ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.21
Committed: Fri Aug 29 14:09:52 2003 UTC (20 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.20: +107 -27 lines
Log Message:
Avoid ABA problem in CHP; fix other javadocs

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain. Use, modify, and
4 * redistribute this code in any way without acknowledgement.
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as <tt>java.util.Hashtable</tt>, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt> . However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) ordinarily
28 * overlap with update operations (including <tt>put</tt> and
29 * <tt>remove</tt>). Retrievals reflect the results of the most
30 * recently <em>completed</em> update operations holding upon their
31 * onset. For aggregate operations such as <tt>putAll</tt> and
32 * <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw ConcurrentModificationException.
37 * However, Iterators are designed to be used by only one thread at a
38 * time.
39 *
40 * <p> The allowed concurrency among update operations is guided by
41 * the optional <tt>concurrencyLevel</tt> constructor argument
42 * (default 16), which is used as a hint for internal sizing. The
43 * table is internally partitioned to try to permit the indicated
44 * number of concurrent updates without contention. Because placement
45 * in hash tables is essentially random, the actual concurrency will
46 * vary. Ideally, you should choose a value to accommodate as many
47 * threads as will ever concurrently access the table. Using a
48 * significantly higher value than you need can waste space and time,
49 * and a significantly lower value can lead to thread contention. But
50 * overestimates and underestimates within an order of magnitude do
51 * not usually have much noticeable impact.
52 *
53 * <p> Like Hashtable but unlike java.util.HashMap, this class does
54 * NOT allow <tt>null</tt> to be used as a key or value.
55 *
56 * @since 1.5
57 * @author Doug Lea
58 */
59 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
60 implements ConcurrentMap<K, V>, Cloneable, Serializable {
61 private static final long serialVersionUID = 7249069246763182397L;
62
63 /*
64 * The basic strategy is to subdivide the table among Segments,
65 * each of which itself is a concurrently readable hash table.
66 */
67
68 /* ---------------- Constants -------------- */
69
70 /**
71 * The default initial number of table slots for this table.
72 * Used when not otherwise specified in constructor.
73 */
74 private static int DEFAULT_INITIAL_CAPACITY = 16;
75
76 /**
77 * The maximum capacity, used if a higher value is implicitly
78 * specified by either of the constructors with arguments. MUST
79 * be a power of two <= 1<<30 to ensure that entries are indexible
80 * using ints.
81 */
82 static final int MAXIMUM_CAPACITY = 1 << 30;
83
84 /**
85 * The default load factor for this table. Used when not
86 * otherwise specified in constructor.
87 */
88 static final float DEFAULT_LOAD_FACTOR = 0.75f;
89
90 /**
91 * The default number of concurrency control segments.
92 **/
93 private static final int DEFAULT_SEGMENTS = 16;
94
95 /**
96 * The maximum number of segments to allow; used to bound ctor arguments.
97 */
98 private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
99
100 /* ---------------- Fields -------------- */
101
102 /**
103 * Mask value for indexing into segments. The upper bits of a
104 * key's hash code are used to choose the segment.
105 **/
106 private final int segmentMask;
107
108 /**
109 * Shift value for indexing within segments.
110 **/
111 private final int segmentShift;
112
113 /**
114 * The segments, each of which is a specialized hash table
115 */
116 private final Segment[] segments;
117
118 private transient Set<K> keySet;
119 private transient Set<Map.Entry<K,V>> entrySet;
120 private transient Collection<V> values;
121
122 /* ---------------- Small Utilities -------------- */
123
124 /**
125 * Return a hash code for non-null Object x.
126 * Uses the same hash code spreader as most other j.u hash tables.
127 * @param x the object serving as a key
128 * @return the hash code
129 */
130 private static int hash(Object x) {
131 int h = x.hashCode();
132 h += ~(h << 9);
133 h ^= (h >>> 14);
134 h += (h << 4);
135 h ^= (h >>> 10);
136 return h;
137 }
138
139 /**
140 * Return the segment that should be used for key with given hash
141 */
142 private Segment<K,V> segmentFor(int hash) {
143 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
144 }
145
146 /* ---------------- Inner Classes -------------- */
147
148 /**
149 * Segments are specialized versions of hash tables. This
150 * subclasses from ReentrantLock opportunistically, just to
151 * simplify some locking and avoid separate construction.
152 **/
153 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
154 /*
155 * Segments maintain a table of entry lists that are ALWAYS
156 * kept in a consistent state, so can be read without locking.
157 * Next fields of nodes are immutable (final). All list
158 * additions are performed at the front of each bin. This
159 * makes it easy to check changes, and also fast to traverse.
160 * When nodes would otherwise be changed, new nodes are
161 * created to replace them. This works well for hash tables
162 * since the bin lists tend to be short. (The average length
163 * is less than two for the default load factor threshold.)
164 *
165 * Read operations can thus proceed without locking, but rely
166 * on a memory barrier to ensure that completed write
167 * operations performed by other threads are
168 * noticed. Conveniently, the "count" field, tracking the
169 * number of elements, can also serve as the volatile variable
170 * providing proper read/write barriers. This is convenient
171 * because this field needs to be read in many read operations
172 * anyway.
173 *
174 * Implementors note. The basic rules for all this are:
175 *
176 * - All unsynchronized read operations must first read the
177 * "count" field, and should not look at table entries if
178 * it is 0.
179 *
180 * - All synchronized write operations should write to
181 * the "count" field after updating. The operations must not
182 * take any action that could even momentarily cause
183 * a concurrent read operation to see inconsistent
184 * data. This is made easier by the nature of the read
185 * operations in Map. For example, no operation
186 * can reveal that the table has grown but the threshold
187 * has not yet been updated, so there are no atomicity
188 * requirements for this with respect to reads.
189 *
190 * As a guide, all critical volatile reads and writes are marked
191 * in code comments.
192 */
193
194 /**
195 * The number of elements in this segment's region.
196 **/
197 transient volatile int count;
198
199 /**
200 * Number of updates; used for checking lack of modifications
201 * in bulk-read methods.
202 */
203 transient int modCount;
204
205 /**
206 * The table is rehashed when its size exceeds this threshold.
207 * (The value of this field is always (int)(capacity *
208 * loadFactor).)
209 */
210 private transient int threshold;
211
212 /**
213 * The per-segment table
214 */
215 transient HashEntry[] table;
216
217 /**
218 * The load factor for the hash table. Even though this value
219 * is same for all segments, it is replicated to avoid needing
220 * links to outer object.
221 * @serial
222 */
223 private final float loadFactor;
224
225 Segment(int initialCapacity, float lf) {
226 loadFactor = lf;
227 setTable(new HashEntry[initialCapacity]);
228 }
229
230 /**
231 * Set table to new HashEntry array.
232 * Call only while holding lock or in constructor.
233 **/
234 private void setTable(HashEntry[] newTable) {
235 table = newTable;
236 threshold = (int)(newTable.length * loadFactor);
237 count = count; // write-volatile
238 }
239
240 /* Specialized implementations of map methods */
241
242 V get(K key, int hash) {
243 if (count != 0) { // read-volatile
244 HashEntry[] tab = table;
245 int index = hash & (tab.length - 1);
246 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
247 while (e != null) {
248 if (e.hash == hash && key.equals(e.key))
249 return e.value;
250 e = e.next;
251 }
252 }
253 return null;
254 }
255
256 boolean containsKey(Object key, int hash) {
257 if (count != 0) { // read-volatile
258 HashEntry[] tab = table;
259 int index = hash & (tab.length - 1);
260 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
261 while (e != null) {
262 if (e.hash == hash && key.equals(e.key))
263 return true;
264 e = e.next;
265 }
266 }
267 return false;
268 }
269
270 boolean containsValue(Object value) {
271 if (count != 0) { // read-volatile
272 HashEntry[] tab = table;
273 int len = tab.length;
274 for (int i = 0 ; i < len; i++)
275 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
276 if (value.equals(e.value))
277 return true;
278 }
279 return false;
280 }
281
282 V put(K key, int hash, V value, boolean onlyIfAbsent) {
283 lock();
284 try {
285 int c = count;
286 HashEntry[] tab = table;
287 int index = hash & (tab.length - 1);
288 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
289
290 for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
291 if (e.hash == hash && key.equals(e.key)) {
292 V oldValue = e.value;
293 if (!onlyIfAbsent)
294 e.value = value;
295 ++modCount;
296 count = c; // write-volatile
297 return oldValue;
298 }
299 }
300
301 tab[index] = new HashEntry<K,V>(hash, key, value, first);
302 ++modCount;
303 ++c;
304 count = c; // write-volatile
305 if (c > threshold)
306 setTable(rehash(tab));
307 return null;
308 } finally {
309 unlock();
310 }
311 }
312
313 private HashEntry[] rehash(HashEntry[] oldTable) {
314 int oldCapacity = oldTable.length;
315 if (oldCapacity >= MAXIMUM_CAPACITY)
316 return oldTable;
317
318 /*
319 * Reclassify nodes in each list to new Map. Because we are
320 * using power-of-two expansion, the elements from each bin
321 * must either stay at same index, or move with a power of two
322 * offset. We eliminate unnecessary node creation by catching
323 * cases where old nodes can be reused because their next
324 * fields won't change. Statistically, at the default
325 * threshhold, only about one-sixth of them need cloning when
326 * a table doubles. The nodes they replace will be garbage
327 * collectable as soon as they are no longer referenced by any
328 * reader thread that may be in the midst of traversing table
329 * right now.
330 */
331
332 HashEntry[] newTable = new HashEntry[oldCapacity << 1];
333 int sizeMask = newTable.length - 1;
334 for (int i = 0; i < oldCapacity ; i++) {
335 // We need to guarantee that any existing reads of old Map can
336 // proceed. So we cannot yet null out each bin.
337 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
338
339 if (e != null) {
340 HashEntry<K,V> next = e.next;
341 int idx = e.hash & sizeMask;
342
343 // Single node on list
344 if (next == null)
345 newTable[idx] = e;
346
347 else {
348 // Reuse trailing consecutive sequence at same slot
349 HashEntry<K,V> lastRun = e;
350 int lastIdx = idx;
351 for (HashEntry<K,V> last = next;
352 last != null;
353 last = last.next) {
354 int k = last.hash & sizeMask;
355 if (k != lastIdx) {
356 lastIdx = k;
357 lastRun = last;
358 }
359 }
360 newTable[lastIdx] = lastRun;
361
362 // Clone all remaining nodes
363 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
364 int k = p.hash & sizeMask;
365 newTable[k] = new HashEntry<K,V>(p.hash,
366 p.key,
367 p.value,
368 (HashEntry<K,V>) newTable[k]);
369 }
370 }
371 }
372 }
373 return newTable;
374 }
375
376 /**
377 * Remove; match on key only if value null, else match both.
378 */
379 V remove(Object key, int hash, Object value) {
380 lock();
381 try {
382 int c = count;
383 HashEntry[] tab = table;
384 int index = hash & (tab.length - 1);
385 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
386
387 HashEntry<K,V> e = first;
388 for (;;) {
389 if (e == null)
390 return null;
391 if (e.hash == hash && key.equals(e.key))
392 break;
393 e = e.next;
394 }
395
396 V oldValue = e.value;
397 if (value != null && !value.equals(oldValue))
398 return null;
399
400 // All entries following removed node can stay in list, but
401 // all preceeding ones need to be cloned.
402 HashEntry<K,V> newFirst = e.next;
403 for (HashEntry<K,V> p = first; p != e; p = p.next)
404 newFirst = new HashEntry<K,V>(p.hash, p.key,
405 p.value, newFirst);
406 tab[index] = newFirst;
407 ++modCount;
408 count = c-1; // write-volatile
409 return oldValue;
410 } finally {
411 unlock();
412 }
413 }
414
415 void clear() {
416 lock();
417 try {
418 HashEntry[] tab = table;
419 for (int i = 0; i < tab.length ; i++)
420 tab[i] = null;
421 ++modCount;
422 count = 0; // write-volatile
423 } finally {
424 unlock();
425 }
426 }
427 }
428
429 /**
430 * ConcurrentHashMap list entry.
431 */
432 private static class HashEntry<K,V> implements Entry<K,V> {
433 private final K key;
434 private V value;
435 private final int hash;
436 private final HashEntry<K,V> next;
437
438 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
439 this.value = value;
440 this.hash = hash;
441 this.key = key;
442 this.next = next;
443 }
444
445 public K getKey() {
446 return key;
447 }
448
449 public V getValue() {
450 return value;
451 }
452
453 public V setValue(V newValue) {
454 // We aren't required to, and don't provide any
455 // visibility barriers for setting value.
456 if (newValue == null)
457 throw new NullPointerException();
458 V oldValue = this.value;
459 this.value = newValue;
460 return oldValue;
461 }
462
463 public boolean equals(Object o) {
464 if (!(o instanceof Entry))
465 return false;
466 Entry<K,V> e = (Entry<K,V>)o;
467 return (key.equals(e.getKey()) && value.equals(e.getValue()));
468 }
469
470 public int hashCode() {
471 return key.hashCode() ^ value.hashCode();
472 }
473
474 public String toString() {
475 return key + "=" + value;
476 }
477 }
478
479
480 /* ---------------- Public operations -------------- */
481
482 /**
483 * Constructs a new, empty map with the specified initial
484 * capacity and the specified load factor.
485 *
486 * @param initialCapacity the initial capacity. The implementation
487 * performs internal sizing to accommodate this many elements.
488 * @param loadFactor the load factor threshold, used to control resizing.
489 * @param concurrencyLevel the estimated number of concurrently
490 * updating threads. The implementation performs internal sizing
491 * to try to accommodate this many threads.
492 * @throws IllegalArgumentException if the initial capacity is
493 * negative or the load factor or concurrencyLevel are
494 * nonpositive.
495 */
496 public ConcurrentHashMap(int initialCapacity,
497 float loadFactor, int concurrencyLevel) {
498 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
499 throw new IllegalArgumentException();
500
501 if (concurrencyLevel > MAX_SEGMENTS)
502 concurrencyLevel = MAX_SEGMENTS;
503
504 // Find power-of-two sizes best matching arguments
505 int sshift = 0;
506 int ssize = 1;
507 while (ssize < concurrencyLevel) {
508 ++sshift;
509 ssize <<= 1;
510 }
511 segmentShift = 32 - sshift;
512 segmentMask = ssize - 1;
513 this.segments = new Segment[ssize];
514
515 if (initialCapacity > MAXIMUM_CAPACITY)
516 initialCapacity = MAXIMUM_CAPACITY;
517 int c = initialCapacity / ssize;
518 if (c * ssize < initialCapacity)
519 ++c;
520 int cap = 1;
521 while (cap < c)
522 cap <<= 1;
523
524 for (int i = 0; i < this.segments.length; ++i)
525 this.segments[i] = new Segment<K,V>(cap, loadFactor);
526 }
527
528 /**
529 * Constructs a new, empty map with the specified initial
530 * capacity, and with default load factor and concurrencyLevel.
531 *
532 * @param initialCapacity The implementation performs internal
533 * sizing to accommodate this many elements.
534 * @throws IllegalArgumentException if the initial capacity of
535 * elements is negative.
536 */
537 public ConcurrentHashMap(int initialCapacity) {
538 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
539 }
540
541 /**
542 * Constructs a new, empty map with a default initial capacity,
543 * load factor, and number of concurrencyLevel.
544 */
545 public ConcurrentHashMap() {
546 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
547 }
548
549 /**
550 * Constructs a new map with the same mappings as the given map. The
551 * map is created with a capacity of twice the number of mappings in
552 * the given map or 11 (whichever is greater), and a default load factor.
553 */
554 public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
555 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
556 11),
557 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
558 putAll(t);
559 }
560
561 // inherit Map javadoc
562 public boolean isEmpty() {
563 /*
564 * We need to keep track of per-segment modCounts to avoid ABA
565 * problems in which an element in one segment was added and
566 * in another removed during traversal, in which case the
567 * table was never actually empty at any point. Note the
568 * similar use of modCounts in the size() and containsValue()
569 * methods, which are the only other methods also susceptible
570 * to ABA problems.
571 */
572 int[] mc = new int[segments.length];
573 int mcsum = 0;
574 for (int i = 0; i < segments.length; ++i) {
575 if (segments[i].count != 0)
576 return false;
577 else
578 mcsum += mc[i] = segments[i].modCount;
579 }
580 // If mcsum happens to be zero, then we know we got a snapshot
581 // before any modifications at all were made. This is
582 // probably common enough to bother tracking.
583 if (mcsum != 0) {
584 for (int i = 0; i < segments.length; ++i) {
585 if (segments[i].count != 0 ||
586 mc[i] != segments[i].modCount)
587 return false;
588 }
589 }
590 return true;
591 }
592
593 // inherit Map javadoc
594 public int size() {
595 int[] mc = new int[segments.length];
596 for (;;) {
597 int sum = 0;
598 int mcsum = 0;
599 for (int i = 0; i < segments.length; ++i) {
600 sum += segments[i].count;
601 mcsum += mc[i] = segments[i].modCount;
602 }
603 int check = 0;
604 if (mcsum != 0) {
605 for (int i = 0; i < segments.length; ++i) {
606 check += segments[i].count;
607 if (mc[i] != segments[i].modCount) {
608 check = -1; // force retry
609 break;
610 }
611 }
612 }
613 if (check == sum)
614 return sum;
615 }
616 }
617
618
619 /**
620 * Returns the value to which the specified key is mapped in this table.
621 *
622 * @param key a key in the table.
623 * @return the value to which the key is mapped in this table;
624 * <tt>null</tt> if the key is not mapped to any value in
625 * this table.
626 * @throws NullPointerException if the key is
627 * <tt>null</tt>.
628 * @see #put(Object, Object)
629 */
630 public V get(Object key) {
631 int hash = hash(key); // throws NullPointerException if key null
632 return segmentFor(hash).get((K) key, hash);
633 }
634
635 /**
636 * Tests if the specified object is a key in this table.
637 *
638 * @param key possible key.
639 * @return <tt>true</tt> if and only if the specified object
640 * is a key in this table, as determined by the
641 * <tt>equals</tt> method; <tt>false</tt> otherwise.
642 * @throws NullPointerException if the key is
643 * <tt>null</tt>.
644 * @see #contains(Object)
645 */
646 public boolean containsKey(Object key) {
647 int hash = hash(key); // throws NullPointerException if key null
648 return segmentFor(hash).containsKey(key, hash);
649 }
650
651 /**
652 * Returns <tt>true</tt> if this map maps one or more keys to the
653 * specified value. Note: This method requires a full internal
654 * traversal of the hash table, and so is much slower than
655 * method <tt>containsKey</tt>.
656 *
657 * @param value value whose presence in this map is to be tested.
658 * @return <tt>true</tt> if this map maps one or more keys to the
659 * specified value.
660 * @throws NullPointerException if the value is <tt>null</tt>.
661 */
662 public boolean containsValue(Object value) {
663 if (value == null)
664 throw new NullPointerException();
665
666 int[] mc = new int[segments.length];
667 for (;;) {
668 int sum = 0;
669 int mcsum = 0;
670 for (int i = 0; i < segments.length; ++i) {
671 int c = segments[i].count;
672 mcsum += mc[i] = segments[i].modCount;
673 if (segments[i].containsValue(value))
674 return true;
675 }
676 boolean cleanSweep = true;
677 if (mcsum != 0) {
678 for (int i = 0; i < segments.length; ++i) {
679 int c = segments[i].count;
680 if (mc[i] != segments[i].modCount) {
681 cleanSweep = false;
682 break;
683 }
684 }
685 }
686 if (cleanSweep)
687 return false;
688 }
689 }
690
691 /**
692 * Legacy method testing if some key maps into the specified value
693 * in this table. This operation is more expensive than the
694 * <tt>containsKey</tt> method.
695 *
696 * <p> Note that this method is identical in functionality to
697 * <tt>containsValue</tt>, This method exists solely to ensure
698 * full compatibility with class {@link java.util.Hashtable},
699 * which supported this method prior to introduction of the
700 * collections framework.
701
702 * @param value a value to search for.
703 * @return <tt>true</tt> if and only if some key maps to the
704 * <tt>value</tt> argument in this table as
705 * determined by the <tt>equals</tt> method;
706 * <tt>false</tt> otherwise.
707 * @throws NullPointerException if the value is <tt>null</tt>.
708 * @see #containsKey(Object)
709 * @see #containsValue(Object)
710 * @see Map
711 */
712 public boolean contains(Object value) {
713 return containsValue(value);
714 }
715
716 /**
717 * Maps the specified <tt>key</tt> to the specified
718 * <tt>value</tt> in this table. Neither the key nor the
719 * value can be <tt>null</tt>. <p>
720 *
721 * The value can be retrieved by calling the <tt>get</tt> method
722 * with a key that is equal to the original key.
723 *
724 * @param key the table key.
725 * @param value the value.
726 * @return the previous value of the specified key in this table,
727 * or <tt>null</tt> if it did not have one.
728 * @throws NullPointerException if the key or value is
729 * <tt>null</tt>.
730 * @see Object#equals(Object)
731 * @see #get(Object)
732 */
733 public V put(K key, V value) {
734 if (value == null)
735 throw new NullPointerException();
736 int hash = hash(key);
737 return segmentFor(hash).put(key, hash, value, false);
738 }
739
740 /**
741 * If the specified key is not already associated
742 * with a value, associate it with the given value.
743 * This is equivalent to
744 * <pre>
745 * if (!map.containsKey(key))
746 * return map.put(key, value);
747 * else
748 * return map.get(key);
749 * </pre>
750 * Except that the action is performed atomically.
751 * @param key key with which the specified value is to be associated.
752 * @param value value to be associated with the specified key.
753 * @return previous value associated with specified key, or <tt>null</tt>
754 * if there was no mapping for key. A <tt>null</tt> return can
755 * also indicate that the map previously associated <tt>null</tt>
756 * with the specified key, if the implementation supports
757 * <tt>null</tt> values.
758 *
759 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
760 * not supported by this map.
761 * @throws ClassCastException if the class of the specified key or value
762 * prevents it from being stored in this map.
763 * @throws NullPointerException if the specified key or value is
764 * <tt>null</tt>.
765 *
766 **/
767 public V putIfAbsent(K key, V value) {
768 if (value == null)
769 throw new NullPointerException();
770 int hash = hash(key);
771 return segmentFor(hash).put(key, hash, value, true);
772 }
773
774
775 /**
776 * Copies all of the mappings from the specified map to this one.
777 *
778 * These mappings replace any mappings that this map had for any of the
779 * keys currently in the specified Map.
780 *
781 * @param t Mappings to be stored in this map.
782 */
783 public void putAll(Map<? extends K, ? extends V> t) {
784 Iterator<Map.Entry<? extends K, ? extends V>> it = t.entrySet().iterator();
785 while (it.hasNext()) {
786 Entry<? extends K, ? extends V> e = it.next();
787 put(e.getKey(), e.getValue());
788 }
789 }
790
791 /**
792 * Removes the key (and its corresponding value) from this
793 * table. This method does nothing if the key is not in the table.
794 *
795 * @param key the key that needs to be removed.
796 * @return the value to which the key had been mapped in this table,
797 * or <tt>null</tt> if the key did not have a mapping.
798 * @throws NullPointerException if the key is
799 * <tt>null</tt>.
800 */
801 public V remove(Object key) {
802 int hash = hash(key);
803 return segmentFor(hash).remove(key, hash, null);
804 }
805
806 /**
807 * Remove entry for key only if currently mapped to given value.
808 * Acts as
809 * <pre>
810 * if (map.get(key).equals(value)) {
811 * map.remove(key);
812 * return true;
813 * } else return false;
814 * </pre>
815 * except that the action is performed atomically.
816 * @param key key with which the specified value is associated.
817 * @param value value associated with the specified key.
818 * @return true if the value was removed
819 * @throws NullPointerException if the specified key is
820 * <tt>null</tt>.
821 */
822 public boolean remove(Object key, Object value) {
823 int hash = hash(key);
824 return segmentFor(hash).remove(key, hash, value) != null;
825 }
826
827 /**
828 * Removes all mappings from this map.
829 */
830 public void clear() {
831 for (int i = 0; i < segments.length; ++i)
832 segments[i].clear();
833 }
834
835
836 /**
837 * Returns a shallow copy of this
838 * <tt>ConcurrentHashMap</tt> instance: the keys and
839 * values themselves are not cloned.
840 *
841 * @return a shallow copy of this map.
842 */
843 public Object clone() {
844 // We cannot call super.clone, since it would share final
845 // segments array, and there's no way to reassign finals.
846
847 float lf = segments[0].loadFactor;
848 int segs = segments.length;
849 int cap = (int)(size() / lf);
850 if (cap < segs) cap = segs;
851 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
852 t.putAll(this);
853 return t;
854 }
855
856 /**
857 * Returns a set view of the keys contained in this map. The set is
858 * backed by the map, so changes to the map are reflected in the set, and
859 * vice-versa. The set supports element removal, which removes the
860 * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
861 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
862 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
863 * <tt>addAll</tt> operations.
864 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
865 * will never throw {@link java.util.ConcurrentModificationException},
866 * and guarantees to traverse elements as they existed upon
867 * construction of the iterator, and may (but is not guaranteed to)
868 * reflect any modifications subsequent to construction.
869 *
870 * @return a set view of the keys contained in this map.
871 */
872 public Set<K> keySet() {
873 Set<K> ks = keySet;
874 return (ks != null) ? ks : (keySet = new KeySet());
875 }
876
877
878 /**
879 * Returns a collection view of the values contained in this map. The
880 * collection is backed by the map, so changes to the map are reflected in
881 * the collection, and vice-versa. The collection supports element
882 * removal, which removes the corresponding mapping from this map, via the
883 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
884 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
885 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
886 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
887 * will never throw {@link java.util.ConcurrentModificationException},
888 * and guarantees to traverse elements as they existed upon
889 * construction of the iterator, and may (but is not guaranteed to)
890 * reflect any modifications subsequent to construction.
891 *
892 * @return a collection view of the values contained in this map.
893 */
894 public Collection<V> values() {
895 Collection<V> vs = values;
896 return (vs != null) ? vs : (values = new Values());
897 }
898
899
900 /**
901 * Returns a collection view of the mappings contained in this map. Each
902 * element in the returned collection is a <tt>Map.Entry</tt>. The
903 * collection is backed by the map, so changes to the map are reflected in
904 * the collection, and vice-versa. The collection supports element
905 * removal, which removes the corresponding mapping from the map, via the
906 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
907 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
908 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
909 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
910 * will never throw {@link java.util.ConcurrentModificationException},
911 * and guarantees to traverse elements as they existed upon
912 * construction of the iterator, and may (but is not guaranteed to)
913 * reflect any modifications subsequent to construction.
914 *
915 * @return a collection view of the mappings contained in this map.
916 */
917 public Set<Map.Entry<K,V>> entrySet() {
918 Set<Map.Entry<K,V>> es = entrySet;
919 return (es != null) ? es : (entrySet = new EntrySet());
920 }
921
922
923 /**
924 * Returns an enumeration of the keys in this table.
925 *
926 * @return an enumeration of the keys in this table.
927 * @see Enumeration
928 * @see #elements()
929 * @see #keySet()
930 * @see Map
931 */
932 public Enumeration<K> keys() {
933 return new KeyIterator();
934 }
935
936 /**
937 * Returns an enumeration of the values in this table.
938 * Use the Enumeration methods on the returned object to fetch the elements
939 * sequentially.
940 *
941 * @return an enumeration of the values in this table.
942 * @see java.util.Enumeration
943 * @see #keys()
944 * @see #values()
945 * @see Map
946 */
947 public Enumeration<V> elements() {
948 return new ValueIterator();
949 }
950
951 /* ---------------- Iterator Support -------------- */
952
953 private abstract class HashIterator {
954 private int nextSegmentIndex;
955 private int nextTableIndex;
956 private HashEntry[] currentTable;
957 private HashEntry<K, V> nextEntry;
958 private HashEntry<K, V> lastReturned;
959
960 private HashIterator() {
961 nextSegmentIndex = segments.length - 1;
962 nextTableIndex = -1;
963 advance();
964 }
965
966 public boolean hasMoreElements() { return hasNext(); }
967
968 private void advance() {
969 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
970 return;
971
972 while (nextTableIndex >= 0) {
973 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
974 return;
975 }
976
977 while (nextSegmentIndex >= 0) {
978 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
979 if (seg.count != 0) {
980 currentTable = seg.table;
981 for (int j = currentTable.length - 1; j >= 0; --j) {
982 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
983 nextTableIndex = j - 1;
984 return;
985 }
986 }
987 }
988 }
989 }
990
991 public boolean hasNext() { return nextEntry != null; }
992
993 HashEntry<K,V> nextEntry() {
994 if (nextEntry == null)
995 throw new NoSuchElementException();
996 lastReturned = nextEntry;
997 advance();
998 return lastReturned;
999 }
1000
1001 public void remove() {
1002 if (lastReturned == null)
1003 throw new IllegalStateException();
1004 ConcurrentHashMap.this.remove(lastReturned.key);
1005 lastReturned = null;
1006 }
1007 }
1008
1009 private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1010 public K next() { return super.nextEntry().key; }
1011 public K nextElement() { return super.nextEntry().key; }
1012 }
1013
1014 private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1015 public V next() { return super.nextEntry().value; }
1016 public V nextElement() { return super.nextEntry().value; }
1017 }
1018
1019 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
1020 public Map.Entry<K,V> next() { return super.nextEntry(); }
1021 }
1022
1023 private class KeySet extends AbstractSet<K> {
1024 public Iterator<K> iterator() {
1025 return new KeyIterator();
1026 }
1027 public int size() {
1028 return ConcurrentHashMap.this.size();
1029 }
1030 public boolean contains(Object o) {
1031 return ConcurrentHashMap.this.containsKey(o);
1032 }
1033 public boolean remove(Object o) {
1034 return ConcurrentHashMap.this.remove(o) != null;
1035 }
1036 public void clear() {
1037 ConcurrentHashMap.this.clear();
1038 }
1039 }
1040
1041 private class Values extends AbstractCollection<V> {
1042 public Iterator<V> iterator() {
1043 return new ValueIterator();
1044 }
1045 public int size() {
1046 return ConcurrentHashMap.this.size();
1047 }
1048 public boolean contains(Object o) {
1049 return ConcurrentHashMap.this.containsValue(o);
1050 }
1051 public void clear() {
1052 ConcurrentHashMap.this.clear();
1053 }
1054 }
1055
1056 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1057 public Iterator<Map.Entry<K,V>> iterator() {
1058 return new EntryIterator();
1059 }
1060 public boolean contains(Object o) {
1061 if (!(o instanceof Map.Entry))
1062 return false;
1063 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1064 V v = ConcurrentHashMap.this.get(e.getKey());
1065 return v != null && v.equals(e.getValue());
1066 }
1067 public boolean remove(Object o) {
1068 if (!(o instanceof Map.Entry))
1069 return false;
1070 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1071 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1072 }
1073 public int size() {
1074 return ConcurrentHashMap.this.size();
1075 }
1076 public void clear() {
1077 ConcurrentHashMap.this.clear();
1078 }
1079 }
1080
1081 /* ---------------- Serialization Support -------------- */
1082
1083 /**
1084 * Save the state of the <tt>ConcurrentHashMap</tt>
1085 * instance to a stream (i.e.,
1086 * serialize it).
1087 * @param s the stream
1088 * @serialData
1089 * the key (Object) and value (Object)
1090 * for each key-value mapping, followed by a null pair.
1091 * The key-value mappings are emitted in no particular order.
1092 */
1093 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1094 s.defaultWriteObject();
1095
1096 for (int k = 0; k < segments.length; ++k) {
1097 Segment<K,V> seg = (Segment<K,V>)segments[k];
1098 seg.lock();
1099 try {
1100 HashEntry[] tab = seg.table;
1101 for (int i = 0; i < tab.length; ++i) {
1102 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1103 s.writeObject(e.key);
1104 s.writeObject(e.value);
1105 }
1106 }
1107 } finally {
1108 seg.unlock();
1109 }
1110 }
1111 s.writeObject(null);
1112 s.writeObject(null);
1113 }
1114
1115 /**
1116 * Reconstitute the <tt>ConcurrentHashMap</tt>
1117 * instance from a stream (i.e.,
1118 * deserialize it).
1119 * @param s the stream
1120 */
1121 private void readObject(java.io.ObjectInputStream s)
1122 throws IOException, ClassNotFoundException {
1123 s.defaultReadObject();
1124
1125 // Initialize each segment to be minimally sized, and let grow.
1126 for (int i = 0; i < segments.length; ++i) {
1127 segments[i].setTable(new HashEntry[1]);
1128 }
1129
1130 // Read the keys and values, and put the mappings in the table
1131 for (;;) {
1132 K key = (K) s.readObject();
1133 V value = (V) s.readObject();
1134 if (key == null)
1135 break;
1136 put(key, value);
1137 }
1138 }
1139 }
1140