ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.207
Committed: Tue Apr 16 05:45:59 2013 UTC (11 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.206: +3 -3 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.Spliterator;
11 import java.util.stream.Stream;
12 import java.util.stream.Streams;
13 import java.util.function.*;
14 import java.util.function.Consumer;
15 import java.util.function.Function;
16 import java.util.function.BiFunction;
17
18 import java.util.Comparator;
19 import java.util.Arrays;
20 import java.util.Map;
21 import java.util.Set;
22 import java.util.Collection;
23 import java.util.AbstractMap;
24 import java.util.AbstractSet;
25 import java.util.AbstractCollection;
26 import java.util.Hashtable;
27 import java.util.HashMap;
28 import java.util.Iterator;
29 import java.util.Enumeration;
30 import java.util.ConcurrentModificationException;
31 import java.util.NoSuchElementException;
32 import java.util.concurrent.ConcurrentMap;
33 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
34 import java.util.concurrent.atomic.AtomicInteger;
35 import java.util.concurrent.atomic.AtomicReference;
36 import java.io.Serializable;
37 import java.lang.reflect.Type;
38 import java.lang.reflect.ParameterizedType;
39
40 /**
41 * A hash table supporting full concurrency of retrievals and
42 * high expected concurrency for updates. This class obeys the
43 * same functional specification as {@link java.util.Hashtable}, and
44 * includes versions of methods corresponding to each method of
45 * {@code Hashtable}. However, even though all operations are
46 * thread-safe, retrieval operations do <em>not</em> entail locking,
47 * and there is <em>not</em> any support for locking the entire table
48 * in a way that prevents all access. This class is fully
49 * interoperable with {@code Hashtable} in programs that rely on its
50 * thread safety but not on its synchronization details.
51 *
52 * <p>Retrieval operations (including {@code get}) generally do not
53 * block, so may overlap with update operations (including {@code put}
54 * and {@code remove}). Retrievals reflect the results of the most
55 * recently <em>completed</em> update operations holding upon their
56 * onset. (More formally, an update operation for a given key bears a
57 * <em>happens-before</em> relation with any (non-null) retrieval for
58 * that key reporting the updated value.) For aggregate operations
59 * such as {@code putAll} and {@code clear}, concurrent retrievals may
60 * reflect insertion or removal of only some entries. Similarly,
61 * Iterators and Enumerations return elements reflecting the state of
62 * the hash table at some point at or since the creation of the
63 * iterator/enumeration. They do <em>not</em> throw {@link
64 * ConcurrentModificationException}. However, iterators are designed
65 * to be used by only one thread at a time. Bear in mind that the
66 * results of aggregate status methods including {@code size}, {@code
67 * isEmpty}, and {@code containsValue} are typically useful only when
68 * a map is not undergoing concurrent updates in other threads.
69 * Otherwise the results of these methods reflect transient states
70 * that may be adequate for monitoring or estimation purposes, but not
71 * for program control.
72 *
73 * <p>The table is dynamically expanded when there are too many
74 * collisions (i.e., keys that have distinct hash codes but fall into
75 * the same slot modulo the table size), with the expected average
76 * effect of maintaining roughly two bins per mapping (corresponding
77 * to a 0.75 load factor threshold for resizing). There may be much
78 * variance around this average as mappings are added and removed, but
79 * overall, this maintains a commonly accepted time/space tradeoff for
80 * hash tables. However, resizing this or any other kind of hash
81 * table may be a relatively slow operation. When possible, it is a
82 * good idea to provide a size estimate as an optional {@code
83 * initialCapacity} constructor argument. An additional optional
84 * {@code loadFactor} constructor argument provides a further means of
85 * customizing initial table capacity by specifying the table density
86 * to be used in calculating the amount of space to allocate for the
87 * given number of elements. Also, for compatibility with previous
88 * versions of this class, constructors may optionally specify an
89 * expected {@code concurrencyLevel} as an additional hint for
90 * internal sizing. Note that using many keys with exactly the same
91 * {@code hashCode()} is a sure way to slow down performance of any
92 * hash table.
93 *
94 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
95 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
96 * (using {@link #keySet(Object)} when only keys are of interest, and the
97 * mapped values are (perhaps transiently) not used or all take the
98 * same mapping value.
99 *
100 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
101 * form of histogram or multiset) by using {@link
102 * java.util.concurrent.atomic.LongAdder} values and initializing via
103 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
104 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
105 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
106 *
107 * <p>This class and its views and iterators implement all of the
108 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
109 * interfaces.
110 *
111 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
112 * does <em>not</em> allow {@code null} to be used as a key or value.
113 *
114 * <p>ConcurrentHashMaps support sequential and parallel operations
115 * bulk operations. (Parallel forms use the {@link
116 * ForkJoinPool#commonPool()}). Tasks that may be used in other
117 * contexts are available in class {@link ForkJoinTasks}. These
118 * operations are designed to be safely, and often sensibly, applied
119 * even with maps that are being concurrently updated by other
120 * threads; for example, when computing a snapshot summary of the
121 * values in a shared registry. There are three kinds of operation,
122 * each with four forms, accepting functions with Keys, Values,
123 * Entries, and (Key, Value) arguments and/or return values. Because
124 * the elements of a ConcurrentHashMap are not ordered in any
125 * particular way, and may be processed in different orders in
126 * different parallel executions, the correctness of supplied
127 * functions should not depend on any ordering, or on any other
128 * objects or values that may transiently change while computation is
129 * in progress; and except for forEach actions, should ideally be
130 * side-effect-free.
131 *
132 * <ul>
133 * <li> forEach: Perform a given action on each element.
134 * A variant form applies a given transformation on each element
135 * before performing the action.</li>
136 *
137 * <li> search: Return the first available non-null result of
138 * applying a given function on each element; skipping further
139 * search when a result is found.</li>
140 *
141 * <li> reduce: Accumulate each element. The supplied reduction
142 * function cannot rely on ordering (more formally, it should be
143 * both associative and commutative). There are five variants:
144 *
145 * <ul>
146 *
147 * <li> Plain reductions. (There is not a form of this method for
148 * (key, value) function arguments since there is no corresponding
149 * return type.)</li>
150 *
151 * <li> Mapped reductions that accumulate the results of a given
152 * function applied to each element.</li>
153 *
154 * <li> Reductions to scalar doubles, longs, and ints, using a
155 * given basis value.</li>
156 *
157 * </ul>
158 * </li>
159 * </ul>
160 *
161 * <p>The concurrency properties of bulk operations follow
162 * from those of ConcurrentHashMap: Any non-null result returned
163 * from {@code get(key)} and related access methods bears a
164 * happens-before relation with the associated insertion or
165 * update. The result of any bulk operation reflects the
166 * composition of these per-element relations (but is not
167 * necessarily atomic with respect to the map as a whole unless it
168 * is somehow known to be quiescent). Conversely, because keys
169 * and values in the map are never null, null serves as a reliable
170 * atomic indicator of the current lack of any result. To
171 * maintain this property, null serves as an implicit basis for
172 * all non-scalar reduction operations. For the double, long, and
173 * int versions, the basis should be one that, when combined with
174 * any other value, returns that other value (more formally, it
175 * should be the identity element for the reduction). Most common
176 * reductions have these properties; for example, computing a sum
177 * with basis 0 or a minimum with basis MAX_VALUE.
178 *
179 * <p>Search and transformation functions provided as arguments
180 * should similarly return null to indicate the lack of any result
181 * (in which case it is not used). In the case of mapped
182 * reductions, this also enables transformations to serve as
183 * filters, returning null (or, in the case of primitive
184 * specializations, the identity basis) if the element should not
185 * be combined. You can create compound transformations and
186 * filterings by composing them yourself under this "null means
187 * there is nothing there now" rule before using them in search or
188 * reduce operations.
189 *
190 * <p>Methods accepting and/or returning Entry arguments maintain
191 * key-value associations. They may be useful for example when
192 * finding the key for the greatest value. Note that "plain" Entry
193 * arguments can be supplied using {@code new
194 * AbstractMap.SimpleEntry(k,v)}.
195 *
196 * <p>Bulk operations may complete abruptly, throwing an
197 * exception encountered in the application of a supplied
198 * function. Bear in mind when handling such exceptions that other
199 * concurrently executing functions could also have thrown
200 * exceptions, or would have done so if the first exception had
201 * not occurred.
202 *
203 * <p>Speedups for parallel compared to sequential forms are common
204 * but not guaranteed. Parallel operations involving brief functions
205 * on small maps may execute more slowly than sequential forms if the
206 * underlying work to parallelize the computation is more expensive
207 * than the computation itself. Similarly, parallelization may not
208 * lead to much actual parallelism if all processors are busy
209 * performing unrelated tasks.
210 *
211 * <p>All arguments to all task methods must be non-null.
212 *
213 * <p>This class is a member of the
214 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215 * Java Collections Framework</a>.
216 *
217 * @since 1.5
218 * @author Doug Lea
219 * @param <K> the type of keys maintained by this map
220 * @param <V> the type of mapped values
221 */
222 public class ConcurrentHashMap<K,V>
223 implements ConcurrentMap<K,V>, Serializable {
224 private static final long serialVersionUID = 7249069246763182397L;
225
226 /*
227 * Overview:
228 *
229 * The primary design goal of this hash table is to maintain
230 * concurrent readability (typically method get(), but also
231 * iterators and related methods) while minimizing update
232 * contention. Secondary goals are to keep space consumption about
233 * the same or better than java.util.HashMap, and to support high
234 * initial insertion rates on an empty table by many threads.
235 *
236 * Each key-value mapping is held in a Node. Because Node key
237 * fields can contain special values, they are defined using plain
238 * Object types (not type "K"). This leads to a lot of explicit
239 * casting (and many explicit warning suppressions to tell
240 * compilers not to complain about it). It also allows some of the
241 * public methods to be factored into a smaller number of internal
242 * methods (although sadly not so for the five variants of
243 * put-related operations). The validation-based approach
244 * explained below leads to a lot of code sprawl because
245 * retry-control precludes factoring into smaller methods.
246 *
247 * The table is lazily initialized to a power-of-two size upon the
248 * first insertion. Each bin in the table normally contains a
249 * list of Nodes (most often, the list has only zero or one Node).
250 * Table accesses require volatile/atomic reads, writes, and
251 * CASes. Because there is no other way to arrange this without
252 * adding further indirections, we use intrinsics
253 * (sun.misc.Unsafe) operations. The lists of nodes within bins
254 * are always accurately traversable under volatile reads, so long
255 * as lookups check hash code and non-nullness of value before
256 * checking key equality.
257 *
258 * We use the top (sign) bit of Node hash fields for control
259 * purposes -- it is available anyway because of addressing
260 * constraints. Nodes with negative hash fields are forwarding
261 * nodes to either TreeBins or resized tables. The lower 31 bits
262 * of each normal Node's hash field contain a transformation of
263 * the key's hash code.
264 *
265 * Insertion (via put or its variants) of the first node in an
266 * empty bin is performed by just CASing it to the bin. This is
267 * by far the most common case for put operations under most
268 * key/hash distributions. Other update operations (insert,
269 * delete, and replace) require locks. We do not want to waste
270 * the space required to associate a distinct lock object with
271 * each bin, so instead use the first node of a bin list itself as
272 * a lock. Locking support for these locks relies on builtin
273 * "synchronized" monitors.
274 *
275 * Using the first node of a list as a lock does not by itself
276 * suffice though: When a node is locked, any update must first
277 * validate that it is still the first node after locking it, and
278 * retry if not. Because new nodes are always appended to lists,
279 * once a node is first in a bin, it remains first until deleted
280 * or the bin becomes invalidated (upon resizing). However,
281 * operations that only conditionally update may inspect nodes
282 * until the point of update. This is a converse of sorts to the
283 * lazy locking technique described by Herlihy & Shavit.
284 *
285 * The main disadvantage of per-bin locks is that other update
286 * operations on other nodes in a bin list protected by the same
287 * lock can stall, for example when user equals() or mapping
288 * functions take a long time. However, statistically, under
289 * random hash codes, this is not a common problem. Ideally, the
290 * frequency of nodes in bins follows a Poisson distribution
291 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
292 * parameter of about 0.5 on average, given the resizing threshold
293 * of 0.75, although with a large variance because of resizing
294 * granularity. Ignoring variance, the expected occurrences of
295 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
296 * first values are:
297 *
298 * 0: 0.60653066
299 * 1: 0.30326533
300 * 2: 0.07581633
301 * 3: 0.01263606
302 * 4: 0.00157952
303 * 5: 0.00015795
304 * 6: 0.00001316
305 * 7: 0.00000094
306 * 8: 0.00000006
307 * more: less than 1 in ten million
308 *
309 * Lock contention probability for two threads accessing distinct
310 * elements is roughly 1 / (8 * #elements) under random hashes.
311 *
312 * Actual hash code distributions encountered in practice
313 * sometimes deviate significantly from uniform randomness. This
314 * includes the case when N > (1<<30), so some keys MUST collide.
315 * Similarly for dumb or hostile usages in which multiple keys are
316 * designed to have identical hash codes. Also, although we guard
317 * against the worst effects of this (see method spread), sets of
318 * hashes may differ only in bits that do not impact their bin
319 * index for a given power-of-two mask. So we use a secondary
320 * strategy that applies when the number of nodes in a bin exceeds
321 * a threshold, and at least one of the keys implements
322 * Comparable. These TreeBins use a balanced tree to hold nodes
323 * (a specialized form of red-black trees), bounding search time
324 * to O(log N). Each search step in a TreeBin is at least twice as
325 * slow as in a regular list, but given that N cannot exceed
326 * (1<<64) (before running out of addresses) this bounds search
327 * steps, lock hold times, etc, to reasonable constants (roughly
328 * 100 nodes inspected per operation worst case) so long as keys
329 * are Comparable (which is very common -- String, Long, etc).
330 * TreeBin nodes (TreeNodes) also maintain the same "next"
331 * traversal pointers as regular nodes, so can be traversed in
332 * iterators in the same way.
333 *
334 * The table is resized when occupancy exceeds a percentage
335 * threshold (nominally, 0.75, but see below). Any thread
336 * noticing an overfull bin may assist in resizing after the
337 * initiating thread allocates and sets up the replacement
338 * array. However, rather than stalling, these other threads may
339 * proceed with insertions etc. The use of TreeBins shields us
340 * from the worst case effects of overfilling while resizes are in
341 * progress. Resizing proceeds by transferring bins, one by one,
342 * from the table to the next table. To enable concurrency, the
343 * next table must be (incrementally) prefilled with place-holders
344 * serving as reverse forwarders to the old table. Because we are
345 * using power-of-two expansion, the elements from each bin must
346 * either stay at same index, or move with a power of two
347 * offset. We eliminate unnecessary node creation by catching
348 * cases where old nodes can be reused because their next fields
349 * won't change. On average, only about one-sixth of them need
350 * cloning when a table doubles. The nodes they replace will be
351 * garbage collectable as soon as they are no longer referenced by
352 * any reader thread that may be in the midst of concurrently
353 * traversing table. Upon transfer, the old table bin contains
354 * only a special forwarding node (with hash field "MOVED") that
355 * contains the next table as its key. On encountering a
356 * forwarding node, access and update operations restart, using
357 * the new table.
358 *
359 * Each bin transfer requires its bin lock, which can stall
360 * waiting for locks while resizing. However, because other
361 * threads can join in and help resize rather than contend for
362 * locks, average aggregate waits become shorter as resizing
363 * progresses. The transfer operation must also ensure that all
364 * accessible bins in both the old and new table are usable by any
365 * traversal. This is arranged by proceeding from the last bin
366 * (table.length - 1) up towards the first. Upon seeing a
367 * forwarding node, traversals (see class Traverser) arrange to
368 * move to the new table without revisiting nodes. However, to
369 * ensure that no intervening nodes are skipped, bin splitting can
370 * only begin after the associated reverse-forwarders are in
371 * place.
372 *
373 * The traversal scheme also applies to partial traversals of
374 * ranges of bins (via an alternate Traverser constructor)
375 * to support partitioned aggregate operations. Also, read-only
376 * operations give up if ever forwarded to a null table, which
377 * provides support for shutdown-style clearing, which is also not
378 * currently implemented.
379 *
380 * Lazy table initialization minimizes footprint until first use,
381 * and also avoids resizings when the first operation is from a
382 * putAll, constructor with map argument, or deserialization.
383 * These cases attempt to override the initial capacity settings,
384 * but harmlessly fail to take effect in cases of races.
385 *
386 * The element count is maintained using a specialization of
387 * LongAdder. We need to incorporate a specialization rather than
388 * just use a LongAdder in order to access implicit
389 * contention-sensing that leads to creation of multiple
390 * Cells. The counter mechanics avoid contention on
391 * updates but can encounter cache thrashing if read too
392 * frequently during concurrent access. To avoid reading so often,
393 * resizing under contention is attempted only upon adding to a
394 * bin already holding two or more nodes. Under uniform hash
395 * distributions, the probability of this occurring at threshold
396 * is around 13%, meaning that only about 1 in 8 puts check
397 * threshold (and after resizing, many fewer do so). The bulk
398 * putAll operation further reduces contention by only committing
399 * count updates upon these size checks.
400 *
401 * Maintaining API and serialization compatibility with previous
402 * versions of this class introduces several oddities. Mainly: We
403 * leave untouched but unused constructor arguments refering to
404 * concurrencyLevel. We accept a loadFactor constructor argument,
405 * but apply it only to initial table capacity (which is the only
406 * time that we can guarantee to honor it.) We also declare an
407 * unused "Segment" class that is instantiated in minimal form
408 * only when serializing.
409 */
410
411 /* ---------------- Constants -------------- */
412
413 /**
414 * The largest possible table capacity. This value must be
415 * exactly 1<<30 to stay within Java array allocation and indexing
416 * bounds for power of two table sizes, and is further required
417 * because the top two bits of 32bit hash fields are used for
418 * control purposes.
419 */
420 private static final int MAXIMUM_CAPACITY = 1 << 30;
421
422 /**
423 * The default initial table capacity. Must be a power of 2
424 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
425 */
426 private static final int DEFAULT_CAPACITY = 16;
427
428 /**
429 * The largest possible (non-power of two) array size.
430 * Needed by toArray and related methods.
431 */
432 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
433
434 /**
435 * The default concurrency level for this table. Unused but
436 * defined for compatibility with previous versions of this class.
437 */
438 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
439
440 /**
441 * The load factor for this table. Overrides of this value in
442 * constructors affect only the initial table capacity. The
443 * actual floating point value isn't normally used -- it is
444 * simpler to use expressions such as {@code n - (n >>> 2)} for
445 * the associated resizing threshold.
446 */
447 private static final float LOAD_FACTOR = 0.75f;
448
449 /**
450 * The bin count threshold for using a tree rather than list for a
451 * bin. The value reflects the approximate break-even point for
452 * using tree-based operations.
453 */
454 private static final int TREE_THRESHOLD = 16;
455
456 /**
457 * Minimum number of rebinnings per transfer step. Ranges are
458 * subdivided to allow multiple resizer threads. This value
459 * serves as a lower bound to avoid resizers encountering
460 * excessive memory contention. The value should be at least
461 * DEFAULT_CAPACITY.
462 */
463 private static final int MIN_TRANSFER_STRIDE = 16;
464
465 /*
466 * Encodings for Node hash fields. See above for explanation.
467 */
468 static final int MOVED = 0x80000000; // hash field for forwarding nodes
469 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
470
471 /** Number of CPUS, to place bounds on some sizings */
472 static final int NCPU = Runtime.getRuntime().availableProcessors();
473
474 /* ---------------- Counters -------------- */
475
476 // Adapted from LongAdder and Striped64.
477 // See their internal docs for explanation.
478
479 // A padded cell for distributing counts
480 static final class Cell {
481 volatile long p0, p1, p2, p3, p4, p5, p6;
482 volatile long value;
483 volatile long q0, q1, q2, q3, q4, q5, q6;
484 Cell(long x) { value = x; }
485 }
486
487 /* ---------------- Fields -------------- */
488
489 /**
490 * The array of bins. Lazily initialized upon first insertion.
491 * Size is always a power of two. Accessed directly by iterators.
492 */
493 transient volatile Node<V>[] table;
494
495 /**
496 * The next table to use; non-null only while resizing.
497 */
498 private transient volatile Node<V>[] nextTable;
499
500 /**
501 * Base counter value, used mainly when there is no contention,
502 * but also as a fallback during table initialization
503 * races. Updated via CAS.
504 */
505 private transient volatile long baseCount;
506
507 /**
508 * Table initialization and resizing control. When negative, the
509 * table is being initialized or resized: -1 for initialization,
510 * else -(1 + the number of active resizing threads). Otherwise,
511 * when table is null, holds the initial table size to use upon
512 * creation, or 0 for default. After initialization, holds the
513 * next element count value upon which to resize the table.
514 */
515 private transient volatile int sizeCtl;
516
517 /**
518 * The next table index (plus one) to split while resizing.
519 */
520 private transient volatile int transferIndex;
521
522 /**
523 * The least available table index to split while resizing.
524 */
525 private transient volatile int transferOrigin;
526
527 /**
528 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
529 */
530 private transient volatile int cellsBusy;
531
532 /**
533 * Table of counter cells. When non-null, size is a power of 2.
534 */
535 private transient volatile Cell[] counterCells;
536
537 // views
538 private transient KeySetView<K,V> keySet;
539 private transient ValuesView<K,V> values;
540 private transient EntrySetView<K,V> entrySet;
541
542 /** For serialization compatibility. Null unless serialized; see below */
543 private Segment<K,V>[] segments;
544
545 /* ---------------- Table element access -------------- */
546
547 /*
548 * Volatile access methods are used for table elements as well as
549 * elements of in-progress next table while resizing. Uses are
550 * null checked by callers, and implicitly bounds-checked, relying
551 * on the invariants that tab arrays have non-zero size, and all
552 * indices are masked with (tab.length - 1) which is never
553 * negative and always less than length. Note that, to be correct
554 * wrt arbitrary concurrency errors by users, bounds checks must
555 * operate on local variables, which accounts for some odd-looking
556 * inline assignments below.
557 */
558
559 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
560 (Node<V>[] tab, int i) { // used by Traverser
561 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
562 }
563
564 private static final <V> boolean casTabAt
565 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
566 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
567 }
568
569 private static final <V> void setTabAt
570 (Node<V>[] tab, int i, Node<V> v) {
571 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
572 }
573
574 /* ---------------- Nodes -------------- */
575
576 /**
577 * Key-value entry. Note that this is never exported out as a
578 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
579 * field of MOVED are special, and do not contain user keys or
580 * values. Otherwise, keys are never null, and null val fields
581 * indicate that a node is in the process of being deleted or
582 * created. For purposes of read-only access, a key may be read
583 * before a val, but can only be used after checking val to be
584 * non-null.
585 */
586 static class Node<V> {
587 final int hash;
588 final Object key;
589 volatile V val;
590 volatile Node<V> next;
591
592 Node(int hash, Object key, V val, Node<V> next) {
593 this.hash = hash;
594 this.key = key;
595 this.val = val;
596 this.next = next;
597 }
598 }
599
600 /* ---------------- TreeBins -------------- */
601
602 /**
603 * Nodes for use in TreeBins
604 */
605 static final class TreeNode<V> extends Node<V> {
606 TreeNode<V> parent; // red-black tree links
607 TreeNode<V> left;
608 TreeNode<V> right;
609 TreeNode<V> prev; // needed to unlink next upon deletion
610 boolean red;
611
612 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
613 super(hash, key, val, next);
614 this.parent = parent;
615 }
616 }
617
618
619 /**
620 * Returns a Class for the given object of the form "class C
621 * implements Comparable<C>", if one exists, else null. See below
622 * for explanation.
623 */
624 static Class<?> comparableClassFor(Object x) {
625 Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
626 if ((c = x.getClass()) == String.class) // bypass checks
627 return c;
628 if ((cmpc = Comparable.class).isAssignableFrom(c)) {
629 while (cmpc.isAssignableFrom(s = c.getSuperclass()))
630 c = s; // find topmost comparable class
631 if ((ts = c.getGenericInterfaces()) != null) {
632 for (int i = 0; i < ts.length; ++i) {
633 if (((t = ts[i]) instanceof ParameterizedType) &&
634 ((p = (ParameterizedType)t).getRawType() == cmpc) &&
635 (as = p.getActualTypeArguments()) != null &&
636 as.length == 1 && as[0] == c) // type arg is c
637 return c;
638 }
639 }
640 }
641 return null;
642 }
643
644 /**
645 * A specialized form of red-black tree for use in bins
646 * whose size exceeds a threshold.
647 *
648 * TreeBins use a special form of comparison for search and
649 * related operations (which is the main reason we cannot use
650 * existing collections such as TreeMaps). TreeBins contain
651 * Comparable elements, but may contain others, as well as
652 * elements that are Comparable but not necessarily Comparable<T>
653 * for the same T, so we cannot invoke compareTo among them. To
654 * handle this, the tree is ordered primarily by hash value, then
655 * by Comparable.compareTo order if applicable. On lookup at a
656 * node, if elements are not comparable or compare as 0 then both
657 * left and right children may need to be searched in the case of
658 * tied hash values. (This corresponds to the full list search
659 * that would be necessary if all elements were non-Comparable and
660 * had tied hashes.) The red-black balancing code is updated from
661 * pre-jdk-collections
662 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
663 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
664 * Algorithms" (CLR).
665 *
666 * TreeBins also maintain a separate locking discipline than
667 * regular bins. Because they are forwarded via special MOVED
668 * nodes at bin heads (which can never change once established),
669 * we cannot use those nodes as locks. Instead, TreeBin
670 * extends AbstractQueuedSynchronizer to support a simple form of
671 * read-write lock. For update operations and table validation,
672 * the exclusive form of lock behaves in the same way as bin-head
673 * locks. However, lookups use shared read-lock mechanics to allow
674 * multiple readers in the absence of writers. Additionally,
675 * these lookups do not ever block: While the lock is not
676 * available, they proceed along the slow traversal path (via
677 * next-pointers) until the lock becomes available or the list is
678 * exhausted, whichever comes first. (These cases are not fast,
679 * but maximize aggregate expected throughput.) The AQS mechanics
680 * for doing this are straightforward. The lock state is held as
681 * AQS getState(). Read counts are negative; the write count (1)
682 * is positive. There are no signalling preferences among readers
683 * and writers. Since we don't need to export full Lock API, we
684 * just override the minimal AQS methods and use them directly.
685 */
686 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
687 private static final long serialVersionUID = 2249069246763182397L;
688 transient TreeNode<V> root; // root of tree
689 transient TreeNode<V> first; // head of next-pointer list
690
691 /* AQS overrides */
692 public final boolean isHeldExclusively() { return getState() > 0; }
693 public final boolean tryAcquire(int ignore) {
694 if (compareAndSetState(0, 1)) {
695 setExclusiveOwnerThread(Thread.currentThread());
696 return true;
697 }
698 return false;
699 }
700 public final boolean tryRelease(int ignore) {
701 setExclusiveOwnerThread(null);
702 setState(0);
703 return true;
704 }
705 public final int tryAcquireShared(int ignore) {
706 for (int c;;) {
707 if ((c = getState()) > 0)
708 return -1;
709 if (compareAndSetState(c, c -1))
710 return 1;
711 }
712 }
713 public final boolean tryReleaseShared(int ignore) {
714 int c;
715 do {} while (!compareAndSetState(c = getState(), c + 1));
716 return c == -1;
717 }
718
719 /** From CLR */
720 private void rotateLeft(TreeNode<V> p) {
721 if (p != null) {
722 TreeNode<V> r = p.right, pp, rl;
723 if ((rl = p.right = r.left) != null)
724 rl.parent = p;
725 if ((pp = r.parent = p.parent) == null)
726 root = r;
727 else if (pp.left == p)
728 pp.left = r;
729 else
730 pp.right = r;
731 r.left = p;
732 p.parent = r;
733 }
734 }
735
736 /** From CLR */
737 private void rotateRight(TreeNode<V> p) {
738 if (p != null) {
739 TreeNode<V> l = p.left, pp, lr;
740 if ((lr = p.left = l.right) != null)
741 lr.parent = p;
742 if ((pp = l.parent = p.parent) == null)
743 root = l;
744 else if (pp.right == p)
745 pp.right = l;
746 else
747 pp.left = l;
748 l.right = p;
749 p.parent = l;
750 }
751 }
752
753 /**
754 * Returns the TreeNode (or null if not found) for the given
755 * key. A front-end for recursive version.
756 */
757 final TreeNode<V> getTreeNode(int h, Object k) {
758 return getTreeNode(h, k, root, comparableClassFor(k));
759 }
760
761 /**
762 * Returns the TreeNode (or null if not found) for the given key
763 * starting at given root.
764 */
765 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
766 (int h, Object k, TreeNode<V> p, Class<?> cc) {
767 while (p != null) {
768 int dir, ph; Object pk;
769 if ((ph = p.hash) != h)
770 dir = (h < ph) ? -1 : 1;
771 else if ((pk = p.key) == k || k.equals(pk))
772 return p;
773 else if (cc == null || comparableClassFor(pk) != cc ||
774 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
775 TreeNode<V> r, pr; // check both sides
776 if ((pr = p.right) != null && h >= pr.hash &&
777 (r = getTreeNode(h, k, pr, cc)) != null)
778 return r;
779 else // continue left
780 dir = -1;
781 }
782 p = (dir > 0) ? p.right : p.left;
783 }
784 return null;
785 }
786
787 /**
788 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
789 * read-lock to call getTreeNode, but during failure to get
790 * lock, searches along next links.
791 */
792 final V getValue(int h, Object k) {
793 Node<V> r = null;
794 int c = getState(); // Must read lock state first
795 for (Node<V> e = first; e != null; e = e.next) {
796 if (c <= 0 && compareAndSetState(c, c - 1)) {
797 try {
798 r = getTreeNode(h, k, root, comparableClassFor(k));
799 } finally {
800 releaseShared(0);
801 }
802 break;
803 }
804 else if (e.hash == h && k.equals(e.key)) {
805 r = e;
806 break;
807 }
808 else
809 c = getState();
810 }
811 return r == null ? null : r.val;
812 }
813
814 /**
815 * Finds or adds a node.
816 * @return null if added
817 */
818 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
819 (int h, Object k, V v) {
820 Class<?> cc = comparableClassFor(k);
821 TreeNode<V> pp = root, p = null;
822 int dir = 0;
823 while (pp != null) { // find existing node or leaf to insert at
824 int ph; Object pk;
825 p = pp;
826 if ((ph = p.hash) != h)
827 dir = (h < ph) ? -1 : 1;
828 else if ((pk = p.key) == k || k.equals(pk))
829 return p;
830 else if (cc == null || comparableClassFor(pk) != cc ||
831 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
832 TreeNode<V> r, pr;
833 if ((pr = p.right) != null && h >= pr.hash &&
834 (r = getTreeNode(h, k, pr, cc)) != null)
835 return r;
836 else // continue left
837 dir = -1;
838 }
839 pp = (dir > 0) ? p.right : p.left;
840 }
841
842 TreeNode<V> f = first;
843 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
844 if (p == null)
845 root = x;
846 else { // attach and rebalance; adapted from CLR
847 TreeNode<V> xp, xpp;
848 if (f != null)
849 f.prev = x;
850 if (dir <= 0)
851 p.left = x;
852 else
853 p.right = x;
854 x.red = true;
855 while (x != null && (xp = x.parent) != null && xp.red &&
856 (xpp = xp.parent) != null) {
857 TreeNode<V> xppl = xpp.left;
858 if (xp == xppl) {
859 TreeNode<V> y = xpp.right;
860 if (y != null && y.red) {
861 y.red = false;
862 xp.red = false;
863 xpp.red = true;
864 x = xpp;
865 }
866 else {
867 if (x == xp.right) {
868 rotateLeft(x = xp);
869 xpp = (xp = x.parent) == null ? null : xp.parent;
870 }
871 if (xp != null) {
872 xp.red = false;
873 if (xpp != null) {
874 xpp.red = true;
875 rotateRight(xpp);
876 }
877 }
878 }
879 }
880 else {
881 TreeNode<V> y = xppl;
882 if (y != null && y.red) {
883 y.red = false;
884 xp.red = false;
885 xpp.red = true;
886 x = xpp;
887 }
888 else {
889 if (x == xp.left) {
890 rotateRight(x = xp);
891 xpp = (xp = x.parent) == null ? null : xp.parent;
892 }
893 if (xp != null) {
894 xp.red = false;
895 if (xpp != null) {
896 xpp.red = true;
897 rotateLeft(xpp);
898 }
899 }
900 }
901 }
902 }
903 TreeNode<V> r = root;
904 if (r != null && r.red)
905 r.red = false;
906 }
907 return null;
908 }
909
910 /**
911 * Removes the given node, that must be present before this
912 * call. This is messier than typical red-black deletion code
913 * because we cannot swap the contents of an interior node
914 * with a leaf successor that is pinned by "next" pointers
915 * that are accessible independently of lock. So instead we
916 * swap the tree linkages.
917 */
918 final void deleteTreeNode(TreeNode<V> p) {
919 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
920 TreeNode<V> pred = p.prev;
921 if (pred == null)
922 first = next;
923 else
924 pred.next = next;
925 if (next != null)
926 next.prev = pred;
927 TreeNode<V> replacement;
928 TreeNode<V> pl = p.left;
929 TreeNode<V> pr = p.right;
930 if (pl != null && pr != null) {
931 TreeNode<V> s = pr, sl;
932 while ((sl = s.left) != null) // find successor
933 s = sl;
934 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
935 TreeNode<V> sr = s.right;
936 TreeNode<V> pp = p.parent;
937 if (s == pr) { // p was s's direct parent
938 p.parent = s;
939 s.right = p;
940 }
941 else {
942 TreeNode<V> sp = s.parent;
943 if ((p.parent = sp) != null) {
944 if (s == sp.left)
945 sp.left = p;
946 else
947 sp.right = p;
948 }
949 if ((s.right = pr) != null)
950 pr.parent = s;
951 }
952 p.left = null;
953 if ((p.right = sr) != null)
954 sr.parent = p;
955 if ((s.left = pl) != null)
956 pl.parent = s;
957 if ((s.parent = pp) == null)
958 root = s;
959 else if (p == pp.left)
960 pp.left = s;
961 else
962 pp.right = s;
963 replacement = sr;
964 }
965 else
966 replacement = (pl != null) ? pl : pr;
967 TreeNode<V> pp = p.parent;
968 if (replacement == null) {
969 if (pp == null) {
970 root = null;
971 return;
972 }
973 replacement = p;
974 }
975 else {
976 replacement.parent = pp;
977 if (pp == null)
978 root = replacement;
979 else if (p == pp.left)
980 pp.left = replacement;
981 else
982 pp.right = replacement;
983 p.left = p.right = p.parent = null;
984 }
985 if (!p.red) { // rebalance, from CLR
986 TreeNode<V> x = replacement;
987 while (x != null) {
988 TreeNode<V> xp, xpl;
989 if (x.red || (xp = x.parent) == null) {
990 x.red = false;
991 break;
992 }
993 if (x == (xpl = xp.left)) {
994 TreeNode<V> sib = xp.right;
995 if (sib != null && sib.red) {
996 sib.red = false;
997 xp.red = true;
998 rotateLeft(xp);
999 sib = (xp = x.parent) == null ? null : xp.right;
1000 }
1001 if (sib == null)
1002 x = xp;
1003 else {
1004 TreeNode<V> sl = sib.left, sr = sib.right;
1005 if ((sr == null || !sr.red) &&
1006 (sl == null || !sl.red)) {
1007 sib.red = true;
1008 x = xp;
1009 }
1010 else {
1011 if (sr == null || !sr.red) {
1012 if (sl != null)
1013 sl.red = false;
1014 sib.red = true;
1015 rotateRight(sib);
1016 sib = (xp = x.parent) == null ?
1017 null : xp.right;
1018 }
1019 if (sib != null) {
1020 sib.red = (xp == null) ? false : xp.red;
1021 if ((sr = sib.right) != null)
1022 sr.red = false;
1023 }
1024 if (xp != null) {
1025 xp.red = false;
1026 rotateLeft(xp);
1027 }
1028 x = root;
1029 }
1030 }
1031 }
1032 else { // symmetric
1033 TreeNode<V> sib = xpl;
1034 if (sib != null && sib.red) {
1035 sib.red = false;
1036 xp.red = true;
1037 rotateRight(xp);
1038 sib = (xp = x.parent) == null ? null : xp.left;
1039 }
1040 if (sib == null)
1041 x = xp;
1042 else {
1043 TreeNode<V> sl = sib.left, sr = sib.right;
1044 if ((sl == null || !sl.red) &&
1045 (sr == null || !sr.red)) {
1046 sib.red = true;
1047 x = xp;
1048 }
1049 else {
1050 if (sl == null || !sl.red) {
1051 if (sr != null)
1052 sr.red = false;
1053 sib.red = true;
1054 rotateLeft(sib);
1055 sib = (xp = x.parent) == null ?
1056 null : xp.left;
1057 }
1058 if (sib != null) {
1059 sib.red = (xp == null) ? false : xp.red;
1060 if ((sl = sib.left) != null)
1061 sl.red = false;
1062 }
1063 if (xp != null) {
1064 xp.red = false;
1065 rotateRight(xp);
1066 }
1067 x = root;
1068 }
1069 }
1070 }
1071 }
1072 }
1073 if (p == replacement && (pp = p.parent) != null) {
1074 if (p == pp.left) // detach pointers
1075 pp.left = null;
1076 else if (p == pp.right)
1077 pp.right = null;
1078 p.parent = null;
1079 }
1080 }
1081 }
1082
1083 /* ---------------- Collision reduction methods -------------- */
1084
1085 /**
1086 * Spreads higher bits to lower, and also forces top bit to 0.
1087 * Because the table uses power-of-two masking, sets of hashes
1088 * that vary only in bits above the current mask will always
1089 * collide. (Among known examples are sets of Float keys holding
1090 * consecutive whole numbers in small tables.) To counter this,
1091 * we apply a transform that spreads the impact of higher bits
1092 * downward. There is a tradeoff between speed, utility, and
1093 * quality of bit-spreading. Because many common sets of hashes
1094 * are already reasonably distributed across bits (so don't benefit
1095 * from spreading), and because we use trees to handle large sets
1096 * of collisions in bins, we don't need excessively high quality.
1097 */
1098 private static final int spread(int h) {
1099 h ^= (h >>> 18) ^ (h >>> 12);
1100 return (h ^ (h >>> 10)) & HASH_BITS;
1101 }
1102
1103 /**
1104 * Replaces a list bin with a tree bin if key is comparable. Call
1105 * only when locked.
1106 */
1107 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1108 if (comparableClassFor(key) != null) {
1109 TreeBin<V> t = new TreeBin<V>();
1110 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1111 t.putTreeNode(e.hash, e.key, e.val);
1112 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1113 }
1114 }
1115
1116 /* ---------------- Internal access and update methods -------------- */
1117
1118 /** Implementation for get and containsKey */
1119 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1120 int h = spread(k.hashCode());
1121 retry: for (Node<V>[] tab = table; tab != null;) {
1122 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1123 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1124 if ((eh = e.hash) < 0) {
1125 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1126 return ((TreeBin<V>)ek).getValue(h, k);
1127 else { // restart with new table
1128 tab = (Node<V>[])ek;
1129 continue retry;
1130 }
1131 }
1132 else if (eh == h && (ev = e.val) != null &&
1133 ((ek = e.key) == k || k.equals(ek)))
1134 return ev;
1135 }
1136 break;
1137 }
1138 return null;
1139 }
1140
1141 /**
1142 * Implementation for the four public remove/replace methods:
1143 * Replaces node value with v, conditional upon match of cv if
1144 * non-null. If resulting value is null, delete.
1145 */
1146 @SuppressWarnings("unchecked") private final V internalReplace
1147 (Object k, V v, Object cv) {
1148 int h = spread(k.hashCode());
1149 V oldVal = null;
1150 for (Node<V>[] tab = table;;) {
1151 Node<V> f; int i, fh; Object fk;
1152 if (tab == null ||
1153 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1154 break;
1155 else if ((fh = f.hash) < 0) {
1156 if ((fk = f.key) instanceof TreeBin) {
1157 TreeBin<V> t = (TreeBin<V>)fk;
1158 boolean validated = false;
1159 boolean deleted = false;
1160 t.acquire(0);
1161 try {
1162 if (tabAt(tab, i) == f) {
1163 validated = true;
1164 TreeNode<V> p = t.getTreeNode(h, k);
1165 if (p != null) {
1166 V pv = p.val;
1167 if (cv == null || cv == pv || cv.equals(pv)) {
1168 oldVal = pv;
1169 if ((p.val = v) == null) {
1170 deleted = true;
1171 t.deleteTreeNode(p);
1172 }
1173 }
1174 }
1175 }
1176 } finally {
1177 t.release(0);
1178 }
1179 if (validated) {
1180 if (deleted)
1181 addCount(-1L, -1);
1182 break;
1183 }
1184 }
1185 else
1186 tab = (Node<V>[])fk;
1187 }
1188 else if (fh != h && f.next == null) // precheck
1189 break; // rules out possible existence
1190 else {
1191 boolean validated = false;
1192 boolean deleted = false;
1193 synchronized (f) {
1194 if (tabAt(tab, i) == f) {
1195 validated = true;
1196 for (Node<V> e = f, pred = null;;) {
1197 Object ek; V ev;
1198 if (e.hash == h &&
1199 ((ev = e.val) != null) &&
1200 ((ek = e.key) == k || k.equals(ek))) {
1201 if (cv == null || cv == ev || cv.equals(ev)) {
1202 oldVal = ev;
1203 if ((e.val = v) == null) {
1204 deleted = true;
1205 Node<V> en = e.next;
1206 if (pred != null)
1207 pred.next = en;
1208 else
1209 setTabAt(tab, i, en);
1210 }
1211 }
1212 break;
1213 }
1214 pred = e;
1215 if ((e = e.next) == null)
1216 break;
1217 }
1218 }
1219 }
1220 if (validated) {
1221 if (deleted)
1222 addCount(-1L, -1);
1223 break;
1224 }
1225 }
1226 }
1227 return oldVal;
1228 }
1229
1230 /*
1231 * Internal versions of insertion methods
1232 * All have the same basic structure as the first (internalPut):
1233 * 1. If table uninitialized, create
1234 * 2. If bin empty, try to CAS new node
1235 * 3. If bin stale, use new table
1236 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1237 * 5. Lock and validate; if valid, scan and add or update
1238 *
1239 * The putAll method differs mainly in attempting to pre-allocate
1240 * enough table space, and also more lazily performs count updates
1241 * and checks.
1242 *
1243 * Most of the function-accepting methods can't be factored nicely
1244 * because they require different functional forms, so instead
1245 * sprawl out similar mechanics.
1246 */
1247
1248 /** Implementation for put and putIfAbsent */
1249 @SuppressWarnings("unchecked") private final V internalPut
1250 (K k, V v, boolean onlyIfAbsent) {
1251 if (k == null || v == null) throw new NullPointerException();
1252 int h = spread(k.hashCode());
1253 int len = 0;
1254 for (Node<V>[] tab = table;;) {
1255 int i, fh; Node<V> f; Object fk; V fv;
1256 if (tab == null)
1257 tab = initTable();
1258 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1259 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1260 break; // no lock when adding to empty bin
1261 }
1262 else if ((fh = f.hash) < 0) {
1263 if ((fk = f.key) instanceof TreeBin) {
1264 TreeBin<V> t = (TreeBin<V>)fk;
1265 V oldVal = null;
1266 t.acquire(0);
1267 try {
1268 if (tabAt(tab, i) == f) {
1269 len = 2;
1270 TreeNode<V> p = t.putTreeNode(h, k, v);
1271 if (p != null) {
1272 oldVal = p.val;
1273 if (!onlyIfAbsent)
1274 p.val = v;
1275 }
1276 }
1277 } finally {
1278 t.release(0);
1279 }
1280 if (len != 0) {
1281 if (oldVal != null)
1282 return oldVal;
1283 break;
1284 }
1285 }
1286 else
1287 tab = (Node<V>[])fk;
1288 }
1289 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1290 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1291 return fv;
1292 else {
1293 V oldVal = null;
1294 synchronized (f) {
1295 if (tabAt(tab, i) == f) {
1296 len = 1;
1297 for (Node<V> e = f;; ++len) {
1298 Object ek; V ev;
1299 if (e.hash == h &&
1300 (ev = e.val) != null &&
1301 ((ek = e.key) == k || k.equals(ek))) {
1302 oldVal = ev;
1303 if (!onlyIfAbsent)
1304 e.val = v;
1305 break;
1306 }
1307 Node<V> last = e;
1308 if ((e = e.next) == null) {
1309 last.next = new Node<V>(h, k, v, null);
1310 if (len >= TREE_THRESHOLD)
1311 replaceWithTreeBin(tab, i, k);
1312 break;
1313 }
1314 }
1315 }
1316 }
1317 if (len != 0) {
1318 if (oldVal != null)
1319 return oldVal;
1320 break;
1321 }
1322 }
1323 }
1324 addCount(1L, len);
1325 return null;
1326 }
1327
1328 /** Implementation for computeIfAbsent */
1329 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1330 (K k, Function<? super K, ? extends V> mf) {
1331 if (k == null || mf == null)
1332 throw new NullPointerException();
1333 int h = spread(k.hashCode());
1334 V val = null;
1335 int len = 0;
1336 for (Node<V>[] tab = table;;) {
1337 Node<V> f; int i; Object fk;
1338 if (tab == null)
1339 tab = initTable();
1340 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1341 Node<V> node = new Node<V>(h, k, null, null);
1342 synchronized (node) {
1343 if (casTabAt(tab, i, null, node)) {
1344 len = 1;
1345 try {
1346 if ((val = mf.apply(k)) != null)
1347 node.val = val;
1348 } finally {
1349 if (val == null)
1350 setTabAt(tab, i, null);
1351 }
1352 }
1353 }
1354 if (len != 0)
1355 break;
1356 }
1357 else if (f.hash < 0) {
1358 if ((fk = f.key) instanceof TreeBin) {
1359 TreeBin<V> t = (TreeBin<V>)fk;
1360 boolean added = false;
1361 t.acquire(0);
1362 try {
1363 if (tabAt(tab, i) == f) {
1364 len = 1;
1365 TreeNode<V> p = t.getTreeNode(h, k);
1366 if (p != null)
1367 val = p.val;
1368 else if ((val = mf.apply(k)) != null) {
1369 added = true;
1370 len = 2;
1371 t.putTreeNode(h, k, val);
1372 }
1373 }
1374 } finally {
1375 t.release(0);
1376 }
1377 if (len != 0) {
1378 if (!added)
1379 return val;
1380 break;
1381 }
1382 }
1383 else
1384 tab = (Node<V>[])fk;
1385 }
1386 else {
1387 for (Node<V> e = f; e != null; e = e.next) { // prescan
1388 Object ek; V ev;
1389 if (e.hash == h && (ev = e.val) != null &&
1390 ((ek = e.key) == k || k.equals(ek)))
1391 return ev;
1392 }
1393 boolean added = false;
1394 synchronized (f) {
1395 if (tabAt(tab, i) == f) {
1396 len = 1;
1397 for (Node<V> e = f;; ++len) {
1398 Object ek; V ev;
1399 if (e.hash == h &&
1400 (ev = e.val) != null &&
1401 ((ek = e.key) == k || k.equals(ek))) {
1402 val = ev;
1403 break;
1404 }
1405 Node<V> last = e;
1406 if ((e = e.next) == null) {
1407 if ((val = mf.apply(k)) != null) {
1408 added = true;
1409 last.next = new Node<V>(h, k, val, null);
1410 if (len >= TREE_THRESHOLD)
1411 replaceWithTreeBin(tab, i, k);
1412 }
1413 break;
1414 }
1415 }
1416 }
1417 }
1418 if (len != 0) {
1419 if (!added)
1420 return val;
1421 break;
1422 }
1423 }
1424 }
1425 if (val != null)
1426 addCount(1L, len);
1427 return val;
1428 }
1429
1430 /** Implementation for compute */
1431 @SuppressWarnings("unchecked") private final V internalCompute
1432 (K k, boolean onlyIfPresent,
1433 BiFunction<? super K, ? super V, ? extends V> mf) {
1434 if (k == null || mf == null)
1435 throw new NullPointerException();
1436 int h = spread(k.hashCode());
1437 V val = null;
1438 int delta = 0;
1439 int len = 0;
1440 for (Node<V>[] tab = table;;) {
1441 Node<V> f; int i, fh; Object fk;
1442 if (tab == null)
1443 tab = initTable();
1444 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1445 if (onlyIfPresent)
1446 break;
1447 Node<V> node = new Node<V>(h, k, null, null);
1448 synchronized (node) {
1449 if (casTabAt(tab, i, null, node)) {
1450 try {
1451 len = 1;
1452 if ((val = mf.apply(k, null)) != null) {
1453 node.val = val;
1454 delta = 1;
1455 }
1456 } finally {
1457 if (delta == 0)
1458 setTabAt(tab, i, null);
1459 }
1460 }
1461 }
1462 if (len != 0)
1463 break;
1464 }
1465 else if ((fh = f.hash) < 0) {
1466 if ((fk = f.key) instanceof TreeBin) {
1467 TreeBin<V> t = (TreeBin<V>)fk;
1468 t.acquire(0);
1469 try {
1470 if (tabAt(tab, i) == f) {
1471 len = 1;
1472 TreeNode<V> p = t.getTreeNode(h, k);
1473 if (p == null && onlyIfPresent)
1474 break;
1475 V pv = (p == null) ? null : p.val;
1476 if ((val = mf.apply(k, pv)) != null) {
1477 if (p != null)
1478 p.val = val;
1479 else {
1480 len = 2;
1481 delta = 1;
1482 t.putTreeNode(h, k, val);
1483 }
1484 }
1485 else if (p != null) {
1486 delta = -1;
1487 t.deleteTreeNode(p);
1488 }
1489 }
1490 } finally {
1491 t.release(0);
1492 }
1493 if (len != 0)
1494 break;
1495 }
1496 else
1497 tab = (Node<V>[])fk;
1498 }
1499 else {
1500 synchronized (f) {
1501 if (tabAt(tab, i) == f) {
1502 len = 1;
1503 for (Node<V> e = f, pred = null;; ++len) {
1504 Object ek; V ev;
1505 if (e.hash == h &&
1506 (ev = e.val) != null &&
1507 ((ek = e.key) == k || k.equals(ek))) {
1508 val = mf.apply(k, ev);
1509 if (val != null)
1510 e.val = val;
1511 else {
1512 delta = -1;
1513 Node<V> en = e.next;
1514 if (pred != null)
1515 pred.next = en;
1516 else
1517 setTabAt(tab, i, en);
1518 }
1519 break;
1520 }
1521 pred = e;
1522 if ((e = e.next) == null) {
1523 if (!onlyIfPresent &&
1524 (val = mf.apply(k, null)) != null) {
1525 pred.next = new Node<V>(h, k, val, null);
1526 delta = 1;
1527 if (len >= TREE_THRESHOLD)
1528 replaceWithTreeBin(tab, i, k);
1529 }
1530 break;
1531 }
1532 }
1533 }
1534 }
1535 if (len != 0)
1536 break;
1537 }
1538 }
1539 if (delta != 0)
1540 addCount((long)delta, len);
1541 return val;
1542 }
1543
1544 /** Implementation for merge */
1545 @SuppressWarnings("unchecked") private final V internalMerge
1546 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1547 if (k == null || v == null || mf == null)
1548 throw new NullPointerException();
1549 int h = spread(k.hashCode());
1550 V val = null;
1551 int delta = 0;
1552 int len = 0;
1553 for (Node<V>[] tab = table;;) {
1554 int i; Node<V> f; Object fk; V fv;
1555 if (tab == null)
1556 tab = initTable();
1557 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1558 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1559 delta = 1;
1560 val = v;
1561 break;
1562 }
1563 }
1564 else if (f.hash < 0) {
1565 if ((fk = f.key) instanceof TreeBin) {
1566 TreeBin<V> t = (TreeBin<V>)fk;
1567 t.acquire(0);
1568 try {
1569 if (tabAt(tab, i) == f) {
1570 len = 1;
1571 TreeNode<V> p = t.getTreeNode(h, k);
1572 val = (p == null) ? v : mf.apply(p.val, v);
1573 if (val != null) {
1574 if (p != null)
1575 p.val = val;
1576 else {
1577 len = 2;
1578 delta = 1;
1579 t.putTreeNode(h, k, val);
1580 }
1581 }
1582 else if (p != null) {
1583 delta = -1;
1584 t.deleteTreeNode(p);
1585 }
1586 }
1587 } finally {
1588 t.release(0);
1589 }
1590 if (len != 0)
1591 break;
1592 }
1593 else
1594 tab = (Node<V>[])fk;
1595 }
1596 else {
1597 synchronized (f) {
1598 if (tabAt(tab, i) == f) {
1599 len = 1;
1600 for (Node<V> e = f, pred = null;; ++len) {
1601 Object ek; V ev;
1602 if (e.hash == h &&
1603 (ev = e.val) != null &&
1604 ((ek = e.key) == k || k.equals(ek))) {
1605 val = mf.apply(ev, v);
1606 if (val != null)
1607 e.val = val;
1608 else {
1609 delta = -1;
1610 Node<V> en = e.next;
1611 if (pred != null)
1612 pred.next = en;
1613 else
1614 setTabAt(tab, i, en);
1615 }
1616 break;
1617 }
1618 pred = e;
1619 if ((e = e.next) == null) {
1620 val = v;
1621 pred.next = new Node<V>(h, k, val, null);
1622 delta = 1;
1623 if (len >= TREE_THRESHOLD)
1624 replaceWithTreeBin(tab, i, k);
1625 break;
1626 }
1627 }
1628 }
1629 }
1630 if (len != 0)
1631 break;
1632 }
1633 }
1634 if (delta != 0)
1635 addCount((long)delta, len);
1636 return val;
1637 }
1638
1639 /** Implementation for putAll */
1640 @SuppressWarnings("unchecked") private final void internalPutAll
1641 (Map<? extends K, ? extends V> m) {
1642 tryPresize(m.size());
1643 long delta = 0L; // number of uncommitted additions
1644 boolean npe = false; // to throw exception on exit for nulls
1645 try { // to clean up counts on other exceptions
1646 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1647 Object k; V v;
1648 if (entry == null || (k = entry.getKey()) == null ||
1649 (v = entry.getValue()) == null) {
1650 npe = true;
1651 break;
1652 }
1653 int h = spread(k.hashCode());
1654 for (Node<V>[] tab = table;;) {
1655 int i; Node<V> f; int fh; Object fk;
1656 if (tab == null)
1657 tab = initTable();
1658 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1659 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1660 ++delta;
1661 break;
1662 }
1663 }
1664 else if ((fh = f.hash) < 0) {
1665 if ((fk = f.key) instanceof TreeBin) {
1666 TreeBin<V> t = (TreeBin<V>)fk;
1667 boolean validated = false;
1668 t.acquire(0);
1669 try {
1670 if (tabAt(tab, i) == f) {
1671 validated = true;
1672 TreeNode<V> p = t.getTreeNode(h, k);
1673 if (p != null)
1674 p.val = v;
1675 else {
1676 t.putTreeNode(h, k, v);
1677 ++delta;
1678 }
1679 }
1680 } finally {
1681 t.release(0);
1682 }
1683 if (validated)
1684 break;
1685 }
1686 else
1687 tab = (Node<V>[])fk;
1688 }
1689 else {
1690 int len = 0;
1691 synchronized (f) {
1692 if (tabAt(tab, i) == f) {
1693 len = 1;
1694 for (Node<V> e = f;; ++len) {
1695 Object ek; V ev;
1696 if (e.hash == h &&
1697 (ev = e.val) != null &&
1698 ((ek = e.key) == k || k.equals(ek))) {
1699 e.val = v;
1700 break;
1701 }
1702 Node<V> last = e;
1703 if ((e = e.next) == null) {
1704 ++delta;
1705 last.next = new Node<V>(h, k, v, null);
1706 if (len >= TREE_THRESHOLD)
1707 replaceWithTreeBin(tab, i, k);
1708 break;
1709 }
1710 }
1711 }
1712 }
1713 if (len != 0) {
1714 if (len > 1) {
1715 addCount(delta, len);
1716 delta = 0L;
1717 }
1718 break;
1719 }
1720 }
1721 }
1722 }
1723 } finally {
1724 if (delta != 0L)
1725 addCount(delta, 2);
1726 }
1727 if (npe)
1728 throw new NullPointerException();
1729 }
1730
1731 /**
1732 * Implementation for clear. Steps through each bin, removing all
1733 * nodes.
1734 */
1735 @SuppressWarnings("unchecked") private final void internalClear() {
1736 long delta = 0L; // negative number of deletions
1737 int i = 0;
1738 Node<V>[] tab = table;
1739 while (tab != null && i < tab.length) {
1740 Node<V> f = tabAt(tab, i);
1741 if (f == null)
1742 ++i;
1743 else if (f.hash < 0) {
1744 Object fk;
1745 if ((fk = f.key) instanceof TreeBin) {
1746 TreeBin<V> t = (TreeBin<V>)fk;
1747 t.acquire(0);
1748 try {
1749 if (tabAt(tab, i) == f) {
1750 for (Node<V> p = t.first; p != null; p = p.next) {
1751 if (p.val != null) { // (currently always true)
1752 p.val = null;
1753 --delta;
1754 }
1755 }
1756 t.first = null;
1757 t.root = null;
1758 ++i;
1759 }
1760 } finally {
1761 t.release(0);
1762 }
1763 }
1764 else
1765 tab = (Node<V>[])fk;
1766 }
1767 else {
1768 synchronized (f) {
1769 if (tabAt(tab, i) == f) {
1770 for (Node<V> e = f; e != null; e = e.next) {
1771 if (e.val != null) { // (currently always true)
1772 e.val = null;
1773 --delta;
1774 }
1775 }
1776 setTabAt(tab, i, null);
1777 ++i;
1778 }
1779 }
1780 }
1781 }
1782 if (delta != 0L)
1783 addCount(delta, -1);
1784 }
1785
1786 /* ---------------- Table Initialization and Resizing -------------- */
1787
1788 /**
1789 * Returns a power of two table size for the given desired capacity.
1790 * See Hackers Delight, sec 3.2
1791 */
1792 private static final int tableSizeFor(int c) {
1793 int n = c - 1;
1794 n |= n >>> 1;
1795 n |= n >>> 2;
1796 n |= n >>> 4;
1797 n |= n >>> 8;
1798 n |= n >>> 16;
1799 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1800 }
1801
1802 /**
1803 * Initializes table, using the size recorded in sizeCtl.
1804 */
1805 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1806 Node<V>[] tab; int sc;
1807 while ((tab = table) == null) {
1808 if ((sc = sizeCtl) < 0)
1809 Thread.yield(); // lost initialization race; just spin
1810 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1811 try {
1812 if ((tab = table) == null) {
1813 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1814 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1815 table = tab = (Node<V>[])tb;
1816 sc = n - (n >>> 2);
1817 }
1818 } finally {
1819 sizeCtl = sc;
1820 }
1821 break;
1822 }
1823 }
1824 return tab;
1825 }
1826
1827 /**
1828 * Adds to count, and if table is too small and not already
1829 * resizing, initiates transfer. If already resizing, helps
1830 * perform transfer if work is available. Rechecks occupancy
1831 * after a transfer to see if another resize is already needed
1832 * because resizings are lagging additions.
1833 *
1834 * @param x the count to add
1835 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1836 */
1837 private final void addCount(long x, int check) {
1838 Cell[] as; long b, s;
1839 if ((as = counterCells) != null ||
1840 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1841 Cell a; long v; int m;
1842 boolean uncontended = true;
1843 if (as == null || (m = as.length - 1) < 0 ||
1844 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1845 !(uncontended =
1846 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1847 fullAddCount(x, uncontended);
1848 return;
1849 }
1850 if (check <= 1)
1851 return;
1852 s = sumCount();
1853 }
1854 if (check >= 0) {
1855 Node<V>[] tab, nt; int sc;
1856 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1857 tab.length < MAXIMUM_CAPACITY) {
1858 if (sc < 0) {
1859 if (sc == -1 || transferIndex <= transferOrigin ||
1860 (nt = nextTable) == null)
1861 break;
1862 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1863 transfer(tab, nt);
1864 }
1865 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1866 transfer(tab, null);
1867 s = sumCount();
1868 }
1869 }
1870 }
1871
1872 /**
1873 * Tries to presize table to accommodate the given number of elements.
1874 *
1875 * @param size number of elements (doesn't need to be perfectly accurate)
1876 */
1877 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1878 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1879 tableSizeFor(size + (size >>> 1) + 1);
1880 int sc;
1881 while ((sc = sizeCtl) >= 0) {
1882 Node<V>[] tab = table; int n;
1883 if (tab == null || (n = tab.length) == 0) {
1884 n = (sc > c) ? sc : c;
1885 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1886 try {
1887 if (table == tab) {
1888 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1889 table = (Node<V>[])tb;
1890 sc = n - (n >>> 2);
1891 }
1892 } finally {
1893 sizeCtl = sc;
1894 }
1895 }
1896 }
1897 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1898 break;
1899 else if (tab == table &&
1900 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1901 transfer(tab, null);
1902 }
1903 }
1904
1905 /**
1906 * Moves and/or copies the nodes in each bin to new table. See
1907 * above for explanation.
1908 */
1909 @SuppressWarnings("unchecked") private final void transfer
1910 (Node<V>[] tab, Node<V>[] nextTab) {
1911 int n = tab.length, stride;
1912 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1913 stride = MIN_TRANSFER_STRIDE; // subdivide range
1914 if (nextTab == null) { // initiating
1915 try {
1916 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1917 nextTab = (Node<V>[])tb;
1918 } catch (Throwable ex) { // try to cope with OOME
1919 sizeCtl = Integer.MAX_VALUE;
1920 return;
1921 }
1922 nextTable = nextTab;
1923 transferOrigin = n;
1924 transferIndex = n;
1925 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1926 for (int k = n; k > 0;) { // progressively reveal ready slots
1927 int nextk = (k > stride) ? k - stride : 0;
1928 for (int m = nextk; m < k; ++m)
1929 nextTab[m] = rev;
1930 for (int m = n + nextk; m < n + k; ++m)
1931 nextTab[m] = rev;
1932 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1933 }
1934 }
1935 int nextn = nextTab.length;
1936 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1937 boolean advance = true;
1938 for (int i = 0, bound = 0;;) {
1939 int nextIndex, nextBound; Node<V> f; Object fk;
1940 while (advance) {
1941 if (--i >= bound)
1942 advance = false;
1943 else if ((nextIndex = transferIndex) <= transferOrigin) {
1944 i = -1;
1945 advance = false;
1946 }
1947 else if (U.compareAndSwapInt
1948 (this, TRANSFERINDEX, nextIndex,
1949 nextBound = (nextIndex > stride ?
1950 nextIndex - stride : 0))) {
1951 bound = nextBound;
1952 i = nextIndex - 1;
1953 advance = false;
1954 }
1955 }
1956 if (i < 0 || i >= n || i + n >= nextn) {
1957 for (int sc;;) {
1958 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1959 if (sc == -1) {
1960 nextTable = null;
1961 table = nextTab;
1962 sizeCtl = (n << 1) - (n >>> 1);
1963 }
1964 return;
1965 }
1966 }
1967 }
1968 else if ((f = tabAt(tab, i)) == null) {
1969 if (casTabAt(tab, i, null, fwd)) {
1970 setTabAt(nextTab, i, null);
1971 setTabAt(nextTab, i + n, null);
1972 advance = true;
1973 }
1974 }
1975 else if (f.hash >= 0) {
1976 synchronized (f) {
1977 if (tabAt(tab, i) == f) {
1978 int runBit = f.hash & n;
1979 Node<V> lastRun = f, lo = null, hi = null;
1980 for (Node<V> p = f.next; p != null; p = p.next) {
1981 int b = p.hash & n;
1982 if (b != runBit) {
1983 runBit = b;
1984 lastRun = p;
1985 }
1986 }
1987 if (runBit == 0)
1988 lo = lastRun;
1989 else
1990 hi = lastRun;
1991 for (Node<V> p = f; p != lastRun; p = p.next) {
1992 int ph = p.hash;
1993 Object pk = p.key; V pv = p.val;
1994 if ((ph & n) == 0)
1995 lo = new Node<V>(ph, pk, pv, lo);
1996 else
1997 hi = new Node<V>(ph, pk, pv, hi);
1998 }
1999 setTabAt(nextTab, i, lo);
2000 setTabAt(nextTab, i + n, hi);
2001 setTabAt(tab, i, fwd);
2002 advance = true;
2003 }
2004 }
2005 }
2006 else if ((fk = f.key) instanceof TreeBin) {
2007 TreeBin<V> t = (TreeBin<V>)fk;
2008 t.acquire(0);
2009 try {
2010 if (tabAt(tab, i) == f) {
2011 TreeBin<V> lt = new TreeBin<V>();
2012 TreeBin<V> ht = new TreeBin<V>();
2013 int lc = 0, hc = 0;
2014 for (Node<V> e = t.first; e != null; e = e.next) {
2015 int h = e.hash;
2016 Object k = e.key; V v = e.val;
2017 if ((h & n) == 0) {
2018 ++lc;
2019 lt.putTreeNode(h, k, v);
2020 }
2021 else {
2022 ++hc;
2023 ht.putTreeNode(h, k, v);
2024 }
2025 }
2026 Node<V> ln, hn; // throw away trees if too small
2027 if (lc < TREE_THRESHOLD) {
2028 ln = null;
2029 for (Node<V> p = lt.first; p != null; p = p.next)
2030 ln = new Node<V>(p.hash, p.key, p.val, ln);
2031 }
2032 else
2033 ln = new Node<V>(MOVED, lt, null, null);
2034 setTabAt(nextTab, i, ln);
2035 if (hc < TREE_THRESHOLD) {
2036 hn = null;
2037 for (Node<V> p = ht.first; p != null; p = p.next)
2038 hn = new Node<V>(p.hash, p.key, p.val, hn);
2039 }
2040 else
2041 hn = new Node<V>(MOVED, ht, null, null);
2042 setTabAt(nextTab, i + n, hn);
2043 setTabAt(tab, i, fwd);
2044 advance = true;
2045 }
2046 } finally {
2047 t.release(0);
2048 }
2049 }
2050 else
2051 advance = true; // already processed
2052 }
2053 }
2054
2055 /* ---------------- Counter support -------------- */
2056
2057 final long sumCount() {
2058 Cell[] as = counterCells; Cell a;
2059 long sum = baseCount;
2060 if (as != null) {
2061 for (int i = 0; i < as.length; ++i) {
2062 if ((a = as[i]) != null)
2063 sum += a.value;
2064 }
2065 }
2066 return sum;
2067 }
2068
2069 // See LongAdder version for explanation
2070 private final void fullAddCount(long x, boolean wasUncontended) {
2071 int h;
2072 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2073 ThreadLocalRandom.localInit(); // force initialization
2074 h = ThreadLocalRandom.getProbe();
2075 wasUncontended = true;
2076 }
2077 boolean collide = false; // True if last slot nonempty
2078 for (;;) {
2079 Cell[] as; Cell a; int n; long v;
2080 if ((as = counterCells) != null && (n = as.length) > 0) {
2081 if ((a = as[(n - 1) & h]) == null) {
2082 if (cellsBusy == 0) { // Try to attach new Cell
2083 Cell r = new Cell(x); // Optimistic create
2084 if (cellsBusy == 0 &&
2085 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2086 boolean created = false;
2087 try { // Recheck under lock
2088 Cell[] rs; int m, j;
2089 if ((rs = counterCells) != null &&
2090 (m = rs.length) > 0 &&
2091 rs[j = (m - 1) & h] == null) {
2092 rs[j] = r;
2093 created = true;
2094 }
2095 } finally {
2096 cellsBusy = 0;
2097 }
2098 if (created)
2099 break;
2100 continue; // Slot is now non-empty
2101 }
2102 }
2103 collide = false;
2104 }
2105 else if (!wasUncontended) // CAS already known to fail
2106 wasUncontended = true; // Continue after rehash
2107 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2108 break;
2109 else if (counterCells != as || n >= NCPU)
2110 collide = false; // At max size or stale
2111 else if (!collide)
2112 collide = true;
2113 else if (cellsBusy == 0 &&
2114 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2115 try {
2116 if (counterCells == as) {// Expand table unless stale
2117 Cell[] rs = new Cell[n << 1];
2118 for (int i = 0; i < n; ++i)
2119 rs[i] = as[i];
2120 counterCells = rs;
2121 }
2122 } finally {
2123 cellsBusy = 0;
2124 }
2125 collide = false;
2126 continue; // Retry with expanded table
2127 }
2128 h = ThreadLocalRandom.advanceProbe(h);
2129 }
2130 else if (cellsBusy == 0 && counterCells == as &&
2131 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2132 boolean init = false;
2133 try { // Initialize table
2134 if (counterCells == as) {
2135 Cell[] rs = new Cell[2];
2136 rs[h & 1] = new Cell(x);
2137 counterCells = rs;
2138 init = true;
2139 }
2140 } finally {
2141 cellsBusy = 0;
2142 }
2143 if (init)
2144 break;
2145 }
2146 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2147 break; // Fall back on using base
2148 }
2149 }
2150
2151 /* ----------------Table Traversal -------------- */
2152
2153 /**
2154 * Encapsulates traversal for methods such as containsValue; also
2155 * serves as a base class for other iterators and bulk tasks.
2156 *
2157 * At each step, the iterator snapshots the key ("nextKey") and
2158 * value ("nextVal") of a valid node (i.e., one that, at point of
2159 * snapshot, has a non-null user value). Because val fields can
2160 * change (including to null, indicating deletion), field nextVal
2161 * might not be accurate at point of use, but still maintains the
2162 * weak consistency property of holding a value that was once
2163 * valid. To support iterator.remove, the nextKey field is not
2164 * updated (nulled out) when the iterator cannot advance.
2165 *
2166 * Exported iterators must track whether the iterator has advanced
2167 * (in hasNext vs next) (by setting/checking/nulling field
2168 * nextVal), and then extract key, value, or key-value pairs as
2169 * return values of next().
2170 *
2171 * Method advance visits once each still-valid node that was
2172 * reachable upon iterator construction. It might miss some that
2173 * were added to a bin after the bin was visited, which is OK wrt
2174 * consistency guarantees. Maintaining this property in the face
2175 * of possible ongoing resizes requires a fair amount of
2176 * bookkeeping state that is difficult to optimize away amidst
2177 * volatile accesses. Even so, traversal maintains reasonable
2178 * throughput.
2179 *
2180 * Normally, iteration proceeds bin-by-bin traversing lists.
2181 * However, if the table has been resized, then all future steps
2182 * must traverse both the bin at the current index as well as at
2183 * (index + baseSize); and so on for further resizings. To
2184 * paranoically cope with potential sharing by users of iterators
2185 * across threads, iteration terminates if a bounds checks fails
2186 * for a table read.
2187 *
2188 * Methods advanceKey and advanceValue are specializations of the
2189 * common cases of advance, relaying to the full version
2190 * otherwise. The forEachKey and forEachValue methods further
2191 * specialize, bypassing all incremental field updates in most cases.
2192 *
2193 * This class supports both Spliterator-based traversal and
2194 * CountedCompleter-based bulk tasks. The same "batch" field is
2195 * used, but in slightly different ways, in the two cases. For
2196 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2197 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2198 * size that halves down to zero for leaf tasks, that is only
2199 * computed upon execution of the task. (Tasks can be submitted to
2200 * any pool, of any size, so we don't know scale factors until
2201 * running.)
2202 *
2203 * This class extends CountedCompleter to streamline parallel
2204 * iteration in bulk operations. This adds only a few fields of
2205 * space overhead, which is small enough in cases where it is not
2206 * needed to not worry about it. Because CountedCompleter is
2207 * Serializable, but iterators need not be, we need to add warning
2208 * suppressions.
2209 */
2210 @SuppressWarnings("serial") static class Traverser<K,V,R>
2211 extends CountedCompleter<R> {
2212 final ConcurrentHashMap<K,V> map;
2213 Node<V> next; // the next entry to use
2214 K nextKey; // cached key field of next
2215 V nextVal; // cached val field of next
2216 Node<V>[] tab; // current table; updated if resized
2217 int index; // index of bin to use next
2218 int baseIndex; // current index of initial table
2219 int baseLimit; // index bound for initial table
2220 final int baseSize; // initial table size
2221 int batch; // split control
2222
2223 /** Creates iterator for all entries in the table. */
2224 Traverser(ConcurrentHashMap<K,V> map) {
2225 this.map = map;
2226 Node<V>[] t = this.tab = map.table;
2227 baseLimit = baseSize = (t == null) ? 0 : t.length;
2228 }
2229
2230 /** Task constructor */
2231 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2232 super(it);
2233 this.map = map;
2234 this.batch = batch; // -1 if unknown
2235 if (it == null) {
2236 Node<V>[] t = this.tab = map.table;
2237 baseLimit = baseSize = (t == null) ? 0 : t.length;
2238 }
2239 else { // split parent
2240 this.tab = it.tab;
2241 this.baseSize = it.baseSize;
2242 int hi = this.baseLimit = it.baseLimit;
2243 it.baseLimit = this.index = this.baseIndex =
2244 (hi + it.baseIndex) >>> 1;
2245 }
2246 }
2247
2248 /** Spliterator constructor */
2249 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2250 super(it);
2251 this.map = map;
2252 if (it == null) {
2253 Node<V>[] t = this.tab = map.table;
2254 baseLimit = baseSize = (t == null) ? 0 : t.length;
2255 long n = map.sumCount();
2256 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2257 (int)n);
2258 }
2259 else {
2260 this.tab = it.tab;
2261 this.baseSize = it.baseSize;
2262 int hi = this.baseLimit = it.baseLimit;
2263 it.baseLimit = this.index = this.baseIndex =
2264 (hi + it.baseIndex) >>> 1;
2265 this.batch = it.batch >>>= 1;
2266 }
2267 }
2268
2269 /**
2270 * Advances if possible, returning next valid value, or null if none.
2271 */
2272 @SuppressWarnings("unchecked") final V advance() {
2273 for (Node<V> e = next;;) {
2274 if (e != null) // advance past used/skipped node
2275 e = next = e.next;
2276 while (e == null) { // get to next non-null bin
2277 Node<V>[] t; int i, n; // must use locals in checks
2278 if (baseIndex >= baseLimit || (t = tab) == null ||
2279 (n = t.length) <= (i = index) || i < 0)
2280 return nextVal = null;
2281 if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2282 Object ek;
2283 if ((ek = e.key) instanceof TreeBin)
2284 e = ((TreeBin<V>)ek).first;
2285 else {
2286 tab = (Node<V>[])ek;
2287 continue; // restarts due to null val
2288 }
2289 }
2290 if ((index += baseSize) >= n)
2291 index = ++baseIndex; // visit upper slots if present
2292 }
2293 nextKey = (K)e.key;
2294 if ((nextVal = e.val) != null) // skip deleted or special nodes
2295 return nextVal;
2296 }
2297 }
2298
2299 /**
2300 * Common case version for value traversal
2301 */
2302 @SuppressWarnings("unchecked") final V advanceValue() {
2303 outer: for (Node<V> e = next;;) {
2304 if (e == null || (e = e.next) == null) {
2305 Node<V>[] t; int i, len, n; Object ek;
2306 if ((t = tab) == null ||
2307 baseSize != (len = t.length) ||
2308 len < (n = baseLimit) ||
2309 baseIndex != (i = index))
2310 break;
2311 do {
2312 if (i < 0 || i >= n) {
2313 index = baseIndex = n;
2314 next = null;
2315 return nextVal = null;
2316 }
2317 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2318 if ((ek = e.key) instanceof TreeBin)
2319 e = ((TreeBin<V>)ek).first;
2320 else {
2321 index = baseIndex = i;
2322 next = null;
2323 tab = (Node<V>[])ek;
2324 break outer;
2325 }
2326 }
2327 ++i;
2328 } while (e == null);
2329 index = baseIndex = i;
2330 }
2331 V v;
2332 K k = (K)e.key;
2333 if ((v = e.val) != null) {
2334 nextVal = v;
2335 nextKey = k;
2336 next = e;
2337 return v;
2338 }
2339 }
2340 return advance();
2341 }
2342
2343 /**
2344 * Common case version for key traversal
2345 */
2346 @SuppressWarnings("unchecked") final K advanceKey() {
2347 outer: for (Node<V> e = next;;) {
2348 if (e == null || (e = e.next) == null) {
2349 Node<V>[] t; int i, len, n; Object ek;
2350 if ((t = tab) == null ||
2351 baseSize != (len = t.length) ||
2352 len < (n = baseLimit) ||
2353 baseIndex != (i = index))
2354 break;
2355 do {
2356 if (i < 0 || i >= n) {
2357 index = baseIndex = n;
2358 next = null;
2359 nextVal = null;
2360 return null;
2361 }
2362 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2363 if ((ek = e.key) instanceof TreeBin)
2364 e = ((TreeBin<V>)ek).first;
2365 else {
2366 index = baseIndex = i;
2367 next = null;
2368 tab = (Node<V>[])ek;
2369 break outer;
2370 }
2371 }
2372 ++i;
2373 } while (e == null);
2374 index = baseIndex = i;
2375 }
2376 V v;
2377 K k = (K)e.key;
2378 if ((v = e.val) != null) {
2379 nextVal = v;
2380 nextKey = k;
2381 next = e;
2382 return k;
2383 }
2384 }
2385 return (advance() == null) ? null : nextKey;
2386 }
2387
2388 @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2389 if (action == null) throw new NullPointerException();
2390 Node<V>[] t; int i, len, n;
2391 if ((t = tab) != null && baseSize == (len = t.length) &&
2392 len >= (n = baseLimit) && baseIndex == (i = index)) {
2393 index = baseIndex = n;
2394 nextVal = null;
2395 Node<V> e = next;
2396 next = null;
2397 if (e != null)
2398 e = e.next;
2399 outer: for (;; e = e.next) {
2400 V v; Object ek;
2401 for (; e == null; ++i) {
2402 if (i < 0 || i >= n)
2403 return;
2404 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2405 if ((ek = e.key) instanceof TreeBin)
2406 e = ((TreeBin<V>)ek).first;
2407 else {
2408 index = baseIndex = i;
2409 tab = (Node<V>[])ek;
2410 break outer;
2411 }
2412 }
2413 }
2414 if ((v = e.val) != null)
2415 action.accept(v);
2416 }
2417 }
2418 V v;
2419 while ((v = advance()) != null)
2420 action.accept(v);
2421 }
2422
2423 @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2424 if (action == null) throw new NullPointerException();
2425 Node<V>[] t; int i, len, n;
2426 if ((t = tab) != null && baseSize == (len = t.length) &&
2427 len >= (n = baseLimit) && baseIndex == (i = index)) {
2428 index = baseIndex = n;
2429 nextVal = null;
2430 Node<V> e = next;
2431 next = null;
2432 if (e != null)
2433 e = e.next;
2434 outer: for (;; e = e.next) {
2435 for (; e == null; ++i) {
2436 if (i < 0 || i >= n)
2437 return;
2438 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2439 Object ek;
2440 if ((ek = e.key) instanceof TreeBin)
2441 e = ((TreeBin<V>)ek).first;
2442 else {
2443 index = baseIndex = i;
2444 tab = (Node<V>[])ek;
2445 break outer;
2446 }
2447 }
2448 }
2449 Object k = e.key;
2450 if (e.val != null)
2451 action.accept((K)k);
2452 }
2453 }
2454 while (advance() != null)
2455 action.accept(nextKey);
2456 }
2457
2458 public final void remove() {
2459 K k = nextKey;
2460 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2461 throw new IllegalStateException();
2462 map.internalReplace(k, null, null);
2463 }
2464
2465 public final boolean hasNext() {
2466 return nextVal != null || advanceValue() != null;
2467 }
2468
2469 public final boolean hasMoreElements() { return hasNext(); }
2470
2471 public void compute() { } // default no-op CountedCompleter body
2472
2473 public long estimateSize() { return batch; }
2474
2475 /**
2476 * Returns a batch value > 0 if this task should (and must) be
2477 * split, if so, adding to pending count, and in any case
2478 * updating batch value. The initial batch value is approx
2479 * exp2 of the number of times (minus one) to split task by
2480 * two before executing leaf action. This value is faster to
2481 * compute and more convenient to use as a guide to splitting
2482 * than is the depth, since it is used while dividing by two
2483 * anyway.
2484 */
2485 final int preSplit() {
2486 int b; ForkJoinPool pool;
2487 if ((b = batch) < 0) { // force initialization
2488 int sp = (((pool = getPool()) == null) ?
2489 ForkJoinPool.getCommonPoolParallelism() :
2490 pool.getParallelism()) << 3; // slack of 8
2491 long n = map.sumCount();
2492 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2493 }
2494 b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
2495 if ((batch = b) > 0)
2496 addToPendingCount(1);
2497 return b;
2498 }
2499 }
2500
2501 /* ---------------- Public operations -------------- */
2502
2503 /**
2504 * Creates a new, empty map with the default initial table size (16).
2505 */
2506 public ConcurrentHashMap() {
2507 }
2508
2509 /**
2510 * Creates a new, empty map with an initial table size
2511 * accommodating the specified number of elements without the need
2512 * to dynamically resize.
2513 *
2514 * @param initialCapacity The implementation performs internal
2515 * sizing to accommodate this many elements.
2516 * @throws IllegalArgumentException if the initial capacity of
2517 * elements is negative
2518 */
2519 public ConcurrentHashMap(int initialCapacity) {
2520 if (initialCapacity < 0)
2521 throw new IllegalArgumentException();
2522 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2523 MAXIMUM_CAPACITY :
2524 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2525 this.sizeCtl = cap;
2526 }
2527
2528 /**
2529 * Creates a new map with the same mappings as the given map.
2530 *
2531 * @param m the map
2532 */
2533 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2534 this.sizeCtl = DEFAULT_CAPACITY;
2535 internalPutAll(m);
2536 }
2537
2538 /**
2539 * Creates a new, empty map with an initial table size based on
2540 * the given number of elements ({@code initialCapacity}) and
2541 * initial table density ({@code loadFactor}).
2542 *
2543 * @param initialCapacity the initial capacity. The implementation
2544 * performs internal sizing to accommodate this many elements,
2545 * given the specified load factor.
2546 * @param loadFactor the load factor (table density) for
2547 * establishing the initial table size
2548 * @throws IllegalArgumentException if the initial capacity of
2549 * elements is negative or the load factor is nonpositive
2550 *
2551 * @since 1.6
2552 */
2553 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2554 this(initialCapacity, loadFactor, 1);
2555 }
2556
2557 /**
2558 * Creates a new, empty map with an initial table size based on
2559 * the given number of elements ({@code initialCapacity}), table
2560 * density ({@code loadFactor}), and number of concurrently
2561 * updating threads ({@code concurrencyLevel}).
2562 *
2563 * @param initialCapacity the initial capacity. The implementation
2564 * performs internal sizing to accommodate this many elements,
2565 * given the specified load factor.
2566 * @param loadFactor the load factor (table density) for
2567 * establishing the initial table size
2568 * @param concurrencyLevel the estimated number of concurrently
2569 * updating threads. The implementation may use this value as
2570 * a sizing hint.
2571 * @throws IllegalArgumentException if the initial capacity is
2572 * negative or the load factor or concurrencyLevel are
2573 * nonpositive
2574 */
2575 public ConcurrentHashMap(int initialCapacity,
2576 float loadFactor, int concurrencyLevel) {
2577 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2578 throw new IllegalArgumentException();
2579 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2580 initialCapacity = concurrencyLevel; // as estimated threads
2581 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2582 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2583 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2584 this.sizeCtl = cap;
2585 }
2586
2587 /**
2588 * Creates a new {@link Set} backed by a ConcurrentHashMap
2589 * from the given type to {@code Boolean.TRUE}.
2590 *
2591 * @return the new set
2592 */
2593 public static <K> KeySetView<K,Boolean> newKeySet() {
2594 return new KeySetView<K,Boolean>
2595 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2596 }
2597
2598 /**
2599 * Creates a new {@link Set} backed by a ConcurrentHashMap
2600 * from the given type to {@code Boolean.TRUE}.
2601 *
2602 * @param initialCapacity The implementation performs internal
2603 * sizing to accommodate this many elements.
2604 * @throws IllegalArgumentException if the initial capacity of
2605 * elements is negative
2606 * @return the new set
2607 */
2608 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2609 return new KeySetView<K,Boolean>
2610 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2611 }
2612
2613 /**
2614 * {@inheritDoc}
2615 */
2616 public boolean isEmpty() {
2617 return sumCount() <= 0L; // ignore transient negative values
2618 }
2619
2620 /**
2621 * {@inheritDoc}
2622 */
2623 public int size() {
2624 long n = sumCount();
2625 return ((n < 0L) ? 0 :
2626 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2627 (int)n);
2628 }
2629
2630 /**
2631 * Returns the number of mappings. This method should be used
2632 * instead of {@link #size} because a ConcurrentHashMap may
2633 * contain more mappings than can be represented as an int. The
2634 * value returned is an estimate; the actual count may differ if
2635 * there are concurrent insertions or removals.
2636 *
2637 * @return the number of mappings
2638 */
2639 public long mappingCount() {
2640 long n = sumCount();
2641 return (n < 0L) ? 0L : n; // ignore transient negative values
2642 }
2643
2644 /**
2645 * Returns the value to which the specified key is mapped,
2646 * or {@code null} if this map contains no mapping for the key.
2647 *
2648 * <p>More formally, if this map contains a mapping from a key
2649 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2650 * then this method returns {@code v}; otherwise it returns
2651 * {@code null}. (There can be at most one such mapping.)
2652 *
2653 * @throws NullPointerException if the specified key is null
2654 */
2655 public V get(Object key) {
2656 return internalGet(key);
2657 }
2658
2659 /**
2660 * Returns the value to which the specified key is mapped,
2661 * or the given defaultValue if this map contains no mapping for the key.
2662 *
2663 * @param key the key
2664 * @param defaultValue the value to return if this map contains
2665 * no mapping for the given key
2666 * @return the mapping for the key, if present; else the defaultValue
2667 * @throws NullPointerException if the specified key is null
2668 */
2669 public V getOrDefault(Object key, V defaultValue) {
2670 V v;
2671 return (v = internalGet(key)) == null ? defaultValue : v;
2672 }
2673
2674 /**
2675 * Tests if the specified object is a key in this table.
2676 *
2677 * @param key possible key
2678 * @return {@code true} if and only if the specified object
2679 * is a key in this table, as determined by the
2680 * {@code equals} method; {@code false} otherwise
2681 * @throws NullPointerException if the specified key is null
2682 */
2683 public boolean containsKey(Object key) {
2684 return internalGet(key) != null;
2685 }
2686
2687 /**
2688 * Returns {@code true} if this map maps one or more keys to the
2689 * specified value. Note: This method may require a full traversal
2690 * of the map, and is much slower than method {@code containsKey}.
2691 *
2692 * @param value value whose presence in this map is to be tested
2693 * @return {@code true} if this map maps one or more keys to the
2694 * specified value
2695 * @throws NullPointerException if the specified value is null
2696 */
2697 public boolean containsValue(Object value) {
2698 if (value == null)
2699 throw new NullPointerException();
2700 V v;
2701 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2702 while ((v = it.advanceValue()) != null) {
2703 if (v == value || value.equals(v))
2704 return true;
2705 }
2706 return false;
2707 }
2708
2709 /**
2710 * Legacy method testing if some key maps into the specified value
2711 * in this table. This method is identical in functionality to
2712 * {@link #containsValue(Object)}, and exists solely to ensure
2713 * full compatibility with class {@link java.util.Hashtable},
2714 * which supported this method prior to introduction of the
2715 * Java Collections framework.
2716 *
2717 * @param value a value to search for
2718 * @return {@code true} if and only if some key maps to the
2719 * {@code value} argument in this table as
2720 * determined by the {@code equals} method;
2721 * {@code false} otherwise
2722 * @throws NullPointerException if the specified value is null
2723 */
2724 @Deprecated public boolean contains(Object value) {
2725 return containsValue(value);
2726 }
2727
2728 /**
2729 * Maps the specified key to the specified value in this table.
2730 * Neither the key nor the value can be null.
2731 *
2732 * <p>The value can be retrieved by calling the {@code get} method
2733 * with a key that is equal to the original key.
2734 *
2735 * @param key key with which the specified value is to be associated
2736 * @param value value to be associated with the specified key
2737 * @return the previous value associated with {@code key}, or
2738 * {@code null} if there was no mapping for {@code key}
2739 * @throws NullPointerException if the specified key or value is null
2740 */
2741 public V put(K key, V value) {
2742 return internalPut(key, value, false);
2743 }
2744
2745 /**
2746 * {@inheritDoc}
2747 *
2748 * @return the previous value associated with the specified key,
2749 * or {@code null} if there was no mapping for the key
2750 * @throws NullPointerException if the specified key or value is null
2751 */
2752 public V putIfAbsent(K key, V value) {
2753 return internalPut(key, value, true);
2754 }
2755
2756 /**
2757 * Copies all of the mappings from the specified map to this one.
2758 * These mappings replace any mappings that this map had for any of the
2759 * keys currently in the specified map.
2760 *
2761 * @param m mappings to be stored in this map
2762 */
2763 public void putAll(Map<? extends K, ? extends V> m) {
2764 internalPutAll(m);
2765 }
2766
2767 /**
2768 * If the specified key is not already associated with a value (or
2769 * is mapped to {@code null}), attempts to compute its value using
2770 * the given mapping function and enters it into this map unless
2771 * {@code null}. The entire method invocation is performed
2772 * atomically, so the function is applied at most once per key.
2773 * Some attempted update operations on this map by other threads
2774 * may be blocked while computation is in progress, so the
2775 * computation should be short and simple, and must not attempt to
2776 * update any other mappings of this Map.
2777 *
2778 * @param key key with which the specified value is to be associated
2779 * @param mappingFunction the function to compute a value
2780 * @return the current (existing or computed) value associated with
2781 * the specified key, or null if the computed value is null
2782 * @throws NullPointerException if the specified key or mappingFunction
2783 * is null
2784 * @throws IllegalStateException if the computation detectably
2785 * attempts a recursive update to this map that would
2786 * otherwise never complete
2787 * @throws RuntimeException or Error if the mappingFunction does so,
2788 * in which case the mapping is left unestablished
2789 */
2790 public V computeIfAbsent
2791 (K key, Function<? super K, ? extends V> mappingFunction) {
2792 return internalComputeIfAbsent(key, mappingFunction);
2793 }
2794
2795 /**
2796 * If the value for the specified key is present and non-null,
2797 * attempts to compute a new mapping given the key and its current
2798 * mapped value. The entire method invocation is performed
2799 * atomically. Some attempted update operations on this map by
2800 * other threads may be blocked while computation is in progress,
2801 * so the computation should be short and simple, and must not
2802 * attempt to update any other mappings of this Map.
2803 *
2804 * @param key key with which a value may be associated
2805 * @param remappingFunction the function to compute a value
2806 * @return the new value associated with the specified key, or null if none
2807 * @throws NullPointerException if the specified key or remappingFunction
2808 * is null
2809 * @throws IllegalStateException if the computation detectably
2810 * attempts a recursive update to this map that would
2811 * otherwise never complete
2812 * @throws RuntimeException or Error if the remappingFunction does so,
2813 * in which case the mapping is unchanged
2814 */
2815 public V computeIfPresent
2816 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2817 return internalCompute(key, true, remappingFunction);
2818 }
2819
2820 /**
2821 * Attempts to compute a mapping for the specified key and its
2822 * current mapped value (or {@code null} if there is no current
2823 * mapping). The entire method invocation is performed atomically.
2824 * Some attempted update operations on this map by other threads
2825 * may be blocked while computation is in progress, so the
2826 * computation should be short and simple, and must not attempt to
2827 * update any other mappings of this Map.
2828 *
2829 * @param key key with which the specified value is to be associated
2830 * @param remappingFunction the function to compute a value
2831 * @return the new value associated with the specified key, or null if none
2832 * @throws NullPointerException if the specified key or remappingFunction
2833 * is null
2834 * @throws IllegalStateException if the computation detectably
2835 * attempts a recursive update to this map that would
2836 * otherwise never complete
2837 * @throws RuntimeException or Error if the remappingFunction does so,
2838 * in which case the mapping is unchanged
2839 */
2840 public V compute
2841 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2842 return internalCompute(key, false, remappingFunction);
2843 }
2844
2845 /**
2846 * If the specified key is not already associated with a
2847 * (non-null) value, associates it with the given value.
2848 * Otherwise, replaces the value with the results of the given
2849 * remapping function, or removes if {@code null}. The entire
2850 * method invocation is performed atomically. Some attempted
2851 * update operations on this map by other threads may be blocked
2852 * while computation is in progress, so the computation should be
2853 * short and simple, and must not attempt to update any other
2854 * mappings of this Map.
2855 *
2856 * @param key key with which the specified value is to be associated
2857 * @param value the value to use if absent
2858 * @param remappingFunction the function to recompute a value if present
2859 * @return the new value associated with the specified key, or null if none
2860 * @throws NullPointerException if the specified key or the
2861 * remappingFunction is null
2862 * @throws RuntimeException or Error if the remappingFunction does so,
2863 * in which case the mapping is unchanged
2864 */
2865 public V merge
2866 (K key, V value,
2867 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2868 return internalMerge(key, value, remappingFunction);
2869 }
2870
2871 /**
2872 * Removes the key (and its corresponding value) from this map.
2873 * This method does nothing if the key is not in the map.
2874 *
2875 * @param key the key that needs to be removed
2876 * @return the previous value associated with {@code key}, or
2877 * {@code null} if there was no mapping for {@code key}
2878 * @throws NullPointerException if the specified key is null
2879 */
2880 public V remove(Object key) {
2881 return internalReplace(key, null, null);
2882 }
2883
2884 /**
2885 * {@inheritDoc}
2886 *
2887 * @throws NullPointerException if the specified key is null
2888 */
2889 public boolean remove(Object key, Object value) {
2890 if (key == null)
2891 throw new NullPointerException();
2892 return value != null && internalReplace(key, null, value) != null;
2893 }
2894
2895 /**
2896 * {@inheritDoc}
2897 *
2898 * @throws NullPointerException if any of the arguments are null
2899 */
2900 public boolean replace(K key, V oldValue, V newValue) {
2901 if (key == null || oldValue == null || newValue == null)
2902 throw new NullPointerException();
2903 return internalReplace(key, newValue, oldValue) != null;
2904 }
2905
2906 /**
2907 * {@inheritDoc}
2908 *
2909 * @return the previous value associated with the specified key,
2910 * or {@code null} if there was no mapping for the key
2911 * @throws NullPointerException if the specified key or value is null
2912 */
2913 public V replace(K key, V value) {
2914 if (key == null || value == null)
2915 throw new NullPointerException();
2916 return internalReplace(key, value, null);
2917 }
2918
2919 /**
2920 * Removes all of the mappings from this map.
2921 */
2922 public void clear() {
2923 internalClear();
2924 }
2925
2926 /**
2927 * Returns a {@link Set} view of the keys contained in this map.
2928 * The set is backed by the map, so changes to the map are
2929 * reflected in the set, and vice-versa.
2930 *
2931 * @return the set view
2932 */
2933 public KeySetView<K,V> keySet() {
2934 KeySetView<K,V> ks = keySet;
2935 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2936 }
2937
2938 /**
2939 * Returns a {@link Set} view of the keys in this map, using the
2940 * given common mapped value for any additions (i.e., {@link
2941 * Collection#add} and {@link Collection#addAll(Collection)}).
2942 * This is of course only appropriate if it is acceptable to use
2943 * the same value for all additions from this view.
2944 *
2945 * @param mappedValue the mapped value to use for any additions
2946 * @return the set view
2947 * @throws NullPointerException if the mappedValue is null
2948 */
2949 public KeySetView<K,V> keySet(V mappedValue) {
2950 if (mappedValue == null)
2951 throw new NullPointerException();
2952 return new KeySetView<K,V>(this, mappedValue);
2953 }
2954
2955 /**
2956 * Returns a {@link Collection} view of the values contained in this map.
2957 * The collection is backed by the map, so changes to the map are
2958 * reflected in the collection, and vice-versa.
2959 *
2960 * @return the collection view
2961 */
2962 public ValuesView<K,V> values() {
2963 ValuesView<K,V> vs = values;
2964 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2965 }
2966
2967 /**
2968 * Returns a {@link Set} view of the mappings contained in this map.
2969 * The set is backed by the map, so changes to the map are
2970 * reflected in the set, and vice-versa. The set supports element
2971 * removal, which removes the corresponding mapping from the map,
2972 * via the {@code Iterator.remove}, {@code Set.remove},
2973 * {@code removeAll}, {@code retainAll}, and {@code clear}
2974 * operations. It does not support the {@code add} or
2975 * {@code addAll} operations.
2976 *
2977 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2978 * that will never throw {@link ConcurrentModificationException},
2979 * and guarantees to traverse elements as they existed upon
2980 * construction of the iterator, and may (but is not guaranteed to)
2981 * reflect any modifications subsequent to construction.
2982 *
2983 * @return the set view
2984 */
2985 public Set<Map.Entry<K,V>> entrySet() {
2986 EntrySetView<K,V> es = entrySet;
2987 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2988 }
2989
2990 /**
2991 * Returns an enumeration of the keys in this table.
2992 *
2993 * @return an enumeration of the keys in this table
2994 * @see #keySet()
2995 */
2996 public Enumeration<K> keys() {
2997 return new KeyIterator<K,V>(this);
2998 }
2999
3000 /**
3001 * Returns an enumeration of the values in this table.
3002 *
3003 * @return an enumeration of the values in this table
3004 * @see #values()
3005 */
3006 public Enumeration<V> elements() {
3007 return new ValueIterator<K,V>(this);
3008 }
3009
3010 /**
3011 * Returns the hash code value for this {@link Map}, i.e.,
3012 * the sum of, for each key-value pair in the map,
3013 * {@code key.hashCode() ^ value.hashCode()}.
3014 *
3015 * @return the hash code value for this map
3016 */
3017 public int hashCode() {
3018 int h = 0;
3019 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3020 V v;
3021 while ((v = it.advanceValue()) != null) {
3022 h += it.nextKey.hashCode() ^ v.hashCode();
3023 }
3024 return h;
3025 }
3026
3027 /**
3028 * Returns a string representation of this map. The string
3029 * representation consists of a list of key-value mappings (in no
3030 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3031 * mappings are separated by the characters {@code ", "} (comma
3032 * and space). Each key-value mapping is rendered as the key
3033 * followed by an equals sign ("{@code =}") followed by the
3034 * associated value.
3035 *
3036 * @return a string representation of this map
3037 */
3038 public String toString() {
3039 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3040 StringBuilder sb = new StringBuilder();
3041 sb.append('{');
3042 V v;
3043 if ((v = it.advanceValue()) != null) {
3044 for (;;) {
3045 K k = it.nextKey;
3046 sb.append(k == this ? "(this Map)" : k);
3047 sb.append('=');
3048 sb.append(v == this ? "(this Map)" : v);
3049 if ((v = it.advanceValue()) == null)
3050 break;
3051 sb.append(',').append(' ');
3052 }
3053 }
3054 return sb.append('}').toString();
3055 }
3056
3057 /**
3058 * Compares the specified object with this map for equality.
3059 * Returns {@code true} if the given object is a map with the same
3060 * mappings as this map. This operation may return misleading
3061 * results if either map is concurrently modified during execution
3062 * of this method.
3063 *
3064 * @param o object to be compared for equality with this map
3065 * @return {@code true} if the specified object is equal to this map
3066 */
3067 public boolean equals(Object o) {
3068 if (o != this) {
3069 if (!(o instanceof Map))
3070 return false;
3071 Map<?,?> m = (Map<?,?>) o;
3072 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3073 V val;
3074 while ((val = it.advanceValue()) != null) {
3075 Object v = m.get(it.nextKey);
3076 if (v == null || (v != val && !v.equals(val)))
3077 return false;
3078 }
3079 for (Map.Entry<?,?> e : m.entrySet()) {
3080 Object mk, mv, v;
3081 if ((mk = e.getKey()) == null ||
3082 (mv = e.getValue()) == null ||
3083 (v = internalGet(mk)) == null ||
3084 (mv != v && !mv.equals(v)))
3085 return false;
3086 }
3087 }
3088 return true;
3089 }
3090
3091 /* ----------------Iterators -------------- */
3092
3093 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3094 extends Traverser<K,V,Object>
3095 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3096 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3097 KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3098 super(map, it);
3099 }
3100 public Spliterator<K> trySplit() {
3101 return (baseLimit - baseIndex <= 1) ? null :
3102 new KeyIterator<K,V>(map, this);
3103 }
3104 public final K next() {
3105 K k;
3106 if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3107 throw new NoSuchElementException();
3108 nextVal = null;
3109 return k;
3110 }
3111
3112 public final K nextElement() { return next(); }
3113
3114 public Iterator<K> iterator() { return this; }
3115
3116 public void forEachRemaining(Consumer<? super K> action) {
3117 forEachKey(action);
3118 }
3119
3120 public boolean tryAdvance(Consumer<? super K> block) {
3121 if (block == null) throw new NullPointerException();
3122 K k;
3123 if ((k = advanceKey()) == null)
3124 return false;
3125 block.accept(k);
3126 return true;
3127 }
3128
3129 public int characteristics() {
3130 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3131 Spliterator.NONNULL;
3132 }
3133
3134 }
3135
3136 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3137 extends Traverser<K,V,Object>
3138 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3139 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3140 ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3141 super(map, it);
3142 }
3143 public Spliterator<V> trySplit() {
3144 return (baseLimit - baseIndex <= 1) ? null :
3145 new ValueIterator<K,V>(map, this);
3146 }
3147
3148 public final V next() {
3149 V v;
3150 if ((v = nextVal) == null && (v = advanceValue()) == null)
3151 throw new NoSuchElementException();
3152 nextVal = null;
3153 return v;
3154 }
3155
3156 public final V nextElement() { return next(); }
3157
3158 public Iterator<V> iterator() { return this; }
3159
3160 public void forEachRemaining(Consumer<? super V> action) {
3161 forEachValue(action);
3162 }
3163
3164 public boolean tryAdvance(Consumer<? super V> block) {
3165 V v;
3166 if (block == null) throw new NullPointerException();
3167 if ((v = advanceValue()) == null)
3168 return false;
3169 block.accept(v);
3170 return true;
3171 }
3172
3173 public int characteristics() {
3174 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3175 }
3176 }
3177
3178 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3179 extends Traverser<K,V,Object>
3180 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3181 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3182 EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3183 super(map, it);
3184 }
3185 public Spliterator<Map.Entry<K,V>> trySplit() {
3186 return (baseLimit - baseIndex <= 1) ? null :
3187 new EntryIterator<K,V>(map, this);
3188 }
3189
3190 public final Map.Entry<K,V> next() {
3191 V v;
3192 if ((v = nextVal) == null && (v = advanceValue()) == null)
3193 throw new NoSuchElementException();
3194 K k = nextKey;
3195 nextVal = null;
3196 return new MapEntry<K,V>(k, v, map);
3197 }
3198
3199 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3200
3201 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3202 if (action == null) throw new NullPointerException();
3203 V v;
3204 while ((v = advanceValue()) != null)
3205 action.accept(entryFor(nextKey, v));
3206 }
3207
3208 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3209 V v;
3210 if (block == null) throw new NullPointerException();
3211 if ((v = advanceValue()) == null)
3212 return false;
3213 block.accept(entryFor(nextKey, v));
3214 return true;
3215 }
3216
3217 public int characteristics() {
3218 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3219 Spliterator.NONNULL;
3220 }
3221 }
3222
3223 /**
3224 * Exported Entry for iterators
3225 */
3226 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3227 final K key; // non-null
3228 V val; // non-null
3229 final ConcurrentHashMap<K,V> map;
3230 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3231 this.key = key;
3232 this.val = val;
3233 this.map = map;
3234 }
3235 public final K getKey() { return key; }
3236 public final V getValue() { return val; }
3237 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3238 public final String toString(){ return key + "=" + val; }
3239
3240 public final boolean equals(Object o) {
3241 Object k, v; Map.Entry<?,?> e;
3242 return ((o instanceof Map.Entry) &&
3243 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3244 (v = e.getValue()) != null &&
3245 (k == key || k.equals(key)) &&
3246 (v == val || v.equals(val)));
3247 }
3248
3249 /**
3250 * Sets our entry's value and writes through to the map. The
3251 * value to return is somewhat arbitrary here. Since we do not
3252 * necessarily track asynchronous changes, the most recent
3253 * "previous" value could be different from what we return (or
3254 * could even have been removed in which case the put will
3255 * re-establish). We do not and cannot guarantee more.
3256 */
3257 public final V setValue(V value) {
3258 if (value == null) throw new NullPointerException();
3259 V v = val;
3260 val = value;
3261 map.put(key, value);
3262 return v;
3263 }
3264 }
3265
3266 /**
3267 * Returns exportable snapshot entry for the given key and value
3268 * when write-through can't or shouldn't be used.
3269 */
3270 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3271 return new AbstractMap.SimpleEntry<K,V>(k, v);
3272 }
3273
3274 /* ---------------- Serialization Support -------------- */
3275
3276 /**
3277 * Stripped-down version of helper class used in previous version,
3278 * declared for the sake of serialization compatibility
3279 */
3280 static class Segment<K,V> implements Serializable {
3281 private static final long serialVersionUID = 2249069246763182397L;
3282 final float loadFactor;
3283 Segment(float lf) { this.loadFactor = lf; }
3284 }
3285
3286 /**
3287 * Saves the state of the {@code ConcurrentHashMap} instance to a
3288 * stream (i.e., serializes it).
3289 * @param s the stream
3290 * @serialData
3291 * the key (Object) and value (Object)
3292 * for each key-value mapping, followed by a null pair.
3293 * The key-value mappings are emitted in no particular order.
3294 */
3295 @SuppressWarnings("unchecked") private void writeObject
3296 (java.io.ObjectOutputStream s)
3297 throws java.io.IOException {
3298 if (segments == null) { // for serialization compatibility
3299 segments = (Segment<K,V>[])
3300 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3301 for (int i = 0; i < segments.length; ++i)
3302 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3303 }
3304 s.defaultWriteObject();
3305 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3306 V v;
3307 while ((v = it.advanceValue()) != null) {
3308 s.writeObject(it.nextKey);
3309 s.writeObject(v);
3310 }
3311 s.writeObject(null);
3312 s.writeObject(null);
3313 segments = null; // throw away
3314 }
3315
3316 /**
3317 * Reconstitutes the instance from a stream (that is, deserializes it).
3318 * @param s the stream
3319 */
3320 @SuppressWarnings("unchecked") private void readObject
3321 (java.io.ObjectInputStream s)
3322 throws java.io.IOException, ClassNotFoundException {
3323 s.defaultReadObject();
3324 this.segments = null; // unneeded
3325
3326 // Create all nodes, then place in table once size is known
3327 long size = 0L;
3328 Node<V> p = null;
3329 for (;;) {
3330 K k = (K) s.readObject();
3331 V v = (V) s.readObject();
3332 if (k != null && v != null) {
3333 int h = spread(k.hashCode());
3334 p = new Node<V>(h, k, v, p);
3335 ++size;
3336 }
3337 else
3338 break;
3339 }
3340 if (p != null) {
3341 boolean init = false;
3342 int n;
3343 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3344 n = MAXIMUM_CAPACITY;
3345 else {
3346 int sz = (int)size;
3347 n = tableSizeFor(sz + (sz >>> 1) + 1);
3348 }
3349 int sc = sizeCtl;
3350 boolean collide = false;
3351 if (n > sc &&
3352 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3353 try {
3354 if (table == null) {
3355 init = true;
3356 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3357 Node<V>[] tab = (Node<V>[])rt;
3358 int mask = n - 1;
3359 while (p != null) {
3360 int j = p.hash & mask;
3361 Node<V> next = p.next;
3362 Node<V> q = p.next = tabAt(tab, j);
3363 setTabAt(tab, j, p);
3364 if (!collide && q != null && q.hash == p.hash)
3365 collide = true;
3366 p = next;
3367 }
3368 table = tab;
3369 addCount(size, -1);
3370 sc = n - (n >>> 2);
3371 }
3372 } finally {
3373 sizeCtl = sc;
3374 }
3375 if (collide) { // rescan and convert to TreeBins
3376 Node<V>[] tab = table;
3377 for (int i = 0; i < tab.length; ++i) {
3378 int c = 0;
3379 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3380 if (++c > TREE_THRESHOLD &&
3381 (e.key instanceof Comparable)) {
3382 replaceWithTreeBin(tab, i, e.key);
3383 break;
3384 }
3385 }
3386 }
3387 }
3388 }
3389 if (!init) { // Can only happen if unsafely published.
3390 while (p != null) {
3391 internalPut((K)p.key, p.val, false);
3392 p = p.next;
3393 }
3394 }
3395 }
3396 }
3397
3398 // -------------------------------------------------------
3399
3400 // Sequential bulk operations
3401
3402 /**
3403 * Performs the given action for each (key, value).
3404 *
3405 * @param action the action
3406 */
3407 public void forEachSequentially
3408 (BiConsumer<? super K, ? super V> action) {
3409 if (action == null) throw new NullPointerException();
3410 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3411 V v;
3412 while ((v = it.advanceValue()) != null)
3413 action.accept(it.nextKey, v);
3414 }
3415
3416 /**
3417 * Performs the given action for each non-null transformation
3418 * of each (key, value).
3419 *
3420 * @param transformer a function returning the transformation
3421 * for an element, or null if there is no transformation (in
3422 * which case the action is not applied)
3423 * @param action the action
3424 */
3425 public <U> void forEachSequentially
3426 (BiFunction<? super K, ? super V, ? extends U> transformer,
3427 Consumer<? super U> action) {
3428 if (transformer == null || action == null)
3429 throw new NullPointerException();
3430 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3431 V v; U u;
3432 while ((v = it.advanceValue()) != null) {
3433 if ((u = transformer.apply(it.nextKey, v)) != null)
3434 action.accept(u);
3435 }
3436 }
3437
3438 /**
3439 * Returns a non-null result from applying the given search
3440 * function on each (key, value), or null if none.
3441 *
3442 * @param searchFunction a function returning a non-null
3443 * result on success, else null
3444 * @return a non-null result from applying the given search
3445 * function on each (key, value), or null if none
3446 */
3447 public <U> U searchSequentially
3448 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3449 if (searchFunction == null) throw new NullPointerException();
3450 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3451 V v; U u;
3452 while ((v = it.advanceValue()) != null) {
3453 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3454 return u;
3455 }
3456 return null;
3457 }
3458
3459 /**
3460 * Returns the result of accumulating the given transformation
3461 * of all (key, value) pairs using the given reducer to
3462 * combine values, or null if none.
3463 *
3464 * @param transformer a function returning the transformation
3465 * for an element, or null if there is no transformation (in
3466 * which case it is not combined)
3467 * @param reducer a commutative associative combining function
3468 * @return the result of accumulating the given transformation
3469 * of all (key, value) pairs
3470 */
3471 public <U> U reduceSequentially
3472 (BiFunction<? super K, ? super V, ? extends U> transformer,
3473 BiFunction<? super U, ? super U, ? extends U> reducer) {
3474 if (transformer == null || reducer == null)
3475 throw new NullPointerException();
3476 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3477 U r = null, u; V v;
3478 while ((v = it.advanceValue()) != null) {
3479 if ((u = transformer.apply(it.nextKey, v)) != null)
3480 r = (r == null) ? u : reducer.apply(r, u);
3481 }
3482 return r;
3483 }
3484
3485 /**
3486 * Returns the result of accumulating the given transformation
3487 * of all (key, value) pairs using the given reducer to
3488 * combine values, and the given basis as an identity value.
3489 *
3490 * @param transformer a function returning the transformation
3491 * for an element
3492 * @param basis the identity (initial default value) for the reduction
3493 * @param reducer a commutative associative combining function
3494 * @return the result of accumulating the given transformation
3495 * of all (key, value) pairs
3496 */
3497 public double reduceToDoubleSequentially
3498 (ToDoubleBiFunction<? super K, ? super V> transformer,
3499 double basis,
3500 DoubleBinaryOperator reducer) {
3501 if (transformer == null || reducer == null)
3502 throw new NullPointerException();
3503 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3504 double r = basis; V v;
3505 while ((v = it.advanceValue()) != null)
3506 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3507 return r;
3508 }
3509
3510 /**
3511 * Returns the result of accumulating the given transformation
3512 * of all (key, value) pairs using the given reducer to
3513 * combine values, and the given basis as an identity value.
3514 *
3515 * @param transformer a function returning the transformation
3516 * for an element
3517 * @param basis the identity (initial default value) for the reduction
3518 * @param reducer a commutative associative combining function
3519 * @return the result of accumulating the given transformation
3520 * of all (key, value) pairs
3521 */
3522 public long reduceToLongSequentially
3523 (ToLongBiFunction<? super K, ? super V> transformer,
3524 long basis,
3525 LongBinaryOperator reducer) {
3526 if (transformer == null || reducer == null)
3527 throw new NullPointerException();
3528 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3529 long r = basis; V v;
3530 while ((v = it.advanceValue()) != null)
3531 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3532 return r;
3533 }
3534
3535 /**
3536 * Returns the result of accumulating the given transformation
3537 * of all (key, value) pairs using the given reducer to
3538 * combine values, and the given basis as an identity value.
3539 *
3540 * @param transformer a function returning the transformation
3541 * for an element
3542 * @param basis the identity (initial default value) for the reduction
3543 * @param reducer a commutative associative combining function
3544 * @return the result of accumulating the given transformation
3545 * of all (key, value) pairs
3546 */
3547 public int reduceToIntSequentially
3548 (ToIntBiFunction<? super K, ? super V> transformer,
3549 int basis,
3550 IntBinaryOperator reducer) {
3551 if (transformer == null || reducer == null)
3552 throw new NullPointerException();
3553 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3554 int r = basis; V v;
3555 while ((v = it.advanceValue()) != null)
3556 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3557 return r;
3558 }
3559
3560 /**
3561 * Performs the given action for each key.
3562 *
3563 * @param action the action
3564 */
3565 public void forEachKeySequentially
3566 (Consumer<? super K> action) {
3567 new Traverser<K,V,Object>(this).forEachKey(action);
3568 }
3569
3570 /**
3571 * Performs the given action for each non-null transformation
3572 * of each key.
3573 *
3574 * @param transformer a function returning the transformation
3575 * for an element, or null if there is no transformation (in
3576 * which case the action is not applied)
3577 * @param action the action
3578 */
3579 public <U> void forEachKeySequentially
3580 (Function<? super K, ? extends U> transformer,
3581 Consumer<? super U> action) {
3582 if (transformer == null || action == null)
3583 throw new NullPointerException();
3584 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3585 K k; U u;
3586 while ((k = it.advanceKey()) != null) {
3587 if ((u = transformer.apply(k)) != null)
3588 action.accept(u);
3589 }
3590 }
3591
3592 /**
3593 * Returns a non-null result from applying the given search
3594 * function on each key, or null if none.
3595 *
3596 * @param searchFunction a function returning a non-null
3597 * result on success, else null
3598 * @return a non-null result from applying the given search
3599 * function on each key, or null if none
3600 */
3601 public <U> U searchKeysSequentially
3602 (Function<? super K, ? extends U> searchFunction) {
3603 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3604 K k; U u;
3605 while ((k = it.advanceKey()) != null) {
3606 if ((u = searchFunction.apply(k)) != null)
3607 return u;
3608 }
3609 return null;
3610 }
3611
3612 /**
3613 * Returns the result of accumulating all keys using the given
3614 * reducer to combine values, or null if none.
3615 *
3616 * @param reducer a commutative associative combining function
3617 * @return the result of accumulating all keys using the given
3618 * reducer to combine values, or null if none
3619 */
3620 public K reduceKeysSequentially
3621 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3622 if (reducer == null) throw new NullPointerException();
3623 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3624 K u, r = null;
3625 while ((u = it.advanceKey()) != null) {
3626 r = (r == null) ? u : reducer.apply(r, u);
3627 }
3628 return r;
3629 }
3630
3631 /**
3632 * Returns the result of accumulating the given transformation
3633 * of all keys using the given reducer to combine values, or
3634 * null if none.
3635 *
3636 * @param transformer a function returning the transformation
3637 * for an element, or null if there is no transformation (in
3638 * which case it is not combined)
3639 * @param reducer a commutative associative combining function
3640 * @return the result of accumulating the given transformation
3641 * of all keys
3642 */
3643 public <U> U reduceKeysSequentially
3644 (Function<? super K, ? extends U> transformer,
3645 BiFunction<? super U, ? super U, ? extends U> reducer) {
3646 if (transformer == null || reducer == null)
3647 throw new NullPointerException();
3648 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3649 K k; U r = null, u;
3650 while ((k = it.advanceKey()) != null) {
3651 if ((u = transformer.apply(k)) != null)
3652 r = (r == null) ? u : reducer.apply(r, u);
3653 }
3654 return r;
3655 }
3656
3657 /**
3658 * Returns the result of accumulating the given transformation
3659 * of all keys using the given reducer to combine values, and
3660 * the given basis as an identity value.
3661 *
3662 * @param transformer a function returning the transformation
3663 * for an element
3664 * @param basis the identity (initial default value) for the reduction
3665 * @param reducer a commutative associative combining function
3666 * @return the result of accumulating the given transformation
3667 * of all keys
3668 */
3669 public double reduceKeysToDoubleSequentially
3670 (ToDoubleFunction<? super K> transformer,
3671 double basis,
3672 DoubleBinaryOperator reducer) {
3673 if (transformer == null || reducer == null)
3674 throw new NullPointerException();
3675 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3676 double r = basis;
3677 K k;
3678 while ((k = it.advanceKey()) != null)
3679 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3680 return r;
3681 }
3682
3683 /**
3684 * Returns the result of accumulating the given transformation
3685 * of all keys using the given reducer to combine values, and
3686 * the given basis as an identity value.
3687 *
3688 * @param transformer a function returning the transformation
3689 * for an element
3690 * @param basis the identity (initial default value) for the reduction
3691 * @param reducer a commutative associative combining function
3692 * @return the result of accumulating the given transformation
3693 * of all keys
3694 */
3695 public long reduceKeysToLongSequentially
3696 (ToLongFunction<? super K> transformer,
3697 long basis,
3698 LongBinaryOperator reducer) {
3699 if (transformer == null || reducer == null)
3700 throw new NullPointerException();
3701 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3702 long r = basis;
3703 K k;
3704 while ((k = it.advanceKey()) != null)
3705 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3706 return r;
3707 }
3708
3709 /**
3710 * Returns the result of accumulating the given transformation
3711 * of all keys using the given reducer to combine values, and
3712 * the given basis as an identity value.
3713 *
3714 * @param transformer a function returning the transformation
3715 * for an element
3716 * @param basis the identity (initial default value) for the reduction
3717 * @param reducer a commutative associative combining function
3718 * @return the result of accumulating the given transformation
3719 * of all keys
3720 */
3721 public int reduceKeysToIntSequentially
3722 (ToIntFunction<? super K> transformer,
3723 int basis,
3724 IntBinaryOperator reducer) {
3725 if (transformer == null || reducer == null)
3726 throw new NullPointerException();
3727 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3728 int r = basis;
3729 K k;
3730 while ((k = it.advanceKey()) != null)
3731 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3732 return r;
3733 }
3734
3735 /**
3736 * Performs the given action for each value.
3737 *
3738 * @param action the action
3739 */
3740 public void forEachValueSequentially(Consumer<? super V> action) {
3741 new Traverser<K,V,Object>(this).forEachValue(action);
3742 }
3743
3744 /**
3745 * Performs the given action for each non-null transformation
3746 * of each value.
3747 *
3748 * @param transformer a function returning the transformation
3749 * for an element, or null if there is no transformation (in
3750 * which case the action is not applied)
3751 * @param action the action
3752 */
3753 public <U> void forEachValueSequentially
3754 (Function<? super V, ? extends U> transformer,
3755 Consumer<? super U> action) {
3756 if (transformer == null || action == null)
3757 throw new NullPointerException();
3758 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3759 V v; U u;
3760 while ((v = it.advanceValue()) != null) {
3761 if ((u = transformer.apply(v)) != null)
3762 action.accept(u);
3763 }
3764 }
3765
3766 /**
3767 * Returns a non-null result from applying the given search
3768 * function on each value, or null if none.
3769 *
3770 * @param searchFunction a function returning a non-null
3771 * result on success, else null
3772 * @return a non-null result from applying the given search
3773 * function on each value, or null if none
3774 */
3775 public <U> U searchValuesSequentially
3776 (Function<? super V, ? extends U> searchFunction) {
3777 if (searchFunction == null) throw new NullPointerException();
3778 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3779 V v; U u;
3780 while ((v = it.advanceValue()) != null) {
3781 if ((u = searchFunction.apply(v)) != null)
3782 return u;
3783 }
3784 return null;
3785 }
3786
3787 /**
3788 * Returns the result of accumulating all values using the
3789 * given reducer to combine values, or null if none.
3790 *
3791 * @param reducer a commutative associative combining function
3792 * @return the result of accumulating all values
3793 */
3794 public V reduceValuesSequentially
3795 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3796 if (reducer == null) throw new NullPointerException();
3797 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3798 V r = null; V v;
3799 while ((v = it.advanceValue()) != null)
3800 r = (r == null) ? v : reducer.apply(r, v);
3801 return r;
3802 }
3803
3804 /**
3805 * Returns the result of accumulating the given transformation
3806 * of all values using the given reducer to combine values, or
3807 * null if none.
3808 *
3809 * @param transformer a function returning the transformation
3810 * for an element, or null if there is no transformation (in
3811 * which case it is not combined)
3812 * @param reducer a commutative associative combining function
3813 * @return the result of accumulating the given transformation
3814 * of all values
3815 */
3816 public <U> U reduceValuesSequentially
3817 (Function<? super V, ? extends U> transformer,
3818 BiFunction<? super U, ? super U, ? extends U> reducer) {
3819 if (transformer == null || reducer == null)
3820 throw new NullPointerException();
3821 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3822 U r = null, u; V v;
3823 while ((v = it.advanceValue()) != null) {
3824 if ((u = transformer.apply(v)) != null)
3825 r = (r == null) ? u : reducer.apply(r, u);
3826 }
3827 return r;
3828 }
3829
3830 /**
3831 * Returns the result of accumulating the given transformation
3832 * of all values using the given reducer to combine values,
3833 * and the given basis as an identity value.
3834 *
3835 * @param transformer a function returning the transformation
3836 * for an element
3837 * @param basis the identity (initial default value) for the reduction
3838 * @param reducer a commutative associative combining function
3839 * @return the result of accumulating the given transformation
3840 * of all values
3841 */
3842 public double reduceValuesToDoubleSequentially
3843 (ToDoubleFunction<? super V> transformer,
3844 double basis,
3845 DoubleBinaryOperator reducer) {
3846 if (transformer == null || reducer == null)
3847 throw new NullPointerException();
3848 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3849 double r = basis; V v;
3850 while ((v = it.advanceValue()) != null)
3851 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3852 return r;
3853 }
3854
3855 /**
3856 * Returns the result of accumulating the given transformation
3857 * of all values using the given reducer to combine values,
3858 * and the given basis as an identity value.
3859 *
3860 * @param transformer a function returning the transformation
3861 * for an element
3862 * @param basis the identity (initial default value) for the reduction
3863 * @param reducer a commutative associative combining function
3864 * @return the result of accumulating the given transformation
3865 * of all values
3866 */
3867 public long reduceValuesToLongSequentially
3868 (ToLongFunction<? super V> transformer,
3869 long basis,
3870 LongBinaryOperator reducer) {
3871 if (transformer == null || reducer == null)
3872 throw new NullPointerException();
3873 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3874 long r = basis; V v;
3875 while ((v = it.advanceValue()) != null)
3876 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3877 return r;
3878 }
3879
3880 /**
3881 * Returns the result of accumulating the given transformation
3882 * of all values using the given reducer to combine values,
3883 * and the given basis as an identity value.
3884 *
3885 * @param transformer a function returning the transformation
3886 * for an element
3887 * @param basis the identity (initial default value) for the reduction
3888 * @param reducer a commutative associative combining function
3889 * @return the result of accumulating the given transformation
3890 * of all values
3891 */
3892 public int reduceValuesToIntSequentially
3893 (ToIntFunction<? super V> transformer,
3894 int basis,
3895 IntBinaryOperator reducer) {
3896 if (transformer == null || reducer == null)
3897 throw new NullPointerException();
3898 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3899 int r = basis; V v;
3900 while ((v = it.advanceValue()) != null)
3901 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3902 return r;
3903 }
3904
3905 /**
3906 * Performs the given action for each entry.
3907 *
3908 * @param action the action
3909 */
3910 public void forEachEntrySequentially
3911 (Consumer<? super Map.Entry<K,V>> action) {
3912 if (action == null) throw new NullPointerException();
3913 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3914 V v;
3915 while ((v = it.advanceValue()) != null)
3916 action.accept(entryFor(it.nextKey, v));
3917 }
3918
3919 /**
3920 * Performs the given action for each non-null transformation
3921 * of each entry.
3922 *
3923 * @param transformer a function returning the transformation
3924 * for an element, or null if there is no transformation (in
3925 * which case the action is not applied)
3926 * @param action the action
3927 */
3928 public <U> void forEachEntrySequentially
3929 (Function<Map.Entry<K,V>, ? extends U> transformer,
3930 Consumer<? super U> action) {
3931 if (transformer == null || action == null)
3932 throw new NullPointerException();
3933 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3934 V v; U u;
3935 while ((v = it.advanceValue()) != null) {
3936 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3937 action.accept(u);
3938 }
3939 }
3940
3941 /**
3942 * Returns a non-null result from applying the given search
3943 * function on each entry, or null if none.
3944 *
3945 * @param searchFunction a function returning a non-null
3946 * result on success, else null
3947 * @return a non-null result from applying the given search
3948 * function on each entry, or null if none
3949 */
3950 public <U> U searchEntriesSequentially
3951 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3952 if (searchFunction == null) throw new NullPointerException();
3953 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3954 V v; U u;
3955 while ((v = it.advanceValue()) != null) {
3956 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3957 return u;
3958 }
3959 return null;
3960 }
3961
3962 /**
3963 * Returns the result of accumulating all entries using the
3964 * given reducer to combine values, or null if none.
3965 *
3966 * @param reducer a commutative associative combining function
3967 * @return the result of accumulating all entries
3968 */
3969 public Map.Entry<K,V> reduceEntriesSequentially
3970 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3971 if (reducer == null) throw new NullPointerException();
3972 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3973 Map.Entry<K,V> r = null; V v;
3974 while ((v = it.advanceValue()) != null) {
3975 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3976 r = (r == null) ? u : reducer.apply(r, u);
3977 }
3978 return r;
3979 }
3980
3981 /**
3982 * Returns the result of accumulating the given transformation
3983 * of all entries using the given reducer to combine values,
3984 * or null if none.
3985 *
3986 * @param transformer a function returning the transformation
3987 * for an element, or null if there is no transformation (in
3988 * which case it is not combined)
3989 * @param reducer a commutative associative combining function
3990 * @return the result of accumulating the given transformation
3991 * of all entries
3992 */
3993 public <U> U reduceEntriesSequentially
3994 (Function<Map.Entry<K,V>, ? extends U> transformer,
3995 BiFunction<? super U, ? super U, ? extends U> reducer) {
3996 if (transformer == null || reducer == null)
3997 throw new NullPointerException();
3998 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3999 U r = null, u; V v;
4000 while ((v = it.advanceValue()) != null) {
4001 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
4002 r = (r == null) ? u : reducer.apply(r, u);
4003 }
4004 return r;
4005 }
4006
4007 /**
4008 * Returns the result of accumulating the given transformation
4009 * of all entries using the given reducer to combine values,
4010 * and the given basis as an identity value.
4011 *
4012 * @param transformer a function returning the transformation
4013 * for an element
4014 * @param basis the identity (initial default value) for the reduction
4015 * @param reducer a commutative associative combining function
4016 * @return the result of accumulating the given transformation
4017 * of all entries
4018 */
4019 public double reduceEntriesToDoubleSequentially
4020 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4021 double basis,
4022 DoubleBinaryOperator reducer) {
4023 if (transformer == null || reducer == null)
4024 throw new NullPointerException();
4025 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4026 double r = basis; V v;
4027 while ((v = it.advanceValue()) != null)
4028 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4029 return r;
4030 }
4031
4032 /**
4033 * Returns the result of accumulating the given transformation
4034 * of all entries using the given reducer to combine values,
4035 * and the given basis as an identity value.
4036 *
4037 * @param transformer a function returning the transformation
4038 * for an element
4039 * @param basis the identity (initial default value) for the reduction
4040 * @param reducer a commutative associative combining function
4041 * @return the result of accumulating the given transformation
4042 * of all entries
4043 */
4044 public long reduceEntriesToLongSequentially
4045 (ToLongFunction<Map.Entry<K,V>> transformer,
4046 long basis,
4047 LongBinaryOperator reducer) {
4048 if (transformer == null || reducer == null)
4049 throw new NullPointerException();
4050 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4051 long r = basis; V v;
4052 while ((v = it.advanceValue()) != null)
4053 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4054 return r;
4055 }
4056
4057 /**
4058 * Returns the result of accumulating the given transformation
4059 * of all entries using the given reducer to combine values,
4060 * and the given basis as an identity value.
4061 *
4062 * @param transformer a function returning the transformation
4063 * for an element
4064 * @param basis the identity (initial default value) for the reduction
4065 * @param reducer a commutative associative combining function
4066 * @return the result of accumulating the given transformation
4067 * of all entries
4068 */
4069 public int reduceEntriesToIntSequentially
4070 (ToIntFunction<Map.Entry<K,V>> transformer,
4071 int basis,
4072 IntBinaryOperator reducer) {
4073 if (transformer == null || reducer == null)
4074 throw new NullPointerException();
4075 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4076 int r = basis; V v;
4077 while ((v = it.advanceValue()) != null)
4078 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4079 return r;
4080 }
4081
4082 // Parallel bulk operations
4083
4084 /**
4085 * Performs the given action for each (key, value).
4086 *
4087 * @param action the action
4088 */
4089 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4090 ForkJoinTasks.forEach
4091 (this, action).invoke();
4092 }
4093
4094 /**
4095 * Performs the given action for each non-null transformation
4096 * of each (key, value).
4097 *
4098 * @param transformer a function returning the transformation
4099 * for an element, or null if there is no transformation (in
4100 * which case the action is not applied)
4101 * @param action the action
4102 */
4103 public <U> void forEachInParallel
4104 (BiFunction<? super K, ? super V, ? extends U> transformer,
4105 Consumer<? super U> action) {
4106 ForkJoinTasks.forEach
4107 (this, transformer, action).invoke();
4108 }
4109
4110 /**
4111 * Returns a non-null result from applying the given search
4112 * function on each (key, value), or null if none. Upon
4113 * success, further element processing is suppressed and the
4114 * results of any other parallel invocations of the search
4115 * function are ignored.
4116 *
4117 * @param searchFunction a function returning a non-null
4118 * result on success, else null
4119 * @return a non-null result from applying the given search
4120 * function on each (key, value), or null if none
4121 */
4122 public <U> U searchInParallel
4123 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4124 return ForkJoinTasks.search
4125 (this, searchFunction).invoke();
4126 }
4127
4128 /**
4129 * Returns the result of accumulating the given transformation
4130 * of all (key, value) pairs using the given reducer to
4131 * combine values, or null if none.
4132 *
4133 * @param transformer a function returning the transformation
4134 * for an element, or null if there is no transformation (in
4135 * which case it is not combined)
4136 * @param reducer a commutative associative combining function
4137 * @return the result of accumulating the given transformation
4138 * of all (key, value) pairs
4139 */
4140 public <U> U reduceInParallel
4141 (BiFunction<? super K, ? super V, ? extends U> transformer,
4142 BiFunction<? super U, ? super U, ? extends U> reducer) {
4143 return ForkJoinTasks.reduce
4144 (this, transformer, reducer).invoke();
4145 }
4146
4147 /**
4148 * Returns the result of accumulating the given transformation
4149 * of all (key, value) pairs using the given reducer to
4150 * combine values, and the given basis as an identity value.
4151 *
4152 * @param transformer a function returning the transformation
4153 * for an element
4154 * @param basis the identity (initial default value) for the reduction
4155 * @param reducer a commutative associative combining function
4156 * @return the result of accumulating the given transformation
4157 * of all (key, value) pairs
4158 */
4159 public double reduceToDoubleInParallel
4160 (ToDoubleBiFunction<? super K, ? super V> transformer,
4161 double basis,
4162 DoubleBinaryOperator reducer) {
4163 return ForkJoinTasks.reduceToDouble
4164 (this, transformer, basis, reducer).invoke();
4165 }
4166
4167 /**
4168 * Returns the result of accumulating the given transformation
4169 * of all (key, value) pairs using the given reducer to
4170 * combine values, and the given basis as an identity value.
4171 *
4172 * @param transformer a function returning the transformation
4173 * for an element
4174 * @param basis the identity (initial default value) for the reduction
4175 * @param reducer a commutative associative combining function
4176 * @return the result of accumulating the given transformation
4177 * of all (key, value) pairs
4178 */
4179 public long reduceToLongInParallel
4180 (ToLongBiFunction<? super K, ? super V> transformer,
4181 long basis,
4182 LongBinaryOperator reducer) {
4183 return ForkJoinTasks.reduceToLong
4184 (this, transformer, basis, reducer).invoke();
4185 }
4186
4187 /**
4188 * Returns the result of accumulating the given transformation
4189 * of all (key, value) pairs using the given reducer to
4190 * combine values, and the given basis as an identity value.
4191 *
4192 * @param transformer a function returning the transformation
4193 * for an element
4194 * @param basis the identity (initial default value) for the reduction
4195 * @param reducer a commutative associative combining function
4196 * @return the result of accumulating the given transformation
4197 * of all (key, value) pairs
4198 */
4199 public int reduceToIntInParallel
4200 (ToIntBiFunction<? super K, ? super V> transformer,
4201 int basis,
4202 IntBinaryOperator reducer) {
4203 return ForkJoinTasks.reduceToInt
4204 (this, transformer, basis, reducer).invoke();
4205 }
4206
4207 /**
4208 * Performs the given action for each key.
4209 *
4210 * @param action the action
4211 */
4212 public void forEachKeyInParallel(Consumer<? super K> action) {
4213 ForkJoinTasks.forEachKey
4214 (this, action).invoke();
4215 }
4216
4217 /**
4218 * Performs the given action for each non-null transformation
4219 * of each key.
4220 *
4221 * @param transformer a function returning the transformation
4222 * for an element, or null if there is no transformation (in
4223 * which case the action is not applied)
4224 * @param action the action
4225 */
4226 public <U> void forEachKeyInParallel
4227 (Function<? super K, ? extends U> transformer,
4228 Consumer<? super U> action) {
4229 ForkJoinTasks.forEachKey
4230 (this, transformer, action).invoke();
4231 }
4232
4233 /**
4234 * Returns a non-null result from applying the given search
4235 * function on each key, or null if none. Upon success,
4236 * further element processing is suppressed and the results of
4237 * any other parallel invocations of the search function are
4238 * ignored.
4239 *
4240 * @param searchFunction a function returning a non-null
4241 * result on success, else null
4242 * @return a non-null result from applying the given search
4243 * function on each key, or null if none
4244 */
4245 public <U> U searchKeysInParallel
4246 (Function<? super K, ? extends U> searchFunction) {
4247 return ForkJoinTasks.searchKeys
4248 (this, searchFunction).invoke();
4249 }
4250
4251 /**
4252 * Returns the result of accumulating all keys using the given
4253 * reducer to combine values, or null if none.
4254 *
4255 * @param reducer a commutative associative combining function
4256 * @return the result of accumulating all keys using the given
4257 * reducer to combine values, or null if none
4258 */
4259 public K reduceKeysInParallel
4260 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4261 return ForkJoinTasks.reduceKeys
4262 (this, reducer).invoke();
4263 }
4264
4265 /**
4266 * Returns the result of accumulating the given transformation
4267 * of all keys using the given reducer to combine values, or
4268 * null if none.
4269 *
4270 * @param transformer a function returning the transformation
4271 * for an element, or null if there is no transformation (in
4272 * which case it is not combined)
4273 * @param reducer a commutative associative combining function
4274 * @return the result of accumulating the given transformation
4275 * of all keys
4276 */
4277 public <U> U reduceKeysInParallel
4278 (Function<? super K, ? extends U> transformer,
4279 BiFunction<? super U, ? super U, ? extends U> reducer) {
4280 return ForkJoinTasks.reduceKeys
4281 (this, transformer, reducer).invoke();
4282 }
4283
4284 /**
4285 * Returns the result of accumulating the given transformation
4286 * of all keys using the given reducer to combine values, and
4287 * the given basis as an identity value.
4288 *
4289 * @param transformer a function returning the transformation
4290 * for an element
4291 * @param basis the identity (initial default value) for the reduction
4292 * @param reducer a commutative associative combining function
4293 * @return the result of accumulating the given transformation
4294 * of all keys
4295 */
4296 public double reduceKeysToDoubleInParallel
4297 (ToDoubleFunction<? super K> transformer,
4298 double basis,
4299 DoubleBinaryOperator reducer) {
4300 return ForkJoinTasks.reduceKeysToDouble
4301 (this, transformer, basis, reducer).invoke();
4302 }
4303
4304 /**
4305 * Returns the result of accumulating the given transformation
4306 * of all keys using the given reducer to combine values, and
4307 * the given basis as an identity value.
4308 *
4309 * @param transformer a function returning the transformation
4310 * for an element
4311 * @param basis the identity (initial default value) for the reduction
4312 * @param reducer a commutative associative combining function
4313 * @return the result of accumulating the given transformation
4314 * of all keys
4315 */
4316 public long reduceKeysToLongInParallel
4317 (ToLongFunction<? super K> transformer,
4318 long basis,
4319 LongBinaryOperator reducer) {
4320 return ForkJoinTasks.reduceKeysToLong
4321 (this, transformer, basis, reducer).invoke();
4322 }
4323
4324 /**
4325 * Returns the result of accumulating the given transformation
4326 * of all keys using the given reducer to combine values, and
4327 * the given basis as an identity value.
4328 *
4329 * @param transformer a function returning the transformation
4330 * for an element
4331 * @param basis the identity (initial default value) for the reduction
4332 * @param reducer a commutative associative combining function
4333 * @return the result of accumulating the given transformation
4334 * of all keys
4335 */
4336 public int reduceKeysToIntInParallel
4337 (ToIntFunction<? super K> transformer,
4338 int basis,
4339 IntBinaryOperator reducer) {
4340 return ForkJoinTasks.reduceKeysToInt
4341 (this, transformer, basis, reducer).invoke();
4342 }
4343
4344 /**
4345 * Performs the given action for each value.
4346 *
4347 * @param action the action
4348 */
4349 public void forEachValueInParallel(Consumer<? super V> action) {
4350 ForkJoinTasks.forEachValue
4351 (this, action).invoke();
4352 }
4353
4354 /**
4355 * Performs the given action for each non-null transformation
4356 * of each value.
4357 *
4358 * @param transformer a function returning the transformation
4359 * for an element, or null if there is no transformation (in
4360 * which case the action is not applied)
4361 * @param action the action
4362 */
4363 public <U> void forEachValueInParallel
4364 (Function<? super V, ? extends U> transformer,
4365 Consumer<? super U> action) {
4366 ForkJoinTasks.forEachValue
4367 (this, transformer, action).invoke();
4368 }
4369
4370 /**
4371 * Returns a non-null result from applying the given search
4372 * function on each value, or null if none. Upon success,
4373 * further element processing is suppressed and the results of
4374 * any other parallel invocations of the search function are
4375 * ignored.
4376 *
4377 * @param searchFunction a function returning a non-null
4378 * result on success, else null
4379 * @return a non-null result from applying the given search
4380 * function on each value, or null if none
4381 */
4382 public <U> U searchValuesInParallel
4383 (Function<? super V, ? extends U> searchFunction) {
4384 return ForkJoinTasks.searchValues
4385 (this, searchFunction).invoke();
4386 }
4387
4388 /**
4389 * Returns the result of accumulating all values using the
4390 * given reducer to combine values, or null if none.
4391 *
4392 * @param reducer a commutative associative combining function
4393 * @return the result of accumulating all values
4394 */
4395 public V reduceValuesInParallel
4396 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4397 return ForkJoinTasks.reduceValues
4398 (this, reducer).invoke();
4399 }
4400
4401 /**
4402 * Returns the result of accumulating the given transformation
4403 * of all values using the given reducer to combine values, or
4404 * null if none.
4405 *
4406 * @param transformer a function returning the transformation
4407 * for an element, or null if there is no transformation (in
4408 * which case it is not combined)
4409 * @param reducer a commutative associative combining function
4410 * @return the result of accumulating the given transformation
4411 * of all values
4412 */
4413 public <U> U reduceValuesInParallel
4414 (Function<? super V, ? extends U> transformer,
4415 BiFunction<? super U, ? super U, ? extends U> reducer) {
4416 return ForkJoinTasks.reduceValues
4417 (this, transformer, reducer).invoke();
4418 }
4419
4420 /**
4421 * Returns the result of accumulating the given transformation
4422 * of all values using the given reducer to combine values,
4423 * and the given basis as an identity value.
4424 *
4425 * @param transformer a function returning the transformation
4426 * for an element
4427 * @param basis the identity (initial default value) for the reduction
4428 * @param reducer a commutative associative combining function
4429 * @return the result of accumulating the given transformation
4430 * of all values
4431 */
4432 public double reduceValuesToDoubleInParallel
4433 (ToDoubleFunction<? super V> transformer,
4434 double basis,
4435 DoubleBinaryOperator reducer) {
4436 return ForkJoinTasks.reduceValuesToDouble
4437 (this, transformer, basis, reducer).invoke();
4438 }
4439
4440 /**
4441 * Returns the result of accumulating the given transformation
4442 * of all values using the given reducer to combine values,
4443 * and the given basis as an identity value.
4444 *
4445 * @param transformer a function returning the transformation
4446 * for an element
4447 * @param basis the identity (initial default value) for the reduction
4448 * @param reducer a commutative associative combining function
4449 * @return the result of accumulating the given transformation
4450 * of all values
4451 */
4452 public long reduceValuesToLongInParallel
4453 (ToLongFunction<? super V> transformer,
4454 long basis,
4455 LongBinaryOperator reducer) {
4456 return ForkJoinTasks.reduceValuesToLong
4457 (this, transformer, basis, reducer).invoke();
4458 }
4459
4460 /**
4461 * Returns the result of accumulating the given transformation
4462 * of all values using the given reducer to combine values,
4463 * and the given basis as an identity value.
4464 *
4465 * @param transformer a function returning the transformation
4466 * for an element
4467 * @param basis the identity (initial default value) for the reduction
4468 * @param reducer a commutative associative combining function
4469 * @return the result of accumulating the given transformation
4470 * of all values
4471 */
4472 public int reduceValuesToIntInParallel
4473 (ToIntFunction<? super V> transformer,
4474 int basis,
4475 IntBinaryOperator reducer) {
4476 return ForkJoinTasks.reduceValuesToInt
4477 (this, transformer, basis, reducer).invoke();
4478 }
4479
4480 /**
4481 * Performs the given action for each entry.
4482 *
4483 * @param action the action
4484 */
4485 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4486 ForkJoinTasks.forEachEntry
4487 (this, action).invoke();
4488 }
4489
4490 /**
4491 * Performs the given action for each non-null transformation
4492 * of each entry.
4493 *
4494 * @param transformer a function returning the transformation
4495 * for an element, or null if there is no transformation (in
4496 * which case the action is not applied)
4497 * @param action the action
4498 */
4499 public <U> void forEachEntryInParallel
4500 (Function<Map.Entry<K,V>, ? extends U> transformer,
4501 Consumer<? super U> action) {
4502 ForkJoinTasks.forEachEntry
4503 (this, transformer, action).invoke();
4504 }
4505
4506 /**
4507 * Returns a non-null result from applying the given search
4508 * function on each entry, or null if none. Upon success,
4509 * further element processing is suppressed and the results of
4510 * any other parallel invocations of the search function are
4511 * ignored.
4512 *
4513 * @param searchFunction a function returning a non-null
4514 * result on success, else null
4515 * @return a non-null result from applying the given search
4516 * function on each entry, or null if none
4517 */
4518 public <U> U searchEntriesInParallel
4519 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4520 return ForkJoinTasks.searchEntries
4521 (this, searchFunction).invoke();
4522 }
4523
4524 /**
4525 * Returns the result of accumulating all entries using the
4526 * given reducer to combine values, or null if none.
4527 *
4528 * @param reducer a commutative associative combining function
4529 * @return the result of accumulating all entries
4530 */
4531 public Map.Entry<K,V> reduceEntriesInParallel
4532 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4533 return ForkJoinTasks.reduceEntries
4534 (this, reducer).invoke();
4535 }
4536
4537 /**
4538 * Returns the result of accumulating the given transformation
4539 * of all entries using the given reducer to combine values,
4540 * or null if none.
4541 *
4542 * @param transformer a function returning the transformation
4543 * for an element, or null if there is no transformation (in
4544 * which case it is not combined)
4545 * @param reducer a commutative associative combining function
4546 * @return the result of accumulating the given transformation
4547 * of all entries
4548 */
4549 public <U> U reduceEntriesInParallel
4550 (Function<Map.Entry<K,V>, ? extends U> transformer,
4551 BiFunction<? super U, ? super U, ? extends U> reducer) {
4552 return ForkJoinTasks.reduceEntries
4553 (this, transformer, reducer).invoke();
4554 }
4555
4556 /**
4557 * Returns the result of accumulating the given transformation
4558 * of all entries using the given reducer to combine values,
4559 * and the given basis as an identity value.
4560 *
4561 * @param transformer a function returning the transformation
4562 * for an element
4563 * @param basis the identity (initial default value) for the reduction
4564 * @param reducer a commutative associative combining function
4565 * @return the result of accumulating the given transformation
4566 * of all entries
4567 */
4568 public double reduceEntriesToDoubleInParallel
4569 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4570 double basis,
4571 DoubleBinaryOperator reducer) {
4572 return ForkJoinTasks.reduceEntriesToDouble
4573 (this, transformer, basis, reducer).invoke();
4574 }
4575
4576 /**
4577 * Returns the result of accumulating the given transformation
4578 * of all entries using the given reducer to combine values,
4579 * and the given basis as an identity value.
4580 *
4581 * @param transformer a function returning the transformation
4582 * for an element
4583 * @param basis the identity (initial default value) for the reduction
4584 * @param reducer a commutative associative combining function
4585 * @return the result of accumulating the given transformation
4586 * of all entries
4587 */
4588 public long reduceEntriesToLongInParallel
4589 (ToLongFunction<Map.Entry<K,V>> transformer,
4590 long basis,
4591 LongBinaryOperator reducer) {
4592 return ForkJoinTasks.reduceEntriesToLong
4593 (this, transformer, basis, reducer).invoke();
4594 }
4595
4596 /**
4597 * Returns the result of accumulating the given transformation
4598 * of all entries using the given reducer to combine values,
4599 * and the given basis as an identity value.
4600 *
4601 * @param transformer a function returning the transformation
4602 * for an element
4603 * @param basis the identity (initial default value) for the reduction
4604 * @param reducer a commutative associative combining function
4605 * @return the result of accumulating the given transformation
4606 * of all entries
4607 */
4608 public int reduceEntriesToIntInParallel
4609 (ToIntFunction<Map.Entry<K,V>> transformer,
4610 int basis,
4611 IntBinaryOperator reducer) {
4612 return ForkJoinTasks.reduceEntriesToInt
4613 (this, transformer, basis, reducer).invoke();
4614 }
4615
4616
4617 /* ----------------Views -------------- */
4618
4619 /**
4620 * Base class for views.
4621 */
4622 abstract static class CHMCollectionView<K,V,E>
4623 implements Collection<E>, java.io.Serializable {
4624 private static final long serialVersionUID = 7249069246763182397L;
4625 final ConcurrentHashMap<K,V> map;
4626 CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4627
4628 /**
4629 * Returns the map backing this view.
4630 *
4631 * @return the map backing this view
4632 */
4633 public ConcurrentHashMap<K,V> getMap() { return map; }
4634
4635 /**
4636 * Removes all of the elements from this view, by removing all
4637 * the mappings from the map backing this view.
4638 */
4639 public final void clear() { map.clear(); }
4640 public final int size() { return map.size(); }
4641 public final boolean isEmpty() { return map.isEmpty(); }
4642
4643 // implementations below rely on concrete classes supplying these
4644 // abstract methods
4645 /**
4646 * Returns a "weakly consistent" iterator that will never
4647 * throw {@link ConcurrentModificationException}, and
4648 * guarantees to traverse elements as they existed upon
4649 * construction of the iterator, and may (but is not
4650 * guaranteed to) reflect any modifications subsequent to
4651 * construction.
4652 */
4653 public abstract Iterator<E> iterator();
4654 public abstract boolean contains(Object o);
4655 public abstract boolean remove(Object o);
4656
4657 private static final String oomeMsg = "Required array size too large";
4658
4659 public final Object[] toArray() {
4660 long sz = map.mappingCount();
4661 if (sz > MAX_ARRAY_SIZE)
4662 throw new OutOfMemoryError(oomeMsg);
4663 int n = (int)sz;
4664 Object[] r = new Object[n];
4665 int i = 0;
4666 for (E e : this) {
4667 if (i == n) {
4668 if (n >= MAX_ARRAY_SIZE)
4669 throw new OutOfMemoryError(oomeMsg);
4670 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4671 n = MAX_ARRAY_SIZE;
4672 else
4673 n += (n >>> 1) + 1;
4674 r = Arrays.copyOf(r, n);
4675 }
4676 r[i++] = e;
4677 }
4678 return (i == n) ? r : Arrays.copyOf(r, i);
4679 }
4680
4681 @SuppressWarnings("unchecked")
4682 public final <T> T[] toArray(T[] a) {
4683 long sz = map.mappingCount();
4684 if (sz > MAX_ARRAY_SIZE)
4685 throw new OutOfMemoryError(oomeMsg);
4686 int m = (int)sz;
4687 T[] r = (a.length >= m) ? a :
4688 (T[])java.lang.reflect.Array
4689 .newInstance(a.getClass().getComponentType(), m);
4690 int n = r.length;
4691 int i = 0;
4692 for (E e : this) {
4693 if (i == n) {
4694 if (n >= MAX_ARRAY_SIZE)
4695 throw new OutOfMemoryError(oomeMsg);
4696 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4697 n = MAX_ARRAY_SIZE;
4698 else
4699 n += (n >>> 1) + 1;
4700 r = Arrays.copyOf(r, n);
4701 }
4702 r[i++] = (T)e;
4703 }
4704 if (a == r && i < n) {
4705 r[i] = null; // null-terminate
4706 return r;
4707 }
4708 return (i == n) ? r : Arrays.copyOf(r, i);
4709 }
4710
4711 /**
4712 * Returns a string representation of this collection.
4713 * The string representation consists of the string representations
4714 * of the collection's elements in the order they are returned by
4715 * its iterator, enclosed in square brackets ({@code "[]"}).
4716 * Adjacent elements are separated by the characters {@code ", "}
4717 * (comma and space). Elements are converted to strings as by
4718 * {@link String#valueOf(Object)}.
4719 *
4720 * @return a string representation of this collection
4721 */
4722 public final String toString() {
4723 StringBuilder sb = new StringBuilder();
4724 sb.append('[');
4725 Iterator<E> it = iterator();
4726 if (it.hasNext()) {
4727 for (;;) {
4728 Object e = it.next();
4729 sb.append(e == this ? "(this Collection)" : e);
4730 if (!it.hasNext())
4731 break;
4732 sb.append(',').append(' ');
4733 }
4734 }
4735 return sb.append(']').toString();
4736 }
4737
4738 public final boolean containsAll(Collection<?> c) {
4739 if (c != this) {
4740 for (Object e : c) {
4741 if (e == null || !contains(e))
4742 return false;
4743 }
4744 }
4745 return true;
4746 }
4747
4748 public final boolean removeAll(Collection<?> c) {
4749 boolean modified = false;
4750 for (Iterator<E> it = iterator(); it.hasNext();) {
4751 if (c.contains(it.next())) {
4752 it.remove();
4753 modified = true;
4754 }
4755 }
4756 return modified;
4757 }
4758
4759 public final boolean retainAll(Collection<?> c) {
4760 boolean modified = false;
4761 for (Iterator<E> it = iterator(); it.hasNext();) {
4762 if (!c.contains(it.next())) {
4763 it.remove();
4764 modified = true;
4765 }
4766 }
4767 return modified;
4768 }
4769
4770 }
4771
4772 abstract static class CHMSetView<K,V,E>
4773 extends CHMCollectionView<K,V,E>
4774 implements Set<E>, java.io.Serializable {
4775 private static final long serialVersionUID = 7249069246763182397L;
4776 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4777
4778 // Implement Set API
4779
4780 /**
4781 * Implements {@link Set#hashCode()}.
4782 * @return the hash code value for this set
4783 */
4784 public final int hashCode() {
4785 int h = 0;
4786 for (E e : this)
4787 h += e.hashCode();
4788 return h;
4789 }
4790
4791 /**
4792 * Implements {@link Set#equals(Object)}.
4793 * @param o object to be compared for equality with this set
4794 * @return {@code true} if the specified object is equal to this set
4795 */
4796 public final boolean equals(Object o) {
4797 Set<?> c;
4798 return ((o instanceof Set) &&
4799 ((c = (Set<?>)o) == this ||
4800 (containsAll(c) && c.containsAll(this))));
4801 }
4802 }
4803
4804 /**
4805 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4806 * which additions may optionally be enabled by mapping to a
4807 * common value. This class cannot be directly instantiated.
4808 * See {@link #keySet() keySet()},
4809 * {@link #keySet(Object) keySet(V)},
4810 * {@link #newKeySet() newKeySet()},
4811 * {@link #newKeySet(int) newKeySet(int)}.
4812 */
4813 public static class KeySetView<K,V>
4814 extends CHMSetView<K,V,K>
4815 implements Set<K>, java.io.Serializable {
4816 private static final long serialVersionUID = 7249069246763182397L;
4817 private final V value;
4818 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4819 super(map);
4820 this.value = value;
4821 }
4822
4823 /**
4824 * Returns the default mapped value for additions,
4825 * or {@code null} if additions are not supported.
4826 *
4827 * @return the default mapped value for additions, or {@code null}
4828 * if not supported
4829 */
4830 public V getMappedValue() { return value; }
4831
4832 /**
4833 * {@inheritDoc}
4834 * @throws NullPointerException if the specified key is null
4835 */
4836 public boolean contains(Object o) { return map.containsKey(o); }
4837
4838 /**
4839 * Removes the key from this map view, by removing the key (and its
4840 * corresponding value) from the backing map. This method does
4841 * nothing if the key is not in the map.
4842 *
4843 * @param o the key to be removed from the backing map
4844 * @return {@code true} if the backing map contained the specified key
4845 * @throws NullPointerException if the specified key is null
4846 */
4847 public boolean remove(Object o) { return map.remove(o) != null; }
4848
4849 /**
4850 * @return an iterator over the keys of the backing map
4851 */
4852 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4853
4854 /**
4855 * Adds the specified key to this set view by mapping the key to
4856 * the default mapped value in the backing map, if defined.
4857 *
4858 * @param e key to be added
4859 * @return {@code true} if this set changed as a result of the call
4860 * @throws NullPointerException if the specified key is null
4861 * @throws UnsupportedOperationException if no default mapped value
4862 * for additions was provided
4863 */
4864 public boolean add(K e) {
4865 V v;
4866 if ((v = value) == null)
4867 throw new UnsupportedOperationException();
4868 return map.internalPut(e, v, true) == null;
4869 }
4870
4871 /**
4872 * Adds all of the elements in the specified collection to this set,
4873 * as if by calling {@link #add} on each one.
4874 *
4875 * @param c the elements to be inserted into this set
4876 * @return {@code true} if this set changed as a result of the call
4877 * @throws NullPointerException if the collection or any of its
4878 * elements are {@code null}
4879 * @throws UnsupportedOperationException if no default mapped value
4880 * for additions was provided
4881 */
4882 public boolean addAll(Collection<? extends K> c) {
4883 boolean added = false;
4884 V v;
4885 if ((v = value) == null)
4886 throw new UnsupportedOperationException();
4887 for (K e : c) {
4888 if (map.internalPut(e, v, true) == null)
4889 added = true;
4890 }
4891 return added;
4892 }
4893
4894 public Spliterator<K> spliterator() {
4895 return new KeyIterator<>(map, null);
4896 }
4897
4898 }
4899
4900 /**
4901 * A view of a ConcurrentHashMap as a {@link Collection} of
4902 * values, in which additions are disabled. This class cannot be
4903 * directly instantiated. See {@link #values()}.
4904 *
4905 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4906 * that will never throw {@link ConcurrentModificationException},
4907 * and guarantees to traverse elements as they existed upon
4908 * construction of the iterator, and may (but is not guaranteed to)
4909 * reflect any modifications subsequent to construction.
4910 */
4911 public static final class ValuesView<K,V>
4912 extends CHMCollectionView<K,V,V>
4913 implements Collection<V>, java.io.Serializable {
4914 private static final long serialVersionUID = 2249069246763182397L;
4915 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4916 public final boolean contains(Object o) {
4917 return map.containsValue(o);
4918 }
4919 public final boolean remove(Object o) {
4920 if (o != null) {
4921 for (Iterator<V> it = iterator(); it.hasNext();) {
4922 if (o.equals(it.next())) {
4923 it.remove();
4924 return true;
4925 }
4926 }
4927 }
4928 return false;
4929 }
4930
4931 /**
4932 * @return an iterator over the values of the backing map
4933 */
4934 public final Iterator<V> iterator() {
4935 return new ValueIterator<K,V>(map);
4936 }
4937
4938 /** Always throws {@link UnsupportedOperationException}. */
4939 public final boolean add(V e) {
4940 throw new UnsupportedOperationException();
4941 }
4942 /** Always throws {@link UnsupportedOperationException}. */
4943 public final boolean addAll(Collection<? extends V> c) {
4944 throw new UnsupportedOperationException();
4945 }
4946
4947 public Spliterator<V> spliterator() {
4948 return new ValueIterator<K,V>(map, null);
4949 }
4950
4951 }
4952
4953 /**
4954 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4955 * entries. This class cannot be directly instantiated. See
4956 * {@link #entrySet()}.
4957 */
4958 public static final class EntrySetView<K,V>
4959 extends CHMSetView<K,V,Map.Entry<K,V>>
4960 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4961 private static final long serialVersionUID = 2249069246763182397L;
4962 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4963
4964 public final boolean contains(Object o) {
4965 Object k, v, r; Map.Entry<?,?> e;
4966 return ((o instanceof Map.Entry) &&
4967 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4968 (r = map.get(k)) != null &&
4969 (v = e.getValue()) != null &&
4970 (v == r || v.equals(r)));
4971 }
4972 public final boolean remove(Object o) {
4973 Object k, v; Map.Entry<?,?> e;
4974 return ((o instanceof Map.Entry) &&
4975 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4976 (v = e.getValue()) != null &&
4977 map.remove(k, v));
4978 }
4979
4980 /**
4981 * @return an iterator over the entries of the backing map
4982 */
4983 public final Iterator<Map.Entry<K,V>> iterator() {
4984 return new EntryIterator<K,V>(map);
4985 }
4986
4987 /**
4988 * Adds the specified mapping to this view.
4989 *
4990 * @param e mapping to be added
4991 * @return {@code true} if this set changed as a result of the call
4992 * @throws NullPointerException if the entry, its key, or its
4993 * value is null
4994 */
4995 public final boolean add(Entry<K,V> e) {
4996 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4997 }
4998
4999 /**
5000 * Adds all of the mappings in the specified collection to this
5001 * set, as if by calling {@link #add(Map.Entry)} on each one.
5002 * @param c the mappings to be inserted into this set
5003 * @return {@code true} if this set changed as a result of the call
5004 * @throws NullPointerException if the collection or any of its
5005 * entries, keys, or values are null
5006 */
5007 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
5008 boolean added = false;
5009 for (Entry<K,V> e : c) {
5010 if (add(e))
5011 added = true;
5012 }
5013 return added;
5014 }
5015
5016 public Spliterator<Map.Entry<K,V>> spliterator() {
5017 return new EntryIterator<K,V>(map, null);
5018 }
5019
5020 }
5021
5022 // ---------------------------------------------------------------------
5023
5024 /**
5025 * Predefined tasks for performing bulk parallel operations on
5026 * ConcurrentHashMaps. These tasks follow the forms and rules used
5027 * for bulk operations. Each method has the same name, but returns
5028 * a task rather than invoking it. These methods may be useful in
5029 * custom applications such as submitting a task without waiting
5030 * for completion, using a custom pool, or combining with other
5031 * tasks.
5032 */
5033 public static class ForkJoinTasks {
5034 private ForkJoinTasks() {}
5035
5036 /**
5037 * Returns a task that when invoked, performs the given
5038 * action for each (key, value)
5039 *
5040 * @param map the map
5041 * @param action the action
5042 * @return the task
5043 */
5044 public static <K,V> ForkJoinTask<Void> forEach
5045 (ConcurrentHashMap<K,V> map,
5046 BiConsumer<? super K, ? super V> action) {
5047 if (action == null) throw new NullPointerException();
5048 return new ForEachMappingTask<K,V>(map, null, -1, action);
5049 }
5050
5051 /**
5052 * Returns a task that when invoked, performs the given
5053 * action for each non-null transformation of each (key, value)
5054 *
5055 * @param map the map
5056 * @param transformer a function returning the transformation
5057 * for an element, or null if there is no transformation (in
5058 * which case the action is not applied)
5059 * @param action the action
5060 * @return the task
5061 */
5062 public static <K,V,U> ForkJoinTask<Void> forEach
5063 (ConcurrentHashMap<K,V> map,
5064 BiFunction<? super K, ? super V, ? extends U> transformer,
5065 Consumer<? super U> action) {
5066 if (transformer == null || action == null)
5067 throw new NullPointerException();
5068 return new ForEachTransformedMappingTask<K,V,U>
5069 (map, null, -1, transformer, action);
5070 }
5071
5072 /**
5073 * Returns a task that when invoked, returns a non-null result
5074 * from applying the given search function on each (key,
5075 * value), or null if none. Upon success, further element
5076 * processing is suppressed and the results of any other
5077 * parallel invocations of the search function are ignored.
5078 *
5079 * @param map the map
5080 * @param searchFunction a function returning a non-null
5081 * result on success, else null
5082 * @return the task
5083 */
5084 public static <K,V,U> ForkJoinTask<U> search
5085 (ConcurrentHashMap<K,V> map,
5086 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5087 if (searchFunction == null) throw new NullPointerException();
5088 return new SearchMappingsTask<K,V,U>
5089 (map, null, -1, searchFunction,
5090 new AtomicReference<U>());
5091 }
5092
5093 /**
5094 * Returns a task that when invoked, returns the result of
5095 * accumulating the given transformation of all (key, value) pairs
5096 * using the given reducer to combine values, or null if none.
5097 *
5098 * @param map the map
5099 * @param transformer a function returning the transformation
5100 * for an element, or null if there is no transformation (in
5101 * which case it is not combined)
5102 * @param reducer a commutative associative combining function
5103 * @return the task
5104 */
5105 public static <K,V,U> ForkJoinTask<U> reduce
5106 (ConcurrentHashMap<K,V> map,
5107 BiFunction<? super K, ? super V, ? extends U> transformer,
5108 BiFunction<? super U, ? super U, ? extends U> reducer) {
5109 if (transformer == null || reducer == null)
5110 throw new NullPointerException();
5111 return new MapReduceMappingsTask<K,V,U>
5112 (map, null, -1, null, transformer, reducer);
5113 }
5114
5115 /**
5116 * Returns a task that when invoked, returns the result of
5117 * accumulating the given transformation of all (key, value) pairs
5118 * using the given reducer to combine values, and the given
5119 * basis as an identity value.
5120 *
5121 * @param map the map
5122 * @param transformer a function returning the transformation
5123 * for an element
5124 * @param basis the identity (initial default value) for the reduction
5125 * @param reducer a commutative associative combining function
5126 * @return the task
5127 */
5128 public static <K,V> ForkJoinTask<Double> reduceToDouble
5129 (ConcurrentHashMap<K,V> map,
5130 ToDoubleBiFunction<? super K, ? super V> transformer,
5131 double basis,
5132 DoubleBinaryOperator reducer) {
5133 if (transformer == null || reducer == null)
5134 throw new NullPointerException();
5135 return new MapReduceMappingsToDoubleTask<K,V>
5136 (map, null, -1, null, transformer, basis, reducer);
5137 }
5138
5139 /**
5140 * Returns a task that when invoked, returns the result of
5141 * accumulating the given transformation of all (key, value) pairs
5142 * using the given reducer to combine values, and the given
5143 * basis as an identity value.
5144 *
5145 * @param map the map
5146 * @param transformer a function returning the transformation
5147 * for an element
5148 * @param basis the identity (initial default value) for the reduction
5149 * @param reducer a commutative associative combining function
5150 * @return the task
5151 */
5152 public static <K,V> ForkJoinTask<Long> reduceToLong
5153 (ConcurrentHashMap<K,V> map,
5154 ToLongBiFunction<? super K, ? super V> transformer,
5155 long basis,
5156 LongBinaryOperator reducer) {
5157 if (transformer == null || reducer == null)
5158 throw new NullPointerException();
5159 return new MapReduceMappingsToLongTask<K,V>
5160 (map, null, -1, null, transformer, basis, reducer);
5161 }
5162
5163 /**
5164 * Returns a task that when invoked, returns the result of
5165 * accumulating the given transformation of all (key, value) pairs
5166 * using the given reducer to combine values, and the given
5167 * basis as an identity value.
5168 *
5169 * @param map the map
5170 * @param transformer a function returning the transformation
5171 * for an element
5172 * @param basis the identity (initial default value) for the reduction
5173 * @param reducer a commutative associative combining function
5174 * @return the task
5175 */
5176 public static <K,V> ForkJoinTask<Integer> reduceToInt
5177 (ConcurrentHashMap<K,V> map,
5178 ToIntBiFunction<? super K, ? super V> transformer,
5179 int basis,
5180 IntBinaryOperator reducer) {
5181 if (transformer == null || reducer == null)
5182 throw new NullPointerException();
5183 return new MapReduceMappingsToIntTask<K,V>
5184 (map, null, -1, null, transformer, basis, reducer);
5185 }
5186
5187 /**
5188 * Returns a task that when invoked, performs the given action
5189 * for each key.
5190 *
5191 * @param map the map
5192 * @param action the action
5193 * @return the task
5194 */
5195 public static <K,V> ForkJoinTask<Void> forEachKey
5196 (ConcurrentHashMap<K,V> map,
5197 Consumer<? super K> action) {
5198 if (action == null) throw new NullPointerException();
5199 return new ForEachKeyTask<K,V>(map, null, -1, action);
5200 }
5201
5202 /**
5203 * Returns a task that when invoked, performs the given action
5204 * for each non-null transformation of each key.
5205 *
5206 * @param map the map
5207 * @param transformer a function returning the transformation
5208 * for an element, or null if there is no transformation (in
5209 * which case the action is not applied)
5210 * @param action the action
5211 * @return the task
5212 */
5213 public static <K,V,U> ForkJoinTask<Void> forEachKey
5214 (ConcurrentHashMap<K,V> map,
5215 Function<? super K, ? extends U> transformer,
5216 Consumer<? super U> action) {
5217 if (transformer == null || action == null)
5218 throw new NullPointerException();
5219 return new ForEachTransformedKeyTask<K,V,U>
5220 (map, null, -1, transformer, action);
5221 }
5222
5223 /**
5224 * Returns a task that when invoked, returns a non-null result
5225 * from applying the given search function on each key, or
5226 * null if none. Upon success, further element processing is
5227 * suppressed and the results of any other parallel
5228 * invocations of the search function are ignored.
5229 *
5230 * @param map the map
5231 * @param searchFunction a function returning a non-null
5232 * result on success, else null
5233 * @return the task
5234 */
5235 public static <K,V,U> ForkJoinTask<U> searchKeys
5236 (ConcurrentHashMap<K,V> map,
5237 Function<? super K, ? extends U> searchFunction) {
5238 if (searchFunction == null) throw new NullPointerException();
5239 return new SearchKeysTask<K,V,U>
5240 (map, null, -1, searchFunction,
5241 new AtomicReference<U>());
5242 }
5243
5244 /**
5245 * Returns a task that when invoked, returns the result of
5246 * accumulating all keys using the given reducer to combine
5247 * values, or null if none.
5248 *
5249 * @param map the map
5250 * @param reducer a commutative associative combining function
5251 * @return the task
5252 */
5253 public static <K,V> ForkJoinTask<K> reduceKeys
5254 (ConcurrentHashMap<K,V> map,
5255 BiFunction<? super K, ? super K, ? extends K> reducer) {
5256 if (reducer == null) throw new NullPointerException();
5257 return new ReduceKeysTask<K,V>
5258 (map, null, -1, null, reducer);
5259 }
5260
5261 /**
5262 * Returns a task that when invoked, returns the result of
5263 * accumulating the given transformation of all keys using the given
5264 * reducer to combine values, or null if none.
5265 *
5266 * @param map the map
5267 * @param transformer a function returning the transformation
5268 * for an element, or null if there is no transformation (in
5269 * which case it is not combined)
5270 * @param reducer a commutative associative combining function
5271 * @return the task
5272 */
5273 public static <K,V,U> ForkJoinTask<U> reduceKeys
5274 (ConcurrentHashMap<K,V> map,
5275 Function<? super K, ? extends U> transformer,
5276 BiFunction<? super U, ? super U, ? extends U> reducer) {
5277 if (transformer == null || reducer == null)
5278 throw new NullPointerException();
5279 return new MapReduceKeysTask<K,V,U>
5280 (map, null, -1, null, transformer, reducer);
5281 }
5282
5283 /**
5284 * Returns a task that when invoked, returns the result of
5285 * accumulating the given transformation of all keys using the given
5286 * reducer to combine values, and the given basis as an
5287 * identity value.
5288 *
5289 * @param map the map
5290 * @param transformer a function returning the transformation
5291 * for an element
5292 * @param basis the identity (initial default value) for the reduction
5293 * @param reducer a commutative associative combining function
5294 * @return the task
5295 */
5296 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5297 (ConcurrentHashMap<K,V> map,
5298 ToDoubleFunction<? super K> transformer,
5299 double basis,
5300 DoubleBinaryOperator reducer) {
5301 if (transformer == null || reducer == null)
5302 throw new NullPointerException();
5303 return new MapReduceKeysToDoubleTask<K,V>
5304 (map, null, -1, null, transformer, basis, reducer);
5305 }
5306
5307 /**
5308 * Returns a task that when invoked, returns the result of
5309 * accumulating the given transformation of all keys using the given
5310 * reducer to combine values, and the given basis as an
5311 * identity value.
5312 *
5313 * @param map the map
5314 * @param transformer a function returning the transformation
5315 * for an element
5316 * @param basis the identity (initial default value) for the reduction
5317 * @param reducer a commutative associative combining function
5318 * @return the task
5319 */
5320 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5321 (ConcurrentHashMap<K,V> map,
5322 ToLongFunction<? super K> transformer,
5323 long basis,
5324 LongBinaryOperator reducer) {
5325 if (transformer == null || reducer == null)
5326 throw new NullPointerException();
5327 return new MapReduceKeysToLongTask<K,V>
5328 (map, null, -1, null, transformer, basis, reducer);
5329 }
5330
5331 /**
5332 * Returns a task that when invoked, returns the result of
5333 * accumulating the given transformation of all keys using the given
5334 * reducer to combine values, and the given basis as an
5335 * identity value.
5336 *
5337 * @param map the map
5338 * @param transformer a function returning the transformation
5339 * for an element
5340 * @param basis the identity (initial default value) for the reduction
5341 * @param reducer a commutative associative combining function
5342 * @return the task
5343 */
5344 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5345 (ConcurrentHashMap<K,V> map,
5346 ToIntFunction<? super K> transformer,
5347 int basis,
5348 IntBinaryOperator reducer) {
5349 if (transformer == null || reducer == null)
5350 throw new NullPointerException();
5351 return new MapReduceKeysToIntTask<K,V>
5352 (map, null, -1, null, transformer, basis, reducer);
5353 }
5354
5355 /**
5356 * Returns a task that when invoked, performs the given action
5357 * for each value.
5358 *
5359 * @param map the map
5360 * @param action the action
5361 * @return the task
5362 */
5363 public static <K,V> ForkJoinTask<Void> forEachValue
5364 (ConcurrentHashMap<K,V> map,
5365 Consumer<? super V> action) {
5366 if (action == null) throw new NullPointerException();
5367 return new ForEachValueTask<K,V>(map, null, -1, action);
5368 }
5369
5370 /**
5371 * Returns a task that when invoked, performs the given action
5372 * for each non-null transformation of each value.
5373 *
5374 * @param map the map
5375 * @param transformer a function returning the transformation
5376 * for an element, or null if there is no transformation (in
5377 * which case the action is not applied)
5378 * @param action the action
5379 * @return the task
5380 */
5381 public static <K,V,U> ForkJoinTask<Void> forEachValue
5382 (ConcurrentHashMap<K,V> map,
5383 Function<? super V, ? extends U> transformer,
5384 Consumer<? super U> action) {
5385 if (transformer == null || action == null)
5386 throw new NullPointerException();
5387 return new ForEachTransformedValueTask<K,V,U>
5388 (map, null, -1, transformer, action);
5389 }
5390
5391 /**
5392 * Returns a task that when invoked, returns a non-null result
5393 * from applying the given search function on each value, or
5394 * null if none. Upon success, further element processing is
5395 * suppressed and the results of any other parallel
5396 * invocations of the search function are ignored.
5397 *
5398 * @param map the map
5399 * @param searchFunction a function returning a non-null
5400 * result on success, else null
5401 * @return the task
5402 */
5403 public static <K,V,U> ForkJoinTask<U> searchValues
5404 (ConcurrentHashMap<K,V> map,
5405 Function<? super V, ? extends U> searchFunction) {
5406 if (searchFunction == null) throw new NullPointerException();
5407 return new SearchValuesTask<K,V,U>
5408 (map, null, -1, searchFunction,
5409 new AtomicReference<U>());
5410 }
5411
5412 /**
5413 * Returns a task that when invoked, returns the result of
5414 * accumulating all values using the given reducer to combine
5415 * values, or null if none.
5416 *
5417 * @param map the map
5418 * @param reducer a commutative associative combining function
5419 * @return the task
5420 */
5421 public static <K,V> ForkJoinTask<V> reduceValues
5422 (ConcurrentHashMap<K,V> map,
5423 BiFunction<? super V, ? super V, ? extends V> reducer) {
5424 if (reducer == null) throw new NullPointerException();
5425 return new ReduceValuesTask<K,V>
5426 (map, null, -1, null, reducer);
5427 }
5428
5429 /**
5430 * Returns a task that when invoked, returns the result of
5431 * accumulating the given transformation of all values using the
5432 * given reducer to combine values, or null if none.
5433 *
5434 * @param map the map
5435 * @param transformer a function returning the transformation
5436 * for an element, or null if there is no transformation (in
5437 * which case it is not combined)
5438 * @param reducer a commutative associative combining function
5439 * @return the task
5440 */
5441 public static <K,V,U> ForkJoinTask<U> reduceValues
5442 (ConcurrentHashMap<K,V> map,
5443 Function<? super V, ? extends U> transformer,
5444 BiFunction<? super U, ? super U, ? extends U> reducer) {
5445 if (transformer == null || reducer == null)
5446 throw new NullPointerException();
5447 return new MapReduceValuesTask<K,V,U>
5448 (map, null, -1, null, transformer, reducer);
5449 }
5450
5451 /**
5452 * Returns a task that when invoked, returns the result of
5453 * accumulating the given transformation of all values using the
5454 * given reducer to combine values, and the given basis as an
5455 * identity value.
5456 *
5457 * @param map the map
5458 * @param transformer a function returning the transformation
5459 * for an element
5460 * @param basis the identity (initial default value) for the reduction
5461 * @param reducer a commutative associative combining function
5462 * @return the task
5463 */
5464 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5465 (ConcurrentHashMap<K,V> map,
5466 ToDoubleFunction<? super V> transformer,
5467 double basis,
5468 DoubleBinaryOperator reducer) {
5469 if (transformer == null || reducer == null)
5470 throw new NullPointerException();
5471 return new MapReduceValuesToDoubleTask<K,V>
5472 (map, null, -1, null, transformer, basis, reducer);
5473 }
5474
5475 /**
5476 * Returns a task that when invoked, returns the result of
5477 * accumulating the given transformation of all values using the
5478 * given reducer to combine values, and the given basis as an
5479 * identity value.
5480 *
5481 * @param map the map
5482 * @param transformer a function returning the transformation
5483 * for an element
5484 * @param basis the identity (initial default value) for the reduction
5485 * @param reducer a commutative associative combining function
5486 * @return the task
5487 */
5488 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5489 (ConcurrentHashMap<K,V> map,
5490 ToLongFunction<? super V> transformer,
5491 long basis,
5492 LongBinaryOperator reducer) {
5493 if (transformer == null || reducer == null)
5494 throw new NullPointerException();
5495 return new MapReduceValuesToLongTask<K,V>
5496 (map, null, -1, null, transformer, basis, reducer);
5497 }
5498
5499 /**
5500 * Returns a task that when invoked, returns the result of
5501 * accumulating the given transformation of all values using the
5502 * given reducer to combine values, and the given basis as an
5503 * identity value.
5504 *
5505 * @param map the map
5506 * @param transformer a function returning the transformation
5507 * for an element
5508 * @param basis the identity (initial default value) for the reduction
5509 * @param reducer a commutative associative combining function
5510 * @return the task
5511 */
5512 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5513 (ConcurrentHashMap<K,V> map,
5514 ToIntFunction<? super V> transformer,
5515 int basis,
5516 IntBinaryOperator reducer) {
5517 if (transformer == null || reducer == null)
5518 throw new NullPointerException();
5519 return new MapReduceValuesToIntTask<K,V>
5520 (map, null, -1, null, transformer, basis, reducer);
5521 }
5522
5523 /**
5524 * Returns a task that when invoked, perform the given action
5525 * for each entry.
5526 *
5527 * @param map the map
5528 * @param action the action
5529 * @return the task
5530 */
5531 public static <K,V> ForkJoinTask<Void> forEachEntry
5532 (ConcurrentHashMap<K,V> map,
5533 Consumer<? super Map.Entry<K,V>> action) {
5534 if (action == null) throw new NullPointerException();
5535 return new ForEachEntryTask<K,V>(map, null, -1, action);
5536 }
5537
5538 /**
5539 * Returns a task that when invoked, perform the given action
5540 * for each non-null transformation of each entry.
5541 *
5542 * @param map the map
5543 * @param transformer a function returning the transformation
5544 * for an element, or null if there is no transformation (in
5545 * which case the action is not applied)
5546 * @param action the action
5547 * @return the task
5548 */
5549 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5550 (ConcurrentHashMap<K,V> map,
5551 Function<Map.Entry<K,V>, ? extends U> transformer,
5552 Consumer<? super U> action) {
5553 if (transformer == null || action == null)
5554 throw new NullPointerException();
5555 return new ForEachTransformedEntryTask<K,V,U>
5556 (map, null, -1, transformer, action);
5557 }
5558
5559 /**
5560 * Returns a task that when invoked, returns a non-null result
5561 * from applying the given search function on each entry, or
5562 * null if none. Upon success, further element processing is
5563 * suppressed and the results of any other parallel
5564 * invocations of the search function are ignored.
5565 *
5566 * @param map the map
5567 * @param searchFunction a function returning a non-null
5568 * result on success, else null
5569 * @return the task
5570 */
5571 public static <K,V,U> ForkJoinTask<U> searchEntries
5572 (ConcurrentHashMap<K,V> map,
5573 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5574 if (searchFunction == null) throw new NullPointerException();
5575 return new SearchEntriesTask<K,V,U>
5576 (map, null, -1, searchFunction,
5577 new AtomicReference<U>());
5578 }
5579
5580 /**
5581 * Returns a task that when invoked, returns the result of
5582 * accumulating all entries using the given reducer to combine
5583 * values, or null if none.
5584 *
5585 * @param map the map
5586 * @param reducer a commutative associative combining function
5587 * @return the task
5588 */
5589 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5590 (ConcurrentHashMap<K,V> map,
5591 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5592 if (reducer == null) throw new NullPointerException();
5593 return new ReduceEntriesTask<K,V>
5594 (map, null, -1, null, reducer);
5595 }
5596
5597 /**
5598 * Returns a task that when invoked, returns the result of
5599 * accumulating the given transformation of all entries using the
5600 * given reducer to combine values, or null if none.
5601 *
5602 * @param map the map
5603 * @param transformer a function returning the transformation
5604 * for an element, or null if there is no transformation (in
5605 * which case it is not combined)
5606 * @param reducer a commutative associative combining function
5607 * @return the task
5608 */
5609 public static <K,V,U> ForkJoinTask<U> reduceEntries
5610 (ConcurrentHashMap<K,V> map,
5611 Function<Map.Entry<K,V>, ? extends U> transformer,
5612 BiFunction<? super U, ? super U, ? extends U> reducer) {
5613 if (transformer == null || reducer == null)
5614 throw new NullPointerException();
5615 return new MapReduceEntriesTask<K,V,U>
5616 (map, null, -1, null, transformer, reducer);
5617 }
5618
5619 /**
5620 * Returns a task that when invoked, returns the result of
5621 * accumulating the given transformation of all entries using the
5622 * given reducer to combine values, and the given basis as an
5623 * identity value.
5624 *
5625 * @param map the map
5626 * @param transformer a function returning the transformation
5627 * for an element
5628 * @param basis the identity (initial default value) for the reduction
5629 * @param reducer a commutative associative combining function
5630 * @return the task
5631 */
5632 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5633 (ConcurrentHashMap<K,V> map,
5634 ToDoubleFunction<Map.Entry<K,V>> transformer,
5635 double basis,
5636 DoubleBinaryOperator reducer) {
5637 if (transformer == null || reducer == null)
5638 throw new NullPointerException();
5639 return new MapReduceEntriesToDoubleTask<K,V>
5640 (map, null, -1, null, transformer, basis, reducer);
5641 }
5642
5643 /**
5644 * Returns a task that when invoked, returns the result of
5645 * accumulating the given transformation of all entries using the
5646 * given reducer to combine values, and the given basis as an
5647 * identity value.
5648 *
5649 * @param map the map
5650 * @param transformer a function returning the transformation
5651 * for an element
5652 * @param basis the identity (initial default value) for the reduction
5653 * @param reducer a commutative associative combining function
5654 * @return the task
5655 */
5656 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5657 (ConcurrentHashMap<K,V> map,
5658 ToLongFunction<Map.Entry<K,V>> transformer,
5659 long basis,
5660 LongBinaryOperator reducer) {
5661 if (transformer == null || reducer == null)
5662 throw new NullPointerException();
5663 return new MapReduceEntriesToLongTask<K,V>
5664 (map, null, -1, null, transformer, basis, reducer);
5665 }
5666
5667 /**
5668 * Returns a task that when invoked, returns the result of
5669 * accumulating the given transformation of all entries using the
5670 * given reducer to combine values, and the given basis as an
5671 * identity value.
5672 *
5673 * @param map the map
5674 * @param transformer a function returning the transformation
5675 * for an element
5676 * @param basis the identity (initial default value) for the reduction
5677 * @param reducer a commutative associative combining function
5678 * @return the task
5679 */
5680 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5681 (ConcurrentHashMap<K,V> map,
5682 ToIntFunction<Map.Entry<K,V>> transformer,
5683 int basis,
5684 IntBinaryOperator reducer) {
5685 if (transformer == null || reducer == null)
5686 throw new NullPointerException();
5687 return new MapReduceEntriesToIntTask<K,V>
5688 (map, null, -1, null, transformer, basis, reducer);
5689 }
5690 }
5691
5692 // -------------------------------------------------------
5693
5694 /*
5695 * Task classes. Coded in a regular but ugly format/style to
5696 * simplify checks that each variant differs in the right way from
5697 * others. The null screenings exist because compilers cannot tell
5698 * that we've already null-checked task arguments, so we force
5699 * simplest hoisted bypass to help avoid convoluted traps.
5700 */
5701
5702 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5703 extends Traverser<K,V,Void> {
5704 final Consumer<? super K> action;
5705 ForEachKeyTask
5706 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5707 Consumer<? super K> action) {
5708 super(m, p, b);
5709 this.action = action;
5710 }
5711 public final void compute() {
5712 final Consumer<? super K> action;
5713 if ((action = this.action) != null) {
5714 for (int b; (b = preSplit()) > 0;)
5715 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5716 forEachKey(action);
5717 propagateCompletion();
5718 }
5719 }
5720 }
5721
5722 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5723 extends Traverser<K,V,Void> {
5724 final Consumer<? super V> action;
5725 ForEachValueTask
5726 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5727 Consumer<? super V> action) {
5728 super(m, p, b);
5729 this.action = action;
5730 }
5731 public final void compute() {
5732 final Consumer<? super V> action;
5733 if ((action = this.action) != null) {
5734 for (int b; (b = preSplit()) > 0;)
5735 new ForEachValueTask<K,V>(map, this, b, action).fork();
5736 forEachValue(action);
5737 propagateCompletion();
5738 }
5739 }
5740 }
5741
5742 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5743 extends Traverser<K,V,Void> {
5744 final Consumer<? super Entry<K,V>> action;
5745 ForEachEntryTask
5746 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5747 Consumer<? super Entry<K,V>> action) {
5748 super(m, p, b);
5749 this.action = action;
5750 }
5751 public final void compute() {
5752 final Consumer<? super Entry<K,V>> action;
5753 if ((action = this.action) != null) {
5754 for (int b; (b = preSplit()) > 0;)
5755 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5756 V v;
5757 while ((v = advanceValue()) != null)
5758 action.accept(entryFor(nextKey, v));
5759 propagateCompletion();
5760 }
5761 }
5762 }
5763
5764 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5765 extends Traverser<K,V,Void> {
5766 final BiConsumer<? super K, ? super V> action;
5767 ForEachMappingTask
5768 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5769 BiConsumer<? super K,? super V> action) {
5770 super(m, p, b);
5771 this.action = action;
5772 }
5773 public final void compute() {
5774 final BiConsumer<? super K, ? super V> action;
5775 if ((action = this.action) != null) {
5776 for (int b; (b = preSplit()) > 0;)
5777 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5778 V v;
5779 while ((v = advanceValue()) != null)
5780 action.accept(nextKey, v);
5781 propagateCompletion();
5782 }
5783 }
5784 }
5785
5786 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5787 extends Traverser<K,V,Void> {
5788 final Function<? super K, ? extends U> transformer;
5789 final Consumer<? super U> action;
5790 ForEachTransformedKeyTask
5791 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5792 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5793 super(m, p, b);
5794 this.transformer = transformer; this.action = action;
5795 }
5796 public final void compute() {
5797 final Function<? super K, ? extends U> transformer;
5798 final Consumer<? super U> action;
5799 if ((transformer = this.transformer) != null &&
5800 (action = this.action) != null) {
5801 for (int b; (b = preSplit()) > 0;)
5802 new ForEachTransformedKeyTask<K,V,U>
5803 (map, this, b, transformer, action).fork();
5804 K k; U u;
5805 while ((k = advanceKey()) != null) {
5806 if ((u = transformer.apply(k)) != null)
5807 action.accept(u);
5808 }
5809 propagateCompletion();
5810 }
5811 }
5812 }
5813
5814 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5815 extends Traverser<K,V,Void> {
5816 final Function<? super V, ? extends U> transformer;
5817 final Consumer<? super U> action;
5818 ForEachTransformedValueTask
5819 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5820 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5821 super(m, p, b);
5822 this.transformer = transformer; this.action = action;
5823 }
5824 public final void compute() {
5825 final Function<? super V, ? extends U> transformer;
5826 final Consumer<? super U> action;
5827 if ((transformer = this.transformer) != null &&
5828 (action = this.action) != null) {
5829 for (int b; (b = preSplit()) > 0;)
5830 new ForEachTransformedValueTask<K,V,U>
5831 (map, this, b, transformer, action).fork();
5832 V v; U u;
5833 while ((v = advanceValue()) != null) {
5834 if ((u = transformer.apply(v)) != null)
5835 action.accept(u);
5836 }
5837 propagateCompletion();
5838 }
5839 }
5840 }
5841
5842 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5843 extends Traverser<K,V,Void> {
5844 final Function<Map.Entry<K,V>, ? extends U> transformer;
5845 final Consumer<? super U> action;
5846 ForEachTransformedEntryTask
5847 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5848 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5849 super(m, p, b);
5850 this.transformer = transformer; this.action = action;
5851 }
5852 public final void compute() {
5853 final Function<Map.Entry<K,V>, ? extends U> transformer;
5854 final Consumer<? super U> action;
5855 if ((transformer = this.transformer) != null &&
5856 (action = this.action) != null) {
5857 for (int b; (b = preSplit()) > 0;)
5858 new ForEachTransformedEntryTask<K,V,U>
5859 (map, this, b, transformer, action).fork();
5860 V v; U u;
5861 while ((v = advanceValue()) != null) {
5862 if ((u = transformer.apply(entryFor(nextKey,
5863 v))) != null)
5864 action.accept(u);
5865 }
5866 propagateCompletion();
5867 }
5868 }
5869 }
5870
5871 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5872 extends Traverser<K,V,Void> {
5873 final BiFunction<? super K, ? super V, ? extends U> transformer;
5874 final Consumer<? super U> action;
5875 ForEachTransformedMappingTask
5876 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5877 BiFunction<? super K, ? super V, ? extends U> transformer,
5878 Consumer<? super U> action) {
5879 super(m, p, b);
5880 this.transformer = transformer; this.action = action;
5881 }
5882 public final void compute() {
5883 final BiFunction<? super K, ? super V, ? extends U> transformer;
5884 final Consumer<? super U> action;
5885 if ((transformer = this.transformer) != null &&
5886 (action = this.action) != null) {
5887 for (int b; (b = preSplit()) > 0;)
5888 new ForEachTransformedMappingTask<K,V,U>
5889 (map, this, b, transformer, action).fork();
5890 V v; U u;
5891 while ((v = advanceValue()) != null) {
5892 if ((u = transformer.apply(nextKey, v)) != null)
5893 action.accept(u);
5894 }
5895 propagateCompletion();
5896 }
5897 }
5898 }
5899
5900 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5901 extends Traverser<K,V,U> {
5902 final Function<? super K, ? extends U> searchFunction;
5903 final AtomicReference<U> result;
5904 SearchKeysTask
5905 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5906 Function<? super K, ? extends U> searchFunction,
5907 AtomicReference<U> result) {
5908 super(m, p, b);
5909 this.searchFunction = searchFunction; this.result = result;
5910 }
5911 public final U getRawResult() { return result.get(); }
5912 public final void compute() {
5913 final Function<? super K, ? extends U> searchFunction;
5914 final AtomicReference<U> result;
5915 if ((searchFunction = this.searchFunction) != null &&
5916 (result = this.result) != null) {
5917 for (int b;;) {
5918 if (result.get() != null)
5919 return;
5920 if ((b = preSplit()) <= 0)
5921 break;
5922 new SearchKeysTask<K,V,U>
5923 (map, this, b, searchFunction, result).fork();
5924 }
5925 while (result.get() == null) {
5926 K k; U u;
5927 if ((k = advanceKey()) == null) {
5928 propagateCompletion();
5929 break;
5930 }
5931 if ((u = searchFunction.apply(k)) != null) {
5932 if (result.compareAndSet(null, u))
5933 quietlyCompleteRoot();
5934 break;
5935 }
5936 }
5937 }
5938 }
5939 }
5940
5941 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5942 extends Traverser<K,V,U> {
5943 final Function<? super V, ? extends U> searchFunction;
5944 final AtomicReference<U> result;
5945 SearchValuesTask
5946 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5947 Function<? super V, ? extends U> searchFunction,
5948 AtomicReference<U> result) {
5949 super(m, p, b);
5950 this.searchFunction = searchFunction; this.result = result;
5951 }
5952 public final U getRawResult() { return result.get(); }
5953 public final void compute() {
5954 final Function<? super V, ? extends U> searchFunction;
5955 final AtomicReference<U> result;
5956 if ((searchFunction = this.searchFunction) != null &&
5957 (result = this.result) != null) {
5958 for (int b;;) {
5959 if (result.get() != null)
5960 return;
5961 if ((b = preSplit()) <= 0)
5962 break;
5963 new SearchValuesTask<K,V,U>
5964 (map, this, b, searchFunction, result).fork();
5965 }
5966 while (result.get() == null) {
5967 V v; U u;
5968 if ((v = advanceValue()) == null) {
5969 propagateCompletion();
5970 break;
5971 }
5972 if ((u = searchFunction.apply(v)) != null) {
5973 if (result.compareAndSet(null, u))
5974 quietlyCompleteRoot();
5975 break;
5976 }
5977 }
5978 }
5979 }
5980 }
5981
5982 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5983 extends Traverser<K,V,U> {
5984 final Function<Entry<K,V>, ? extends U> searchFunction;
5985 final AtomicReference<U> result;
5986 SearchEntriesTask
5987 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5988 Function<Entry<K,V>, ? extends U> searchFunction,
5989 AtomicReference<U> result) {
5990 super(m, p, b);
5991 this.searchFunction = searchFunction; this.result = result;
5992 }
5993 public final U getRawResult() { return result.get(); }
5994 public final void compute() {
5995 final Function<Entry<K,V>, ? extends U> searchFunction;
5996 final AtomicReference<U> result;
5997 if ((searchFunction = this.searchFunction) != null &&
5998 (result = this.result) != null) {
5999 for (int b;;) {
6000 if (result.get() != null)
6001 return;
6002 if ((b = preSplit()) <= 0)
6003 break;
6004 new SearchEntriesTask<K,V,U>
6005 (map, this, b, searchFunction, result).fork();
6006 }
6007 while (result.get() == null) {
6008 V v; U u;
6009 if ((v = advanceValue()) == null) {
6010 propagateCompletion();
6011 break;
6012 }
6013 if ((u = searchFunction.apply(entryFor(nextKey,
6014 v))) != null) {
6015 if (result.compareAndSet(null, u))
6016 quietlyCompleteRoot();
6017 return;
6018 }
6019 }
6020 }
6021 }
6022 }
6023
6024 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
6025 extends Traverser<K,V,U> {
6026 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6027 final AtomicReference<U> result;
6028 SearchMappingsTask
6029 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6030 BiFunction<? super K, ? super V, ? extends U> searchFunction,
6031 AtomicReference<U> result) {
6032 super(m, p, b);
6033 this.searchFunction = searchFunction; this.result = result;
6034 }
6035 public final U getRawResult() { return result.get(); }
6036 public final void compute() {
6037 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6038 final AtomicReference<U> result;
6039 if ((searchFunction = this.searchFunction) != null &&
6040 (result = this.result) != null) {
6041 for (int b;;) {
6042 if (result.get() != null)
6043 return;
6044 if ((b = preSplit()) <= 0)
6045 break;
6046 new SearchMappingsTask<K,V,U>
6047 (map, this, b, searchFunction, result).fork();
6048 }
6049 while (result.get() == null) {
6050 V v; U u;
6051 if ((v = advanceValue()) == null) {
6052 propagateCompletion();
6053 break;
6054 }
6055 if ((u = searchFunction.apply(nextKey, v)) != null) {
6056 if (result.compareAndSet(null, u))
6057 quietlyCompleteRoot();
6058 break;
6059 }
6060 }
6061 }
6062 }
6063 }
6064
6065 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
6066 extends Traverser<K,V,K> {
6067 final BiFunction<? super K, ? super K, ? extends K> reducer;
6068 K result;
6069 ReduceKeysTask<K,V> rights, nextRight;
6070 ReduceKeysTask
6071 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6072 ReduceKeysTask<K,V> nextRight,
6073 BiFunction<? super K, ? super K, ? extends K> reducer) {
6074 super(m, p, b); this.nextRight = nextRight;
6075 this.reducer = reducer;
6076 }
6077 public final K getRawResult() { return result; }
6078 @SuppressWarnings("unchecked") public final void compute() {
6079 final BiFunction<? super K, ? super K, ? extends K> reducer;
6080 if ((reducer = this.reducer) != null) {
6081 for (int b; (b = preSplit()) > 0;)
6082 (rights = new ReduceKeysTask<K,V>
6083 (map, this, b, rights, reducer)).fork();
6084 K u, r = null;
6085 while ((u = advanceKey()) != null) {
6086 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
6087 }
6088 result = r;
6089 CountedCompleter<?> c;
6090 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 ReduceKeysTask<K,V>
6092 t = (ReduceKeysTask<K,V>)c,
6093 s = t.rights;
6094 while (s != null) {
6095 K tr, sr;
6096 if ((sr = s.result) != null)
6097 t.result = (((tr = t.result) == null) ? sr :
6098 reducer.apply(tr, sr));
6099 s = t.rights = s.nextRight;
6100 }
6101 }
6102 }
6103 }
6104 }
6105
6106 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6107 extends Traverser<K,V,V> {
6108 final BiFunction<? super V, ? super V, ? extends V> reducer;
6109 V result;
6110 ReduceValuesTask<K,V> rights, nextRight;
6111 ReduceValuesTask
6112 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6113 ReduceValuesTask<K,V> nextRight,
6114 BiFunction<? super V, ? super V, ? extends V> reducer) {
6115 super(m, p, b); this.nextRight = nextRight;
6116 this.reducer = reducer;
6117 }
6118 public final V getRawResult() { return result; }
6119 @SuppressWarnings("unchecked") public final void compute() {
6120 final BiFunction<? super V, ? super V, ? extends V> reducer;
6121 if ((reducer = this.reducer) != null) {
6122 for (int b; (b = preSplit()) > 0;)
6123 (rights = new ReduceValuesTask<K,V>
6124 (map, this, b, rights, reducer)).fork();
6125 V r = null, v;
6126 while ((v = advanceValue()) != null)
6127 r = (r == null) ? v : reducer.apply(r, v);
6128 result = r;
6129 CountedCompleter<?> c;
6130 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6131 ReduceValuesTask<K,V>
6132 t = (ReduceValuesTask<K,V>)c,
6133 s = t.rights;
6134 while (s != null) {
6135 V tr, sr;
6136 if ((sr = s.result) != null)
6137 t.result = (((tr = t.result) == null) ? sr :
6138 reducer.apply(tr, sr));
6139 s = t.rights = s.nextRight;
6140 }
6141 }
6142 }
6143 }
6144 }
6145
6146 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6147 extends Traverser<K,V,Map.Entry<K,V>> {
6148 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6149 Map.Entry<K,V> result;
6150 ReduceEntriesTask<K,V> rights, nextRight;
6151 ReduceEntriesTask
6152 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6153 ReduceEntriesTask<K,V> nextRight,
6154 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6155 super(m, p, b); this.nextRight = nextRight;
6156 this.reducer = reducer;
6157 }
6158 public final Map.Entry<K,V> getRawResult() { return result; }
6159 @SuppressWarnings("unchecked") public final void compute() {
6160 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6161 if ((reducer = this.reducer) != null) {
6162 for (int b; (b = preSplit()) > 0;)
6163 (rights = new ReduceEntriesTask<K,V>
6164 (map, this, b, rights, reducer)).fork();
6165 Map.Entry<K,V> r = null;
6166 V v;
6167 while ((v = advanceValue()) != null) {
6168 Map.Entry<K,V> u = entryFor(nextKey, v);
6169 r = (r == null) ? u : reducer.apply(r, u);
6170 }
6171 result = r;
6172 CountedCompleter<?> c;
6173 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6174 ReduceEntriesTask<K,V>
6175 t = (ReduceEntriesTask<K,V>)c,
6176 s = t.rights;
6177 while (s != null) {
6178 Map.Entry<K,V> tr, sr;
6179 if ((sr = s.result) != null)
6180 t.result = (((tr = t.result) == null) ? sr :
6181 reducer.apply(tr, sr));
6182 s = t.rights = s.nextRight;
6183 }
6184 }
6185 }
6186 }
6187 }
6188
6189 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6190 extends Traverser<K,V,U> {
6191 final Function<? super K, ? extends U> transformer;
6192 final BiFunction<? super U, ? super U, ? extends U> reducer;
6193 U result;
6194 MapReduceKeysTask<K,V,U> rights, nextRight;
6195 MapReduceKeysTask
6196 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6197 MapReduceKeysTask<K,V,U> nextRight,
6198 Function<? super K, ? extends U> transformer,
6199 BiFunction<? super U, ? super U, ? extends U> reducer) {
6200 super(m, p, b); this.nextRight = nextRight;
6201 this.transformer = transformer;
6202 this.reducer = reducer;
6203 }
6204 public final U getRawResult() { return result; }
6205 @SuppressWarnings("unchecked") public final void compute() {
6206 final Function<? super K, ? extends U> transformer;
6207 final BiFunction<? super U, ? super U, ? extends U> reducer;
6208 if ((transformer = this.transformer) != null &&
6209 (reducer = this.reducer) != null) {
6210 for (int b; (b = preSplit()) > 0;)
6211 (rights = new MapReduceKeysTask<K,V,U>
6212 (map, this, b, rights, transformer, reducer)).fork();
6213 K k; U r = null, u;
6214 while ((k = advanceKey()) != null) {
6215 if ((u = transformer.apply(k)) != null)
6216 r = (r == null) ? u : reducer.apply(r, u);
6217 }
6218 result = r;
6219 CountedCompleter<?> c;
6220 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6221 MapReduceKeysTask<K,V,U>
6222 t = (MapReduceKeysTask<K,V,U>)c,
6223 s = t.rights;
6224 while (s != null) {
6225 U tr, sr;
6226 if ((sr = s.result) != null)
6227 t.result = (((tr = t.result) == null) ? sr :
6228 reducer.apply(tr, sr));
6229 s = t.rights = s.nextRight;
6230 }
6231 }
6232 }
6233 }
6234 }
6235
6236 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6237 extends Traverser<K,V,U> {
6238 final Function<? super V, ? extends U> transformer;
6239 final BiFunction<? super U, ? super U, ? extends U> reducer;
6240 U result;
6241 MapReduceValuesTask<K,V,U> rights, nextRight;
6242 MapReduceValuesTask
6243 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6244 MapReduceValuesTask<K,V,U> nextRight,
6245 Function<? super V, ? extends U> transformer,
6246 BiFunction<? super U, ? super U, ? extends U> reducer) {
6247 super(m, p, b); this.nextRight = nextRight;
6248 this.transformer = transformer;
6249 this.reducer = reducer;
6250 }
6251 public final U getRawResult() { return result; }
6252 @SuppressWarnings("unchecked") public final void compute() {
6253 final Function<? super V, ? extends U> transformer;
6254 final BiFunction<? super U, ? super U, ? extends U> reducer;
6255 if ((transformer = this.transformer) != null &&
6256 (reducer = this.reducer) != null) {
6257 for (int b; (b = preSplit()) > 0;)
6258 (rights = new MapReduceValuesTask<K,V,U>
6259 (map, this, b, rights, transformer, reducer)).fork();
6260 U r = null, u;
6261 V v;
6262 while ((v = advanceValue()) != null) {
6263 if ((u = transformer.apply(v)) != null)
6264 r = (r == null) ? u : reducer.apply(r, u);
6265 }
6266 result = r;
6267 CountedCompleter<?> c;
6268 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6269 MapReduceValuesTask<K,V,U>
6270 t = (MapReduceValuesTask<K,V,U>)c,
6271 s = t.rights;
6272 while (s != null) {
6273 U tr, sr;
6274 if ((sr = s.result) != null)
6275 t.result = (((tr = t.result) == null) ? sr :
6276 reducer.apply(tr, sr));
6277 s = t.rights = s.nextRight;
6278 }
6279 }
6280 }
6281 }
6282 }
6283
6284 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6285 extends Traverser<K,V,U> {
6286 final Function<Map.Entry<K,V>, ? extends U> transformer;
6287 final BiFunction<? super U, ? super U, ? extends U> reducer;
6288 U result;
6289 MapReduceEntriesTask<K,V,U> rights, nextRight;
6290 MapReduceEntriesTask
6291 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6292 MapReduceEntriesTask<K,V,U> nextRight,
6293 Function<Map.Entry<K,V>, ? extends U> transformer,
6294 BiFunction<? super U, ? super U, ? extends U> reducer) {
6295 super(m, p, b); this.nextRight = nextRight;
6296 this.transformer = transformer;
6297 this.reducer = reducer;
6298 }
6299 public final U getRawResult() { return result; }
6300 @SuppressWarnings("unchecked") public final void compute() {
6301 final Function<Map.Entry<K,V>, ? extends U> transformer;
6302 final BiFunction<? super U, ? super U, ? extends U> reducer;
6303 if ((transformer = this.transformer) != null &&
6304 (reducer = this.reducer) != null) {
6305 for (int b; (b = preSplit()) > 0;)
6306 (rights = new MapReduceEntriesTask<K,V,U>
6307 (map, this, b, rights, transformer, reducer)).fork();
6308 U r = null, u;
6309 V v;
6310 while ((v = advanceValue()) != null) {
6311 if ((u = transformer.apply(entryFor(nextKey,
6312 v))) != null)
6313 r = (r == null) ? u : reducer.apply(r, u);
6314 }
6315 result = r;
6316 CountedCompleter<?> c;
6317 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6318 MapReduceEntriesTask<K,V,U>
6319 t = (MapReduceEntriesTask<K,V,U>)c,
6320 s = t.rights;
6321 while (s != null) {
6322 U tr, sr;
6323 if ((sr = s.result) != null)
6324 t.result = (((tr = t.result) == null) ? sr :
6325 reducer.apply(tr, sr));
6326 s = t.rights = s.nextRight;
6327 }
6328 }
6329 }
6330 }
6331 }
6332
6333 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6334 extends Traverser<K,V,U> {
6335 final BiFunction<? super K, ? super V, ? extends U> transformer;
6336 final BiFunction<? super U, ? super U, ? extends U> reducer;
6337 U result;
6338 MapReduceMappingsTask<K,V,U> rights, nextRight;
6339 MapReduceMappingsTask
6340 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6341 MapReduceMappingsTask<K,V,U> nextRight,
6342 BiFunction<? super K, ? super V, ? extends U> transformer,
6343 BiFunction<? super U, ? super U, ? extends U> reducer) {
6344 super(m, p, b); this.nextRight = nextRight;
6345 this.transformer = transformer;
6346 this.reducer = reducer;
6347 }
6348 public final U getRawResult() { return result; }
6349 @SuppressWarnings("unchecked") public final void compute() {
6350 final BiFunction<? super K, ? super V, ? extends U> transformer;
6351 final BiFunction<? super U, ? super U, ? extends U> reducer;
6352 if ((transformer = this.transformer) != null &&
6353 (reducer = this.reducer) != null) {
6354 for (int b; (b = preSplit()) > 0;)
6355 (rights = new MapReduceMappingsTask<K,V,U>
6356 (map, this, b, rights, transformer, reducer)).fork();
6357 U r = null, u;
6358 V v;
6359 while ((v = advanceValue()) != null) {
6360 if ((u = transformer.apply(nextKey, v)) != null)
6361 r = (r == null) ? u : reducer.apply(r, u);
6362 }
6363 result = r;
6364 CountedCompleter<?> c;
6365 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6366 MapReduceMappingsTask<K,V,U>
6367 t = (MapReduceMappingsTask<K,V,U>)c,
6368 s = t.rights;
6369 while (s != null) {
6370 U tr, sr;
6371 if ((sr = s.result) != null)
6372 t.result = (((tr = t.result) == null) ? sr :
6373 reducer.apply(tr, sr));
6374 s = t.rights = s.nextRight;
6375 }
6376 }
6377 }
6378 }
6379 }
6380
6381 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6382 extends Traverser<K,V,Double> {
6383 final ToDoubleFunction<? super K> transformer;
6384 final DoubleBinaryOperator reducer;
6385 final double basis;
6386 double result;
6387 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6388 MapReduceKeysToDoubleTask
6389 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6390 MapReduceKeysToDoubleTask<K,V> nextRight,
6391 ToDoubleFunction<? super K> transformer,
6392 double basis,
6393 DoubleBinaryOperator reducer) {
6394 super(m, p, b); this.nextRight = nextRight;
6395 this.transformer = transformer;
6396 this.basis = basis; this.reducer = reducer;
6397 }
6398 public final Double getRawResult() { return result; }
6399 @SuppressWarnings("unchecked") public final void compute() {
6400 final ToDoubleFunction<? super K> transformer;
6401 final DoubleBinaryOperator reducer;
6402 if ((transformer = this.transformer) != null &&
6403 (reducer = this.reducer) != null) {
6404 double r = this.basis;
6405 for (int b; (b = preSplit()) > 0;)
6406 (rights = new MapReduceKeysToDoubleTask<K,V>
6407 (map, this, b, rights, transformer, r, reducer)).fork();
6408 K k;
6409 while ((k = advanceKey()) != null)
6410 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6411 result = r;
6412 CountedCompleter<?> c;
6413 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6414 MapReduceKeysToDoubleTask<K,V>
6415 t = (MapReduceKeysToDoubleTask<K,V>)c,
6416 s = t.rights;
6417 while (s != null) {
6418 t.result = reducer.applyAsDouble(t.result, s.result);
6419 s = t.rights = s.nextRight;
6420 }
6421 }
6422 }
6423 }
6424 }
6425
6426 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6427 extends Traverser<K,V,Double> {
6428 final ToDoubleFunction<? super V> transformer;
6429 final DoubleBinaryOperator reducer;
6430 final double basis;
6431 double result;
6432 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6433 MapReduceValuesToDoubleTask
6434 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6435 MapReduceValuesToDoubleTask<K,V> nextRight,
6436 ToDoubleFunction<? super V> transformer,
6437 double basis,
6438 DoubleBinaryOperator reducer) {
6439 super(m, p, b); this.nextRight = nextRight;
6440 this.transformer = transformer;
6441 this.basis = basis; this.reducer = reducer;
6442 }
6443 public final Double getRawResult() { return result; }
6444 @SuppressWarnings("unchecked") public final void compute() {
6445 final ToDoubleFunction<? super V> transformer;
6446 final DoubleBinaryOperator reducer;
6447 if ((transformer = this.transformer) != null &&
6448 (reducer = this.reducer) != null) {
6449 double r = this.basis;
6450 for (int b; (b = preSplit()) > 0;)
6451 (rights = new MapReduceValuesToDoubleTask<K,V>
6452 (map, this, b, rights, transformer, r, reducer)).fork();
6453 V v;
6454 while ((v = advanceValue()) != null)
6455 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6456 result = r;
6457 CountedCompleter<?> c;
6458 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6459 MapReduceValuesToDoubleTask<K,V>
6460 t = (MapReduceValuesToDoubleTask<K,V>)c,
6461 s = t.rights;
6462 while (s != null) {
6463 t.result = reducer.applyAsDouble(t.result, s.result);
6464 s = t.rights = s.nextRight;
6465 }
6466 }
6467 }
6468 }
6469 }
6470
6471 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6472 extends Traverser<K,V,Double> {
6473 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6474 final DoubleBinaryOperator reducer;
6475 final double basis;
6476 double result;
6477 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6478 MapReduceEntriesToDoubleTask
6479 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6480 MapReduceEntriesToDoubleTask<K,V> nextRight,
6481 ToDoubleFunction<Map.Entry<K,V>> transformer,
6482 double basis,
6483 DoubleBinaryOperator reducer) {
6484 super(m, p, b); this.nextRight = nextRight;
6485 this.transformer = transformer;
6486 this.basis = basis; this.reducer = reducer;
6487 }
6488 public final Double getRawResult() { return result; }
6489 @SuppressWarnings("unchecked") public final void compute() {
6490 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6491 final DoubleBinaryOperator reducer;
6492 if ((transformer = this.transformer) != null &&
6493 (reducer = this.reducer) != null) {
6494 double r = this.basis;
6495 for (int b; (b = preSplit()) > 0;)
6496 (rights = new MapReduceEntriesToDoubleTask<K,V>
6497 (map, this, b, rights, transformer, r, reducer)).fork();
6498 V v;
6499 while ((v = advanceValue()) != null)
6500 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6501 v)));
6502 result = r;
6503 CountedCompleter<?> c;
6504 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6505 MapReduceEntriesToDoubleTask<K,V>
6506 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6507 s = t.rights;
6508 while (s != null) {
6509 t.result = reducer.applyAsDouble(t.result, s.result);
6510 s = t.rights = s.nextRight;
6511 }
6512 }
6513 }
6514 }
6515 }
6516
6517 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6518 extends Traverser<K,V,Double> {
6519 final ToDoubleBiFunction<? super K, ? super V> transformer;
6520 final DoubleBinaryOperator reducer;
6521 final double basis;
6522 double result;
6523 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6524 MapReduceMappingsToDoubleTask
6525 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6526 MapReduceMappingsToDoubleTask<K,V> nextRight,
6527 ToDoubleBiFunction<? super K, ? super V> transformer,
6528 double basis,
6529 DoubleBinaryOperator reducer) {
6530 super(m, p, b); this.nextRight = nextRight;
6531 this.transformer = transformer;
6532 this.basis = basis; this.reducer = reducer;
6533 }
6534 public final Double getRawResult() { return result; }
6535 @SuppressWarnings("unchecked") public final void compute() {
6536 final ToDoubleBiFunction<? super K, ? super V> transformer;
6537 final DoubleBinaryOperator reducer;
6538 if ((transformer = this.transformer) != null &&
6539 (reducer = this.reducer) != null) {
6540 double r = this.basis;
6541 for (int b; (b = preSplit()) > 0;)
6542 (rights = new MapReduceMappingsToDoubleTask<K,V>
6543 (map, this, b, rights, transformer, r, reducer)).fork();
6544 V v;
6545 while ((v = advanceValue()) != null)
6546 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6547 result = r;
6548 CountedCompleter<?> c;
6549 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6550 MapReduceMappingsToDoubleTask<K,V>
6551 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6552 s = t.rights;
6553 while (s != null) {
6554 t.result = reducer.applyAsDouble(t.result, s.result);
6555 s = t.rights = s.nextRight;
6556 }
6557 }
6558 }
6559 }
6560 }
6561
6562 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6563 extends Traverser<K,V,Long> {
6564 final ToLongFunction<? super K> transformer;
6565 final LongBinaryOperator reducer;
6566 final long basis;
6567 long result;
6568 MapReduceKeysToLongTask<K,V> rights, nextRight;
6569 MapReduceKeysToLongTask
6570 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6571 MapReduceKeysToLongTask<K,V> nextRight,
6572 ToLongFunction<? super K> transformer,
6573 long basis,
6574 LongBinaryOperator reducer) {
6575 super(m, p, b); this.nextRight = nextRight;
6576 this.transformer = transformer;
6577 this.basis = basis; this.reducer = reducer;
6578 }
6579 public final Long getRawResult() { return result; }
6580 @SuppressWarnings("unchecked") public final void compute() {
6581 final ToLongFunction<? super K> transformer;
6582 final LongBinaryOperator reducer;
6583 if ((transformer = this.transformer) != null &&
6584 (reducer = this.reducer) != null) {
6585 long r = this.basis;
6586 for (int b; (b = preSplit()) > 0;)
6587 (rights = new MapReduceKeysToLongTask<K,V>
6588 (map, this, b, rights, transformer, r, reducer)).fork();
6589 K k;
6590 while ((k = advanceKey()) != null)
6591 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6592 result = r;
6593 CountedCompleter<?> c;
6594 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6595 MapReduceKeysToLongTask<K,V>
6596 t = (MapReduceKeysToLongTask<K,V>)c,
6597 s = t.rights;
6598 while (s != null) {
6599 t.result = reducer.applyAsLong(t.result, s.result);
6600 s = t.rights = s.nextRight;
6601 }
6602 }
6603 }
6604 }
6605 }
6606
6607 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6608 extends Traverser<K,V,Long> {
6609 final ToLongFunction<? super V> transformer;
6610 final LongBinaryOperator reducer;
6611 final long basis;
6612 long result;
6613 MapReduceValuesToLongTask<K,V> rights, nextRight;
6614 MapReduceValuesToLongTask
6615 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6616 MapReduceValuesToLongTask<K,V> nextRight,
6617 ToLongFunction<? super V> transformer,
6618 long basis,
6619 LongBinaryOperator reducer) {
6620 super(m, p, b); this.nextRight = nextRight;
6621 this.transformer = transformer;
6622 this.basis = basis; this.reducer = reducer;
6623 }
6624 public final Long getRawResult() { return result; }
6625 @SuppressWarnings("unchecked") public final void compute() {
6626 final ToLongFunction<? super V> transformer;
6627 final LongBinaryOperator reducer;
6628 if ((transformer = this.transformer) != null &&
6629 (reducer = this.reducer) != null) {
6630 long r = this.basis;
6631 for (int b; (b = preSplit()) > 0;)
6632 (rights = new MapReduceValuesToLongTask<K,V>
6633 (map, this, b, rights, transformer, r, reducer)).fork();
6634 V v;
6635 while ((v = advanceValue()) != null)
6636 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6637 result = r;
6638 CountedCompleter<?> c;
6639 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6640 MapReduceValuesToLongTask<K,V>
6641 t = (MapReduceValuesToLongTask<K,V>)c,
6642 s = t.rights;
6643 while (s != null) {
6644 t.result = reducer.applyAsLong(t.result, s.result);
6645 s = t.rights = s.nextRight;
6646 }
6647 }
6648 }
6649 }
6650 }
6651
6652 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6653 extends Traverser<K,V,Long> {
6654 final ToLongFunction<Map.Entry<K,V>> transformer;
6655 final LongBinaryOperator reducer;
6656 final long basis;
6657 long result;
6658 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6659 MapReduceEntriesToLongTask
6660 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6661 MapReduceEntriesToLongTask<K,V> nextRight,
6662 ToLongFunction<Map.Entry<K,V>> transformer,
6663 long basis,
6664 LongBinaryOperator reducer) {
6665 super(m, p, b); this.nextRight = nextRight;
6666 this.transformer = transformer;
6667 this.basis = basis; this.reducer = reducer;
6668 }
6669 public final Long getRawResult() { return result; }
6670 @SuppressWarnings("unchecked") public final void compute() {
6671 final ToLongFunction<Map.Entry<K,V>> transformer;
6672 final LongBinaryOperator reducer;
6673 if ((transformer = this.transformer) != null &&
6674 (reducer = this.reducer) != null) {
6675 long r = this.basis;
6676 for (int b; (b = preSplit()) > 0;)
6677 (rights = new MapReduceEntriesToLongTask<K,V>
6678 (map, this, b, rights, transformer, r, reducer)).fork();
6679 V v;
6680 while ((v = advanceValue()) != null)
6681 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6682 result = r;
6683 CountedCompleter<?> c;
6684 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6685 MapReduceEntriesToLongTask<K,V>
6686 t = (MapReduceEntriesToLongTask<K,V>)c,
6687 s = t.rights;
6688 while (s != null) {
6689 t.result = reducer.applyAsLong(t.result, s.result);
6690 s = t.rights = s.nextRight;
6691 }
6692 }
6693 }
6694 }
6695 }
6696
6697 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6698 extends Traverser<K,V,Long> {
6699 final ToLongBiFunction<? super K, ? super V> transformer;
6700 final LongBinaryOperator reducer;
6701 final long basis;
6702 long result;
6703 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6704 MapReduceMappingsToLongTask
6705 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6706 MapReduceMappingsToLongTask<K,V> nextRight,
6707 ToLongBiFunction<? super K, ? super V> transformer,
6708 long basis,
6709 LongBinaryOperator reducer) {
6710 super(m, p, b); this.nextRight = nextRight;
6711 this.transformer = transformer;
6712 this.basis = basis; this.reducer = reducer;
6713 }
6714 public final Long getRawResult() { return result; }
6715 @SuppressWarnings("unchecked") public final void compute() {
6716 final ToLongBiFunction<? super K, ? super V> transformer;
6717 final LongBinaryOperator reducer;
6718 if ((transformer = this.transformer) != null &&
6719 (reducer = this.reducer) != null) {
6720 long r = this.basis;
6721 for (int b; (b = preSplit()) > 0;)
6722 (rights = new MapReduceMappingsToLongTask<K,V>
6723 (map, this, b, rights, transformer, r, reducer)).fork();
6724 V v;
6725 while ((v = advanceValue()) != null)
6726 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6727 result = r;
6728 CountedCompleter<?> c;
6729 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6730 MapReduceMappingsToLongTask<K,V>
6731 t = (MapReduceMappingsToLongTask<K,V>)c,
6732 s = t.rights;
6733 while (s != null) {
6734 t.result = reducer.applyAsLong(t.result, s.result);
6735 s = t.rights = s.nextRight;
6736 }
6737 }
6738 }
6739 }
6740 }
6741
6742 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6743 extends Traverser<K,V,Integer> {
6744 final ToIntFunction<? super K> transformer;
6745 final IntBinaryOperator reducer;
6746 final int basis;
6747 int result;
6748 MapReduceKeysToIntTask<K,V> rights, nextRight;
6749 MapReduceKeysToIntTask
6750 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6751 MapReduceKeysToIntTask<K,V> nextRight,
6752 ToIntFunction<? super K> transformer,
6753 int basis,
6754 IntBinaryOperator reducer) {
6755 super(m, p, b); this.nextRight = nextRight;
6756 this.transformer = transformer;
6757 this.basis = basis; this.reducer = reducer;
6758 }
6759 public final Integer getRawResult() { return result; }
6760 @SuppressWarnings("unchecked") public final void compute() {
6761 final ToIntFunction<? super K> transformer;
6762 final IntBinaryOperator reducer;
6763 if ((transformer = this.transformer) != null &&
6764 (reducer = this.reducer) != null) {
6765 int r = this.basis;
6766 for (int b; (b = preSplit()) > 0;)
6767 (rights = new MapReduceKeysToIntTask<K,V>
6768 (map, this, b, rights, transformer, r, reducer)).fork();
6769 K k;
6770 while ((k = advanceKey()) != null)
6771 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6772 result = r;
6773 CountedCompleter<?> c;
6774 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6775 MapReduceKeysToIntTask<K,V>
6776 t = (MapReduceKeysToIntTask<K,V>)c,
6777 s = t.rights;
6778 while (s != null) {
6779 t.result = reducer.applyAsInt(t.result, s.result);
6780 s = t.rights = s.nextRight;
6781 }
6782 }
6783 }
6784 }
6785 }
6786
6787 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6788 extends Traverser<K,V,Integer> {
6789 final ToIntFunction<? super V> transformer;
6790 final IntBinaryOperator reducer;
6791 final int basis;
6792 int result;
6793 MapReduceValuesToIntTask<K,V> rights, nextRight;
6794 MapReduceValuesToIntTask
6795 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6796 MapReduceValuesToIntTask<K,V> nextRight,
6797 ToIntFunction<? super V> transformer,
6798 int basis,
6799 IntBinaryOperator reducer) {
6800 super(m, p, b); this.nextRight = nextRight;
6801 this.transformer = transformer;
6802 this.basis = basis; this.reducer = reducer;
6803 }
6804 public final Integer getRawResult() { return result; }
6805 @SuppressWarnings("unchecked") public final void compute() {
6806 final ToIntFunction<? super V> transformer;
6807 final IntBinaryOperator reducer;
6808 if ((transformer = this.transformer) != null &&
6809 (reducer = this.reducer) != null) {
6810 int r = this.basis;
6811 for (int b; (b = preSplit()) > 0;)
6812 (rights = new MapReduceValuesToIntTask<K,V>
6813 (map, this, b, rights, transformer, r, reducer)).fork();
6814 V v;
6815 while ((v = advanceValue()) != null)
6816 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6817 result = r;
6818 CountedCompleter<?> c;
6819 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6820 MapReduceValuesToIntTask<K,V>
6821 t = (MapReduceValuesToIntTask<K,V>)c,
6822 s = t.rights;
6823 while (s != null) {
6824 t.result = reducer.applyAsInt(t.result, s.result);
6825 s = t.rights = s.nextRight;
6826 }
6827 }
6828 }
6829 }
6830 }
6831
6832 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6833 extends Traverser<K,V,Integer> {
6834 final ToIntFunction<Map.Entry<K,V>> transformer;
6835 final IntBinaryOperator reducer;
6836 final int basis;
6837 int result;
6838 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6839 MapReduceEntriesToIntTask
6840 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6841 MapReduceEntriesToIntTask<K,V> nextRight,
6842 ToIntFunction<Map.Entry<K,V>> transformer,
6843 int basis,
6844 IntBinaryOperator reducer) {
6845 super(m, p, b); this.nextRight = nextRight;
6846 this.transformer = transformer;
6847 this.basis = basis; this.reducer = reducer;
6848 }
6849 public final Integer getRawResult() { return result; }
6850 @SuppressWarnings("unchecked") public final void compute() {
6851 final ToIntFunction<Map.Entry<K,V>> transformer;
6852 final IntBinaryOperator reducer;
6853 if ((transformer = this.transformer) != null &&
6854 (reducer = this.reducer) != null) {
6855 int r = this.basis;
6856 for (int b; (b = preSplit()) > 0;)
6857 (rights = new MapReduceEntriesToIntTask<K,V>
6858 (map, this, b, rights, transformer, r, reducer)).fork();
6859 V v;
6860 while ((v = advanceValue()) != null)
6861 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6862 v)));
6863 result = r;
6864 CountedCompleter<?> c;
6865 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6866 MapReduceEntriesToIntTask<K,V>
6867 t = (MapReduceEntriesToIntTask<K,V>)c,
6868 s = t.rights;
6869 while (s != null) {
6870 t.result = reducer.applyAsInt(t.result, s.result);
6871 s = t.rights = s.nextRight;
6872 }
6873 }
6874 }
6875 }
6876 }
6877
6878 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6879 extends Traverser<K,V,Integer> {
6880 final ToIntBiFunction<? super K, ? super V> transformer;
6881 final IntBinaryOperator reducer;
6882 final int basis;
6883 int result;
6884 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6885 MapReduceMappingsToIntTask
6886 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6887 MapReduceMappingsToIntTask<K,V> nextRight,
6888 ToIntBiFunction<? super K, ? super V> transformer,
6889 int basis,
6890 IntBinaryOperator reducer) {
6891 super(m, p, b); this.nextRight = nextRight;
6892 this.transformer = transformer;
6893 this.basis = basis; this.reducer = reducer;
6894 }
6895 public final Integer getRawResult() { return result; }
6896 @SuppressWarnings("unchecked") public final void compute() {
6897 final ToIntBiFunction<? super K, ? super V> transformer;
6898 final IntBinaryOperator reducer;
6899 if ((transformer = this.transformer) != null &&
6900 (reducer = this.reducer) != null) {
6901 int r = this.basis;
6902 for (int b; (b = preSplit()) > 0;)
6903 (rights = new MapReduceMappingsToIntTask<K,V>
6904 (map, this, b, rights, transformer, r, reducer)).fork();
6905 V v;
6906 while ((v = advanceValue()) != null)
6907 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6908 result = r;
6909 CountedCompleter<?> c;
6910 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6911 MapReduceMappingsToIntTask<K,V>
6912 t = (MapReduceMappingsToIntTask<K,V>)c,
6913 s = t.rights;
6914 while (s != null) {
6915 t.result = reducer.applyAsInt(t.result, s.result);
6916 s = t.rights = s.nextRight;
6917 }
6918 }
6919 }
6920 }
6921 }
6922
6923 // Unsafe mechanics
6924 private static final sun.misc.Unsafe U;
6925 private static final long SIZECTL;
6926 private static final long TRANSFERINDEX;
6927 private static final long TRANSFERORIGIN;
6928 private static final long BASECOUNT;
6929 private static final long CELLSBUSY;
6930 private static final long CELLVALUE;
6931 private static final long ABASE;
6932 private static final int ASHIFT;
6933
6934 static {
6935 try {
6936 U = sun.misc.Unsafe.getUnsafe();
6937 Class<?> k = ConcurrentHashMap.class;
6938 SIZECTL = U.objectFieldOffset
6939 (k.getDeclaredField("sizeCtl"));
6940 TRANSFERINDEX = U.objectFieldOffset
6941 (k.getDeclaredField("transferIndex"));
6942 TRANSFERORIGIN = U.objectFieldOffset
6943 (k.getDeclaredField("transferOrigin"));
6944 BASECOUNT = U.objectFieldOffset
6945 (k.getDeclaredField("baseCount"));
6946 CELLSBUSY = U.objectFieldOffset
6947 (k.getDeclaredField("cellsBusy"));
6948 Class<?> ck = Cell.class;
6949 CELLVALUE = U.objectFieldOffset
6950 (ck.getDeclaredField("value"));
6951 Class<?> sc = Node[].class;
6952 ABASE = U.arrayBaseOffset(sc);
6953 int scale = U.arrayIndexScale(sc);
6954 if ((scale & (scale - 1)) != 0)
6955 throw new Error("data type scale not a power of two");
6956 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6957 } catch (Exception e) {
6958 throw new Error(e);
6959 }
6960 }
6961
6962 }