex = i;
2311 }
2312 V v;
2313 K k = (K)e.key;
2314 if ((v = e.val) != null) {
2315 nextVal = v;
2316 nextKey = k;
2317 next = e;
2318 return v;
2319 }
2320 }
2321 return advance();
2322 }
2323
2324 /**
2325 * Common case version for key traversal
2326 */
2327 @SuppressWarnings("unchecked") final K advanceKey() {
2328 outer: for (Node<V> e = next;;) {
2329 if (e == null || (e = e.next) == null) {
2330 Node<V>[] t; int i, len, n; Object ek;
2331 if ((t = tab) == null ||
2332 baseSize != (len = t.length) ||
2333 len < (n = baseLimit) ||
2334 baseIndex != (i = index))
2335 break;
2336 do {
2337 if (i < 0 || i >= n) {
2338 index = baseIndex = n;
2339 next = null;
2340 nextVal = null;
2341 return null;
2342 }
2343 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2344 if ((ek = e.key) instanceof TreeBin)
2345 e = ((TreeBin<V>)ek).first;
2346 else {
2347 index = baseIndex = i;
2348 next = null;
2349 tab = (Node<V>[])ek;
2350 break outer;
2351 }
2352 }
2353 ++i;
2354 } while (e == null);
2355 index = baseIndex = i;
2356 }
2357 V v;
2358 K k = (K)e.key;
2359 if ((v = e.val) != null) {
2360 nextVal = v;
2361 nextKey = k;
2362 next = e;
2363 return k;
2364 }
2365 }
2366 return (advance() == null) ? null : nextKey;
2367 }
2368
2369 @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2370 if (action == null) throw new NullPointerException();
2371 Node<V>[] t; int i, len, n;
2372 if ((t = tab) != null && baseSize == (len = t.length) &&
2373 len >= (n = baseLimit) && baseIndex == (i = index)) {
2374 index = baseIndex = n;
2375 nextVal = null;
2376 Node<V> e = next;
2377 next = null;
2378 if (e != null)
2379 e = e.next;
2380 outer: for (;; e = e.next) {
2381 V v; Object ek;
2382 for (; e == null; ++i) {
2383 if (i < 0 || i >= n)
2384 return;
2385 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2386 if ((ek = e.key) instanceof TreeBin)
2387 e = ((TreeBin<V>)ek).first;
2388 else {
2389 index = baseIndex = i;
2390 tab = (Node<V>[])ek;
2391 break outer;
2392 }
2393 }
2394 }
2395 if ((v = e.val) != null)
2396 action.accept(v);
2397 }
2398 }
2399 V v;
2400 while ((v = advance()) != null)
2401 action.accept(v);
2402 }
2403
2404 @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2405 if (action == null) throw new NullPointerException();
2406 Node<V>[] t; int i, len, n;
2407 if ((t = tab) != null && baseSize == (len = t.length) &&
2408 len >= (n = baseLimit) && baseIndex == (i = index)) {
2409 index = baseIndex = n;
2410 nextVal = null;
2411 Node<V> e = next;
2412 next = null;
2413 if (e != null)
2414 e = e.next;
2415 outer: for (;; e = e.next) {
2416 for (; e == null; ++i) {
2417 if (i < 0 || i >= n)
2418 return;
2419 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2420 Object ek;
2421 if ((ek = e.key) instanceof TreeBin)
2422 e = ((TreeBin<V>)ek).first;
2423 else {
2424 index = baseIndex = i;
2425 tab = (Node<V>[])ek;
2426 break outer;
2427 }
2428 }
2429 }
2430 Object k = e.key;
2431 if (e.val != null)
2432 action.accept((K)k);
2433 }
2434 }
2435 while (advance() != null)
2436 action.accept(nextKey);
2437 }
2438
2439 public final void remove() {
2440 K k = nextKey;
2441 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2442 throw new IllegalStateException();
2443 map.internalReplace(k, null, null);
2444 }
2445
2446 public final boolean hasNext() {
2447 return nextVal != null || advanceValue() != null;
2448 }
2449
2450 public final boolean hasMoreElements() { return hasNext(); }
2451
2452 public void compute() { } // default no-op CountedCompleter body
2453
2454 public long estimateSize() { return batch; }
2455
2456 /**
2457 * Returns a batch value > 0 if this task should (and must) be
2458 * split, if so, adding to pending count, and in any case
2459 * updating batch value. The initial batch value is approx
2460 * exp2 of the number of times (minus one) to split task by
2461 * two before executing leaf action. This value is faster to
2462 * compute and more convenient to use as a guide to splitting
2463 * than is the depth, since it is used while dividing by two
2464 * anyway.
2465 */
2466 final int preSplit() {
2467 int b; ForkJoinPool pool;
2468 if ((b = batch) < 0) { // force initialization
2469 int sp = (((pool = getPool()) == null) ?
2470 ForkJoinPool.getCommonPoolParallelism() :
2471 pool.getParallelism()) << 3; // slack of 8
2472 long n = map.sumCount();
2473 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2474 }
2475 b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
2476 if ((batch = b) > 0)
2477 addToPendingCount(1);
2478 return b;
2479 }
2480 }
2481
2482 /* ---------------- Public operations -------------- */
2483
2484 /**
2485 * Creates a new, empty map with the default initial table size (16).
2486 */
2487 public ConcurrentHashMap() {
2488 }
2489
2490 /**
2491 * Creates a new, empty map with an initial table size
2492 * accommodating the specified number of elements without the need
2493 * to dynamically resize.
2494 *
2495 * @param initialCapacity The implementation performs internal
2496 * sizing to accommodate this many elements.
2497 * @throws IllegalArgumentException if the initial capacity of
2498 * elements is negative
2499 */
2500 public ConcurrentHashMap(int initialCapacity) {
2501 if (initialCapacity < 0)
2502 throw new IllegalArgumentException();
2503 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2504 MAXIMUM_CAPACITY :
2505 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2506 this.sizeCtl = cap;
2507 }
2508
2509 /**
2510 * Creates a new map with the same mappings as the given map.
2511 *
2512 * @param m the map
2513 */
2514 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2515 this.sizeCtl = DEFAULT_CAPACITY;
2516 internalPutAll(m);
2517 }
2518
2519 /**
2520 * Creates a new, empty map with an initial table size based on
2521 * the given number of elements ({@code initialCapacity}) and
2522 * initial table density ({@code loadFactor}).
2523 *
2524 * @param initialCapacity the initial capacity. The implementation
2525 * performs internal sizing to accommodate this many elements,
2526 * given the specified load factor.
2527 * @param loadFactor the load factor (table density) for
2528 * establishing the initial table size
2529 * @throws IllegalArgumentException if the initial capacity of
2530 * elements is negative or the load factor is nonpositive
2531 *
2532 * @since 1.6
2533 */
2534 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2535 this(initialCapacity, loadFactor, 1);
2536 }
2537
2538 /**
2539 * Creates a new, empty map with an initial table size based on
2540 * the given number of elements ({@code initialCapacity}), table
2541 * density ({@code loadFactor}), and number of concurrently
2542 * updating threads ({@code concurrencyLevel}).
2543 *
2544 * @param initialCapacity the initial capacity. The implementation
2545 * performs internal sizing to accommodate this many elements,
2546 * given the specified load factor.
2547 * @param loadFactor the load factor (table density) for
2548 * establishing the initial table size
2549 * @param concurrencyLevel the estimated number of concurrently
2550 * updating threads. The implementation may use this value as
2551 * a sizing hint.
2552 * @throws IllegalArgumentException if the initial capacity is
2553 * negative or the load factor or concurrencyLevel are
2554 * nonpositive
2555 */
2556 public ConcurrentHashMap(int initialCapacity,
2557 float loadFactor, int concurrencyLevel) {
2558 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2559 throw new IllegalArgumentException();
2560 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2561 initialCapacity = concurrencyLevel; // as estimated threads
2562 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2563 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2564 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2565 this.sizeCtl = cap;
2566 }
2567
2568 /**
2569 * Creates a new {@link Set} backed by a ConcurrentHashMap
2570 * from the given type to {@code Boolean.TRUE}.
2571 *
2572 * @return the new set
2573 */
2574 public static <K> KeySetView<K,Boolean> newKeySet() {
2575 return new KeySetView<K,Boolean>
2576 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2577 }
2578
2579 /**
2580 * Creates a new {@link Set} backed by a ConcurrentHashMap
2581 * from the given type to {@code Boolean.TRUE}.
2582 *
2583 * @param initialCapacity The implementation performs internal
2584 * sizing to accommodate this many elements.
2585 * @throws IllegalArgumentException if the initial capacity of
2586 * elements is negative
2587 * @return the new set
2588 */
2589 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2590 return new KeySetView<K,Boolean>
2591 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2592 }
2593
2594 /**
2595 * {@inheritDoc}
2596 */
2597 public boolean isEmpty() {
2598 return sumCount() <= 0L; // ignore transient negative values
2599 }
2600
2601 /**
2602 * {@inheritDoc}
2603 */
2604 public int size() {
2605 long n = sumCount();
2606 return ((n < 0L) ? 0 :
2607 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2608 (int)n);
2609 }
2610
2611 /**
2612 * Returns the number of mappings. This method should be used
2613 * instead of {@link #size} because a ConcurrentHashMap may
2614 * contain more mappings than can be represented as an int. The
2615 * value returned is an estimate; the actual count may differ if
2616 * there are concurrent insertions or removals.
2617 *
2618 * @return the number of mappings
2619 */
2620 public long mappingCount() {
2621 long n = sumCount();
2622 return (n < 0L) ? 0L : n; // ignore transient negative values
2623 }
2624
2625 /**
2626 * Returns the value to which the specified key is mapped,
2627 * or {@code null} if this map contains no mapping for the key.
2628 *
2629 * <p>More formally, if this map contains a mapping from a key
2630 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2631 * then this method returns {@code v}; otherwise it returns
2632 * {@code null}. (There can be at most one such mapping.)
2633 *
2634 * @throws NullPointerException if the specified key is null
2635 */
2636 public V get(Object key) {
2637 return internalGet(key);
2638 }
2639
2640 /**
2641 * Returns the value to which the specified key is mapped,
2642 * or the given defaultValue if this map contains no mapping for the key.
2643 *
2644 * @param key the key
2645 * @param defaultValue the value to return if this map contains
2646 * no mapping for the given key
2647 * @return the mapping for the key, if present; else the defaultValue
2648 * @throws NullPointerException if the specified key is null
2649 */
2650 public V getOrDefault(Object key, V defaultValue) {
2651 V v;
2652 return (v = internalGet(key)) == null ? defaultValue : v;
2653 }
2654
2655 /**
2656 * Tests if the specified object is a key in this table.
2657 *
2658 * @param key possible key
2659 * @return {@code true} if and only if the specified object
2660 * is a key in this table, as determined by the
2661 * {@code equals} method; {@code false} otherwise
2662 * @throws NullPointerException if the specified key is null
2663 */
2664 public boolean containsKey(Object key) {
2665 return internalGet(key) != null;
2666 }
2667
2668 /**
2669 * Returns {@code true} if this map maps one or more keys to the
2670 * specified value. Note: This method may require a full traversal
2671 * of the map, and is much slower than method {@code containsKey}.
2672 *
2673 * @param value value whose presence in this map is to be tested
2674 * @return {@code true} if this map maps one or more keys to the
2675 * specified value
2676 * @throws NullPointerException if the specified value is null
2677 */
2678 public boolean containsValue(Object value) {
2679 if (value == null)
2680 throw new NullPointerException();
2681 V v;
2682 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2683 while ((v = it.advanceValue()) != null) {
2684 if (v == value || value.equals(v))
2685 return true;
2686 }
2687 return false;
2688 }
2689
2690 /**
2691 * Legacy method testing if some key maps into the specified value
2692 * in this table. This method is identical in functionality to
2693 * {@link #containsValue(Object)}, and exists solely to ensure
2694 * full compatibility with class {@link java.util.Hashtable},
2695 * which supported this method prior to introduction of the
2696 * Java Collections framework.
2697 *
2698 * @param value a value to search for
2699 * @return {@code true} if and only if some key maps to the
2700 * {@code value} argument in this table as
2701 * determined by the {@code equals} method;
2702 * {@code false} otherwise
2703 * @throws NullPointerException if the specified value is null
2704 */
2705 @Deprecated public boolean contains(Object value) {
2706 return containsValue(value);
2707 }
2708
2709 /**
2710 * Maps the specified key to the specified value in this table.
2711 * Neither the key nor the value can be null.
2712 *
2713 * <p>The value can be retrieved by calling the {@code get} method
2714 * with a key that is equal to the original key.
2715 *
2716 * @param key key with which the specified value is to be associated
2717 * @param value value to be associated with the specified key
2718 * @return the previous value associated with {@code key}, or
2719 * {@code null} if there was no mapping for {@code key}
2720 * @throws NullPointerException if the specified key or value is null
2721 */
2722 public V put(K key, V value) {
2723 return internalPut(key, value, false);
2724 }
2725
2726 /**
2727 * {@inheritDoc}
2728 *
2729 * @return the previous value associated with the specified key,
2730 * or {@code null} if there was no mapping for the key
2731 * @throws NullPointerException if the specified key or value is null
2732 */
2733 public V putIfAbsent(K key, V value) {
2734 return internalPut(key, value, true);
2735 }
2736
2737 /**
2738 * Copies all of the mappings from the specified map to this one.
2739 * These mappings replace any mappings that this map had for any of the
2740 * keys currently in the specified map.
2741 *
2742 * @param m mappings to be stored in this map
2743 */
2744 public void putAll(Map<? extends K, ? extends V> m) {
2745 internalPutAll(m);
2746 }
2747
2748 /**
2749 * If the specified key is not already associated with a value (or
2750 * is mapped to {@code null}), attempts to compute its value using
2751 * the given mapping function and enters it into this map unless
2752 * {@code null}. The entire method invocation is performed
2753 * atomically, so the function is applied at most once per key.
2754 * Some attempted update operations on this map by other threads
2755 * may be blocked while computation is in progress, so the
2756 * computation should be short and simple, and must not attempt to
2757 * update any other mappings of this Map.
2758 *
2759 * @param key key with which the specified value is to be associated
2760 * @param mappingFunction the function to compute a value
2761 * @return the current (existing or computed) value associated with
2762 * the specified key, or null if the computed value is null
2763 * @throws NullPointerException if the specified key or mappingFunction
2764 * is null
2765 * @throws IllegalStateException if the computation detectably
2766 * attempts a recursive update to this map that would
2767 * otherwise never complete
2768 * @throws RuntimeException or Error if the mappingFunction does so,
2769 * in which case the mapping is left unestablished
2770 */
2771 public V computeIfAbsent
2772 (K key, Function<? super K, ? extends V> mappingFunction) {
2773 return internalComputeIfAbsent(key, mappingFunction);
2774 }
2775
2776 /**
2777 * If the value for the specified key is present and non-null,
2778 * attempts to compute a new mapping given the key and its current
2779 * mapped value. The entire method invocation is performed
2780 * atomically. Some attempted update operations on this map by
2781 * other threads may be blocked while computation is in progress,
2782 * so the computation should be short and simple, and must not
2783 * attempt to update any other mappings of this Map.
2784 *
2785 * @param key key with which the specified value is to be associated
2786 * @param remappingFunction the function to compute a value
2787 * @return the new value associated with the specified key, or null if none
2788 * @throws NullPointerException if the specified key or remappingFunction
2789 * is null
2790 * @throws IllegalStateException if the computation detectably
2791 * attempts a recursive update to this map that would
2792 * otherwise never complete
2793 * @throws RuntimeException or Error if the remappingFunction does so,
2794 * in which case the mapping is unchanged
2795 */
2796 public V computeIfPresent
2797 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2798 return internalCompute(key, true, remappingFunction);
2799 }
2800
2801 /**
2802 * Attempts to compute a mapping for the specified key and its
2803 * current mapped value (or {@code null} if there is no current
2804 * mapping). The entire method invocation is performed atomically.
2805 * Some attempted update operations on this map by other threads
2806 * may be blocked while computation is in progress, so the
2807 * computation should be short and simple, and must not attempt to
2808 * update any other mappings of this Map.
2809 *
2810 * @param key key with which the specified value is to be associated
2811 * @param remappingFunction the function to compute a value
2812 * @return the new value associated with the specified key, or null if none
2813 * @throws NullPointerException if the specified key or remappingFunction
2814 * is null
2815 * @throws IllegalStateException if the computation detectably
2816 * attempts a recursive update to this map that would
2817 * otherwise never complete
2818 * @throws RuntimeException or Error if the remappingFunction does so,
2819 * in which case the mapping is unchanged
2820 */
2821 public V compute
2822 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2823 return internalCompute(key, false, remappingFunction);
2824 }
2825
2826 /**
2827 * If the specified key is not already associated with a
2828 * (non-null) value, associates it with the given value.
2829 * Otherwise, replaces the value with the results of the given
2830 * remapping function, or removes if {@code null}. The entire
2831 * method invocation is performed atomically. Some attempted
2832 * update operations on this map by other threads may be blocked
2833 * while computation is in progress, so the computation should be
2834 * short and simple, and must not attempt to update any other
2835 * mappings of this Map.
2836 *
2837 * @param key key with which the specified value is to be associated
2838 * @param value the value to use if absent
2839 * @param remappingFunction the function to recompute a value if present
2840 * @return the new value associated with the specified key, or null if none
2841 * @throws NullPointerException if the specified key or the
2842 * remappingFunction is null
2843 * @throws RuntimeException or Error if the remappingFunction does so,
2844 * in which case the mapping is unchanged
2845 */
2846 public V merge
2847 (K key, V value,
2848 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2849 return internalMerge(key, value, remappingFunction);
2850 }
2851
2852 /**
2853 * Removes the key (and its corresponding value) from this map.
2854 * This method does nothing if the key is not in the map.
2855 *
2856 * @param key the key that needs to be removed
2857 * @return the previous value associated with {@code key}, or
2858 * {@code null} if there was no mapping for {@code key}
2859 * @throws NullPointerException if the specified key is null
2860 */
2861 public V remove(Object key) {
2862 return internalReplace(key, null, null);
2863 }
2864
2865 /**
2866 * {@inheritDoc}
2867 *
2868 * @throws NullPointerException if the specified key is null
2869 */
2870 public boolean remove(Object key, Object value) {
2871 if (key == null)
2872 throw new NullPointerException();
2873 return value != null && internalReplace(key, null, value) != null;
2874 }
2875
2876 /**
2877 * {@inheritDoc}
2878 *
2879 * @throws NullPointerException if any of the arguments are null
2880 */
2881 public boolean replace(K key, V oldValue, V newValue) {
2882 if (key == null || oldValue == null || newValue == null)
2883 throw new NullPointerException();
2884 return internalReplace(key, newValue, oldValue) != null;
2885 }
2886
2887 /**
2888 * {@inheritDoc}
2889 *
2890 * @return the previous value associated with the specified key,
2891 * or {@code null} if there was no mapping for the key
2892 * @throws NullPointerException if the specified key or value is null
2893 */
2894 public V replace(K key, V value) {
2895 if (key == null || value == null)
2896 throw new NullPointerException();
2897 return internalReplace(key, value, null);
2898 }
2899
2900 /**
2901 * Removes all of the mappings from this map.
2902 */
2903 public void clear() {
2904 internalClear();
2905 }
2906
2907 /**
2908 * Returns a {@link Set} view of the keys contained in this map.
2909 * The set is backed by the map, so changes to the map are
2910 * reflected in the set, and vice-versa.
2911 *
2912 * @return the set view
2913 */
2914 public KeySetView<K,V> keySet() {
2915 KeySetView<K,V> ks = keySet;
2916 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2917 }
2918
2919 /**
2920 * Returns a {@link Set} view of the keys in this map, using the
2921 * given common mapped value for any additions (i.e., {@link
2922 * Collection#add} and {@link Collection#addAll(Collection)}).
2923 * This is of course only appropriate if it is acceptable to use
2924 * the same value for all additions from this view.
2925 *
2926 * @param mappedValue the mapped value to use for any additions
2927 * @return the set view
2928 * @throws NullPointerException if the mappedValue is null
2929 */
2930 public KeySetView<K,V> keySet(V mappedValue) {
2931 if (mappedValue == null)
2932 throw new NullPointerException();
2933 return new KeySetView<K,V>(this, mappedValue);
2934 }
2935
2936 /**
2937 * Returns a {@link Collection} view of the values contained in this map.
2938 * The collection is backed by the map, so changes to the map are
2939 * reflected in the collection, and vice-versa.
2940 *
2941 * @return the collection view
2942 */
2943 public ValuesView<K,V> values() {
2944 ValuesView<K,V> vs = values;
2945 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2946 }
2947
2948 /**
2949 * Returns a {@link Set} view of the mappings contained in this map.
2950 * The set is backed by the map, so changes to the map are
2951 * reflected in the set, and vice-versa. The set supports element
2952 * removal, which removes the corresponding mapping from the map,
2953 * via the {@code Iterator.remove}, {@code Set.remove},
2954 * {@code removeAll}, {@code retainAll}, and {@code clear}
2955 * operations. It does not support the {@code add} or
2956 * {@code addAll} operations.
2957 *
2958 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2959 * that will never throw {@link ConcurrentModificationException},
2960 * and guarantees to traverse elements as they existed upon
2961 * construction of the iterator, and may (but is not guaranteed to)
2962 * reflect any modifications subsequent to construction.
2963 *
2964 * @return the set view
2965 */
2966 public Set<Map.Entry<K,V>> entrySet() {
2967 EntrySetView<K,V> es = entrySet;
2968 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2969 }
2970
2971 /**
2972 * Returns an enumeration of the keys in this table.
2973 *
2974 * @return an enumeration of the keys in this table
2975 * @see #keySet()
2976 */
2977 public Enumeration<K> keys() {
2978 return new KeyIterator<K,V>(this);
2979 }
2980
2981 /**
2982 * Returns an enumeration of the values in this table.
2983 *
2984 * @return an enumeration of the values in this table
2985 * @see #values()
2986 */
2987 public Enumeration<V> elements() {
2988 return new ValueIterator<K,V>(this);
2989 }
2990
2991 /**
2992 * Returns the hash code value for this {@link Map}, i.e.,
2993 * the sum of, for each key-value pair in the map,
2994 * {@code key.hashCode() ^ value.hashCode()}.
2995 *
2996 * @return the hash code value for this map
2997 */
2998 public int hashCode() {
2999 int h = 0;
3000 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3001 V v;
3002 while ((v = it.advanceValue()) != null) {
3003 h += it.nextKey.hashCode() ^ v.hashCode();
3004 }
3005 return h;
3006 }
3007
3008 /**
3009 * Returns a string representation of this map. The string
3010 * representation consists of a list of key-value mappings (in no
3011 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3012 * mappings are separated by the characters {@code ", "} (comma
3013 * and space). Each key-value mapping is rendered as the key
3014 * followed by an equals sign ("{@code =}") followed by the
3015 * associated value.
3016 *
3017 * @return a string representation of this map
3018 */
3019 public String toString() {
3020 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3021 StringBuilder sb = new StringBuilder();
3022 sb.append('{');
3023 V v;
3024 if ((v = it.advanceValue()) != null) {
3025 for (;;) {
3026 K k = it.nextKey;
3027 sb.append(k == this ? "(this Map)" : k);
3028 sb.append('=');
3029 sb.append(v == this ? "(this Map)" : v);
3030 if ((v = it.advanceValue()) == null)
3031 break;
3032 sb.append(',').append(' ');
3033 }
3034 }
3035 return sb.append('}').toString();
3036 }
3037
3038 /**
3039 * Compares the specified object with this map for equality.
3040 * Returns {@code true} if the given object is a map with the same
3041 * mappings as this map. This operation may return misleading
3042 * results if either map is concurrently modified during execution
3043 * of this method.
3044 *
3045 * @param o object to be compared for equality with this map
3046 * @return {@code true} if the specified object is equal to this map
3047 */
3048 public boolean equals(Object o) {
3049 if (o != this) {
3050 if (!(o instanceof Map))
3051 return false;
3052 Map<?,?> m = (Map<?,?>) o;
3053 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3054 V val;
3055 while ((val = it.advanceValue()) != null) {
3056 Object v = m.get(it.nextKey);
3057 if (v == null || (v != val && !v.equals(val)))
3058 return false;
3059 }
3060 for (Map.Entry<?,?> e : m.entrySet()) {
3061 Object mk, mv, v;
3062 if ((mk = e.getKey()) == null ||
3063 (mv = e.getValue()) == null ||
3064 (v = internalGet(mk)) == null ||
3065 (mv != v && !mv.equals(v)))
3066 return false;
3067 }
3068 }
3069 return true;
3070 }
3071
3072 /* ----------------Iterators -------------- */
3073
3074 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3075 extends Traverser<K,V,Object>
3076 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3077 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3078 KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3079 super(map, it);
3080 }
3081 public Spliterator<K> trySplit() {
3082 return (baseLimit - baseIndex <= 1) ? null :
3083 new KeyIterator<K,V>(map, this);
3084 }
3085 public final K next() {
3086 K k;
3087 if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3088 throw new NoSuchElementException();
3089 nextVal = null;
3090 return k;
3091 }
3092
3093 public final K nextElement() { return next(); }
3094
3095 public Iterator<K> iterator() { return this; }
3096
3097 public void forEach(Consumer<? super K> action) {
3098 forEachKey(action);
3099 }
3100
3101 public boolean tryAdvance(Consumer<? super K> block) {
3102 if (block == null) throw new NullPointerException();
3103 K k;
3104 if ((k = advanceKey()) == null)
3105 return false;
3106 block.accept(k);
3107 return true;
3108 }
3109
3110 public int characteristics() {
3111 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3112 Spliterator.NONNULL;
3113 }
3114
3115 }
3116
3117 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3118 extends Traverser<K,V,Object>
3119 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3120 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3121 ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3122 super(map, it);
3123 }
3124 public Spliterator<V> trySplit() {
3125 return (baseLimit - baseIndex <= 1) ? null :
3126 new ValueIterator<K,V>(map, this);
3127 }
3128
3129 public final V next() {
3130 V v;
3131 if ((v = nextVal) == null && (v = advanceValue()) == null)
3132 throw new NoSuchElementException();
3133 nextVal = null;
3134 return v;
3135 }
3136
3137 public final V nextElement() { return next(); }
3138
3139 public Iterator<V> iterator() { return this; }
3140
3141 public void forEach(Consumer<? super V> action) {
3142 forEachValue(action);
3143 }
3144
3145 public boolean tryAdvance(Consumer<? super V> block) {
3146 V v;
3147 if (block == null) throw new NullPointerException();
3148 if ((v = advanceValue()) == null)
3149 return false;
3150 block.accept(v);
3151 return true;
3152 }
3153
3154 public int characteristics() {
3155 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3156 }
3157 }
3158
3159 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3160 extends Traverser<K,V,Object>
3161 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3162 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3163 EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3164 super(map, it);
3165 }
3166 public Spliterator<Map.Entry<K,V>> trySplit() {
3167 return (baseLimit - baseIndex <= 1) ? null :
3168 new EntryIterator<K,V>(map, this);
3169 }
3170
3171 public final Map.Entry<K,V> next() {
3172 V v;
3173 if ((v = nextVal) == null && (v = advanceValue()) == null)
3174 throw new NoSuchElementException();
3175 K k = nextKey;
3176 nextVal = null;
3177 return new MapEntry<K,V>(k, v, map);
3178 }
3179
3180 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3181
3182 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3183 if (action == null) throw new NullPointerException();
3184 V v;
3185 while ((v = advanceValue()) != null)
3186 action.accept(entryFor(nextKey, v));
3187 }
3188
3189 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3190 V v;
3191 if (block == null) throw new NullPointerException();
3192 if ((v = advanceValue()) == null)
3193 return false;
3194 block.accept(entryFor(nextKey, v));
3195 return true;
3196 }
3197
3198 public int characteristics() {
3199 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3200 Spliterator.NONNULL;
3201 }
3202 }
3203
3204 /**
3205 * Exported Entry for iterators
3206 */
3207 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3208 final K key; // non-null
3209 V val; // non-null
3210 final ConcurrentHashMap<K,V> map;
3211 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3212 this.key = key;
3213 this.val = val;
3214 this.map = map;
3215 }
3216 public final K getKey() { return key; }
3217 public final V getValue() { return val; }
3218 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3219 public final String toString(){ return key + "=" + val; }
3220
3221 public final boolean equals(Object o) {
3222 Object k, v; Map.Entry<?,?> e;
3223 return ((o instanceof Map.Entry) &&
3224 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3225 (v = e.getValue()) != null &&
3226 (k == key || k.equals(key)) &&
3227 (v == val || v.equals(val)));
3228 }
3229
3230 /**
3231 * Sets our entry's value and writes through to the map. The
3232 * value to return is somewhat arbitrary here. Since we do not
3233 * necessarily track asynchronous changes, the most recent
3234 * "previous" value could be different from what we return (or
3235 * could even have been removed in which case the put will
3236 * re-establish). We do not and cannot guarantee more.
3237 */
3238 public final V setValue(V value) {
3239 if (value == null) throw new NullPointerException();
3240 V v = val;
3241 val = value;
3242 map.put(key, value);
3243 return v;
3244 }
3245 }
3246
3247 /**
3248 * Returns exportable snapshot entry for the given key and value
3249 * when write-through can't or shouldn't be used.
3250 */
3251 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3252 return new AbstractMap.SimpleEntry<K,V>(k, v);
3253 }
3254
3255 /* ---------------- Serialization Support -------------- */
3256
3257 /**
3258 * Stripped-down version of helper class used in previous version,
3259 * declared for the sake of serialization compatibility
3260 */
3261 static class Segment<K,V> implements Serializable {
3262 private static final long serialVersionUID = 2249069246763182397L;
3263 final float loadFactor;
3264 Segment(float lf) { this.loadFactor = lf; }
3265 }
3266
3267 /**
3268 * Saves the state of the {@code ConcurrentHashMap} instance to a
3269 * stream (i.e., serializes it).
3270 * @param s the stream
3271 * @serialData
3272 * the key (Object) and value (Object)
3273 * for each key-value mapping, followed by a null pair.
3274 * The key-value mappings are emitted in no particular order.
3275 */
3276 @SuppressWarnings("unchecked") private void writeObject
3277 (java.io.ObjectOutputStream s)
3278 throws java.io.IOException {
3279 if (segments == null) { // for serialization compatibility
3280 segments = (Segment<K,V>[])
3281 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3282 for (int i = 0; i < segments.length; ++i)
3283 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3284 }
3285 s.defaultWriteObject();
3286 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3287 V v;
3288 while ((v = it.advanceValue()) != null) {
3289 s.writeObject(it.nextKey);
3290 s.writeObject(v);
3291 }
3292 s.writeObject(null);
3293 s.writeObject(null);
3294 segments = null; // throw away
3295 }
3296
3297 /**
3298 * Reconstitutes the instance from a stream (that is, deserializes it).
3299 * @param s the stream
3300 */
3301 @SuppressWarnings("unchecked") private void readObject
3302 (java.io.ObjectInputStream s)
3303 throws java.io.IOException, ClassNotFoundException {
3304 s.defaultReadObject();
3305 this.segments = null; // unneeded
3306
3307 // Create all nodes, then place in table once size is known
3308 long size = 0L;
3309 Node<V> p = null;
3310 for (;;) {
3311 K k = (K) s.readObject();
3312 V v = (V) s.readObject();
3313 if (k != null && v != null) {
3314 int h = spread(k.hashCode());
3315 p = new Node<V>(h, k, v, p);
3316 ++size;
3317 }
3318 else
3319 break;
3320 }
3321 if (p != null) {
3322 boolean init = false;
3323 int n;
3324 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3325 n = MAXIMUM_CAPACITY;
3326 else {
3327 int sz = (int)size;
3328 n = tableSizeFor(sz + (sz >>> 1) + 1);
3329 }
3330 int sc = sizeCtl;
3331 boolean collide = false;
3332 if (n > sc &&
3333 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3334 try {
3335 if (table == null) {
3336 init = true;
3337 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3338 Node<V>[] tab = (Node<V>[])rt;
3339 int mask = n - 1;
3340 while (p != null) {
3341 int j = p.hash & mask;
3342 Node<V> next = p.next;
3343 Node<V> q = p.next = tabAt(tab, j);
3344 setTabAt(tab, j, p);
3345 if (!collide && q != null && q.hash == p.hash)
3346 collide = true;
3347 p = next;
3348 }
3349 table = tab;
3350 addCount(size, -1);
3351 sc = n - (n >>> 2);
3352 }
3353 } finally {
3354 sizeCtl = sc;
3355 }
3356 if (collide) { // rescan and convert to TreeBins
3357 Node<V>[] tab = table;
3358 for (int i = 0; i < tab.length; ++i) {
3359 int c = 0;
3360 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3361 if (++c > TREE_THRESHOLD &&
3362 (e.key instanceof Comparable)) {
3363 replaceWithTreeBin(tab, i, e.key);
3364 break;
3365 }
3366 }
3367 }
3368 }
3369 }
3370 if (!init) { // Can only happen if unsafely published.
3371 while (p != null) {
3372 internalPut((K)p.key, p.val, false);
3373 p = p.next;
3374 }
3375 }
3376 }
3377 }
3378
3379 // -------------------------------------------------------
3380
3381 // Sequential bulk operations
3382
3383 /**
3384 * Performs the given action for each (key, value).
3385 *
3386 * @param action the action
3387 */
3388 public void forEachSequentially
3389 (BiConsumer<? super K, ? super V> action) {
3390 if (action == null) throw new NullPointerException();
3391 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3392 V v;
3393 while ((v = it.advanceValue()) != null)
3394 action.accept(it.nextKey, v);
3395 }
3396
3397 /**
3398 * Performs the given action for each non-null transformation
3399 * of each (key, value).
3400 *
3401 * @param transformer a function returning the transformation
3402 * for an element, or null if there is no transformation (in
3403 * which case the action is not applied)
3404 * @param action the action
3405 */
3406 public <U> void forEachSequentially
3407 (BiFunction<? super K, ? super V, ? extends U> transformer,
3408 Consumer<? super U> action) {
3409 if (transformer == null || action == null)
3410 throw new NullPointerException();
3411 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3412 V v; U u;
3413 while ((v = it.advanceValue()) != null) {
3414 if ((u = transformer.apply(it.nextKey, v)) != null)
3415 action.accept(u);
3416 }
3417 }
3418
3419 /**
3420 * Returns a non-null result from applying the given search
3421 * function on each (key, value), or null if none.
3422 *
3423 * @param searchFunction a function returning a non-null
3424 * result on success, else null
3425 * @return a non-null result from applying the given search
3426 * function on each (key, value), or null if none
3427 */
3428 public <U> U searchSequentially
3429 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3430 if (searchFunction == null) throw new NullPointerException();
3431 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3432 V v; U u;
3433 while ((v = it.advanceValue()) != null) {
3434 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3435 return u;
3436 }
3437 return null;
3438 }
3439
3440 /**
3441 * Returns the result of accumulating the given transformation
3442 * of all (key, value) pairs using the given reducer to
3443 * combine values, or null if none.
3444 *
3445 * @param transformer a function returning the transformation
3446 * for an element, or null if there is no transformation (in
3447 * which case it is not combined)
3448 * @param reducer a commutative associative combining function
3449 * @return the result of accumulating the given transformation
3450 * of all (key, value) pairs
3451 */
3452 public <U> U reduceSequentially
3453 (BiFunction<? super K, ? super V, ? extends U> transformer,
3454 BiFunction<? super U, ? super U, ? extends U> reducer) {
3455 if (transformer == null || reducer == null)
3456 throw new NullPointerException();
3457 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3458 U r = null, u; V v;
3459 while ((v = it.advanceValue()) != null) {
3460 if ((u = transformer.apply(it.nextKey, v)) != null)
3461 r = (r == null) ? u : reducer.apply(r, u);
3462 }
3463 return r;
3464 }
3465
3466 /**
3467 * Returns the result of accumulating the given transformation
3468 * of all (key, value) pairs using the given reducer to
3469 * combine values, and the given basis as an identity value.
3470 *
3471 * @param transformer a function returning the transformation
3472 * for an element
3473 * @param basis the identity (initial default value) for the reduction
3474 * @param reducer a commutative associative combining function
3475 * @return the result of accumulating the given transformation
3476 * of all (key, value) pairs
3477 */
3478 public double reduceToDoubleSequentially
3479 (ToDoubleBiFunction<? super K, ? super V> transformer,
3480 double basis,
3481 DoubleBinaryOperator reducer) {
3482 if (transformer == null || reducer == null)
3483 throw new NullPointerException();
3484 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3485 double r = basis; V v;
3486 while ((v = it.advanceValue()) != null)
3487 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3488 return r;
3489 }
3490
3491 /**
3492 * Returns the result of accumulating the given transformation
3493 * of all (key, value) pairs using the given reducer to
3494 * combine values, and the given basis as an identity value.
3495 *
3496 * @param transformer a function returning the transformation
3497 * for an element
3498 * @param basis the identity (initial default value) for the reduction
3499 * @param reducer a commutative associative combining function
3500 * @return the result of accumulating the given transformation
3501 * of all (key, value) pairs
3502 */
3503 public long reduceToLongSequentially
3504 (ToLongBiFunction<? super K, ? super V> transformer,
3505 long basis,
3506 LongBinaryOperator reducer) {
3507 if (transformer == null || reducer == null)
3508 throw new NullPointerException();
3509 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3510 long r = basis; V v;
3511 while ((v = it.advanceValue()) != null)
3512 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3513 return r;
3514 }
3515
3516 /**
3517 * Returns the result of accumulating the given transformation
3518 * of all (key, value) pairs using the given reducer to
3519 * combine values, and the given basis as an identity value.
3520 *
3521 * @param transformer a function returning the transformation
3522 * for an element
3523 * @param basis the identity (initial default value) for the reduction
3524 * @param reducer a commutative associative combining function
3525 * @return the result of accumulating the given transformation
3526 * of all (key, value) pairs
3527 */
3528 public int reduceToIntSequentially
3529 (ToIntBiFunction<? super K, ? super V> transformer,
3530 int basis,
3531 IntBinaryOperator reducer) {
3532 if (transformer == null || reducer == null)
3533 throw new NullPointerException();
3534 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3535 int r = basis; V v;
3536 while ((v = it.advanceValue()) != null)
3537 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3538 return r;
3539 }
3540
3541 /**
3542 * Performs the given action for each key.
3543 *
3544 * @param action the action
3545 */
3546 public void forEachKeySequentially
3547 (Consumer<? super K> action) {
3548 new Traverser<K,V,Object>(this).forEachKey(action);
3549 }
3550
3551 /**
3552 * Performs the given action for each non-null transformation
3553 * of each key.
3554 *
3555 * @param transformer a function returning the transformation
3556 * for an element, or null if there is no transformation (in
3557 * which case the action is not applied)
3558 * @param action the action
3559 */
3560 public <U> void forEachKeySequentially
3561 (Function<? super K, ? extends U> transformer,
3562 Consumer<? super U> action) {
3563 if (transformer == null || action == null)
3564 throw new NullPointerException();
3565 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3566 K k; U u;
3567 while ((k = it.advanceKey()) != null) {
3568 if ((u = transformer.apply(k)) != null)
3569 action.accept(u);
3570 }
3571 ForkJoinTasks.forEachKey
3572 (this, transformer, action).invoke();
3573 }
3574
3575 /**
3576 * Returns a non-null result from applying the given search
3577 * function on each key, or null if none.
3578 *
3579 * @param searchFunction a function returning a non-null
3580 * result on success, else null
3581 * @return a non-null result from applying the given search
3582 * function on each key, or null if none
3583 */
3584 public <U> U searchKeysSequentially
3585 (Function<? super K, ? extends U> searchFunction) {
3586 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3587 K k; U u;
3588 while ((k = it.advanceKey()) != null) {
3589 if ((u = searchFunction.apply(k)) != null)
3590 return u;
3591 }
3592 return null;
3593 }
3594
3595 /**
3596 * Returns the result of accumulating all keys using the given
3597 * reducer to combine values, or null if none.
3598 *
3599 * @param reducer a commutative associative combining function
3600 * @return the result of accumulating all keys using the given
3601 * reducer to combine values, or null if none
3602 */
3603 public K reduceKeysSequentially
3604 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3605 if (reducer == null) throw new NullPointerException();
3606 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3607 K u, r = null;
3608 while ((u = it.advanceKey()) != null) {
3609 r = (r == null) ? u : reducer.apply(r, u);
3610 }
3611 return r;
3612 }
3613
3614 /**
3615 * Returns the result of accumulating the given transformation
3616 * of all keys using the given reducer to combine values, or
3617 * null if none.
3618 *
3619 * @param transformer a function returning the transformation
3620 * for an element, or null if there is no transformation (in
3621 * which case it is not combined)
3622 * @param reducer a commutative associative combining function
3623 * @return the result of accumulating the given transformation
3624 * of all keys
3625 */
3626 public <U> U reduceKeysSequentially
3627 (Function<? super K, ? extends U> transformer,
3628 BiFunction<? super U, ? super U, ? extends U> reducer) {
3629 if (transformer == null || reducer == null)
3630 throw new NullPointerException();
3631 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3632 K k; U r = null, u;
3633 while ((k = it.advanceKey()) != null) {
3634 if ((u = transformer.apply(k)) != null)
3635 r = (r == null) ? u : reducer.apply(r, u);
3636 }
3637 return r;
3638 }
3639
3640 /**
3641 * Returns the result of accumulating the given transformation
3642 * of all keys using the given reducer to combine values, and
3643 * the given basis as an identity value.
3644 *
3645 * @param transformer a function returning the transformation
3646 * for an element
3647 * @param basis the identity (initial default value) for the reduction
3648 * @param reducer a commutative associative combining function
3649 * @return the result of accumulating the given transformation
3650 * of all keys
3651 */
3652 public double reduceKeysToDoubleSequentially
3653 (ToDoubleFunction<? super K> transformer,
3654 double basis,
3655 DoubleBinaryOperator reducer) {
3656 if (transformer == null || reducer == null)
3657 throw new NullPointerException();
3658 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3659 double r = basis;
3660 K k;
3661 while ((k = it.advanceKey()) != null)
3662 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3663 return r;
3664 }
3665
3666 /**
3667 * Returns the result of accumulating the given transformation
3668 * of all keys using the given reducer to combine values, and
3669 * the given basis as an identity value.
3670 *
3671 * @param transformer a function returning the transformation
3672 * for an element
3673 * @param basis the identity (initial default value) for the reduction
3674 * @param reducer a commutative associative combining function
3675 * @return the result of accumulating the given transformation
3676 * of all keys
3677 */
3678 public long reduceKeysToLongSequentially
3679 (ToLongFunction<? super K> transformer,
3680 long basis,
3681 LongBinaryOperator reducer) {
3682 if (transformer == null || reducer == null)
3683 throw new NullPointerException();
3684 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 long r = basis;
3686 K k;
3687 while ((k = it.advanceKey()) != null)
3688 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3689 return r;
3690 }
3691
3692 /**
3693 * Returns the result of accumulating the given transformation
3694 * of all keys using the given reducer to combine values, and
3695 * the given basis as an identity value.
3696 *
3697 * @param transformer a function returning the transformation
3698 * for an element
3699 * @param basis the identity (initial default value) for the reduction
3700 * @param reducer a commutative associative combining function
3701 * @return the result of accumulating the given transformation
3702 * of all keys
3703 */
3704 public int reduceKeysToIntSequentially
3705 (ToIntFunction<? super K> transformer,
3706 int basis,
3707 IntBinaryOperator reducer) {
3708 if (transformer == null || reducer == null)
3709 throw new NullPointerException();
3710 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3711 int r = basis;
3712 K k;
3713 while ((k = it.advanceKey()) != null)
3714 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3715 return r;
3716 }
3717
3718 /**
3719 * Performs the given action for each value.
3720 *
3721 * @param action the action
3722 */
3723 public void forEachValueSequentially(Consumer<? super V> action) {
3724 new Traverser<K,V,Object>(this).forEachValue(action);
3725 }
3726
3727 /**
3728 * Performs the given action for each non-null transformation
3729 * of each value.
3730 *
3731 * @param transformer a function returning the transformation
3732 * for an element, or null if there is no transformation (in
3733 * which case the action is not applied)
3734 * @param action the action
3735 */
3736 public <U> void forEachValueSequentially
3737 (Function<? super V, ? extends U> transformer,
3738 Consumer<? super U> action) {
3739 if (transformer == null || action == null)
3740 throw new NullPointerException();
3741 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3742 V v; U u;
3743 while ((v = it.advanceValue()) != null) {
3744 if ((u = transformer.apply(v)) != null)
3745 action.accept(u);
3746 }
3747 }
3748
3749 /**
3750 * Returns a non-null result from applying the given search
3751 * function on each value, or null if none.
3752 *
3753 * @param searchFunction a function returning a non-null
3754 * result on success, else null
3755 * @return a non-null result from applying the given search
3756 * function on each value, or null if none
3757 */
3758 public <U> U searchValuesSequentially
3759 (Function<? super V, ? extends U> searchFunction) {
3760 if (searchFunction == null) throw new NullPointerException();
3761 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3762 V v; U u;
3763 while ((v = it.advanceValue()) != null) {
3764 if ((u = searchFunction.apply(v)) != null)
3765 return u;
3766 }
3767 return null;
3768 }
3769
3770 /**
3771 * Returns the result of accumulating all values using the
3772 * given reducer to combine values, or null if none.
3773 *
3774 * @param reducer a commutative associative combining function
3775 * @return the result of accumulating all values
3776 */
3777 public V reduceValuesSequentially
3778 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3779 if (reducer == null) throw new NullPointerException();
3780 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781 V r = null; V v;
3782 while ((v = it.advanceValue()) != null)
3783 r = (r == null) ? v : reducer.apply(r, v);
3784 return r;
3785 }
3786
3787 /**
3788 * Returns the result of accumulating the given transformation
3789 * of all values using the given reducer to combine values, or
3790 * null if none.
3791 *
3792 * @param transformer a function returning the transformation
3793 * for an element, or null if there is no transformation (in
3794 * which case it is not combined)
3795 * @param reducer a commutative associative combining function
3796 * @return the result of accumulating the given transformation
3797 * of all values
3798 */
3799 public <U> U reduceValuesSequentially
3800 (Function<? super V, ? extends U> transformer,
3801 BiFunction<? super U, ? super U, ? extends U> reducer) {
3802 if (transformer == null || reducer == null)
3803 throw new NullPointerException();
3804 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3805 U r = null, u; V v;
3806 while ((v = it.advanceValue()) != null) {
3807 if ((u = transformer.apply(v)) != null)
3808 r = (r == null) ? u : reducer.apply(r, u);
3809 }
3810 return r;
3811 }
3812
3813 /**
3814 * Returns the result of accumulating the given transformation
3815 * of all values using the given reducer to combine values,
3816 * and the given basis as an identity value.
3817 *
3818 * @param transformer a function returning the transformation
3819 * for an element
3820 * @param basis the identity (initial default value) for the reduction
3821 * @param reducer a commutative associative combining function
3822 * @return the result of accumulating the given transformation
3823 * of all values
3824 */
3825 public double reduceValuesToDoubleSequentially
3826 (ToDoubleFunction<? super V> transformer,
3827 double basis,
3828 DoubleBinaryOperator reducer) {
3829 if (transformer == null || reducer == null)
3830 throw new NullPointerException();
3831 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3832 double r = basis; V v;
3833 while ((v = it.advanceValue()) != null)
3834 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3835 return r;
3836 }
3837
3838 /**
3839 * Returns the result of accumulating the given transformation
3840 * of all values using the given reducer to combine values,
3841 * and the given basis as an identity value.
3842 *
3843 * @param transformer a function returning the transformation
3844 * for an element
3845 * @param basis the identity (initial default value) for the reduction
3846 * @param reducer a commutative associative combining function
3847 * @return the result of accumulating the given transformation
3848 * of all values
3849 */
3850 public long reduceValuesToLongSequentially
3851 (ToLongFunction<? super V> transformer,
3852 long basis,
3853 LongBinaryOperator reducer) {
3854 if (transformer == null || reducer == null)
3855 throw new NullPointerException();
3856 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3857 long r = basis; V v;
3858 while ((v = it.advanceValue()) != null)
3859 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3860 return r;
3861 }
3862
3863 /**
3864 * Returns the result of accumulating the given transformation
3865 * of all values using the given reducer to combine values,
3866 * and the given basis as an identity value.
3867 *
3868 * @param transformer a function returning the transformation
3869 * for an element
3870 * @param basis the identity (initial default value) for the reduction
3871 * @param reducer a commutative associative combining function
3872 * @return the result of accumulating the given transformation
3873 * of all values
3874 */
3875 public int reduceValuesToIntSequentially
3876 (ToIntFunction<? super V> transformer,
3877 int basis,
3878 IntBinaryOperator reducer) {
3879 if (transformer == null || reducer == null)
3880 throw new NullPointerException();
3881 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3882 int r = basis; V v;
3883 while ((v = it.advanceValue()) != null)
3884 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3885 return r;
3886 }
3887
3888 /**
3889 * Performs the given action for each entry.
3890 *
3891 * @param action the action
3892 */
3893 public void forEachEntrySequentially
3894 (Consumer<? super Map.Entry<K,V>> action) {
3895 if (action == null) throw new NullPointerException();
3896 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3897 V v;
3898 while ((v = it.advanceValue()) != null)
3899 action.accept(entryFor(it.nextKey, v));
3900 }
3901
3902 /**
3903 * Performs the given action for each non-null transformation
3904 * of each entry.
3905 *
3906 * @param transformer a function returning the transformation
3907 * for an element, or null if there is no transformation (in
3908 * which case the action is not applied)
3909 * @param action the action
3910 */
3911 public <U> void forEachEntrySequentially
3912 (Function<Map.Entry<K,V>, ? extends U> transformer,
3913 Consumer<? super U> action) {
3914 if (transformer == null || action == null)
3915 throw new NullPointerException();
3916 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3917 V v; U u;
3918 while ((v = it.advanceValue()) != null) {
3919 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3920 action.accept(u);
3921 }
3922 }
3923
3924 /**
3925 * Returns a non-null result from applying the given search
3926 * function on each entry, or null if none.
3927 *
3928 * @param searchFunction a function returning a non-null
3929 * result on success, else null
3930 * @return a non-null result from applying the given search
3931 * function on each entry, or null if none
3932 */
3933 public <U> U searchEntriesSequentially
3934 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3935 if (searchFunction == null) throw new NullPointerException();
3936 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3937 V v; U u;
3938 while ((v = it.advanceValue()) != null) {
3939 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3940 return u;
3941 }
3942 return null;
3943 }
3944
3945 /**
3946 * Returns the result of accumulating all entries using the
3947 * given reducer to combine values, or null if none.
3948 *
3949 * @param reducer a commutative associative combining function
3950 * @return the result of accumulating all entries
3951 */
3952 public Map.Entry<K,V> reduceEntriesSequentially
3953 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3954 if (reducer == null) throw new NullPointerException();
3955 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3956 Map.Entry<K,V> r = null; V v;
3957 while ((v = it.advanceValue()) != null) {
3958 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3959 r = (r == null) ? u : reducer.apply(r, u);
3960 }
3961 return r;
3962 }
3963
3964 /**
3965 * Returns the result of accumulating the given transformation
3966 * of all entries using the given reducer to combine values,
3967 * or null if none.
3968 *
3969 * @param transformer a function returning the transformation
3970 * for an element, or null if there is no transformation (in
3971 * which case it is not combined)
3972 * @param reducer a commutative associative combining function
3973 * @return the result of accumulating the given transformation
3974 * of all entries
3975 */
3976 public <U> U reduceEntriesSequentially
3977 (Function<Map.Entry<K,V>, ? extends U> transformer,
3978 BiFunction<? super U, ? super U, ? extends U> reducer) {
3979 if (transformer == null || reducer == null)
3980 throw new NullPointerException();
3981 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3982 U r = null, u; V v;
3983 while ((v = it.advanceValue()) != null) {
3984 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3985 r = (r == null) ? u : reducer.apply(r, u);
3986 }
3987 return r;
3988 }
3989
3990 /**
3991 * Returns the result of accumulating the given transformation
3992 * of all entries using the given reducer to combine values,
3993 * and the given basis as an identity value.
3994 *
3995 * @param transformer a function returning the transformation
3996 * for an element
3997 * @param basis the identity (initial default value) for the reduction
3998 * @param reducer a commutative associative combining function
3999 * @return the result of accumulating the given transformation
4000 * of all entries
4001 */
4002 public double reduceEntriesToDoubleSequentially
4003 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4004 double basis,
4005 DoubleBinaryOperator reducer) {
4006 if (transformer == null || reducer == null)
4007 throw new NullPointerException();
4008 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4009 double r = basis; V v;
4010 while ((v = it.advanceValue()) != null)
4011 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4012 return r;
4013 }
4014
4015 /**
4016 * Returns the result of accumulating the given transformation
4017 * of all entries using the given reducer to combine values,
4018 * and the given basis as an identity value.
4019 *
4020 * @param transformer a function returning the transformation
4021 * for an element
4022 * @param basis the identity (initial default value) for the reduction
4023 * @param reducer a commutative associative combining function
4024 * @return the result of accumulating the given transformation
4025 * of all entries
4026 */
4027 public long reduceEntriesToLongSequentially
4028 (ToLongFunction<Map.Entry<K,V>> transformer,
4029 long basis,
4030 LongBinaryOperator reducer) {
4031 if (transformer == null || reducer == null)
4032 throw new NullPointerException();
4033 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4034 long r = basis; V v;
4035 while ((v = it.advanceValue()) != null)
4036 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4037 return r;
4038 }
4039
4040 /**
4041 * Returns the result of accumulating the given transformation
4042 * of all entries using the given reducer to combine values,
4043 * and the given basis as an identity value.
4044 *
4045 * @param transformer a function returning the transformation
4046 * for an element
4047 * @param basis the identity (initial default value) for the reduction
4048 * @param reducer a commutative associative combining function
4049 * @return the result of accumulating the given transformation
4050 * of all entries
4051 */
4052 public int reduceEntriesToIntSequentially
4053 (ToIntFunction<Map.Entry<K,V>> transformer,
4054 int basis,
4055 IntBinaryOperator reducer) {
4056 if (transformer == null || reducer == null)
4057 throw new NullPointerException();
4058 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4059 int r = basis; V v;
4060 while ((v = it.advanceValue()) != null)
4061 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4062 return r;
4063 }
4064
4065 // Parallel bulk operations
4066
4067 /**
4068 * Performs the given action for each (key, value).
4069 *
4070 * @param action the action
4071 */
4072 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4073 ForkJoinTasks.forEach
4074 (this, action).invoke();
4075 }
4076
4077 /**
4078 * Performs the given action for each non-null transformation
4079 * of each (key, value).
4080 *
4081 * @param transformer a function returning the transformation
4082 * for an element, or null if there is no transformation (in
4083 * which case the action is not applied)
4084 * @param action the action
4085 */
4086 public <U> void forEachInParallel
4087 (BiFunction<? super K, ? super V, ? extends U> transformer,
4088 Consumer<? super U> action) {
4089 ForkJoinTasks.forEach
4090 (this, transformer, action).invoke();
4091 }
4092
4093 /**
4094 * Returns a non-null result from applying the given search
4095 * function on each (key, value), or null if none. Upon
4096 * success, further element processing is suppressed and the
4097 * results of any other parallel invocations of the search
4098 * function are ignored.
4099 *
4100 * @param searchFunction a function returning a non-null
4101 * result on success, else null
4102 * @return a non-null result from applying the given search
4103 * function on each (key, value), or null if none
4104 */
4105 public <U> U searchInParallel
4106 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4107 return ForkJoinTasks.search
4108 (this, searchFunction).invoke();
4109 }
4110
4111 /**
4112 * Returns the result of accumulating the given transformation
4113 * of all (key, value) pairs using the given reducer to
4114 * combine values, or null if none.
4115 *
4116 * @param transformer a function returning the transformation
4117 * for an element, or null if there is no transformation (in
4118 * which case it is not combined)
4119 * @param reducer a commutative associative combining function
4120 * @return the result of accumulating the given transformation
4121 * of all (key, value) pairs
4122 */
4123 public <U> U reduceInParallel
4124 (BiFunction<? super K, ? super V, ? extends U> transformer,
4125 BiFunction<? super U, ? super U, ? extends U> reducer) {
4126 return ForkJoinTasks.reduce
4127 (this, transformer, reducer).invoke();
4128 }
4129
4130 /**
4131 * Returns the result of accumulating the given transformation
4132 * of all (key, value) pairs using the given reducer to
4133 * combine values, and the given basis as an identity value.
4134 *
4135 * @param transformer a function returning the transformation
4136 * for an element
4137 * @param basis the identity (initial default value) for the reduction
4138 * @param reducer a commutative associative combining function
4139 * @return the result of accumulating the given transformation
4140 * of all (key, value) pairs
4141 */
4142 public double reduceToDoubleInParallel
4143 (ToDoubleBiFunction<? super K, ? super V> transformer,
4144 double basis,
4145 DoubleBinaryOperator reducer) {
4146 return ForkJoinTasks.reduceToDouble
4147 (this, transformer, basis, reducer).invoke();
4148 }
4149
4150 /**
4151 * Returns the result of accumulating the given transformation
4152 * of all (key, value) pairs using the given reducer to
4153 * combine values, and the given basis as an identity value.
4154 *
4155 * @param transformer a function returning the transformation
4156 * for an element
4157 * @param basis the identity (initial default value) for the reduction
4158 * @param reducer a commutative associative combining function
4159 * @return the result of accumulating the given transformation
4160 * of all (key, value) pairs
4161 */
4162 public long reduceToLongInParallel
4163 (ToLongBiFunction<? super K, ? super V> transformer,
4164 long basis,
4165 LongBinaryOperator reducer) {
4166 return ForkJoinTasks.reduceToLong
4167 (this, transformer, basis, reducer).invoke();
4168 }
4169
4170 /**
4171 * Returns the result of accumulating the given transformation
4172 * of all (key, value) pairs using the given reducer to
4173 * combine values, and the given basis as an identity value.
4174 *
4175 * @param transformer a function returning the transformation
4176 * for an element
4177 * @param basis the identity (initial default value) for the reduction
4178 * @param reducer a commutative associative combining function
4179 * @return the result of accumulating the given transformation
4180 * of all (key, value) pairs
4181 */
4182 public int reduceToIntInParallel
4183 (ToIntBiFunction<? super K, ? super V> transformer,
4184 int basis,
4185 IntBinaryOperator reducer) {
4186 return ForkJoinTasks.reduceToInt
4187 (this, transformer, basis, reducer).invoke();
4188 }
4189
4190 /**
4191 * Performs the given action for each key.
4192 *
4193 * @param action the action
4194 */
4195 public void forEachKeyInParallel(Consumer<? super K> action) {
4196 ForkJoinTasks.forEachKey
4197 (this, action).invoke();
4198 }
4199
4200 /**
4201 * Performs the given action for each non-null transformation
4202 * of each key.
4203 *
4204 * @param transformer a function returning the transformation
4205 * for an element, or null if there is no transformation (in
4206 * which case the action is not applied)
4207 * @param action the action
4208 */
4209 public <U> void forEachKeyInParallel
4210 (Function<? super K, ? extends U> transformer,
4211 Consumer<? super U> action) {
4212 ForkJoinTasks.forEachKey
4213 (this, transformer, action).invoke();
4214 }
4215
4216 /**
4217 * Returns a non-null result from applying the given search
4218 * function on each key, or null if none. Upon success,
4219 * further element processing is suppressed and the results of
4220 * any other parallel invocations of the search function are
4221 * ignored.
4222 *
4223 * @param searchFunction a function returning a non-null
4224 * result on success, else null
4225 * @return a non-null result from applying the given search
4226 * function on each key, or null if none
4227 */
4228 public <U> U searchKeysInParallel
4229 (Function<? super K, ? extends U> searchFunction) {
4230 return ForkJoinTasks.searchKeys
4231 (this, searchFunction).invoke();
4232 }
4233
4234 /**
4235 * Returns the result of accumulating all keys using the given
4236 * reducer to combine values, or null if none.
4237 *
4238 * @param reducer a commutative associative combining function
4239 * @return the result of accumulating all keys using the given
4240 * reducer to combine values, or null if none
4241 */
4242 public K reduceKeysInParallel
4243 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4244 return ForkJoinTasks.reduceKeys
4245 (this, reducer).invoke();
4246 }
4247
4248 /**
4249 * Returns the result of accumulating the given transformation
4250 * of all keys using the given reducer to combine values, or
4251 * null if none.
4252 *
4253 * @param transformer a function returning the transformation
4254 * for an element, or null if there is no transformation (in
4255 * which case it is not combined)
4256 * @param reducer a commutative associative combining function
4257 * @return the result of accumulating the given transformation
4258 * of all keys
4259 */
4260 public <U> U reduceKeysInParallel
4261 (Function<? super K, ? extends U> transformer,
4262 BiFunction<? super U, ? super U, ? extends U> reducer) {
4263 return ForkJoinTasks.reduceKeys
4264 (this, transformer, reducer).invoke();
4265 }
4266
4267 /**
4268 * Returns the result of accumulating the given transformation
4269 * of all keys using the given reducer to combine values, and
4270 * the given basis as an identity value.
4271 *
4272 * @param transformer a function returning the transformation
4273 * for an element
4274 * @param basis the identity (initial default value) for the reduction
4275 * @param reducer a commutative associative combining function
4276 * @return the result of accumulating the given transformation
4277 * of all keys
4278 */
4279 public double reduceKeysToDoubleInParallel
4280 (ToDoubleFunction<? super K> transformer,
4281 double basis,
4282 DoubleBinaryOperator reducer) {
4283 return ForkJoinTasks.reduceKeysToDouble
4284 (this, transformer, basis, reducer).invoke();
4285 }
4286
4287 /**
4288 * Returns the result of accumulating the given transformation
4289 * of all keys using the given reducer to combine values, and
4290 * the given basis as an identity value.
4291 *
4292 * @param transformer a function returning the transformation
4293 * for an element
4294 * @param basis the identity (initial default value) for the reduction
4295 * @param reducer a commutative associative combining function
4296 * @return the result of accumulating the given transformation
4297 * of all keys
4298 */
4299 public long reduceKeysToLongInParallel
4300 (ToLongFunction<? super K> transformer,
4301 long basis,
4302 LongBinaryOperator reducer) {
4303 return ForkJoinTasks.reduceKeysToLong
4304 (this, transformer, basis, reducer).invoke();
4305 }
4306
4307 /**
4308 * Returns the result of accumulating the given transformation
4309 * of all keys using the given reducer to combine values, and
4310 * the given basis as an identity value.
4311 *
4312 * @param transformer a function returning the transformation
4313 * for an element
4314 * @param basis the identity (initial default value) for the reduction
4315 * @param reducer a commutative associative combining function
4316 * @return the result of accumulating the given transformation
4317 * of all keys
4318 */
4319 public int reduceKeysToIntInParallel
4320 (ToIntFunction<? super K> transformer,
4321 int basis,
4322 IntBinaryOperator reducer) {
4323 return ForkJoinTasks.reduceKeysToInt
4324 (this, transformer, basis, reducer).invoke();
4325 }
4326
4327 /**
4328 * Performs the given action for each value.
4329 *
4330 * @param action the action
4331 */
4332 public void forEachValueInParallel(Consumer<? super V> action) {
4333 ForkJoinTasks.forEachValue
4334 (this, action).invoke();
4335 }
4336
4337 /**
4338 * Performs the given action for each non-null transformation
4339 * of each value.
4340 *
4341 * @param transformer a function returning the transformation
4342 * for an element, or null if there is no transformation (in
4343 * which case the action is not applied)
4344 * @param action the action
4345 */
4346 public <U> void forEachValueInParallel
4347 (Function<? super V, ? extends U> transformer,
4348 Consumer<? super U> action) {
4349 ForkJoinTasks.forEachValue
4350 (this, transformer, action).invoke();
4351 }
4352
4353 /**
4354 * Returns a non-null result from applying the given search
4355 * function on each value, or null if none. Upon success,
4356 * further element processing is suppressed and the results of
4357 * any other parallel invocations of the search function are
4358 * ignored.
4359 *
4360 * @param searchFunction a function returning a non-null
4361 * result on success, else null
4362 * @return a non-null result from applying the given search
4363 * function on each value, or null if none
4364 */
4365 public <U> U searchValuesInParallel
4366 (Function<? super V, ? extends U> searchFunction) {
4367 return ForkJoinTasks.searchValues
4368 (this, searchFunction).invoke();
4369 }
4370
4371 /**
4372 * Returns the result of accumulating all values using the
4373 * given reducer to combine values, or null if none.
4374 *
4375 * @param reducer a commutative associative combining function
4376 * @return the result of accumulating all values
4377 */
4378 public V reduceValuesInParallel
4379 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4380 return ForkJoinTasks.reduceValues
4381 (this, reducer).invoke();
4382 }
4383
4384 /**
4385 * Returns the result of accumulating the given transformation
4386 * of all values using the given reducer to combine values, or
4387 * null if none.
4388 *
4389 * @param transformer a function returning the transformation
4390 * for an element, or null if there is no transformation (in
4391 * which case it is not combined)
4392 * @param reducer a commutative associative combining function
4393 * @return the result of accumulating the given transformation
4394 * of all values
4395 */
4396 public <U> U reduceValuesInParallel
4397 (Function<? super V, ? extends U> transformer,
4398 BiFunction<? super U, ? super U, ? extends U> reducer) {
4399 return ForkJoinTasks.reduceValues
4400 (this, transformer, reducer).invoke();
4401 }
4402
4403 /**
4404 * Returns the result of accumulating the given transformation
4405 * of all values using the given reducer to combine values,
4406 * and the given basis as an identity value.
4407 *
4408 * @param transformer a function returning the transformation
4409 * for an element
4410 * @param basis the identity (initial default value) for the reduction
4411 * @param reducer a commutative associative combining function
4412 * @return the result of accumulating the given transformation
4413 * of all values
4414 */
4415 public double reduceValuesToDoubleInParallel
4416 (ToDoubleFunction<? super V> transformer,
4417 double basis,
4418 DoubleBinaryOperator reducer) {
4419 return ForkJoinTasks.reduceValuesToDouble
4420 (this, transformer, basis, reducer).invoke();
4421 }
4422
4423 /**
4424 * Returns the result of accumulating the given transformation
4425 * of all values using the given reducer to combine values,
4426 * and the given basis as an identity value.
4427 *
4428 * @param transformer a function returning the transformation
4429 * for an element
4430 * @param basis the identity (initial default value) for the reduction
4431 * @param reducer a commutative associative combining function
4432 * @return the result of accumulating the given transformation
4433 * of all values
4434 */
4435 public long reduceValuesToLongInParallel
4436 (ToLongFunction<? super V> transformer,
4437 long basis,
4438 LongBinaryOperator reducer) {
4439 return ForkJoinTasks.reduceValuesToLong
4440 (this, transformer, basis, reducer).invoke();
4441 }
4442
4443 /**
4444 * Returns the result of accumulating the given transformation
4445 * of all values using the given reducer to combine values,
4446 * and the given basis as an identity value.
4447 *
4448 * @param transformer a function returning the transformation
4449 * for an element
4450 * @param basis the identity (initial default value) for the reduction
4451 * @param reducer a commutative associative combining function
4452 * @return the result of accumulating the given transformation
4453 * of all values
4454 */
4455 public int reduceValuesToIntInParallel
4456 (ToIntFunction<? super V> transformer,
4457 int basis,
4458 IntBinaryOperator reducer) {
4459 return ForkJoinTasks.reduceValuesToInt
4460 (this, transformer, basis, reducer).invoke();
4461 }
4462
4463 /**
4464 * Performs the given action for each entry.
4465 *
4466 * @param action the action
4467 */
4468 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4469 ForkJoinTasks.forEachEntry
4470 (this, action).invoke();
4471 }
4472
4473 /**
4474 * Performs the given action for each non-null transformation
4475 * of each entry.
4476 *
4477 * @param transformer a function returning the transformation
4478 * for an element, or null if there is no transformation (in
4479 * which case the action is not applied)
4480 * @param action the action
4481 */
4482 public <U> void forEachEntryInParallel
4483 (Function<Map.Entry<K,V>, ? extends U> transformer,
4484 Consumer<? super U> action) {
4485 ForkJoinTasks.forEachEntry
4486 (this, transformer, action).invoke();
4487 }
4488
4489 /**
4490 * Returns a non-null result from applying the given search
4491 * function on each entry, or null if none. Upon success,
4492 * further element processing is suppressed and the results of
4493 * any other parallel invocations of the search function are
4494 * ignored.
4495 *
4496 * @param searchFunction a function returning a non-null
4497 * result on success, else null
4498 * @return a non-null result from applying the given search
4499 * function on each entry, or null if none
4500 */
4501 public <U> U searchEntriesInParallel
4502 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4503 return ForkJoinTasks.searchEntries
4504 (this, searchFunction).invoke();
4505 }
4506
4507 /**
4508 * Returns the result of accumulating all entries using the
4509 * given reducer to combine values, or null if none.
4510 *
4511 * @param reducer a commutative associative combining function
4512 * @return the result of accumulating all entries
4513 */
4514 public Map.Entry<K,V> reduceEntriesInParallel
4515 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4516 return ForkJoinTasks.reduceEntries
4517 (this, reducer).invoke();
4518 }
4519
4520 /**
4521 * Returns the result of accumulating the given transformation
4522 * of all entries using the given reducer to combine values,
4523 * or null if none.
4524 *
4525 * @param transformer a function returning the transformation
4526 * for an element, or null if there is no transformation (in
4527 * which case it is not combined)
4528 * @param reducer a commutative associative combining function
4529 * @return the result of accumulating the given transformation
4530 * of all entries
4531 */
4532 public <U> U reduceEntriesInParallel
4533 (Function<Map.Entry<K,V>, ? extends U> transformer,
4534 BiFunction<? super U, ? super U, ? extends U> reducer) {
4535 return ForkJoinTasks.reduceEntries
4536 (this, transformer, reducer).invoke();
4537 }
4538
4539 /**
4540 * Returns the result of accumulating the given transformation
4541 * of all entries using the given reducer to combine values,
4542 * and the given basis as an identity value.
4543 *
4544 * @param transformer a function returning the transformation
4545 * for an element
4546 * @param basis the identity (initial default value) for the reduction
4547 * @param reducer a commutative associative combining function
4548 * @return the result of accumulating the given transformation
4549 * of all entries
4550 */
4551 public double reduceEntriesToDoubleInParallel
4552 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4553 double basis,
4554 DoubleBinaryOperator reducer) {
4555 return ForkJoinTasks.reduceEntriesToDouble
4556 (this, transformer, basis, reducer).invoke();
4557 }
4558
4559 /**
4560 * Returns the result of accumulating the given transformation
4561 * of all entries using the given reducer to combine values,
4562 * and the given basis as an identity value.
4563 *
4564 * @param transformer a function returning the transformation
4565 * for an element
4566 * @param basis the identity (initial default value) for the reduction
4567 * @param reducer a commutative associative combining function
4568 * @return the result of accumulating the given transformation
4569 * of all entries
4570 */
4571 public long reduceEntriesToLongInParallel
4572 (ToLongFunction<Map.Entry<K,V>> transformer,
4573 long basis,
4574 LongBinaryOperator reducer) {
4575 return ForkJoinTasks.reduceEntriesToLong
4576 (this, transformer, basis, reducer).invoke();
4577 }
4578
4579 /**
4580 * Returns the result of accumulating the given transformation
4581 * of all entries using the given reducer to combine values,
4582 * and the given basis as an identity value.
4583 *
4584 * @param transformer a function returning the transformation
4585 * for an element
4586 * @param basis the identity (initial default value) for the reduction
4587 * @param reducer a commutative associative combining function
4588 * @return the result of accumulating the given transformation
4589 * of all entries
4590 */
4591 public int reduceEntriesToIntInParallel
4592 (ToIntFunction<Map.Entry<K,V>> transformer,
4593 int basis,
4594 IntBinaryOperator reducer) {
4595 return ForkJoinTasks.reduceEntriesToInt
4596 (this, transformer, basis, reducer).invoke();
4597 }
4598
4599
4600 /* ----------------Views -------------- */
4601
4602 /**
4603 * Base class for views.
4604 */
4605 abstract static class CHMCollectionView<K,V,E>
4606 implements Collection<E>, java.io.Serializable {
4607 private static final long serialVersionUID = 7249069246763182397L;
4608 final ConcurrentHashMap<K,V> map;
4609 CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4610
4611 /**
4612 * Returns the map backing this view.
4613 *
4614 * @return the map backing this view
4615 */
4616 public ConcurrentHashMap<K,V> getMap() { return map; }
4617
4618 /**
4619 * Removes all of the elements from this view, by removing all
4620 * the mappings from the map backing this view.
4621 */
4622 public final void clear() { map.clear(); }
4623 public final int size() { return map.size(); }
4624 public final boolean isEmpty() { return map.isEmpty(); }
4625
4626 // implementations below rely on concrete classes supplying these
4627 // abstract methods
4628 /**
4629 * Returns a "weakly consistent" iterator that will never
4630 * throw {@link ConcurrentModificationException}, and
4631 * guarantees to traverse elements as they existed upon
4632 * construction of the iterator, and may (but is not
4633 * guaranteed to) reflect any modifications subsequent to
4634 * construction.
4635 */
4636 public abstract Iterator<E> iterator();
4637 public abstract boolean contains(Object o);
4638 public abstract boolean remove(Object o);
4639
4640 private static final String oomeMsg = "Required array size too large";
4641
4642 public final Object[] toArray() {
4643 long sz = map.mappingCount();
4644 if (sz > MAX_ARRAY_SIZE)
4645 throw new OutOfMemoryError(oomeMsg);
4646 int n = (int)sz;
4647 Object[] r = new Object[n];
4648 int i = 0;
4649 for (E e : this) {
4650 if (i == n) {
4651 if (n >= MAX_ARRAY_SIZE)
4652 throw new OutOfMemoryError(oomeMsg);
4653 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4654 n = MAX_ARRAY_SIZE;
4655 else
4656 n += (n >>> 1) + 1;
4657 r = Arrays.copyOf(r, n);
4658 }
4659 r[i++] = e;
4660 }
4661 return (i == n) ? r : Arrays.copyOf(r, i);
4662 }
4663
4664 @SuppressWarnings("unchecked")
4665 public final <T> T[] toArray(T[] a) {
4666 long sz = map.mappingCount();
4667 if (sz > MAX_ARRAY_SIZE)
4668 throw new OutOfMemoryError(oomeMsg);
4669 int m = (int)sz;
4670 T[] r = (a.length >= m) ? a :
4671 (T[])java.lang.reflect.Array
4672 .newInstance(a.getClass().getComponentType(), m);
4673 int n = r.length;
4674 int i = 0;
4675 for (E e : this) {
4676 if (i == n) {
4677 if (n >= MAX_ARRAY_SIZE)
4678 throw new OutOfMemoryError(oomeMsg);
4679 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4680 n = MAX_ARRAY_SIZE;
4681 else
4682 n += (n >>> 1) + 1;
4683 r = Arrays.copyOf(r, n);
4684 }
4685 r[i++] = (T)e;
4686 }
4687 if (a == r && i < n) {
4688 r[i] = null; // null-terminate
4689 return r;
4690 }
4691 return (i == n) ? r : Arrays.copyOf(r, i);
4692 }
4693
4694 /**
4695 * Returns a string representation of this collection.
4696 * The string representation consists of the string representations
4697 * of the collection's elements in the order they are returned by
4698 * its iterator, enclosed in square brackets ({@code "[]"}).
4699 * Adjacent elements are separated by the characters {@code ", "}
4700 * (comma and space). Elements are converted to strings as by
4701 * {@link String#valueOf(Object)}.
4702 *
4703 * @return a string representation of this collection
4704 */
4705 public final String toString() {
4706 StringBuilder sb = new StringBuilder();
4707 sb.append('[');
4708 Iterator<E> it = iterator();
4709 if (it.hasNext()) {
4710 for (;;) {
4711 Object e = it.next();
4712 sb.append(e == this ? "(this Collection)" : e);
4713 if (!it.hasNext())
4714 break;
4715 sb.append(',').append(' ');
4716 }
4717 }
4718 return sb.append(']').toString();
4719 }
4720
4721 public final boolean containsAll(Collection<?> c) {
4722 if (c != this) {
4723 for (Object e : c) {
4724 if (e == null || !contains(e))
4725 return false;
4726 }
4727 }
4728 return true;
4729 }
4730
4731 public final boolean removeAll(Collection<?> c) {
4732 boolean modified = false;
4733 for (Iterator<E> it = iterator(); it.hasNext();) {
4734 if (c.contains(it.next())) {
4735 it.remove();
4736 modified = true;
4737 }
4738 }
4739 return modified;
4740 }
4741
4742 public final boolean retainAll(Collection<?> c) {
4743 boolean modified = false;
4744 for (Iterator<E> it = iterator(); it.hasNext();) {
4745 if (!c.contains(it.next())) {
4746 it.remove();
4747 modified = true;
4748 }
4749 }
4750 return modified;
4751 }
4752
4753 }
4754
4755 abstract static class CHMSetView<K,V,E>
4756 extends CHMCollectionView<K,V,E>
4757 implements Set<E>, java.io.Serializable {
4758 private static final long serialVersionUID = 7249069246763182397L;
4759 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4760
4761 // Implement Set API
4762
4763 /**
4764 * Implements {@link Set#hashCode()}.
4765 * @return the hash code value for this set
4766 */
4767 public final int hashCode() {
4768 int h = 0;
4769 for (E e : this)
4770 h += e.hashCode();
4771 return h;
4772 }
4773
4774 /**
4775 * Implements {@link Set#equals(Object)}.
4776 * @param o object to be compared for equality with this set
4777 * @return {@code true} if the specified object is equal to this set
4778 */
4779 public final boolean equals(Object o) {
4780 Set<?> c;
4781 return ((o instanceof Set) &&
4782 ((c = (Set<?>)o) == this ||
4783 (containsAll(c) && c.containsAll(this))));
4784 }
4785 }
4786
4787 /**
4788 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4789 * which additions may optionally be enabled by mapping to a
4790 * common value. This class cannot be directly instantiated.
4791 * See {@link #keySet() keySet()},
4792 * {@link #keySet(Object) keySet(V)},
4793 * {@link #newKeySet() newKeySet()},
4794 * {@link #newKeySet(int) newKeySet(int)}.
4795 */
4796 public static class KeySetView<K,V>
4797 extends CHMSetView<K,V,K>
4798 implements Set<K>, java.io.Serializable {
4799 private static final long serialVersionUID = 7249069246763182397L;
4800 private final V value;
4801 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4802 super(map);
4803 this.value = value;
4804 }
4805
4806 /**
4807 * Returns the default mapped value for additions,
4808 * or {@code null} if additions are not supported.
4809 *
4810 * @return the default mapped value for additions, or {@code null}
4811 * if not supported
4812 */
4813 public V getMappedValue() { return value; }
4814
4815 /**
4816 * {@inheritDoc}
4817 * @throws NullPointerException if the specified key is null
4818 */
4819 public boolean contains(Object o) { return map.containsKey(o); }
4820
4821 /**
4822 * Removes the key from this map view, by removing the key (and its
4823 * corresponding value) from the backing map. This method does
4824 * nothing if the key is not in the map.
4825 *
4826 * @param o the key to be removed from the backing map
4827 * @return {@code true} if the backing map contained the specified key
4828 * @throws NullPointerException if the specified key is null
4829 */
4830 public boolean remove(Object o) { return map.remove(o) != null; }
4831
4832 /**
4833 * @return an iterator over the keys of the backing map
4834 */
4835 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4836
4837 /**
4838 * Adds the specified key to this set view by mapping the key to
4839 * the default mapped value in the backing map, if defined.
4840 *
4841 * @param e key to be added
4842 * @return {@code true} if this set changed as a result of the call
4843 * @throws NullPointerException if the specified key is null
4844 * @throws UnsupportedOperationException if no default mapped value
4845 * for additions was provided
4846 */
4847 public boolean add(K e) {
4848 V v;
4849 if ((v = value) == null)
4850 throw new UnsupportedOperationException();
4851 return map.internalPut(e, v, true) == null;
4852 }
4853
4854 /**
4855 * Adds all of the elements in the specified collection to this set,
4856 * as if by calling {@link #add} on each one.
4857 *
4858 * @param c the elements to be inserted into this set
4859 * @return {@code true} if this set changed as a result of the call
4860 * @throws NullPointerException if the collection or any of its
4861 * elements are {@code null}
4862 * @throws UnsupportedOperationException if no default mapped value
4863 * for additions was provided
4864 */
4865 public boolean addAll(Collection<? extends K> c) {
4866 boolean added = false;
4867 V v;
4868 if ((v = value) == null)
4869 throw new UnsupportedOperationException();
4870 for (K e : c) {
4871 if (map.internalPut(e, v, true) == null)
4872 added = true;
4873 }
4874 return added;
4875 }
4876
4877 public Spliterator<K> spliterator() {
4878 return new KeyIterator<>(map, null);
4879 }
4880
4881 }
4882
4883 /**
4884 * A view of a ConcurrentHashMap as a {@link Collection} of
4885 * values, in which additions are disabled. This class cannot be
4886 * directly instantiated. See {@link #values()}.
4887 *
4888 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4889 * that will never throw {@link ConcurrentModificationException},
4890 * and guarantees to traverse elements as they existed upon
4891 * construction of the iterator, and may (but is not guaranteed to)
4892 * reflect any modifications subsequent to construction.
4893 */
4894 public static final class ValuesView<K,V>
4895 extends CHMCollectionView<K,V,V>
4896 implements Collection<V>, java.io.Serializable {
4897 private static final long serialVersionUID = 2249069246763182397L;
4898 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4899 public final boolean contains(Object o) {
4900 return map.containsValue(o);
4901 }
4902 public final boolean remove(Object o) {
4903 if (o != null) {
4904 for (Iterator<V> it = iterator(); it.hasNext();) {
4905 if (o.equals(it.next())) {
4906 it.remove();
4907 return true;
4908 }
4909 }
4910 }
4911 return false;
4912 }
4913
4914 /**
4915 * @return an iterator over the values of the backing map
4916 */
4917 public final Iterator<V> iterator() {
4918 return new ValueIterator<K,V>(map);
4919 }
4920
4921 /** Always throws {@link UnsupportedOperationException}. */
4922 public final boolean add(V e) {
4923 throw new UnsupportedOperationException();
4924 }
4925 /** Always throws {@link UnsupportedOperationException}. */
4926 public final boolean addAll(Collection<? extends V> c) {
4927 throw new UnsupportedOperationException();
4928 }
4929
4930 public Spliterator<V> spliterator() {
4931 return new ValueIterator<K,V>(map, null);
4932 }
4933
4934 }
4935
4936 /**
4937 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4938 * entries. This class cannot be directly instantiated. See
4939 * {@link #entrySet()}.
4940 */
4941 public static final class EntrySetView<K,V>
4942 extends CHMSetView<K,V,Map.Entry<K,V>>
4943 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4944 private static final long serialVersionUID = 2249069246763182397L;
4945 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4946
4947 public final boolean contains(Object o) {
4948 Object k, v, r; Map.Entry<?,?> e;
4949 return ((o instanceof Map.Entry) &&
4950 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4951 (r = map.get(k)) != null &&
4952 (v = e.getValue()) != null &&
4953 (v == r || v.equals(r)));
4954 }
4955 public final boolean remove(Object o) {
4956 Object k, v; Map.Entry<?,?> e;
4957 return ((o instanceof Map.Entry) &&
4958 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4959 (v = e.getValue()) != null &&
4960 map.remove(k, v));
4961 }
4962
4963 /**
4964 * @return an iterator over the entries of the backing map
4965 */
4966 public final Iterator<Map.Entry<K,V>> iterator() {
4967 return new EntryIterator<K,V>(map);
4968 }
4969
4970 /**
4971 * Adds the specified mapping to this view.
4972 *
4973 * @param e mapping to be added
4974 * @return {@code true} if this set changed as a result of the call
4975 * @throws NullPointerException if the entry, its key, or its
4976 * value is null
4977 */
4978 public final boolean add(Entry<K,V> e) {
4979 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4980 }
4981 /**
4982 * Adds all of the mappings in the specified collection to this
4983 * set, as if by calling {@link #add(Map.Entry)} on each one.
4984 * @param c the mappings to be inserted into this set
4985 * @return {@code true} if this set changed as a result of the call
4986 * @throws NullPointerException if the collection or any of its
4987 * entries, keys, or values are null
4988 */
4989 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4990 boolean added = false;
4991 for (Entry<K,V> e : c) {
4992 if (add(e))
4993 added = true;
4994 }
4995 return added;
4996 }
4997
4998 public Spliterator<Map.Entry<K,V>> spliterator() {
4999 return new EntryIterator<K,V>(map, null);
5000 }
5001
5002 }
5003
5004 // ---------------------------------------------------------------------
5005
5006 /**
5007 * Predefined tasks for performing bulk parallel operations on
5008 * ConcurrentHashMaps. These tasks follow the forms and rules used
5009 * for bulk operations. Each method has the same name, but returns
5010 * a task rather than invoking it. These methods may be useful in
5011 * custom applications such as submitting a task without waiting
5012 * for completion, using a custom pool, or combining with other
5013 * tasks.
5014 */
5015 public static class ForkJoinTasks {
5016 private ForkJoinTasks() {}
5017
5018 /**
5019 * Returns a task that when invoked, performs the given
5020 * action for each (key, value)
5021 *
5022 * @param map the map
5023 * @param action the action
5024 * @return the task
5025 */
5026 public static <K,V> ForkJoinTask<Void> forEach
5027 (ConcurrentHashMap<K,V> map,
5028 BiConsumer<? super K, ? super V> action) {
5029 if (action == null) throw new NullPointerException();
5030 return new ForEachMappingTask<K,V>(map, null, -1, action);
5031 }
5032
5033 /**
5034 * Returns a task that when invoked, performs the given
5035 * action for each non-null transformation of each (key, value)
5036 *
5037 * @param map the map
5038 * @param transformer a function returning the transformation
5039 * for an element, or null if there is no transformation (in
5040 * which case the action is not applied)
5041 * @param action the action
5042 * @return the task
5043 */
5044 public static <K,V,U> ForkJoinTask<Void> forEach
5045 (ConcurrentHashMap<K,V> map,
5046 BiFunction<? super K, ? super V, ? extends U> transformer,
5047 Consumer<? super U> action) {
5048 if (transformer == null || action == null)
5049 throw new NullPointerException();
5050 return new ForEachTransformedMappingTask<K,V,U>
5051 (map, null, -1, transformer, action);
5052 }
5053
5054 /**
5055 * Returns a task that when invoked, returns a non-null result
5056 * from applying the given search function on each (key,
5057 * value), or null if none. Upon success, further element
5058 * processing is suppressed and the results of any other
5059 * parallel invocations of the search function are ignored.
5060 *
5061 * @param map the map
5062 * @param searchFunction a function returning a non-null
5063 * result on success, else null
5064 * @return the task
5065 */
5066 public static <K,V,U> ForkJoinTask<U> search
5067 (ConcurrentHashMap<K,V> map,
5068 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5069 if (searchFunction == null) throw new NullPointerException();
5070 return new SearchMappingsTask<K,V,U>
5071 (map, null, -1, searchFunction,
5072 new AtomicReference<U>());
5073 }
5074
5075 /**
5076 * Returns a task that when invoked, returns the result of
5077 * accumulating the given transformation of all (key, value) pairs
5078 * using the given reducer to combine values, or null if none.
5079 *
5080 * @param map the map
5081 * @param transformer a function returning the transformation
5082 * for an element, or null if there is no transformation (in
5083 * which case it is not combined)
5084 * @param reducer a commutative associative combining function
5085 * @return the task
5086 */
5087 public static <K,V,U> ForkJoinTask<U> reduce
5088 (ConcurrentHashMap<K,V> map,
5089 BiFunction<? super K, ? super V, ? extends U> transformer,
5090 BiFunction<? super U, ? super U, ? extends U> reducer) {
5091 if (transformer == null || reducer == null)
5092 throw new NullPointerException();
5093 return new MapReduceMappingsTask<K,V,U>
5094 (map, null, -1, null, transformer, reducer);
5095 }
5096
5097 /**
5098 * Returns a task that when invoked, returns the result of
5099 * accumulating the given transformation of all (key, value) pairs
5100 * using the given reducer to combine values, and the given
5101 * basis as an identity value.
5102 *
5103 * @param map the map
5104 * @param transformer a function returning the transformation
5105 * for an element
5106 * @param basis the identity (initial default value) for the reduction
5107 * @param reducer a commutative associative combining function
5108 * @return the task
5109 */
5110 public static <K,V> ForkJoinTask<Double> reduceToDouble
5111 (ConcurrentHashMap<K,V> map,
5112 ToDoubleBiFunction<? super K, ? super V> transformer,
5113 double basis,
5114 DoubleBinaryOperator reducer) {
5115 if (transformer == null || reducer == null)
5116 throw new NullPointerException();
5117 return new MapReduceMappingsToDoubleTask<K,V>
5118 (map, null, -1, null, transformer, basis, reducer);
5119 }
5120
5121 /**
5122 * Returns a task that when invoked, returns the result of
5123 * accumulating the given transformation of all (key, value) pairs
5124 * using the given reducer to combine values, and the given
5125 * basis as an identity value.
5126 *
5127 * @param map the map
5128 * @param transformer a function returning the transformation
5129 * for an element
5130 * @param basis the identity (initial default value) for the reduction
5131 * @param reducer a commutative associative combining function
5132 * @return the task
5133 */
5134 public static <K,V> ForkJoinTask<Long> reduceToLong
5135 (ConcurrentHashMap<K,V> map,
5136 ToLongBiFunction<? super K, ? super V> transformer,
5137 long basis,
5138 LongBinaryOperator reducer) {
5139 if (transformer == null || reducer == null)
5140 throw new NullPointerException();
5141 return new MapReduceMappingsToLongTask<K,V>
5142 (map, null, -1, null, transformer, basis, reducer);
5143 }
5144
5145 /**
5146 * Returns a task that when invoked, returns the result of
5147 * accumulating the given transformation of all (key, value) pairs
5148 * using the given reducer to combine values, and the given
5149 * basis as an identity value.
5150 *
5151 * @param map the map
5152 * @param transformer a function returning the transformation
5153 * for an element
5154 * @param basis the identity (initial default value) for the reduction
5155 * @param reducer a commutative associative combining function
5156 * @return the task
5157 */
5158 public static <K,V> ForkJoinTask<Integer> reduceToInt
5159 (ConcurrentHashMap<K,V> map,
5160 ToIntBiFunction<? super K, ? super V> transformer,
5161 int basis,
5162 IntBinaryOperator reducer) {
5163 if (transformer == null || reducer == null)
5164 throw new NullPointerException();
5165 return new MapReduceMappingsToIntTask<K,V>
5166 (map, null, -1, null, transformer, basis, reducer);
5167 }
5168
5169 /**
5170 * Returns a task that when invoked, performs the given action
5171 * for each key.
5172 *
5173 * @param map the map
5174 * @param action the action
5175 * @return the task
5176 */
5177 public static <K,V> ForkJoinTask<Void> forEachKey
5178 (ConcurrentHashMap<K,V> map,
5179 Consumer<? super K> action) {
5180 if (action == null) throw new NullPointerException();
5181 return new ForEachKeyTask<K,V>(map, null, -1, action);
5182 }
5183
5184 /**
5185 * Returns a task that when invoked, performs the given action
5186 * for each non-null transformation of each key.
5187 *
5188 * @param map the map
5189 * @param transformer a function returning the transformation
5190 * for an element, or null if there is no transformation (in
5191 * which case the action is not applied)
5192 * @param action the action
5193 * @return the task
5194 */
5195 public static <K,V,U> ForkJoinTask<Void> forEachKey
5196 (ConcurrentHashMap<K,V> map,
5197 Function<? super K, ? extends U> transformer,
5198 Consumer<? super U> action) {
5199 if (transformer == null || action == null)
5200 throw new NullPointerException();
5201 return new ForEachTransformedKeyTask<K,V,U>
5202 (map, null, -1, transformer, action);
5203 }
5204
5205 /**
5206 * Returns a task that when invoked, returns a non-null result
5207 * from applying the given search function on each key, or
5208 * null if none. Upon success, further element processing is
5209 * suppressed and the results of any other parallel
5210 * invocations of the search function are ignored.
5211 *
5212 * @param map the map
5213 * @param searchFunction a function returning a non-null
5214 * result on success, else null
5215 * @return the task
5216 */
5217 public static <K,V,U> ForkJoinTask<U> searchKeys
5218 (ConcurrentHashMap<K,V> map,
5219 Function<? super K, ? extends U> searchFunction) {
5220 if (searchFunction == null) throw new NullPointerException();
5221 return new SearchKeysTask<K,V,U>
5222 (map, null, -1, searchFunction,
5223 new AtomicReference<U>());
5224 }
5225
5226 /**
5227 * Returns a task that when invoked, returns the result of
5228 * accumulating all keys using the given reducer to combine
5229 * values, or null if none.
5230 *
5231 * @param map the map
5232 * @param reducer a commutative associative combining function
5233 * @return the task
5234 */
5235 public static <K,V> ForkJoinTask<K> reduceKeys
5236 (ConcurrentHashMap<K,V> map,
5237 BiFunction<? super K, ? super K, ? extends K> reducer) {
5238 if (reducer == null) throw new NullPointerException();
5239 return new ReduceKeysTask<K,V>
5240 (map, null, -1, null, reducer);
5241 }
5242
5243 /**
5244 * Returns a task that when invoked, returns the result of
5245 * accumulating the given transformation of all keys using the given
5246 * reducer to combine values, or null if none.
5247 *
5248 * @param map the map
5249 * @param transformer a function returning the transformation
5250 * for an element, or null if there is no transformation (in
5251 * which case it is not combined)
5252 * @param reducer a commutative associative combining function
5253 * @return the task
5254 */
5255 public static <K,V,U> ForkJoinTask<U> reduceKeys
5256 (ConcurrentHashMap<K,V> map,
5257 Function<? super K, ? extends U> transformer,
5258 BiFunction<? super U, ? super U, ? extends U> reducer) {
5259 if (transformer == null || reducer == null)
5260 throw new NullPointerException();
5261 return new MapReduceKeysTask<K,V,U>
5262 (map, null, -1, null, transformer, reducer);
5263 }
5264
5265 /**
5266 * Returns a task that when invoked, returns the result of
5267 * accumulating the given transformation of all keys using the given
5268 * reducer to combine values, and the given basis as an
5269 * identity value.
5270 *
5271 * @param map the map
5272 * @param transformer a function returning the transformation
5273 * for an element
5274 * @param basis the identity (initial default value) for the reduction
5275 * @param reducer a commutative associative combining function
5276 * @return the task
5277 */
5278 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5279 (ConcurrentHashMap<K,V> map,
5280 ToDoubleFunction<? super K> transformer,
5281 double basis,
5282 DoubleBinaryOperator reducer) {
5283 if (transformer == null || reducer == null)
5284 throw new NullPointerException();
5285 return new MapReduceKeysToDoubleTask<K,V>
5286 (map, null, -1, null, transformer, basis, reducer);
5287 }
5288
5289 /**
5290 * Returns a task that when invoked, returns the result of
5291 * accumulating the given transformation of all keys using the given
5292 * reducer to combine values, and the given basis as an
5293 * identity value.
5294 *
5295 * @param map the map
5296 * @param transformer a function returning the transformation
5297 * for an element
5298 * @param basis the identity (initial default value) for the reduction
5299 * @param reducer a commutative associative combining function
5300 * @return the task
5301 */
5302 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5303 (ConcurrentHashMap<K,V> map,
5304 ToLongFunction<? super K> transformer,
5305 long basis,
5306 LongBinaryOperator reducer) {
5307 if (transformer == null || reducer == null)
5308 throw new NullPointerException();
5309 return new MapReduceKeysToLongTask<K,V>
5310 (map, null, -1, null, transformer, basis, reducer);
5311 }
5312
5313 /**
5314 * Returns a task that when invoked, returns the result of
5315 * accumulating the given transformation of all keys using the given
5316 * reducer to combine values, and the given basis as an
5317 * identity value.
5318 *
5319 * @param map the map
5320 * @param transformer a function returning the transformation
5321 * for an element
5322 * @param basis the identity (initial default value) for the reduction
5323 * @param reducer a commutative associative combining function
5324 * @return the task
5325 */
5326 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5327 (ConcurrentHashMap<K,V> map,
5328 ToIntFunction<? super K> transformer,
5329 int basis,
5330 IntBinaryOperator reducer) {
5331 if (transformer == null || reducer == null)
5332 throw new NullPointerException();
5333 return new MapReduceKeysToIntTask<K,V>
5334 (map, null, -1, null, transformer, basis, reducer);
5335 }
5336
5337 /**
5338 * Returns a task that when invoked, performs the given action
5339 * for each value.
5340 *
5341 * @param map the map
5342 * @param action the action
5343 * @return the task
5344 */
5345 public static <K,V> ForkJoinTask<Void> forEachValue
5346 (ConcurrentHashMap<K,V> map,
5347 Consumer<? super V> action) {
5348 if (action == null) throw new NullPointerException();
5349 return new ForEachValueTask<K,V>(map, null, -1, action);
5350 }
5351
5352 /**
5353 * Returns a task that when invoked, performs the given action
5354 * for each non-null transformation of each value.
5355 *
5356 * @param map the map
5357 * @param transformer a function returning the transformation
5358 * for an element, or null if there is no transformation (in
5359 * which case the action is not applied)
5360 * @param action the action
5361 * @return the task
5362 */
5363 public static <K,V,U> ForkJoinTask<Void> forEachValue
5364 (ConcurrentHashMap<K,V> map,
5365 Function<? super V, ? extends U> transformer,
5366 Consumer<? super U> action) {
5367 if (transformer == null || action == null)
5368 throw new NullPointerException();
5369 return new ForEachTransformedValueTask<K,V,U>
5370 (map, null, -1, transformer, action);
5371 }
5372
5373 /**
5374 * Returns a task that when invoked, returns a non-null result
5375 * from applying the given search function on each value, or
5376 * null if none. Upon success, further element processing is
5377 * suppressed and the results of any other parallel
5378 * invocations of the search function are ignored.
5379 *
5380 * @param map the map
5381 * @param searchFunction a function returning a non-null
5382 * result on success, else null
5383 * @return the task
5384 */
5385 public static <K,V,U> ForkJoinTask<U> searchValues
5386 (ConcurrentHashMap<K,V> map,
5387 Function<? super V, ? extends U> searchFunction) {
5388 if (searchFunction == null) throw new NullPointerException();
5389 return new SearchValuesTask<K,V,U>
5390 (map, null, -1, searchFunction,
5391 new AtomicReference<U>());
5392 }
5393
5394 /**
5395 * Returns a task that when invoked, returns the result of
5396 * accumulating all values using the given reducer to combine
5397 * values, or null if none.
5398 *
5399 * @param map the map
5400 * @param reducer a commutative associative combining function
5401 * @return the task
5402 */
5403 public static <K,V> ForkJoinTask<V> reduceValues
5404 (ConcurrentHashMap<K,V> map,
5405 BiFunction<? super V, ? super V, ? extends V> reducer) {
5406 if (reducer == null) throw new NullPointerException();
5407 return new ReduceValuesTask<K,V>
5408 (map, null, -1, null, reducer);
5409 }
5410
5411 /**
5412 * Returns a task that when invoked, returns the result of
5413 * accumulating the given transformation of all values using the
5414 * given reducer to combine values, or null if none.
5415 *
5416 * @param map the map
5417 * @param transformer a function returning the transformation
5418 * for an element, or null if there is no transformation (in
5419 * which case it is not combined)
5420 * @param reducer a commutative associative combining function
5421 * @return the task
5422 */
5423 public static <K,V,U> ForkJoinTask<U> reduceValues
5424 (ConcurrentHashMap<K,V> map,
5425 Function<? super V, ? extends U> transformer,
5426 BiFunction<? super U, ? super U, ? extends U> reducer) {
5427 if (transformer == null || reducer == null)
5428 throw new NullPointerException();
5429 return new MapReduceValuesTask<K,V,U>
5430 (map, null, -1, null, transformer, reducer);
5431 }
5432
5433 /**
5434 * Returns a task that when invoked, returns the result of
5435 * accumulating the given transformation of all values using the
5436 * given reducer to combine values, and the given basis as an
5437 * identity value.
5438 *
5439 * @param map the map
5440 * @param transformer a function returning the transformation
5441 * for an element
5442 * @param basis the identity (initial default value) for the reduction
5443 * @param reducer a commutative associative combining function
5444 * @return the task
5445 */
5446 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5447 (ConcurrentHashMap<K,V> map,
5448 ToDoubleFunction<? super V> transformer,
5449 double basis,
5450 DoubleBinaryOperator reducer) {
5451 if (transformer == null || reducer == null)
5452 throw new NullPointerException();
5453 return new MapReduceValuesToDoubleTask<K,V>
5454 (map, null, -1, null, transformer, basis, reducer);
5455 }
5456
5457 /**
5458 * Returns a task that when invoked, returns the result of
5459 * accumulating the given transformation of all values using the
5460 * given reducer to combine values, and the given basis as an
5461 * identity value.
5462 *
5463 * @param map the map
5464 * @param transformer a function returning the transformation
5465 * for an element
5466 * @param basis the identity (initial default value) for the reduction
5467 * @param reducer a commutative associative combining function
5468 * @return the task
5469 */
5470 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5471 (ConcurrentHashMap<K,V> map,
5472 ToLongFunction<? super V> transformer,
5473 long basis,
5474 LongBinaryOperator reducer) {
5475 if (transformer == null || reducer == null)
5476 throw new NullPointerException();
5477 return new MapReduceValuesToLongTask<K,V>
5478 (map, null, -1, null, transformer, basis, reducer);
5479 }
5480
5481 /**
5482 * Returns a task that when invoked, returns the result of
5483 * accumulating the given transformation of all values using the
5484 * given reducer to combine values, and the given basis as an
5485 * identity value.
5486 *
5487 * @param map the map
5488 * @param transformer a function returning the transformation
5489 * for an element
5490 * @param basis the identity (initial default value) for the reduction
5491 * @param reducer a commutative associative combining function
5492 * @return the task
5493 */
5494 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5495 (ConcurrentHashMap<K,V> map,
5496 ToIntFunction<? super V> transformer,
5497 int basis,
5498 IntBinaryOperator reducer) {
5499 if (transformer == null || reducer == null)
5500 throw new NullPointerException();
5501 return new MapReduceValuesToIntTask<K,V>
5502 (map, null, -1, null, transformer, basis, reducer);
5503 }
5504
5505 /**
5506 * Returns a task that when invoked, perform the given action
5507 * for each entry.
5508 *
5509 * @param map the map
5510 * @param action the action
5511 * @return the task
5512 */
5513 public static <K,V> ForkJoinTask<Void> forEachEntry
5514 (ConcurrentHashMap<K,V> map,
5515 Consumer<? super Map.Entry<K,V>> action) {
5516 if (action == null) throw new NullPointerException();
5517 return new ForEachEntryTask<K,V>(map, null, -1, action);
5518 }
5519
5520 /**
5521 * Returns a task that when invoked, perform the given action
5522 * for each non-null transformation of each entry.
5523 *
5524 * @param map the map
5525 * @param transformer a function returning the transformation
5526 * for an element, or null if there is no transformation (in
5527 * which case the action is not applied)
5528 * @param action the action
5529 * @return the task
5530 */
5531 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5532 (ConcurrentHashMap<K,V> map,
5533 Function<Map.Entry<K,V>, ? extends U> transformer,
5534 Consumer<? super U> action) {
5535 if (transformer == null || action == null)
5536 throw new NullPointerException();
5537 return new ForEachTransformedEntryTask<K,V,U>
5538 (map, null, -1, transformer, action);
5539 }
5540
5541 /**
5542 * Returns a task that when invoked, returns a non-null result
5543 * from applying the given search function on each entry, or
5544 * null if none. Upon success, further element processing is
5545 * suppressed and the results of any other parallel
5546 * invocations of the search function are ignored.
5547 *
5548 * @param map the map
5549 * @param searchFunction a function returning a non-null
5550 * result on success, else null
5551 * @return the task
5552 */
5553 public static <K,V,U> ForkJoinTask<U> searchEntries
5554 (ConcurrentHashMap<K,V> map,
5555 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5556 if (searchFunction == null) throw new NullPointerException();
5557 return new SearchEntriesTask<K,V,U>
5558 (map, null, -1, searchFunction,
5559 new AtomicReference<U>());
5560 }
5561
5562 /**
5563 * Returns a task that when invoked, returns the result of
5564 * accumulating all entries using the given reducer to combine
5565 * values, or null if none.
5566 *
5567 * @param map the map
5568 * @param reducer a commutative associative combining function
5569 * @return the task
5570 */
5571 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5572 (ConcurrentHashMap<K,V> map,
5573 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5574 if (reducer == null) throw new NullPointerException();
5575 return new ReduceEntriesTask<K,V>
5576 (map, null, -1, null, reducer);
5577 }
5578
5579 /**
5580 * Returns a task that when invoked, returns the result of
5581 * accumulating the given transformation of all entries using the
5582 * given reducer to combine values, or null if none.
5583 *
5584 * @param map the map
5585 * @param transformer a function returning the transformation
5586 * for an element, or null if there is no transformation (in
5587 * which case it is not combined)
5588 * @param reducer a commutative associative combining function
5589 * @return the task
5590 */
5591 public static <K,V,U> ForkJoinTask<U> reduceEntries
5592 (ConcurrentHashMap<K,V> map,
5593 Function<Map.Entry<K,V>, ? extends U> transformer,
5594 BiFunction<? super U, ? super U, ? extends U> reducer) {
5595 if (transformer == null || reducer == null)
5596 throw new NullPointerException();
5597 return new MapReduceEntriesTask<K,V,U>
5598 (map, null, -1, null, transformer, reducer);
5599 }
5600
5601 /**
5602 * Returns a task that when invoked, returns the result of
5603 * accumulating the given transformation of all entries using the
5604 * given reducer to combine values, and the given basis as an
5605 * identity value.
5606 *
5607 * @param map the map
5608 * @param transformer a function returning the transformation
5609 * for an element
5610 * @param basis the identity (initial default value) for the reduction
5611 * @param reducer a commutative associative combining function
5612 * @return the task
5613 */
5614 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5615 (ConcurrentHashMap<K,V> map,
5616 ToDoubleFunction<Map.Entry<K,V>> transformer,
5617 double basis,
5618 DoubleBinaryOperator reducer) {
5619 if (transformer == null || reducer == null)
5620 throw new NullPointerException();
5621 return new MapReduceEntriesToDoubleTask<K,V>
5622 (map, null, -1, null, transformer, basis, reducer);
5623 }
5624
5625 /**
5626 * Returns a task that when invoked, returns the result of
5627 * accumulating the given transformation of all entries using the
5628 * given reducer to combine values, and the given basis as an
5629 * identity value.
5630 *
5631 * @param map the map
5632 * @param transformer a function returning the transformation
5633 * for an element
5634 * @param basis the identity (initial default value) for the reduction
5635 * @param reducer a commutative associative combining function
5636 * @return the task
5637 */
5638 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5639 (ConcurrentHashMap<K,V> map,
5640 ToLongFunction<Map.Entry<K,V>> transformer,
5641 long basis,
5642 LongBinaryOperator reducer) {
5643 if (transformer == null || reducer == null)
5644 throw new NullPointerException();
5645 return new MapReduceEntriesToLongTask<K,V>
5646 (map, null, -1, null, transformer, basis, reducer);
5647 }
5648
5649 /**
5650 * Returns a task that when invoked, returns the result of
5651 * accumulating the given transformation of all entries using the
5652 * given reducer to combine values, and the given basis as an
5653 * identity value.
5654 *
5655 * @param map the map
5656 * @param transformer a function returning the transformation
5657 * for an element
5658 * @param basis the identity (initial default value) for the reduction
5659 * @param reducer a commutative associative combining function
5660 * @return the task
5661 */
5662 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5663 (ConcurrentHashMap<K,V> map,
5664 ToIntFunction<Map.Entry<K,V>> transformer,
5665 int basis,
5666 IntBinaryOperator reducer) {
5667 if (transformer == null || reducer == null)
5668 throw new NullPointerException();
5669 return new MapReduceEntriesToIntTask<K,V>
5670 (map, null, -1, null, transformer, basis, reducer);
5671 }
5672 }
5673
5674 // -------------------------------------------------------
5675
5676 /*
5677 * Task classes. Coded in a regular but ugly format/style to
5678 * simplify checks that each variant differs in the right way from
5679 * others. The null screenings exist because compilers cannot tell
5680 * that we've already null-checked task arguments, so we force
5681 * simplest hoisted bypass to help avoid convoluted traps.
5682 */
5683
5684 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5685 extends Traverser<K,V,Void> {
5686 final Consumer<? super K> action;
5687 ForEachKeyTask
5688 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5689 Consumer<? super K> action) {
5690 super(m, p, b);
5691 this.action = action;
5692 }
5693 public final void compute() {
5694 final Consumer<? super K> action;
5695 if ((action = this.action) != null) {
5696 for (int b; (b = preSplit()) > 0;)
5697 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5698 forEachKey(action);
5699 propagateCompletion();
5700 }
5701 }
5702 }
5703
5704 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5705 extends Traverser<K,V,Void> {
5706 final Consumer<? super V> action;
5707 ForEachValueTask
5708 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5709 Consumer<? super V> action) {
5710 super(m, p, b);
5711 this.action = action;
5712 }
5713 public final void compute() {
5714 final Consumer<? super V> action;
5715 if ((action = this.action) != null) {
5716 for (int b; (b = preSplit()) > 0;)
5717 new ForEachValueTask<K,V>(map, this, b, action).fork();
5718 forEachValue(action);
5719 propagateCompletion();
5720 }
5721 }
5722 }
5723
5724 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5725 extends Traverser<K,V,Void> {
5726 final Consumer<? super Entry<K,V>> action;
5727 ForEachEntryTask
5728 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5729 Consumer<? super Entry<K,V>> action) {
5730 super(m, p, b);
5731 this.action = action;
5732 }
5733 public final void compute() {
5734 final Consumer<? super Entry<K,V>> action;
5735 if ((action = this.action) != null) {
5736 for (int b; (b = preSplit()) > 0;)
5737 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5738 V v;
5739 while ((v = advanceValue()) != null)
5740 action.accept(entryFor(nextKey, v));
5741 propagateCompletion();
5742 }
5743 }
5744 }
5745
5746 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5747 extends Traverser<K,V,Void> {
5748 final BiConsumer<? super K, ? super V> action;
5749 ForEachMappingTask
5750 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5751 BiConsumer<? super K,? super V> action) {
5752 super(m, p, b);
5753 this.action = action;
5754 }
5755 public final void compute() {
5756 final BiConsumer<? super K, ? super V> action;
5757 if ((action = this.action) != null) {
5758 for (int b; (b = preSplit()) > 0;)
5759 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5760 V v;
5761 while ((v = advanceValue()) != null)
5762 action.accept(nextKey, v);
5763 propagateCompletion();
5764 }
5765 }
5766 }
5767
5768 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5769 extends Traverser<K,V,Void> {
5770 final Function<? super K, ? extends U> transformer;
5771 final Consumer<? super U> action;
5772 ForEachTransformedKeyTask
5773 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5774 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5775 super(m, p, b);
5776 this.transformer = transformer; this.action = action;
5777 }
5778 public final void compute() {
5779 final Function<? super K, ? extends U> transformer;
5780 final Consumer<? super U> action;
5781 if ((transformer = this.transformer) != null &&
5782 (action = this.action) != null) {
5783 for (int b; (b = preSplit()) > 0;)
5784 new ForEachTransformedKeyTask<K,V,U>
5785 (map, this, b, transformer, action).fork();
5786 K k; U u;
5787 while ((k = advanceKey()) != null) {
5788 if ((u = transformer.apply(k)) != null)
5789 action.accept(u);
5790 }
5791 propagateCompletion();
5792 }
5793 }
5794 }
5795
5796 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5797 extends Traverser<K,V,Void> {
5798 final Function<? super V, ? extends U> transformer;
5799 final Consumer<? super U> action;
5800 ForEachTransformedValueTask
5801 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5802 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5803 super(m, p, b);
5804 this.transformer = transformer; this.action = action;
5805 }
5806 public final void compute() {
5807 final Function<? super V, ? extends U> transformer;
5808 final Consumer<? super U> action;
5809 if ((transformer = this.transformer) != null &&
5810 (action = this.action) != null) {
5811 for (int b; (b = preSplit()) > 0;)
5812 new ForEachTransformedValueTask<K,V,U>
5813 (map, this, b, transformer, action).fork();
5814 V v; U u;
5815 while ((v = advanceValue()) != null) {
5816 if ((u = transformer.apply(v)) != null)
5817 action.accept(u);
5818 }
5819 propagateCompletion();
5820 }
5821 }
5822 }
5823
5824 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5825 extends Traverser<K,V,Void> {
5826 final Function<Map.Entry<K,V>, ? extends U> transformer;
5827 final Consumer<? super U> action;
5828 ForEachTransformedEntryTask
5829 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5830 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5831 super(m, p, b);
5832 this.transformer = transformer; this.action = action;
5833 }
5834 public final void compute() {
5835 final Function<Map.Entry<K,V>, ? extends U> transformer;
5836 final Consumer<? super U> action;
5837 if ((transformer = this.transformer) != null &&
5838 (action = this.action) != null) {
5839 for (int b; (b = preSplit()) > 0;)
5840 new ForEachTransformedEntryTask<K,V,U>
5841 (map, this, b, transformer, action).fork();
5842 V v; U u;
5843 while ((v = advanceValue()) != null) {
5844 if ((u = transformer.apply(entryFor(nextKey,
5845 v))) != null)
5846 action.accept(u);
5847 }
5848 propagateCompletion();
5849 }
5850 }
5851 }
5852
5853 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5854 extends Traverser<K,V,Void> {
5855 final BiFunction<? super K, ? super V, ? extends U> transformer;
5856 final Consumer<? super U> action;
5857 ForEachTransformedMappingTask
5858 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5859 BiFunction<? super K, ? super V, ? extends U> transformer,
5860 Consumer<? super U> action) {
5861 super(m, p, b);
5862 this.transformer = transformer; this.action = action;
5863 }
5864 public final void compute() {
5865 final BiFunction<? super K, ? super V, ? extends U> transformer;
5866 final Consumer<? super U> action;
5867 if ((transformer = this.transformer) != null &&
5868 (action = this.action) != null) {
5869 for (int b; (b = preSplit()) > 0;)
5870 new ForEachTransformedMappingTask<K,V,U>
5871 (map, this, b, transformer, action).fork();
5872 V v; U u;
5873 while ((v = advanceValue()) != null) {
5874 if ((u = transformer.apply(nextKey, v)) != null)
5875 action.accept(u);
5876 }
5877 propagateCompletion();
5878 }
5879 }
5880 }
5881
5882 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5883 extends Traverser<K,V,U> {
5884 final Function<? super K, ? extends U> searchFunction;
5885 final AtomicReference<U> result;
5886 SearchKeysTask
5887 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5888 Function<? super K, ? extends U> searchFunction,
5889 AtomicReference<U> result) {
5890 super(m, p, b);
5891 this.searchFunction = searchFunction; this.result = result;
5892 }
5893 public final U getRawResult() { return result.get(); }
5894 public final void compute() {
5895 final Function<? super K, ? extends U> searchFunction;
5896 final AtomicReference<U> result;
5897 if ((searchFunction = this.searchFunction) != null &&
5898 (result = this.result) != null) {
5899 for (int b;;) {
5900 if (result.get() != null)
5901 return;
5902 if ((b = preSplit()) <= 0)
5903 break;
5904 new SearchKeysTask<K,V,U>
5905 (map, this, b, searchFunction, result).fork();
5906 }
5907 while (result.get() == null) {
5908 K k; U u;
5909 if ((k = advanceKey()) == null) {
5910 propagateCompletion();
5911 break;
5912 }
5913 if ((u = searchFunction.apply(k)) != null) {
5914 if (result.compareAndSet(null, u))
5915 quietlyCompleteRoot();
5916 break;
5917 }
5918 }
5919 }
5920 }
5921 }
5922
5923 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5924 extends Traverser<K,V,U> {
5925 final Function<? super V, ? extends U> searchFunction;
5926 final AtomicReference<U> result;
5927 SearchValuesTask
5928 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5929 Function<? super V, ? extends U> searchFunction,
5930 AtomicReference<U> result) {
5931 super(m, p, b);
5932 this.searchFunction = searchFunction; this.result = result;
5933 }
5934 public final U getRawResult() { return result.get(); }
5935 public final void compute() {
5936 final Function<? super V, ? extends U> searchFunction;
5937 final AtomicReference<U> result;
5938 if ((searchFunction = this.searchFunction) != null &&
5939 (result = this.result) != null) {
5940 for (int b;;) {
5941 if (result.get() != null)
5942 return;
5943 if ((b = preSplit()) <= 0)
5944 break;
5945 new SearchValuesTask<K,V,U>
5946 (map, this, b, searchFunction, result).fork();
5947 }
5948 while (result.get() == null) {
5949 V v; U u;
5950 if ((v = advanceValue()) == null) {
5951 propagateCompletion();
5952 break;
5953 }
5954 if ((u = searchFunction.apply(v)) != null) {
5955 if (result.compareAndSet(null, u))
5956 quietlyCompleteRoot();
5957 break;
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5965 extends Traverser<K,V,U> {
5966 final Function<Entry<K,V>, ? extends U> searchFunction;
5967 final AtomicReference<U> result;
5968 SearchEntriesTask
5969 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5970 Function<Entry<K,V>, ? extends U> searchFunction,
5971 AtomicReference<U> result) {
5972 super(m, p, b);
5973 this.searchFunction = searchFunction; this.result = result;
5974 }
5975 public final U getRawResult() { return result.get(); }
5976 public final void compute() {
5977 final Function<Entry<K,V>, ? extends U> searchFunction;
5978 final AtomicReference<U> result;
5979 if ((searchFunction = this.searchFunction) != null &&
5980 (result = this.result) != null) {
5981 for (int b;;) {
5982 if (result.get() != null)
5983 return;
5984 if ((b = preSplit()) <= 0)
5985 break;
5986 new SearchEntriesTask<K,V,U>
5987 (map, this, b, searchFunction, result).fork();
5988 }
5989 while (result.get() == null) {
5990 V v; U u;
5991 if ((v = advanceValue()) == null) {
5992 propagateCompletion();
5993 break;
5994 }
5995 if ((u = searchFunction.apply(entryFor(nextKey,
5996 v))) != null) {
5997 if (result.compareAndSet(null, u))
5998 quietlyCompleteRoot();
5999 return;
6000 }
6001 }
6002 }
6003 }
6004 }
6005
6006 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
6007 extends Traverser<K,V,U> {
6008 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6009 final AtomicReference<U> result;
6010 SearchMappingsTask
6011 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6012 BiFunction<? super K, ? super V, ? extends U> searchFunction,
6013 AtomicReference<U> result) {
6014 super(m, p, b);
6015 this.searchFunction = searchFunction; this.result = result;
6016 }
6017 public final U getRawResult() { return result.get(); }
6018 public final void compute() {
6019 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6020 final AtomicReference<U> result;
6021 if ((searchFunction = this.searchFunction) != null &&
6022 (result = this.result) != null) {
6023 for (int b;;) {
6024 if (result.get() != null)
6025 return;
6026 if ((b = preSplit()) <= 0)
6027 break;
6028 new SearchMappingsTask<K,V,U>
6029 (map, this, b, searchFunction, result).fork();
6030 }
6031 while (result.get() == null) {
6032 V v; U u;
6033 if ((v = advanceValue()) == null) {
6034 propagateCompletion();
6035 break;
6036 }
6037 if ((u = searchFunction.apply(nextKey, v)) != null) {
6038 if (result.compareAndSet(null, u))
6039 quietlyCompleteRoot();
6040 break;
6041 }
6042 }
6043 }
6044 }
6045 }
6046
6047 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
6048 extends Traverser<K,V,K> {
6049 final BiFunction<? super K, ? super K, ? extends K> reducer;
6050 K result;
6051 ReduceKeysTask<K,V> rights, nextRight;
6052 ReduceKeysTask
6053 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6054 ReduceKeysTask<K,V> nextRight,
6055 BiFunction<? super K, ? super K, ? extends K> reducer) {
6056 super(m, p, b); this.nextRight = nextRight;
6057 this.reducer = reducer;
6058 }
6059 public final K getRawResult() { return result; }
6060 @SuppressWarnings("unchecked") public final void compute() {
6061 final BiFunction<? super K, ? super K, ? extends K> reducer;
6062 if ((reducer = this.reducer) != null) {
6063 for (int b; (b = preSplit()) > 0;)
6064 (rights = new ReduceKeysTask<K,V>
6065 (map, this, b, rights, reducer)).fork();
6066 K u, r = null;
6067 while ((u = advanceKey()) != null) {
6068 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
6069 }
6070 result = r;
6071 CountedCompleter<?> c;
6072 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6073 ReduceKeysTask<K,V>
6074 t = (ReduceKeysTask<K,V>)c,
6075 s = t.rights;
6076 while (s != null) {
6077 K tr, sr;
6078 if ((sr = s.result) != null)
6079 t.result = (((tr = t.result) == null) ? sr :
6080 reducer.apply(tr, sr));
6081 s = t.rights = s.nextRight;
6082 }
6083 }
6084 }
6085 }
6086 }
6087
6088 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6089 extends Traverser<K,V,V> {
6090 final BiFunction<? super V, ? super V, ? extends V> reducer;
6091 V result;
6092 ReduceValuesTask<K,V> rights, nextRight;
6093 ReduceValuesTask
6094 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6095 ReduceValuesTask<K,V> nextRight,
6096 BiFunction<? super V, ? super V, ? extends V> reducer) {
6097 super(m, p, b); this.nextRight = nextRight;
6098 this.reducer = reducer;
6099 }
6100 public final V getRawResult() { return result; }
6101 @SuppressWarnings("unchecked") public final void compute() {
6102 final BiFunction<? super V, ? super V, ? extends V> reducer;
6103 if ((reducer = this.reducer) != null) {
6104 for (int b; (b = preSplit()) > 0;)
6105 (rights = new ReduceValuesTask<K,V>
6106 (map, this, b, rights, reducer)).fork();
6107 V r = null, v;
6108 while ((v = advanceValue()) != null)
6109 r = (r == null) ? v : reducer.apply(r, v);
6110 result = r;
6111 CountedCompleter<?> c;
6112 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113 ReduceValuesTask<K,V>
6114 t = (ReduceValuesTask<K,V>)c,
6115 s = t.rights;
6116 while (s != null) {
6117 V tr, sr;
6118 if ((sr = s.result) != null)
6119 t.result = (((tr = t.result) == null) ? sr :
6120 reducer.apply(tr, sr));
6121 s = t.rights = s.nextRight;
6122 }
6123 }
6124 }
6125 }
6126 }
6127
6128 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6129 extends Traverser<K,V,Map.Entry<K,V>> {
6130 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6131 Map.Entry<K,V> result;
6132 ReduceEntriesTask<K,V> rights, nextRight;
6133 ReduceEntriesTask
6134 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6135 ReduceEntriesTask<K,V> nextRight,
6136 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6137 super(m, p, b); this.nextRight = nextRight;
6138 this.reducer = reducer;
6139 }
6140 public final Map.Entry<K,V> getRawResult() { return result; }
6141 @SuppressWarnings("unchecked") public final void compute() {
6142 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6143 if ((reducer = this.reducer) != null) {
6144 for (int b; (b = preSplit()) > 0;)
6145 (rights = new ReduceEntriesTask<K,V>
6146 (map, this, b, rights, reducer)).fork();
6147 Map.Entry<K,V> r = null;
6148 V v;
6149 while ((v = advanceValue()) != null) {
6150 Map.Entry<K,V> u = entryFor(nextKey, v);
6151 r = (r == null) ? u : reducer.apply(r, u);
6152 }
6153 result = r;
6154 CountedCompleter<?> c;
6155 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6156 ReduceEntriesTask<K,V>
6157 t = (ReduceEntriesTask<K,V>)c,
6158 s = t.rights;
6159 while (s != null) {
6160 Map.Entry<K,V> tr, sr;
6161 if ((sr = s.result) != null)
6162 t.result = (((tr = t.result) == null) ? sr :
6163 reducer.apply(tr, sr));
6164 s = t.rights = s.nextRight;
6165 }
6166 }
6167 }
6168 }
6169 }
6170
6171 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6172 extends Traverser<K,V,U> {
6173 final Function<? super K, ? extends U> transformer;
6174 final BiFunction<? super U, ? super U, ? extends U> reducer;
6175 U result;
6176 MapReduceKeysTask<K,V,U> rights, nextRight;
6177 MapReduceKeysTask
6178 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6179 MapReduceKeysTask<K,V,U> nextRight,
6180 Function<? super K, ? extends U> transformer,
6181 BiFunction<? super U, ? super U, ? extends U> reducer) {
6182 super(m, p, b); this.nextRight = nextRight;
6183 this.transformer = transformer;
6184 this.reducer = reducer;
6185 }
6186 public final U getRawResult() { return result; }
6187 @SuppressWarnings("unchecked") public final void compute() {
6188 final Function<? super K, ? extends U> transformer;
6189 final BiFunction<? super U, ? super U, ? extends U> reducer;
6190 if ((transformer = this.transformer) != null &&
6191 (reducer = this.reducer) != null) {
6192 for (int b; (b = preSplit()) > 0;)
6193 (rights = new MapReduceKeysTask<K,V,U>
6194 (map, this, b, rights, transformer, reducer)).fork();
6195 K k; U r = null, u;
6196 while ((k = advanceKey()) != null) {
6197 if ((u = transformer.apply(k)) != null)
6198 r = (r == null) ? u : reducer.apply(r, u);
6199 }
6200 result = r;
6201 CountedCompleter<?> c;
6202 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6203 MapReduceKeysTask<K,V,U>
6204 t = (MapReduceKeysTask<K,V,U>)c,
6205 s = t.rights;
6206 while (s != null) {
6207 U tr, sr;
6208 if ((sr = s.result) != null)
6209 t.result = (((tr = t.result) == null) ? sr :
6210 reducer.apply(tr, sr));
6211 s = t.rights = s.nextRight;
6212 }
6213 }
6214 }
6215 }
6216 }
6217
6218 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6219 extends Traverser<K,V,U> {
6220 final Function<? super V, ? extends U> transformer;
6221 final BiFunction<? super U, ? super U, ? extends U> reducer;
6222 U result;
6223 MapReduceValuesTask<K,V,U> rights, nextRight;
6224 MapReduceValuesTask
6225 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6226 MapReduceValuesTask<K,V,U> nextRight,
6227 Function<? super V, ? extends U> transformer,
6228 BiFunction<? super U, ? super U, ? extends U> reducer) {
6229 super(m, p, b); this.nextRight = nextRight;
6230 this.transformer = transformer;
6231 this.reducer = reducer;
6232 }
6233 public final U getRawResult() { return result; }
6234 @SuppressWarnings("unchecked") public final void compute() {
6235 final Function<? super V, ? extends U> transformer;
6236 final BiFunction<? super U, ? super U, ? extends U> reducer;
6237 if ((transformer = this.transformer) != null &&
6238 (reducer = this.reducer) != null) {
6239 for (int b; (b = preSplit()) > 0;)
6240 (rights = new MapReduceValuesTask<K,V,U>
6241 (map, this, b, rights, transformer, reducer)).fork();
6242 U r = null, u;
6243 V v;
6244 while ((v = advanceValue()) != null) {
6245 if ((u = transformer.apply(v)) != null)
6246 r = (r == null) ? u : reducer.apply(r, u);
6247 }
6248 result = r;
6249 CountedCompleter<?> c;
6250 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6251 MapReduceValuesTask<K,V,U>
6252 t = (MapReduceValuesTask<K,V,U>)c,
6253 s = t.rights;
6254 while (s != null) {
6255 U tr, sr;
6256 if ((sr = s.result) != null)
6257 t.result = (((tr = t.result) == null) ? sr :
6258 reducer.apply(tr, sr));
6259 s = t.rights = s.nextRight;
6260 }
6261 }
6262 }
6263 }
6264 }
6265
6266 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6267 extends Traverser<K,V,U> {
6268 final Function<Map.Entry<K,V>, ? extends U> transformer;
6269 final BiFunction<? super U, ? super U, ? extends U> reducer;
6270 U result;
6271 MapReduceEntriesTask<K,V,U> rights, nextRight;
6272 MapReduceEntriesTask
6273 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6274 MapReduceEntriesTask<K,V,U> nextRight,
6275 Function<Map.Entry<K,V>, ? extends U> transformer,
6276 BiFunction<? super U, ? super U, ? extends U> reducer) {
6277 super(m, p, b); this.nextRight = nextRight;
6278 this.transformer = transformer;
6279 this.reducer = reducer;
6280 }
6281 public final U getRawResult() { return result; }
6282 @SuppressWarnings("unchecked") public final void compute() {
6283 final Function<Map.Entry<K,V>, ? extends U> transformer;
6284 final BiFunction<? super U, ? super U, ? extends U> reducer;
6285 if ((transformer = this.transformer) != null &&
6286 (reducer = this.reducer) != null) {
6287 for (int b; (b = preSplit()) > 0;)
6288 (rights = new MapReduceEntriesTask<K,V,U>
6289 (map, this, b, rights, transformer, reducer)).fork();
6290 U r = null, u;
6291 V v;
6292 while ((v = advanceValue()) != null) {
6293 if ((u = transformer.apply(entryFor(nextKey,
6294 v))) != null)
6295 r = (r == null) ? u : reducer.apply(r, u);
6296 }
6297 result = r;
6298 CountedCompleter<?> c;
6299 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6300 MapReduceEntriesTask<K,V,U>
6301 t = (MapReduceEntriesTask<K,V,U>)c,
6302 s = t.rights;
6303 while (s != null) {
6304 U tr, sr;
6305 if ((sr = s.result) != null)
6306 t.result = (((tr = t.result) == null) ? sr :
6307 reducer.apply(tr, sr));
6308 s = t.rights = s.nextRight;
6309 }
6310 }
6311 }
6312 }
6313 }
6314
6315 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6316 extends Traverser<K,V,U> {
6317 final BiFunction<? super K, ? super V, ? extends U> transformer;
6318 final BiFunction<? super U, ? super U, ? extends U> reducer;
6319 U result;
6320 MapReduceMappingsTask<K,V,U> rights, nextRight;
6321 MapReduceMappingsTask
6322 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6323 MapReduceMappingsTask<K,V,U> nextRight,
6324 BiFunction<? super K, ? super V, ? extends U> transformer,
6325 BiFunction<? super U, ? super U, ? extends U> reducer) {
6326 super(m, p, b); this.nextRight = nextRight;
6327 this.transformer = transformer;
6328 this.reducer = reducer;
6329 }
6330 public final U getRawResult() { return result; }
6331 @SuppressWarnings("unchecked") public final void compute() {
6332 final BiFunction<? super K, ? super V, ? extends U> transformer;
6333 final BiFunction<? super U, ? super U, ? extends U> reducer;
6334 if ((transformer = this.transformer) != null &&
6335 (reducer = this.reducer) != null) {
6336 for (int b; (b = preSplit()) > 0;)
6337 (rights = new MapReduceMappingsTask<K,V,U>
6338 (map, this, b, rights, transformer, reducer)).fork();
6339 U r = null, u;
6340 V v;
6341 while ((v = advanceValue()) != null) {
6342 if ((u = transformer.apply(nextKey, v)) != null)
6343 r = (r == null) ? u : reducer.apply(r, u);
6344 }
6345 result = r;
6346 CountedCompleter<?> c;
6347 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6348 MapReduceMappingsTask<K,V,U>
6349 t = (MapReduceMappingsTask<K,V,U>)c,
6350 s = t.rights;
6351 while (s != null) {
6352 U tr, sr;
6353 if ((sr = s.result) != null)
6354 t.result = (((tr = t.result) == null) ? sr :
6355 reducer.apply(tr, sr));
6356 s = t.rights = s.nextRight;
6357 }
6358 }
6359 }
6360 }
6361 }
6362
6363 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6364 extends Traverser<K,V,Double> {
6365 final ToDoubleFunction<? super K> transformer;
6366 final DoubleBinaryOperator reducer;
6367 final double basis;
6368 double result;
6369 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6370 MapReduceKeysToDoubleTask
6371 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6372 MapReduceKeysToDoubleTask<K,V> nextRight,
6373 ToDoubleFunction<? super K> transformer,
6374 double basis,
6375 DoubleBinaryOperator reducer) {
6376 super(m, p, b); this.nextRight = nextRight;
6377 this.transformer = transformer;
6378 this.basis = basis; this.reducer = reducer;
6379 }
6380 public final Double getRawResult() { return result; }
6381 @SuppressWarnings("unchecked") public final void compute() {
6382 final ToDoubleFunction<? super K> transformer;
6383 final DoubleBinaryOperator reducer;
6384 if ((transformer = this.transformer) != null &&
6385 (reducer = this.reducer) != null) {
6386 double r = this.basis;
6387 for (int b; (b = preSplit()) > 0;)
6388 (rights = new MapReduceKeysToDoubleTask<K,V>
6389 (map, this, b, rights, transformer, r, reducer)).fork();
6390 K k;
6391 while ((k = advanceKey()) != null)
6392 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6393 result = r;
6394 CountedCompleter<?> c;
6395 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6396 MapReduceKeysToDoubleTask<K,V>
6397 t = (MapReduceKeysToDoubleTask<K,V>)c,
6398 s = t.rights;
6399 while (s != null) {
6400 t.result = reducer.applyAsDouble(t.result, s.result);
6401 s = t.rights = s.nextRight;
6402 }
6403 }
6404 }
6405 }
6406 }
6407
6408 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6409 extends Traverser<K,V,Double> {
6410 final ToDoubleFunction<? super V> transformer;
6411 final DoubleBinaryOperator reducer;
6412 final double basis;
6413 double result;
6414 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6415 MapReduceValuesToDoubleTask
6416 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6417 MapReduceValuesToDoubleTask<K,V> nextRight,
6418 ToDoubleFunction<? super V> transformer,
6419 double basis,
6420 DoubleBinaryOperator reducer) {
6421 super(m, p, b); this.nextRight = nextRight;
6422 this.transformer = transformer;
6423 this.basis = basis; this.reducer = reducer;
6424 }
6425 public final Double getRawResult() { return result; }
6426 @SuppressWarnings("unchecked") public final void compute() {
6427 final ToDoubleFunction<? super V> transformer;
6428 final DoubleBinaryOperator reducer;
6429 if ((transformer = this.transformer) != null &&
6430 (reducer = this.reducer) != null) {
6431 double r = this.basis;
6432 for (int b; (b = preSplit()) > 0;)
6433 (rights = new MapReduceValuesToDoubleTask<K,V>
6434 (map, this, b, rights, transformer, r, reducer)).fork();
6435 V v;
6436 while ((v = advanceValue()) != null)
6437 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6438 result = r;
6439 CountedCompleter<?> c;
6440 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6441 MapReduceValuesToDoubleTask<K,V>
6442 t = (MapReduceValuesToDoubleTask<K,V>)c,
6443 s = t.rights;
6444 while (s != null) {
6445 t.result = reducer.applyAsDouble(t.result, s.result);
6446 s = t.rights = s.nextRight;
6447 }
6448 }
6449 }
6450 }
6451 }
6452
6453 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6454 extends Traverser<K,V,Double> {
6455 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6456 final DoubleBinaryOperator reducer;
6457 final double basis;
6458 double result;
6459 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6460 MapReduceEntriesToDoubleTask
6461 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6462 MapReduceEntriesToDoubleTask<K,V> nextRight,
6463 ToDoubleFunction<Map.Entry<K,V>> transformer,
6464 double basis,
6465 DoubleBinaryOperator reducer) {
6466 super(m, p, b); this.nextRight = nextRight;
6467 this.transformer = transformer;
6468 this.basis = basis; this.reducer = reducer;
6469 }
6470 public final Double getRawResult() { return result; }
6471 @SuppressWarnings("unchecked") public final void compute() {
6472 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6473 final DoubleBinaryOperator reducer;
6474 if ((transformer = this.transformer) != null &&
6475 (reducer = this.reducer) != null) {
6476 double r = this.basis;
6477 for (int b; (b = preSplit()) > 0;)
6478 (rights = new MapReduceEntriesToDoubleTask<K,V>
6479 (map, this, b, rights, transformer, r, reducer)).fork();
6480 V v;
6481 while ((v = advanceValue()) != null)
6482 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6483 v)));
6484 result = r;
6485 CountedCompleter<?> c;
6486 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6487 MapReduceEntriesToDoubleTask<K,V>
6488 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6489 s = t.rights;
6490 while (s != null) {
6491 t.result = reducer.applyAsDouble(t.result, s.result);
6492 s = t.rights = s.nextRight;
6493 }
6494 }
6495 }
6496 }
6497 }
6498
6499 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6500 extends Traverser<K,V,Double> {
6501 final ToDoubleBiFunction<? super K, ? super V> transformer;
6502 final DoubleBinaryOperator reducer;
6503 final double basis;
6504 double result;
6505 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6506 MapReduceMappingsToDoubleTask
6507 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6508 MapReduceMappingsToDoubleTask<K,V> nextRight,
6509 ToDoubleBiFunction<? super K, ? super V> transformer,
6510 double basis,
6511 DoubleBinaryOperator reducer) {
6512 super(m, p, b); this.nextRight = nextRight;
6513 this.transformer = transformer;
6514 this.basis = basis; this.reducer = reducer;
6515 }
6516 public final Double getRawResult() { return result; }
6517 @SuppressWarnings("unchecked") public final void compute() {
6518 final ToDoubleBiFunction<? super K, ? super V> transformer;
6519 final DoubleBinaryOperator reducer;
6520 if ((transformer = this.transformer) != null &&
6521 (reducer = this.reducer) != null) {
6522 double r = this.basis;
6523 for (int b; (b = preSplit()) > 0;)
6524 (rights = new MapReduceMappingsToDoubleTask<K,V>
6525 (map, this, b, rights, transformer, r, reducer)).fork();
6526 V v;
6527 while ((v = advanceValue()) != null)
6528 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6529 result = r;
6530 CountedCompleter<?> c;
6531 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6532 MapReduceMappingsToDoubleTask<K,V>
6533 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6534 s = t.rights;
6535 while (s != null) {
6536 t.result = reducer.applyAsDouble(t.result, s.result);
6537 s = t.rights = s.nextRight;
6538 }
6539 }
6540 }
6541 }
6542 }
6543
6544 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6545 extends Traverser<K,V,Long> {
6546 final ToLongFunction<? super K> transformer;
6547 final LongBinaryOperator reducer;
6548 final long basis;
6549 long result;
6550 MapReduceKeysToLongTask<K,V> rights, nextRight;
6551 MapReduceKeysToLongTask
6552 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6553 MapReduceKeysToLongTask<K,V> nextRight,
6554 ToLongFunction<? super K> transformer,
6555 long basis,
6556 LongBinaryOperator reducer) {
6557 super(m, p, b); this.nextRight = nextRight;
6558 this.transformer = transformer;
6559 this.basis = basis; this.reducer = reducer;
6560 }
6561 public final Long getRawResult() { return result; }
6562 @SuppressWarnings("unchecked") public final void compute() {
6563 final ToLongFunction<? super K> transformer;
6564 final LongBinaryOperator reducer;
6565 if ((transformer = this.transformer) != null &&
6566 (reducer = this.reducer) != null) {
6567 long r = this.basis;
6568 for (int b; (b = preSplit()) > 0;)
6569 (rights = new MapReduceKeysToLongTask<K,V>
6570 (map, this, b, rights, transformer, r, reducer)).fork();
6571 K k;
6572 while ((k = advanceKey()) != null)
6573 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6574 result = r;
6575 CountedCompleter<?> c;
6576 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6577 MapReduceKeysToLongTask<K,V>
6578 t = (MapReduceKeysToLongTask<K,V>)c,
6579 s = t.rights;
6580 while (s != null) {
6581 t.result = reducer.applyAsLong(t.result, s.result);
6582 s = t.rights = s.nextRight;
6583 }
6584 }
6585 }
6586 }
6587 }
6588
6589 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6590 extends Traverser<K,V,Long> {
6591 final ToLongFunction<? super V> transformer;
6592 final LongBinaryOperator reducer;
6593 final long basis;
6594 long result;
6595 MapReduceValuesToLongTask<K,V> rights, nextRight;
6596 MapReduceValuesToLongTask
6597 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6598 MapReduceValuesToLongTask<K,V> nextRight,
6599 ToLongFunction<? super V> transformer,
6600 long basis,
6601 LongBinaryOperator reducer) {
6602 super(m, p, b); this.nextRight = nextRight;
6603 this.transformer = transformer;
6604 this.basis = basis; this.reducer = reducer;
6605 }
6606 public final Long getRawResult() { return result; }
6607 @SuppressWarnings("unchecked") public final void compute() {
6608 final ToLongFunction<? super V> transformer;
6609 final LongBinaryOperator reducer;
6610 if ((transformer = this.transformer) != null &&
6611 (reducer = this.reducer) != null) {
6612 long r = this.basis;
6613 for (int b; (b = preSplit()) > 0;)
6614 (rights = new MapReduceValuesToLongTask<K,V>
6615 (map, this, b, rights, transformer, r, reducer)).fork();
6616 V v;
6617 while ((v = advanceValue()) != null)
6618 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6619 result = r;
6620 CountedCompleter<?> c;
6621 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6622 MapReduceValuesToLongTask<K,V>
6623 t = (MapReduceValuesToLongTask<K,V>)c,
6624 s = t.rights;
6625 while (s != null) {
6626 t.result = reducer.applyAsLong(t.result, s.result);
6627 s = t.rights = s.nextRight;
6628 }
6629 }
6630 }
6631 }
6632 }
6633
6634 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6635 extends Traverser<K,V,Long> {
6636 final ToLongFunction<Map.Entry<K,V>> transformer;
6637 final LongBinaryOperator reducer;
6638 final long basis;
6639 long result;
6640 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6641 MapReduceEntriesToLongTask
6642 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6643 MapReduceEntriesToLongTask<K,V> nextRight,
6644 ToLongFunction<Map.Entry<K,V>> transformer,
6645 long basis,
6646 LongBinaryOperator reducer) {
6647 super(m, p, b); this.nextRight = nextRight;
6648 this.transformer = transformer;
6649 this.basis = basis; this.reducer = reducer;
6650 }
6651 public final Long getRawResult() { return result; }
6652 @SuppressWarnings("unchecked") public final void compute() {
6653 final ToLongFunction<Map.Entry<K,V>> transformer;
6654 final LongBinaryOperator reducer;
6655 if ((transformer = this.transformer) != null &&
6656 (reducer = this.reducer) != null) {
6657 long r = this.basis;
6658 for (int b; (b = preSplit()) > 0;)
6659 (rights = new MapReduceEntriesToLongTask<K,V>
6660 (map, this, b, rights, transformer, r, reducer)).fork();
6661 V v;
6662 while ((v = advanceValue()) != null)
6663 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6664 result = r;
6665 CountedCompleter<?> c;
6666 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6667 MapReduceEntriesToLongTask<K,V>
6668 t = (MapReduceEntriesToLongTask<K,V>)c,
6669 s = t.rights;
6670 while (s != null) {
6671 t.result = reducer.applyAsLong(t.result, s.result);
6672 s = t.rights = s.nextRight;
6673 }
6674 }
6675 }
6676 }
6677 }
6678
6679 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6680 extends Traverser<K,V,Long> {
6681 final ToLongBiFunction<? super K, ? super V> transformer;
6682 final LongBinaryOperator reducer;
6683 final long basis;
6684 long result;
6685 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6686 MapReduceMappingsToLongTask
6687 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6688 MapReduceMappingsToLongTask<K,V> nextRight,
6689 ToLongBiFunction<? super K, ? super V> transformer,
6690 long basis,
6691 LongBinaryOperator reducer) {
6692 super(m, p, b); this.nextRight = nextRight;
6693 this.transformer = transformer;
6694 this.basis = basis; this.reducer = reducer;
6695 }
6696 public final Long getRawResult() { return result; }
6697 @SuppressWarnings("unchecked") public final void compute() {
6698 final ToLongBiFunction<? super K, ? super V> transformer;
6699 final LongBinaryOperator reducer;
6700 if ((transformer = this.transformer) != null &&
6701 (reducer = this.reducer) != null) {
6702 long r = this.basis;
6703 for (int b; (b = preSplit()) > 0;)
6704 (rights = new MapReduceMappingsToLongTask<K,V>
6705 (map, this, b, rights, transformer, r, reducer)).fork();
6706 V v;
6707 while ((v = advanceValue()) != null)
6708 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6709 result = r;
6710 CountedCompleter<?> c;
6711 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6712 MapReduceMappingsToLongTask<K,V>
6713 t = (MapReduceMappingsToLongTask<K,V>)c,
6714 s = t.rights;
6715 while (s != null) {
6716 t.result = reducer.applyAsLong(t.result, s.result);
6717 s = t.rights = s.nextRight;
6718 }
6719 }
6720 }
6721 }
6722 }
6723
6724 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6725 extends Traverser<K,V,Integer> {
6726 final ToIntFunction<? super K> transformer;
6727 final IntBinaryOperator reducer;
6728 final int basis;
6729 int result;
6730 MapReduceKeysToIntTask<K,V> rights, nextRight;
6731 MapReduceKeysToIntTask
6732 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6733 MapReduceKeysToIntTask<K,V> nextRight,
6734 ToIntFunction<? super K> transformer,
6735 int basis,
6736 IntBinaryOperator reducer) {
6737 super(m, p, b); this.nextRight = nextRight;
6738 this.transformer = transformer;
6739 this.basis = basis; this.reducer = reducer;
6740 }
6741 public final Integer getRawResult() { return result; }
6742 @SuppressWarnings("unchecked") public final void compute() {
6743 final ToIntFunction<? super K> transformer;
6744 final IntBinaryOperator reducer;
6745 if ((transformer = this.transformer) != null &&
6746 (reducer = this.reducer) != null) {
6747 int r = this.basis;
6748 for (int b; (b = preSplit()) > 0;)
6749 (rights = new MapReduceKeysToIntTask<K,V>
6750 (map, this, b, rights, transformer, r, reducer)).fork();
6751 K k;
6752 while ((k = advanceKey()) != null)
6753 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6754 result = r;
6755 CountedCompleter<?> c;
6756 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6757 MapReduceKeysToIntTask<K,V>
6758 t = (MapReduceKeysToIntTask<K,V>)c,
6759 s = t.rights;
6760 while (s != null) {
6761 t.result = reducer.applyAsInt(t.result, s.result);
6762 s = t.rights = s.nextRight;
6763 }
6764 }
6765 }
6766 }
6767 }
6768
6769 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6770 extends Traverser<K,V,Integer> {
6771 final ToIntFunction<? super V> transformer;
6772 final IntBinaryOperator reducer;
6773 final int basis;
6774 int result;
6775 MapReduceValuesToIntTask<K,V> rights, nextRight;
6776 MapReduceValuesToIntTask
6777 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6778 MapReduceValuesToIntTask<K,V> nextRight,
6779 ToIntFunction<? super V> transformer,
6780 int basis,
6781 IntBinaryOperator reducer) {
6782 super(m, p, b); this.nextRight = nextRight;
6783 this.transformer = transformer;
6784 this.basis = basis; this.reducer = reducer;
6785 }
6786 public final Integer getRawResult() { return result; }
6787 @SuppressWarnings("unchecked") public final void compute() {
6788 final ToIntFunction<? super V> transformer;
6789 final IntBinaryOperator reducer;
6790 if ((transformer = this.transformer) != null &&
6791 (reducer = this.reducer) != null) {
6792 int r = this.basis;
6793 for (int b; (b = preSplit()) > 0;)
6794 (rights = new MapReduceValuesToIntTask<K,V>
6795 (map, this, b, rights, transformer, r, reducer)).fork();
6796 V v;
6797 while ((v = advanceValue()) != null)
6798 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6799 result = r;
6800 CountedCompleter<?> c;
6801 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6802 MapReduceValuesToIntTask<K,V>
6803 t = (MapReduceValuesToIntTask<K,V>)c,
6804 s = t.rights;
6805 while (s != null) {
6806 t.result = reducer.applyAsInt(t.result, s.result);
6807 s = t.rights = s.nextRight;
6808 }
6809 }
6810 }
6811 }
6812 }
6813
6814 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6815 extends Traverser<K,V,Integer> {
6816 final ToIntFunction<Map.Entry<K,V>> transformer;
6817 final IntBinaryOperator reducer;
6818 final int basis;
6819 int result;
6820 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6821 MapReduceEntriesToIntTask
6822 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6823 MapReduceEntriesToIntTask<K,V> nextRight,
6824 ToIntFunction<Map.Entry<K,V>> transformer,
6825 int basis,
6826 IntBinaryOperator reducer) {
6827 super(m, p, b); this.nextRight = nextRight;
6828 this.transformer = transformer;
6829 this.basis = basis; this.reducer = reducer;
6830 }
6831 public final Integer getRawResult() { return result; }
6832 @SuppressWarnings("unchecked") public final void compute() {
6833 final ToIntFunction<Map.Entry<K,V>> transformer;
6834 final IntBinaryOperator reducer;
6835 if ((transformer = this.transformer) != null &&
6836 (reducer = this.reducer) != null) {
6837 int r = this.basis;
6838 for (int b; (b = preSplit()) > 0;)
6839 (rights = new MapReduceEntriesToIntTask<K,V>
6840 (map, this, b, rights, transformer, r, reducer)).fork();
6841 V v;
6842 while ((v = advanceValue()) != null)
6843 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6844 v)));
6845 result = r;
6846 CountedCompleter<?> c;
6847 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6848 MapReduceEntriesToIntTask<K,V>
6849 t = (MapReduceEntriesToIntTask<K,V>)c,
6850 s = t.rights;
6851 while (s != null) {
6852 t.result = reducer.applyAsInt(t.result, s.result);
6853 s = t.rights = s.nextRight;
6854 }
6855 }
6856 }
6857 }
6858 }
6859
6860 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6861 extends Traverser<K,V,Integer> {
6862 final ToIntBiFunction<? super K, ? super V> transformer;
6863 final IntBinaryOperator reducer;
6864 final int basis;
6865 int result;
6866 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6867 MapReduceMappingsToIntTask
6868 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6869 MapReduceMappingsToIntTask<K,V> nextRight,
6870 ToIntBiFunction<? super K, ? super V> transformer,
6871 int basis,
6872 IntBinaryOperator reducer) {
6873 super(m, p, b); this.nextRight = nextRight;
6874 this.transformer = transformer;
6875 this.basis = basis; this.reducer = reducer;
6876 }
6877 public final Integer getRawResult() { return result; }
6878 @SuppressWarnings("unchecked") public final void compute() {
6879 final ToIntBiFunction<? super K, ? super V> transformer;
6880 final IntBinaryOperator reducer;
6881 if ((transformer = this.transformer) != null &&
6882 (reducer = this.reducer) != null) {
6883 int r = this.basis;
6884 for (int b; (b = preSplit()) > 0;)
6885 (rights = new MapReduceMappingsToIntTask<K,V>
6886 (map, this, b, rights, transformer, r, reducer)).fork();
6887 V v;
6888 while ((v = advanceValue()) != null)
6889 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6890 result = r;
6891 CountedCompleter<?> c;
6892 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6893 MapReduceMappingsToIntTask<K,V>
6894 t = (MapReduceMappingsToIntTask<K,V>)c,
6895 s = t.rights;
6896 while (s != null) {
6897 t.result = reducer.applyAsInt(t.result, s.result);
6898 s = t.rights = s.nextRight;
6899 }
6900 }
6901 }
6902 }
6903 }
6904
6905 // Unsafe mechanics
6906 private static final sun.misc.Unsafe U;
6907 private static final long SIZECTL;
6908 private static final long TRANSFERINDEX;
6909 private static final long TRANSFERORIGIN;
6910 private static final long BASECOUNT;
6911 private static final long CELLSBUSY;
6912 private static final long CELLVALUE;
6913 private static final long ABASE;
6914 private static final int ASHIFT;
6915
6916 static {
6917 try {
6918 U = sun.misc.Unsafe.getUnsafe();
6919 Class<?> k = ConcurrentHashMap.class;
6920 SIZECTL = U.objectFieldOffset
6921 (k.getDeclaredField("sizeCtl"));
6922 TRANSFERINDEX = U.objectFieldOffset
6923 (k.getDeclaredField("transferIndex"));
6924 TRANSFERORIGIN = U.objectFieldOffset
6925 (k.getDeclaredField("transferOrigin"));
6926 BASECOUNT = U.objectFieldOffset
6927 (k.getDeclaredField("baseCount"));
6928 CELLSBUSY = U.objectFieldOffset
6929 (k.getDeclaredField("cellsBusy"));
6930 Class<?> ck = Cell.class;
6931 CELLVALUE = U.objectFieldOffset
6932 (ck.getDeclaredField("value"));
6933 Class<?> sc = Node[].class;
6934 ABASE = U.arrayBaseOffset(sc);
6935 int scale = U.arrayIndexScale(sc);
6936 if ((scale & (scale - 1)) != 0)
6937 throw new Error("data type scale not a power of two");
6938 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6939 } catch (Exception e) {
6940 throw new Error(e);
6941 }
6942 }
6943
6944 }