ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.220
Committed: Wed Jun 5 13:48:59 2013 UTC (10 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.219: +32 -0 lines
Log Message:
add missing @since 1.8

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.io.Serializable;
9 import java.io.ObjectStreamField;
10 import java.lang.reflect.ParameterizedType;
11 import java.lang.reflect.Type;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.ConcurrentModificationException;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.ConcurrentMap;
25 import java.util.concurrent.ForkJoinPool;
26 import java.util.concurrent.atomic.AtomicReference;
27 import java.util.concurrent.locks.ReentrantLock;
28 import java.util.concurrent.locks.StampedLock;
29 import java.util.function.BiConsumer;
30 import java.util.function.BiFunction;
31 import java.util.function.BinaryOperator;
32 import java.util.function.Consumer;
33 import java.util.function.DoubleBinaryOperator;
34 import java.util.function.Function;
35 import java.util.function.IntBinaryOperator;
36 import java.util.function.LongBinaryOperator;
37 import java.util.function.ToDoubleBiFunction;
38 import java.util.function.ToDoubleFunction;
39 import java.util.function.ToIntBiFunction;
40 import java.util.function.ToIntFunction;
41 import java.util.function.ToLongBiFunction;
42 import java.util.function.ToLongFunction;
43 import java.util.stream.Stream;
44
45 /**
46 * A hash table supporting full concurrency of retrievals and
47 * high expected concurrency for updates. This class obeys the
48 * same functional specification as {@link java.util.Hashtable}, and
49 * includes versions of methods corresponding to each method of
50 * {@code Hashtable}. However, even though all operations are
51 * thread-safe, retrieval operations do <em>not</em> entail locking,
52 * and there is <em>not</em> any support for locking the entire table
53 * in a way that prevents all access. This class is fully
54 * interoperable with {@code Hashtable} in programs that rely on its
55 * thread safety but not on its synchronization details.
56 *
57 * <p>Retrieval operations (including {@code get}) generally do not
58 * block, so may overlap with update operations (including {@code put}
59 * and {@code remove}). Retrievals reflect the results of the most
60 * recently <em>completed</em> update operations holding upon their
61 * onset. (More formally, an update operation for a given key bears a
62 * <em>happens-before</em> relation with any (non-null) retrieval for
63 * that key reporting the updated value.) For aggregate operations
64 * such as {@code putAll} and {@code clear}, concurrent retrievals may
65 * reflect insertion or removal of only some entries. Similarly,
66 * Iterators and Enumerations return elements reflecting the state of
67 * the hash table at some point at or since the creation of the
68 * iterator/enumeration. They do <em>not</em> throw {@link
69 * ConcurrentModificationException}. However, iterators are designed
70 * to be used by only one thread at a time. Bear in mind that the
71 * results of aggregate status methods including {@code size}, {@code
72 * isEmpty}, and {@code containsValue} are typically useful only when
73 * a map is not undergoing concurrent updates in other threads.
74 * Otherwise the results of these methods reflect transient states
75 * that may be adequate for monitoring or estimation purposes, but not
76 * for program control.
77 *
78 * <p>The table is dynamically expanded when there are too many
79 * collisions (i.e., keys that have distinct hash codes but fall into
80 * the same slot modulo the table size), with the expected average
81 * effect of maintaining roughly two bins per mapping (corresponding
82 * to a 0.75 load factor threshold for resizing). There may be much
83 * variance around this average as mappings are added and removed, but
84 * overall, this maintains a commonly accepted time/space tradeoff for
85 * hash tables. However, resizing this or any other kind of hash
86 * table may be a relatively slow operation. When possible, it is a
87 * good idea to provide a size estimate as an optional {@code
88 * initialCapacity} constructor argument. An additional optional
89 * {@code loadFactor} constructor argument provides a further means of
90 * customizing initial table capacity by specifying the table density
91 * to be used in calculating the amount of space to allocate for the
92 * given number of elements. Also, for compatibility with previous
93 * versions of this class, constructors may optionally specify an
94 * expected {@code concurrencyLevel} as an additional hint for
95 * internal sizing. Note that using many keys with exactly the same
96 * {@code hashCode()} is a sure way to slow down performance of any
97 * hash table. To ameliorate impact, when keys are {@link Comparable},
98 * this class may use comparison order among keys to help break ties.
99 *
100 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
101 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
102 * (using {@link #keySet(Object)} when only keys are of interest, and the
103 * mapped values are (perhaps transiently) not used or all take the
104 * same mapping value.
105 *
106 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
107 * form of histogram or multiset) by using {@link
108 * java.util.concurrent.atomic.LongAdder} values and initializing via
109 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
110 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
111 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
112 *
113 * <p>This class and its views and iterators implement all of the
114 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
115 * interfaces.
116 *
117 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
118 * does <em>not</em> allow {@code null} to be used as a key or value.
119 *
120 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
121 * operations that, unlike most {@link Stream} methods, are designed
122 * to be safely, and often sensibly, applied even with maps that are
123 * being concurrently updated by other threads; for example, when
124 * computing a snapshot summary of the values in a shared registry.
125 * There are three kinds of operation, each with four forms, accepting
126 * functions with Keys, Values, Entries, and (Key, Value) arguments
127 * and/or return values. Because the elements of a ConcurrentHashMap
128 * are not ordered in any particular way, and may be processed in
129 * different orders in different parallel executions, the correctness
130 * of supplied functions should not depend on any ordering, or on any
131 * other objects or values that may transiently change while
132 * computation is in progress; and except for forEach actions, should
133 * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
134 * objects do not support method {@code setValue}.
135 *
136 * <ul>
137 * <li> forEach: Perform a given action on each element.
138 * A variant form applies a given transformation on each element
139 * before performing the action.</li>
140 *
141 * <li> search: Return the first available non-null result of
142 * applying a given function on each element; skipping further
143 * search when a result is found.</li>
144 *
145 * <li> reduce: Accumulate each element. The supplied reduction
146 * function cannot rely on ordering (more formally, it should be
147 * both associative and commutative). There are five variants:
148 *
149 * <ul>
150 *
151 * <li> Plain reductions. (There is not a form of this method for
152 * (key, value) function arguments since there is no corresponding
153 * return type.)</li>
154 *
155 * <li> Mapped reductions that accumulate the results of a given
156 * function applied to each element.</li>
157 *
158 * <li> Reductions to scalar doubles, longs, and ints, using a
159 * given basis value.</li>
160 *
161 * </ul>
162 * </li>
163 * </ul>
164 *
165 * <p>These bulk operations accept a {@code parallelismThreshold}
166 * argument. Methods proceed sequentially if the current map size is
167 * estimated to be less than the given threshold. Using a value of
168 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
169 * of {@code 1} results in maximal parallelism by partitioning into
170 * enough subtasks to fully utilize the {@link
171 * ForkJoinPool#commonPool()} that is used for all parallel
172 * computations. Normally, you would initially choose one of these
173 * extreme values, and then measure performance of using in-between
174 * values that trade off overhead versus throughput.
175 *
176 * <p>The concurrency properties of bulk operations follow
177 * from those of ConcurrentHashMap: Any non-null result returned
178 * from {@code get(key)} and related access methods bears a
179 * happens-before relation with the associated insertion or
180 * update. The result of any bulk operation reflects the
181 * composition of these per-element relations (but is not
182 * necessarily atomic with respect to the map as a whole unless it
183 * is somehow known to be quiescent). Conversely, because keys
184 * and values in the map are never null, null serves as a reliable
185 * atomic indicator of the current lack of any result. To
186 * maintain this property, null serves as an implicit basis for
187 * all non-scalar reduction operations. For the double, long, and
188 * int versions, the basis should be one that, when combined with
189 * any other value, returns that other value (more formally, it
190 * should be the identity element for the reduction). Most common
191 * reductions have these properties; for example, computing a sum
192 * with basis 0 or a minimum with basis MAX_VALUE.
193 *
194 * <p>Search and transformation functions provided as arguments
195 * should similarly return null to indicate the lack of any result
196 * (in which case it is not used). In the case of mapped
197 * reductions, this also enables transformations to serve as
198 * filters, returning null (or, in the case of primitive
199 * specializations, the identity basis) if the element should not
200 * be combined. You can create compound transformations and
201 * filterings by composing them yourself under this "null means
202 * there is nothing there now" rule before using them in search or
203 * reduce operations.
204 *
205 * <p>Methods accepting and/or returning Entry arguments maintain
206 * key-value associations. They may be useful for example when
207 * finding the key for the greatest value. Note that "plain" Entry
208 * arguments can be supplied using {@code new
209 * AbstractMap.SimpleEntry(k,v)}.
210 *
211 * <p>Bulk operations may complete abruptly, throwing an
212 * exception encountered in the application of a supplied
213 * function. Bear in mind when handling such exceptions that other
214 * concurrently executing functions could also have thrown
215 * exceptions, or would have done so if the first exception had
216 * not occurred.
217 *
218 * <p>Speedups for parallel compared to sequential forms are common
219 * but not guaranteed. Parallel operations involving brief functions
220 * on small maps may execute more slowly than sequential forms if the
221 * underlying work to parallelize the computation is more expensive
222 * than the computation itself. Similarly, parallelization may not
223 * lead to much actual parallelism if all processors are busy
224 * performing unrelated tasks.
225 *
226 * <p>All arguments to all task methods must be non-null.
227 *
228 * <p>This class is a member of the
229 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
230 * Java Collections Framework</a>.
231 *
232 * @since 1.5
233 * @author Doug Lea
234 * @param <K> the type of keys maintained by this map
235 * @param <V> the type of mapped values
236 */
237 @SuppressWarnings({"unchecked", "rawtypes", "serial"})
238 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 private static final long serialVersionUID = 7249069246763182397L;
240
241 /*
242 * Overview:
243 *
244 * The primary design goal of this hash table is to maintain
245 * concurrent readability (typically method get(), but also
246 * iterators and related methods) while minimizing update
247 * contention. Secondary goals are to keep space consumption about
248 * the same or better than java.util.HashMap, and to support high
249 * initial insertion rates on an empty table by many threads.
250 *
251 * Each key-value mapping is held in a Node. Because Node key
252 * fields can contain special values, they are defined using plain
253 * Object types (not type "K"). This leads to a lot of explicit
254 * casting (and the use of class-wide warning suppressions). It
255 * also allows some of the public methods to be factored into a
256 * smaller number of internal methods (although sadly not so for
257 * the five variants of put-related operations). The
258 * validation-based approach explained below leads to a lot of
259 * code sprawl because retry-control precludes factoring into
260 * smaller methods.
261 *
262 * The table is lazily initialized to a power-of-two size upon the
263 * first insertion. Each bin in the table normally contains a
264 * list of Nodes (most often, the list has only zero or one Node).
265 * Table accesses require volatile/atomic reads, writes, and
266 * CASes. Because there is no other way to arrange this without
267 * adding further indirections, we use intrinsics
268 * (sun.misc.Unsafe) operations.
269 *
270 * We use the top (sign) bit of Node hash fields for control
271 * purposes -- it is available anyway because of addressing
272 * constraints. Nodes with negative hash fields are forwarding
273 * nodes to either TreeBins or resized tables. The lower 31 bits
274 * of each normal Node's hash field contain a transformation of
275 * the key's hash code.
276 *
277 * Insertion (via put or its variants) of the first node in an
278 * empty bin is performed by just CASing it to the bin. This is
279 * by far the most common case for put operations under most
280 * key/hash distributions. Other update operations (insert,
281 * delete, and replace) require locks. We do not want to waste
282 * the space required to associate a distinct lock object with
283 * each bin, so instead use the first node of a bin list itself as
284 * a lock. Locking support for these locks relies on builtin
285 * "synchronized" monitors.
286 *
287 * Using the first node of a list as a lock does not by itself
288 * suffice though: When a node is locked, any update must first
289 * validate that it is still the first node after locking it, and
290 * retry if not. Because new nodes are always appended to lists,
291 * once a node is first in a bin, it remains first until deleted
292 * or the bin becomes invalidated (upon resizing).
293 *
294 * The main disadvantage of per-bin locks is that other update
295 * operations on other nodes in a bin list protected by the same
296 * lock can stall, for example when user equals() or mapping
297 * functions take a long time. However, statistically, under
298 * random hash codes, this is not a common problem. Ideally, the
299 * frequency of nodes in bins follows a Poisson distribution
300 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 * parameter of about 0.5 on average, given the resizing threshold
302 * of 0.75, although with a large variance because of resizing
303 * granularity. Ignoring variance, the expected occurrences of
304 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 * first values are:
306 *
307 * 0: 0.60653066
308 * 1: 0.30326533
309 * 2: 0.07581633
310 * 3: 0.01263606
311 * 4: 0.00157952
312 * 5: 0.00015795
313 * 6: 0.00001316
314 * 7: 0.00000094
315 * 8: 0.00000006
316 * more: less than 1 in ten million
317 *
318 * Lock contention probability for two threads accessing distinct
319 * elements is roughly 1 / (8 * #elements) under random hashes.
320 *
321 * Actual hash code distributions encountered in practice
322 * sometimes deviate significantly from uniform randomness. This
323 * includes the case when N > (1<<30), so some keys MUST collide.
324 * Similarly for dumb or hostile usages in which multiple keys are
325 * designed to have identical hash codes. Also, although we guard
326 * against the worst effects of this (see method spread), sets of
327 * hashes may differ only in bits that do not impact their bin
328 * index for a given power-of-two mask. So we use a secondary
329 * strategy that applies when the number of nodes in a bin exceeds
330 * a threshold, and at least one of the keys implements
331 * Comparable. These TreeBins use a balanced tree to hold nodes
332 * (a specialized form of red-black trees), bounding search time
333 * to O(log N). Each search step in a TreeBin is at least twice as
334 * slow as in a regular list, but given that N cannot exceed
335 * (1<<64) (before running out of addresses) this bounds search
336 * steps, lock hold times, etc, to reasonable constants (roughly
337 * 100 nodes inspected per operation worst case) so long as keys
338 * are Comparable (which is very common -- String, Long, etc).
339 * TreeBin nodes (TreeNodes) also maintain the same "next"
340 * traversal pointers as regular nodes, so can be traversed in
341 * iterators in the same way.
342 *
343 * The table is resized when occupancy exceeds a percentage
344 * threshold (nominally, 0.75, but see below). Any thread
345 * noticing an overfull bin may assist in resizing after the
346 * initiating thread allocates and sets up the replacement
347 * array. However, rather than stalling, these other threads may
348 * proceed with insertions etc. The use of TreeBins shields us
349 * from the worst case effects of overfilling while resizes are in
350 * progress. Resizing proceeds by transferring bins, one by one,
351 * from the table to the next table. To enable concurrency, the
352 * next table must be (incrementally) prefilled with place-holders
353 * serving as reverse forwarders to the old table. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged by proceeding from the last bin
375 * (table.length - 1) up towards the first. Upon seeing a
376 * forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. However, to
378 * ensure that no intervening nodes are skipped, bin splitting can
379 * only begin after the associated reverse-forwarders are in
380 * place.
381 *
382 * The traversal scheme also applies to partial traversals of
383 * ranges of bins (via an alternate Traverser constructor)
384 * to support partitioned aggregate operations. Also, read-only
385 * operations give up if ever forwarded to a null table, which
386 * provides support for shutdown-style clearing, which is also not
387 * currently implemented.
388 *
389 * Lazy table initialization minimizes footprint until first use,
390 * and also avoids resizings when the first operation is from a
391 * putAll, constructor with map argument, or deserialization.
392 * These cases attempt to override the initial capacity settings,
393 * but harmlessly fail to take effect in cases of races.
394 *
395 * The element count is maintained using a specialization of
396 * LongAdder. We need to incorporate a specialization rather than
397 * just use a LongAdder in order to access implicit
398 * contention-sensing that leads to creation of multiple
399 * Cells. The counter mechanics avoid contention on
400 * updates but can encounter cache thrashing if read too
401 * frequently during concurrent access. To avoid reading so often,
402 * resizing under contention is attempted only upon adding to a
403 * bin already holding two or more nodes. Under uniform hash
404 * distributions, the probability of this occurring at threshold
405 * is around 13%, meaning that only about 1 in 8 puts check
406 * threshold (and after resizing, many fewer do so). The bulk
407 * putAll operation further reduces contention by only committing
408 * count updates upon these size checks.
409 *
410 * Maintaining API and serialization compatibility with previous
411 * versions of this class introduces several oddities. Mainly: We
412 * leave untouched but unused constructor arguments refering to
413 * concurrencyLevel. We accept a loadFactor constructor argument,
414 * but apply it only to initial table capacity (which is the only
415 * time that we can guarantee to honor it.) We also declare an
416 * unused "Segment" class that is instantiated in minimal form
417 * only when serializing.
418 */
419
420 /* ---------------- Constants -------------- */
421
422 /**
423 * The largest possible table capacity. This value must be
424 * exactly 1<<30 to stay within Java array allocation and indexing
425 * bounds for power of two table sizes, and is further required
426 * because the top two bits of 32bit hash fields are used for
427 * control purposes.
428 */
429 private static final int MAXIMUM_CAPACITY = 1 << 30;
430
431 /**
432 * The default initial table capacity. Must be a power of 2
433 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
434 */
435 private static final int DEFAULT_CAPACITY = 16;
436
437 /**
438 * The largest possible (non-power of two) array size.
439 * Needed by toArray and related methods.
440 */
441 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
442
443 /**
444 * The default concurrency level for this table. Unused but
445 * defined for compatibility with previous versions of this class.
446 */
447 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
448
449 /**
450 * The load factor for this table. Overrides of this value in
451 * constructors affect only the initial table capacity. The
452 * actual floating point value isn't normally used -- it is
453 * simpler to use expressions such as {@code n - (n >>> 2)} for
454 * the associated resizing threshold.
455 */
456 private static final float LOAD_FACTOR = 0.75f;
457
458 /**
459 * The bin count threshold for using a tree rather than list for a
460 * bin. The value reflects the approximate break-even point for
461 * using tree-based operations.
462 */
463 private static final int TREE_THRESHOLD = 8;
464
465 /**
466 * Minimum number of rebinnings per transfer step. Ranges are
467 * subdivided to allow multiple resizer threads. This value
468 * serves as a lower bound to avoid resizers encountering
469 * excessive memory contention. The value should be at least
470 * DEFAULT_CAPACITY.
471 */
472 private static final int MIN_TRANSFER_STRIDE = 16;
473
474 /*
475 * Encodings for Node hash fields. See above for explanation.
476 */
477 static final int MOVED = 0x80000000; // hash field for forwarding nodes
478 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
479
480 /** Number of CPUS, to place bounds on some sizings */
481 static final int NCPU = Runtime.getRuntime().availableProcessors();
482
483 /** For serialization compatibility. */
484 private static final ObjectStreamField[] serialPersistentFields = {
485 new ObjectStreamField("segments", Segment[].class),
486 new ObjectStreamField("segmentMask", Integer.TYPE),
487 new ObjectStreamField("segmentShift", Integer.TYPE)
488 };
489
490 /**
491 * A padded cell for distributing counts. Adapted from LongAdder
492 * and Striped64. See their internal docs for explanation.
493 */
494 @sun.misc.Contended static final class Cell {
495 volatile long value;
496 Cell(long x) { value = x; }
497 }
498
499 /* ---------------- Fields -------------- */
500
501 /**
502 * The array of bins. Lazily initialized upon first insertion.
503 * Size is always a power of two. Accessed directly by iterators.
504 */
505 transient volatile Node<K,V>[] table;
506
507 /**
508 * The next table to use; non-null only while resizing.
509 */
510 private transient volatile Node<K,V>[] nextTable;
511
512 /**
513 * Base counter value, used mainly when there is no contention,
514 * but also as a fallback during table initialization
515 * races. Updated via CAS.
516 */
517 private transient volatile long baseCount;
518
519 /**
520 * Table initialization and resizing control. When negative, the
521 * table is being initialized or resized: -1 for initialization,
522 * else -(1 + the number of active resizing threads). Otherwise,
523 * when table is null, holds the initial table size to use upon
524 * creation, or 0 for default. After initialization, holds the
525 * next element count value upon which to resize the table.
526 */
527 private transient volatile int sizeCtl;
528
529 /**
530 * The next table index (plus one) to split while resizing.
531 */
532 private transient volatile int transferIndex;
533
534 /**
535 * The least available table index to split while resizing.
536 */
537 private transient volatile int transferOrigin;
538
539 /**
540 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
541 */
542 private transient volatile int cellsBusy;
543
544 /**
545 * Table of counter cells. When non-null, size is a power of 2.
546 */
547 private transient volatile Cell[] counterCells;
548
549 // views
550 private transient KeySetView<K,V> keySet;
551 private transient ValuesView<K,V> values;
552 private transient EntrySetView<K,V> entrySet;
553
554 /* ---------------- Table element access -------------- */
555
556 /*
557 * Volatile access methods are used for table elements as well as
558 * elements of in-progress next table while resizing. Uses are
559 * null checked by callers, and implicitly bounds-checked, relying
560 * on the invariants that tab arrays have non-zero size, and all
561 * indices are masked with (tab.length - 1) which is never
562 * negative and always less than length. Note that, to be correct
563 * wrt arbitrary concurrency errors by users, bounds checks must
564 * operate on local variables, which accounts for some odd-looking
565 * inline assignments below.
566 */
567
568 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
569 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
570 }
571
572 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
573 Node<K,V> c, Node<K,V> v) {
574 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
575 }
576
577 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
578 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
579 }
580
581 /* ---------------- Nodes -------------- */
582
583 /**
584 * Key-value entry. This class is never exported out as a
585 * user-mutable Map.Entry (i.e., one supporting setValue; see
586 * MapEntry below), but can be used for read-only traversals used
587 * in bulk tasks. Nodes with a hash field of MOVED are special,
588 * and do not contain user keys or values (and are never
589 * exported). Otherwise, keys and vals are never null.
590 */
591 static class Node<K,V> implements Map.Entry<K,V> {
592 final int hash;
593 final Object key;
594 volatile V val;
595 Node<K,V> next;
596
597 Node(int hash, Object key, V val, Node<K,V> next) {
598 this.hash = hash;
599 this.key = key;
600 this.val = val;
601 this.next = next;
602 }
603
604 public final K getKey() { return (K)key; }
605 public final V getValue() { return val; }
606 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
607 public final String toString(){ return key + "=" + val; }
608 public final V setValue(V value) {
609 throw new UnsupportedOperationException();
610 }
611
612 public final boolean equals(Object o) {
613 Object k, v, u; Map.Entry<?,?> e;
614 return ((o instanceof Map.Entry) &&
615 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
616 (v = e.getValue()) != null &&
617 (k == key || k.equals(key)) &&
618 (v == (u = val) || v.equals(u)));
619 }
620 }
621
622 /**
623 * Exported Entry for EntryIterator
624 */
625 static final class MapEntry<K,V> implements Map.Entry<K,V> {
626 final K key; // non-null
627 V val; // non-null
628 final ConcurrentHashMap<K,V> map;
629 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
630 this.key = key;
631 this.val = val;
632 this.map = map;
633 }
634 public K getKey() { return key; }
635 public V getValue() { return val; }
636 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
637 public String toString() { return key + "=" + val; }
638
639 public boolean equals(Object o) {
640 Object k, v; Map.Entry<?,?> e;
641 return ((o instanceof Map.Entry) &&
642 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
643 (v = e.getValue()) != null &&
644 (k == key || k.equals(key)) &&
645 (v == val || v.equals(val)));
646 }
647
648 /**
649 * Sets our entry's value and writes through to the map. The
650 * value to return is somewhat arbitrary here. Since we do not
651 * necessarily track asynchronous changes, the most recent
652 * "previous" value could be different from what we return (or
653 * could even have been removed, in which case the put will
654 * re-establish). We do not and cannot guarantee more.
655 */
656 public V setValue(V value) {
657 if (value == null) throw new NullPointerException();
658 V v = val;
659 val = value;
660 map.put(key, value);
661 return v;
662 }
663 }
664
665
666 /* ---------------- TreeBins -------------- */
667
668 /**
669 * Nodes for use in TreeBins
670 */
671 static final class TreeNode<K,V> extends Node<K,V> {
672 TreeNode<K,V> parent; // red-black tree links
673 TreeNode<K,V> left;
674 TreeNode<K,V> right;
675 TreeNode<K,V> prev; // needed to unlink next upon deletion
676 boolean red;
677
678 TreeNode(int hash, Object key, V val, Node<K,V> next,
679 TreeNode<K,V> parent) {
680 super(hash, key, val, next);
681 this.parent = parent;
682 }
683 }
684
685 /**
686 * Returns a Class for the given type of the form "class C
687 * implements Comparable<C>", if one exists, else null. See below
688 * for explanation.
689 */
690 static Class<?> comparableClassFor(Class<?> c) {
691 Class<?> s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
692 if (c == String.class) // bypass checks
693 return c;
694 if (c != null && (cmpc = Comparable.class).isAssignableFrom(c)) {
695 while (cmpc.isAssignableFrom(s = c.getSuperclass()))
696 c = s; // find topmost comparable class
697 if ((ts = c.getGenericInterfaces()) != null) {
698 for (int i = 0; i < ts.length; ++i) {
699 if (((t = ts[i]) instanceof ParameterizedType) &&
700 ((p = (ParameterizedType)t).getRawType() == cmpc) &&
701 (as = p.getActualTypeArguments()) != null &&
702 as.length == 1 && as[0] == c) // type arg is c
703 return c;
704 }
705 }
706 }
707 return null;
708 }
709
710 /**
711 * A specialized form of red-black tree for use in bins
712 * whose size exceeds a threshold.
713 *
714 * TreeBins use a special form of comparison for search and
715 * related operations (which is the main reason we cannot use
716 * existing collections such as TreeMaps). TreeBins contain
717 * Comparable elements, but may contain others, as well as
718 * elements that are Comparable but not necessarily Comparable
719 * for the same T, so we cannot invoke compareTo among them. To
720 * handle this, the tree is ordered primarily by hash value, then
721 * by Comparable.compareTo order if applicable. On lookup at a
722 * node, if elements are not comparable or compare as 0 then both
723 * left and right children may need to be searched in the case of
724 * tied hash values. (This corresponds to the full list search
725 * that would be necessary if all elements were non-Comparable and
726 * had tied hashes.) The red-black balancing code is updated from
727 * pre-jdk-collections
728 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
729 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
730 * Algorithms" (CLR).
731 *
732 * TreeBins also maintain a separate locking discipline than
733 * regular bins. Because they are forwarded via special MOVED
734 * nodes at bin heads (which can never change once established),
735 * we cannot use those nodes as locks. Instead, TreeBin extends
736 * StampedLock to support a form of read-write lock. For update
737 * operations and table validation, the exclusive form of lock
738 * behaves in the same way as bin-head locks. However, lookups use
739 * shared read-lock mechanics to allow multiple readers in the
740 * absence of writers. Additionally, these lookups do not ever
741 * block: While the lock is not available, they proceed along the
742 * slow traversal path (via next-pointers) until the lock becomes
743 * available or the list is exhausted, whichever comes
744 * first. These cases are not fast, but maximize aggregate
745 * expected throughput.
746 */
747 static final class TreeBin<K,V> extends StampedLock {
748 private static final long serialVersionUID = 2249069246763182397L;
749 transient TreeNode<K,V> root; // root of tree
750 transient TreeNode<K,V> first; // head of next-pointer list
751
752 /** From CLR */
753 private void rotateLeft(TreeNode<K,V> p) {
754 if (p != null) {
755 TreeNode<K,V> r = p.right, pp, rl;
756 if ((rl = p.right = r.left) != null)
757 rl.parent = p;
758 if ((pp = r.parent = p.parent) == null)
759 root = r;
760 else if (pp.left == p)
761 pp.left = r;
762 else
763 pp.right = r;
764 r.left = p;
765 p.parent = r;
766 }
767 }
768
769 /** From CLR */
770 private void rotateRight(TreeNode<K,V> p) {
771 if (p != null) {
772 TreeNode<K,V> l = p.left, pp, lr;
773 if ((lr = p.left = l.right) != null)
774 lr.parent = p;
775 if ((pp = l.parent = p.parent) == null)
776 root = l;
777 else if (pp.right == p)
778 pp.right = l;
779 else
780 pp.left = l;
781 l.right = p;
782 p.parent = l;
783 }
784 }
785
786 /**
787 * Returns the TreeNode (or null if not found) for the given key
788 * starting at given root.
789 */
790 final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
791 Class<?> cc) {
792 while (p != null) {
793 int dir, ph; Object pk; Class<?> pc;
794 if ((ph = p.hash) != h)
795 dir = (h < ph) ? -1 : 1;
796 else if ((pk = p.key) == k || k.equals(pk))
797 return p;
798 else if (cc == null || pk == null ||
799 ((pc = pk.getClass()) != cc &&
800 comparableClassFor(pc) != cc) ||
801 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
802 TreeNode<K,V> r, pr; // check both sides
803 if ((pr = p.right) != null &&
804 (r = getTreeNode(h, k, pr, cc)) != null)
805 return r;
806 else // continue left
807 dir = -1;
808 }
809 p = (dir > 0) ? p.right : p.left;
810 }
811 return null;
812 }
813
814 /**
815 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
816 * read-lock to call getTreeNode, but during failure to get
817 * lock, searches along next links.
818 */
819 final V getValue(int h, Object k) {
820 Class<?> cc = comparableClassFor(k.getClass());
821 Node<K,V> r = null;
822 for (Node<K,V> e = first; e != null; e = e.next) {
823 long s;
824 if ((s = tryReadLock()) != 0L) {
825 try {
826 r = getTreeNode(h, k, root, cc);
827 } finally {
828 unlockRead(s);
829 }
830 break;
831 }
832 else if (e.hash == h && k.equals(e.key)) {
833 r = e;
834 break;
835 }
836 }
837 return r == null ? null : r.val;
838 }
839
840 /**
841 * Finds or adds a node.
842 * @return null if added
843 */
844 final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
845 Class<?> cc = comparableClassFor(k.getClass());
846 TreeNode<K,V> pp = root, p = null;
847 int dir = 0;
848 while (pp != null) { // find existing node or leaf to insert at
849 int ph; Object pk; Class<?> pc;
850 p = pp;
851 if ((ph = p.hash) != h)
852 dir = (h < ph) ? -1 : 1;
853 else if ((pk = p.key) == k || k.equals(pk))
854 return p;
855 else if (cc == null || pk == null ||
856 ((pc = pk.getClass()) != cc &&
857 comparableClassFor(pc) != cc) ||
858 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
859 TreeNode<K,V> r, pr;
860 if ((pr = p.right) != null &&
861 (r = getTreeNode(h, k, pr, cc)) != null)
862 return r;
863 else // continue left
864 dir = -1;
865 }
866 pp = (dir > 0) ? p.right : p.left;
867 }
868
869 TreeNode<K,V> f = first;
870 TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
871 if (p == null)
872 root = x;
873 else { // attach and rebalance; adapted from CLR
874 if (f != null)
875 f.prev = x;
876 if (dir <= 0)
877 p.left = x;
878 else
879 p.right = x;
880 x.red = true;
881 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
882 if ((xp = x.parent) == null) {
883 (root = x).red = false;
884 break;
885 }
886 else if (!xp.red || (xpp = xp.parent) == null) {
887 TreeNode<K,V> r = root;
888 if (r != null && r.red)
889 r.red = false;
890 break;
891 }
892 else if ((xppl = xpp.left) == xp) {
893 if ((xppr = xpp.right) != null && xppr.red) {
894 xppr.red = false;
895 xp.red = false;
896 xpp.red = true;
897 x = xpp;
898 }
899 else {
900 if (x == xp.right) {
901 rotateLeft(x = xp);
902 xpp = (xp = x.parent) == null ? null : xp.parent;
903 }
904 if (xp != null) {
905 xp.red = false;
906 if (xpp != null) {
907 xpp.red = true;
908 rotateRight(xpp);
909 }
910 }
911 }
912 }
913 else {
914 if (xppl != null && xppl.red) {
915 xppl.red = false;
916 xp.red = false;
917 xpp.red = true;
918 x = xpp;
919 }
920 else {
921 if (x == xp.left) {
922 rotateRight(x = xp);
923 xpp = (xp = x.parent) == null ? null : xp.parent;
924 }
925 if (xp != null) {
926 xp.red = false;
927 if (xpp != null) {
928 xpp.red = true;
929 rotateLeft(xpp);
930 }
931 }
932 }
933 }
934 }
935 }
936 assert checkInvariants();
937 return null;
938 }
939
940 /**
941 * Removes the given node, that must be present before this
942 * call. This is messier than typical red-black deletion code
943 * because we cannot swap the contents of an interior node
944 * with a leaf successor that is pinned by "next" pointers
945 * that are accessible independently of lock. So instead we
946 * swap the tree linkages.
947 */
948 final void deleteTreeNode(TreeNode<K,V> p) {
949 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
950 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
951 if (pred == null)
952 first = next;
953 else
954 pred.next = next;
955 if (next != null)
956 next.prev = pred;
957 else if (pred == null) {
958 root = null;
959 return;
960 }
961 TreeNode<K,V> replacement;
962 TreeNode<K,V> pl = p.left;
963 TreeNode<K,V> pr = p.right;
964 if (pl != null && pr != null) {
965 TreeNode<K,V> s = pr, sl;
966 while ((sl = s.left) != null) // find successor
967 s = sl;
968 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
969 TreeNode<K,V> sr = s.right;
970 TreeNode<K,V> pp = p.parent;
971 if (s == pr) { // p was s's direct parent
972 p.parent = s;
973 s.right = p;
974 }
975 else {
976 TreeNode<K,V> sp = s.parent;
977 if ((p.parent = sp) != null) {
978 if (s == sp.left)
979 sp.left = p;
980 else
981 sp.right = p;
982 }
983 if ((s.right = pr) != null)
984 pr.parent = s;
985 }
986 p.left = null;
987 if ((p.right = sr) != null)
988 sr.parent = p;
989 if ((s.left = pl) != null)
990 pl.parent = s;
991 if ((s.parent = pp) == null)
992 root = s;
993 else if (p == pp.left)
994 pp.left = s;
995 else
996 pp.right = s;
997 if (sr != null)
998 replacement = sr;
999 else
1000 replacement = p;
1001 }
1002 else if (pl != null)
1003 replacement = pl;
1004 else if (pr != null)
1005 replacement = pr;
1006 else
1007 replacement = p;
1008 if (replacement != p) {
1009 TreeNode<K,V> pp = replacement.parent = p.parent;
1010 if (pp == null)
1011 root = replacement;
1012 else if (p == pp.left)
1013 pp.left = replacement;
1014 else
1015 pp.right = replacement;
1016 p.left = p.right = p.parent = null;
1017 }
1018 if (!p.red) { // rebalance, from CLR
1019 for (TreeNode<K,V> x = replacement; x != null; ) {
1020 TreeNode<K,V> xp, xpl, xpr;
1021 if (x.red || (xp = x.parent) == null) {
1022 x.red = false;
1023 break;
1024 }
1025 else if ((xpl = xp.left) == x) {
1026 if ((xpr = xp.right) != null && xpr.red) {
1027 xpr.red = false;
1028 xp.red = true;
1029 rotateLeft(xp);
1030 xpr = (xp = x.parent) == null ? null : xp.right;
1031 }
1032 if (xpr == null)
1033 x = xp;
1034 else {
1035 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
1036 if ((sr == null || !sr.red) &&
1037 (sl == null || !sl.red)) {
1038 xpr.red = true;
1039 x = xp;
1040 }
1041 else {
1042 if (sr == null || !sr.red) {
1043 if (sl != null)
1044 sl.red = false;
1045 xpr.red = true;
1046 rotateRight(xpr);
1047 xpr = (xp = x.parent) == null ?
1048 null : xp.right;
1049 }
1050 if (xpr != null) {
1051 xpr.red = (xp == null) ? false : xp.red;
1052 if ((sr = xpr.right) != null)
1053 sr.red = false;
1054 }
1055 if (xp != null) {
1056 xp.red = false;
1057 rotateLeft(xp);
1058 }
1059 x = root;
1060 }
1061 }
1062 }
1063 else { // symmetric
1064 if (xpl != null && xpl.red) {
1065 xpl.red = false;
1066 xp.red = true;
1067 rotateRight(xp);
1068 xpl = (xp = x.parent) == null ? null : xp.left;
1069 }
1070 if (xpl == null)
1071 x = xp;
1072 else {
1073 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
1074 if ((sl == null || !sl.red) &&
1075 (sr == null || !sr.red)) {
1076 xpl.red = true;
1077 x = xp;
1078 }
1079 else {
1080 if (sl == null || !sl.red) {
1081 if (sr != null)
1082 sr.red = false;
1083 xpl.red = true;
1084 rotateLeft(xpl);
1085 xpl = (xp = x.parent) == null ?
1086 null : xp.left;
1087 }
1088 if (xpl != null) {
1089 xpl.red = (xp == null) ? false : xp.red;
1090 if ((sl = xpl.left) != null)
1091 sl.red = false;
1092 }
1093 if (xp != null) {
1094 xp.red = false;
1095 rotateRight(xp);
1096 }
1097 x = root;
1098 }
1099 }
1100 }
1101 }
1102 }
1103 if (p == replacement) { // detach pointers
1104 TreeNode<K,V> pp;
1105 if ((pp = p.parent) != null) {
1106 if (p == pp.left)
1107 pp.left = null;
1108 else if (p == pp.right)
1109 pp.right = null;
1110 p.parent = null;
1111 }
1112 }
1113 assert checkInvariants();
1114 }
1115
1116 /**
1117 * Checks linkage and balance invariants at root
1118 */
1119 final boolean checkInvariants() {
1120 TreeNode<K,V> r = root;
1121 if (r == null)
1122 return (first == null);
1123 else
1124 return (first != null) && checkTreeNode(r);
1125 }
1126
1127 /**
1128 * Recursive invariant check
1129 */
1130 final boolean checkTreeNode(TreeNode<K,V> t) {
1131 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
1132 tb = t.prev, tn = (TreeNode<K,V>)t.next;
1133 if (tb != null && tb.next != t)
1134 return false;
1135 if (tn != null && tn.prev != t)
1136 return false;
1137 if (tp != null && t != tp.left && t != tp.right)
1138 return false;
1139 if (tl != null && (tl.parent != t || tl.hash > t.hash))
1140 return false;
1141 if (tr != null && (tr.parent != t || tr.hash < t.hash))
1142 return false;
1143 if (t.red && tl != null && tl.red && tr != null && tr.red)
1144 return false;
1145 if (tl != null && !checkTreeNode(tl))
1146 return false;
1147 if (tr != null && !checkTreeNode(tr))
1148 return false;
1149 return true;
1150 }
1151 }
1152
1153 /* ---------------- Collision reduction methods -------------- */
1154
1155 /**
1156 * Spreads higher bits to lower, and also forces top bit to 0.
1157 * Because the table uses power-of-two masking, sets of hashes
1158 * that vary only in bits above the current mask will always
1159 * collide. (Among known examples are sets of Float keys holding
1160 * consecutive whole numbers in small tables.) To counter this,
1161 * we apply a transform that spreads the impact of higher bits
1162 * downward. There is a tradeoff between speed, utility, and
1163 * quality of bit-spreading. Because many common sets of hashes
1164 * are already reasonably distributed across bits (so don't benefit
1165 * from spreading), and because we use trees to handle large sets
1166 * of collisions in bins, we don't need excessively high quality.
1167 */
1168 private static final int spread(int h) {
1169 h ^= (h >>> 18) ^ (h >>> 12);
1170 return (h ^ (h >>> 10)) & HASH_BITS;
1171 }
1172
1173 /**
1174 * Replaces a list bin with a tree bin if key is comparable. Call
1175 * only when locked.
1176 */
1177 private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1178 if (tab != null && comparableClassFor(key.getClass()) != null) {
1179 TreeBin<K,V> t = new TreeBin<K,V>();
1180 for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1181 t.putTreeNode(e.hash, e.key, e.val);
1182 setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1183 }
1184 }
1185
1186 /* ---------------- Internal access and update methods -------------- */
1187
1188 /** Implementation for get and containsKey */
1189 private final V internalGet(Object k) {
1190 int h = spread(k.hashCode());
1191 V v = null;
1192 Node<K,V>[] tab; Node<K,V> e;
1193 if ((tab = table) != null &&
1194 (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1195 for (;;) {
1196 int eh; Object ek;
1197 if ((eh = e.hash) < 0) {
1198 if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1199 v = ((TreeBin<K,V>)ek).getValue(h, k);
1200 break;
1201 }
1202 else if (!(ek instanceof Node[]) || // try new table
1203 (e = tabAt(tab = (Node<K,V>[])ek,
1204 (tab.length - 1) & h)) == null)
1205 break;
1206 }
1207 else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1208 v = e.val;
1209 break;
1210 }
1211 else if ((e = e.next) == null)
1212 break;
1213 }
1214 }
1215 return v;
1216 }
1217
1218 /**
1219 * Implementation for the four public remove/replace methods:
1220 * Replaces node value with v, conditional upon match of cv if
1221 * non-null. If resulting value is null, delete.
1222 */
1223 private final V internalReplace(Object k, V v, Object cv) {
1224 int h = spread(k.hashCode());
1225 V oldVal = null;
1226 for (Node<K,V>[] tab = table;;) {
1227 Node<K,V> f; int i, fh; Object fk;
1228 if (tab == null ||
1229 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1230 break;
1231 else if ((fh = f.hash) < 0) {
1232 if ((fk = f.key) instanceof TreeBin) {
1233 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1234 long stamp = t.writeLock();
1235 boolean validated = false;
1236 boolean deleted = false;
1237 try {
1238 if (tabAt(tab, i) == f) {
1239 validated = true;
1240 Class<?> cc = comparableClassFor(k.getClass());
1241 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1242 if (p != null) {
1243 V pv = p.val;
1244 if (cv == null || cv == pv || cv.equals(pv)) {
1245 oldVal = pv;
1246 if (v != null)
1247 p.val = v;
1248 else {
1249 deleted = true;
1250 t.deleteTreeNode(p);
1251 }
1252 }
1253 }
1254 }
1255 } finally {
1256 t.unlockWrite(stamp);
1257 }
1258 if (validated) {
1259 if (deleted)
1260 addCount(-1L, -1);
1261 break;
1262 }
1263 }
1264 else
1265 tab = (Node<K,V>[])fk;
1266 }
1267 else {
1268 boolean validated = false;
1269 boolean deleted = false;
1270 synchronized (f) {
1271 if (tabAt(tab, i) == f) {
1272 validated = true;
1273 for (Node<K,V> e = f, pred = null;;) {
1274 Object ek;
1275 if (e.hash == h &&
1276 ((ek = e.key) == k || k.equals(ek))) {
1277 V ev = e.val;
1278 if (cv == null || cv == ev || cv.equals(ev)) {
1279 oldVal = ev;
1280 if (v != null)
1281 e.val = v;
1282 else {
1283 deleted = true;
1284 Node<K,V> en = e.next;
1285 if (pred != null)
1286 pred.next = en;
1287 else
1288 setTabAt(tab, i, en);
1289 }
1290 }
1291 break;
1292 }
1293 pred = e;
1294 if ((e = e.next) == null)
1295 break;
1296 }
1297 }
1298 }
1299 if (validated) {
1300 if (deleted)
1301 addCount(-1L, -1);
1302 break;
1303 }
1304 }
1305 }
1306 return oldVal;
1307 }
1308
1309 /*
1310 * Internal versions of insertion methods
1311 * All have the same basic structure as the first (internalPut):
1312 * 1. If table uninitialized, create
1313 * 2. If bin empty, try to CAS new node
1314 * 3. If bin stale, use new table
1315 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1316 * 5. Lock and validate; if valid, scan and add or update
1317 *
1318 * The putAll method differs mainly in attempting to pre-allocate
1319 * enough table space, and also more lazily performs count updates
1320 * and checks.
1321 *
1322 * Most of the function-accepting methods can't be factored nicely
1323 * because they require different functional forms, so instead
1324 * sprawl out similar mechanics.
1325 */
1326
1327 /** Implementation for put and putIfAbsent */
1328 private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1329 if (k == null || v == null) throw new NullPointerException();
1330 int h = spread(k.hashCode());
1331 int len = 0;
1332 for (Node<K,V>[] tab = table;;) {
1333 int i, fh; Node<K,V> f; Object fk;
1334 if (tab == null)
1335 tab = initTable();
1336 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1337 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1338 break; // no lock when adding to empty bin
1339 }
1340 else if ((fh = f.hash) < 0) {
1341 if ((fk = f.key) instanceof TreeBin) {
1342 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1343 long stamp = t.writeLock();
1344 V oldVal = null;
1345 try {
1346 if (tabAt(tab, i) == f) {
1347 len = 2;
1348 TreeNode<K,V> p = t.putTreeNode(h, k, v);
1349 if (p != null) {
1350 oldVal = p.val;
1351 if (!onlyIfAbsent)
1352 p.val = v;
1353 }
1354 }
1355 } finally {
1356 t.unlockWrite(stamp);
1357 }
1358 if (len != 0) {
1359 if (oldVal != null)
1360 return oldVal;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<K,V>[])fk;
1366 }
1367 else {
1368 V oldVal = null;
1369 synchronized (f) {
1370 if (tabAt(tab, i) == f) {
1371 len = 1;
1372 for (Node<K,V> e = f;; ++len) {
1373 Object ek;
1374 if (e.hash == h &&
1375 ((ek = e.key) == k || k.equals(ek))) {
1376 oldVal = e.val;
1377 if (!onlyIfAbsent)
1378 e.val = v;
1379 break;
1380 }
1381 Node<K,V> last = e;
1382 if ((e = e.next) == null) {
1383 last.next = new Node<K,V>(h, k, v, null);
1384 if (len > TREE_THRESHOLD)
1385 replaceWithTreeBin(tab, i, k);
1386 break;
1387 }
1388 }
1389 }
1390 }
1391 if (len != 0) {
1392 if (oldVal != null)
1393 return oldVal;
1394 break;
1395 }
1396 }
1397 }
1398 addCount(1L, len);
1399 return null;
1400 }
1401
1402 /** Implementation for computeIfAbsent */
1403 private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1404 if (k == null || mf == null)
1405 throw new NullPointerException();
1406 int h = spread(k.hashCode());
1407 V val = null;
1408 int len = 0;
1409 for (Node<K,V>[] tab = table;;) {
1410 Node<K,V> f; int i; Object fk;
1411 if (tab == null)
1412 tab = initTable();
1413 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1414 Node<K,V> node = new Node<K,V>(h, k, null, null);
1415 synchronized (node) {
1416 if (casTabAt(tab, i, null, node)) {
1417 len = 1;
1418 try {
1419 if ((val = mf.apply(k)) != null)
1420 node.val = val;
1421 } finally {
1422 if (val == null)
1423 setTabAt(tab, i, null);
1424 }
1425 }
1426 }
1427 if (len != 0)
1428 break;
1429 }
1430 else if (f.hash < 0) {
1431 if ((fk = f.key) instanceof TreeBin) {
1432 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1433 long stamp = t.writeLock();
1434 boolean added = false;
1435 try {
1436 if (tabAt(tab, i) == f) {
1437 len = 2;
1438 Class<?> cc = comparableClassFor(k.getClass());
1439 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1440 if (p != null)
1441 val = p.val;
1442 else if ((val = mf.apply(k)) != null) {
1443 added = true;
1444 t.putTreeNode(h, k, val);
1445 }
1446 }
1447 } finally {
1448 t.unlockWrite(stamp);
1449 }
1450 if (len != 0) {
1451 if (!added)
1452 return val;
1453 break;
1454 }
1455 }
1456 else
1457 tab = (Node<K,V>[])fk;
1458 }
1459 else {
1460 boolean added = false;
1461 synchronized (f) {
1462 if (tabAt(tab, i) == f) {
1463 len = 1;
1464 for (Node<K,V> e = f;; ++len) {
1465 Object ek; V ev;
1466 if (e.hash == h &&
1467 ((ek = e.key) == k || k.equals(ek))) {
1468 val = e.val;
1469 break;
1470 }
1471 Node<K,V> last = e;
1472 if ((e = e.next) == null) {
1473 if ((val = mf.apply(k)) != null) {
1474 added = true;
1475 last.next = new Node<K,V>(h, k, val, null);
1476 if (len > TREE_THRESHOLD)
1477 replaceWithTreeBin(tab, i, k);
1478 }
1479 break;
1480 }
1481 }
1482 }
1483 }
1484 if (len != 0) {
1485 if (!added)
1486 return val;
1487 break;
1488 }
1489 }
1490 }
1491 if (val != null)
1492 addCount(1L, len);
1493 return val;
1494 }
1495
1496 /** Implementation for compute */
1497 private final V internalCompute(K k, boolean onlyIfPresent,
1498 BiFunction<? super K, ? super V, ? extends V> mf) {
1499 if (k == null || mf == null)
1500 throw new NullPointerException();
1501 int h = spread(k.hashCode());
1502 V val = null;
1503 int delta = 0;
1504 int len = 0;
1505 for (Node<K,V>[] tab = table;;) {
1506 Node<K,V> f; int i, fh; Object fk;
1507 if (tab == null)
1508 tab = initTable();
1509 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1510 if (onlyIfPresent)
1511 break;
1512 Node<K,V> node = new Node<K,V>(h, k, null, null);
1513 synchronized (node) {
1514 if (casTabAt(tab, i, null, node)) {
1515 try {
1516 len = 1;
1517 if ((val = mf.apply(k, null)) != null) {
1518 node.val = val;
1519 delta = 1;
1520 }
1521 } finally {
1522 if (delta == 0)
1523 setTabAt(tab, i, null);
1524 }
1525 }
1526 }
1527 if (len != 0)
1528 break;
1529 }
1530 else if ((fh = f.hash) < 0) {
1531 if ((fk = f.key) instanceof TreeBin) {
1532 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1533 long stamp = t.writeLock();
1534 try {
1535 if (tabAt(tab, i) == f) {
1536 len = 2;
1537 Class<?> cc = comparableClassFor(k.getClass());
1538 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1539 if (p != null || !onlyIfPresent) {
1540 V pv = (p == null) ? null : p.val;
1541 if ((val = mf.apply(k, pv)) != null) {
1542 if (p != null)
1543 p.val = val;
1544 else {
1545 delta = 1;
1546 t.putTreeNode(h, k, val);
1547 }
1548 }
1549 else if (p != null) {
1550 delta = -1;
1551 t.deleteTreeNode(p);
1552 }
1553 }
1554 }
1555 } finally {
1556 t.unlockWrite(stamp);
1557 }
1558 if (len != 0)
1559 break;
1560 }
1561 else
1562 tab = (Node<K,V>[])fk;
1563 }
1564 else {
1565 synchronized (f) {
1566 if (tabAt(tab, i) == f) {
1567 len = 1;
1568 for (Node<K,V> e = f, pred = null;; ++len) {
1569 Object ek;
1570 if (e.hash == h &&
1571 ((ek = e.key) == k || k.equals(ek))) {
1572 val = mf.apply(k, e.val);
1573 if (val != null)
1574 e.val = val;
1575 else {
1576 delta = -1;
1577 Node<K,V> en = e.next;
1578 if (pred != null)
1579 pred.next = en;
1580 else
1581 setTabAt(tab, i, en);
1582 }
1583 break;
1584 }
1585 pred = e;
1586 if ((e = e.next) == null) {
1587 if (!onlyIfPresent &&
1588 (val = mf.apply(k, null)) != null) {
1589 pred.next = new Node<K,V>(h, k, val, null);
1590 delta = 1;
1591 if (len > TREE_THRESHOLD)
1592 replaceWithTreeBin(tab, i, k);
1593 }
1594 break;
1595 }
1596 }
1597 }
1598 }
1599 if (len != 0)
1600 break;
1601 }
1602 }
1603 if (delta != 0)
1604 addCount((long)delta, len);
1605 return val;
1606 }
1607
1608 /** Implementation for merge */
1609 private final V internalMerge(K k, V v,
1610 BiFunction<? super V, ? super V, ? extends V> mf) {
1611 if (k == null || v == null || mf == null)
1612 throw new NullPointerException();
1613 int h = spread(k.hashCode());
1614 V val = null;
1615 int delta = 0;
1616 int len = 0;
1617 for (Node<K,V>[] tab = table;;) {
1618 int i; Node<K,V> f; Object fk;
1619 if (tab == null)
1620 tab = initTable();
1621 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1622 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1623 delta = 1;
1624 val = v;
1625 break;
1626 }
1627 }
1628 else if (f.hash < 0) {
1629 if ((fk = f.key) instanceof TreeBin) {
1630 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1631 long stamp = t.writeLock();
1632 try {
1633 if (tabAt(tab, i) == f) {
1634 len = 2;
1635 Class<?> cc = comparableClassFor(k.getClass());
1636 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1637 val = (p == null) ? v : mf.apply(p.val, v);
1638 if (val != null) {
1639 if (p != null)
1640 p.val = val;
1641 else {
1642 delta = 1;
1643 t.putTreeNode(h, k, val);
1644 }
1645 }
1646 else if (p != null) {
1647 delta = -1;
1648 t.deleteTreeNode(p);
1649 }
1650 }
1651 } finally {
1652 t.unlockWrite(stamp);
1653 }
1654 if (len != 0)
1655 break;
1656 }
1657 else
1658 tab = (Node<K,V>[])fk;
1659 }
1660 else {
1661 synchronized (f) {
1662 if (tabAt(tab, i) == f) {
1663 len = 1;
1664 for (Node<K,V> e = f, pred = null;; ++len) {
1665 Object ek;
1666 if (e.hash == h &&
1667 ((ek = e.key) == k || k.equals(ek))) {
1668 val = mf.apply(e.val, v);
1669 if (val != null)
1670 e.val = val;
1671 else {
1672 delta = -1;
1673 Node<K,V> en = e.next;
1674 if (pred != null)
1675 pred.next = en;
1676 else
1677 setTabAt(tab, i, en);
1678 }
1679 break;
1680 }
1681 pred = e;
1682 if ((e = e.next) == null) {
1683 delta = 1;
1684 val = v;
1685 pred.next = new Node<K,V>(h, k, val, null);
1686 if (len > TREE_THRESHOLD)
1687 replaceWithTreeBin(tab, i, k);
1688 break;
1689 }
1690 }
1691 }
1692 }
1693 if (len != 0)
1694 break;
1695 }
1696 }
1697 if (delta != 0)
1698 addCount((long)delta, len);
1699 return val;
1700 }
1701
1702 /** Implementation for putAll */
1703 private final void internalPutAll(Map<? extends K, ? extends V> m) {
1704 tryPresize(m.size());
1705 long delta = 0L; // number of uncommitted additions
1706 boolean npe = false; // to throw exception on exit for nulls
1707 try { // to clean up counts on other exceptions
1708 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1709 Object k; V v;
1710 if (entry == null || (k = entry.getKey()) == null ||
1711 (v = entry.getValue()) == null) {
1712 npe = true;
1713 break;
1714 }
1715 int h = spread(k.hashCode());
1716 for (Node<K,V>[] tab = table;;) {
1717 int i; Node<K,V> f; int fh; Object fk;
1718 if (tab == null)
1719 tab = initTable();
1720 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1721 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1722 ++delta;
1723 break;
1724 }
1725 }
1726 else if ((fh = f.hash) < 0) {
1727 if ((fk = f.key) instanceof TreeBin) {
1728 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1729 long stamp = t.writeLock();
1730 boolean validated = false;
1731 try {
1732 if (tabAt(tab, i) == f) {
1733 validated = true;
1734 Class<?> cc = comparableClassFor(k.getClass());
1735 TreeNode<K,V> p = t.getTreeNode(h, k,
1736 t.root, cc);
1737 if (p != null)
1738 p.val = v;
1739 else {
1740 ++delta;
1741 t.putTreeNode(h, k, v);
1742 }
1743 }
1744 } finally {
1745 t.unlockWrite(stamp);
1746 }
1747 if (validated)
1748 break;
1749 }
1750 else
1751 tab = (Node<K,V>[])fk;
1752 }
1753 else {
1754 int len = 0;
1755 synchronized (f) {
1756 if (tabAt(tab, i) == f) {
1757 len = 1;
1758 for (Node<K,V> e = f;; ++len) {
1759 Object ek;
1760 if (e.hash == h &&
1761 ((ek = e.key) == k || k.equals(ek))) {
1762 e.val = v;
1763 break;
1764 }
1765 Node<K,V> last = e;
1766 if ((e = e.next) == null) {
1767 ++delta;
1768 last.next = new Node<K,V>(h, k, v, null);
1769 if (len > TREE_THRESHOLD)
1770 replaceWithTreeBin(tab, i, k);
1771 break;
1772 }
1773 }
1774 }
1775 }
1776 if (len != 0) {
1777 if (len > 1) {
1778 addCount(delta, len);
1779 delta = 0L;
1780 }
1781 break;
1782 }
1783 }
1784 }
1785 }
1786 } finally {
1787 if (delta != 0L)
1788 addCount(delta, 2);
1789 }
1790 if (npe)
1791 throw new NullPointerException();
1792 }
1793
1794 /**
1795 * Implementation for clear. Steps through each bin, removing all
1796 * nodes.
1797 */
1798 private final void internalClear() {
1799 long delta = 0L; // negative number of deletions
1800 int i = 0;
1801 Node<K,V>[] tab = table;
1802 while (tab != null && i < tab.length) {
1803 Node<K,V> f = tabAt(tab, i);
1804 if (f == null)
1805 ++i;
1806 else if (f.hash < 0) {
1807 Object fk;
1808 if ((fk = f.key) instanceof TreeBin) {
1809 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1810 long stamp = t.writeLock();
1811 try {
1812 if (tabAt(tab, i) == f) {
1813 for (Node<K,V> p = t.first; p != null; p = p.next)
1814 --delta;
1815 t.first = null;
1816 t.root = null;
1817 ++i;
1818 }
1819 } finally {
1820 t.unlockWrite(stamp);
1821 }
1822 }
1823 else
1824 tab = (Node<K,V>[])fk;
1825 }
1826 else {
1827 synchronized (f) {
1828 if (tabAt(tab, i) == f) {
1829 for (Node<K,V> e = f; e != null; e = e.next)
1830 --delta;
1831 setTabAt(tab, i, null);
1832 ++i;
1833 }
1834 }
1835 }
1836 }
1837 if (delta != 0L)
1838 addCount(delta, -1);
1839 }
1840
1841 /* ---------------- Table Initialization and Resizing -------------- */
1842
1843 /**
1844 * Returns a power of two table size for the given desired capacity.
1845 * See Hackers Delight, sec 3.2
1846 */
1847 private static final int tableSizeFor(int c) {
1848 int n = c - 1;
1849 n |= n >>> 1;
1850 n |= n >>> 2;
1851 n |= n >>> 4;
1852 n |= n >>> 8;
1853 n |= n >>> 16;
1854 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1855 }
1856
1857 /**
1858 * Initializes table, using the size recorded in sizeCtl.
1859 */
1860 private final Node<K,V>[] initTable() {
1861 Node<K,V>[] tab; int sc;
1862 while ((tab = table) == null) {
1863 if ((sc = sizeCtl) < 0)
1864 Thread.yield(); // lost initialization race; just spin
1865 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1866 try {
1867 if ((tab = table) == null) {
1868 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1869 table = tab = (Node<K,V>[])new Node[n];
1870 sc = n - (n >>> 2);
1871 }
1872 } finally {
1873 sizeCtl = sc;
1874 }
1875 break;
1876 }
1877 }
1878 return tab;
1879 }
1880
1881 /**
1882 * Adds to count, and if table is too small and not already
1883 * resizing, initiates transfer. If already resizing, helps
1884 * perform transfer if work is available. Rechecks occupancy
1885 * after a transfer to see if another resize is already needed
1886 * because resizings are lagging additions.
1887 *
1888 * @param x the count to add
1889 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1890 */
1891 private final void addCount(long x, int check) {
1892 Cell[] as; long b, s;
1893 if ((as = counterCells) != null ||
1894 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1895 Cell a; long v; int m;
1896 boolean uncontended = true;
1897 if (as == null || (m = as.length - 1) < 0 ||
1898 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1899 !(uncontended =
1900 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1901 fullAddCount(x, uncontended);
1902 return;
1903 }
1904 if (check <= 1)
1905 return;
1906 s = sumCount();
1907 }
1908 if (check >= 0) {
1909 Node<K,V>[] tab, nt; int sc;
1910 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1911 tab.length < MAXIMUM_CAPACITY) {
1912 if (sc < 0) {
1913 if (sc == -1 || transferIndex <= transferOrigin ||
1914 (nt = nextTable) == null)
1915 break;
1916 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1917 transfer(tab, nt);
1918 }
1919 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1920 transfer(tab, null);
1921 s = sumCount();
1922 }
1923 }
1924 }
1925
1926 /**
1927 * Tries to presize table to accommodate the given number of elements.
1928 *
1929 * @param size number of elements (doesn't need to be perfectly accurate)
1930 */
1931 private final void tryPresize(int size) {
1932 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1933 tableSizeFor(size + (size >>> 1) + 1);
1934 int sc;
1935 while ((sc = sizeCtl) >= 0) {
1936 Node<K,V>[] tab = table; int n;
1937 if (tab == null || (n = tab.length) == 0) {
1938 n = (sc > c) ? sc : c;
1939 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1940 try {
1941 if (table == tab) {
1942 table = (Node<K,V>[])new Node[n];
1943 sc = n - (n >>> 2);
1944 }
1945 } finally {
1946 sizeCtl = sc;
1947 }
1948 }
1949 }
1950 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1951 break;
1952 else if (tab == table &&
1953 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1954 transfer(tab, null);
1955 }
1956 }
1957
1958 /**
1959 * Moves and/or copies the nodes in each bin to new table. See
1960 * above for explanation.
1961 */
1962 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1963 int n = tab.length, stride;
1964 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1965 stride = MIN_TRANSFER_STRIDE; // subdivide range
1966 if (nextTab == null) { // initiating
1967 try {
1968 nextTab = (Node<K,V>[])new Node[n << 1];
1969 } catch (Throwable ex) { // try to cope with OOME
1970 sizeCtl = Integer.MAX_VALUE;
1971 return;
1972 }
1973 nextTable = nextTab;
1974 transferOrigin = n;
1975 transferIndex = n;
1976 Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
1977 for (int k = n; k > 0;) { // progressively reveal ready slots
1978 int nextk = (k > stride) ? k - stride : 0;
1979 for (int m = nextk; m < k; ++m)
1980 nextTab[m] = rev;
1981 for (int m = n + nextk; m < n + k; ++m)
1982 nextTab[m] = rev;
1983 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1984 }
1985 }
1986 int nextn = nextTab.length;
1987 Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
1988 boolean advance = true;
1989 for (int i = 0, bound = 0;;) {
1990 int nextIndex, nextBound; Node<K,V> f; Object fk;
1991 while (advance) {
1992 if (--i >= bound)
1993 advance = false;
1994 else if ((nextIndex = transferIndex) <= transferOrigin) {
1995 i = -1;
1996 advance = false;
1997 }
1998 else if (U.compareAndSwapInt
1999 (this, TRANSFERINDEX, nextIndex,
2000 nextBound = (nextIndex > stride ?
2001 nextIndex - stride : 0))) {
2002 bound = nextBound;
2003 i = nextIndex - 1;
2004 advance = false;
2005 }
2006 }
2007 if (i < 0 || i >= n || i + n >= nextn) {
2008 for (int sc;;) {
2009 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2010 if (sc == -1) {
2011 nextTable = null;
2012 table = nextTab;
2013 sizeCtl = (n << 1) - (n >>> 1);
2014 }
2015 return;
2016 }
2017 }
2018 }
2019 else if ((f = tabAt(tab, i)) == null) {
2020 if (casTabAt(tab, i, null, fwd)) {
2021 setTabAt(nextTab, i, null);
2022 setTabAt(nextTab, i + n, null);
2023 advance = true;
2024 }
2025 }
2026 else if (f.hash >= 0) {
2027 synchronized (f) {
2028 if (tabAt(tab, i) == f) {
2029 int runBit = f.hash & n;
2030 Node<K,V> lastRun = f, lo = null, hi = null;
2031 for (Node<K,V> p = f.next; p != null; p = p.next) {
2032 int b = p.hash & n;
2033 if (b != runBit) {
2034 runBit = b;
2035 lastRun = p;
2036 }
2037 }
2038 if (runBit == 0)
2039 lo = lastRun;
2040 else
2041 hi = lastRun;
2042 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2043 int ph = p.hash; Object pk = p.key; V pv = p.val;
2044 if ((ph & n) == 0)
2045 lo = new Node<K,V>(ph, pk, pv, lo);
2046 else
2047 hi = new Node<K,V>(ph, pk, pv, hi);
2048 }
2049 setTabAt(nextTab, i, lo);
2050 setTabAt(nextTab, i + n, hi);
2051 setTabAt(tab, i, fwd);
2052 advance = true;
2053 }
2054 }
2055 }
2056 else if ((fk = f.key) instanceof TreeBin) {
2057 TreeBin<K,V> t = (TreeBin<K,V>)fk;
2058 long stamp = t.writeLock();
2059 try {
2060 if (tabAt(tab, i) == f) {
2061 TreeNode<K,V> root;
2062 Node<K,V> ln = null, hn = null;
2063 if ((root = t.root) != null) {
2064 Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2065 TreeBin<K,V> lt = null, ht = null;
2066 for (lr = root; lr.left != null; lr = lr.left);
2067 for (rr = root; rr.right != null; rr = rr.right);
2068 if ((lh = lr.hash) == rr.hash) { // move entire tree
2069 if ((lh & n) == 0)
2070 lt = t;
2071 else
2072 ht = t;
2073 }
2074 else {
2075 lt = new TreeBin<K,V>();
2076 ht = new TreeBin<K,V>();
2077 int lc = 0, hc = 0;
2078 for (e = t.first; e != null; e = e.next) {
2079 int h = e.hash;
2080 Object k = e.key; V v = e.val;
2081 if ((h & n) == 0) {
2082 ++lc;
2083 lt.putTreeNode(h, k, v);
2084 }
2085 else {
2086 ++hc;
2087 ht.putTreeNode(h, k, v);
2088 }
2089 }
2090 if (lc < TREE_THRESHOLD) { // throw away
2091 for (p = lt.first; p != null; p = p.next)
2092 ln = new Node<K,V>(p.hash, p.key,
2093 p.val, ln);
2094 lt = null;
2095 }
2096 if (hc < TREE_THRESHOLD) {
2097 for (p = ht.first; p != null; p = p.next)
2098 hn = new Node<K,V>(p.hash, p.key,
2099 p.val, hn);
2100 ht = null;
2101 }
2102 }
2103 if (ln == null && lt != null)
2104 ln = new Node<K,V>(MOVED, lt, null, null);
2105 if (hn == null && ht != null)
2106 hn = new Node<K,V>(MOVED, ht, null, null);
2107 }
2108 setTabAt(nextTab, i, ln);
2109 setTabAt(nextTab, i + n, hn);
2110 setTabAt(tab, i, fwd);
2111 advance = true;
2112 }
2113 } finally {
2114 t.unlockWrite(stamp);
2115 }
2116 }
2117 else
2118 advance = true; // already processed
2119 }
2120 }
2121
2122 /* ---------------- Counter support -------------- */
2123
2124 final long sumCount() {
2125 Cell[] as = counterCells; Cell a;
2126 long sum = baseCount;
2127 if (as != null) {
2128 for (int i = 0; i < as.length; ++i) {
2129 if ((a = as[i]) != null)
2130 sum += a.value;
2131 }
2132 }
2133 return sum;
2134 }
2135
2136 // See LongAdder version for explanation
2137 private final void fullAddCount(long x, boolean wasUncontended) {
2138 int h;
2139 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2140 ThreadLocalRandom.localInit(); // force initialization
2141 h = ThreadLocalRandom.getProbe();
2142 wasUncontended = true;
2143 }
2144 boolean collide = false; // True if last slot nonempty
2145 for (;;) {
2146 Cell[] as; Cell a; int n; long v;
2147 if ((as = counterCells) != null && (n = as.length) > 0) {
2148 if ((a = as[(n - 1) & h]) == null) {
2149 if (cellsBusy == 0) { // Try to attach new Cell
2150 Cell r = new Cell(x); // Optimistic create
2151 if (cellsBusy == 0 &&
2152 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2153 boolean created = false;
2154 try { // Recheck under lock
2155 Cell[] rs; int m, j;
2156 if ((rs = counterCells) != null &&
2157 (m = rs.length) > 0 &&
2158 rs[j = (m - 1) & h] == null) {
2159 rs[j] = r;
2160 created = true;
2161 }
2162 } finally {
2163 cellsBusy = 0;
2164 }
2165 if (created)
2166 break;
2167 continue; // Slot is now non-empty
2168 }
2169 }
2170 collide = false;
2171 }
2172 else if (!wasUncontended) // CAS already known to fail
2173 wasUncontended = true; // Continue after rehash
2174 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2175 break;
2176 else if (counterCells != as || n >= NCPU)
2177 collide = false; // At max size or stale
2178 else if (!collide)
2179 collide = true;
2180 else if (cellsBusy == 0 &&
2181 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2182 try {
2183 if (counterCells == as) {// Expand table unless stale
2184 Cell[] rs = new Cell[n << 1];
2185 for (int i = 0; i < n; ++i)
2186 rs[i] = as[i];
2187 counterCells = rs;
2188 }
2189 } finally {
2190 cellsBusy = 0;
2191 }
2192 collide = false;
2193 continue; // Retry with expanded table
2194 }
2195 h = ThreadLocalRandom.advanceProbe(h);
2196 }
2197 else if (cellsBusy == 0 && counterCells == as &&
2198 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2199 boolean init = false;
2200 try { // Initialize table
2201 if (counterCells == as) {
2202 Cell[] rs = new Cell[2];
2203 rs[h & 1] = new Cell(x);
2204 counterCells = rs;
2205 init = true;
2206 }
2207 } finally {
2208 cellsBusy = 0;
2209 }
2210 if (init)
2211 break;
2212 }
2213 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2214 break; // Fall back on using base
2215 }
2216 }
2217
2218 /* ----------------Table Traversal -------------- */
2219
2220 /**
2221 * Encapsulates traversal for methods such as containsValue; also
2222 * serves as a base class for other iterators and spliterators.
2223 *
2224 * Method advance visits once each still-valid node that was
2225 * reachable upon iterator construction. It might miss some that
2226 * were added to a bin after the bin was visited, which is OK wrt
2227 * consistency guarantees. Maintaining this property in the face
2228 * of possible ongoing resizes requires a fair amount of
2229 * bookkeeping state that is difficult to optimize away amidst
2230 * volatile accesses. Even so, traversal maintains reasonable
2231 * throughput.
2232 *
2233 * Normally, iteration proceeds bin-by-bin traversing lists.
2234 * However, if the table has been resized, then all future steps
2235 * must traverse both the bin at the current index as well as at
2236 * (index + baseSize); and so on for further resizings. To
2237 * paranoically cope with potential sharing by users of iterators
2238 * across threads, iteration terminates if a bounds checks fails
2239 * for a table read.
2240 */
2241 static class Traverser<K,V> {
2242 Node<K,V>[] tab; // current table; updated if resized
2243 Node<K,V> next; // the next entry to use
2244 int index; // index of bin to use next
2245 int baseIndex; // current index of initial table
2246 int baseLimit; // index bound for initial table
2247 final int baseSize; // initial table size
2248
2249 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2250 this.tab = tab;
2251 this.baseSize = size;
2252 this.baseIndex = this.index = index;
2253 this.baseLimit = limit;
2254 this.next = null;
2255 }
2256
2257 /**
2258 * Advances if possible, returning next valid node, or null if none.
2259 */
2260 final Node<K,V> advance() {
2261 Node<K,V> e;
2262 if ((e = next) != null)
2263 e = e.next;
2264 for (;;) {
2265 Node<K,V>[] t; int i, n; Object ek; // must use locals in checks
2266 if (e != null)
2267 return next = e;
2268 if (baseIndex >= baseLimit || (t = tab) == null ||
2269 (n = t.length) <= (i = index) || i < 0)
2270 return next = null;
2271 if ((e = tabAt(t, index)) != null && e.hash < 0) {
2272 if ((ek = e.key) instanceof TreeBin)
2273 e = ((TreeBin<K,V>)ek).first;
2274 else {
2275 tab = (Node<K,V>[])ek;
2276 e = null;
2277 continue;
2278 }
2279 }
2280 if ((index += baseSize) >= n)
2281 index = ++baseIndex; // visit upper slots if present
2282 }
2283 }
2284 }
2285
2286 /**
2287 * Base of key, value, and entry Iterators. Adds fields to
2288 * Traverser to support iterator.remove
2289 */
2290 static class BaseIterator<K,V> extends Traverser<K,V> {
2291 final ConcurrentHashMap<K,V> map;
2292 Node<K,V> lastReturned;
2293 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2294 ConcurrentHashMap<K,V> map) {
2295 super(tab, size, index, limit);
2296 this.map = map;
2297 advance();
2298 }
2299
2300 public final boolean hasNext() { return next != null; }
2301 public final boolean hasMoreElements() { return next != null; }
2302
2303 public final void remove() {
2304 Node<K,V> p;
2305 if ((p = lastReturned) == null)
2306 throw new IllegalStateException();
2307 lastReturned = null;
2308 map.internalReplace((K)p.key, null, null);
2309 }
2310 }
2311
2312 static final class KeyIterator<K,V> extends BaseIterator<K,V>
2313 implements Iterator<K>, Enumeration<K> {
2314 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2315 ConcurrentHashMap<K,V> map) {
2316 super(tab, index, size, limit, map);
2317 }
2318
2319 public final K next() {
2320 Node<K,V> p;
2321 if ((p = next) == null)
2322 throw new NoSuchElementException();
2323 K k = (K)p.key;
2324 lastReturned = p;
2325 advance();
2326 return k;
2327 }
2328
2329 public final K nextElement() { return next(); }
2330 }
2331
2332 static final class ValueIterator<K,V> extends BaseIterator<K,V>
2333 implements Iterator<V>, Enumeration<V> {
2334 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2335 ConcurrentHashMap<K,V> map) {
2336 super(tab, index, size, limit, map);
2337 }
2338
2339 public final V next() {
2340 Node<K,V> p;
2341 if ((p = next) == null)
2342 throw new NoSuchElementException();
2343 V v = p.val;
2344 lastReturned = p;
2345 advance();
2346 return v;
2347 }
2348
2349 public final V nextElement() { return next(); }
2350 }
2351
2352 static final class EntryIterator<K,V> extends BaseIterator<K,V>
2353 implements Iterator<Map.Entry<K,V>> {
2354 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2355 ConcurrentHashMap<K,V> map) {
2356 super(tab, index, size, limit, map);
2357 }
2358
2359 public final Map.Entry<K,V> next() {
2360 Node<K,V> p;
2361 if ((p = next) == null)
2362 throw new NoSuchElementException();
2363 K k = (K)p.key;
2364 V v = p.val;
2365 lastReturned = p;
2366 advance();
2367 return new MapEntry<K,V>(k, v, map);
2368 }
2369 }
2370
2371 static final class KeySpliterator<K,V> extends Traverser<K,V>
2372 implements Spliterator<K> {
2373 long est; // size estimate
2374 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2375 long est) {
2376 super(tab, size, index, limit);
2377 this.est = est;
2378 }
2379
2380 public Spliterator<K> trySplit() {
2381 int i, f, h;
2382 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2383 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
2384 f, est >>>= 1);
2385 }
2386
2387 public void forEachRemaining(Consumer<? super K> action) {
2388 if (action == null) throw new NullPointerException();
2389 for (Node<K,V> p; (p = advance()) != null;)
2390 action.accept((K)p.key);
2391 }
2392
2393 public boolean tryAdvance(Consumer<? super K> action) {
2394 if (action == null) throw new NullPointerException();
2395 Node<K,V> p;
2396 if ((p = advance()) == null)
2397 return false;
2398 action.accept((K)p.key);
2399 return true;
2400 }
2401
2402 public long estimateSize() { return est; }
2403
2404 public int characteristics() {
2405 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2406 Spliterator.NONNULL;
2407 }
2408 }
2409
2410 static final class ValueSpliterator<K,V> extends Traverser<K,V>
2411 implements Spliterator<V> {
2412 long est; // size estimate
2413 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
2414 long est) {
2415 super(tab, size, index, limit);
2416 this.est = est;
2417 }
2418
2419 public Spliterator<V> trySplit() {
2420 int i, f, h;
2421 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2422 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
2423 f, est >>>= 1);
2424 }
2425
2426 public void forEachRemaining(Consumer<? super V> action) {
2427 if (action == null) throw new NullPointerException();
2428 for (Node<K,V> p; (p = advance()) != null;)
2429 action.accept(p.val);
2430 }
2431
2432 public boolean tryAdvance(Consumer<? super V> action) {
2433 if (action == null) throw new NullPointerException();
2434 Node<K,V> p;
2435 if ((p = advance()) == null)
2436 return false;
2437 action.accept(p.val);
2438 return true;
2439 }
2440
2441 public long estimateSize() { return est; }
2442
2443 public int characteristics() {
2444 return Spliterator.CONCURRENT | Spliterator.NONNULL;
2445 }
2446 }
2447
2448 static final class EntrySpliterator<K,V> extends Traverser<K,V>
2449 implements Spliterator<Map.Entry<K,V>> {
2450 final ConcurrentHashMap<K,V> map; // To export MapEntry
2451 long est; // size estimate
2452 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2453 long est, ConcurrentHashMap<K,V> map) {
2454 super(tab, size, index, limit);
2455 this.map = map;
2456 this.est = est;
2457 }
2458
2459 public Spliterator<Map.Entry<K,V>> trySplit() {
2460 int i, f, h;
2461 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2462 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
2463 f, est >>>= 1, map);
2464 }
2465
2466 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
2467 if (action == null) throw new NullPointerException();
2468 for (Node<K,V> p; (p = advance()) != null; )
2469 action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2470 }
2471
2472 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
2473 if (action == null) throw new NullPointerException();
2474 Node<K,V> p;
2475 if ((p = advance()) == null)
2476 return false;
2477 action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2478 return true;
2479 }
2480
2481 public long estimateSize() { return est; }
2482
2483 public int characteristics() {
2484 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2485 Spliterator.NONNULL;
2486 }
2487 }
2488
2489
2490 /* ---------------- Public operations -------------- */
2491
2492 /**
2493 * Creates a new, empty map with the default initial table size (16).
2494 */
2495 public ConcurrentHashMap() {
2496 }
2497
2498 /**
2499 * Creates a new, empty map with an initial table size
2500 * accommodating the specified number of elements without the need
2501 * to dynamically resize.
2502 *
2503 * @param initialCapacity The implementation performs internal
2504 * sizing to accommodate this many elements.
2505 * @throws IllegalArgumentException if the initial capacity of
2506 * elements is negative
2507 */
2508 public ConcurrentHashMap(int initialCapacity) {
2509 if (initialCapacity < 0)
2510 throw new IllegalArgumentException();
2511 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2512 MAXIMUM_CAPACITY :
2513 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2514 this.sizeCtl = cap;
2515 }
2516
2517 /**
2518 * Creates a new map with the same mappings as the given map.
2519 *
2520 * @param m the map
2521 */
2522 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2523 this.sizeCtl = DEFAULT_CAPACITY;
2524 internalPutAll(m);
2525 }
2526
2527 /**
2528 * Creates a new, empty map with an initial table size based on
2529 * the given number of elements ({@code initialCapacity}) and
2530 * initial table density ({@code loadFactor}).
2531 *
2532 * @param initialCapacity the initial capacity. The implementation
2533 * performs internal sizing to accommodate this many elements,
2534 * given the specified load factor.
2535 * @param loadFactor the load factor (table density) for
2536 * establishing the initial table size
2537 * @throws IllegalArgumentException if the initial capacity of
2538 * elements is negative or the load factor is nonpositive
2539 *
2540 * @since 1.6
2541 */
2542 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2543 this(initialCapacity, loadFactor, 1);
2544 }
2545
2546 /**
2547 * Creates a new, empty map with an initial table size based on
2548 * the given number of elements ({@code initialCapacity}), table
2549 * density ({@code loadFactor}), and number of concurrently
2550 * updating threads ({@code concurrencyLevel}).
2551 *
2552 * @param initialCapacity the initial capacity. The implementation
2553 * performs internal sizing to accommodate this many elements,
2554 * given the specified load factor.
2555 * @param loadFactor the load factor (table density) for
2556 * establishing the initial table size
2557 * @param concurrencyLevel the estimated number of concurrently
2558 * updating threads. The implementation may use this value as
2559 * a sizing hint.
2560 * @throws IllegalArgumentException if the initial capacity is
2561 * negative or the load factor or concurrencyLevel are
2562 * nonpositive
2563 */
2564 public ConcurrentHashMap(int initialCapacity,
2565 float loadFactor, int concurrencyLevel) {
2566 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2567 throw new IllegalArgumentException();
2568 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2569 initialCapacity = concurrencyLevel; // as estimated threads
2570 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2571 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2572 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2573 this.sizeCtl = cap;
2574 }
2575
2576 /**
2577 * Creates a new {@link Set} backed by a ConcurrentHashMap
2578 * from the given type to {@code Boolean.TRUE}.
2579 *
2580 * @return the new set
2581 * @since 1.8
2582 */
2583 public static <K> KeySetView<K,Boolean> newKeySet() {
2584 return new KeySetView<K,Boolean>
2585 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2586 }
2587
2588 /**
2589 * Creates a new {@link Set} backed by a ConcurrentHashMap
2590 * from the given type to {@code Boolean.TRUE}.
2591 *
2592 * @param initialCapacity The implementation performs internal
2593 * sizing to accommodate this many elements.
2594 * @throws IllegalArgumentException if the initial capacity of
2595 * elements is negative
2596 * @return the new set
2597 * @since 1.8
2598 */
2599 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2600 return new KeySetView<K,Boolean>
2601 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2602 }
2603
2604 /**
2605 * {@inheritDoc}
2606 */
2607 public boolean isEmpty() {
2608 return sumCount() <= 0L; // ignore transient negative values
2609 }
2610
2611 /**
2612 * {@inheritDoc}
2613 */
2614 public int size() {
2615 long n = sumCount();
2616 return ((n < 0L) ? 0 :
2617 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2618 (int)n);
2619 }
2620
2621 /**
2622 * Returns the number of mappings. This method should be used
2623 * instead of {@link #size} because a ConcurrentHashMap may
2624 * contain more mappings than can be represented as an int. The
2625 * value returned is an estimate; the actual count may differ if
2626 * there are concurrent insertions or removals.
2627 *
2628 * @return the number of mappings
2629 * @since 1.8
2630 */
2631 public long mappingCount() {
2632 long n = sumCount();
2633 return (n < 0L) ? 0L : n; // ignore transient negative values
2634 }
2635
2636 /**
2637 * Returns the value to which the specified key is mapped,
2638 * or {@code null} if this map contains no mapping for the key.
2639 *
2640 * <p>More formally, if this map contains a mapping from a key
2641 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2642 * then this method returns {@code v}; otherwise it returns
2643 * {@code null}. (There can be at most one such mapping.)
2644 *
2645 * @throws NullPointerException if the specified key is null
2646 */
2647 public V get(Object key) {
2648 return internalGet(key);
2649 }
2650
2651 /**
2652 * Returns the value to which the specified key is mapped, or the
2653 * given default value if this map contains no mapping for the
2654 * key.
2655 *
2656 * @param key the key whose associated value is to be returned
2657 * @param defaultValue the value to return if this map contains
2658 * no mapping for the given key
2659 * @return the mapping for the key, if present; else the default value
2660 * @throws NullPointerException if the specified key is null
2661 */
2662 public V getOrDefault(Object key, V defaultValue) {
2663 V v;
2664 return (v = internalGet(key)) == null ? defaultValue : v;
2665 }
2666
2667 /**
2668 * Tests if the specified object is a key in this table.
2669 *
2670 * @param key possible key
2671 * @return {@code true} if and only if the specified object
2672 * is a key in this table, as determined by the
2673 * {@code equals} method; {@code false} otherwise
2674 * @throws NullPointerException if the specified key is null
2675 */
2676 public boolean containsKey(Object key) {
2677 return internalGet(key) != null;
2678 }
2679
2680 /**
2681 * Returns {@code true} if this map maps one or more keys to the
2682 * specified value. Note: This method may require a full traversal
2683 * of the map, and is much slower than method {@code containsKey}.
2684 *
2685 * @param value value whose presence in this map is to be tested
2686 * @return {@code true} if this map maps one or more keys to the
2687 * specified value
2688 * @throws NullPointerException if the specified value is null
2689 */
2690 public boolean containsValue(Object value) {
2691 if (value == null)
2692 throw new NullPointerException();
2693 Node<K,V>[] t;
2694 if ((t = table) != null) {
2695 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2696 for (Node<K,V> p; (p = it.advance()) != null; ) {
2697 V v;
2698 if ((v = p.val) == value || value.equals(v))
2699 return true;
2700 }
2701 }
2702 return false;
2703 }
2704
2705 /**
2706 * Legacy method testing if some key maps into the specified value
2707 * in this table. This method is identical in functionality to
2708 * {@link #containsValue(Object)}, and exists solely to ensure
2709 * full compatibility with class {@link java.util.Hashtable},
2710 * which supported this method prior to introduction of the
2711 * Java Collections framework.
2712 *
2713 * @param value a value to search for
2714 * @return {@code true} if and only if some key maps to the
2715 * {@code value} argument in this table as
2716 * determined by the {@code equals} method;
2717 * {@code false} otherwise
2718 * @throws NullPointerException if the specified value is null
2719 */
2720 @Deprecated public boolean contains(Object value) {
2721 return containsValue(value);
2722 }
2723
2724 /**
2725 * Maps the specified key to the specified value in this table.
2726 * Neither the key nor the value can be null.
2727 *
2728 * <p>The value can be retrieved by calling the {@code get} method
2729 * with a key that is equal to the original key.
2730 *
2731 * @param key key with which the specified value is to be associated
2732 * @param value value to be associated with the specified key
2733 * @return the previous value associated with {@code key}, or
2734 * {@code null} if there was no mapping for {@code key}
2735 * @throws NullPointerException if the specified key or value is null
2736 */
2737 public V put(K key, V value) {
2738 return internalPut(key, value, false);
2739 }
2740
2741 /**
2742 * {@inheritDoc}
2743 *
2744 * @return the previous value associated with the specified key,
2745 * or {@code null} if there was no mapping for the key
2746 * @throws NullPointerException if the specified key or value is null
2747 */
2748 public V putIfAbsent(K key, V value) {
2749 return internalPut(key, value, true);
2750 }
2751
2752 /**
2753 * Copies all of the mappings from the specified map to this one.
2754 * These mappings replace any mappings that this map had for any of the
2755 * keys currently in the specified map.
2756 *
2757 * @param m mappings to be stored in this map
2758 */
2759 public void putAll(Map<? extends K, ? extends V> m) {
2760 internalPutAll(m);
2761 }
2762
2763 /**
2764 * If the specified key is not already associated with a value,
2765 * attempts to compute its value using the given mapping function
2766 * and enters it into this map unless {@code null}. The entire
2767 * method invocation is performed atomically, so the function is
2768 * applied at most once per key. Some attempted update operations
2769 * on this map by other threads may be blocked while computation
2770 * is in progress, so the computation should be short and simple,
2771 * and must not attempt to update any other mappings of this map.
2772 *
2773 * @param key key with which the specified value is to be associated
2774 * @param mappingFunction the function to compute a value
2775 * @return the current (existing or computed) value associated with
2776 * the specified key, or null if the computed value is null
2777 * @throws NullPointerException if the specified key or mappingFunction
2778 * is null
2779 * @throws IllegalStateException if the computation detectably
2780 * attempts a recursive update to this map that would
2781 * otherwise never complete
2782 * @throws RuntimeException or Error if the mappingFunction does so,
2783 * in which case the mapping is left unestablished
2784 */
2785 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2786 return internalComputeIfAbsent(key, mappingFunction);
2787 }
2788
2789 /**
2790 * If the value for the specified key is present, attempts to
2791 * compute a new mapping given the key and its current mapped
2792 * value. The entire method invocation is performed atomically.
2793 * Some attempted update operations on this map by other threads
2794 * may be blocked while computation is in progress, so the
2795 * computation should be short and simple, and must not attempt to
2796 * update any other mappings of this map.
2797 *
2798 * @param key key with which a value may be associated
2799 * @param remappingFunction the function to compute a value
2800 * @return the new value associated with the specified key, or null if none
2801 * @throws NullPointerException if the specified key or remappingFunction
2802 * is null
2803 * @throws IllegalStateException if the computation detectably
2804 * attempts a recursive update to this map that would
2805 * otherwise never complete
2806 * @throws RuntimeException or Error if the remappingFunction does so,
2807 * in which case the mapping is unchanged
2808 */
2809 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2810 return internalCompute(key, true, remappingFunction);
2811 }
2812
2813 /**
2814 * Attempts to compute a mapping for the specified key and its
2815 * current mapped value (or {@code null} if there is no current
2816 * mapping). The entire method invocation is performed atomically.
2817 * Some attempted update operations on this map by other threads
2818 * may be blocked while computation is in progress, so the
2819 * computation should be short and simple, and must not attempt to
2820 * update any other mappings of this Map.
2821 *
2822 * @param key key with which the specified value is to be associated
2823 * @param remappingFunction the function to compute a value
2824 * @return the new value associated with the specified key, or null if none
2825 * @throws NullPointerException if the specified key or remappingFunction
2826 * is null
2827 * @throws IllegalStateException if the computation detectably
2828 * attempts a recursive update to this map that would
2829 * otherwise never complete
2830 * @throws RuntimeException or Error if the remappingFunction does so,
2831 * in which case the mapping is unchanged
2832 */
2833 public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2834 return internalCompute(key, false, remappingFunction);
2835 }
2836
2837 /**
2838 * If the specified key is not already associated with a
2839 * (non-null) value, associates it with the given value.
2840 * Otherwise, replaces the value with the results of the given
2841 * remapping function, or removes if {@code null}. The entire
2842 * method invocation is performed atomically. Some attempted
2843 * update operations on this map by other threads may be blocked
2844 * while computation is in progress, so the computation should be
2845 * short and simple, and must not attempt to update any other
2846 * mappings of this Map.
2847 *
2848 * @param key key with which the specified value is to be associated
2849 * @param value the value to use if absent
2850 * @param remappingFunction the function to recompute a value if present
2851 * @return the new value associated with the specified key, or null if none
2852 * @throws NullPointerException if the specified key or the
2853 * remappingFunction is null
2854 * @throws RuntimeException or Error if the remappingFunction does so,
2855 * in which case the mapping is unchanged
2856 */
2857 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2858 return internalMerge(key, value, remappingFunction);
2859 }
2860
2861 /**
2862 * Removes the key (and its corresponding value) from this map.
2863 * This method does nothing if the key is not in the map.
2864 *
2865 * @param key the key that needs to be removed
2866 * @return the previous value associated with {@code key}, or
2867 * {@code null} if there was no mapping for {@code key}
2868 * @throws NullPointerException if the specified key is null
2869 */
2870 public V remove(Object key) {
2871 return internalReplace(key, null, null);
2872 }
2873
2874 /**
2875 * {@inheritDoc}
2876 *
2877 * @throws NullPointerException if the specified key is null
2878 */
2879 public boolean remove(Object key, Object value) {
2880 if (key == null)
2881 throw new NullPointerException();
2882 return value != null && internalReplace(key, null, value) != null;
2883 }
2884
2885 /**
2886 * {@inheritDoc}
2887 *
2888 * @throws NullPointerException if any of the arguments are null
2889 */
2890 public boolean replace(K key, V oldValue, V newValue) {
2891 if (key == null || oldValue == null || newValue == null)
2892 throw new NullPointerException();
2893 return internalReplace(key, newValue, oldValue) != null;
2894 }
2895
2896 /**
2897 * {@inheritDoc}
2898 *
2899 * @return the previous value associated with the specified key,
2900 * or {@code null} if there was no mapping for the key
2901 * @throws NullPointerException if the specified key or value is null
2902 */
2903 public V replace(K key, V value) {
2904 if (key == null || value == null)
2905 throw new NullPointerException();
2906 return internalReplace(key, value, null);
2907 }
2908
2909 /**
2910 * Removes all of the mappings from this map.
2911 */
2912 public void clear() {
2913 internalClear();
2914 }
2915
2916 /**
2917 * Returns a {@link Set} view of the keys contained in this map.
2918 * The set is backed by the map, so changes to the map are
2919 * reflected in the set, and vice-versa. The set supports element
2920 * removal, which removes the corresponding mapping from this map,
2921 * via the {@code Iterator.remove}, {@code Set.remove},
2922 * {@code removeAll}, {@code retainAll}, and {@code clear}
2923 * operations. It does not support the {@code add} or
2924 * {@code addAll} operations.
2925 *
2926 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2927 * that will never throw {@link ConcurrentModificationException},
2928 * and guarantees to traverse elements as they existed upon
2929 * construction of the iterator, and may (but is not guaranteed to)
2930 * reflect any modifications subsequent to construction.
2931 *
2932 * @return the set view
2933 */
2934 public KeySetView<K,V> keySet() {
2935 KeySetView<K,V> ks = keySet;
2936 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2937 }
2938
2939 /**
2940 * Returns a {@link Set} view of the keys in this map, using the
2941 * given common mapped value for any additions (i.e., {@link
2942 * Collection#add} and {@link Collection#addAll(Collection)}).
2943 * This is of course only appropriate if it is acceptable to use
2944 * the same value for all additions from this view.
2945 *
2946 * @param mappedValue the mapped value to use for any additions
2947 * @return the set view
2948 * @throws NullPointerException if the mappedValue is null
2949 */
2950 public KeySetView<K,V> keySet(V mappedValue) {
2951 if (mappedValue == null)
2952 throw new NullPointerException();
2953 return new KeySetView<K,V>(this, mappedValue);
2954 }
2955
2956 /**
2957 * Returns a {@link Collection} view of the values contained in this map.
2958 * The collection is backed by the map, so changes to the map are
2959 * reflected in the collection, and vice-versa. The collection
2960 * supports element removal, which removes the corresponding
2961 * mapping from this map, via the {@code Iterator.remove},
2962 * {@code Collection.remove}, {@code removeAll},
2963 * {@code retainAll}, and {@code clear} operations. It does not
2964 * support the {@code add} or {@code addAll} operations.
2965 *
2966 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2967 * that will never throw {@link ConcurrentModificationException},
2968 * and guarantees to traverse elements as they existed upon
2969 * construction of the iterator, and may (but is not guaranteed to)
2970 * reflect any modifications subsequent to construction.
2971 *
2972 * @return the collection view
2973 */
2974 public Collection<V> values() {
2975 ValuesView<K,V> vs = values;
2976 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2977 }
2978
2979 /**
2980 * Returns a {@link Set} view of the mappings contained in this map.
2981 * The set is backed by the map, so changes to the map are
2982 * reflected in the set, and vice-versa. The set supports element
2983 * removal, which removes the corresponding mapping from the map,
2984 * via the {@code Iterator.remove}, {@code Set.remove},
2985 * {@code removeAll}, {@code retainAll}, and {@code clear}
2986 * operations.
2987 *
2988 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2989 * that will never throw {@link ConcurrentModificationException},
2990 * and guarantees to traverse elements as they existed upon
2991 * construction of the iterator, and may (but is not guaranteed to)
2992 * reflect any modifications subsequent to construction.
2993 *
2994 * @return the set view
2995 */
2996 public Set<Map.Entry<K,V>> entrySet() {
2997 EntrySetView<K,V> es = entrySet;
2998 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2999 }
3000
3001 /**
3002 * Returns an enumeration of the keys in this table.
3003 *
3004 * @return an enumeration of the keys in this table
3005 * @see #keySet()
3006 */
3007 public Enumeration<K> keys() {
3008 Node<K,V>[] t;
3009 int f = (t = table) == null ? 0 : t.length;
3010 return new KeyIterator<K,V>(t, f, 0, f, this);
3011 }
3012
3013 /**
3014 * Returns an enumeration of the values in this table.
3015 *
3016 * @return an enumeration of the values in this table
3017 * @see #values()
3018 */
3019 public Enumeration<V> elements() {
3020 Node<K,V>[] t;
3021 int f = (t = table) == null ? 0 : t.length;
3022 return new ValueIterator<K,V>(t, f, 0, f, this);
3023 }
3024
3025 /**
3026 * Returns the hash code value for this {@link Map}, i.e.,
3027 * the sum of, for each key-value pair in the map,
3028 * {@code key.hashCode() ^ value.hashCode()}.
3029 *
3030 * @return the hash code value for this map
3031 */
3032 public int hashCode() {
3033 int h = 0;
3034 Node<K,V>[] t;
3035 if ((t = table) != null) {
3036 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3037 for (Node<K,V> p; (p = it.advance()) != null; )
3038 h += p.key.hashCode() ^ p.val.hashCode();
3039 }
3040 return h;
3041 }
3042
3043 /**
3044 * Returns a string representation of this map. The string
3045 * representation consists of a list of key-value mappings (in no
3046 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3047 * mappings are separated by the characters {@code ", "} (comma
3048 * and space). Each key-value mapping is rendered as the key
3049 * followed by an equals sign ("{@code =}") followed by the
3050 * associated value.
3051 *
3052 * @return a string representation of this map
3053 */
3054 public String toString() {
3055 Node<K,V>[] t;
3056 int f = (t = table) == null ? 0 : t.length;
3057 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3058 StringBuilder sb = new StringBuilder();
3059 sb.append('{');
3060 Node<K,V> p;
3061 if ((p = it.advance()) != null) {
3062 for (;;) {
3063 K k = (K)p.key;
3064 V v = p.val;
3065 sb.append(k == this ? "(this Map)" : k);
3066 sb.append('=');
3067 sb.append(v == this ? "(this Map)" : v);
3068 if ((p = it.advance()) == null)
3069 break;
3070 sb.append(',').append(' ');
3071 }
3072 }
3073 return sb.append('}').toString();
3074 }
3075
3076 /**
3077 * Compares the specified object with this map for equality.
3078 * Returns {@code true} if the given object is a map with the same
3079 * mappings as this map. This operation may return misleading
3080 * results if either map is concurrently modified during execution
3081 * of this method.
3082 *
3083 * @param o object to be compared for equality with this map
3084 * @return {@code true} if the specified object is equal to this map
3085 */
3086 public boolean equals(Object o) {
3087 if (o != this) {
3088 if (!(o instanceof Map))
3089 return false;
3090 Map<?,?> m = (Map<?,?>) o;
3091 Node<K,V>[] t;
3092 int f = (t = table) == null ? 0 : t.length;
3093 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3094 for (Node<K,V> p; (p = it.advance()) != null; ) {
3095 V val = p.val;
3096 Object v = m.get(p.key);
3097 if (v == null || (v != val && !v.equals(val)))
3098 return false;
3099 }
3100 for (Map.Entry<?,?> e : m.entrySet()) {
3101 Object mk, mv, v;
3102 if ((mk = e.getKey()) == null ||
3103 (mv = e.getValue()) == null ||
3104 (v = internalGet(mk)) == null ||
3105 (mv != v && !mv.equals(v)))
3106 return false;
3107 }
3108 }
3109 return true;
3110 }
3111
3112 /* ---------------- Serialization Support -------------- */
3113
3114 /**
3115 * Stripped-down version of helper class used in previous version,
3116 * declared for the sake of serialization compatibility
3117 */
3118 static class Segment<K,V> extends ReentrantLock implements Serializable {
3119 private static final long serialVersionUID = 2249069246763182397L;
3120 final float loadFactor;
3121 Segment(float lf) { this.loadFactor = lf; }
3122 }
3123
3124 /**
3125 * Saves the state of the {@code ConcurrentHashMap} instance to a
3126 * stream (i.e., serializes it).
3127 * @param s the stream
3128 * @serialData
3129 * the key (Object) and value (Object)
3130 * for each key-value mapping, followed by a null pair.
3131 * The key-value mappings are emitted in no particular order.
3132 */
3133 private void writeObject(java.io.ObjectOutputStream s)
3134 throws java.io.IOException {
3135 // For serialization compatibility
3136 // Emulate segment calculation from previous version of this class
3137 int sshift = 0;
3138 int ssize = 1;
3139 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3140 ++sshift;
3141 ssize <<= 1;
3142 }
3143 int segmentShift = 32 - sshift;
3144 int segmentMask = ssize - 1;
3145 Segment<K,V>[] segments = (Segment<K,V>[])
3146 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3147 for (int i = 0; i < segments.length; ++i)
3148 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3149 s.putFields().put("segments", segments);
3150 s.putFields().put("segmentShift", segmentShift);
3151 s.putFields().put("segmentMask", segmentMask);
3152 s.writeFields();
3153
3154 Node<K,V>[] t;
3155 if ((t = table) != null) {
3156 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3157 for (Node<K,V> p; (p = it.advance()) != null; ) {
3158 s.writeObject(p.key);
3159 s.writeObject(p.val);
3160 }
3161 }
3162 s.writeObject(null);
3163 s.writeObject(null);
3164 segments = null; // throw away
3165 }
3166
3167 /**
3168 * Reconstitutes the instance from a stream (that is, deserializes it).
3169 * @param s the stream
3170 */
3171 private void readObject(java.io.ObjectInputStream s)
3172 throws java.io.IOException, ClassNotFoundException {
3173 s.defaultReadObject();
3174
3175 // Create all nodes, then place in table once size is known
3176 long size = 0L;
3177 Node<K,V> p = null;
3178 for (;;) {
3179 K k = (K) s.readObject();
3180 V v = (V) s.readObject();
3181 if (k != null && v != null) {
3182 int h = spread(k.hashCode());
3183 p = new Node<K,V>(h, k, v, p);
3184 ++size;
3185 }
3186 else
3187 break;
3188 }
3189 if (p != null) {
3190 boolean init = false;
3191 int n;
3192 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3193 n = MAXIMUM_CAPACITY;
3194 else {
3195 int sz = (int)size;
3196 n = tableSizeFor(sz + (sz >>> 1) + 1);
3197 }
3198 int sc = sizeCtl;
3199 boolean collide = false;
3200 if (n > sc &&
3201 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3202 try {
3203 if (table == null) {
3204 init = true;
3205 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3206 int mask = n - 1;
3207 while (p != null) {
3208 int j = p.hash & mask;
3209 Node<K,V> next = p.next;
3210 Node<K,V> q = p.next = tabAt(tab, j);
3211 setTabAt(tab, j, p);
3212 if (!collide && q != null && q.hash == p.hash)
3213 collide = true;
3214 p = next;
3215 }
3216 table = tab;
3217 addCount(size, -1);
3218 sc = n - (n >>> 2);
3219 }
3220 } finally {
3221 sizeCtl = sc;
3222 }
3223 if (collide) { // rescan and convert to TreeBins
3224 Node<K,V>[] tab = table;
3225 for (int i = 0; i < tab.length; ++i) {
3226 int c = 0;
3227 for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3228 if (++c > TREE_THRESHOLD &&
3229 (e.key instanceof Comparable)) {
3230 replaceWithTreeBin(tab, i, e.key);
3231 break;
3232 }
3233 }
3234 }
3235 }
3236 }
3237 if (!init) { // Can only happen if unsafely published.
3238 while (p != null) {
3239 internalPut((K)p.key, p.val, false);
3240 p = p.next;
3241 }
3242 }
3243 }
3244 }
3245
3246 // -------------------------------------------------------
3247
3248 // Overrides of other default Map methods
3249
3250 public void forEach(BiConsumer<? super K, ? super V> action) {
3251 if (action == null) throw new NullPointerException();
3252 Node<K,V>[] t;
3253 if ((t = table) != null) {
3254 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3255 for (Node<K,V> p; (p = it.advance()) != null; ) {
3256 action.accept((K)p.key, p.val);
3257 }
3258 }
3259 }
3260
3261 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3262 if (function == null) throw new NullPointerException();
3263 Node<K,V>[] t;
3264 if ((t = table) != null) {
3265 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3266 for (Node<K,V> p; (p = it.advance()) != null; ) {
3267 K k = (K)p.key;
3268 internalPut(k, function.apply(k, p.val), false);
3269 }
3270 }
3271 }
3272
3273 // -------------------------------------------------------
3274
3275 // Parallel bulk operations
3276
3277 /**
3278 * Computes initial batch value for bulk tasks. The returned value
3279 * is approximately exp2 of the number of times (minus one) to
3280 * split task by two before executing leaf action. This value is
3281 * faster to compute and more convenient to use as a guide to
3282 * splitting than is the depth, since it is used while dividing by
3283 * two anyway.
3284 */
3285 final int batchFor(long b) {
3286 long n;
3287 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3288 return 0;
3289 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3290 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3291 }
3292
3293 /**
3294 * Performs the given action for each (key, value).
3295 *
3296 * @param parallelismThreshold the (estimated) number of elements
3297 * needed for this operation to be executed in parallel
3298 * @param action the action
3299 * @since 1.8
3300 */
3301 public void forEach(long parallelismThreshold,
3302 BiConsumer<? super K,? super V> action) {
3303 if (action == null) throw new NullPointerException();
3304 new ForEachMappingTask<K,V>
3305 (null, batchFor(parallelismThreshold), 0, 0, table,
3306 action).invoke();
3307 }
3308
3309 /**
3310 * Performs the given action for each non-null transformation
3311 * of each (key, value).
3312 *
3313 * @param parallelismThreshold the (estimated) number of elements
3314 * needed for this operation to be executed in parallel
3315 * @param transformer a function returning the transformation
3316 * for an element, or null if there is no transformation (in
3317 * which case the action is not applied)
3318 * @param action the action
3319 * @since 1.8
3320 */
3321 public <U> void forEach(long parallelismThreshold,
3322 BiFunction<? super K, ? super V, ? extends U> transformer,
3323 Consumer<? super U> action) {
3324 if (transformer == null || action == null)
3325 throw new NullPointerException();
3326 new ForEachTransformedMappingTask<K,V,U>
3327 (null, batchFor(parallelismThreshold), 0, 0, table,
3328 transformer, action).invoke();
3329 }
3330
3331 /**
3332 * Returns a non-null result from applying the given search
3333 * function on each (key, value), or null if none. Upon
3334 * success, further element processing is suppressed and the
3335 * results of any other parallel invocations of the search
3336 * function are ignored.
3337 *
3338 * @param parallelismThreshold the (estimated) number of elements
3339 * needed for this operation to be executed in parallel
3340 * @param searchFunction a function returning a non-null
3341 * result on success, else null
3342 * @return a non-null result from applying the given search
3343 * function on each (key, value), or null if none
3344 * @since 1.8
3345 */
3346 public <U> U search(long parallelismThreshold,
3347 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3348 if (searchFunction == null) throw new NullPointerException();
3349 return new SearchMappingsTask<K,V,U>
3350 (null, batchFor(parallelismThreshold), 0, 0, table,
3351 searchFunction, new AtomicReference<U>()).invoke();
3352 }
3353
3354 /**
3355 * Returns the result of accumulating the given transformation
3356 * of all (key, value) pairs using the given reducer to
3357 * combine values, or null if none.
3358 *
3359 * @param parallelismThreshold the (estimated) number of elements
3360 * needed for this operation to be executed in parallel
3361 * @param transformer a function returning the transformation
3362 * for an element, or null if there is no transformation (in
3363 * which case it is not combined)
3364 * @param reducer a commutative associative combining function
3365 * @return the result of accumulating the given transformation
3366 * of all (key, value) pairs
3367 * @since 1.8
3368 */
3369 public <U> U reduce(long parallelismThreshold,
3370 BiFunction<? super K, ? super V, ? extends U> transformer,
3371 BiFunction<? super U, ? super U, ? extends U> reducer) {
3372 if (transformer == null || reducer == null)
3373 throw new NullPointerException();
3374 return new MapReduceMappingsTask<K,V,U>
3375 (null, batchFor(parallelismThreshold), 0, 0, table,
3376 null, transformer, reducer).invoke();
3377 }
3378
3379 /**
3380 * Returns the result of accumulating the given transformation
3381 * of all (key, value) pairs using the given reducer to
3382 * combine values, and the given basis as an identity value.
3383 *
3384 * @param parallelismThreshold the (estimated) number of elements
3385 * needed for this operation to be executed in parallel
3386 * @param transformer a function returning the transformation
3387 * for an element
3388 * @param basis the identity (initial default value) for the reduction
3389 * @param reducer a commutative associative combining function
3390 * @return the result of accumulating the given transformation
3391 * of all (key, value) pairs
3392 * @since 1.8
3393 */
3394 public double reduceToDoubleIn(long parallelismThreshold,
3395 ToDoubleBiFunction<? super K, ? super V> transformer,
3396 double basis,
3397 DoubleBinaryOperator reducer) {
3398 if (transformer == null || reducer == null)
3399 throw new NullPointerException();
3400 return new MapReduceMappingsToDoubleTask<K,V>
3401 (null, batchFor(parallelismThreshold), 0, 0, table,
3402 null, transformer, basis, reducer).invoke();
3403 }
3404
3405 /**
3406 * Returns the result of accumulating the given transformation
3407 * of all (key, value) pairs using the given reducer to
3408 * combine values, and the given basis as an identity value.
3409 *
3410 * @param parallelismThreshold the (estimated) number of elements
3411 * needed for this operation to be executed in parallel
3412 * @param transformer a function returning the transformation
3413 * for an element
3414 * @param basis the identity (initial default value) for the reduction
3415 * @param reducer a commutative associative combining function
3416 * @return the result of accumulating the given transformation
3417 * of all (key, value) pairs
3418 * @since 1.8
3419 */
3420 public long reduceToLong(long parallelismThreshold,
3421 ToLongBiFunction<? super K, ? super V> transformer,
3422 long basis,
3423 LongBinaryOperator reducer) {
3424 if (transformer == null || reducer == null)
3425 throw new NullPointerException();
3426 return new MapReduceMappingsToLongTask<K,V>
3427 (null, batchFor(parallelismThreshold), 0, 0, table,
3428 null, transformer, basis, reducer).invoke();
3429 }
3430
3431 /**
3432 * Returns the result of accumulating the given transformation
3433 * of all (key, value) pairs using the given reducer to
3434 * combine values, and the given basis as an identity value.
3435 *
3436 * @param parallelismThreshold the (estimated) number of elements
3437 * needed for this operation to be executed in parallel
3438 * @param transformer a function returning the transformation
3439 * for an element
3440 * @param basis the identity (initial default value) for the reduction
3441 * @param reducer a commutative associative combining function
3442 * @return the result of accumulating the given transformation
3443 * of all (key, value) pairs
3444 * @since 1.8
3445 */
3446 public int reduceToInt(long parallelismThreshold,
3447 ToIntBiFunction<? super K, ? super V> transformer,
3448 int basis,
3449 IntBinaryOperator reducer) {
3450 if (transformer == null || reducer == null)
3451 throw new NullPointerException();
3452 return new MapReduceMappingsToIntTask<K,V>
3453 (null, batchFor(parallelismThreshold), 0, 0, table,
3454 null, transformer, basis, reducer).invoke();
3455 }
3456
3457 /**
3458 * Performs the given action for each key.
3459 *
3460 * @param parallelismThreshold the (estimated) number of elements
3461 * needed for this operation to be executed in parallel
3462 * @param action the action
3463 * @since 1.8
3464 */
3465 public void forEachKey(long parallelismThreshold,
3466 Consumer<? super K> action) {
3467 if (action == null) throw new NullPointerException();
3468 new ForEachKeyTask<K,V>
3469 (null, batchFor(parallelismThreshold), 0, 0, table,
3470 action).invoke();
3471 }
3472
3473 /**
3474 * Performs the given action for each non-null transformation
3475 * of each key.
3476 *
3477 * @param parallelismThreshold the (estimated) number of elements
3478 * needed for this operation to be executed in parallel
3479 * @param transformer a function returning the transformation
3480 * for an element, or null if there is no transformation (in
3481 * which case the action is not applied)
3482 * @param action the action
3483 * @since 1.8
3484 */
3485 public <U> void forEachKey(long parallelismThreshold,
3486 Function<? super K, ? extends U> transformer,
3487 Consumer<? super U> action) {
3488 if (transformer == null || action == null)
3489 throw new NullPointerException();
3490 new ForEachTransformedKeyTask<K,V,U>
3491 (null, batchFor(parallelismThreshold), 0, 0, table,
3492 transformer, action).invoke();
3493 }
3494
3495 /**
3496 * Returns a non-null result from applying the given search
3497 * function on each key, or null if none. Upon success,
3498 * further element processing is suppressed and the results of
3499 * any other parallel invocations of the search function are
3500 * ignored.
3501 *
3502 * @param parallelismThreshold the (estimated) number of elements
3503 * needed for this operation to be executed in parallel
3504 * @param searchFunction a function returning a non-null
3505 * result on success, else null
3506 * @return a non-null result from applying the given search
3507 * function on each key, or null if none
3508 * @since 1.8
3509 */
3510 public <U> U searchKeys(long parallelismThreshold,
3511 Function<? super K, ? extends U> searchFunction) {
3512 if (searchFunction == null) throw new NullPointerException();
3513 return new SearchKeysTask<K,V,U>
3514 (null, batchFor(parallelismThreshold), 0, 0, table,
3515 searchFunction, new AtomicReference<U>()).invoke();
3516 }
3517
3518 /**
3519 * Returns the result of accumulating all keys using the given
3520 * reducer to combine values, or null if none.
3521 *
3522 * @param parallelismThreshold the (estimated) number of elements
3523 * needed for this operation to be executed in parallel
3524 * @param reducer a commutative associative combining function
3525 * @return the result of accumulating all keys using the given
3526 * reducer to combine values, or null if none
3527 * @since 1.8
3528 */
3529 public K reduceKeys(long parallelismThreshold,
3530 BiFunction<? super K, ? super K, ? extends K> reducer) {
3531 if (reducer == null) throw new NullPointerException();
3532 return new ReduceKeysTask<K,V>
3533 (null, batchFor(parallelismThreshold), 0, 0, table,
3534 null, reducer).invoke();
3535 }
3536
3537 /**
3538 * Returns the result of accumulating the given transformation
3539 * of all keys using the given reducer to combine values, or
3540 * null if none.
3541 *
3542 * @param parallelismThreshold the (estimated) number of elements
3543 * needed for this operation to be executed in parallel
3544 * @param transformer a function returning the transformation
3545 * for an element, or null if there is no transformation (in
3546 * which case it is not combined)
3547 * @param reducer a commutative associative combining function
3548 * @return the result of accumulating the given transformation
3549 * of all keys
3550 * @since 1.8
3551 */
3552 public <U> U reduceKeys(long parallelismThreshold,
3553 Function<? super K, ? extends U> transformer,
3554 BiFunction<? super U, ? super U, ? extends U> reducer) {
3555 if (transformer == null || reducer == null)
3556 throw new NullPointerException();
3557 return new MapReduceKeysTask<K,V,U>
3558 (null, batchFor(parallelismThreshold), 0, 0, table,
3559 null, transformer, reducer).invoke();
3560 }
3561
3562 /**
3563 * Returns the result of accumulating the given transformation
3564 * of all keys using the given reducer to combine values, and
3565 * the given basis as an identity value.
3566 *
3567 * @param parallelismThreshold the (estimated) number of elements
3568 * needed for this operation to be executed in parallel
3569 * @param transformer a function returning the transformation
3570 * for an element
3571 * @param basis the identity (initial default value) for the reduction
3572 * @param reducer a commutative associative combining function
3573 * @return the result of accumulating the given transformation
3574 * of all keys
3575 * @since 1.8
3576 */
3577 public double reduceKeysToDouble(long parallelismThreshold,
3578 ToDoubleFunction<? super K> transformer,
3579 double basis,
3580 DoubleBinaryOperator reducer) {
3581 if (transformer == null || reducer == null)
3582 throw new NullPointerException();
3583 return new MapReduceKeysToDoubleTask<K,V>
3584 (null, batchFor(parallelismThreshold), 0, 0, table,
3585 null, transformer, basis, reducer).invoke();
3586 }
3587
3588 /**
3589 * Returns the result of accumulating the given transformation
3590 * of all keys using the given reducer to combine values, and
3591 * the given basis as an identity value.
3592 *
3593 * @param parallelismThreshold the (estimated) number of elements
3594 * needed for this operation to be executed in parallel
3595 * @param transformer a function returning the transformation
3596 * for an element
3597 * @param basis the identity (initial default value) for the reduction
3598 * @param reducer a commutative associative combining function
3599 * @return the result of accumulating the given transformation
3600 * of all keys
3601 * @since 1.8
3602 */
3603 public long reduceKeysToLong(long parallelismThreshold,
3604 ToLongFunction<? super K> transformer,
3605 long basis,
3606 LongBinaryOperator reducer) {
3607 if (transformer == null || reducer == null)
3608 throw new NullPointerException();
3609 return new MapReduceKeysToLongTask<K,V>
3610 (null, batchFor(parallelismThreshold), 0, 0, table,
3611 null, transformer, basis, reducer).invoke();
3612 }
3613
3614 /**
3615 * Returns the result of accumulating the given transformation
3616 * of all keys using the given reducer to combine values, and
3617 * the given basis as an identity value.
3618 *
3619 * @param parallelismThreshold the (estimated) number of elements
3620 * needed for this operation to be executed in parallel
3621 * @param transformer a function returning the transformation
3622 * for an element
3623 * @param basis the identity (initial default value) for the reduction
3624 * @param reducer a commutative associative combining function
3625 * @return the result of accumulating the given transformation
3626 * of all keys
3627 * @since 1.8
3628 */
3629 public int reduceKeysToInt(long parallelismThreshold,
3630 ToIntFunction<? super K> transformer,
3631 int basis,
3632 IntBinaryOperator reducer) {
3633 if (transformer == null || reducer == null)
3634 throw new NullPointerException();
3635 return new MapReduceKeysToIntTask<K,V>
3636 (null, batchFor(parallelismThreshold), 0, 0, table,
3637 null, transformer, basis, reducer).invoke();
3638 }
3639
3640 /**
3641 * Performs the given action for each value.
3642 *
3643 * @param parallelismThreshold the (estimated) number of elements
3644 * needed for this operation to be executed in parallel
3645 * @param action the action
3646 * @since 1.8
3647 */
3648 public void forEachValue(long parallelismThreshold,
3649 Consumer<? super V> action) {
3650 if (action == null)
3651 throw new NullPointerException();
3652 new ForEachValueTask<K,V>
3653 (null, batchFor(parallelismThreshold), 0, 0, table,
3654 action).invoke();
3655 }
3656
3657 /**
3658 * Performs the given action for each non-null transformation
3659 * of each value.
3660 *
3661 * @param parallelismThreshold the (estimated) number of elements
3662 * needed for this operation to be executed in parallel
3663 * @param transformer a function returning the transformation
3664 * for an element, or null if there is no transformation (in
3665 * which case the action is not applied)
3666 * @param action the action
3667 * @since 1.8
3668 */
3669 public <U> void forEachValue(long parallelismThreshold,
3670 Function<? super V, ? extends U> transformer,
3671 Consumer<? super U> action) {
3672 if (transformer == null || action == null)
3673 throw new NullPointerException();
3674 new ForEachTransformedValueTask<K,V,U>
3675 (null, batchFor(parallelismThreshold), 0, 0, table,
3676 transformer, action).invoke();
3677 }
3678
3679 /**
3680 * Returns a non-null result from applying the given search
3681 * function on each value, or null if none. Upon success,
3682 * further element processing is suppressed and the results of
3683 * any other parallel invocations of the search function are
3684 * ignored.
3685 *
3686 * @param parallelismThreshold the (estimated) number of elements
3687 * needed for this operation to be executed in parallel
3688 * @param searchFunction a function returning a non-null
3689 * result on success, else null
3690 * @return a non-null result from applying the given search
3691 * function on each value, or null if none
3692 * @since 1.8
3693 */
3694 public <U> U searchValues(long parallelismThreshold,
3695 Function<? super V, ? extends U> searchFunction) {
3696 if (searchFunction == null) throw new NullPointerException();
3697 return new SearchValuesTask<K,V,U>
3698 (null, batchFor(parallelismThreshold), 0, 0, table,
3699 searchFunction, new AtomicReference<U>()).invoke();
3700 }
3701
3702 /**
3703 * Returns the result of accumulating all values using the
3704 * given reducer to combine values, or null if none.
3705 *
3706 * @param parallelismThreshold the (estimated) number of elements
3707 * needed for this operation to be executed in parallel
3708 * @param reducer a commutative associative combining function
3709 * @return the result of accumulating all values
3710 * @since 1.8
3711 */
3712 public V reduceValues(long parallelismThreshold,
3713 BiFunction<? super V, ? super V, ? extends V> reducer) {
3714 if (reducer == null) throw new NullPointerException();
3715 return new ReduceValuesTask<K,V>
3716 (null, batchFor(parallelismThreshold), 0, 0, table,
3717 null, reducer).invoke();
3718 }
3719
3720 /**
3721 * Returns the result of accumulating the given transformation
3722 * of all values using the given reducer to combine values, or
3723 * null if none.
3724 *
3725 * @param parallelismThreshold the (estimated) number of elements
3726 * needed for this operation to be executed in parallel
3727 * @param transformer a function returning the transformation
3728 * for an element, or null if there is no transformation (in
3729 * which case it is not combined)
3730 * @param reducer a commutative associative combining function
3731 * @return the result of accumulating the given transformation
3732 * of all values
3733 * @since 1.8
3734 */
3735 public <U> U reduceValues(long parallelismThreshold,
3736 Function<? super V, ? extends U> transformer,
3737 BiFunction<? super U, ? super U, ? extends U> reducer) {
3738 if (transformer == null || reducer == null)
3739 throw new NullPointerException();
3740 return new MapReduceValuesTask<K,V,U>
3741 (null, batchFor(parallelismThreshold), 0, 0, table,
3742 null, transformer, reducer).invoke();
3743 }
3744
3745 /**
3746 * Returns the result of accumulating the given transformation
3747 * of all values using the given reducer to combine values,
3748 * and the given basis as an identity value.
3749 *
3750 * @param parallelismThreshold the (estimated) number of elements
3751 * needed for this operation to be executed in parallel
3752 * @param transformer a function returning the transformation
3753 * for an element
3754 * @param basis the identity (initial default value) for the reduction
3755 * @param reducer a commutative associative combining function
3756 * @return the result of accumulating the given transformation
3757 * of all values
3758 * @since 1.8
3759 */
3760 public double reduceValuesToDouble(long parallelismThreshold,
3761 ToDoubleFunction<? super V> transformer,
3762 double basis,
3763 DoubleBinaryOperator reducer) {
3764 if (transformer == null || reducer == null)
3765 throw new NullPointerException();
3766 return new MapReduceValuesToDoubleTask<K,V>
3767 (null, batchFor(parallelismThreshold), 0, 0, table,
3768 null, transformer, basis, reducer).invoke();
3769 }
3770
3771 /**
3772 * Returns the result of accumulating the given transformation
3773 * of all values using the given reducer to combine values,
3774 * and the given basis as an identity value.
3775 *
3776 * @param parallelismThreshold the (estimated) number of elements
3777 * needed for this operation to be executed in parallel
3778 * @param transformer a function returning the transformation
3779 * for an element
3780 * @param basis the identity (initial default value) for the reduction
3781 * @param reducer a commutative associative combining function
3782 * @return the result of accumulating the given transformation
3783 * of all values
3784 * @since 1.8
3785 */
3786 public long reduceValuesToLong(long parallelismThreshold,
3787 ToLongFunction<? super V> transformer,
3788 long basis,
3789 LongBinaryOperator reducer) {
3790 if (transformer == null || reducer == null)
3791 throw new NullPointerException();
3792 return new MapReduceValuesToLongTask<K,V>
3793 (null, batchFor(parallelismThreshold), 0, 0, table,
3794 null, transformer, basis, reducer).invoke();
3795 }
3796
3797 /**
3798 * Returns the result of accumulating the given transformation
3799 * of all values using the given reducer to combine values,
3800 * and the given basis as an identity value.
3801 *
3802 * @param parallelismThreshold the (estimated) number of elements
3803 * needed for this operation to be executed in parallel
3804 * @param transformer a function returning the transformation
3805 * for an element
3806 * @param basis the identity (initial default value) for the reduction
3807 * @param reducer a commutative associative combining function
3808 * @return the result of accumulating the given transformation
3809 * of all values
3810 * @since 1.8
3811 */
3812 public int reduceValuesToInt(long parallelismThreshold,
3813 ToIntFunction<? super V> transformer,
3814 int basis,
3815 IntBinaryOperator reducer) {
3816 if (transformer == null || reducer == null)
3817 throw new NullPointerException();
3818 return new MapReduceValuesToIntTask<K,V>
3819 (null, batchFor(parallelismThreshold), 0, 0, table,
3820 null, transformer, basis, reducer).invoke();
3821 }
3822
3823 /**
3824 * Performs the given action for each entry.
3825 *
3826 * @param parallelismThreshold the (estimated) number of elements
3827 * needed for this operation to be executed in parallel
3828 * @param action the action
3829 * @since 1.8
3830 */
3831 public void forEachEntry(long parallelismThreshold,
3832 Consumer<? super Map.Entry<K,V>> action) {
3833 if (action == null) throw new NullPointerException();
3834 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3835 action).invoke();
3836 }
3837
3838 /**
3839 * Performs the given action for each non-null transformation
3840 * of each entry.
3841 *
3842 * @param parallelismThreshold the (estimated) number of elements
3843 * needed for this operation to be executed in parallel
3844 * @param transformer a function returning the transformation
3845 * for an element, or null if there is no transformation (in
3846 * which case the action is not applied)
3847 * @param action the action
3848 * @since 1.8
3849 */
3850 public <U> void forEachEntry(long parallelismThreshold,
3851 Function<Map.Entry<K,V>, ? extends U> transformer,
3852 Consumer<? super U> action) {
3853 if (transformer == null || action == null)
3854 throw new NullPointerException();
3855 new ForEachTransformedEntryTask<K,V,U>
3856 (null, batchFor(parallelismThreshold), 0, 0, table,
3857 transformer, action).invoke();
3858 }
3859
3860 /**
3861 * Returns a non-null result from applying the given search
3862 * function on each entry, or null if none. Upon success,
3863 * further element processing is suppressed and the results of
3864 * any other parallel invocations of the search function are
3865 * ignored.
3866 *
3867 * @param parallelismThreshold the (estimated) number of elements
3868 * needed for this operation to be executed in parallel
3869 * @param searchFunction a function returning a non-null
3870 * result on success, else null
3871 * @return a non-null result from applying the given search
3872 * function on each entry, or null if none
3873 * @since 1.8
3874 */
3875 public <U> U searchEntries(long parallelismThreshold,
3876 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3877 if (searchFunction == null) throw new NullPointerException();
3878 return new SearchEntriesTask<K,V,U>
3879 (null, batchFor(parallelismThreshold), 0, 0, table,
3880 searchFunction, new AtomicReference<U>()).invoke();
3881 }
3882
3883 /**
3884 * Returns the result of accumulating all entries using the
3885 * given reducer to combine values, or null if none.
3886 *
3887 * @param parallelismThreshold the (estimated) number of elements
3888 * needed for this operation to be executed in parallel
3889 * @param reducer a commutative associative combining function
3890 * @return the result of accumulating all entries
3891 * @since 1.8
3892 */
3893 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
3894 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3895 if (reducer == null) throw new NullPointerException();
3896 return new ReduceEntriesTask<K,V>
3897 (null, batchFor(parallelismThreshold), 0, 0, table,
3898 null, reducer).invoke();
3899 }
3900
3901 /**
3902 * Returns the result of accumulating the given transformation
3903 * of all entries using the given reducer to combine values,
3904 * or null if none.
3905 *
3906 * @param parallelismThreshold the (estimated) number of elements
3907 * needed for this operation to be executed in parallel
3908 * @param transformer a function returning the transformation
3909 * for an element, or null if there is no transformation (in
3910 * which case it is not combined)
3911 * @param reducer a commutative associative combining function
3912 * @return the result of accumulating the given transformation
3913 * of all entries
3914 * @since 1.8
3915 */
3916 public <U> U reduceEntries(long parallelismThreshold,
3917 Function<Map.Entry<K,V>, ? extends U> transformer,
3918 BiFunction<? super U, ? super U, ? extends U> reducer) {
3919 if (transformer == null || reducer == null)
3920 throw new NullPointerException();
3921 return new MapReduceEntriesTask<K,V,U>
3922 (null, batchFor(parallelismThreshold), 0, 0, table,
3923 null, transformer, reducer).invoke();
3924 }
3925
3926 /**
3927 * Returns the result of accumulating the given transformation
3928 * of all entries using the given reducer to combine values,
3929 * and the given basis as an identity value.
3930 *
3931 * @param parallelismThreshold the (estimated) number of elements
3932 * needed for this operation to be executed in parallel
3933 * @param transformer a function returning the transformation
3934 * for an element
3935 * @param basis the identity (initial default value) for the reduction
3936 * @param reducer a commutative associative combining function
3937 * @return the result of accumulating the given transformation
3938 * of all entries
3939 * @since 1.8
3940 */
3941 public double reduceEntriesToDouble(long parallelismThreshold,
3942 ToDoubleFunction<Map.Entry<K,V>> transformer,
3943 double basis,
3944 DoubleBinaryOperator reducer) {
3945 if (transformer == null || reducer == null)
3946 throw new NullPointerException();
3947 return new MapReduceEntriesToDoubleTask<K,V>
3948 (null, batchFor(parallelismThreshold), 0, 0, table,
3949 null, transformer, basis, reducer).invoke();
3950 }
3951
3952 /**
3953 * Returns the result of accumulating the given transformation
3954 * of all entries using the given reducer to combine values,
3955 * and the given basis as an identity value.
3956 *
3957 * @param parallelismThreshold the (estimated) number of elements
3958 * needed for this operation to be executed in parallel
3959 * @param transformer a function returning the transformation
3960 * for an element
3961 * @param basis the identity (initial default value) for the reduction
3962 * @param reducer a commutative associative combining function
3963 * @return the result of accumulating the given transformation
3964 * of all entries
3965 */
3966 public long reduceEntriesToLong(long parallelismThreshold,
3967 ToLongFunction<Map.Entry<K,V>> transformer,
3968 long basis,
3969 LongBinaryOperator reducer) {
3970 if (transformer == null || reducer == null)
3971 throw new NullPointerException();
3972 return new MapReduceEntriesToLongTask<K,V>
3973 (null, batchFor(parallelismThreshold), 0, 0, table,
3974 null, transformer, basis, reducer).invoke();
3975 }
3976
3977 /**
3978 * Returns the result of accumulating the given transformation
3979 * of all entries using the given reducer to combine values,
3980 * and the given basis as an identity value.
3981 *
3982 * @param parallelismThreshold the (estimated) number of elements
3983 * needed for this operation to be executed in parallel
3984 * @param transformer a function returning the transformation
3985 * for an element
3986 * @param basis the identity (initial default value) for the reduction
3987 * @param reducer a commutative associative combining function
3988 * @return the result of accumulating the given transformation
3989 * of all entries
3990 */
3991 public int reduceEntriesToInt(long parallelismThreshold,
3992 ToIntFunction<Map.Entry<K,V>> transformer,
3993 int basis,
3994 IntBinaryOperator reducer) {
3995 if (transformer == null || reducer == null)
3996 throw new NullPointerException();
3997 return new MapReduceEntriesToIntTask<K,V>
3998 (null, batchFor(parallelismThreshold), 0, 0, table,
3999 null, transformer, basis, reducer).invoke();
4000 }
4001
4002
4003 /* ----------------Views -------------- */
4004
4005 /**
4006 * Base class for views.
4007 */
4008 abstract static class CollectionView<K,V,E>
4009 implements Collection<E>, java.io.Serializable {
4010 private static final long serialVersionUID = 7249069246763182397L;
4011 final ConcurrentHashMap<K,V> map;
4012 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4013
4014 /**
4015 * Returns the map backing this view.
4016 *
4017 * @return the map backing this view
4018 */
4019 public ConcurrentHashMap<K,V> getMap() { return map; }
4020
4021 /**
4022 * Removes all of the elements from this view, by removing all
4023 * the mappings from the map backing this view.
4024 */
4025 public final void clear() { map.clear(); }
4026 public final int size() { return map.size(); }
4027 public final boolean isEmpty() { return map.isEmpty(); }
4028
4029 // implementations below rely on concrete classes supplying these
4030 // abstract methods
4031 /**
4032 * Returns a "weakly consistent" iterator that will never
4033 * throw {@link ConcurrentModificationException}, and
4034 * guarantees to traverse elements as they existed upon
4035 * construction of the iterator, and may (but is not
4036 * guaranteed to) reflect any modifications subsequent to
4037 * construction.
4038 */
4039 public abstract Iterator<E> iterator();
4040 public abstract boolean contains(Object o);
4041 public abstract boolean remove(Object o);
4042
4043 private static final String oomeMsg = "Required array size too large";
4044
4045 public final Object[] toArray() {
4046 long sz = map.mappingCount();
4047 if (sz > MAX_ARRAY_SIZE)
4048 throw new OutOfMemoryError(oomeMsg);
4049 int n = (int)sz;
4050 Object[] r = new Object[n];
4051 int i = 0;
4052 for (E e : this) {
4053 if (i == n) {
4054 if (n >= MAX_ARRAY_SIZE)
4055 throw new OutOfMemoryError(oomeMsg);
4056 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4057 n = MAX_ARRAY_SIZE;
4058 else
4059 n += (n >>> 1) + 1;
4060 r = Arrays.copyOf(r, n);
4061 }
4062 r[i++] = e;
4063 }
4064 return (i == n) ? r : Arrays.copyOf(r, i);
4065 }
4066
4067 public final <T> T[] toArray(T[] a) {
4068 long sz = map.mappingCount();
4069 if (sz > MAX_ARRAY_SIZE)
4070 throw new OutOfMemoryError(oomeMsg);
4071 int m = (int)sz;
4072 T[] r = (a.length >= m) ? a :
4073 (T[])java.lang.reflect.Array
4074 .newInstance(a.getClass().getComponentType(), m);
4075 int n = r.length;
4076 int i = 0;
4077 for (E e : this) {
4078 if (i == n) {
4079 if (n >= MAX_ARRAY_SIZE)
4080 throw new OutOfMemoryError(oomeMsg);
4081 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4082 n = MAX_ARRAY_SIZE;
4083 else
4084 n += (n >>> 1) + 1;
4085 r = Arrays.copyOf(r, n);
4086 }
4087 r[i++] = (T)e;
4088 }
4089 if (a == r && i < n) {
4090 r[i] = null; // null-terminate
4091 return r;
4092 }
4093 return (i == n) ? r : Arrays.copyOf(r, i);
4094 }
4095
4096 /**
4097 * Returns a string representation of this collection.
4098 * The string representation consists of the string representations
4099 * of the collection's elements in the order they are returned by
4100 * its iterator, enclosed in square brackets ({@code "[]"}).
4101 * Adjacent elements are separated by the characters {@code ", "}
4102 * (comma and space). Elements are converted to strings as by
4103 * {@link String#valueOf(Object)}.
4104 *
4105 * @return a string representation of this collection
4106 */
4107 public final String toString() {
4108 StringBuilder sb = new StringBuilder();
4109 sb.append('[');
4110 Iterator<E> it = iterator();
4111 if (it.hasNext()) {
4112 for (;;) {
4113 Object e = it.next();
4114 sb.append(e == this ? "(this Collection)" : e);
4115 if (!it.hasNext())
4116 break;
4117 sb.append(',').append(' ');
4118 }
4119 }
4120 return sb.append(']').toString();
4121 }
4122
4123 public final boolean containsAll(Collection<?> c) {
4124 if (c != this) {
4125 for (Object e : c) {
4126 if (e == null || !contains(e))
4127 return false;
4128 }
4129 }
4130 return true;
4131 }
4132
4133 public final boolean removeAll(Collection<?> c) {
4134 boolean modified = false;
4135 for (Iterator<E> it = iterator(); it.hasNext();) {
4136 if (c.contains(it.next())) {
4137 it.remove();
4138 modified = true;
4139 }
4140 }
4141 return modified;
4142 }
4143
4144 public final boolean retainAll(Collection<?> c) {
4145 boolean modified = false;
4146 for (Iterator<E> it = iterator(); it.hasNext();) {
4147 if (!c.contains(it.next())) {
4148 it.remove();
4149 modified = true;
4150 }
4151 }
4152 return modified;
4153 }
4154
4155 }
4156
4157 /**
4158 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4159 * which additions may optionally be enabled by mapping to a
4160 * common value. This class cannot be directly instantiated.
4161 * See {@link #keySet() keySet()},
4162 * {@link #keySet(Object) keySet(V)},
4163 * {@link #newKeySet() newKeySet()},
4164 * {@link #newKeySet(int) newKeySet(int)}.
4165 */
4166 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4167 implements Set<K>, java.io.Serializable {
4168 private static final long serialVersionUID = 7249069246763182397L;
4169 private final V value;
4170 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4171 super(map);
4172 this.value = value;
4173 }
4174
4175 /**
4176 * Returns the default mapped value for additions,
4177 * or {@code null} if additions are not supported.
4178 *
4179 * @return the default mapped value for additions, or {@code null}
4180 * if not supported
4181 */
4182 public V getMappedValue() { return value; }
4183
4184 /**
4185 * {@inheritDoc}
4186 * @throws NullPointerException if the specified key is null
4187 */
4188 public boolean contains(Object o) { return map.containsKey(o); }
4189
4190 /**
4191 * Removes the key from this map view, by removing the key (and its
4192 * corresponding value) from the backing map. This method does
4193 * nothing if the key is not in the map.
4194 *
4195 * @param o the key to be removed from the backing map
4196 * @return {@code true} if the backing map contained the specified key
4197 * @throws NullPointerException if the specified key is null
4198 */
4199 public boolean remove(Object o) { return map.remove(o) != null; }
4200
4201 /**
4202 * @return an iterator over the keys of the backing map
4203 */
4204 public Iterator<K> iterator() {
4205 Node<K,V>[] t;
4206 ConcurrentHashMap<K,V> m = map;
4207 int f = (t = m.table) == null ? 0 : t.length;
4208 return new KeyIterator<K,V>(t, f, 0, f, m);
4209 }
4210
4211 /**
4212 * Adds the specified key to this set view by mapping the key to
4213 * the default mapped value in the backing map, if defined.
4214 *
4215 * @param e key to be added
4216 * @return {@code true} if this set changed as a result of the call
4217 * @throws NullPointerException if the specified key is null
4218 * @throws UnsupportedOperationException if no default mapped value
4219 * for additions was provided
4220 */
4221 public boolean add(K e) {
4222 V v;
4223 if ((v = value) == null)
4224 throw new UnsupportedOperationException();
4225 return map.internalPut(e, v, true) == null;
4226 }
4227
4228 /**
4229 * Adds all of the elements in the specified collection to this set,
4230 * as if by calling {@link #add} on each one.
4231 *
4232 * @param c the elements to be inserted into this set
4233 * @return {@code true} if this set changed as a result of the call
4234 * @throws NullPointerException if the collection or any of its
4235 * elements are {@code null}
4236 * @throws UnsupportedOperationException if no default mapped value
4237 * for additions was provided
4238 */
4239 public boolean addAll(Collection<? extends K> c) {
4240 boolean added = false;
4241 V v;
4242 if ((v = value) == null)
4243 throw new UnsupportedOperationException();
4244 for (K e : c) {
4245 if (map.internalPut(e, v, true) == null)
4246 added = true;
4247 }
4248 return added;
4249 }
4250
4251 public int hashCode() {
4252 int h = 0;
4253 for (K e : this)
4254 h += e.hashCode();
4255 return h;
4256 }
4257
4258 public boolean equals(Object o) {
4259 Set<?> c;
4260 return ((o instanceof Set) &&
4261 ((c = (Set<?>)o) == this ||
4262 (containsAll(c) && c.containsAll(this))));
4263 }
4264
4265 public Spliterator<K> spliterator() {
4266 Node<K,V>[] t;
4267 ConcurrentHashMap<K,V> m = map;
4268 long n = m.sumCount();
4269 int f = (t = m.table) == null ? 0 : t.length;
4270 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4271 }
4272
4273 public void forEach(Consumer<? super K> action) {
4274 if (action == null) throw new NullPointerException();
4275 Node<K,V>[] t;
4276 if ((t = map.table) != null) {
4277 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4278 for (Node<K,V> p; (p = it.advance()) != null; )
4279 action.accept((K)p.key);
4280 }
4281 }
4282 }
4283
4284 /**
4285 * A view of a ConcurrentHashMap as a {@link Collection} of
4286 * values, in which additions are disabled. This class cannot be
4287 * directly instantiated. See {@link #values()}.
4288 */
4289 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4290 implements Collection<V>, java.io.Serializable {
4291 private static final long serialVersionUID = 2249069246763182397L;
4292 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4293 public final boolean contains(Object o) {
4294 return map.containsValue(o);
4295 }
4296
4297 public final boolean remove(Object o) {
4298 if (o != null) {
4299 for (Iterator<V> it = iterator(); it.hasNext();) {
4300 if (o.equals(it.next())) {
4301 it.remove();
4302 return true;
4303 }
4304 }
4305 }
4306 return false;
4307 }
4308
4309 public final Iterator<V> iterator() {
4310 ConcurrentHashMap<K,V> m = map;
4311 Node<K,V>[] t;
4312 int f = (t = m.table) == null ? 0 : t.length;
4313 return new ValueIterator<K,V>(t, f, 0, f, m);
4314 }
4315
4316 public final boolean add(V e) {
4317 throw new UnsupportedOperationException();
4318 }
4319 public final boolean addAll(Collection<? extends V> c) {
4320 throw new UnsupportedOperationException();
4321 }
4322
4323 public Spliterator<V> spliterator() {
4324 Node<K,V>[] t;
4325 ConcurrentHashMap<K,V> m = map;
4326 long n = m.sumCount();
4327 int f = (t = m.table) == null ? 0 : t.length;
4328 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4329 }
4330
4331 public void forEach(Consumer<? super V> action) {
4332 if (action == null) throw new NullPointerException();
4333 Node<K,V>[] t;
4334 if ((t = map.table) != null) {
4335 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4336 for (Node<K,V> p; (p = it.advance()) != null; )
4337 action.accept(p.val);
4338 }
4339 }
4340 }
4341
4342 /**
4343 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4344 * entries. This class cannot be directly instantiated. See
4345 * {@link #entrySet()}.
4346 */
4347 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4348 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4349 private static final long serialVersionUID = 2249069246763182397L;
4350 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4351
4352 public boolean contains(Object o) {
4353 Object k, v, r; Map.Entry<?,?> e;
4354 return ((o instanceof Map.Entry) &&
4355 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4356 (r = map.get(k)) != null &&
4357 (v = e.getValue()) != null &&
4358 (v == r || v.equals(r)));
4359 }
4360
4361 public boolean remove(Object o) {
4362 Object k, v; Map.Entry<?,?> e;
4363 return ((o instanceof Map.Entry) &&
4364 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4365 (v = e.getValue()) != null &&
4366 map.remove(k, v));
4367 }
4368
4369 /**
4370 * @return an iterator over the entries of the backing map
4371 */
4372 public Iterator<Map.Entry<K,V>> iterator() {
4373 ConcurrentHashMap<K,V> m = map;
4374 Node<K,V>[] t;
4375 int f = (t = m.table) == null ? 0 : t.length;
4376 return new EntryIterator<K,V>(t, f, 0, f, m);
4377 }
4378
4379 public boolean add(Entry<K,V> e) {
4380 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4381 }
4382
4383 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4384 boolean added = false;
4385 for (Entry<K,V> e : c) {
4386 if (add(e))
4387 added = true;
4388 }
4389 return added;
4390 }
4391
4392 public final int hashCode() {
4393 int h = 0;
4394 Node<K,V>[] t;
4395 if ((t = map.table) != null) {
4396 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4397 for (Node<K,V> p; (p = it.advance()) != null; ) {
4398 h += p.hashCode();
4399 }
4400 }
4401 return h;
4402 }
4403
4404 public final boolean equals(Object o) {
4405 Set<?> c;
4406 return ((o instanceof Set) &&
4407 ((c = (Set<?>)o) == this ||
4408 (containsAll(c) && c.containsAll(this))));
4409 }
4410
4411 public Spliterator<Map.Entry<K,V>> spliterator() {
4412 Node<K,V>[] t;
4413 ConcurrentHashMap<K,V> m = map;
4414 long n = m.sumCount();
4415 int f = (t = m.table) == null ? 0 : t.length;
4416 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4417 }
4418
4419 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4420 if (action == null) throw new NullPointerException();
4421 Node<K,V>[] t;
4422 if ((t = map.table) != null) {
4423 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4424 for (Node<K,V> p; (p = it.advance()) != null; )
4425 action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4426 }
4427 }
4428
4429 }
4430
4431 // -------------------------------------------------------
4432
4433 /**
4434 * Base class for bulk tasks. Repeats some fields and code from
4435 * class Traverser, because we need to subclass CountedCompleter.
4436 */
4437 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4438 Node<K,V>[] tab; // same as Traverser
4439 Node<K,V> next;
4440 int index;
4441 int baseIndex;
4442 int baseLimit;
4443 final int baseSize;
4444 int batch; // split control
4445
4446 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4447 super(par);
4448 this.batch = b;
4449 this.index = this.baseIndex = i;
4450 if ((this.tab = t) == null)
4451 this.baseSize = this.baseLimit = 0;
4452 else if (par == null)
4453 this.baseSize = this.baseLimit = t.length;
4454 else {
4455 this.baseLimit = f;
4456 this.baseSize = par.baseSize;
4457 }
4458 }
4459
4460 /**
4461 * Same as Traverser version
4462 */
4463 final Node<K,V> advance() {
4464 Node<K,V> e;
4465 if ((e = next) != null)
4466 e = e.next;
4467 for (;;) {
4468 Node<K,V>[] t; int i, n; Object ek;
4469 if (e != null)
4470 return next = e;
4471 if (baseIndex >= baseLimit || (t = tab) == null ||
4472 (n = t.length) <= (i = index) || i < 0)
4473 return next = null;
4474 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4475 if ((ek = e.key) instanceof TreeBin)
4476 e = ((TreeBin<K,V>)ek).first;
4477 else {
4478 tab = (Node<K,V>[])ek;
4479 e = null;
4480 continue;
4481 }
4482 }
4483 if ((index += baseSize) >= n)
4484 index = ++baseIndex;
4485 }
4486 }
4487 }
4488
4489 /*
4490 * Task classes. Coded in a regular but ugly format/style to
4491 * simplify checks that each variant differs in the right way from
4492 * others. The null screenings exist because compilers cannot tell
4493 * that we've already null-checked task arguments, so we force
4494 * simplest hoisted bypass to help avoid convoluted traps.
4495 */
4496
4497 static final class ForEachKeyTask<K,V>
4498 extends BulkTask<K,V,Void> {
4499 final Consumer<? super K> action;
4500 ForEachKeyTask
4501 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4502 Consumer<? super K> action) {
4503 super(p, b, i, f, t);
4504 this.action = action;
4505 }
4506 public final void compute() {
4507 final Consumer<? super K> action;
4508 if ((action = this.action) != null) {
4509 for (int i = baseIndex, f, h; batch > 0 &&
4510 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4511 addToPendingCount(1);
4512 new ForEachKeyTask<K,V>
4513 (this, batch >>>= 1, baseLimit = h, f, tab,
4514 action).fork();
4515 }
4516 for (Node<K,V> p; (p = advance()) != null;)
4517 action.accept((K)p.key);
4518 propagateCompletion();
4519 }
4520 }
4521 }
4522
4523 static final class ForEachValueTask<K,V>
4524 extends BulkTask<K,V,Void> {
4525 final Consumer<? super V> action;
4526 ForEachValueTask
4527 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4528 Consumer<? super V> action) {
4529 super(p, b, i, f, t);
4530 this.action = action;
4531 }
4532 public final void compute() {
4533 final Consumer<? super V> action;
4534 if ((action = this.action) != null) {
4535 for (int i = baseIndex, f, h; batch > 0 &&
4536 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4537 addToPendingCount(1);
4538 new ForEachValueTask<K,V>
4539 (this, batch >>>= 1, baseLimit = h, f, tab,
4540 action).fork();
4541 }
4542 for (Node<K,V> p; (p = advance()) != null;)
4543 action.accept(p.val);
4544 propagateCompletion();
4545 }
4546 }
4547 }
4548
4549 static final class ForEachEntryTask<K,V>
4550 extends BulkTask<K,V,Void> {
4551 final Consumer<? super Entry<K,V>> action;
4552 ForEachEntryTask
4553 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4554 Consumer<? super Entry<K,V>> action) {
4555 super(p, b, i, f, t);
4556 this.action = action;
4557 }
4558 public final void compute() {
4559 final Consumer<? super Entry<K,V>> action;
4560 if ((action = this.action) != null) {
4561 for (int i = baseIndex, f, h; batch > 0 &&
4562 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4563 addToPendingCount(1);
4564 new ForEachEntryTask<K,V>
4565 (this, batch >>>= 1, baseLimit = h, f, tab,
4566 action).fork();
4567 }
4568 for (Node<K,V> p; (p = advance()) != null; )
4569 action.accept(p);
4570 propagateCompletion();
4571 }
4572 }
4573 }
4574
4575 static final class ForEachMappingTask<K,V>
4576 extends BulkTask<K,V,Void> {
4577 final BiConsumer<? super K, ? super V> action;
4578 ForEachMappingTask
4579 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4580 BiConsumer<? super K,? super V> action) {
4581 super(p, b, i, f, t);
4582 this.action = action;
4583 }
4584 public final void compute() {
4585 final BiConsumer<? super K, ? super V> action;
4586 if ((action = this.action) != null) {
4587 for (int i = baseIndex, f, h; batch > 0 &&
4588 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4589 addToPendingCount(1);
4590 new ForEachMappingTask<K,V>
4591 (this, batch >>>= 1, baseLimit = h, f, tab,
4592 action).fork();
4593 }
4594 for (Node<K,V> p; (p = advance()) != null; )
4595 action.accept((K)p.key, p.val);
4596 propagateCompletion();
4597 }
4598 }
4599 }
4600
4601 static final class ForEachTransformedKeyTask<K,V,U>
4602 extends BulkTask<K,V,Void> {
4603 final Function<? super K, ? extends U> transformer;
4604 final Consumer<? super U> action;
4605 ForEachTransformedKeyTask
4606 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4607 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4608 super(p, b, i, f, t);
4609 this.transformer = transformer; this.action = action;
4610 }
4611 public final void compute() {
4612 final Function<? super K, ? extends U> transformer;
4613 final Consumer<? super U> action;
4614 if ((transformer = this.transformer) != null &&
4615 (action = this.action) != null) {
4616 for (int i = baseIndex, f, h; batch > 0 &&
4617 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4618 addToPendingCount(1);
4619 new ForEachTransformedKeyTask<K,V,U>
4620 (this, batch >>>= 1, baseLimit = h, f, tab,
4621 transformer, action).fork();
4622 }
4623 for (Node<K,V> p; (p = advance()) != null; ) {
4624 U u;
4625 if ((u = transformer.apply((K)p.key)) != null)
4626 action.accept(u);
4627 }
4628 propagateCompletion();
4629 }
4630 }
4631 }
4632
4633 static final class ForEachTransformedValueTask<K,V,U>
4634 extends BulkTask<K,V,Void> {
4635 final Function<? super V, ? extends U> transformer;
4636 final Consumer<? super U> action;
4637 ForEachTransformedValueTask
4638 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4639 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4640 super(p, b, i, f, t);
4641 this.transformer = transformer; this.action = action;
4642 }
4643 public final void compute() {
4644 final Function<? super V, ? extends U> transformer;
4645 final Consumer<? super U> action;
4646 if ((transformer = this.transformer) != null &&
4647 (action = this.action) != null) {
4648 for (int i = baseIndex, f, h; batch > 0 &&
4649 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4650 addToPendingCount(1);
4651 new ForEachTransformedValueTask<K,V,U>
4652 (this, batch >>>= 1, baseLimit = h, f, tab,
4653 transformer, action).fork();
4654 }
4655 for (Node<K,V> p; (p = advance()) != null; ) {
4656 U u;
4657 if ((u = transformer.apply(p.val)) != null)
4658 action.accept(u);
4659 }
4660 propagateCompletion();
4661 }
4662 }
4663 }
4664
4665 static final class ForEachTransformedEntryTask<K,V,U>
4666 extends BulkTask<K,V,Void> {
4667 final Function<Map.Entry<K,V>, ? extends U> transformer;
4668 final Consumer<? super U> action;
4669 ForEachTransformedEntryTask
4670 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4671 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4672 super(p, b, i, f, t);
4673 this.transformer = transformer; this.action = action;
4674 }
4675 public final void compute() {
4676 final Function<Map.Entry<K,V>, ? extends U> transformer;
4677 final Consumer<? super U> action;
4678 if ((transformer = this.transformer) != null &&
4679 (action = this.action) != null) {
4680 for (int i = baseIndex, f, h; batch > 0 &&
4681 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4682 addToPendingCount(1);
4683 new ForEachTransformedEntryTask<K,V,U>
4684 (this, batch >>>= 1, baseLimit = h, f, tab,
4685 transformer, action).fork();
4686 }
4687 for (Node<K,V> p; (p = advance()) != null; ) {
4688 U u;
4689 if ((u = transformer.apply(p)) != null)
4690 action.accept(u);
4691 }
4692 propagateCompletion();
4693 }
4694 }
4695 }
4696
4697 static final class ForEachTransformedMappingTask<K,V,U>
4698 extends BulkTask<K,V,Void> {
4699 final BiFunction<? super K, ? super V, ? extends U> transformer;
4700 final Consumer<? super U> action;
4701 ForEachTransformedMappingTask
4702 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4703 BiFunction<? super K, ? super V, ? extends U> transformer,
4704 Consumer<? super U> action) {
4705 super(p, b, i, f, t);
4706 this.transformer = transformer; this.action = action;
4707 }
4708 public final void compute() {
4709 final BiFunction<? super K, ? super V, ? extends U> transformer;
4710 final Consumer<? super U> action;
4711 if ((transformer = this.transformer) != null &&
4712 (action = this.action) != null) {
4713 for (int i = baseIndex, f, h; batch > 0 &&
4714 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4715 addToPendingCount(1);
4716 new ForEachTransformedMappingTask<K,V,U>
4717 (this, batch >>>= 1, baseLimit = h, f, tab,
4718 transformer, action).fork();
4719 }
4720 for (Node<K,V> p; (p = advance()) != null; ) {
4721 U u;
4722 if ((u = transformer.apply((K)p.key, p.val)) != null)
4723 action.accept(u);
4724 }
4725 propagateCompletion();
4726 }
4727 }
4728 }
4729
4730 static final class SearchKeysTask<K,V,U>
4731 extends BulkTask<K,V,U> {
4732 final Function<? super K, ? extends U> searchFunction;
4733 final AtomicReference<U> result;
4734 SearchKeysTask
4735 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4736 Function<? super K, ? extends U> searchFunction,
4737 AtomicReference<U> result) {
4738 super(p, b, i, f, t);
4739 this.searchFunction = searchFunction; this.result = result;
4740 }
4741 public final U getRawResult() { return result.get(); }
4742 public final void compute() {
4743 final Function<? super K, ? extends U> searchFunction;
4744 final AtomicReference<U> result;
4745 if ((searchFunction = this.searchFunction) != null &&
4746 (result = this.result) != null) {
4747 for (int i = baseIndex, f, h; batch > 0 &&
4748 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4749 if (result.get() != null)
4750 return;
4751 addToPendingCount(1);
4752 new SearchKeysTask<K,V,U>
4753 (this, batch >>>= 1, baseLimit = h, f, tab,
4754 searchFunction, result).fork();
4755 }
4756 while (result.get() == null) {
4757 U u;
4758 Node<K,V> p;
4759 if ((p = advance()) == null) {
4760 propagateCompletion();
4761 break;
4762 }
4763 if ((u = searchFunction.apply((K)p.key)) != null) {
4764 if (result.compareAndSet(null, u))
4765 quietlyCompleteRoot();
4766 break;
4767 }
4768 }
4769 }
4770 }
4771 }
4772
4773 static final class SearchValuesTask<K,V,U>
4774 extends BulkTask<K,V,U> {
4775 final Function<? super V, ? extends U> searchFunction;
4776 final AtomicReference<U> result;
4777 SearchValuesTask
4778 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4779 Function<? super V, ? extends U> searchFunction,
4780 AtomicReference<U> result) {
4781 super(p, b, i, f, t);
4782 this.searchFunction = searchFunction; this.result = result;
4783 }
4784 public final U getRawResult() { return result.get(); }
4785 public final void compute() {
4786 final Function<? super V, ? extends U> searchFunction;
4787 final AtomicReference<U> result;
4788 if ((searchFunction = this.searchFunction) != null &&
4789 (result = this.result) != null) {
4790 for (int i = baseIndex, f, h; batch > 0 &&
4791 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4792 if (result.get() != null)
4793 return;
4794 addToPendingCount(1);
4795 new SearchValuesTask<K,V,U>
4796 (this, batch >>>= 1, baseLimit = h, f, tab,
4797 searchFunction, result).fork();
4798 }
4799 while (result.get() == null) {
4800 U u;
4801 Node<K,V> p;
4802 if ((p = advance()) == null) {
4803 propagateCompletion();
4804 break;
4805 }
4806 if ((u = searchFunction.apply(p.val)) != null) {
4807 if (result.compareAndSet(null, u))
4808 quietlyCompleteRoot();
4809 break;
4810 }
4811 }
4812 }
4813 }
4814 }
4815
4816 static final class SearchEntriesTask<K,V,U>
4817 extends BulkTask<K,V,U> {
4818 final Function<Entry<K,V>, ? extends U> searchFunction;
4819 final AtomicReference<U> result;
4820 SearchEntriesTask
4821 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4822 Function<Entry<K,V>, ? extends U> searchFunction,
4823 AtomicReference<U> result) {
4824 super(p, b, i, f, t);
4825 this.searchFunction = searchFunction; this.result = result;
4826 }
4827 public final U getRawResult() { return result.get(); }
4828 public final void compute() {
4829 final Function<Entry<K,V>, ? extends U> searchFunction;
4830 final AtomicReference<U> result;
4831 if ((searchFunction = this.searchFunction) != null &&
4832 (result = this.result) != null) {
4833 for (int i = baseIndex, f, h; batch > 0 &&
4834 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4835 if (result.get() != null)
4836 return;
4837 addToPendingCount(1);
4838 new SearchEntriesTask<K,V,U>
4839 (this, batch >>>= 1, baseLimit = h, f, tab,
4840 searchFunction, result).fork();
4841 }
4842 while (result.get() == null) {
4843 U u;
4844 Node<K,V> p;
4845 if ((p = advance()) == null) {
4846 propagateCompletion();
4847 break;
4848 }
4849 if ((u = searchFunction.apply(p)) != null) {
4850 if (result.compareAndSet(null, u))
4851 quietlyCompleteRoot();
4852 return;
4853 }
4854 }
4855 }
4856 }
4857 }
4858
4859 static final class SearchMappingsTask<K,V,U>
4860 extends BulkTask<K,V,U> {
4861 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4862 final AtomicReference<U> result;
4863 SearchMappingsTask
4864 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4865 BiFunction<? super K, ? super V, ? extends U> searchFunction,
4866 AtomicReference<U> result) {
4867 super(p, b, i, f, t);
4868 this.searchFunction = searchFunction; this.result = result;
4869 }
4870 public final U getRawResult() { return result.get(); }
4871 public final void compute() {
4872 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4873 final AtomicReference<U> result;
4874 if ((searchFunction = this.searchFunction) != null &&
4875 (result = this.result) != null) {
4876 for (int i = baseIndex, f, h; batch > 0 &&
4877 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4878 if (result.get() != null)
4879 return;
4880 addToPendingCount(1);
4881 new SearchMappingsTask<K,V,U>
4882 (this, batch >>>= 1, baseLimit = h, f, tab,
4883 searchFunction, result).fork();
4884 }
4885 while (result.get() == null) {
4886 U u;
4887 Node<K,V> p;
4888 if ((p = advance()) == null) {
4889 propagateCompletion();
4890 break;
4891 }
4892 if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
4893 if (result.compareAndSet(null, u))
4894 quietlyCompleteRoot();
4895 break;
4896 }
4897 }
4898 }
4899 }
4900 }
4901
4902 static final class ReduceKeysTask<K,V>
4903 extends BulkTask<K,V,K> {
4904 final BiFunction<? super K, ? super K, ? extends K> reducer;
4905 K result;
4906 ReduceKeysTask<K,V> rights, nextRight;
4907 ReduceKeysTask
4908 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4909 ReduceKeysTask<K,V> nextRight,
4910 BiFunction<? super K, ? super K, ? extends K> reducer) {
4911 super(p, b, i, f, t); this.nextRight = nextRight;
4912 this.reducer = reducer;
4913 }
4914 public final K getRawResult() { return result; }
4915 public final void compute() {
4916 final BiFunction<? super K, ? super K, ? extends K> reducer;
4917 if ((reducer = this.reducer) != null) {
4918 for (int i = baseIndex, f, h; batch > 0 &&
4919 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4920 addToPendingCount(1);
4921 (rights = new ReduceKeysTask<K,V>
4922 (this, batch >>>= 1, baseLimit = h, f, tab,
4923 rights, reducer)).fork();
4924 }
4925 K r = null;
4926 for (Node<K,V> p; (p = advance()) != null; ) {
4927 K u = (K)p.key;
4928 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
4929 }
4930 result = r;
4931 CountedCompleter<?> c;
4932 for (c = firstComplete(); c != null; c = c.nextComplete()) {
4933 ReduceKeysTask<K,V>
4934 t = (ReduceKeysTask<K,V>)c,
4935 s = t.rights;
4936 while (s != null) {
4937 K tr, sr;
4938 if ((sr = s.result) != null)
4939 t.result = (((tr = t.result) == null) ? sr :
4940 reducer.apply(tr, sr));
4941 s = t.rights = s.nextRight;
4942 }
4943 }
4944 }
4945 }
4946 }
4947
4948 static final class ReduceValuesTask<K,V>
4949 extends BulkTask<K,V,V> {
4950 final BiFunction<? super V, ? super V, ? extends V> reducer;
4951 V result;
4952 ReduceValuesTask<K,V> rights, nextRight;
4953 ReduceValuesTask
4954 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4955 ReduceValuesTask<K,V> nextRight,
4956 BiFunction<? super V, ? super V, ? extends V> reducer) {
4957 super(p, b, i, f, t); this.nextRight = nextRight;
4958 this.reducer = reducer;
4959 }
4960 public final V getRawResult() { return result; }
4961 public final void compute() {
4962 final BiFunction<? super V, ? super V, ? extends V> reducer;
4963 if ((reducer = this.reducer) != null) {
4964 for (int i = baseIndex, f, h; batch > 0 &&
4965 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4966 addToPendingCount(1);
4967 (rights = new ReduceValuesTask<K,V>
4968 (this, batch >>>= 1, baseLimit = h, f, tab,
4969 rights, reducer)).fork();
4970 }
4971 V r = null;
4972 for (Node<K,V> p; (p = advance()) != null; ) {
4973 V v = p.val;
4974 r = (r == null) ? v : reducer.apply(r, v);
4975 }
4976 result = r;
4977 CountedCompleter<?> c;
4978 for (c = firstComplete(); c != null; c = c.nextComplete()) {
4979 ReduceValuesTask<K,V>
4980 t = (ReduceValuesTask<K,V>)c,
4981 s = t.rights;
4982 while (s != null) {
4983 V tr, sr;
4984 if ((sr = s.result) != null)
4985 t.result = (((tr = t.result) == null) ? sr :
4986 reducer.apply(tr, sr));
4987 s = t.rights = s.nextRight;
4988 }
4989 }
4990 }
4991 }
4992 }
4993
4994 static final class ReduceEntriesTask<K,V>
4995 extends BulkTask<K,V,Map.Entry<K,V>> {
4996 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
4997 Map.Entry<K,V> result;
4998 ReduceEntriesTask<K,V> rights, nextRight;
4999 ReduceEntriesTask
5000 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5001 ReduceEntriesTask<K,V> nextRight,
5002 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5003 super(p, b, i, f, t); this.nextRight = nextRight;
5004 this.reducer = reducer;
5005 }
5006 public final Map.Entry<K,V> getRawResult() { return result; }
5007 public final void compute() {
5008 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5009 if ((reducer = this.reducer) != null) {
5010 for (int i = baseIndex, f, h; batch > 0 &&
5011 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5012 addToPendingCount(1);
5013 (rights = new ReduceEntriesTask<K,V>
5014 (this, batch >>>= 1, baseLimit = h, f, tab,
5015 rights, reducer)).fork();
5016 }
5017 Map.Entry<K,V> r = null;
5018 for (Node<K,V> p; (p = advance()) != null; )
5019 r = (r == null) ? p : reducer.apply(r, p);
5020 result = r;
5021 CountedCompleter<?> c;
5022 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5023 ReduceEntriesTask<K,V>
5024 t = (ReduceEntriesTask<K,V>)c,
5025 s = t.rights;
5026 while (s != null) {
5027 Map.Entry<K,V> tr, sr;
5028 if ((sr = s.result) != null)
5029 t.result = (((tr = t.result) == null) ? sr :
5030 reducer.apply(tr, sr));
5031 s = t.rights = s.nextRight;
5032 }
5033 }
5034 }
5035 }
5036 }
5037
5038 static final class MapReduceKeysTask<K,V,U>
5039 extends BulkTask<K,V,U> {
5040 final Function<? super K, ? extends U> transformer;
5041 final BiFunction<? super U, ? super U, ? extends U> reducer;
5042 U result;
5043 MapReduceKeysTask<K,V,U> rights, nextRight;
5044 MapReduceKeysTask
5045 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5046 MapReduceKeysTask<K,V,U> nextRight,
5047 Function<? super K, ? extends U> transformer,
5048 BiFunction<? super U, ? super U, ? extends U> reducer) {
5049 super(p, b, i, f, t); this.nextRight = nextRight;
5050 this.transformer = transformer;
5051 this.reducer = reducer;
5052 }
5053 public final U getRawResult() { return result; }
5054 public final void compute() {
5055 final Function<? super K, ? extends U> transformer;
5056 final BiFunction<? super U, ? super U, ? extends U> reducer;
5057 if ((transformer = this.transformer) != null &&
5058 (reducer = this.reducer) != null) {
5059 for (int i = baseIndex, f, h; batch > 0 &&
5060 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5061 addToPendingCount(1);
5062 (rights = new MapReduceKeysTask<K,V,U>
5063 (this, batch >>>= 1, baseLimit = h, f, tab,
5064 rights, transformer, reducer)).fork();
5065 }
5066 U r = null;
5067 for (Node<K,V> p; (p = advance()) != null; ) {
5068 U u;
5069 if ((u = transformer.apply((K)p.key)) != null)
5070 r = (r == null) ? u : reducer.apply(r, u);
5071 }
5072 result = r;
5073 CountedCompleter<?> c;
5074 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5075 MapReduceKeysTask<K,V,U>
5076 t = (MapReduceKeysTask<K,V,U>)c,
5077 s = t.rights;
5078 while (s != null) {
5079 U tr, sr;
5080 if ((sr = s.result) != null)
5081 t.result = (((tr = t.result) == null) ? sr :
5082 reducer.apply(tr, sr));
5083 s = t.rights = s.nextRight;
5084 }
5085 }
5086 }
5087 }
5088 }
5089
5090 static final class MapReduceValuesTask<K,V,U>
5091 extends BulkTask<K,V,U> {
5092 final Function<? super V, ? extends U> transformer;
5093 final BiFunction<? super U, ? super U, ? extends U> reducer;
5094 U result;
5095 MapReduceValuesTask<K,V,U> rights, nextRight;
5096 MapReduceValuesTask
5097 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5098 MapReduceValuesTask<K,V,U> nextRight,
5099 Function<? super V, ? extends U> transformer,
5100 BiFunction<? super U, ? super U, ? extends U> reducer) {
5101 super(p, b, i, f, t); this.nextRight = nextRight;
5102 this.transformer = transformer;
5103 this.reducer = reducer;
5104 }
5105 public final U getRawResult() { return result; }
5106 public final void compute() {
5107 final Function<? super V, ? extends U> transformer;
5108 final BiFunction<? super U, ? super U, ? extends U> reducer;
5109 if ((transformer = this.transformer) != null &&
5110 (reducer = this.reducer) != null) {
5111 for (int i = baseIndex, f, h; batch > 0 &&
5112 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5113 addToPendingCount(1);
5114 (rights = new MapReduceValuesTask<K,V,U>
5115 (this, batch >>>= 1, baseLimit = h, f, tab,
5116 rights, transformer, reducer)).fork();
5117 }
5118 U r = null;
5119 for (Node<K,V> p; (p = advance()) != null; ) {
5120 U u;
5121 if ((u = transformer.apply(p.val)) != null)
5122 r = (r == null) ? u : reducer.apply(r, u);
5123 }
5124 result = r;
5125 CountedCompleter<?> c;
5126 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5127 MapReduceValuesTask<K,V,U>
5128 t = (MapReduceValuesTask<K,V,U>)c,
5129 s = t.rights;
5130 while (s != null) {
5131 U tr, sr;
5132 if ((sr = s.result) != null)
5133 t.result = (((tr = t.result) == null) ? sr :
5134 reducer.apply(tr, sr));
5135 s = t.rights = s.nextRight;
5136 }
5137 }
5138 }
5139 }
5140 }
5141
5142 static final class MapReduceEntriesTask<K,V,U>
5143 extends BulkTask<K,V,U> {
5144 final Function<Map.Entry<K,V>, ? extends U> transformer;
5145 final BiFunction<? super U, ? super U, ? extends U> reducer;
5146 U result;
5147 MapReduceEntriesTask<K,V,U> rights, nextRight;
5148 MapReduceEntriesTask
5149 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5150 MapReduceEntriesTask<K,V,U> nextRight,
5151 Function<Map.Entry<K,V>, ? extends U> transformer,
5152 BiFunction<? super U, ? super U, ? extends U> reducer) {
5153 super(p, b, i, f, t); this.nextRight = nextRight;
5154 this.transformer = transformer;
5155 this.reducer = reducer;
5156 }
5157 public final U getRawResult() { return result; }
5158 public final void compute() {
5159 final Function<Map.Entry<K,V>, ? extends U> transformer;
5160 final BiFunction<? super U, ? super U, ? extends U> reducer;
5161 if ((transformer = this.transformer) != null &&
5162 (reducer = this.reducer) != null) {
5163 for (int i = baseIndex, f, h; batch > 0 &&
5164 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5165 addToPendingCount(1);
5166 (rights = new MapReduceEntriesTask<K,V,U>
5167 (this, batch >>>= 1, baseLimit = h, f, tab,
5168 rights, transformer, reducer)).fork();
5169 }
5170 U r = null;
5171 for (Node<K,V> p; (p = advance()) != null; ) {
5172 U u;
5173 if ((u = transformer.apply(p)) != null)
5174 r = (r == null) ? u : reducer.apply(r, u);
5175 }
5176 result = r;
5177 CountedCompleter<?> c;
5178 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5179 MapReduceEntriesTask<K,V,U>
5180 t = (MapReduceEntriesTask<K,V,U>)c,
5181 s = t.rights;
5182 while (s != null) {
5183 U tr, sr;
5184 if ((sr = s.result) != null)
5185 t.result = (((tr = t.result) == null) ? sr :
5186 reducer.apply(tr, sr));
5187 s = t.rights = s.nextRight;
5188 }
5189 }
5190 }
5191 }
5192 }
5193
5194 static final class MapReduceMappingsTask<K,V,U>
5195 extends BulkTask<K,V,U> {
5196 final BiFunction<? super K, ? super V, ? extends U> transformer;
5197 final BiFunction<? super U, ? super U, ? extends U> reducer;
5198 U result;
5199 MapReduceMappingsTask<K,V,U> rights, nextRight;
5200 MapReduceMappingsTask
5201 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5202 MapReduceMappingsTask<K,V,U> nextRight,
5203 BiFunction<? super K, ? super V, ? extends U> transformer,
5204 BiFunction<? super U, ? super U, ? extends U> reducer) {
5205 super(p, b, i, f, t); this.nextRight = nextRight;
5206 this.transformer = transformer;
5207 this.reducer = reducer;
5208 }
5209 public final U getRawResult() { return result; }
5210 public final void compute() {
5211 final BiFunction<? super K, ? super V, ? extends U> transformer;
5212 final BiFunction<? super U, ? super U, ? extends U> reducer;
5213 if ((transformer = this.transformer) != null &&
5214 (reducer = this.reducer) != null) {
5215 for (int i = baseIndex, f, h; batch > 0 &&
5216 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5217 addToPendingCount(1);
5218 (rights = new MapReduceMappingsTask<K,V,U>
5219 (this, batch >>>= 1, baseLimit = h, f, tab,
5220 rights, transformer, reducer)).fork();
5221 }
5222 U r = null;
5223 for (Node<K,V> p; (p = advance()) != null; ) {
5224 U u;
5225 if ((u = transformer.apply((K)p.key, p.val)) != null)
5226 r = (r == null) ? u : reducer.apply(r, u);
5227 }
5228 result = r;
5229 CountedCompleter<?> c;
5230 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5231 MapReduceMappingsTask<K,V,U>
5232 t = (MapReduceMappingsTask<K,V,U>)c,
5233 s = t.rights;
5234 while (s != null) {
5235 U tr, sr;
5236 if ((sr = s.result) != null)
5237 t.result = (((tr = t.result) == null) ? sr :
5238 reducer.apply(tr, sr));
5239 s = t.rights = s.nextRight;
5240 }
5241 }
5242 }
5243 }
5244 }
5245
5246 static final class MapReduceKeysToDoubleTask<K,V>
5247 extends BulkTask<K,V,Double> {
5248 final ToDoubleFunction<? super K> transformer;
5249 final DoubleBinaryOperator reducer;
5250 final double basis;
5251 double result;
5252 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5253 MapReduceKeysToDoubleTask
5254 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5255 MapReduceKeysToDoubleTask<K,V> nextRight,
5256 ToDoubleFunction<? super K> transformer,
5257 double basis,
5258 DoubleBinaryOperator reducer) {
5259 super(p, b, i, f, t); this.nextRight = nextRight;
5260 this.transformer = transformer;
5261 this.basis = basis; this.reducer = reducer;
5262 }
5263 public final Double getRawResult() { return result; }
5264 public final void compute() {
5265 final ToDoubleFunction<? super K> transformer;
5266 final DoubleBinaryOperator reducer;
5267 if ((transformer = this.transformer) != null &&
5268 (reducer = this.reducer) != null) {
5269 double r = this.basis;
5270 for (int i = baseIndex, f, h; batch > 0 &&
5271 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5272 addToPendingCount(1);
5273 (rights = new MapReduceKeysToDoubleTask<K,V>
5274 (this, batch >>>= 1, baseLimit = h, f, tab,
5275 rights, transformer, r, reducer)).fork();
5276 }
5277 for (Node<K,V> p; (p = advance()) != null; )
5278 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5279 result = r;
5280 CountedCompleter<?> c;
5281 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5282 MapReduceKeysToDoubleTask<K,V>
5283 t = (MapReduceKeysToDoubleTask<K,V>)c,
5284 s = t.rights;
5285 while (s != null) {
5286 t.result = reducer.applyAsDouble(t.result, s.result);
5287 s = t.rights = s.nextRight;
5288 }
5289 }
5290 }
5291 }
5292 }
5293
5294 static final class MapReduceValuesToDoubleTask<K,V>
5295 extends BulkTask<K,V,Double> {
5296 final ToDoubleFunction<? super V> transformer;
5297 final DoubleBinaryOperator reducer;
5298 final double basis;
5299 double result;
5300 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5301 MapReduceValuesToDoubleTask
5302 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5303 MapReduceValuesToDoubleTask<K,V> nextRight,
5304 ToDoubleFunction<? super V> transformer,
5305 double basis,
5306 DoubleBinaryOperator reducer) {
5307 super(p, b, i, f, t); this.nextRight = nextRight;
5308 this.transformer = transformer;
5309 this.basis = basis; this.reducer = reducer;
5310 }
5311 public final Double getRawResult() { return result; }
5312 public final void compute() {
5313 final ToDoubleFunction<? super V> transformer;
5314 final DoubleBinaryOperator reducer;
5315 if ((transformer = this.transformer) != null &&
5316 (reducer = this.reducer) != null) {
5317 double r = this.basis;
5318 for (int i = baseIndex, f, h; batch > 0 &&
5319 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5320 addToPendingCount(1);
5321 (rights = new MapReduceValuesToDoubleTask<K,V>
5322 (this, batch >>>= 1, baseLimit = h, f, tab,
5323 rights, transformer, r, reducer)).fork();
5324 }
5325 for (Node<K,V> p; (p = advance()) != null; )
5326 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5327 result = r;
5328 CountedCompleter<?> c;
5329 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5330 MapReduceValuesToDoubleTask<K,V>
5331 t = (MapReduceValuesToDoubleTask<K,V>)c,
5332 s = t.rights;
5333 while (s != null) {
5334 t.result = reducer.applyAsDouble(t.result, s.result);
5335 s = t.rights = s.nextRight;
5336 }
5337 }
5338 }
5339 }
5340 }
5341
5342 static final class MapReduceEntriesToDoubleTask<K,V>
5343 extends BulkTask<K,V,Double> {
5344 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5345 final DoubleBinaryOperator reducer;
5346 final double basis;
5347 double result;
5348 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5349 MapReduceEntriesToDoubleTask
5350 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5351 MapReduceEntriesToDoubleTask<K,V> nextRight,
5352 ToDoubleFunction<Map.Entry<K,V>> transformer,
5353 double basis,
5354 DoubleBinaryOperator reducer) {
5355 super(p, b, i, f, t); this.nextRight = nextRight;
5356 this.transformer = transformer;
5357 this.basis = basis; this.reducer = reducer;
5358 }
5359 public final Double getRawResult() { return result; }
5360 public final void compute() {
5361 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5362 final DoubleBinaryOperator reducer;
5363 if ((transformer = this.transformer) != null &&
5364 (reducer = this.reducer) != null) {
5365 double r = this.basis;
5366 for (int i = baseIndex, f, h; batch > 0 &&
5367 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5368 addToPendingCount(1);
5369 (rights = new MapReduceEntriesToDoubleTask<K,V>
5370 (this, batch >>>= 1, baseLimit = h, f, tab,
5371 rights, transformer, r, reducer)).fork();
5372 }
5373 for (Node<K,V> p; (p = advance()) != null; )
5374 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5375 result = r;
5376 CountedCompleter<?> c;
5377 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5378 MapReduceEntriesToDoubleTask<K,V>
5379 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5380 s = t.rights;
5381 while (s != null) {
5382 t.result = reducer.applyAsDouble(t.result, s.result);
5383 s = t.rights = s.nextRight;
5384 }
5385 }
5386 }
5387 }
5388 }
5389
5390 static final class MapReduceMappingsToDoubleTask<K,V>
5391 extends BulkTask<K,V,Double> {
5392 final ToDoubleBiFunction<? super K, ? super V> transformer;
5393 final DoubleBinaryOperator reducer;
5394 final double basis;
5395 double result;
5396 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5397 MapReduceMappingsToDoubleTask
5398 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5399 MapReduceMappingsToDoubleTask<K,V> nextRight,
5400 ToDoubleBiFunction<? super K, ? super V> transformer,
5401 double basis,
5402 DoubleBinaryOperator reducer) {
5403 super(p, b, i, f, t); this.nextRight = nextRight;
5404 this.transformer = transformer;
5405 this.basis = basis; this.reducer = reducer;
5406 }
5407 public final Double getRawResult() { return result; }
5408 public final void compute() {
5409 final ToDoubleBiFunction<? super K, ? super V> transformer;
5410 final DoubleBinaryOperator reducer;
5411 if ((transformer = this.transformer) != null &&
5412 (reducer = this.reducer) != null) {
5413 double r = this.basis;
5414 for (int i = baseIndex, f, h; batch > 0 &&
5415 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5416 addToPendingCount(1);
5417 (rights = new MapReduceMappingsToDoubleTask<K,V>
5418 (this, batch >>>= 1, baseLimit = h, f, tab,
5419 rights, transformer, r, reducer)).fork();
5420 }
5421 for (Node<K,V> p; (p = advance()) != null; )
5422 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5423 result = r;
5424 CountedCompleter<?> c;
5425 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5426 MapReduceMappingsToDoubleTask<K,V>
5427 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5428 s = t.rights;
5429 while (s != null) {
5430 t.result = reducer.applyAsDouble(t.result, s.result);
5431 s = t.rights = s.nextRight;
5432 }
5433 }
5434 }
5435 }
5436 }
5437
5438 static final class MapReduceKeysToLongTask<K,V>
5439 extends BulkTask<K,V,Long> {
5440 final ToLongFunction<? super K> transformer;
5441 final LongBinaryOperator reducer;
5442 final long basis;
5443 long result;
5444 MapReduceKeysToLongTask<K,V> rights, nextRight;
5445 MapReduceKeysToLongTask
5446 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5447 MapReduceKeysToLongTask<K,V> nextRight,
5448 ToLongFunction<? super K> transformer,
5449 long basis,
5450 LongBinaryOperator reducer) {
5451 super(p, b, i, f, t); this.nextRight = nextRight;
5452 this.transformer = transformer;
5453 this.basis = basis; this.reducer = reducer;
5454 }
5455 public final Long getRawResult() { return result; }
5456 public final void compute() {
5457 final ToLongFunction<? super K> transformer;
5458 final LongBinaryOperator reducer;
5459 if ((transformer = this.transformer) != null &&
5460 (reducer = this.reducer) != null) {
5461 long r = this.basis;
5462 for (int i = baseIndex, f, h; batch > 0 &&
5463 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5464 addToPendingCount(1);
5465 (rights = new MapReduceKeysToLongTask<K,V>
5466 (this, batch >>>= 1, baseLimit = h, f, tab,
5467 rights, transformer, r, reducer)).fork();
5468 }
5469 for (Node<K,V> p; (p = advance()) != null; )
5470 r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5471 result = r;
5472 CountedCompleter<?> c;
5473 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5474 MapReduceKeysToLongTask<K,V>
5475 t = (MapReduceKeysToLongTask<K,V>)c,
5476 s = t.rights;
5477 while (s != null) {
5478 t.result = reducer.applyAsLong(t.result, s.result);
5479 s = t.rights = s.nextRight;
5480 }
5481 }
5482 }
5483 }
5484 }
5485
5486 static final class MapReduceValuesToLongTask<K,V>
5487 extends BulkTask<K,V,Long> {
5488 final ToLongFunction<? super V> transformer;
5489 final LongBinaryOperator reducer;
5490 final long basis;
5491 long result;
5492 MapReduceValuesToLongTask<K,V> rights, nextRight;
5493 MapReduceValuesToLongTask
5494 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5495 MapReduceValuesToLongTask<K,V> nextRight,
5496 ToLongFunction<? super V> transformer,
5497 long basis,
5498 LongBinaryOperator reducer) {
5499 super(p, b, i, f, t); this.nextRight = nextRight;
5500 this.transformer = transformer;
5501 this.basis = basis; this.reducer = reducer;
5502 }
5503 public final Long getRawResult() { return result; }
5504 public final void compute() {
5505 final ToLongFunction<? super V> transformer;
5506 final LongBinaryOperator reducer;
5507 if ((transformer = this.transformer) != null &&
5508 (reducer = this.reducer) != null) {
5509 long r = this.basis;
5510 for (int i = baseIndex, f, h; batch > 0 &&
5511 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512 addToPendingCount(1);
5513 (rights = new MapReduceValuesToLongTask<K,V>
5514 (this, batch >>>= 1, baseLimit = h, f, tab,
5515 rights, transformer, r, reducer)).fork();
5516 }
5517 for (Node<K,V> p; (p = advance()) != null; )
5518 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5519 result = r;
5520 CountedCompleter<?> c;
5521 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5522 MapReduceValuesToLongTask<K,V>
5523 t = (MapReduceValuesToLongTask<K,V>)c,
5524 s = t.rights;
5525 while (s != null) {
5526 t.result = reducer.applyAsLong(t.result, s.result);
5527 s = t.rights = s.nextRight;
5528 }
5529 }
5530 }
5531 }
5532 }
5533
5534 static final class MapReduceEntriesToLongTask<K,V>
5535 extends BulkTask<K,V,Long> {
5536 final ToLongFunction<Map.Entry<K,V>> transformer;
5537 final LongBinaryOperator reducer;
5538 final long basis;
5539 long result;
5540 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5541 MapReduceEntriesToLongTask
5542 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5543 MapReduceEntriesToLongTask<K,V> nextRight,
5544 ToLongFunction<Map.Entry<K,V>> transformer,
5545 long basis,
5546 LongBinaryOperator reducer) {
5547 super(p, b, i, f, t); this.nextRight = nextRight;
5548 this.transformer = transformer;
5549 this.basis = basis; this.reducer = reducer;
5550 }
5551 public final Long getRawResult() { return result; }
5552 public final void compute() {
5553 final ToLongFunction<Map.Entry<K,V>> transformer;
5554 final LongBinaryOperator reducer;
5555 if ((transformer = this.transformer) != null &&
5556 (reducer = this.reducer) != null) {
5557 long r = this.basis;
5558 for (int i = baseIndex, f, h; batch > 0 &&
5559 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5560 addToPendingCount(1);
5561 (rights = new MapReduceEntriesToLongTask<K,V>
5562 (this, batch >>>= 1, baseLimit = h, f, tab,
5563 rights, transformer, r, reducer)).fork();
5564 }
5565 for (Node<K,V> p; (p = advance()) != null; )
5566 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5567 result = r;
5568 CountedCompleter<?> c;
5569 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5570 MapReduceEntriesToLongTask<K,V>
5571 t = (MapReduceEntriesToLongTask<K,V>)c,
5572 s = t.rights;
5573 while (s != null) {
5574 t.result = reducer.applyAsLong(t.result, s.result);
5575 s = t.rights = s.nextRight;
5576 }
5577 }
5578 }
5579 }
5580 }
5581
5582 static final class MapReduceMappingsToLongTask<K,V>
5583 extends BulkTask<K,V,Long> {
5584 final ToLongBiFunction<? super K, ? super V> transformer;
5585 final LongBinaryOperator reducer;
5586 final long basis;
5587 long result;
5588 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5589 MapReduceMappingsToLongTask
5590 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5591 MapReduceMappingsToLongTask<K,V> nextRight,
5592 ToLongBiFunction<? super K, ? super V> transformer,
5593 long basis,
5594 LongBinaryOperator reducer) {
5595 super(p, b, i, f, t); this.nextRight = nextRight;
5596 this.transformer = transformer;
5597 this.basis = basis; this.reducer = reducer;
5598 }
5599 public final Long getRawResult() { return result; }
5600 public final void compute() {
5601 final ToLongBiFunction<? super K, ? super V> transformer;
5602 final LongBinaryOperator reducer;
5603 if ((transformer = this.transformer) != null &&
5604 (reducer = this.reducer) != null) {
5605 long r = this.basis;
5606 for (int i = baseIndex, f, h; batch > 0 &&
5607 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5608 addToPendingCount(1);
5609 (rights = new MapReduceMappingsToLongTask<K,V>
5610 (this, batch >>>= 1, baseLimit = h, f, tab,
5611 rights, transformer, r, reducer)).fork();
5612 }
5613 for (Node<K,V> p; (p = advance()) != null; )
5614 r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
5615 result = r;
5616 CountedCompleter<?> c;
5617 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5618 MapReduceMappingsToLongTask<K,V>
5619 t = (MapReduceMappingsToLongTask<K,V>)c,
5620 s = t.rights;
5621 while (s != null) {
5622 t.result = reducer.applyAsLong(t.result, s.result);
5623 s = t.rights = s.nextRight;
5624 }
5625 }
5626 }
5627 }
5628 }
5629
5630 static final class MapReduceKeysToIntTask<K,V>
5631 extends BulkTask<K,V,Integer> {
5632 final ToIntFunction<? super K> transformer;
5633 final IntBinaryOperator reducer;
5634 final int basis;
5635 int result;
5636 MapReduceKeysToIntTask<K,V> rights, nextRight;
5637 MapReduceKeysToIntTask
5638 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5639 MapReduceKeysToIntTask<K,V> nextRight,
5640 ToIntFunction<? super K> transformer,
5641 int basis,
5642 IntBinaryOperator reducer) {
5643 super(p, b, i, f, t); this.nextRight = nextRight;
5644 this.transformer = transformer;
5645 this.basis = basis; this.reducer = reducer;
5646 }
5647 public final Integer getRawResult() { return result; }
5648 public final void compute() {
5649 final ToIntFunction<? super K> transformer;
5650 final IntBinaryOperator reducer;
5651 if ((transformer = this.transformer) != null &&
5652 (reducer = this.reducer) != null) {
5653 int r = this.basis;
5654 for (int i = baseIndex, f, h; batch > 0 &&
5655 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5656 addToPendingCount(1);
5657 (rights = new MapReduceKeysToIntTask<K,V>
5658 (this, batch >>>= 1, baseLimit = h, f, tab,
5659 rights, transformer, r, reducer)).fork();
5660 }
5661 for (Node<K,V> p; (p = advance()) != null; )
5662 r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
5663 result = r;
5664 CountedCompleter<?> c;
5665 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5666 MapReduceKeysToIntTask<K,V>
5667 t = (MapReduceKeysToIntTask<K,V>)c,
5668 s = t.rights;
5669 while (s != null) {
5670 t.result = reducer.applyAsInt(t.result, s.result);
5671 s = t.rights = s.nextRight;
5672 }
5673 }
5674 }
5675 }
5676 }
5677
5678 static final class MapReduceValuesToIntTask<K,V>
5679 extends BulkTask<K,V,Integer> {
5680 final ToIntFunction<? super V> transformer;
5681 final IntBinaryOperator reducer;
5682 final int basis;
5683 int result;
5684 MapReduceValuesToIntTask<K,V> rights, nextRight;
5685 MapReduceValuesToIntTask
5686 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5687 MapReduceValuesToIntTask<K,V> nextRight,
5688 ToIntFunction<? super V> transformer,
5689 int basis,
5690 IntBinaryOperator reducer) {
5691 super(p, b, i, f, t); this.nextRight = nextRight;
5692 this.transformer = transformer;
5693 this.basis = basis; this.reducer = reducer;
5694 }
5695 public final Integer getRawResult() { return result; }
5696 public final void compute() {
5697 final ToIntFunction<? super V> transformer;
5698 final IntBinaryOperator reducer;
5699 if ((transformer = this.transformer) != null &&
5700 (reducer = this.reducer) != null) {
5701 int r = this.basis;
5702 for (int i = baseIndex, f, h; batch > 0 &&
5703 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5704 addToPendingCount(1);
5705 (rights = new MapReduceValuesToIntTask<K,V>
5706 (this, batch >>>= 1, baseLimit = h, f, tab,
5707 rights, transformer, r, reducer)).fork();
5708 }
5709 for (Node<K,V> p; (p = advance()) != null; )
5710 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5711 result = r;
5712 CountedCompleter<?> c;
5713 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5714 MapReduceValuesToIntTask<K,V>
5715 t = (MapReduceValuesToIntTask<K,V>)c,
5716 s = t.rights;
5717 while (s != null) {
5718 t.result = reducer.applyAsInt(t.result, s.result);
5719 s = t.rights = s.nextRight;
5720 }
5721 }
5722 }
5723 }
5724 }
5725
5726 static final class MapReduceEntriesToIntTask<K,V>
5727 extends BulkTask<K,V,Integer> {
5728 final ToIntFunction<Map.Entry<K,V>> transformer;
5729 final IntBinaryOperator reducer;
5730 final int basis;
5731 int result;
5732 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5733 MapReduceEntriesToIntTask
5734 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5735 MapReduceEntriesToIntTask<K,V> nextRight,
5736 ToIntFunction<Map.Entry<K,V>> transformer,
5737 int basis,
5738 IntBinaryOperator reducer) {
5739 super(p, b, i, f, t); this.nextRight = nextRight;
5740 this.transformer = transformer;
5741 this.basis = basis; this.reducer = reducer;
5742 }
5743 public final Integer getRawResult() { return result; }
5744 public final void compute() {
5745 final ToIntFunction<Map.Entry<K,V>> transformer;
5746 final IntBinaryOperator reducer;
5747 if ((transformer = this.transformer) != null &&
5748 (reducer = this.reducer) != null) {
5749 int r = this.basis;
5750 for (int i = baseIndex, f, h; batch > 0 &&
5751 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5752 addToPendingCount(1);
5753 (rights = new MapReduceEntriesToIntTask<K,V>
5754 (this, batch >>>= 1, baseLimit = h, f, tab,
5755 rights, transformer, r, reducer)).fork();
5756 }
5757 for (Node<K,V> p; (p = advance()) != null; )
5758 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5759 result = r;
5760 CountedCompleter<?> c;
5761 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5762 MapReduceEntriesToIntTask<K,V>
5763 t = (MapReduceEntriesToIntTask<K,V>)c,
5764 s = t.rights;
5765 while (s != null) {
5766 t.result = reducer.applyAsInt(t.result, s.result);
5767 s = t.rights = s.nextRight;
5768 }
5769 }
5770 }
5771 }
5772 }
5773
5774 static final class MapReduceMappingsToIntTask<K,V>
5775 extends BulkTask<K,V,Integer> {
5776 final ToIntBiFunction<? super K, ? super V> transformer;
5777 final IntBinaryOperator reducer;
5778 final int basis;
5779 int result;
5780 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5781 MapReduceMappingsToIntTask
5782 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5783 MapReduceMappingsToIntTask<K,V> nextRight,
5784 ToIntBiFunction<? super K, ? super V> transformer,
5785 int basis,
5786 IntBinaryOperator reducer) {
5787 super(p, b, i, f, t); this.nextRight = nextRight;
5788 this.transformer = transformer;
5789 this.basis = basis; this.reducer = reducer;
5790 }
5791 public final Integer getRawResult() { return result; }
5792 public final void compute() {
5793 final ToIntBiFunction<? super K, ? super V> transformer;
5794 final IntBinaryOperator reducer;
5795 if ((transformer = this.transformer) != null &&
5796 (reducer = this.reducer) != null) {
5797 int r = this.basis;
5798 for (int i = baseIndex, f, h; batch > 0 &&
5799 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5800 addToPendingCount(1);
5801 (rights = new MapReduceMappingsToIntTask<K,V>
5802 (this, batch >>>= 1, baseLimit = h, f, tab,
5803 rights, transformer, r, reducer)).fork();
5804 }
5805 for (Node<K,V> p; (p = advance()) != null; )
5806 r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
5807 result = r;
5808 CountedCompleter<?> c;
5809 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5810 MapReduceMappingsToIntTask<K,V>
5811 t = (MapReduceMappingsToIntTask<K,V>)c,
5812 s = t.rights;
5813 while (s != null) {
5814 t.result = reducer.applyAsInt(t.result, s.result);
5815 s = t.rights = s.nextRight;
5816 }
5817 }
5818 }
5819 }
5820 }
5821
5822 // Unsafe mechanics
5823 private static final sun.misc.Unsafe U;
5824 private static final long SIZECTL;
5825 private static final long TRANSFERINDEX;
5826 private static final long TRANSFERORIGIN;
5827 private static final long BASECOUNT;
5828 private static final long CELLSBUSY;
5829 private static final long CELLVALUE;
5830 private static final long ABASE;
5831 private static final int ASHIFT;
5832
5833 static {
5834 try {
5835 U = sun.misc.Unsafe.getUnsafe();
5836 Class<?> k = ConcurrentHashMap.class;
5837 SIZECTL = U.objectFieldOffset
5838 (k.getDeclaredField("sizeCtl"));
5839 TRANSFERINDEX = U.objectFieldOffset
5840 (k.getDeclaredField("transferIndex"));
5841 TRANSFERORIGIN = U.objectFieldOffset
5842 (k.getDeclaredField("transferOrigin"));
5843 BASECOUNT = U.objectFieldOffset
5844 (k.getDeclaredField("baseCount"));
5845 CELLSBUSY = U.objectFieldOffset
5846 (k.getDeclaredField("cellsBusy"));
5847 Class<?> ck = Cell.class;
5848 CELLVALUE = U.objectFieldOffset
5849 (ck.getDeclaredField("value"));
5850 Class<?> sc = Node[].class;
5851 ABASE = U.arrayBaseOffset(sc);
5852 int scale = U.arrayIndexScale(sc);
5853 if ((scale & (scale - 1)) != 0)
5854 throw new Error("data type scale not a power of two");
5855 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
5856 } catch (Exception e) {
5857 throw new Error(e);
5858 }
5859 }
5860 }