ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.224
Committed: Tue Jun 18 17:11:45 2013 UTC (10 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.223: +86 -79 lines
Log Message:
Copy-edit pass

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.Arrays;
14 import java.util.Collection;
15 import java.util.Comparator;
16 import java.util.ConcurrentModificationException;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators and Enumerations return elements reflecting the state of
68 * the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * ConcurrentModificationException}. However, iterators are designed
71 * to be used by only one thread at a time. Bear in mind that the
72 * results of aggregate status methods including {@code size}, {@code
73 * isEmpty}, and {@code containsValue} are typically useful only when
74 * a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 private static final long serialVersionUID = 7249069246763182397L;
240
241 /*
242 * Overview:
243 *
244 * The primary design goal of this hash table is to maintain
245 * concurrent readability (typically method get(), but also
246 * iterators and related methods) while minimizing update
247 * contention. Secondary goals are to keep space consumption about
248 * the same or better than java.util.HashMap, and to support high
249 * initial insertion rates on an empty table by many threads.
250 *
251 * This map usually acts as a binned (bucketed) hash table. Each
252 * key-value mapping is held in a Node. Most nodes are instances
253 * of the basic Node class with hash, key, value, and next
254 * fields. However, various subclasses exist: TreeNodes are
255 * arranged in balanced trees, not lists. TreeBins hold the roots
256 * of sets of TreeNodes. ForwardingNodes are placed at the heads
257 * of bins during resizing. ReservationNodes are used as
258 * placeholders while establishing values in computeIfAbsent and
259 * related methods. The types TreeBin, ForwardingNode, and
260 * ReservationNode do not hold normal user keys, values, or
261 * hashes, and are readily distinguishable during search etc
262 * because they have negative hash fields and null key and value
263 * fields. (These special nodes are either uncommon or transient,
264 * so the impact of carrying around some unused fields is
265 * insignficant.)
266 *
267 * The table is lazily initialized to a power-of-two size upon the
268 * first insertion. Each bin in the table normally contains a
269 * list of Nodes (most often, the list has only zero or one Node).
270 * Table accesses require volatile/atomic reads, writes, and
271 * CASes. Because there is no other way to arrange this without
272 * adding further indirections, we use intrinsics
273 * (sun.misc.Unsafe) operations.
274 *
275 * We use the top (sign) bit of Node hash fields for control
276 * purposes -- it is available anyway because of addressing
277 * constraints. Nodes with negative hash fields are specially
278 * handled or ignored in map methods.
279 *
280 * Insertion (via put or its variants) of the first node in an
281 * empty bin is performed by just CASing it to the bin. This is
282 * by far the most common case for put operations under most
283 * key/hash distributions. Other update operations (insert,
284 * delete, and replace) require locks. We do not want to waste
285 * the space required to associate a distinct lock object with
286 * each bin, so instead use the first node of a bin list itself as
287 * a lock. Locking support for these locks relies on builtin
288 * "synchronized" monitors.
289 *
290 * Using the first node of a list as a lock does not by itself
291 * suffice though: When a node is locked, any update must first
292 * validate that it is still the first node after locking it, and
293 * retry if not. Because new nodes are always appended to lists,
294 * once a node is first in a bin, it remains first until deleted
295 * or the bin becomes invalidated (upon resizing).
296 *
297 * The main disadvantage of per-bin locks is that other update
298 * operations on other nodes in a bin list protected by the same
299 * lock can stall, for example when user equals() or mapping
300 * functions take a long time. However, statistically, under
301 * random hash codes, this is not a common problem. Ideally, the
302 * frequency of nodes in bins follows a Poisson distribution
303 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
304 * parameter of about 0.5 on average, given the resizing threshold
305 * of 0.75, although with a large variance because of resizing
306 * granularity. Ignoring variance, the expected occurrences of
307 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
308 * first values are:
309 *
310 * 0: 0.60653066
311 * 1: 0.30326533
312 * 2: 0.07581633
313 * 3: 0.01263606
314 * 4: 0.00157952
315 * 5: 0.00015795
316 * 6: 0.00001316
317 * 7: 0.00000094
318 * 8: 0.00000006
319 * more: less than 1 in ten million
320 *
321 * Lock contention probability for two threads accessing distinct
322 * elements is roughly 1 / (8 * #elements) under random hashes.
323 *
324 * Actual hash code distributions encountered in practice
325 * sometimes deviate significantly from uniform randomness. This
326 * includes the case when N > (1<<30), so some keys MUST collide.
327 * Similarly for dumb or hostile usages in which multiple keys are
328 * designed to have identical hash codes or ones that differs only
329 * in masked-out high bits. So we use a secondary strategy that
330 * applies when the number of nodes in a bin exceeds a
331 * threshold. These TreeBins use a balanced tree to hold nodes (a
332 * specialized form of red-black trees), bounding search time to
333 * O(log N). Each search step in a TreeBin is at least twice as
334 * slow as in a regular list, but given that N cannot exceed
335 * (1<<64) (before running out of addresses) this bounds search
336 * steps, lock hold times, etc, to reasonable constants (roughly
337 * 100 nodes inspected per operation worst case) so long as keys
338 * are Comparable (which is very common -- String, Long, etc).
339 * TreeBin nodes (TreeNodes) also maintain the same "next"
340 * traversal pointers as regular nodes, so can be traversed in
341 * iterators in the same way.
342 *
343 * The table is resized when occupancy exceeds a percentage
344 * threshold (nominally, 0.75, but see below). Any thread
345 * noticing an overfull bin may assist in resizing after the
346 * initiating thread allocates and sets up the replacement
347 * array. However, rather than stalling, these other threads may
348 * proceed with insertions etc. The use of TreeBins shields us
349 * from the worst case effects of overfilling while resizes are in
350 * progress. Resizing proceeds by transferring bins, one by one,
351 * from the table to the next table. To enable concurrency, the
352 * next table must be (incrementally) prefilled with place-holders
353 * serving as reverse forwarders to the old table. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged by proceeding from the last bin
375 * (table.length - 1) up towards the first. Upon seeing a
376 * forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. However, to
378 * ensure that no intervening nodes are skipped, bin splitting can
379 * only begin after the associated reverse-forwarders are in
380 * place.
381 *
382 * The traversal scheme also applies to partial traversals of
383 * ranges of bins (via an alternate Traverser constructor)
384 * to support partitioned aggregate operations. Also, read-only
385 * operations give up if ever forwarded to a null table, which
386 * provides support for shutdown-style clearing, which is also not
387 * currently implemented.
388 *
389 * Lazy table initialization minimizes footprint until first use,
390 * and also avoids resizings when the first operation is from a
391 * putAll, constructor with map argument, or deserialization.
392 * These cases attempt to override the initial capacity settings,
393 * but harmlessly fail to take effect in cases of races.
394 *
395 * The element count is maintained using a specialization of
396 * LongAdder. We need to incorporate a specialization rather than
397 * just use a LongAdder in order to access implicit
398 * contention-sensing that leads to creation of multiple
399 * CounterCells. The counter mechanics avoid contention on
400 * updates but can encounter cache thrashing if read too
401 * frequently during concurrent access. To avoid reading so often,
402 * resizing under contention is attempted only upon adding to a
403 * bin already holding two or more nodes. Under uniform hash
404 * distributions, the probability of this occurring at threshold
405 * is around 13%, meaning that only about 1 in 8 puts check
406 * threshold (and after resizing, many fewer do so).
407 *
408 * TreeBins use a special form of comparison for search and
409 * related operations (which is the main reason we cannot use
410 * existing collections such as TreeMaps). TreeBins contain
411 * Comparable elements, but may contain others, as well as
412 * elements that are Comparable but not necessarily Comparable
413 * for the same T, so we cannot invoke compareTo among them. To
414 * handle this, the tree is ordered primarily by hash value, then
415 * by Comparable.compareTo order if applicable. On lookup at a
416 * node, if elements are not comparable or compare as 0 then both
417 * left and right children may need to be searched in the case of
418 * tied hash values. (This corresponds to the full list search
419 * that would be necessary if all elements were non-Comparable and
420 * had tied hashes.) The red-black balancing code is updated from
421 * pre-jdk-collections
422 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424 * Algorithms" (CLR).
425 *
426 * TreeBins also require an additional locking mechanism. While
427 * list traversal is always possible by readers even during
428 * updates, tree traversal is not, mainly beause of tree-rotations
429 * that may change the root node and/or its linkages. TreeBins
430 * include a simple read-write lock mechanism parasitic on the
431 * main bin-synchronization strategy: Structural adjustments
432 * associated with an insertion or removal are already bin-locked
433 * (and so cannot conflict with other writers) but must wait for
434 * ongoing readers to finish. Since there can be only one such
435 * waiter, we use a simple scheme using a single "waiter" field to
436 * block writers. However, readers need never block. If the root
437 * lock is held, they proceed along the slow traversal path (via
438 * next-pointers) until the lock becomes available or the list is
439 * exhausted, whichever comes first. These cases are not fast, but
440 * maximize aggregate expected throughput.
441 *
442 * Maintaining API and serialization compatibility with previous
443 * versions of this class introduces several oddities. Mainly: We
444 * leave untouched but unused constructor arguments refering to
445 * concurrencyLevel. We accept a loadFactor constructor argument,
446 * but apply it only to initial table capacity (which is the only
447 * time that we can guarantee to honor it.) We also declare an
448 * unused "Segment" class that is instantiated in minimal form
449 * only when serializing.
450 *
451 * This file is organized to make things a little easier to follow
452 * while reading than they might otherwise: First the main static
453 * declarations and utilities, then fields, then main public
454 * methods (with a few factorings of multiple public methods into
455 * internal ones), then sizing methods, trees, traversers, and
456 * bulk operations.
457 */
458
459 /* ---------------- Constants -------------- */
460
461 /**
462 * The largest possible table capacity. This value must be
463 * exactly 1<<30 to stay within Java array allocation and indexing
464 * bounds for power of two table sizes, and is further required
465 * because the top two bits of 32bit hash fields are used for
466 * control purposes.
467 */
468 private static final int MAXIMUM_CAPACITY = 1 << 30;
469
470 /**
471 * The default initial table capacity. Must be a power of 2
472 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
473 */
474 private static final int DEFAULT_CAPACITY = 16;
475
476 /**
477 * The largest possible (non-power of two) array size.
478 * Needed by toArray and related methods.
479 */
480 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
481
482 /**
483 * The default concurrency level for this table. Unused but
484 * defined for compatibility with previous versions of this class.
485 */
486 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
487
488 /**
489 * The load factor for this table. Overrides of this value in
490 * constructors affect only the initial table capacity. The
491 * actual floating point value isn't normally used -- it is
492 * simpler to use expressions such as {@code n - (n >>> 2)} for
493 * the associated resizing threshold.
494 */
495 private static final float LOAD_FACTOR = 0.75f;
496
497 /**
498 * The bin count threshold for using a tree rather than list for a
499 * bin. Bins are converted to trees when adding an element to a
500 * bin with at least this many nodes. The value must be greater
501 * than 2, and should be at least 8 to mesh with assumptions in
502 * tree removal about conversion back to plain bins upon
503 * shrinkage.
504 */
505 static final int TREEIFY_THRESHOLD = 8;
506
507 /**
508 * The bin count threshold for untreeifying a (split) bin during a
509 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510 * most 6 to mesh with shrinkage detection under removal.
511 */
512 static final int UNTREEIFY_THRESHOLD = 6;
513
514 /**
515 * The smallest table capacity for which bins may be treeified.
516 * (Otherwise the table is resized if too many nodes in a bin.)
517 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518 * conflicts between resizing and treeification thresholds.
519 */
520 static final int MIN_TREEIFY_CAPACITY = 64;
521
522 /**
523 * Minimum number of rebinnings per transfer step. Ranges are
524 * subdivided to allow multiple resizer threads. This value
525 * serves as a lower bound to avoid resizers encountering
526 * excessive memory contention. The value should be at least
527 * DEFAULT_CAPACITY.
528 */
529 private static final int MIN_TRANSFER_STRIDE = 16;
530
531 /*
532 * Encodings for Node hash fields. See above for explanation.
533 */
534 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
535 static final int TREEBIN = 0x80000000; // hash for heads of treea
536 static final int RESERVED = 0x80000001; // hash for transient reservations
537 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538
539 /** Number of CPUS, to place bounds on some sizings */
540 static final int NCPU = Runtime.getRuntime().availableProcessors();
541
542 /** For serialization compatibility. */
543 private static final ObjectStreamField[] serialPersistentFields = {
544 new ObjectStreamField("segments", Segment[].class),
545 new ObjectStreamField("segmentMask", Integer.TYPE),
546 new ObjectStreamField("segmentShift", Integer.TYPE)
547 };
548
549 /* ---------------- Nodes -------------- */
550
551 /**
552 * Key-value entry. This class is never exported out as a
553 * user-mutable Map.Entry (i.e., one supporting setValue; see
554 * MapEntry below), but can be used for read-only traversals used
555 * in bulk tasks. Subclasses of Node with a negativehash field
556 * are special, and contain null keys and values (but are never
557 * exported). Otherwise, keys and vals are never null.
558 */
559 static class Node<K,V> implements Map.Entry<K,V> {
560 final int hash;
561 final K key;
562 volatile V val;
563 Node<K,V> next;
564
565 Node(int hash, K key, V val, Node<K,V> next) {
566 this.hash = hash;
567 this.key = key;
568 this.val = val;
569 this.next = next;
570 }
571
572 public final K getKey() { return key; }
573 public final V getValue() { return val; }
574 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
575 public final String toString(){ return key + "=" + val; }
576 public final V setValue(V value) {
577 throw new UnsupportedOperationException();
578 }
579
580 public final boolean equals(Object o) {
581 Object k, v, u; Map.Entry<?,?> e;
582 return ((o instanceof Map.Entry) &&
583 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584 (v = e.getValue()) != null &&
585 (k == key || k.equals(key)) &&
586 (v == (u = val) || v.equals(u)));
587 }
588
589 /**
590 * Virtualized support for map.get(); overridden in subclasses.
591 */
592 Node<K,V> find(int h, Object k) {
593 Node<K,V> e = this;
594 if (k != null) {
595 do {
596 K ek;
597 if (e.hash == h &&
598 ((ek = e.key) == k || (ek != null && k.equals(ek))))
599 return e;
600 } while ((e = e.next) != null);
601 }
602 return null;
603 }
604 }
605
606 /* ---------------- Static utilities -------------- */
607
608 /**
609 * Spreads (XORs) higher bits of hash to lower and also forces top
610 * bit to 0. Because the table uses power-of-two masking, sets of
611 * hashes that vary only in bits above the current mask will
612 * always collide. (Among known examples are sets of Float keys
613 * holding consecutive whole numbers in small tables.) So we
614 * apply a transform that spreads the impact of higher bits
615 * downward. There is a tradeoff between speed, utility, and
616 * quality of bit-spreading. Because many common sets of hashes
617 * are already reasonably distributed (so don't benefit from
618 * spreading), and because we use trees to handle large sets of
619 * collisions in bins, we just XOR some shifted bits in the
620 * cheapest possible way to reduce systematic lossage, as well as
621 * to incorporate impact of the highest bits that would otherwise
622 * never be used in index calculations because of table bounds.
623 */
624 static final int spread(int h) {
625 return (h ^ (h >>> 16)) & HASH_BITS;
626 }
627
628 /**
629 * Returns a power of two table size for the given desired capacity.
630 * See Hackers Delight, sec 3.2
631 */
632 private static final int tableSizeFor(int c) {
633 int n = c - 1;
634 n |= n >>> 1;
635 n |= n >>> 2;
636 n |= n >>> 4;
637 n |= n >>> 8;
638 n |= n >>> 16;
639 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640 }
641
642 /**
643 * Returns x's Class if it is of the form "class C implements
644 * Comparable<C>", else null.
645 */
646 static Class<?> comparableClassFor(Object x) {
647 if (x instanceof Comparable) {
648 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649 if ((c = x.getClass()) == String.class) // bypass checks
650 return c;
651 if ((ts = c.getGenericInterfaces()) != null) {
652 for (int i = 0; i < ts.length; ++i) {
653 if (((t = ts[i]) instanceof ParameterizedType) &&
654 ((p = (ParameterizedType)t).getRawType() ==
655 Comparable.class) &&
656 (as = p.getActualTypeArguments()) != null &&
657 as.length == 1 && as[0] == c) // type arg is c
658 return c;
659 }
660 }
661 }
662 return null;
663 }
664
665 /**
666 * Returns k.compareTo(x) if x matches kc (k's screened comparable
667 * class), else 0.
668 */
669 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670 static int compareComparables(Class<?> kc, Object k, Object x) {
671 return (x == null || x.getClass() != kc ? 0 :
672 ((Comparable)k).compareTo(x));
673 }
674
675 /* ---------------- Table element access -------------- */
676
677 /*
678 * Volatile access methods are used for table elements as well as
679 * elements of in-progress next table while resizing. All uses of
680 * the tab arguments must be null checked by callers. All callers
681 * also paranoically precheck that tab's length is not zero (or an
682 * equivalent check), thus ensuring that any index argument taking
683 * the form of a hash value anded with (length - 1) is a valid
684 * index. Note that, to be correct wrt arbitrary concurrency
685 * errors by users, these checks must operate on local variables,
686 * which accounts for some odd-looking inline assignments below.
687 * Note that calls to setTabAt always occur within locked regions,
688 * and so do not need full volatile semantics, but still require
689 * ordering to maintain concurrent readability.
690 */
691
692 @SuppressWarnings("unchecked")
693 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
694 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
695 }
696
697 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
698 Node<K,V> c, Node<K,V> v) {
699 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
700 }
701
702 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
703 U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
704 }
705
706 /* ---------------- Fields -------------- */
707
708 /**
709 * The array of bins. Lazily initialized upon first insertion.
710 * Size is always a power of two. Accessed directly by iterators.
711 */
712 transient volatile Node<K,V>[] table;
713
714 /**
715 * The next table to use; non-null only while resizing.
716 */
717 private transient volatile Node<K,V>[] nextTable;
718
719 /**
720 * Base counter value, used mainly when there is no contention,
721 * but also as a fallback during table initialization
722 * races. Updated via CAS.
723 */
724 private transient volatile long baseCount;
725
726 /**
727 * Table initialization and resizing control. When negative, the
728 * table is being initialized or resized: -1 for initialization,
729 * else -(1 + the number of active resizing threads). Otherwise,
730 * when table is null, holds the initial table size to use upon
731 * creation, or 0 for default. After initialization, holds the
732 * next element count value upon which to resize the table.
733 */
734 private transient volatile int sizeCtl;
735
736 /**
737 * The next table index (plus one) to split while resizing.
738 */
739 private transient volatile int transferIndex;
740
741 /**
742 * The least available table index to split while resizing.
743 */
744 private transient volatile int transferOrigin;
745
746 /**
747 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
748 */
749 private transient volatile int cellsBusy;
750
751 /**
752 * Table of counter cells. When non-null, size is a power of 2.
753 */
754 private transient volatile CounterCell[] counterCells;
755
756 // views
757 private transient KeySetView<K,V> keySet;
758 private transient ValuesView<K,V> values;
759 private transient EntrySetView<K,V> entrySet;
760
761
762 /* ---------------- Public operations -------------- */
763
764 /**
765 * Creates a new, empty map with the default initial table size (16).
766 */
767 public ConcurrentHashMap() {
768 }
769
770 /**
771 * Creates a new, empty map with an initial table size
772 * accommodating the specified number of elements without the need
773 * to dynamically resize.
774 *
775 * @param initialCapacity The implementation performs internal
776 * sizing to accommodate this many elements.
777 * @throws IllegalArgumentException if the initial capacity of
778 * elements is negative
779 */
780 public ConcurrentHashMap(int initialCapacity) {
781 if (initialCapacity < 0)
782 throw new IllegalArgumentException();
783 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
784 MAXIMUM_CAPACITY :
785 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
786 this.sizeCtl = cap;
787 }
788
789 /**
790 * Creates a new map with the same mappings as the given map.
791 *
792 * @param m the map
793 */
794 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
795 this.sizeCtl = DEFAULT_CAPACITY;
796 putAll(m);
797 }
798
799 /**
800 * Creates a new, empty map with an initial table size based on
801 * the given number of elements ({@code initialCapacity}) and
802 * initial table density ({@code loadFactor}).
803 *
804 * @param initialCapacity the initial capacity. The implementation
805 * performs internal sizing to accommodate this many elements,
806 * given the specified load factor.
807 * @param loadFactor the load factor (table density) for
808 * establishing the initial table size
809 * @throws IllegalArgumentException if the initial capacity of
810 * elements is negative or the load factor is nonpositive
811 *
812 * @since 1.6
813 */
814 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
815 this(initialCapacity, loadFactor, 1);
816 }
817
818 /**
819 * Creates a new, empty map with an initial table size based on
820 * the given number of elements ({@code initialCapacity}), table
821 * density ({@code loadFactor}), and number of concurrently
822 * updating threads ({@code concurrencyLevel}).
823 *
824 * @param initialCapacity the initial capacity. The implementation
825 * performs internal sizing to accommodate this many elements,
826 * given the specified load factor.
827 * @param loadFactor the load factor (table density) for
828 * establishing the initial table size
829 * @param concurrencyLevel the estimated number of concurrently
830 * updating threads. The implementation may use this value as
831 * a sizing hint.
832 * @throws IllegalArgumentException if the initial capacity is
833 * negative or the load factor or concurrencyLevel are
834 * nonpositive
835 */
836 public ConcurrentHashMap(int initialCapacity,
837 float loadFactor, int concurrencyLevel) {
838 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
839 throw new IllegalArgumentException();
840 if (initialCapacity < concurrencyLevel) // Use at least as many bins
841 initialCapacity = concurrencyLevel; // as estimated threads
842 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
843 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
844 MAXIMUM_CAPACITY : tableSizeFor((int)size);
845 this.sizeCtl = cap;
846 }
847
848 // Original (since JDK1.2) Map methods
849
850 /**
851 * {@inheritDoc}
852 */
853 public int size() {
854 long n = sumCount();
855 return ((n < 0L) ? 0 :
856 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
857 (int)n);
858 }
859
860 /**
861 * {@inheritDoc}
862 */
863 public boolean isEmpty() {
864 return sumCount() <= 0L; // ignore transient negative values
865 }
866
867 /**
868 * Returns the value to which the specified key is mapped,
869 * or {@code null} if this map contains no mapping for the key.
870 *
871 * <p>More formally, if this map contains a mapping from a key
872 * {@code k} to a value {@code v} such that {@code key.equals(k)},
873 * then this method returns {@code v}; otherwise it returns
874 * {@code null}. (There can be at most one such mapping.)
875 *
876 * @throws NullPointerException if the specified key is null
877 */
878 public V get(Object key) {
879 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
880 int h = spread(key.hashCode());
881 if ((tab = table) != null && (n = tab.length) > 0 &&
882 (e = tabAt(tab, (n - 1) & h)) != null) {
883 if ((eh = e.hash) == h) {
884 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
885 return e.val;
886 }
887 else if (eh < 0)
888 return (p = e.find(h, key)) != null ? p.val : null;
889 while ((e = e.next) != null) {
890 if (e.hash == h &&
891 ((ek = e.key) == key || (ek != null && key.equals(ek))))
892 return e.val;
893 }
894 }
895 return null;
896 }
897
898 /**
899 * Tests if the specified object is a key in this table.
900 *
901 * @param key possible key
902 * @return {@code true} if and only if the specified object
903 * is a key in this table, as determined by the
904 * {@code equals} method; {@code false} otherwise
905 * @throws NullPointerException if the specified key is null
906 */
907 public boolean containsKey(Object key) {
908 return get(key) != null;
909 }
910
911 /**
912 * Returns {@code true} if this map maps one or more keys to the
913 * specified value. Note: This method may require a full traversal
914 * of the map, and is much slower than method {@code containsKey}.
915 *
916 * @param value value whose presence in this map is to be tested
917 * @return {@code true} if this map maps one or more keys to the
918 * specified value
919 * @throws NullPointerException if the specified value is null
920 */
921 public boolean containsValue(Object value) {
922 if (value == null)
923 throw new NullPointerException();
924 Node<K,V>[] t;
925 if ((t = table) != null) {
926 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
927 for (Node<K,V> p; (p = it.advance()) != null; ) {
928 V v;
929 if ((v = p.val) == value || (v != null && value.equals(v)))
930 return true;
931 }
932 }
933 return false;
934 }
935
936 /**
937 * Maps the specified key to the specified value in this table.
938 * Neither the key nor the value can be null.
939 *
940 * <p>The value can be retrieved by calling the {@code get} method
941 * with a key that is equal to the original key.
942 *
943 * @param key key with which the specified value is to be associated
944 * @param value value to be associated with the specified key
945 * @return the previous value associated with {@code key}, or
946 * {@code null} if there was no mapping for {@code key}
947 * @throws NullPointerException if the specified key or value is null
948 */
949 public V put(K key, V value) {
950 return putVal(key, value, false);
951 }
952
953 /** Implementation for put and putIfAbsent */
954 final V putVal(K key, V value, boolean onlyIfAbsent) {
955 if (key == null || value == null) throw new NullPointerException();
956 int hash = spread(key.hashCode());
957 int binCount = 0;
958 for (Node<K,V>[] tab = table;;) {
959 Node<K,V> f; int n, i, fh;
960 if (tab == null || (n = tab.length) == 0)
961 tab = initTable();
962 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
963 if (casTabAt(tab, i, null,
964 new Node<K,V>(hash, key, value, null)))
965 break; // no lock when adding to empty bin
966 }
967 else if ((fh = f.hash) == MOVED)
968 tab = helpTransfer(tab, f);
969 else {
970 V oldVal = null;
971 synchronized (f) {
972 if (tabAt(tab, i) == f) {
973 if (fh >= 0) {
974 binCount = 1;
975 for (Node<K,V> e = f;; ++binCount) {
976 K ek;
977 if (e.hash == hash &&
978 ((ek = e.key) == key ||
979 (ek != null && key.equals(ek)))) {
980 oldVal = e.val;
981 if (!onlyIfAbsent)
982 e.val = value;
983 break;
984 }
985 Node<K,V> pred = e;
986 if ((e = e.next) == null) {
987 pred.next = new Node<K,V>(hash, key,
988 value, null);
989 break;
990 }
991 }
992 }
993 else if (f instanceof TreeBin) {
994 Node<K,V> p;
995 binCount = 2;
996 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
997 value)) != null) {
998 oldVal = p.val;
999 if (!onlyIfAbsent)
1000 p.val = value;
1001 }
1002 }
1003 }
1004 }
1005 if (binCount != 0) {
1006 if (binCount >= TREEIFY_THRESHOLD)
1007 treeifyBin(tab, i);
1008 if (oldVal != null)
1009 return oldVal;
1010 break;
1011 }
1012 }
1013 }
1014 addCount(1L, binCount);
1015 return null;
1016 }
1017
1018 /**
1019 * Copies all of the mappings from the specified map to this one.
1020 * These mappings replace any mappings that this map had for any of the
1021 * keys currently in the specified map.
1022 *
1023 * @param m mappings to be stored in this map
1024 */
1025 public void putAll(Map<? extends K, ? extends V> m) {
1026 tryPresize(m.size());
1027 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1028 putVal(e.getKey(), e.getValue(), false);
1029 }
1030
1031 /**
1032 * Removes the key (and its corresponding value) from this map.
1033 * This method does nothing if the key is not in the map.
1034 *
1035 * @param key the key that needs to be removed
1036 * @return the previous value associated with {@code key}, or
1037 * {@code null} if there was no mapping for {@code key}
1038 * @throws NullPointerException if the specified key is null
1039 */
1040 public V remove(Object key) {
1041 return replaceNode(key, null, null);
1042 }
1043
1044 /**
1045 * Implementation for the four public remove/replace methods:
1046 * Replaces node value with v, conditional upon match of cv if
1047 * non-null. If resulting value is null, delete.
1048 */
1049 final V replaceNode(Object key, V value, Object cv) {
1050 int hash = spread(key.hashCode());
1051 for (Node<K,V>[] tab = table;;) {
1052 Node<K,V> f; int n, i, fh;
1053 if (tab == null || (n = tab.length) == 0 ||
1054 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1055 break;
1056 else if ((fh = f.hash) == MOVED)
1057 tab = helpTransfer(tab, f);
1058 else {
1059 V oldVal = null;
1060 boolean validated = false;
1061 synchronized (f) {
1062 if (tabAt(tab, i) == f) {
1063 if (fh >= 0) {
1064 validated = true;
1065 for (Node<K,V> e = f, pred = null;;) {
1066 K ek;
1067 if (e.hash == hash &&
1068 ((ek = e.key) == key ||
1069 (ek != null && key.equals(ek)))) {
1070 V ev = e.val;
1071 if (cv == null || cv == ev ||
1072 (ev != null && cv.equals(ev))) {
1073 oldVal = ev;
1074 if (value != null)
1075 e.val = value;
1076 else if (pred != null)
1077 pred.next = e.next;
1078 else
1079 setTabAt(tab, i, e.next);
1080 }
1081 break;
1082 }
1083 pred = e;
1084 if ((e = e.next) == null)
1085 break;
1086 }
1087 }
1088 else if (f instanceof TreeBin) {
1089 validated = true;
1090 TreeBin<K,V> t = (TreeBin<K,V>)f;
1091 TreeNode<K,V> r, p;
1092 if ((r = t.root) != null &&
1093 (p = r.findTreeNode(hash, key, null)) != null) {
1094 V pv = p.val;
1095 if (cv == null || cv == pv ||
1096 (pv != null && cv.equals(pv))) {
1097 oldVal = pv;
1098 if (value != null)
1099 p.val = value;
1100 else if (t.removeTreeNode(p))
1101 setTabAt(tab, i, untreeify(t.first));
1102 }
1103 }
1104 }
1105 }
1106 }
1107 if (validated) {
1108 if (oldVal != null) {
1109 if (value == null)
1110 addCount(-1L, -1);
1111 return oldVal;
1112 }
1113 break;
1114 }
1115 }
1116 }
1117 return null;
1118 }
1119
1120 /**
1121 * Removes all of the mappings from this map.
1122 */
1123 public void clear() {
1124 long delta = 0L; // negative number of deletions
1125 int i = 0;
1126 Node<K,V>[] tab = table;
1127 while (tab != null && i < tab.length) {
1128 int fh;
1129 Node<K,V> f = tabAt(tab, i);
1130 if (f == null)
1131 ++i;
1132 else if ((fh = f.hash) == MOVED) {
1133 tab = helpTransfer(tab, f);
1134 i = 0; // restart
1135 }
1136 else {
1137 synchronized (f) {
1138 if (tabAt(tab, i) == f) {
1139 Node<K,V> p = (fh >= 0 ? f :
1140 (f instanceof TreeBin) ?
1141 ((TreeBin<K,V>)f).first : null);
1142 while (p != null) {
1143 --delta;
1144 p = p.next;
1145 }
1146 setTabAt(tab, i++, null);
1147 }
1148 }
1149 }
1150 }
1151 if (delta != 0L)
1152 addCount(delta, -1);
1153 }
1154
1155 /**
1156 * Returns a {@link Set} view of the keys contained in this map.
1157 * The set is backed by the map, so changes to the map are
1158 * reflected in the set, and vice-versa. The set supports element
1159 * removal, which removes the corresponding mapping from this map,
1160 * via the {@code Iterator.remove}, {@code Set.remove},
1161 * {@code removeAll}, {@code retainAll}, and {@code clear}
1162 * operations. It does not support the {@code add} or
1163 * {@code addAll} operations.
1164 *
1165 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1166 * that will never throw {@link ConcurrentModificationException},
1167 * and guarantees to traverse elements as they existed upon
1168 * construction of the iterator, and may (but is not guaranteed to)
1169 * reflect any modifications subsequent to construction.
1170 *
1171 * @return the set view
1172 */
1173 public KeySetView<K,V> keySet() {
1174 KeySetView<K,V> ks;
1175 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1176 }
1177
1178 /**
1179 * Returns a {@link Collection} view of the values contained in this map.
1180 * The collection is backed by the map, so changes to the map are
1181 * reflected in the collection, and vice-versa. The collection
1182 * supports element removal, which removes the corresponding
1183 * mapping from this map, via the {@code Iterator.remove},
1184 * {@code Collection.remove}, {@code removeAll},
1185 * {@code retainAll}, and {@code clear} operations. It does not
1186 * support the {@code add} or {@code addAll} operations.
1187 *
1188 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1189 * that will never throw {@link ConcurrentModificationException},
1190 * and guarantees to traverse elements as they existed upon
1191 * construction of the iterator, and may (but is not guaranteed to)
1192 * reflect any modifications subsequent to construction.
1193 *
1194 * @return the collection view
1195 */
1196 public Collection<V> values() {
1197 ValuesView<K,V> vs;
1198 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1199 }
1200
1201 /**
1202 * Returns a {@link Set} view of the mappings contained in this map.
1203 * The set is backed by the map, so changes to the map are
1204 * reflected in the set, and vice-versa. The set supports element
1205 * removal, which removes the corresponding mapping from the map,
1206 * via the {@code Iterator.remove}, {@code Set.remove},
1207 * {@code removeAll}, {@code retainAll}, and {@code clear}
1208 * operations.
1209 *
1210 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 * that will never throw {@link ConcurrentModificationException},
1212 * and guarantees to traverse elements as they existed upon
1213 * construction of the iterator, and may (but is not guaranteed to)
1214 * reflect any modifications subsequent to construction.
1215 *
1216 * @return the set view
1217 */
1218 public Set<Map.Entry<K,V>> entrySet() {
1219 EntrySetView<K,V> es;
1220 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1221 }
1222
1223 /**
1224 * Returns the hash code value for this {@link Map}, i.e.,
1225 * the sum of, for each key-value pair in the map,
1226 * {@code key.hashCode() ^ value.hashCode()}.
1227 *
1228 * @return the hash code value for this map
1229 */
1230 public int hashCode() {
1231 int h = 0;
1232 Node<K,V>[] t;
1233 if ((t = table) != null) {
1234 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1235 for (Node<K,V> p; (p = it.advance()) != null; )
1236 h += p.key.hashCode() ^ p.val.hashCode();
1237 }
1238 return h;
1239 }
1240
1241 /**
1242 * Returns a string representation of this map. The string
1243 * representation consists of a list of key-value mappings (in no
1244 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1245 * mappings are separated by the characters {@code ", "} (comma
1246 * and space). Each key-value mapping is rendered as the key
1247 * followed by an equals sign ("{@code =}") followed by the
1248 * associated value.
1249 *
1250 * @return a string representation of this map
1251 */
1252 public String toString() {
1253 Node<K,V>[] t;
1254 int f = (t = table) == null ? 0 : t.length;
1255 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1256 StringBuilder sb = new StringBuilder();
1257 sb.append('{');
1258 Node<K,V> p;
1259 if ((p = it.advance()) != null) {
1260 for (;;) {
1261 K k = p.key;
1262 V v = p.val;
1263 sb.append(k == this ? "(this Map)" : k);
1264 sb.append('=');
1265 sb.append(v == this ? "(this Map)" : v);
1266 if ((p = it.advance()) == null)
1267 break;
1268 sb.append(',').append(' ');
1269 }
1270 }
1271 return sb.append('}').toString();
1272 }
1273
1274 /**
1275 * Compares the specified object with this map for equality.
1276 * Returns {@code true} if the given object is a map with the same
1277 * mappings as this map. This operation may return misleading
1278 * results if either map is concurrently modified during execution
1279 * of this method.
1280 *
1281 * @param o object to be compared for equality with this map
1282 * @return {@code true} if the specified object is equal to this map
1283 */
1284 public boolean equals(Object o) {
1285 if (o != this) {
1286 if (!(o instanceof Map))
1287 return false;
1288 Map<?,?> m = (Map<?,?>) o;
1289 Node<K,V>[] t;
1290 int f = (t = table) == null ? 0 : t.length;
1291 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1292 for (Node<K,V> p; (p = it.advance()) != null; ) {
1293 V val = p.val;
1294 Object v = m.get(p.key);
1295 if (v == null || (v != val && !v.equals(val)))
1296 return false;
1297 }
1298 for (Map.Entry<?,?> e : m.entrySet()) {
1299 Object mk, mv, v;
1300 if ((mk = e.getKey()) == null ||
1301 (mv = e.getValue()) == null ||
1302 (v = get(mk)) == null ||
1303 (mv != v && !mv.equals(v)))
1304 return false;
1305 }
1306 }
1307 return true;
1308 }
1309
1310 /**
1311 * Stripped-down version of helper class used in previous version,
1312 * declared for the sake of serialization compatibility
1313 */
1314 static class Segment<K,V> extends ReentrantLock implements Serializable {
1315 private static final long serialVersionUID = 2249069246763182397L;
1316 final float loadFactor;
1317 Segment(float lf) { this.loadFactor = lf; }
1318 }
1319
1320 /**
1321 * Saves the state of the {@code ConcurrentHashMap} instance to a
1322 * stream (i.e., serializes it).
1323 * @param s the stream
1324 * @serialData
1325 * the key (Object) and value (Object)
1326 * for each key-value mapping, followed by a null pair.
1327 * The key-value mappings are emitted in no particular order.
1328 */
1329 private void writeObject(java.io.ObjectOutputStream s)
1330 throws java.io.IOException {
1331 // For serialization compatibility
1332 // Emulate segment calculation from previous version of this class
1333 int sshift = 0;
1334 int ssize = 1;
1335 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1336 ++sshift;
1337 ssize <<= 1;
1338 }
1339 int segmentShift = 32 - sshift;
1340 int segmentMask = ssize - 1;
1341 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1342 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1343 for (int i = 0; i < segments.length; ++i)
1344 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1345 s.putFields().put("segments", segments);
1346 s.putFields().put("segmentShift", segmentShift);
1347 s.putFields().put("segmentMask", segmentMask);
1348 s.writeFields();
1349
1350 Node<K,V>[] t;
1351 if ((t = table) != null) {
1352 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1353 for (Node<K,V> p; (p = it.advance()) != null; ) {
1354 s.writeObject(p.key);
1355 s.writeObject(p.val);
1356 }
1357 }
1358 s.writeObject(null);
1359 s.writeObject(null);
1360 segments = null; // throw away
1361 }
1362
1363 /**
1364 * Reconstitutes the instance from a stream (that is, deserializes it).
1365 * @param s the stream
1366 */
1367 private void readObject(java.io.ObjectInputStream s)
1368 throws java.io.IOException, ClassNotFoundException {
1369 /*
1370 * To improve performance in typical cases, we create nodes
1371 * while reading, then place in table once size is known.
1372 * However, we must also validate uniqueness and deal with
1373 * overpopulated bins while doing so, which requires
1374 * specialized versions of putVal mechanics.
1375 */
1376 sizeCtl = -1; // force exclusion for table construction
1377 s.defaultReadObject();
1378 long size = 0L;
1379 Node<K,V> p = null;
1380 for (;;) {
1381 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1382 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1383 if (k != null && v != null) {
1384 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1385 ++size;
1386 }
1387 else
1388 break;
1389 }
1390 if (size == 0L)
1391 sizeCtl = 0;
1392 else {
1393 int n;
1394 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1395 n = MAXIMUM_CAPACITY;
1396 else {
1397 int sz = (int)size;
1398 n = tableSizeFor(sz + (sz >>> 1) + 1);
1399 }
1400 @SuppressWarnings({"rawtypes","unchecked"})
1401 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1402 int mask = n - 1;
1403 long added = 0L;
1404 while (p != null) {
1405 boolean insertAtFront;
1406 Node<K,V> next = p.next, first;
1407 int h = p.hash, j = h & mask;
1408 if ((first = tabAt(tab, j)) == null)
1409 insertAtFront = true;
1410 else {
1411 K k = p.key;
1412 if (first.hash < 0) {
1413 TreeBin<K,V> t = (TreeBin<K,V>)first;
1414 if (t.putTreeVal(h, k, p.val) == null)
1415 ++added;
1416 insertAtFront = false;
1417 }
1418 else {
1419 int binCount = 0;
1420 insertAtFront = true;
1421 Node<K,V> q; K qk;
1422 for (q = first; q != null; q = q.next) {
1423 if (q.hash == h &&
1424 ((qk = q.key) == k ||
1425 (qk != null && k.equals(qk)))) {
1426 insertAtFront = false;
1427 break;
1428 }
1429 ++binCount;
1430 }
1431 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1432 insertAtFront = false;
1433 ++added;
1434 p.next = first;
1435 TreeNode<K,V> hd = null, tl = null;
1436 for (q = p; q != null; q = q.next) {
1437 TreeNode<K,V> t = new TreeNode<K,V>
1438 (q.hash, q.key, q.val, null, null);
1439 if ((t.prev = tl) == null)
1440 hd = t;
1441 else
1442 tl.next = t;
1443 tl = t;
1444 }
1445 setTabAt(tab, j, new TreeBin<K,V>(hd));
1446 }
1447 }
1448 }
1449 if (insertAtFront) {
1450 ++added;
1451 p.next = first;
1452 setTabAt(tab, j, p);
1453 }
1454 p = next;
1455 }
1456 table = tab;
1457 sizeCtl = n - (n >>> 2);
1458 baseCount = added;
1459 }
1460 }
1461
1462 // ConcurrentMap methods
1463
1464 /**
1465 * {@inheritDoc}
1466 *
1467 * @return the previous value associated with the specified key,
1468 * or {@code null} if there was no mapping for the key
1469 * @throws NullPointerException if the specified key or value is null
1470 */
1471 public V putIfAbsent(K key, V value) {
1472 return putVal(key, value, true);
1473 }
1474
1475 /**
1476 * {@inheritDoc}
1477 *
1478 * @throws NullPointerException if the specified key is null
1479 */
1480 public boolean remove(Object key, Object value) {
1481 if (key == null)
1482 throw new NullPointerException();
1483 return value != null && replaceNode(key, null, value) != null;
1484 }
1485
1486 /**
1487 * {@inheritDoc}
1488 *
1489 * @throws NullPointerException if any of the arguments are null
1490 */
1491 public boolean replace(K key, V oldValue, V newValue) {
1492 if (key == null || oldValue == null || newValue == null)
1493 throw new NullPointerException();
1494 return replaceNode(key, newValue, oldValue) != null;
1495 }
1496
1497 /**
1498 * {@inheritDoc}
1499 *
1500 * @return the previous value associated with the specified key,
1501 * or {@code null} if there was no mapping for the key
1502 * @throws NullPointerException if the specified key or value is null
1503 */
1504 public V replace(K key, V value) {
1505 if (key == null || value == null)
1506 throw new NullPointerException();
1507 return replaceNode(key, value, null);
1508 }
1509
1510 // Overrides of JDK8+ Map extension method defaults
1511
1512 /**
1513 * Returns the value to which the specified key is mapped, or the
1514 * given default value if this map contains no mapping for the
1515 * key.
1516 *
1517 * @param key the key whose associated value is to be returned
1518 * @param defaultValue the value to return if this map contains
1519 * no mapping for the given key
1520 * @return the mapping for the key, if present; else the default value
1521 * @throws NullPointerException if the specified key is null
1522 */
1523 public V getOrDefault(Object key, V defaultValue) {
1524 V v;
1525 return (v = get(key)) == null ? defaultValue : v;
1526 }
1527
1528 public void forEach(BiConsumer<? super K, ? super V> action) {
1529 if (action == null) throw new NullPointerException();
1530 Node<K,V>[] t;
1531 if ((t = table) != null) {
1532 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1533 for (Node<K,V> p; (p = it.advance()) != null; ) {
1534 action.accept(p.key, p.val);
1535 }
1536 }
1537 }
1538
1539 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1540 if (function == null) throw new NullPointerException();
1541 Node<K,V>[] t;
1542 if ((t = table) != null) {
1543 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1544 for (Node<K,V> p; (p = it.advance()) != null; ) {
1545 V oldValue = p.val;
1546 for (K key = p.key;;) {
1547 V newValue = function.apply(key, oldValue);
1548 if (newValue == null)
1549 throw new NullPointerException();
1550 if (replaceNode(key, newValue, oldValue) != null ||
1551 (oldValue = get(key)) == null)
1552 break;
1553 }
1554 }
1555 }
1556 }
1557
1558 /**
1559 * If the specified key is not already associated with a value,
1560 * attempts to compute its value using the given mapping function
1561 * and enters it into this map unless {@code null}. The entire
1562 * method invocation is performed atomically, so the function is
1563 * applied at most once per key. Some attempted update operations
1564 * on this map by other threads may be blocked while computation
1565 * is in progress, so the computation should be short and simple,
1566 * and must not attempt to update any other mappings of this map.
1567 *
1568 * @param key key with which the specified value is to be associated
1569 * @param mappingFunction the function to compute a value
1570 * @return the current (existing or computed) value associated with
1571 * the specified key, or null if the computed value is null
1572 * @throws NullPointerException if the specified key or mappingFunction
1573 * is null
1574 * @throws IllegalStateException if the computation detectably
1575 * attempts a recursive update to this map that would
1576 * otherwise never complete
1577 * @throws RuntimeException or Error if the mappingFunction does so,
1578 * in which case the mapping is left unestablished
1579 */
1580 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1581 if (key == null || mappingFunction == null)
1582 throw new NullPointerException();
1583 int h = spread(key.hashCode());
1584 V val = null;
1585 int binCount = 0;
1586 for (Node<K,V>[] tab = table;;) {
1587 Node<K,V> f; int n, i, fh;
1588 if (tab == null || (n = tab.length) == 0)
1589 tab = initTable();
1590 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1591 Node<K,V> r = new ReservationNode<K,V>();
1592 synchronized (r) {
1593 if (casTabAt(tab, i, null, r)) {
1594 binCount = 1;
1595 Node<K,V> node = null;
1596 try {
1597 if ((val = mappingFunction.apply(key)) != null)
1598 node = new Node<K,V>(h, key, val, null);
1599 } finally {
1600 setTabAt(tab, i, node);
1601 }
1602 }
1603 }
1604 if (binCount != 0)
1605 break;
1606 }
1607 else if ((fh = f.hash) == MOVED)
1608 tab = helpTransfer(tab, f);
1609 else {
1610 boolean added = false;
1611 synchronized (f) {
1612 if (tabAt(tab, i) == f) {
1613 if (fh >= 0) {
1614 binCount = 1;
1615 for (Node<K,V> e = f;; ++binCount) {
1616 K ek; V ev;
1617 if (e.hash == h &&
1618 ((ek = e.key) == key ||
1619 (ek != null && key.equals(ek)))) {
1620 val = e.val;
1621 break;
1622 }
1623 Node<K,V> pred = e;
1624 if ((e = e.next) == null) {
1625 if ((val = mappingFunction.apply(key)) != null) {
1626 added = true;
1627 pred.next = new Node<K,V>(h, key, val, null);
1628 }
1629 break;
1630 }
1631 }
1632 }
1633 else if (f instanceof TreeBin) {
1634 binCount = 2;
1635 TreeBin<K,V> t = (TreeBin<K,V>)f;
1636 TreeNode<K,V> r, p;
1637 if ((r = t.root) != null &&
1638 (p = r.findTreeNode(h, key, null)) != null)
1639 val = p.val;
1640 else if ((val = mappingFunction.apply(key)) != null) {
1641 added = true;
1642 t.putTreeVal(h, key, val);
1643 }
1644 }
1645 }
1646 }
1647 if (binCount != 0) {
1648 if (binCount >= TREEIFY_THRESHOLD)
1649 treeifyBin(tab, i);
1650 if (!added)
1651 return val;
1652 break;
1653 }
1654 }
1655 }
1656 if (val != null)
1657 addCount(1L, binCount);
1658 return val;
1659 }
1660
1661 /**
1662 * If the value for the specified key is present, attempts to
1663 * compute a new mapping given the key and its current mapped
1664 * value. The entire method invocation is performed atomically.
1665 * Some attempted update operations on this map by other threads
1666 * may be blocked while computation is in progress, so the
1667 * computation should be short and simple, and must not attempt to
1668 * update any other mappings of this map.
1669 *
1670 * @param key key with which a value may be associated
1671 * @param remappingFunction the function to compute a value
1672 * @return the new value associated with the specified key, or null if none
1673 * @throws NullPointerException if the specified key or remappingFunction
1674 * is null
1675 * @throws IllegalStateException if the computation detectably
1676 * attempts a recursive update to this map that would
1677 * otherwise never complete
1678 * @throws RuntimeException or Error if the remappingFunction does so,
1679 * in which case the mapping is unchanged
1680 */
1681 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1682 if (key == null || remappingFunction == null)
1683 throw new NullPointerException();
1684 int h = spread(key.hashCode());
1685 V val = null;
1686 int delta = 0;
1687 int binCount = 0;
1688 for (Node<K,V>[] tab = table;;) {
1689 Node<K,V> f; int n, i, fh;
1690 if (tab == null || (n = tab.length) == 0)
1691 tab = initTable();
1692 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1693 break;
1694 else if ((fh = f.hash) == MOVED)
1695 tab = helpTransfer(tab, f);
1696 else {
1697 synchronized (f) {
1698 if (tabAt(tab, i) == f) {
1699 if (fh >= 0) {
1700 binCount = 1;
1701 for (Node<K,V> e = f, pred = null;; ++binCount) {
1702 K ek;
1703 if (e.hash == h &&
1704 ((ek = e.key) == key ||
1705 (ek != null && key.equals(ek)))) {
1706 val = remappingFunction.apply(key, e.val);
1707 if (val != null)
1708 e.val = val;
1709 else {
1710 delta = -1;
1711 Node<K,V> en = e.next;
1712 if (pred != null)
1713 pred.next = en;
1714 else
1715 setTabAt(tab, i, en);
1716 }
1717 break;
1718 }
1719 pred = e;
1720 if ((e = e.next) == null)
1721 break;
1722 }
1723 }
1724 else if (f instanceof TreeBin) {
1725 binCount = 2;
1726 TreeBin<K,V> t = (TreeBin<K,V>)f;
1727 TreeNode<K,V> r, p;
1728 if ((r = t.root) != null &&
1729 (p = r.findTreeNode(h, key, null)) != null) {
1730 val = remappingFunction.apply(key, p.val);
1731 if (val != null)
1732 p.val = val;
1733 else {
1734 delta = -1;
1735 if (t.removeTreeNode(p))
1736 setTabAt(tab, i, untreeify(t.first));
1737 }
1738 }
1739 }
1740 }
1741 }
1742 if (binCount != 0)
1743 break;
1744 }
1745 }
1746 if (delta != 0)
1747 addCount((long)delta, binCount);
1748 return val;
1749 }
1750
1751 /**
1752 * Attempts to compute a mapping for the specified key and its
1753 * current mapped value (or {@code null} if there is no current
1754 * mapping). The entire method invocation is performed atomically.
1755 * Some attempted update operations on this map by other threads
1756 * may be blocked while computation is in progress, so the
1757 * computation should be short and simple, and must not attempt to
1758 * update any other mappings of this Map.
1759 *
1760 * @param key key with which the specified value is to be associated
1761 * @param remappingFunction the function to compute a value
1762 * @return the new value associated with the specified key, or null if none
1763 * @throws NullPointerException if the specified key or remappingFunction
1764 * is null
1765 * @throws IllegalStateException if the computation detectably
1766 * attempts a recursive update to this map that would
1767 * otherwise never complete
1768 * @throws RuntimeException or Error if the remappingFunction does so,
1769 * in which case the mapping is unchanged
1770 */
1771 public V compute(K key,
1772 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773 if (key == null || remappingFunction == null)
1774 throw new NullPointerException();
1775 int h = spread(key.hashCode());
1776 V val = null;
1777 int delta = 0;
1778 int binCount = 0;
1779 for (Node<K,V>[] tab = table;;) {
1780 Node<K,V> f; int n, i, fh;
1781 if (tab == null || (n = tab.length) == 0)
1782 tab = initTable();
1783 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1784 Node<K,V> r = new ReservationNode<K,V>();
1785 synchronized (r) {
1786 if (casTabAt(tab, i, null, r)) {
1787 binCount = 1;
1788 Node<K,V> node = null;
1789 try {
1790 if ((val = remappingFunction.apply(key, null)) != null) {
1791 delta = 1;
1792 node = new Node<K,V>(h, key, val, null);
1793 }
1794 } finally {
1795 setTabAt(tab, i, node);
1796 }
1797 }
1798 }
1799 if (binCount != 0)
1800 break;
1801 }
1802 else if ((fh = f.hash) == MOVED)
1803 tab = helpTransfer(tab, f);
1804 else {
1805 synchronized (f) {
1806 if (tabAt(tab, i) == f) {
1807 if (fh >= 0) {
1808 binCount = 1;
1809 for (Node<K,V> e = f, pred = null;; ++binCount) {
1810 K ek;
1811 if (e.hash == h &&
1812 ((ek = e.key) == key ||
1813 (ek != null && key.equals(ek)))) {
1814 val = remappingFunction.apply(key, e.val);
1815 if (val != null)
1816 e.val = val;
1817 else {
1818 delta = -1;
1819 Node<K,V> en = e.next;
1820 if (pred != null)
1821 pred.next = en;
1822 else
1823 setTabAt(tab, i, en);
1824 }
1825 break;
1826 }
1827 pred = e;
1828 if ((e = e.next) == null) {
1829 val = remappingFunction.apply(key, null);
1830 if (val != null) {
1831 delta = 1;
1832 pred.next =
1833 new Node<K,V>(h, key, val, null);
1834 }
1835 break;
1836 }
1837 }
1838 }
1839 else if (f instanceof TreeBin) {
1840 binCount = 1;
1841 TreeBin<K,V> t = (TreeBin<K,V>)f;
1842 TreeNode<K,V> r, p;
1843 if ((r = t.root) != null)
1844 p = r.findTreeNode(h, key, null);
1845 else
1846 p = null;
1847 V pv = (p == null) ? null : p.val;
1848 val = remappingFunction.apply(key, pv);
1849 if (val != null) {
1850 if (p != null)
1851 p.val = val;
1852 else {
1853 delta = 1;
1854 t.putTreeVal(h, key, val);
1855 }
1856 }
1857 else if (p != null) {
1858 delta = -1;
1859 if (t.removeTreeNode(p))
1860 setTabAt(tab, i, untreeify(t.first));
1861 }
1862 }
1863 }
1864 }
1865 if (binCount != 0) {
1866 if (binCount >= TREEIFY_THRESHOLD)
1867 treeifyBin(tab, i);
1868 break;
1869 }
1870 }
1871 }
1872 if (delta != 0)
1873 addCount((long)delta, binCount);
1874 return val;
1875 }
1876
1877 /**
1878 * If the specified key is not already associated with a
1879 * (non-null) value, associates it with the given value.
1880 * Otherwise, replaces the value with the results of the given
1881 * remapping function, or removes if {@code null}. The entire
1882 * method invocation is performed atomically. Some attempted
1883 * update operations on this map by other threads may be blocked
1884 * while computation is in progress, so the computation should be
1885 * short and simple, and must not attempt to update any other
1886 * mappings of this Map.
1887 *
1888 * @param key key with which the specified value is to be associated
1889 * @param value the value to use if absent
1890 * @param remappingFunction the function to recompute a value if present
1891 * @return the new value associated with the specified key, or null if none
1892 * @throws NullPointerException if the specified key or the
1893 * remappingFunction is null
1894 * @throws RuntimeException or Error if the remappingFunction does so,
1895 * in which case the mapping is unchanged
1896 */
1897 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1898 if (key == null || value == null || remappingFunction == null)
1899 throw new NullPointerException();
1900 int h = spread(key.hashCode());
1901 V val = null;
1902 int delta = 0;
1903 int binCount = 0;
1904 for (Node<K,V>[] tab = table;;) {
1905 Node<K,V> f; int n, i, fh;
1906 if (tab == null || (n = tab.length) == 0)
1907 tab = initTable();
1908 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1909 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1910 delta = 1;
1911 val = value;
1912 break;
1913 }
1914 }
1915 else if ((fh = f.hash) == MOVED)
1916 tab = helpTransfer(tab, f);
1917 else {
1918 synchronized (f) {
1919 if (tabAt(tab, i) == f) {
1920 if (fh >= 0) {
1921 binCount = 1;
1922 for (Node<K,V> e = f, pred = null;; ++binCount) {
1923 K ek;
1924 if (e.hash == h &&
1925 ((ek = e.key) == key ||
1926 (ek != null && key.equals(ek)))) {
1927 val = remappingFunction.apply(e.val, value);
1928 if (val != null)
1929 e.val = val;
1930 else {
1931 delta = -1;
1932 Node<K,V> en = e.next;
1933 if (pred != null)
1934 pred.next = en;
1935 else
1936 setTabAt(tab, i, en);
1937 }
1938 break;
1939 }
1940 pred = e;
1941 if ((e = e.next) == null) {
1942 delta = 1;
1943 val = value;
1944 pred.next =
1945 new Node<K,V>(h, key, val, null);
1946 break;
1947 }
1948 }
1949 }
1950 else if (f instanceof TreeBin) {
1951 binCount = 2;
1952 TreeBin<K,V> t = (TreeBin<K,V>)f;
1953 TreeNode<K,V> r = t.root;
1954 TreeNode<K,V> p = (r == null) ? null :
1955 r.findTreeNode(h, key, null);
1956 val = (p == null) ? value :
1957 remappingFunction.apply(p.val, value);
1958 if (val != null) {
1959 if (p != null)
1960 p.val = val;
1961 else {
1962 delta = 1;
1963 t.putTreeVal(h, key, val);
1964 }
1965 }
1966 else if (p != null) {
1967 delta = -1;
1968 if (t.removeTreeNode(p))
1969 setTabAt(tab, i, untreeify(t.first));
1970 }
1971 }
1972 }
1973 }
1974 if (binCount != 0) {
1975 if (binCount >= TREEIFY_THRESHOLD)
1976 treeifyBin(tab, i);
1977 break;
1978 }
1979 }
1980 }
1981 if (delta != 0)
1982 addCount((long)delta, binCount);
1983 return val;
1984 }
1985
1986 // Hashtable legacy methods
1987
1988 /**
1989 * Legacy method testing if some key maps into the specified value
1990 * in this table. This method is identical in functionality to
1991 * {@link #containsValue(Object)}, and exists solely to ensure
1992 * full compatibility with class {@link java.util.Hashtable},
1993 * which supported this method prior to introduction of the
1994 * Java Collections framework.
1995 *
1996 * @param value a value to search for
1997 * @return {@code true} if and only if some key maps to the
1998 * {@code value} argument in this table as
1999 * determined by the {@code equals} method;
2000 * {@code false} otherwise
2001 * @throws NullPointerException if the specified value is null
2002 */
2003 @Deprecated public boolean contains(Object value) {
2004 return containsValue(value);
2005 }
2006
2007 /**
2008 * Returns an enumeration of the keys in this table.
2009 *
2010 * @return an enumeration of the keys in this table
2011 * @see #keySet()
2012 */
2013 public Enumeration<K> keys() {
2014 Node<K,V>[] t;
2015 int f = (t = table) == null ? 0 : t.length;
2016 return new KeyIterator<K,V>(t, f, 0, f, this);
2017 }
2018
2019 /**
2020 * Returns an enumeration of the values in this table.
2021 *
2022 * @return an enumeration of the values in this table
2023 * @see #values()
2024 */
2025 public Enumeration<V> elements() {
2026 Node<K,V>[] t;
2027 int f = (t = table) == null ? 0 : t.length;
2028 return new ValueIterator<K,V>(t, f, 0, f, this);
2029 }
2030
2031 // ConcurrentHashMap-only methods
2032
2033 /**
2034 * Returns the number of mappings. This method should be used
2035 * instead of {@link #size} because a ConcurrentHashMap may
2036 * contain more mappings than can be represented as an int. The
2037 * value returned is an estimate; the actual count may differ if
2038 * there are concurrent insertions or removals.
2039 *
2040 * @return the number of mappings
2041 * @since 1.8
2042 */
2043 public long mappingCount() {
2044 long n = sumCount();
2045 return (n < 0L) ? 0L : n; // ignore transient negative values
2046 }
2047
2048 /**
2049 * Creates a new {@link Set} backed by a ConcurrentHashMap
2050 * from the given type to {@code Boolean.TRUE}.
2051 *
2052 * @return the new set
2053 * @since 1.8
2054 */
2055 public static <K> KeySetView<K,Boolean> newKeySet() {
2056 return new KeySetView<K,Boolean>
2057 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2058 }
2059
2060 /**
2061 * Creates a new {@link Set} backed by a ConcurrentHashMap
2062 * from the given type to {@code Boolean.TRUE}.
2063 *
2064 * @param initialCapacity The implementation performs internal
2065 * sizing to accommodate this many elements.
2066 * @throws IllegalArgumentException if the initial capacity of
2067 * elements is negative
2068 * @return the new set
2069 * @since 1.8
2070 */
2071 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2072 return new KeySetView<K,Boolean>
2073 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2074 }
2075
2076 /**
2077 * Returns a {@link Set} view of the keys in this map, using the
2078 * given common mapped value for any additions (i.e., {@link
2079 * Collection#add} and {@link Collection#addAll(Collection)}).
2080 * This is of course only appropriate if it is acceptable to use
2081 * the same value for all additions from this view.
2082 *
2083 * @param mappedValue the mapped value to use for any additions
2084 * @return the set view
2085 * @throws NullPointerException if the mappedValue is null
2086 */
2087 public KeySetView<K,V> keySet(V mappedValue) {
2088 if (mappedValue == null)
2089 throw new NullPointerException();
2090 return new KeySetView<K,V>(this, mappedValue);
2091 }
2092
2093 /* ---------------- Special Nodes -------------- */
2094
2095 /**
2096 * A node inserted at head of bins during transfer operations.
2097 */
2098 static final class ForwardingNode<K,V> extends Node<K,V> {
2099 final Node<K,V>[] nextTable;
2100 ForwardingNode(Node<K,V>[] tab) {
2101 super(MOVED, null, null, null);
2102 this.nextTable = tab;
2103 }
2104
2105 Node<K,V> find(int h, Object k) {
2106 Node<K,V> e; int n;
2107 Node<K,V>[] tab = nextTable;
2108 if (k != null && tab != null && (n = tab.length) > 0 &&
2109 (e = tabAt(tab, (n - 1) & h)) != null) {
2110 do {
2111 int eh; K ek;
2112 if ((eh = e.hash) == h &&
2113 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2114 return e;
2115 if (eh < 0)
2116 return e.find(h, k);
2117 } while ((e = e.next) != null);
2118 }
2119 return null;
2120 }
2121 }
2122
2123 /**
2124 * A place-holder node used in computeIfAbsent and compute
2125 */
2126 static final class ReservationNode<K,V> extends Node<K,V> {
2127 ReservationNode() {
2128 super(RESERVED, null, null, null);
2129 }
2130
2131 Node<K,V> find(int h, Object k) {
2132 return null;
2133 }
2134 }
2135
2136 /* ---------------- Table Initialization and Resizing -------------- */
2137
2138 /**
2139 * Initializes table, using the size recorded in sizeCtl.
2140 */
2141 private final Node<K,V>[] initTable() {
2142 Node<K,V>[] tab; int sc;
2143 while ((tab = table) == null || tab.length == 0) {
2144 if ((sc = sizeCtl) < 0)
2145 Thread.yield(); // lost initialization race; just spin
2146 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2147 try {
2148 if ((tab = table) == null || tab.length == 0) {
2149 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2150 @SuppressWarnings({"rawtypes","unchecked"})
2151 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2152 table = tab = nt;
2153 sc = n - (n >>> 2);
2154 }
2155 } finally {
2156 sizeCtl = sc;
2157 }
2158 break;
2159 }
2160 }
2161 return tab;
2162 }
2163
2164 /**
2165 * Adds to count, and if table is too small and not already
2166 * resizing, initiates transfer. If already resizing, helps
2167 * perform transfer if work is available. Rechecks occupancy
2168 * after a transfer to see if another resize is already needed
2169 * because resizings are lagging additions.
2170 *
2171 * @param x the count to add
2172 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2173 */
2174 private final void addCount(long x, int check) {
2175 CounterCell[] as; long b, s;
2176 if ((as = counterCells) != null ||
2177 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2178 CounterCell a; long v; int m;
2179 boolean uncontended = true;
2180 if (as == null || (m = as.length - 1) < 0 ||
2181 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2182 !(uncontended =
2183 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2184 fullAddCount(x, uncontended);
2185 return;
2186 }
2187 if (check <= 1)
2188 return;
2189 s = sumCount();
2190 }
2191 if (check >= 0) {
2192 Node<K,V>[] tab, nt; int sc;
2193 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2194 tab.length < MAXIMUM_CAPACITY) {
2195 if (sc < 0) {
2196 if (sc == -1 || transferIndex <= transferOrigin ||
2197 (nt = nextTable) == null)
2198 break;
2199 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2200 transfer(tab, nt);
2201 }
2202 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2203 transfer(tab, null);
2204 s = sumCount();
2205 }
2206 }
2207 }
2208
2209 /**
2210 * Helps transfer if a resize is in progress.
2211 */
2212 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2213 Node<K,V>[] nextTab; int sc;
2214 if ((f instanceof ForwardingNode) &&
2215 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2216 if (nextTab == nextTable && tab == table &&
2217 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2218 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2219 transfer(tab, nextTab);
2220 return nextTab;
2221 }
2222 return table;
2223 }
2224
2225 /**
2226 * Tries to presize table to accommodate the given number of elements.
2227 *
2228 * @param size number of elements (doesn't need to be perfectly accurate)
2229 */
2230 private final void tryPresize(int size) {
2231 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2232 tableSizeFor(size + (size >>> 1) + 1);
2233 int sc;
2234 while ((sc = sizeCtl) >= 0) {
2235 Node<K,V>[] tab = table; int n;
2236 if (tab == null || (n = tab.length) == 0) {
2237 n = (sc > c) ? sc : c;
2238 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2239 try {
2240 if (table == tab) {
2241 @SuppressWarnings({"rawtypes","unchecked"})
2242 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2243 table = nt;
2244 sc = n - (n >>> 2);
2245 }
2246 } finally {
2247 sizeCtl = sc;
2248 }
2249 }
2250 }
2251 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2252 break;
2253 else if (tab == table &&
2254 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2255 transfer(tab, null);
2256 }
2257 }
2258
2259 /**
2260 * Moves and/or copies the nodes in each bin to new table. See
2261 * above for explanation.
2262 */
2263 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2264 int n = tab.length, stride;
2265 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2266 stride = MIN_TRANSFER_STRIDE; // subdivide range
2267 if (nextTab == null) { // initiating
2268 try {
2269 @SuppressWarnings({"rawtypes","unchecked"})
2270 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2271 nextTab = nt;
2272 } catch (Throwable ex) { // try to cope with OOME
2273 sizeCtl = Integer.MAX_VALUE;
2274 return;
2275 }
2276 nextTable = nextTab;
2277 transferOrigin = n;
2278 transferIndex = n;
2279 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2280 for (int k = n; k > 0;) { // progressively reveal ready slots
2281 int nextk = (k > stride) ? k - stride : 0;
2282 for (int m = nextk; m < k; ++m)
2283 nextTab[m] = rev;
2284 for (int m = n + nextk; m < n + k; ++m)
2285 nextTab[m] = rev;
2286 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2287 }
2288 }
2289 int nextn = nextTab.length;
2290 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2291 boolean advance = true;
2292 for (int i = 0, bound = 0;;) {
2293 int nextIndex, nextBound, fh; Node<K,V> f;
2294 while (advance) {
2295 if (--i >= bound)
2296 advance = false;
2297 else if ((nextIndex = transferIndex) <= transferOrigin) {
2298 i = -1;
2299 advance = false;
2300 }
2301 else if (U.compareAndSwapInt
2302 (this, TRANSFERINDEX, nextIndex,
2303 nextBound = (nextIndex > stride ?
2304 nextIndex - stride : 0))) {
2305 bound = nextBound;
2306 i = nextIndex - 1;
2307 advance = false;
2308 }
2309 }
2310 if (i < 0 || i >= n || i + n >= nextn) {
2311 for (int sc;;) {
2312 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2313 if (sc == -1) {
2314 nextTable = null;
2315 table = nextTab;
2316 sizeCtl = (n << 1) - (n >>> 1);
2317 }
2318 return;
2319 }
2320 }
2321 }
2322 else if ((f = tabAt(tab, i)) == null) {
2323 if (casTabAt(tab, i, null, fwd)) {
2324 setTabAt(nextTab, i, null);
2325 setTabAt(nextTab, i + n, null);
2326 advance = true;
2327 }
2328 }
2329 else if ((fh = f.hash) == MOVED)
2330 advance = true; // already processed
2331 else {
2332 synchronized (f) {
2333 if (tabAt(tab, i) == f) {
2334 Node<K,V> ln, hn;
2335 if (fh >= 0) {
2336 int runBit = fh & n;
2337 Node<K,V> lastRun = f;
2338 for (Node<K,V> p = f.next; p != null; p = p.next) {
2339 int b = p.hash & n;
2340 if (b != runBit) {
2341 runBit = b;
2342 lastRun = p;
2343 }
2344 }
2345 if (runBit == 0) {
2346 ln = lastRun;
2347 hn = null;
2348 }
2349 else {
2350 hn = lastRun;
2351 ln = null;
2352 }
2353 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2354 int ph = p.hash; K pk = p.key; V pv = p.val;
2355 if ((ph & n) == 0)
2356 ln = new Node<K,V>(ph, pk, pv, ln);
2357 else
2358 hn = new Node<K,V>(ph, pk, pv, hn);
2359 }
2360 }
2361 else if (f instanceof TreeBin) {
2362 TreeBin<K,V> t = (TreeBin<K,V>)f;
2363 TreeNode<K,V> lo = null, loTail = null;
2364 TreeNode<K,V> hi = null, hiTail = null;
2365 int lc = 0, hc = 0;
2366 for (Node<K,V> e = t.first; e != null; e = e.next) {
2367 int h = e.hash;
2368 TreeNode<K,V> p = new TreeNode<K,V>
2369 (h, e.key, e.val, null, null);
2370 if ((h & n) == 0) {
2371 if ((p.prev = loTail) == null)
2372 lo = p;
2373 else
2374 loTail.next = p;
2375 loTail = p;
2376 ++lc;
2377 }
2378 else {
2379 if ((p.prev = hiTail) == null)
2380 hi = p;
2381 else
2382 hiTail.next = p;
2383 hiTail = p;
2384 ++hc;
2385 }
2386 }
2387 ln = (lc <= UNTREEIFY_THRESHOLD ? untreeify(lo) :
2388 (hc != 0) ? new TreeBin<K,V>(lo) : t);
2389 hn = (hc <= UNTREEIFY_THRESHOLD ? untreeify(hi) :
2390 (lc != 0) ? new TreeBin<K,V>(hi) : t);
2391 }
2392 else
2393 ln = hn = null;
2394 setTabAt(nextTab, i, ln);
2395 setTabAt(nextTab, i + n, hn);
2396 setTabAt(tab, i, fwd);
2397 advance = true;
2398 }
2399 }
2400 }
2401 }
2402 }
2403
2404 /* ---------------- Counter support -------------- */
2405
2406 /**
2407 * A padded cell for distributing counts. Adapted from LongAdder
2408 * and Striped64. See their internal docs for explanation.
2409 */
2410 @sun.misc.Contended static final class CounterCell {
2411 volatile long value;
2412 CounterCell(long x) { value = x; }
2413 }
2414
2415 final long sumCount() {
2416 CounterCell[] as = counterCells; CounterCell a;
2417 long sum = baseCount;
2418 if (as != null) {
2419 for (int i = 0; i < as.length; ++i) {
2420 if ((a = as[i]) != null)
2421 sum += a.value;
2422 }
2423 }
2424 return sum;
2425 }
2426
2427 // See LongAdder version for explanation
2428 private final void fullAddCount(long x, boolean wasUncontended) {
2429 int h;
2430 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2431 ThreadLocalRandom.localInit(); // force initialization
2432 h = ThreadLocalRandom.getProbe();
2433 wasUncontended = true;
2434 }
2435 boolean collide = false; // True if last slot nonempty
2436 for (;;) {
2437 CounterCell[] as; CounterCell a; int n; long v;
2438 if ((as = counterCells) != null && (n = as.length) > 0) {
2439 if ((a = as[(n - 1) & h]) == null) {
2440 if (cellsBusy == 0) { // Try to attach new Cell
2441 CounterCell r = new CounterCell(x); // Optimistic create
2442 if (cellsBusy == 0 &&
2443 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2444 boolean created = false;
2445 try { // Recheck under lock
2446 CounterCell[] rs; int m, j;
2447 if ((rs = counterCells) != null &&
2448 (m = rs.length) > 0 &&
2449 rs[j = (m - 1) & h] == null) {
2450 rs[j] = r;
2451 created = true;
2452 }
2453 } finally {
2454 cellsBusy = 0;
2455 }
2456 if (created)
2457 break;
2458 continue; // Slot is now non-empty
2459 }
2460 }
2461 collide = false;
2462 }
2463 else if (!wasUncontended) // CAS already known to fail
2464 wasUncontended = true; // Continue after rehash
2465 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2466 break;
2467 else if (counterCells != as || n >= NCPU)
2468 collide = false; // At max size or stale
2469 else if (!collide)
2470 collide = true;
2471 else if (cellsBusy == 0 &&
2472 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2473 try {
2474 if (counterCells == as) {// Expand table unless stale
2475 CounterCell[] rs = new CounterCell[n << 1];
2476 for (int i = 0; i < n; ++i)
2477 rs[i] = as[i];
2478 counterCells = rs;
2479 }
2480 } finally {
2481 cellsBusy = 0;
2482 }
2483 collide = false;
2484 continue; // Retry with expanded table
2485 }
2486 h = ThreadLocalRandom.advanceProbe(h);
2487 }
2488 else if (cellsBusy == 0 && counterCells == as &&
2489 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2490 boolean init = false;
2491 try { // Initialize table
2492 if (counterCells == as) {
2493 CounterCell[] rs = new CounterCell[2];
2494 rs[h & 1] = new CounterCell(x);
2495 counterCells = rs;
2496 init = true;
2497 }
2498 } finally {
2499 cellsBusy = 0;
2500 }
2501 if (init)
2502 break;
2503 }
2504 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2505 break; // Fall back on using base
2506 }
2507 }
2508
2509 /* ---------------- Conversion from/to TreeBins -------------- */
2510
2511 /**
2512 * Replaces all linked nodes in bin at given index unless table is
2513 * too small, in which case resizes instead.
2514 */
2515 private final void treeifyBin(Node<K,V>[] tab, int index) {
2516 Node<K,V> b; int n, sc;
2517 if (tab != null) {
2518 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2519 if (tab == table && (sc = sizeCtl) >= 0 &&
2520 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2521 transfer(tab, null);
2522 }
2523 else if ((b = tabAt(tab, index)) != null) {
2524 synchronized (b) {
2525 if (tabAt(tab, index) == b) {
2526 TreeNode<K,V> hd = null, tl = null;
2527 for (Node<K,V> e = b; e != null; e = e.next) {
2528 TreeNode<K,V> p =
2529 new TreeNode<K,V>(e.hash, e.key, e.val,
2530 null, null);
2531 if ((p.prev = tl) == null)
2532 hd = p;
2533 else
2534 tl.next = p;
2535 tl = p;
2536 }
2537 setTabAt(tab, index, new TreeBin<K,V>(hd));
2538 }
2539 }
2540 }
2541 }
2542 }
2543
2544 /**
2545 * Returns a list on non-TreeNodes replacing those in given list
2546 */
2547 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2548 Node<K,V> hd = null, tl = null;
2549 for (Node<K,V> q = b; q != null; q = q.next) {
2550 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2551 if (tl == null)
2552 hd = p;
2553 else
2554 tl.next = p;
2555 tl = p;
2556 }
2557 return hd;
2558 }
2559
2560 /* ---------------- TreeNodes -------------- */
2561
2562 /**
2563 * Nodes for use in TreeBins
2564 */
2565 static final class TreeNode<K,V> extends Node<K,V> {
2566 TreeNode<K,V> parent; // red-black tree links
2567 TreeNode<K,V> left;
2568 TreeNode<K,V> right;
2569 TreeNode<K,V> prev; // needed to unlink next upon deletion
2570 boolean red;
2571
2572 TreeNode(int hash, K key, V val, Node<K,V> next,
2573 TreeNode<K,V> parent) {
2574 super(hash, key, val, next);
2575 this.parent = parent;
2576 }
2577
2578 Node<K,V> find(int h, Object k) {
2579 return findTreeNode(h, k, null);
2580 }
2581
2582 /**
2583 * Returns the TreeNode (or null if not found) for the given key
2584 * starting at given root.
2585 */
2586 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2587 if (k != null) {
2588 TreeNode<K,V> p = this;
2589 do {
2590 int ph, dir; K pk; TreeNode<K,V> q;
2591 TreeNode<K,V> pl = p.left, pr = p.right;
2592 if ((ph = p.hash) > h)
2593 p = pl;
2594 else if (ph < h)
2595 p = pr;
2596 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2597 return p;
2598 else if (pl == null && pr == null)
2599 break;
2600 else if ((kc != null ||
2601 (kc = comparableClassFor(k)) != null) &&
2602 (dir = compareComparables(kc, k, pk)) != 0)
2603 p = (dir < 0) ? pl : pr;
2604 else if (pl == null)
2605 p = pr;
2606 else if (pr == null ||
2607 (q = pr.findTreeNode(h, k, kc)) == null)
2608 p = pl;
2609 else
2610 return q;
2611 } while (p != null);
2612 }
2613 return null;
2614 }
2615 }
2616
2617 /* ---------------- TreeBins -------------- */
2618
2619 /**
2620 * TreeNodes used at the heads of bins. TreeBins do not hold user
2621 * keys or values, but instead point to list of TreeNodes and
2622 * their root. They also maintain a parasitic read-write lock
2623 * forcing writers (who hold bin lock) to wait for readers (who do
2624 * not) to complete before tree restructuring operations.
2625 */
2626 static final class TreeBin<K,V> extends Node<K,V> {
2627 TreeNode<K,V> root;
2628 volatile TreeNode<K,V> first;
2629 volatile Thread waiter;
2630 volatile int lockState;
2631 // values for lockState
2632 static final int WRITER = 1; // set while holding write lock
2633 static final int WAITER = 2; // set when waiting for write lock
2634 static final int READER = 4; // increment value for setting read lock
2635
2636 /**
2637 * Creates bin with initial set of nodes headed by b.
2638 */
2639 TreeBin(TreeNode<K,V> b) {
2640 super(TREEBIN, null, null, null);
2641 this.first = b;
2642 TreeNode<K,V> r = null;
2643 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2644 next = (TreeNode<K,V>)x.next;
2645 x.left = x.right = null;
2646 if (r == null) {
2647 x.parent = null;
2648 x.red = false;
2649 r = x;
2650 }
2651 else {
2652 Object key = x.key;
2653 int hash = x.hash;
2654 Class<?> kc = null;
2655 for (TreeNode<K,V> p = r;;) {
2656 int dir, ph;
2657 if ((ph = p.hash) > hash)
2658 dir = -1;
2659 else if (ph < hash)
2660 dir = 1;
2661 else if ((kc != null ||
2662 (kc = comparableClassFor(key)) != null))
2663 dir = compareComparables(kc, key, p.key);
2664 else
2665 dir = 0;
2666 TreeNode<K,V> xp = p;
2667 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2668 x.parent = xp;
2669 if (dir <= 0)
2670 xp.left = x;
2671 else
2672 xp.right = x;
2673 r = balanceInsertion(r, x);
2674 break;
2675 }
2676 }
2677 }
2678 }
2679 this.root = r;
2680 }
2681
2682 /**
2683 * Acquires write lock for tree restructuring
2684 */
2685 private final void lockRoot() {
2686 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2687 contendedLock(); // offload to separate method
2688 }
2689
2690 /**
2691 * Releases write lock for tree restructuring
2692 */
2693 private final void unlockRoot() {
2694 lockState = 0;
2695 }
2696
2697 /**
2698 * Possibly blocks awaiting root lock
2699 */
2700 private final void contendedLock() {
2701 boolean waiting = false;
2702 for (int s;;) {
2703 if (((s = lockState) & WRITER) == 0) {
2704 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2705 if (waiting)
2706 waiter = null;
2707 return;
2708 }
2709 }
2710 else if ((s | WAITER) == 0) {
2711 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2712 waiting = true;
2713 waiter = Thread.currentThread();
2714 }
2715 }
2716 else if (waiting)
2717 LockSupport.park(this);
2718 }
2719 }
2720
2721 /**
2722 * Returns matching node or null if none. Tries to search
2723 * using tree compareisons from root, but continues linear
2724 * search when lock not available.
2725 */
2726 final Node<K,V> find(int h, Object k) {
2727 if (k != null) {
2728 for (Node<K,V> e = first; e != null; e = e.next) {
2729 int s; K ek;
2730 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2731 if (e.hash == h &&
2732 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2733 return e;
2734 }
2735 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2736 s + READER)) {
2737 TreeNode<K,V> r, p;
2738 try {
2739 p = ((r = root) == null ? null :
2740 r.findTreeNode(h, k, null));
2741 } finally {
2742 Thread w;
2743 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2744 (READER|WAITER) && (w = waiter) != null)
2745 LockSupport.unpark(w);
2746 }
2747 return p;
2748 }
2749 }
2750 }
2751 return null;
2752 }
2753
2754 /**
2755 * Finds or adds a node.
2756 * @return null if added
2757 */
2758 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2759 Class<?> kc = null;
2760 for (TreeNode<K,V> p = root;;) {
2761 int dir, ph; K pk; TreeNode<K,V> q, pr;
2762 if (p == null) {
2763 first = root = new TreeNode<K,V>(h, k, v, null, null);
2764 break;
2765 }
2766 else if ((ph = p.hash) > h)
2767 dir = -1;
2768 else if (ph < h)
2769 dir = 1;
2770 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2771 return p;
2772 else if ((kc == null &&
2773 (kc = comparableClassFor(k)) == null) ||
2774 (dir = compareComparables(kc, k, pk)) == 0) {
2775 if (p.left == null)
2776 dir = 1;
2777 else if ((pr = p.right) == null ||
2778 (q = pr.findTreeNode(h, k, kc)) == null)
2779 dir = -1;
2780 else
2781 return q;
2782 }
2783 TreeNode<K,V> xp = p;
2784 if ((p = (dir < 0) ? p.left : p.right) == null) {
2785 TreeNode<K,V> x, f = first;
2786 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2787 if (f != null)
2788 f.prev = x;
2789 if (dir < 0)
2790 xp.left = x;
2791 else
2792 xp.right = x;
2793 if (!xp.red)
2794 x.red = true;
2795 else {
2796 lockRoot();
2797 try {
2798 root = balanceInsertion(root, x);
2799 } finally {
2800 unlockRoot();
2801 }
2802 }
2803 break;
2804 }
2805 }
2806 assert checkInvariants(root);
2807 return null;
2808 }
2809
2810 /**
2811 * Removes the given node, that must be present before this
2812 * call. This is messier than typical red-black deletion code
2813 * because we cannot swap the contents of an interior node
2814 * with a leaf successor that is pinned by "next" pointers
2815 * that are accessible independently of lock. So instead we
2816 * swap the tree linkages.
2817 *
2818 * @return true if now too small so should be untreeified.
2819 */
2820 final boolean removeTreeNode(TreeNode<K,V> p) {
2821 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2822 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2823 TreeNode<K,V> r, rl;
2824 if (pred == null)
2825 first = next;
2826 else
2827 pred.next = next;
2828 if (next != null)
2829 next.prev = pred;
2830 if (first == null) {
2831 root = null;
2832 return true;
2833 }
2834 if ((r = root) == null || r.right == null || // too small
2835 (rl = r.left) == null || rl.left == null)
2836 return true;
2837 lockRoot();
2838 try {
2839 TreeNode<K,V> replacement;
2840 TreeNode<K,V> pl = p.left;
2841 TreeNode<K,V> pr = p.right;
2842 if (pl != null && pr != null) {
2843 TreeNode<K,V> s = pr, sl;
2844 while ((sl = s.left) != null) // find successor
2845 s = sl;
2846 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2847 TreeNode<K,V> sr = s.right;
2848 TreeNode<K,V> pp = p.parent;
2849 if (s == pr) { // p was s's direct parent
2850 p.parent = s;
2851 s.right = p;
2852 }
2853 else {
2854 TreeNode<K,V> sp = s.parent;
2855 if ((p.parent = sp) != null) {
2856 if (s == sp.left)
2857 sp.left = p;
2858 else
2859 sp.right = p;
2860 }
2861 if ((s.right = pr) != null)
2862 pr.parent = s;
2863 }
2864 p.left = null;
2865 if ((p.right = sr) != null)
2866 sr.parent = p;
2867 if ((s.left = pl) != null)
2868 pl.parent = s;
2869 if ((s.parent = pp) == null)
2870 r = s;
2871 else if (p == pp.left)
2872 pp.left = s;
2873 else
2874 pp.right = s;
2875 if (sr != null)
2876 replacement = sr;
2877 else
2878 replacement = p;
2879 }
2880 else if (pl != null)
2881 replacement = pl;
2882 else if (pr != null)
2883 replacement = pr;
2884 else
2885 replacement = p;
2886 if (replacement != p) {
2887 TreeNode<K,V> pp = replacement.parent = p.parent;
2888 if (pp == null)
2889 r = replacement;
2890 else if (p == pp.left)
2891 pp.left = replacement;
2892 else
2893 pp.right = replacement;
2894 p.left = p.right = p.parent = null;
2895 }
2896
2897 root = (p.red) ? r : balanceDeletion(r, replacement);
2898
2899 if (p == replacement) { // detach pointers
2900 TreeNode<K,V> pp;
2901 if ((pp = p.parent) != null) {
2902 if (p == pp.left)
2903 pp.left = null;
2904 else if (p == pp.right)
2905 pp.right = null;
2906 p.parent = null;
2907 }
2908 }
2909 } finally {
2910 unlockRoot();
2911 }
2912 assert checkInvariants(root);
2913 return false;
2914 }
2915
2916 /* ------------------------------------------------------------ */
2917 // Red-black tree methods, all adapted from CLR
2918
2919 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2920 TreeNode<K,V> p) {
2921 TreeNode<K,V> r, pp, rl;
2922 if (p != null && (r = p.right) != null) {
2923 if ((rl = p.right = r.left) != null)
2924 rl.parent = p;
2925 if ((pp = r.parent = p.parent) == null)
2926 (root = r).red = false;
2927 else if (pp.left == p)
2928 pp.left = r;
2929 else
2930 pp.right = r;
2931 r.left = p;
2932 p.parent = r;
2933 }
2934 return root;
2935 }
2936
2937 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2938 TreeNode<K,V> p) {
2939 TreeNode<K,V> l, pp, lr;
2940 if (p != null && (l = p.left) != null) {
2941 if ((lr = p.left = l.right) != null)
2942 lr.parent = p;
2943 if ((pp = l.parent = p.parent) == null)
2944 (root = l).red = false;
2945 else if (pp.right == p)
2946 pp.right = l;
2947 else
2948 pp.left = l;
2949 l.right = p;
2950 p.parent = l;
2951 }
2952 return root;
2953 }
2954
2955 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2956 TreeNode<K,V> x) {
2957 x.red = true;
2958 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2959 if ((xp = x.parent) == null) {
2960 x.red = false;
2961 return x;
2962 }
2963 else if (!xp.red || (xpp = xp.parent) == null)
2964 return root;
2965 if (xp == (xppl = xpp.left)) {
2966 if ((xppr = xpp.right) != null && xppr.red) {
2967 xppr.red = false;
2968 xp.red = false;
2969 xpp.red = true;
2970 x = xpp;
2971 }
2972 else {
2973 if (x == xp.right) {
2974 root = rotateLeft(root, x = xp);
2975 xpp = (xp = x.parent) == null ? null : xp.parent;
2976 }
2977 if (xp != null) {
2978 xp.red = false;
2979 if (xpp != null) {
2980 xpp.red = true;
2981 root = rotateRight(root, xpp);
2982 }
2983 }
2984 }
2985 }
2986 else {
2987 if (xppl != null && xppl.red) {
2988 xppl.red = false;
2989 xp.red = false;
2990 xpp.red = true;
2991 x = xpp;
2992 }
2993 else {
2994 if (x == xp.left) {
2995 root = rotateRight(root, x = xp);
2996 xpp = (xp = x.parent) == null ? null : xp.parent;
2997 }
2998 if (xp != null) {
2999 xp.red = false;
3000 if (xpp != null) {
3001 xpp.red = true;
3002 root = rotateLeft(root, xpp);
3003 }
3004 }
3005 }
3006 }
3007 }
3008 }
3009
3010 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3011 TreeNode<K,V> x) {
3012 for (TreeNode<K,V> xp, xpl, xpr;;) {
3013 if (x == null || x == root)
3014 return root;
3015 else if ((xp = x.parent) == null) {
3016 x.red = false;
3017 return x;
3018 }
3019 else if (x.red) {
3020 x.red = false;
3021 return root;
3022 }
3023 else if ((xpl = xp.left) == x) {
3024 if ((xpr = xp.right) != null && xpr.red) {
3025 xpr.red = false;
3026 xp.red = true;
3027 root = rotateLeft(root, xp);
3028 xpr = (xp = x.parent) == null ? null : xp.right;
3029 }
3030 if (xpr == null)
3031 x = xp;
3032 else {
3033 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3034 if ((sr == null || !sr.red) &&
3035 (sl == null || !sl.red)) {
3036 xpr.red = true;
3037 x = xp;
3038 }
3039 else {
3040 if (sr == null || !sr.red) {
3041 if (sl != null)
3042 sl.red = false;
3043 xpr.red = true;
3044 root = rotateRight(root, xpr);
3045 xpr = (xp = x.parent) == null ?
3046 null : xp.right;
3047 }
3048 if (xpr != null) {
3049 xpr.red = (xp == null) ? false : xp.red;
3050 if ((sr = xpr.right) != null)
3051 sr.red = false;
3052 }
3053 if (xp != null) {
3054 xp.red = false;
3055 root = rotateLeft(root, xp);
3056 }
3057 x = root;
3058 }
3059 }
3060 }
3061 else { // symmetric
3062 if (xpl != null && xpl.red) {
3063 xpl.red = false;
3064 xp.red = true;
3065 root = rotateRight(root, xp);
3066 xpl = (xp = x.parent) == null ? null : xp.left;
3067 }
3068 if (xpl == null)
3069 x = xp;
3070 else {
3071 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3072 if ((sl == null || !sl.red) &&
3073 (sr == null || !sr.red)) {
3074 xpl.red = true;
3075 x = xp;
3076 }
3077 else {
3078 if (sl == null || !sl.red) {
3079 if (sr != null)
3080 sr.red = false;
3081 xpl.red = true;
3082 root = rotateLeft(root, xpl);
3083 xpl = (xp = x.parent) == null ?
3084 null : xp.left;
3085 }
3086 if (xpl != null) {
3087 xpl.red = (xp == null) ? false : xp.red;
3088 if ((sl = xpl.left) != null)
3089 sl.red = false;
3090 }
3091 if (xp != null) {
3092 xp.red = false;
3093 root = rotateRight(root, xp);
3094 }
3095 x = root;
3096 }
3097 }
3098 }
3099 }
3100 }
3101 /**
3102 * Recursive invariant check
3103 */
3104 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3105 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3106 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3107 if (tb != null && tb.next != t)
3108 return false;
3109 if (tn != null && tn.prev != t)
3110 return false;
3111 if (tp != null && t != tp.left && t != tp.right)
3112 return false;
3113 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3114 return false;
3115 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3116 return false;
3117 if (t.red && tl != null && tl.red && tr != null && tr.red)
3118 return false;
3119 if (tl != null && !checkInvariants(tl))
3120 return false;
3121 if (tr != null && !checkInvariants(tr))
3122 return false;
3123 return true;
3124 }
3125
3126 private static final sun.misc.Unsafe U;
3127 private static final long LOCKSTATE;
3128 static {
3129 try {
3130 U = sun.misc.Unsafe.getUnsafe();
3131 Class<?> k = TreeBin.class;
3132 LOCKSTATE = U.objectFieldOffset
3133 (k.getDeclaredField("lockState"));
3134 } catch (Exception e) {
3135 throw new Error(e);
3136 }
3137 }
3138 }
3139
3140 /* ----------------Table Traversal -------------- */
3141
3142 /**
3143 * Encapsulates traversal for methods such as containsValue; also
3144 * serves as a base class for other iterators and spliterators.
3145 *
3146 * Method advance visits once each still-valid node that was
3147 * reachable upon iterator construction. It might miss some that
3148 * were added to a bin after the bin was visited, which is OK wrt
3149 * consistency guarantees. Maintaining this property in the face
3150 * of possible ongoing resizes requires a fair amount of
3151 * bookkeeping state that is difficult to optimize away amidst
3152 * volatile accesses. Even so, traversal maintains reasonable
3153 * throughput.
3154 *
3155 * Normally, iteration proceeds bin-by-bin traversing lists.
3156 * However, if the table has been resized, then all future steps
3157 * must traverse both the bin at the current index as well as at
3158 * (index + baseSize); and so on for further resizings. To
3159 * paranoically cope with potential sharing by users of iterators
3160 * across threads, iteration terminates if a bounds checks fails
3161 * for a table read.
3162 */
3163 static class Traverser<K,V> {
3164 Node<K,V>[] tab; // current table; updated if resized
3165 Node<K,V> next; // the next entry to use
3166 int index; // index of bin to use next
3167 int baseIndex; // current index of initial table
3168 int baseLimit; // index bound for initial table
3169 final int baseSize; // initial table size
3170
3171 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3172 this.tab = tab;
3173 this.baseSize = size;
3174 this.baseIndex = this.index = index;
3175 this.baseLimit = limit;
3176 this.next = null;
3177 }
3178
3179 /**
3180 * Advances if possible, returning next valid node, or null if none.
3181 */
3182 final Node<K,V> advance() {
3183 Node<K,V> e;
3184 if ((e = next) != null)
3185 e = e.next;
3186 for (;;) {
3187 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3188 if (e != null)
3189 return next = e;
3190 if (baseIndex >= baseLimit || (t = tab) == null ||
3191 (n = t.length) <= (i = index) || i < 0)
3192 return next = null;
3193 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3194 if (e instanceof ForwardingNode) {
3195 tab = ((ForwardingNode<K,V>)e).nextTable;
3196 e = null;
3197 continue;
3198 }
3199 else if (e instanceof TreeBin)
3200 e = ((TreeBin<K,V>)e).first;
3201 else
3202 e = null;
3203 }
3204 if ((index += baseSize) >= n)
3205 index = ++baseIndex; // visit upper slots if present
3206 }
3207 }
3208 }
3209
3210 /**
3211 * Base of key, value, and entry Iterators. Adds fields to
3212 * Traverser to support iterator.remove
3213 */
3214 static class BaseIterator<K,V> extends Traverser<K,V> {
3215 final ConcurrentHashMap<K,V> map;
3216 Node<K,V> lastReturned;
3217 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3218 ConcurrentHashMap<K,V> map) {
3219 super(tab, size, index, limit);
3220 this.map = map;
3221 advance();
3222 }
3223
3224 public final boolean hasNext() { return next != null; }
3225 public final boolean hasMoreElements() { return next != null; }
3226
3227 public final void remove() {
3228 Node<K,V> p;
3229 if ((p = lastReturned) == null)
3230 throw new IllegalStateException();
3231 lastReturned = null;
3232 map.replaceNode(p.key, null, null);
3233 }
3234 }
3235
3236 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3237 implements Iterator<K>, Enumeration<K> {
3238 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3239 ConcurrentHashMap<K,V> map) {
3240 super(tab, index, size, limit, map);
3241 }
3242
3243 public final K next() {
3244 Node<K,V> p;
3245 if ((p = next) == null)
3246 throw new NoSuchElementException();
3247 K k = p.key;
3248 lastReturned = p;
3249 advance();
3250 return k;
3251 }
3252
3253 public final K nextElement() { return next(); }
3254 }
3255
3256 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3257 implements Iterator<V>, Enumeration<V> {
3258 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3259 ConcurrentHashMap<K,V> map) {
3260 super(tab, index, size, limit, map);
3261 }
3262
3263 public final V next() {
3264 Node<K,V> p;
3265 if ((p = next) == null)
3266 throw new NoSuchElementException();
3267 V v = p.val;
3268 lastReturned = p;
3269 advance();
3270 return v;
3271 }
3272
3273 public final V nextElement() { return next(); }
3274 }
3275
3276 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3277 implements Iterator<Map.Entry<K,V>> {
3278 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3279 ConcurrentHashMap<K,V> map) {
3280 super(tab, index, size, limit, map);
3281 }
3282
3283 public final Map.Entry<K,V> next() {
3284 Node<K,V> p;
3285 if ((p = next) == null)
3286 throw new NoSuchElementException();
3287 K k = p.key;
3288 V v = p.val;
3289 lastReturned = p;
3290 advance();
3291 return new MapEntry<K,V>(k, v, map);
3292 }
3293 }
3294
3295 /**
3296 * Exported Entry for EntryIterator
3297 */
3298 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3299 final K key; // non-null
3300 V val; // non-null
3301 final ConcurrentHashMap<K,V> map;
3302 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3303 this.key = key;
3304 this.val = val;
3305 this.map = map;
3306 }
3307 public K getKey() { return key; }
3308 public V getValue() { return val; }
3309 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3310 public String toString() { return key + "=" + val; }
3311
3312 public boolean equals(Object o) {
3313 Object k, v; Map.Entry<?,?> e;
3314 return ((o instanceof Map.Entry) &&
3315 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3316 (v = e.getValue()) != null &&
3317 (k == key || k.equals(key)) &&
3318 (v == val || v.equals(val)));
3319 }
3320
3321 /**
3322 * Sets our entry's value and writes through to the map. The
3323 * value to return is somewhat arbitrary here. Since we do not
3324 * necessarily track asynchronous changes, the most recent
3325 * "previous" value could be different from what we return (or
3326 * could even have been removed, in which case the put will
3327 * re-establish). We do not and cannot guarantee more.
3328 */
3329 public V setValue(V value) {
3330 if (value == null) throw new NullPointerException();
3331 V v = val;
3332 val = value;
3333 map.put(key, value);
3334 return v;
3335 }
3336 }
3337
3338 static final class KeySpliterator<K,V> extends Traverser<K,V>
3339 implements Spliterator<K> {
3340 long est; // size estimate
3341 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3342 long est) {
3343 super(tab, size, index, limit);
3344 this.est = est;
3345 }
3346
3347 public Spliterator<K> trySplit() {
3348 int i, f, h;
3349 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3350 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3351 f, est >>>= 1);
3352 }
3353
3354 public void forEachRemaining(Consumer<? super K> action) {
3355 if (action == null) throw new NullPointerException();
3356 for (Node<K,V> p; (p = advance()) != null;)
3357 action.accept(p.key);
3358 }
3359
3360 public boolean tryAdvance(Consumer<? super K> action) {
3361 if (action == null) throw new NullPointerException();
3362 Node<K,V> p;
3363 if ((p = advance()) == null)
3364 return false;
3365 action.accept(p.key);
3366 return true;
3367 }
3368
3369 public long estimateSize() { return est; }
3370
3371 public int characteristics() {
3372 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3373 Spliterator.NONNULL;
3374 }
3375 }
3376
3377 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3378 implements Spliterator<V> {
3379 long est; // size estimate
3380 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3381 long est) {
3382 super(tab, size, index, limit);
3383 this.est = est;
3384 }
3385
3386 public Spliterator<V> trySplit() {
3387 int i, f, h;
3388 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3389 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3390 f, est >>>= 1);
3391 }
3392
3393 public void forEachRemaining(Consumer<? super V> action) {
3394 if (action == null) throw new NullPointerException();
3395 for (Node<K,V> p; (p = advance()) != null;)
3396 action.accept(p.val);
3397 }
3398
3399 public boolean tryAdvance(Consumer<? super V> action) {
3400 if (action == null) throw new NullPointerException();
3401 Node<K,V> p;
3402 if ((p = advance()) == null)
3403 return false;
3404 action.accept(p.val);
3405 return true;
3406 }
3407
3408 public long estimateSize() { return est; }
3409
3410 public int characteristics() {
3411 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3412 }
3413 }
3414
3415 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3416 implements Spliterator<Map.Entry<K,V>> {
3417 final ConcurrentHashMap<K,V> map; // To export MapEntry
3418 long est; // size estimate
3419 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3420 long est, ConcurrentHashMap<K,V> map) {
3421 super(tab, size, index, limit);
3422 this.map = map;
3423 this.est = est;
3424 }
3425
3426 public Spliterator<Map.Entry<K,V>> trySplit() {
3427 int i, f, h;
3428 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3429 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3430 f, est >>>= 1, map);
3431 }
3432
3433 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3434 if (action == null) throw new NullPointerException();
3435 for (Node<K,V> p; (p = advance()) != null; )
3436 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3437 }
3438
3439 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3440 if (action == null) throw new NullPointerException();
3441 Node<K,V> p;
3442 if ((p = advance()) == null)
3443 return false;
3444 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3445 return true;
3446 }
3447
3448 public long estimateSize() { return est; }
3449
3450 public int characteristics() {
3451 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3452 Spliterator.NONNULL;
3453 }
3454 }
3455
3456 // Parallel bulk operations
3457
3458 /**
3459 * Computes initial batch value for bulk tasks. The returned value
3460 * is approximately exp2 of the number of times (minus one) to
3461 * split task by two before executing leaf action. This value is
3462 * faster to compute and more convenient to use as a guide to
3463 * splitting than is the depth, since it is used while dividing by
3464 * two anyway.
3465 */
3466 final int batchFor(long b) {
3467 long n;
3468 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3469 return 0;
3470 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3471 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3472 }
3473
3474 /**
3475 * Performs the given action for each (key, value).
3476 *
3477 * @param parallelismThreshold the (estimated) number of elements
3478 * needed for this operation to be executed in parallel
3479 * @param action the action
3480 * @since 1.8
3481 */
3482 public void forEach(long parallelismThreshold,
3483 BiConsumer<? super K,? super V> action) {
3484 if (action == null) throw new NullPointerException();
3485 new ForEachMappingTask<K,V>
3486 (null, batchFor(parallelismThreshold), 0, 0, table,
3487 action).invoke();
3488 }
3489
3490 /**
3491 * Performs the given action for each non-null transformation
3492 * of each (key, value).
3493 *
3494 * @param parallelismThreshold the (estimated) number of elements
3495 * needed for this operation to be executed in parallel
3496 * @param transformer a function returning the transformation
3497 * for an element, or null if there is no transformation (in
3498 * which case the action is not applied)
3499 * @param action the action
3500 * @since 1.8
3501 */
3502 public <U> void forEach(long parallelismThreshold,
3503 BiFunction<? super K, ? super V, ? extends U> transformer,
3504 Consumer<? super U> action) {
3505 if (transformer == null || action == null)
3506 throw new NullPointerException();
3507 new ForEachTransformedMappingTask<K,V,U>
3508 (null, batchFor(parallelismThreshold), 0, 0, table,
3509 transformer, action).invoke();
3510 }
3511
3512 /**
3513 * Returns a non-null result from applying the given search
3514 * function on each (key, value), or null if none. Upon
3515 * success, further element processing is suppressed and the
3516 * results of any other parallel invocations of the search
3517 * function are ignored.
3518 *
3519 * @param parallelismThreshold the (estimated) number of elements
3520 * needed for this operation to be executed in parallel
3521 * @param searchFunction a function returning a non-null
3522 * result on success, else null
3523 * @return a non-null result from applying the given search
3524 * function on each (key, value), or null if none
3525 * @since 1.8
3526 */
3527 public <U> U search(long parallelismThreshold,
3528 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3529 if (searchFunction == null) throw new NullPointerException();
3530 return new SearchMappingsTask<K,V,U>
3531 (null, batchFor(parallelismThreshold), 0, 0, table,
3532 searchFunction, new AtomicReference<U>()).invoke();
3533 }
3534
3535 /**
3536 * Returns the result of accumulating the given transformation
3537 * of all (key, value) pairs using the given reducer to
3538 * combine values, or null if none.
3539 *
3540 * @param parallelismThreshold the (estimated) number of elements
3541 * needed for this operation to be executed in parallel
3542 * @param transformer a function returning the transformation
3543 * for an element, or null if there is no transformation (in
3544 * which case it is not combined)
3545 * @param reducer a commutative associative combining function
3546 * @return the result of accumulating the given transformation
3547 * of all (key, value) pairs
3548 * @since 1.8
3549 */
3550 public <U> U reduce(long parallelismThreshold,
3551 BiFunction<? super K, ? super V, ? extends U> transformer,
3552 BiFunction<? super U, ? super U, ? extends U> reducer) {
3553 if (transformer == null || reducer == null)
3554 throw new NullPointerException();
3555 return new MapReduceMappingsTask<K,V,U>
3556 (null, batchFor(parallelismThreshold), 0, 0, table,
3557 null, transformer, reducer).invoke();
3558 }
3559
3560 /**
3561 * Returns the result of accumulating the given transformation
3562 * of all (key, value) pairs using the given reducer to
3563 * combine values, and the given basis as an identity value.
3564 *
3565 * @param parallelismThreshold the (estimated) number of elements
3566 * needed for this operation to be executed in parallel
3567 * @param transformer a function returning the transformation
3568 * for an element
3569 * @param basis the identity (initial default value) for the reduction
3570 * @param reducer a commutative associative combining function
3571 * @return the result of accumulating the given transformation
3572 * of all (key, value) pairs
3573 * @since 1.8
3574 */
3575 public double reduceToDoubleIn(long parallelismThreshold,
3576 ToDoubleBiFunction<? super K, ? super V> transformer,
3577 double basis,
3578 DoubleBinaryOperator reducer) {
3579 if (transformer == null || reducer == null)
3580 throw new NullPointerException();
3581 return new MapReduceMappingsToDoubleTask<K,V>
3582 (null, batchFor(parallelismThreshold), 0, 0, table,
3583 null, transformer, basis, reducer).invoke();
3584 }
3585
3586 /**
3587 * Returns the result of accumulating the given transformation
3588 * of all (key, value) pairs using the given reducer to
3589 * combine values, and the given basis as an identity value.
3590 *
3591 * @param parallelismThreshold the (estimated) number of elements
3592 * needed for this operation to be executed in parallel
3593 * @param transformer a function returning the transformation
3594 * for an element
3595 * @param basis the identity (initial default value) for the reduction
3596 * @param reducer a commutative associative combining function
3597 * @return the result of accumulating the given transformation
3598 * of all (key, value) pairs
3599 * @since 1.8
3600 */
3601 public long reduceToLong(long parallelismThreshold,
3602 ToLongBiFunction<? super K, ? super V> transformer,
3603 long basis,
3604 LongBinaryOperator reducer) {
3605 if (transformer == null || reducer == null)
3606 throw new NullPointerException();
3607 return new MapReduceMappingsToLongTask<K,V>
3608 (null, batchFor(parallelismThreshold), 0, 0, table,
3609 null, transformer, basis, reducer).invoke();
3610 }
3611
3612 /**
3613 * Returns the result of accumulating the given transformation
3614 * of all (key, value) pairs using the given reducer to
3615 * combine values, and the given basis as an identity value.
3616 *
3617 * @param parallelismThreshold the (estimated) number of elements
3618 * needed for this operation to be executed in parallel
3619 * @param transformer a function returning the transformation
3620 * for an element
3621 * @param basis the identity (initial default value) for the reduction
3622 * @param reducer a commutative associative combining function
3623 * @return the result of accumulating the given transformation
3624 * of all (key, value) pairs
3625 * @since 1.8
3626 */
3627 public int reduceToInt(long parallelismThreshold,
3628 ToIntBiFunction<? super K, ? super V> transformer,
3629 int basis,
3630 IntBinaryOperator reducer) {
3631 if (transformer == null || reducer == null)
3632 throw new NullPointerException();
3633 return new MapReduceMappingsToIntTask<K,V>
3634 (null, batchFor(parallelismThreshold), 0, 0, table,
3635 null, transformer, basis, reducer).invoke();
3636 }
3637
3638 /**
3639 * Performs the given action for each key.
3640 *
3641 * @param parallelismThreshold the (estimated) number of elements
3642 * needed for this operation to be executed in parallel
3643 * @param action the action
3644 * @since 1.8
3645 */
3646 public void forEachKey(long parallelismThreshold,
3647 Consumer<? super K> action) {
3648 if (action == null) throw new NullPointerException();
3649 new ForEachKeyTask<K,V>
3650 (null, batchFor(parallelismThreshold), 0, 0, table,
3651 action).invoke();
3652 }
3653
3654 /**
3655 * Performs the given action for each non-null transformation
3656 * of each key.
3657 *
3658 * @param parallelismThreshold the (estimated) number of elements
3659 * needed for this operation to be executed in parallel
3660 * @param transformer a function returning the transformation
3661 * for an element, or null if there is no transformation (in
3662 * which case the action is not applied)
3663 * @param action the action
3664 * @since 1.8
3665 */
3666 public <U> void forEachKey(long parallelismThreshold,
3667 Function<? super K, ? extends U> transformer,
3668 Consumer<? super U> action) {
3669 if (transformer == null || action == null)
3670 throw new NullPointerException();
3671 new ForEachTransformedKeyTask<K,V,U>
3672 (null, batchFor(parallelismThreshold), 0, 0, table,
3673 transformer, action).invoke();
3674 }
3675
3676 /**
3677 * Returns a non-null result from applying the given search
3678 * function on each key, or null if none. Upon success,
3679 * further element processing is suppressed and the results of
3680 * any other parallel invocations of the search function are
3681 * ignored.
3682 *
3683 * @param parallelismThreshold the (estimated) number of elements
3684 * needed for this operation to be executed in parallel
3685 * @param searchFunction a function returning a non-null
3686 * result on success, else null
3687 * @return a non-null result from applying the given search
3688 * function on each key, or null if none
3689 * @since 1.8
3690 */
3691 public <U> U searchKeys(long parallelismThreshold,
3692 Function<? super K, ? extends U> searchFunction) {
3693 if (searchFunction == null) throw new NullPointerException();
3694 return new SearchKeysTask<K,V,U>
3695 (null, batchFor(parallelismThreshold), 0, 0, table,
3696 searchFunction, new AtomicReference<U>()).invoke();
3697 }
3698
3699 /**
3700 * Returns the result of accumulating all keys using the given
3701 * reducer to combine values, or null if none.
3702 *
3703 * @param parallelismThreshold the (estimated) number of elements
3704 * needed for this operation to be executed in parallel
3705 * @param reducer a commutative associative combining function
3706 * @return the result of accumulating all keys using the given
3707 * reducer to combine values, or null if none
3708 * @since 1.8
3709 */
3710 public K reduceKeys(long parallelismThreshold,
3711 BiFunction<? super K, ? super K, ? extends K> reducer) {
3712 if (reducer == null) throw new NullPointerException();
3713 return new ReduceKeysTask<K,V>
3714 (null, batchFor(parallelismThreshold), 0, 0, table,
3715 null, reducer).invoke();
3716 }
3717
3718 /**
3719 * Returns the result of accumulating the given transformation
3720 * of all keys using the given reducer to combine values, or
3721 * null if none.
3722 *
3723 * @param parallelismThreshold the (estimated) number of elements
3724 * needed for this operation to be executed in parallel
3725 * @param transformer a function returning the transformation
3726 * for an element, or null if there is no transformation (in
3727 * which case it is not combined)
3728 * @param reducer a commutative associative combining function
3729 * @return the result of accumulating the given transformation
3730 * of all keys
3731 * @since 1.8
3732 */
3733 public <U> U reduceKeys(long parallelismThreshold,
3734 Function<? super K, ? extends U> transformer,
3735 BiFunction<? super U, ? super U, ? extends U> reducer) {
3736 if (transformer == null || reducer == null)
3737 throw new NullPointerException();
3738 return new MapReduceKeysTask<K,V,U>
3739 (null, batchFor(parallelismThreshold), 0, 0, table,
3740 null, transformer, reducer).invoke();
3741 }
3742
3743 /**
3744 * Returns the result of accumulating the given transformation
3745 * of all keys using the given reducer to combine values, and
3746 * the given basis as an identity value.
3747 *
3748 * @param parallelismThreshold the (estimated) number of elements
3749 * needed for this operation to be executed in parallel
3750 * @param transformer a function returning the transformation
3751 * for an element
3752 * @param basis the identity (initial default value) for the reduction
3753 * @param reducer a commutative associative combining function
3754 * @return the result of accumulating the given transformation
3755 * of all keys
3756 * @since 1.8
3757 */
3758 public double reduceKeysToDouble(long parallelismThreshold,
3759 ToDoubleFunction<? super K> transformer,
3760 double basis,
3761 DoubleBinaryOperator reducer) {
3762 if (transformer == null || reducer == null)
3763 throw new NullPointerException();
3764 return new MapReduceKeysToDoubleTask<K,V>
3765 (null, batchFor(parallelismThreshold), 0, 0, table,
3766 null, transformer, basis, reducer).invoke();
3767 }
3768
3769 /**
3770 * Returns the result of accumulating the given transformation
3771 * of all keys using the given reducer to combine values, and
3772 * the given basis as an identity value.
3773 *
3774 * @param parallelismThreshold the (estimated) number of elements
3775 * needed for this operation to be executed in parallel
3776 * @param transformer a function returning the transformation
3777 * for an element
3778 * @param basis the identity (initial default value) for the reduction
3779 * @param reducer a commutative associative combining function
3780 * @return the result of accumulating the given transformation
3781 * of all keys
3782 * @since 1.8
3783 */
3784 public long reduceKeysToLong(long parallelismThreshold,
3785 ToLongFunction<? super K> transformer,
3786 long basis,
3787 LongBinaryOperator reducer) {
3788 if (transformer == null || reducer == null)
3789 throw new NullPointerException();
3790 return new MapReduceKeysToLongTask<K,V>
3791 (null, batchFor(parallelismThreshold), 0, 0, table,
3792 null, transformer, basis, reducer).invoke();
3793 }
3794
3795 /**
3796 * Returns the result of accumulating the given transformation
3797 * of all keys using the given reducer to combine values, and
3798 * the given basis as an identity value.
3799 *
3800 * @param parallelismThreshold the (estimated) number of elements
3801 * needed for this operation to be executed in parallel
3802 * @param transformer a function returning the transformation
3803 * for an element
3804 * @param basis the identity (initial default value) for the reduction
3805 * @param reducer a commutative associative combining function
3806 * @return the result of accumulating the given transformation
3807 * of all keys
3808 * @since 1.8
3809 */
3810 public int reduceKeysToInt(long parallelismThreshold,
3811 ToIntFunction<? super K> transformer,
3812 int basis,
3813 IntBinaryOperator reducer) {
3814 if (transformer == null || reducer == null)
3815 throw new NullPointerException();
3816 return new MapReduceKeysToIntTask<K,V>
3817 (null, batchFor(parallelismThreshold), 0, 0, table,
3818 null, transformer, basis, reducer).invoke();
3819 }
3820
3821 /**
3822 * Performs the given action for each value.
3823 *
3824 * @param parallelismThreshold the (estimated) number of elements
3825 * needed for this operation to be executed in parallel
3826 * @param action the action
3827 * @since 1.8
3828 */
3829 public void forEachValue(long parallelismThreshold,
3830 Consumer<? super V> action) {
3831 if (action == null)
3832 throw new NullPointerException();
3833 new ForEachValueTask<K,V>
3834 (null, batchFor(parallelismThreshold), 0, 0, table,
3835 action).invoke();
3836 }
3837
3838 /**
3839 * Performs the given action for each non-null transformation
3840 * of each value.
3841 *
3842 * @param parallelismThreshold the (estimated) number of elements
3843 * needed for this operation to be executed in parallel
3844 * @param transformer a function returning the transformation
3845 * for an element, or null if there is no transformation (in
3846 * which case the action is not applied)
3847 * @param action the action
3848 * @since 1.8
3849 */
3850 public <U> void forEachValue(long parallelismThreshold,
3851 Function<? super V, ? extends U> transformer,
3852 Consumer<? super U> action) {
3853 if (transformer == null || action == null)
3854 throw new NullPointerException();
3855 new ForEachTransformedValueTask<K,V,U>
3856 (null, batchFor(parallelismThreshold), 0, 0, table,
3857 transformer, action).invoke();
3858 }
3859
3860 /**
3861 * Returns a non-null result from applying the given search
3862 * function on each value, or null if none. Upon success,
3863 * further element processing is suppressed and the results of
3864 * any other parallel invocations of the search function are
3865 * ignored.
3866 *
3867 * @param parallelismThreshold the (estimated) number of elements
3868 * needed for this operation to be executed in parallel
3869 * @param searchFunction a function returning a non-null
3870 * result on success, else null
3871 * @return a non-null result from applying the given search
3872 * function on each value, or null if none
3873 * @since 1.8
3874 */
3875 public <U> U searchValues(long parallelismThreshold,
3876 Function<? super V, ? extends U> searchFunction) {
3877 if (searchFunction == null) throw new NullPointerException();
3878 return new SearchValuesTask<K,V,U>
3879 (null, batchFor(parallelismThreshold), 0, 0, table,
3880 searchFunction, new AtomicReference<U>()).invoke();
3881 }
3882
3883 /**
3884 * Returns the result of accumulating all values using the
3885 * given reducer to combine values, or null if none.
3886 *
3887 * @param parallelismThreshold the (estimated) number of elements
3888 * needed for this operation to be executed in parallel
3889 * @param reducer a commutative associative combining function
3890 * @return the result of accumulating all values
3891 * @since 1.8
3892 */
3893 public V reduceValues(long parallelismThreshold,
3894 BiFunction<? super V, ? super V, ? extends V> reducer) {
3895 if (reducer == null) throw new NullPointerException();
3896 return new ReduceValuesTask<K,V>
3897 (null, batchFor(parallelismThreshold), 0, 0, table,
3898 null, reducer).invoke();
3899 }
3900
3901 /**
3902 * Returns the result of accumulating the given transformation
3903 * of all values using the given reducer to combine values, or
3904 * null if none.
3905 *
3906 * @param parallelismThreshold the (estimated) number of elements
3907 * needed for this operation to be executed in parallel
3908 * @param transformer a function returning the transformation
3909 * for an element, or null if there is no transformation (in
3910 * which case it is not combined)
3911 * @param reducer a commutative associative combining function
3912 * @return the result of accumulating the given transformation
3913 * of all values
3914 * @since 1.8
3915 */
3916 public <U> U reduceValues(long parallelismThreshold,
3917 Function<? super V, ? extends U> transformer,
3918 BiFunction<? super U, ? super U, ? extends U> reducer) {
3919 if (transformer == null || reducer == null)
3920 throw new NullPointerException();
3921 return new MapReduceValuesTask<K,V,U>
3922 (null, batchFor(parallelismThreshold), 0, 0, table,
3923 null, transformer, reducer).invoke();
3924 }
3925
3926 /**
3927 * Returns the result of accumulating the given transformation
3928 * of all values using the given reducer to combine values,
3929 * and the given basis as an identity value.
3930 *
3931 * @param parallelismThreshold the (estimated) number of elements
3932 * needed for this operation to be executed in parallel
3933 * @param transformer a function returning the transformation
3934 * for an element
3935 * @param basis the identity (initial default value) for the reduction
3936 * @param reducer a commutative associative combining function
3937 * @return the result of accumulating the given transformation
3938 * of all values
3939 * @since 1.8
3940 */
3941 public double reduceValuesToDouble(long parallelismThreshold,
3942 ToDoubleFunction<? super V> transformer,
3943 double basis,
3944 DoubleBinaryOperator reducer) {
3945 if (transformer == null || reducer == null)
3946 throw new NullPointerException();
3947 return new MapReduceValuesToDoubleTask<K,V>
3948 (null, batchFor(parallelismThreshold), 0, 0, table,
3949 null, transformer, basis, reducer).invoke();
3950 }
3951
3952 /**
3953 * Returns the result of accumulating the given transformation
3954 * of all values using the given reducer to combine values,
3955 * and the given basis as an identity value.
3956 *
3957 * @param parallelismThreshold the (estimated) number of elements
3958 * needed for this operation to be executed in parallel
3959 * @param transformer a function returning the transformation
3960 * for an element
3961 * @param basis the identity (initial default value) for the reduction
3962 * @param reducer a commutative associative combining function
3963 * @return the result of accumulating the given transformation
3964 * of all values
3965 * @since 1.8
3966 */
3967 public long reduceValuesToLong(long parallelismThreshold,
3968 ToLongFunction<? super V> transformer,
3969 long basis,
3970 LongBinaryOperator reducer) {
3971 if (transformer == null || reducer == null)
3972 throw new NullPointerException();
3973 return new MapReduceValuesToLongTask<K,V>
3974 (null, batchFor(parallelismThreshold), 0, 0, table,
3975 null, transformer, basis, reducer).invoke();
3976 }
3977
3978 /**
3979 * Returns the result of accumulating the given transformation
3980 * of all values using the given reducer to combine values,
3981 * and the given basis as an identity value.
3982 *
3983 * @param parallelismThreshold the (estimated) number of elements
3984 * needed for this operation to be executed in parallel
3985 * @param transformer a function returning the transformation
3986 * for an element
3987 * @param basis the identity (initial default value) for the reduction
3988 * @param reducer a commutative associative combining function
3989 * @return the result of accumulating the given transformation
3990 * of all values
3991 * @since 1.8
3992 */
3993 public int reduceValuesToInt(long parallelismThreshold,
3994 ToIntFunction<? super V> transformer,
3995 int basis,
3996 IntBinaryOperator reducer) {
3997 if (transformer == null || reducer == null)
3998 throw new NullPointerException();
3999 return new MapReduceValuesToIntTask<K,V>
4000 (null, batchFor(parallelismThreshold), 0, 0, table,
4001 null, transformer, basis, reducer).invoke();
4002 }
4003
4004 /**
4005 * Performs the given action for each entry.
4006 *
4007 * @param parallelismThreshold the (estimated) number of elements
4008 * needed for this operation to be executed in parallel
4009 * @param action the action
4010 * @since 1.8
4011 */
4012 public void forEachEntry(long parallelismThreshold,
4013 Consumer<? super Map.Entry<K,V>> action) {
4014 if (action == null) throw new NullPointerException();
4015 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4016 action).invoke();
4017 }
4018
4019 /**
4020 * Performs the given action for each non-null transformation
4021 * of each entry.
4022 *
4023 * @param parallelismThreshold the (estimated) number of elements
4024 * needed for this operation to be executed in parallel
4025 * @param transformer a function returning the transformation
4026 * for an element, or null if there is no transformation (in
4027 * which case the action is not applied)
4028 * @param action the action
4029 * @since 1.8
4030 */
4031 public <U> void forEachEntry(long parallelismThreshold,
4032 Function<Map.Entry<K,V>, ? extends U> transformer,
4033 Consumer<? super U> action) {
4034 if (transformer == null || action == null)
4035 throw new NullPointerException();
4036 new ForEachTransformedEntryTask<K,V,U>
4037 (null, batchFor(parallelismThreshold), 0, 0, table,
4038 transformer, action).invoke();
4039 }
4040
4041 /**
4042 * Returns a non-null result from applying the given search
4043 * function on each entry, or null if none. Upon success,
4044 * further element processing is suppressed and the results of
4045 * any other parallel invocations of the search function are
4046 * ignored.
4047 *
4048 * @param parallelismThreshold the (estimated) number of elements
4049 * needed for this operation to be executed in parallel
4050 * @param searchFunction a function returning a non-null
4051 * result on success, else null
4052 * @return a non-null result from applying the given search
4053 * function on each entry, or null if none
4054 * @since 1.8
4055 */
4056 public <U> U searchEntries(long parallelismThreshold,
4057 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4058 if (searchFunction == null) throw new NullPointerException();
4059 return new SearchEntriesTask<K,V,U>
4060 (null, batchFor(parallelismThreshold), 0, 0, table,
4061 searchFunction, new AtomicReference<U>()).invoke();
4062 }
4063
4064 /**
4065 * Returns the result of accumulating all entries using the
4066 * given reducer to combine values, or null if none.
4067 *
4068 * @param parallelismThreshold the (estimated) number of elements
4069 * needed for this operation to be executed in parallel
4070 * @param reducer a commutative associative combining function
4071 * @return the result of accumulating all entries
4072 * @since 1.8
4073 */
4074 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4075 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4076 if (reducer == null) throw new NullPointerException();
4077 return new ReduceEntriesTask<K,V>
4078 (null, batchFor(parallelismThreshold), 0, 0, table,
4079 null, reducer).invoke();
4080 }
4081
4082 /**
4083 * Returns the result of accumulating the given transformation
4084 * of all entries using the given reducer to combine values,
4085 * or null if none.
4086 *
4087 * @param parallelismThreshold the (estimated) number of elements
4088 * needed for this operation to be executed in parallel
4089 * @param transformer a function returning the transformation
4090 * for an element, or null if there is no transformation (in
4091 * which case it is not combined)
4092 * @param reducer a commutative associative combining function
4093 * @return the result of accumulating the given transformation
4094 * of all entries
4095 * @since 1.8
4096 */
4097 public <U> U reduceEntries(long parallelismThreshold,
4098 Function<Map.Entry<K,V>, ? extends U> transformer,
4099 BiFunction<? super U, ? super U, ? extends U> reducer) {
4100 if (transformer == null || reducer == null)
4101 throw new NullPointerException();
4102 return new MapReduceEntriesTask<K,V,U>
4103 (null, batchFor(parallelismThreshold), 0, 0, table,
4104 null, transformer, reducer).invoke();
4105 }
4106
4107 /**
4108 * Returns the result of accumulating the given transformation
4109 * of all entries using the given reducer to combine values,
4110 * and the given basis as an identity value.
4111 *
4112 * @param parallelismThreshold the (estimated) number of elements
4113 * needed for this operation to be executed in parallel
4114 * @param transformer a function returning the transformation
4115 * for an element
4116 * @param basis the identity (initial default value) for the reduction
4117 * @param reducer a commutative associative combining function
4118 * @return the result of accumulating the given transformation
4119 * of all entries
4120 * @since 1.8
4121 */
4122 public double reduceEntriesToDouble(long parallelismThreshold,
4123 ToDoubleFunction<Map.Entry<K,V>> transformer,
4124 double basis,
4125 DoubleBinaryOperator reducer) {
4126 if (transformer == null || reducer == null)
4127 throw new NullPointerException();
4128 return new MapReduceEntriesToDoubleTask<K,V>
4129 (null, batchFor(parallelismThreshold), 0, 0, table,
4130 null, transformer, basis, reducer).invoke();
4131 }
4132
4133 /**
4134 * Returns the result of accumulating the given transformation
4135 * of all entries using the given reducer to combine values,
4136 * and the given basis as an identity value.
4137 *
4138 * @param parallelismThreshold the (estimated) number of elements
4139 * needed for this operation to be executed in parallel
4140 * @param transformer a function returning the transformation
4141 * for an element
4142 * @param basis the identity (initial default value) for the reduction
4143 * @param reducer a commutative associative combining function
4144 * @return the result of accumulating the given transformation
4145 * of all entries
4146 * @since 1.8
4147 */
4148 public long reduceEntriesToLong(long parallelismThreshold,
4149 ToLongFunction<Map.Entry<K,V>> transformer,
4150 long basis,
4151 LongBinaryOperator reducer) {
4152 if (transformer == null || reducer == null)
4153 throw new NullPointerException();
4154 return new MapReduceEntriesToLongTask<K,V>
4155 (null, batchFor(parallelismThreshold), 0, 0, table,
4156 null, transformer, basis, reducer).invoke();
4157 }
4158
4159 /**
4160 * Returns the result of accumulating the given transformation
4161 * of all entries using the given reducer to combine values,
4162 * and the given basis as an identity value.
4163 *
4164 * @param parallelismThreshold the (estimated) number of elements
4165 * needed for this operation to be executed in parallel
4166 * @param transformer a function returning the transformation
4167 * for an element
4168 * @param basis the identity (initial default value) for the reduction
4169 * @param reducer a commutative associative combining function
4170 * @return the result of accumulating the given transformation
4171 * of all entries
4172 * @since 1.8
4173 */
4174 public int reduceEntriesToInt(long parallelismThreshold,
4175 ToIntFunction<Map.Entry<K,V>> transformer,
4176 int basis,
4177 IntBinaryOperator reducer) {
4178 if (transformer == null || reducer == null)
4179 throw new NullPointerException();
4180 return new MapReduceEntriesToIntTask<K,V>
4181 (null, batchFor(parallelismThreshold), 0, 0, table,
4182 null, transformer, basis, reducer).invoke();
4183 }
4184
4185
4186 /* ----------------Views -------------- */
4187
4188 /**
4189 * Base class for views.
4190 */
4191 abstract static class CollectionView<K,V,E>
4192 implements Collection<E>, java.io.Serializable {
4193 private static final long serialVersionUID = 7249069246763182397L;
4194 final ConcurrentHashMap<K,V> map;
4195 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4196
4197 /**
4198 * Returns the map backing this view.
4199 *
4200 * @return the map backing this view
4201 */
4202 public ConcurrentHashMap<K,V> getMap() { return map; }
4203
4204 /**
4205 * Removes all of the elements from this view, by removing all
4206 * the mappings from the map backing this view.
4207 */
4208 public final void clear() { map.clear(); }
4209 public final int size() { return map.size(); }
4210 public final boolean isEmpty() { return map.isEmpty(); }
4211
4212 // implementations below rely on concrete classes supplying these
4213 // abstract methods
4214 /**
4215 * Returns a "weakly consistent" iterator that will never
4216 * throw {@link ConcurrentModificationException}, and
4217 * guarantees to traverse elements as they existed upon
4218 * construction of the iterator, and may (but is not
4219 * guaranteed to) reflect any modifications subsequent to
4220 * construction.
4221 */
4222 public abstract Iterator<E> iterator();
4223 public abstract boolean contains(Object o);
4224 public abstract boolean remove(Object o);
4225
4226 private static final String oomeMsg = "Required array size too large";
4227
4228 public final Object[] toArray() {
4229 long sz = map.mappingCount();
4230 if (sz > MAX_ARRAY_SIZE)
4231 throw new OutOfMemoryError(oomeMsg);
4232 int n = (int)sz;
4233 Object[] r = new Object[n];
4234 int i = 0;
4235 for (E e : this) {
4236 if (i == n) {
4237 if (n >= MAX_ARRAY_SIZE)
4238 throw new OutOfMemoryError(oomeMsg);
4239 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4240 n = MAX_ARRAY_SIZE;
4241 else
4242 n += (n >>> 1) + 1;
4243 r = Arrays.copyOf(r, n);
4244 }
4245 r[i++] = e;
4246 }
4247 return (i == n) ? r : Arrays.copyOf(r, i);
4248 }
4249
4250 @SuppressWarnings("unchecked")
4251 public final <T> T[] toArray(T[] a) {
4252 long sz = map.mappingCount();
4253 if (sz > MAX_ARRAY_SIZE)
4254 throw new OutOfMemoryError(oomeMsg);
4255 int m = (int)sz;
4256 T[] r = (a.length >= m) ? a :
4257 (T[])java.lang.reflect.Array
4258 .newInstance(a.getClass().getComponentType(), m);
4259 int n = r.length;
4260 int i = 0;
4261 for (E e : this) {
4262 if (i == n) {
4263 if (n >= MAX_ARRAY_SIZE)
4264 throw new OutOfMemoryError(oomeMsg);
4265 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4266 n = MAX_ARRAY_SIZE;
4267 else
4268 n += (n >>> 1) + 1;
4269 r = Arrays.copyOf(r, n);
4270 }
4271 r[i++] = (T)e;
4272 }
4273 if (a == r && i < n) {
4274 r[i] = null; // null-terminate
4275 return r;
4276 }
4277 return (i == n) ? r : Arrays.copyOf(r, i);
4278 }
4279
4280 /**
4281 * Returns a string representation of this collection.
4282 * The string representation consists of the string representations
4283 * of the collection's elements in the order they are returned by
4284 * its iterator, enclosed in square brackets ({@code "[]"}).
4285 * Adjacent elements are separated by the characters {@code ", "}
4286 * (comma and space). Elements are converted to strings as by
4287 * {@link String#valueOf(Object)}.
4288 *
4289 * @return a string representation of this collection
4290 */
4291 public final String toString() {
4292 StringBuilder sb = new StringBuilder();
4293 sb.append('[');
4294 Iterator<E> it = iterator();
4295 if (it.hasNext()) {
4296 for (;;) {
4297 Object e = it.next();
4298 sb.append(e == this ? "(this Collection)" : e);
4299 if (!it.hasNext())
4300 break;
4301 sb.append(',').append(' ');
4302 }
4303 }
4304 return sb.append(']').toString();
4305 }
4306
4307 public final boolean containsAll(Collection<?> c) {
4308 if (c != this) {
4309 for (Object e : c) {
4310 if (e == null || !contains(e))
4311 return false;
4312 }
4313 }
4314 return true;
4315 }
4316
4317 public final boolean removeAll(Collection<?> c) {
4318 boolean modified = false;
4319 for (Iterator<E> it = iterator(); it.hasNext();) {
4320 if (c.contains(it.next())) {
4321 it.remove();
4322 modified = true;
4323 }
4324 }
4325 return modified;
4326 }
4327
4328 public final boolean retainAll(Collection<?> c) {
4329 boolean modified = false;
4330 for (Iterator<E> it = iterator(); it.hasNext();) {
4331 if (!c.contains(it.next())) {
4332 it.remove();
4333 modified = true;
4334 }
4335 }
4336 return modified;
4337 }
4338
4339 }
4340
4341 /**
4342 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4343 * which additions may optionally be enabled by mapping to a
4344 * common value. This class cannot be directly instantiated.
4345 * See {@link #keySet() keySet()},
4346 * {@link #keySet(Object) keySet(V)},
4347 * {@link #newKeySet() newKeySet()},
4348 * {@link #newKeySet(int) newKeySet(int)}.
4349 *
4350 * @since 1.8
4351 */
4352 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4353 implements Set<K>, java.io.Serializable {
4354 private static final long serialVersionUID = 7249069246763182397L;
4355 private final V value;
4356 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4357 super(map);
4358 this.value = value;
4359 }
4360
4361 /**
4362 * Returns the default mapped value for additions,
4363 * or {@code null} if additions are not supported.
4364 *
4365 * @return the default mapped value for additions, or {@code null}
4366 * if not supported
4367 */
4368 public V getMappedValue() { return value; }
4369
4370 /**
4371 * {@inheritDoc}
4372 * @throws NullPointerException if the specified key is null
4373 */
4374 public boolean contains(Object o) { return map.containsKey(o); }
4375
4376 /**
4377 * Removes the key from this map view, by removing the key (and its
4378 * corresponding value) from the backing map. This method does
4379 * nothing if the key is not in the map.
4380 *
4381 * @param o the key to be removed from the backing map
4382 * @return {@code true} if the backing map contained the specified key
4383 * @throws NullPointerException if the specified key is null
4384 */
4385 public boolean remove(Object o) { return map.remove(o) != null; }
4386
4387 /**
4388 * @return an iterator over the keys of the backing map
4389 */
4390 public Iterator<K> iterator() {
4391 Node<K,V>[] t;
4392 ConcurrentHashMap<K,V> m = map;
4393 int f = (t = m.table) == null ? 0 : t.length;
4394 return new KeyIterator<K,V>(t, f, 0, f, m);
4395 }
4396
4397 /**
4398 * Adds the specified key to this set view by mapping the key to
4399 * the default mapped value in the backing map, if defined.
4400 *
4401 * @param e key to be added
4402 * @return {@code true} if this set changed as a result of the call
4403 * @throws NullPointerException if the specified key is null
4404 * @throws UnsupportedOperationException if no default mapped value
4405 * for additions was provided
4406 */
4407 public boolean add(K e) {
4408 V v;
4409 if ((v = value) == null)
4410 throw new UnsupportedOperationException();
4411 return map.putVal(e, v, true) == null;
4412 }
4413
4414 /**
4415 * Adds all of the elements in the specified collection to this set,
4416 * as if by calling {@link #add} on each one.
4417 *
4418 * @param c the elements to be inserted into this set
4419 * @return {@code true} if this set changed as a result of the call
4420 * @throws NullPointerException if the collection or any of its
4421 * elements are {@code null}
4422 * @throws UnsupportedOperationException if no default mapped value
4423 * for additions was provided
4424 */
4425 public boolean addAll(Collection<? extends K> c) {
4426 boolean added = false;
4427 V v;
4428 if ((v = value) == null)
4429 throw new UnsupportedOperationException();
4430 for (K e : c) {
4431 if (map.putVal(e, v, true) == null)
4432 added = true;
4433 }
4434 return added;
4435 }
4436
4437 public int hashCode() {
4438 int h = 0;
4439 for (K e : this)
4440 h += e.hashCode();
4441 return h;
4442 }
4443
4444 public boolean equals(Object o) {
4445 Set<?> c;
4446 return ((o instanceof Set) &&
4447 ((c = (Set<?>)o) == this ||
4448 (containsAll(c) && c.containsAll(this))));
4449 }
4450
4451 public Spliterator<K> spliterator() {
4452 Node<K,V>[] t;
4453 ConcurrentHashMap<K,V> m = map;
4454 long n = m.sumCount();
4455 int f = (t = m.table) == null ? 0 : t.length;
4456 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4457 }
4458
4459 public void forEach(Consumer<? super K> action) {
4460 if (action == null) throw new NullPointerException();
4461 Node<K,V>[] t;
4462 if ((t = map.table) != null) {
4463 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4464 for (Node<K,V> p; (p = it.advance()) != null; )
4465 action.accept(p.key);
4466 }
4467 }
4468 }
4469
4470 /**
4471 * A view of a ConcurrentHashMap as a {@link Collection} of
4472 * values, in which additions are disabled. This class cannot be
4473 * directly instantiated. See {@link #values()}.
4474 */
4475 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4476 implements Collection<V>, java.io.Serializable {
4477 private static final long serialVersionUID = 2249069246763182397L;
4478 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4479 public final boolean contains(Object o) {
4480 return map.containsValue(o);
4481 }
4482
4483 public final boolean remove(Object o) {
4484 if (o != null) {
4485 for (Iterator<V> it = iterator(); it.hasNext();) {
4486 if (o.equals(it.next())) {
4487 it.remove();
4488 return true;
4489 }
4490 }
4491 }
4492 return false;
4493 }
4494
4495 public final Iterator<V> iterator() {
4496 ConcurrentHashMap<K,V> m = map;
4497 Node<K,V>[] t;
4498 int f = (t = m.table) == null ? 0 : t.length;
4499 return new ValueIterator<K,V>(t, f, 0, f, m);
4500 }
4501
4502 public final boolean add(V e) {
4503 throw new UnsupportedOperationException();
4504 }
4505 public final boolean addAll(Collection<? extends V> c) {
4506 throw new UnsupportedOperationException();
4507 }
4508
4509 public Spliterator<V> spliterator() {
4510 Node<K,V>[] t;
4511 ConcurrentHashMap<K,V> m = map;
4512 long n = m.sumCount();
4513 int f = (t = m.table) == null ? 0 : t.length;
4514 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4515 }
4516
4517 public void forEach(Consumer<? super V> action) {
4518 if (action == null) throw new NullPointerException();
4519 Node<K,V>[] t;
4520 if ((t = map.table) != null) {
4521 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4522 for (Node<K,V> p; (p = it.advance()) != null; )
4523 action.accept(p.val);
4524 }
4525 }
4526 }
4527
4528 /**
4529 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4530 * entries. This class cannot be directly instantiated. See
4531 * {@link #entrySet()}.
4532 */
4533 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4534 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4535 private static final long serialVersionUID = 2249069246763182397L;
4536 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4537
4538 public boolean contains(Object o) {
4539 Object k, v, r; Map.Entry<?,?> e;
4540 return ((o instanceof Map.Entry) &&
4541 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4542 (r = map.get(k)) != null &&
4543 (v = e.getValue()) != null &&
4544 (v == r || v.equals(r)));
4545 }
4546
4547 public boolean remove(Object o) {
4548 Object k, v; Map.Entry<?,?> e;
4549 return ((o instanceof Map.Entry) &&
4550 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4551 (v = e.getValue()) != null &&
4552 map.remove(k, v));
4553 }
4554
4555 /**
4556 * @return an iterator over the entries of the backing map
4557 */
4558 public Iterator<Map.Entry<K,V>> iterator() {
4559 ConcurrentHashMap<K,V> m = map;
4560 Node<K,V>[] t;
4561 int f = (t = m.table) == null ? 0 : t.length;
4562 return new EntryIterator<K,V>(t, f, 0, f, m);
4563 }
4564
4565 public boolean add(Entry<K,V> e) {
4566 return map.putVal(e.getKey(), e.getValue(), false) == null;
4567 }
4568
4569 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4570 boolean added = false;
4571 for (Entry<K,V> e : c) {
4572 if (add(e))
4573 added = true;
4574 }
4575 return added;
4576 }
4577
4578 public final int hashCode() {
4579 int h = 0;
4580 Node<K,V>[] t;
4581 if ((t = map.table) != null) {
4582 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 for (Node<K,V> p; (p = it.advance()) != null; ) {
4584 h += p.hashCode();
4585 }
4586 }
4587 return h;
4588 }
4589
4590 public final boolean equals(Object o) {
4591 Set<?> c;
4592 return ((o instanceof Set) &&
4593 ((c = (Set<?>)o) == this ||
4594 (containsAll(c) && c.containsAll(this))));
4595 }
4596
4597 public Spliterator<Map.Entry<K,V>> spliterator() {
4598 Node<K,V>[] t;
4599 ConcurrentHashMap<K,V> m = map;
4600 long n = m.sumCount();
4601 int f = (t = m.table) == null ? 0 : t.length;
4602 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4603 }
4604
4605 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4606 if (action == null) throw new NullPointerException();
4607 Node<K,V>[] t;
4608 if ((t = map.table) != null) {
4609 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4610 for (Node<K,V> p; (p = it.advance()) != null; )
4611 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4612 }
4613 }
4614
4615 }
4616
4617 // -------------------------------------------------------
4618
4619 /**
4620 * Base class for bulk tasks. Repeats some fields and code from
4621 * class Traverser, because we need to subclass CountedCompleter.
4622 */
4623 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4624 Node<K,V>[] tab; // same as Traverser
4625 Node<K,V> next;
4626 int index;
4627 int baseIndex;
4628 int baseLimit;
4629 final int baseSize;
4630 int batch; // split control
4631
4632 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4633 super(par);
4634 this.batch = b;
4635 this.index = this.baseIndex = i;
4636 if ((this.tab = t) == null)
4637 this.baseSize = this.baseLimit = 0;
4638 else if (par == null)
4639 this.baseSize = this.baseLimit = t.length;
4640 else {
4641 this.baseLimit = f;
4642 this.baseSize = par.baseSize;
4643 }
4644 }
4645
4646 /**
4647 * Same as Traverser version
4648 */
4649 final Node<K,V> advance() {
4650 Node<K,V> e;
4651 if ((e = next) != null)
4652 e = e.next;
4653 for (;;) {
4654 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4655 if (e != null)
4656 return next = e;
4657 if (baseIndex >= baseLimit || (t = tab) == null ||
4658 (n = t.length) <= (i = index) || i < 0)
4659 return next = null;
4660 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4661 if (e instanceof ForwardingNode) {
4662 tab = ((ForwardingNode<K,V>)e).nextTable;
4663 e = null;
4664 continue;
4665 }
4666 else if (e instanceof TreeBin)
4667 e = ((TreeBin<K,V>)e).first;
4668 else
4669 e = null;
4670 }
4671 if ((index += baseSize) >= n)
4672 index = ++baseIndex; // visit upper slots if present
4673 }
4674 }
4675 }
4676
4677 /*
4678 * Task classes. Coded in a regular but ugly format/style to
4679 * simplify checks that each variant differs in the right way from
4680 * others. The null screenings exist because compilers cannot tell
4681 * that we've already null-checked task arguments, so we force
4682 * simplest hoisted bypass to help avoid convoluted traps.
4683 */
4684 @SuppressWarnings("serial")
4685 static final class ForEachKeyTask<K,V>
4686 extends BulkTask<K,V,Void> {
4687 final Consumer<? super K> action;
4688 ForEachKeyTask
4689 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4690 Consumer<? super K> action) {
4691 super(p, b, i, f, t);
4692 this.action = action;
4693 }
4694 public final void compute() {
4695 final Consumer<? super K> action;
4696 if ((action = this.action) != null) {
4697 for (int i = baseIndex, f, h; batch > 0 &&
4698 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4699 addToPendingCount(1);
4700 new ForEachKeyTask<K,V>
4701 (this, batch >>>= 1, baseLimit = h, f, tab,
4702 action).fork();
4703 }
4704 for (Node<K,V> p; (p = advance()) != null;)
4705 action.accept(p.key);
4706 propagateCompletion();
4707 }
4708 }
4709 }
4710
4711 @SuppressWarnings("serial")
4712 static final class ForEachValueTask<K,V>
4713 extends BulkTask<K,V,Void> {
4714 final Consumer<? super V> action;
4715 ForEachValueTask
4716 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4717 Consumer<? super V> action) {
4718 super(p, b, i, f, t);
4719 this.action = action;
4720 }
4721 public final void compute() {
4722 final Consumer<? super V> action;
4723 if ((action = this.action) != null) {
4724 for (int i = baseIndex, f, h; batch > 0 &&
4725 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4726 addToPendingCount(1);
4727 new ForEachValueTask<K,V>
4728 (this, batch >>>= 1, baseLimit = h, f, tab,
4729 action).fork();
4730 }
4731 for (Node<K,V> p; (p = advance()) != null;)
4732 action.accept(p.val);
4733 propagateCompletion();
4734 }
4735 }
4736 }
4737
4738 @SuppressWarnings("serial")
4739 static final class ForEachEntryTask<K,V>
4740 extends BulkTask<K,V,Void> {
4741 final Consumer<? super Entry<K,V>> action;
4742 ForEachEntryTask
4743 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4744 Consumer<? super Entry<K,V>> action) {
4745 super(p, b, i, f, t);
4746 this.action = action;
4747 }
4748 public final void compute() {
4749 final Consumer<? super Entry<K,V>> action;
4750 if ((action = this.action) != null) {
4751 for (int i = baseIndex, f, h; batch > 0 &&
4752 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753 addToPendingCount(1);
4754 new ForEachEntryTask<K,V>
4755 (this, batch >>>= 1, baseLimit = h, f, tab,
4756 action).fork();
4757 }
4758 for (Node<K,V> p; (p = advance()) != null; )
4759 action.accept(p);
4760 propagateCompletion();
4761 }
4762 }
4763 }
4764
4765 @SuppressWarnings("serial")
4766 static final class ForEachMappingTask<K,V>
4767 extends BulkTask<K,V,Void> {
4768 final BiConsumer<? super K, ? super V> action;
4769 ForEachMappingTask
4770 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4771 BiConsumer<? super K,? super V> action) {
4772 super(p, b, i, f, t);
4773 this.action = action;
4774 }
4775 public final void compute() {
4776 final BiConsumer<? super K, ? super V> action;
4777 if ((action = this.action) != null) {
4778 for (int i = baseIndex, f, h; batch > 0 &&
4779 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4780 addToPendingCount(1);
4781 new ForEachMappingTask<K,V>
4782 (this, batch >>>= 1, baseLimit = h, f, tab,
4783 action).fork();
4784 }
4785 for (Node<K,V> p; (p = advance()) != null; )
4786 action.accept(p.key, p.val);
4787 propagateCompletion();
4788 }
4789 }
4790 }
4791
4792 @SuppressWarnings("serial")
4793 static final class ForEachTransformedKeyTask<K,V,U>
4794 extends BulkTask<K,V,Void> {
4795 final Function<? super K, ? extends U> transformer;
4796 final Consumer<? super U> action;
4797 ForEachTransformedKeyTask
4798 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4799 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4800 super(p, b, i, f, t);
4801 this.transformer = transformer; this.action = action;
4802 }
4803 public final void compute() {
4804 final Function<? super K, ? extends U> transformer;
4805 final Consumer<? super U> action;
4806 if ((transformer = this.transformer) != null &&
4807 (action = this.action) != null) {
4808 for (int i = baseIndex, f, h; batch > 0 &&
4809 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4810 addToPendingCount(1);
4811 new ForEachTransformedKeyTask<K,V,U>
4812 (this, batch >>>= 1, baseLimit = h, f, tab,
4813 transformer, action).fork();
4814 }
4815 for (Node<K,V> p; (p = advance()) != null; ) {
4816 U u;
4817 if ((u = transformer.apply(p.key)) != null)
4818 action.accept(u);
4819 }
4820 propagateCompletion();
4821 }
4822 }
4823 }
4824
4825 @SuppressWarnings("serial")
4826 static final class ForEachTransformedValueTask<K,V,U>
4827 extends BulkTask<K,V,Void> {
4828 final Function<? super V, ? extends U> transformer;
4829 final Consumer<? super U> action;
4830 ForEachTransformedValueTask
4831 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4832 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4833 super(p, b, i, f, t);
4834 this.transformer = transformer; this.action = action;
4835 }
4836 public final void compute() {
4837 final Function<? super V, ? extends U> transformer;
4838 final Consumer<? super U> action;
4839 if ((transformer = this.transformer) != null &&
4840 (action = this.action) != null) {
4841 for (int i = baseIndex, f, h; batch > 0 &&
4842 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4843 addToPendingCount(1);
4844 new ForEachTransformedValueTask<K,V,U>
4845 (this, batch >>>= 1, baseLimit = h, f, tab,
4846 transformer, action).fork();
4847 }
4848 for (Node<K,V> p; (p = advance()) != null; ) {
4849 U u;
4850 if ((u = transformer.apply(p.val)) != null)
4851 action.accept(u);
4852 }
4853 propagateCompletion();
4854 }
4855 }
4856 }
4857
4858 @SuppressWarnings("serial")
4859 static final class ForEachTransformedEntryTask<K,V,U>
4860 extends BulkTask<K,V,Void> {
4861 final Function<Map.Entry<K,V>, ? extends U> transformer;
4862 final Consumer<? super U> action;
4863 ForEachTransformedEntryTask
4864 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4865 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4866 super(p, b, i, f, t);
4867 this.transformer = transformer; this.action = action;
4868 }
4869 public final void compute() {
4870 final Function<Map.Entry<K,V>, ? extends U> transformer;
4871 final Consumer<? super U> action;
4872 if ((transformer = this.transformer) != null &&
4873 (action = this.action) != null) {
4874 for (int i = baseIndex, f, h; batch > 0 &&
4875 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4876 addToPendingCount(1);
4877 new ForEachTransformedEntryTask<K,V,U>
4878 (this, batch >>>= 1, baseLimit = h, f, tab,
4879 transformer, action).fork();
4880 }
4881 for (Node<K,V> p; (p = advance()) != null; ) {
4882 U u;
4883 if ((u = transformer.apply(p)) != null)
4884 action.accept(u);
4885 }
4886 propagateCompletion();
4887 }
4888 }
4889 }
4890
4891 @SuppressWarnings("serial")
4892 static final class ForEachTransformedMappingTask<K,V,U>
4893 extends BulkTask<K,V,Void> {
4894 final BiFunction<? super K, ? super V, ? extends U> transformer;
4895 final Consumer<? super U> action;
4896 ForEachTransformedMappingTask
4897 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4898 BiFunction<? super K, ? super V, ? extends U> transformer,
4899 Consumer<? super U> action) {
4900 super(p, b, i, f, t);
4901 this.transformer = transformer; this.action = action;
4902 }
4903 public final void compute() {
4904 final BiFunction<? super K, ? super V, ? extends U> transformer;
4905 final Consumer<? super U> action;
4906 if ((transformer = this.transformer) != null &&
4907 (action = this.action) != null) {
4908 for (int i = baseIndex, f, h; batch > 0 &&
4909 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4910 addToPendingCount(1);
4911 new ForEachTransformedMappingTask<K,V,U>
4912 (this, batch >>>= 1, baseLimit = h, f, tab,
4913 transformer, action).fork();
4914 }
4915 for (Node<K,V> p; (p = advance()) != null; ) {
4916 U u;
4917 if ((u = transformer.apply(p.key, p.val)) != null)
4918 action.accept(u);
4919 }
4920 propagateCompletion();
4921 }
4922 }
4923 }
4924
4925 @SuppressWarnings("serial")
4926 static final class SearchKeysTask<K,V,U>
4927 extends BulkTask<K,V,U> {
4928 final Function<? super K, ? extends U> searchFunction;
4929 final AtomicReference<U> result;
4930 SearchKeysTask
4931 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4932 Function<? super K, ? extends U> searchFunction,
4933 AtomicReference<U> result) {
4934 super(p, b, i, f, t);
4935 this.searchFunction = searchFunction; this.result = result;
4936 }
4937 public final U getRawResult() { return result.get(); }
4938 public final void compute() {
4939 final Function<? super K, ? extends U> searchFunction;
4940 final AtomicReference<U> result;
4941 if ((searchFunction = this.searchFunction) != null &&
4942 (result = this.result) != null) {
4943 for (int i = baseIndex, f, h; batch > 0 &&
4944 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4945 if (result.get() != null)
4946 return;
4947 addToPendingCount(1);
4948 new SearchKeysTask<K,V,U>
4949 (this, batch >>>= 1, baseLimit = h, f, tab,
4950 searchFunction, result).fork();
4951 }
4952 while (result.get() == null) {
4953 U u;
4954 Node<K,V> p;
4955 if ((p = advance()) == null) {
4956 propagateCompletion();
4957 break;
4958 }
4959 if ((u = searchFunction.apply(p.key)) != null) {
4960 if (result.compareAndSet(null, u))
4961 quietlyCompleteRoot();
4962 break;
4963 }
4964 }
4965 }
4966 }
4967 }
4968
4969 @SuppressWarnings("serial")
4970 static final class SearchValuesTask<K,V,U>
4971 extends BulkTask<K,V,U> {
4972 final Function<? super V, ? extends U> searchFunction;
4973 final AtomicReference<U> result;
4974 SearchValuesTask
4975 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4976 Function<? super V, ? extends U> searchFunction,
4977 AtomicReference<U> result) {
4978 super(p, b, i, f, t);
4979 this.searchFunction = searchFunction; this.result = result;
4980 }
4981 public final U getRawResult() { return result.get(); }
4982 public final void compute() {
4983 final Function<? super V, ? extends U> searchFunction;
4984 final AtomicReference<U> result;
4985 if ((searchFunction = this.searchFunction) != null &&
4986 (result = this.result) != null) {
4987 for (int i = baseIndex, f, h; batch > 0 &&
4988 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4989 if (result.get() != null)
4990 return;
4991 addToPendingCount(1);
4992 new SearchValuesTask<K,V,U>
4993 (this, batch >>>= 1, baseLimit = h, f, tab,
4994 searchFunction, result).fork();
4995 }
4996 while (result.get() == null) {
4997 U u;
4998 Node<K,V> p;
4999 if ((p = advance()) == null) {
5000 propagateCompletion();
5001 break;
5002 }
5003 if ((u = searchFunction.apply(p.val)) != null) {
5004 if (result.compareAndSet(null, u))
5005 quietlyCompleteRoot();
5006 break;
5007 }
5008 }
5009 }
5010 }
5011 }
5012
5013 @SuppressWarnings("serial")
5014 static final class SearchEntriesTask<K,V,U>
5015 extends BulkTask<K,V,U> {
5016 final Function<Entry<K,V>, ? extends U> searchFunction;
5017 final AtomicReference<U> result;
5018 SearchEntriesTask
5019 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5020 Function<Entry<K,V>, ? extends U> searchFunction,
5021 AtomicReference<U> result) {
5022 super(p, b, i, f, t);
5023 this.searchFunction = searchFunction; this.result = result;
5024 }
5025 public final U getRawResult() { return result.get(); }
5026 public final void compute() {
5027 final Function<Entry<K,V>, ? extends U> searchFunction;
5028 final AtomicReference<U> result;
5029 if ((searchFunction = this.searchFunction) != null &&
5030 (result = this.result) != null) {
5031 for (int i = baseIndex, f, h; batch > 0 &&
5032 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5033 if (result.get() != null)
5034 return;
5035 addToPendingCount(1);
5036 new SearchEntriesTask<K,V,U>
5037 (this, batch >>>= 1, baseLimit = h, f, tab,
5038 searchFunction, result).fork();
5039 }
5040 while (result.get() == null) {
5041 U u;
5042 Node<K,V> p;
5043 if ((p = advance()) == null) {
5044 propagateCompletion();
5045 break;
5046 }
5047 if ((u = searchFunction.apply(p)) != null) {
5048 if (result.compareAndSet(null, u))
5049 quietlyCompleteRoot();
5050 return;
5051 }
5052 }
5053 }
5054 }
5055 }
5056
5057 @SuppressWarnings("serial")
5058 static final class SearchMappingsTask<K,V,U>
5059 extends BulkTask<K,V,U> {
5060 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5061 final AtomicReference<U> result;
5062 SearchMappingsTask
5063 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5064 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5065 AtomicReference<U> result) {
5066 super(p, b, i, f, t);
5067 this.searchFunction = searchFunction; this.result = result;
5068 }
5069 public final U getRawResult() { return result.get(); }
5070 public final void compute() {
5071 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5072 final AtomicReference<U> result;
5073 if ((searchFunction = this.searchFunction) != null &&
5074 (result = this.result) != null) {
5075 for (int i = baseIndex, f, h; batch > 0 &&
5076 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5077 if (result.get() != null)
5078 return;
5079 addToPendingCount(1);
5080 new SearchMappingsTask<K,V,U>
5081 (this, batch >>>= 1, baseLimit = h, f, tab,
5082 searchFunction, result).fork();
5083 }
5084 while (result.get() == null) {
5085 U u;
5086 Node<K,V> p;
5087 if ((p = advance()) == null) {
5088 propagateCompletion();
5089 break;
5090 }
5091 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5092 if (result.compareAndSet(null, u))
5093 quietlyCompleteRoot();
5094 break;
5095 }
5096 }
5097 }
5098 }
5099 }
5100
5101 @SuppressWarnings("serial")
5102 static final class ReduceKeysTask<K,V>
5103 extends BulkTask<K,V,K> {
5104 final BiFunction<? super K, ? super K, ? extends K> reducer;
5105 K result;
5106 ReduceKeysTask<K,V> rights, nextRight;
5107 ReduceKeysTask
5108 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5109 ReduceKeysTask<K,V> nextRight,
5110 BiFunction<? super K, ? super K, ? extends K> reducer) {
5111 super(p, b, i, f, t); this.nextRight = nextRight;
5112 this.reducer = reducer;
5113 }
5114 public final K getRawResult() { return result; }
5115 public final void compute() {
5116 final BiFunction<? super K, ? super K, ? extends K> reducer;
5117 if ((reducer = this.reducer) != null) {
5118 for (int i = baseIndex, f, h; batch > 0 &&
5119 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5120 addToPendingCount(1);
5121 (rights = new ReduceKeysTask<K,V>
5122 (this, batch >>>= 1, baseLimit = h, f, tab,
5123 rights, reducer)).fork();
5124 }
5125 K r = null;
5126 for (Node<K,V> p; (p = advance()) != null; ) {
5127 K u = p.key;
5128 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5129 }
5130 result = r;
5131 CountedCompleter<?> c;
5132 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5133 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5134 t = (ReduceKeysTask<K,V>)c,
5135 s = t.rights;
5136 while (s != null) {
5137 K tr, sr;
5138 if ((sr = s.result) != null)
5139 t.result = (((tr = t.result) == null) ? sr :
5140 reducer.apply(tr, sr));
5141 s = t.rights = s.nextRight;
5142 }
5143 }
5144 }
5145 }
5146 }
5147
5148 @SuppressWarnings("serial")
5149 static final class ReduceValuesTask<K,V>
5150 extends BulkTask<K,V,V> {
5151 final BiFunction<? super V, ? super V, ? extends V> reducer;
5152 V result;
5153 ReduceValuesTask<K,V> rights, nextRight;
5154 ReduceValuesTask
5155 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5156 ReduceValuesTask<K,V> nextRight,
5157 BiFunction<? super V, ? super V, ? extends V> reducer) {
5158 super(p, b, i, f, t); this.nextRight = nextRight;
5159 this.reducer = reducer;
5160 }
5161 public final V getRawResult() { return result; }
5162 public final void compute() {
5163 final BiFunction<? super V, ? super V, ? extends V> reducer;
5164 if ((reducer = this.reducer) != null) {
5165 for (int i = baseIndex, f, h; batch > 0 &&
5166 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5167 addToPendingCount(1);
5168 (rights = new ReduceValuesTask<K,V>
5169 (this, batch >>>= 1, baseLimit = h, f, tab,
5170 rights, reducer)).fork();
5171 }
5172 V r = null;
5173 for (Node<K,V> p; (p = advance()) != null; ) {
5174 V v = p.val;
5175 r = (r == null) ? v : reducer.apply(r, v);
5176 }
5177 result = r;
5178 CountedCompleter<?> c;
5179 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5180 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5181 t = (ReduceValuesTask<K,V>)c,
5182 s = t.rights;
5183 while (s != null) {
5184 V tr, sr;
5185 if ((sr = s.result) != null)
5186 t.result = (((tr = t.result) == null) ? sr :
5187 reducer.apply(tr, sr));
5188 s = t.rights = s.nextRight;
5189 }
5190 }
5191 }
5192 }
5193 }
5194
5195 @SuppressWarnings("serial")
5196 static final class ReduceEntriesTask<K,V>
5197 extends BulkTask<K,V,Map.Entry<K,V>> {
5198 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5199 Map.Entry<K,V> result;
5200 ReduceEntriesTask<K,V> rights, nextRight;
5201 ReduceEntriesTask
5202 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5203 ReduceEntriesTask<K,V> nextRight,
5204 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5205 super(p, b, i, f, t); this.nextRight = nextRight;
5206 this.reducer = reducer;
5207 }
5208 public final Map.Entry<K,V> getRawResult() { return result; }
5209 public final void compute() {
5210 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5211 if ((reducer = this.reducer) != null) {
5212 for (int i = baseIndex, f, h; batch > 0 &&
5213 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5214 addToPendingCount(1);
5215 (rights = new ReduceEntriesTask<K,V>
5216 (this, batch >>>= 1, baseLimit = h, f, tab,
5217 rights, reducer)).fork();
5218 }
5219 Map.Entry<K,V> r = null;
5220 for (Node<K,V> p; (p = advance()) != null; )
5221 r = (r == null) ? p : reducer.apply(r, p);
5222 result = r;
5223 CountedCompleter<?> c;
5224 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5225 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5226 t = (ReduceEntriesTask<K,V>)c,
5227 s = t.rights;
5228 while (s != null) {
5229 Map.Entry<K,V> tr, sr;
5230 if ((sr = s.result) != null)
5231 t.result = (((tr = t.result) == null) ? sr :
5232 reducer.apply(tr, sr));
5233 s = t.rights = s.nextRight;
5234 }
5235 }
5236 }
5237 }
5238 }
5239
5240 @SuppressWarnings("serial")
5241 static final class MapReduceKeysTask<K,V,U>
5242 extends BulkTask<K,V,U> {
5243 final Function<? super K, ? extends U> transformer;
5244 final BiFunction<? super U, ? super U, ? extends U> reducer;
5245 U result;
5246 MapReduceKeysTask<K,V,U> rights, nextRight;
5247 MapReduceKeysTask
5248 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5249 MapReduceKeysTask<K,V,U> nextRight,
5250 Function<? super K, ? extends U> transformer,
5251 BiFunction<? super U, ? super U, ? extends U> reducer) {
5252 super(p, b, i, f, t); this.nextRight = nextRight;
5253 this.transformer = transformer;
5254 this.reducer = reducer;
5255 }
5256 public final U getRawResult() { return result; }
5257 public final void compute() {
5258 final Function<? super K, ? extends U> transformer;
5259 final BiFunction<? super U, ? super U, ? extends U> reducer;
5260 if ((transformer = this.transformer) != null &&
5261 (reducer = this.reducer) != null) {
5262 for (int i = baseIndex, f, h; batch > 0 &&
5263 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5264 addToPendingCount(1);
5265 (rights = new MapReduceKeysTask<K,V,U>
5266 (this, batch >>>= 1, baseLimit = h, f, tab,
5267 rights, transformer, reducer)).fork();
5268 }
5269 U r = null;
5270 for (Node<K,V> p; (p = advance()) != null; ) {
5271 U u;
5272 if ((u = transformer.apply(p.key)) != null)
5273 r = (r == null) ? u : reducer.apply(r, u);
5274 }
5275 result = r;
5276 CountedCompleter<?> c;
5277 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5278 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5279 t = (MapReduceKeysTask<K,V,U>)c,
5280 s = t.rights;
5281 while (s != null) {
5282 U tr, sr;
5283 if ((sr = s.result) != null)
5284 t.result = (((tr = t.result) == null) ? sr :
5285 reducer.apply(tr, sr));
5286 s = t.rights = s.nextRight;
5287 }
5288 }
5289 }
5290 }
5291 }
5292
5293 @SuppressWarnings("serial")
5294 static final class MapReduceValuesTask<K,V,U>
5295 extends BulkTask<K,V,U> {
5296 final Function<? super V, ? extends U> transformer;
5297 final BiFunction<? super U, ? super U, ? extends U> reducer;
5298 U result;
5299 MapReduceValuesTask<K,V,U> rights, nextRight;
5300 MapReduceValuesTask
5301 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5302 MapReduceValuesTask<K,V,U> nextRight,
5303 Function<? super V, ? extends U> transformer,
5304 BiFunction<? super U, ? super U, ? extends U> reducer) {
5305 super(p, b, i, f, t); this.nextRight = nextRight;
5306 this.transformer = transformer;
5307 this.reducer = reducer;
5308 }
5309 public final U getRawResult() { return result; }
5310 public final void compute() {
5311 final Function<? super V, ? extends U> transformer;
5312 final BiFunction<? super U, ? super U, ? extends U> reducer;
5313 if ((transformer = this.transformer) != null &&
5314 (reducer = this.reducer) != null) {
5315 for (int i = baseIndex, f, h; batch > 0 &&
5316 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5317 addToPendingCount(1);
5318 (rights = new MapReduceValuesTask<K,V,U>
5319 (this, batch >>>= 1, baseLimit = h, f, tab,
5320 rights, transformer, reducer)).fork();
5321 }
5322 U r = null;
5323 for (Node<K,V> p; (p = advance()) != null; ) {
5324 U u;
5325 if ((u = transformer.apply(p.val)) != null)
5326 r = (r == null) ? u : reducer.apply(r, u);
5327 }
5328 result = r;
5329 CountedCompleter<?> c;
5330 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5331 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5332 t = (MapReduceValuesTask<K,V,U>)c,
5333 s = t.rights;
5334 while (s != null) {
5335 U tr, sr;
5336 if ((sr = s.result) != null)
5337 t.result = (((tr = t.result) == null) ? sr :
5338 reducer.apply(tr, sr));
5339 s = t.rights = s.nextRight;
5340 }
5341 }
5342 }
5343 }
5344 }
5345
5346 @SuppressWarnings("serial")
5347 static final class MapReduceEntriesTask<K,V,U>
5348 extends BulkTask<K,V,U> {
5349 final Function<Map.Entry<K,V>, ? extends U> transformer;
5350 final BiFunction<? super U, ? super U, ? extends U> reducer;
5351 U result;
5352 MapReduceEntriesTask<K,V,U> rights, nextRight;
5353 MapReduceEntriesTask
5354 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5355 MapReduceEntriesTask<K,V,U> nextRight,
5356 Function<Map.Entry<K,V>, ? extends U> transformer,
5357 BiFunction<? super U, ? super U, ? extends U> reducer) {
5358 super(p, b, i, f, t); this.nextRight = nextRight;
5359 this.transformer = transformer;
5360 this.reducer = reducer;
5361 }
5362 public final U getRawResult() { return result; }
5363 public final void compute() {
5364 final Function<Map.Entry<K,V>, ? extends U> transformer;
5365 final BiFunction<? super U, ? super U, ? extends U> reducer;
5366 if ((transformer = this.transformer) != null &&
5367 (reducer = this.reducer) != null) {
5368 for (int i = baseIndex, f, h; batch > 0 &&
5369 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5370 addToPendingCount(1);
5371 (rights = new MapReduceEntriesTask<K,V,U>
5372 (this, batch >>>= 1, baseLimit = h, f, tab,
5373 rights, transformer, reducer)).fork();
5374 }
5375 U r = null;
5376 for (Node<K,V> p; (p = advance()) != null; ) {
5377 U u;
5378 if ((u = transformer.apply(p)) != null)
5379 r = (r == null) ? u : reducer.apply(r, u);
5380 }
5381 result = r;
5382 CountedCompleter<?> c;
5383 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5384 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5385 t = (MapReduceEntriesTask<K,V,U>)c,
5386 s = t.rights;
5387 while (s != null) {
5388 U tr, sr;
5389 if ((sr = s.result) != null)
5390 t.result = (((tr = t.result) == null) ? sr :
5391 reducer.apply(tr, sr));
5392 s = t.rights = s.nextRight;
5393 }
5394 }
5395 }
5396 }
5397 }
5398
5399 @SuppressWarnings("serial")
5400 static final class MapReduceMappingsTask<K,V,U>
5401 extends BulkTask<K,V,U> {
5402 final BiFunction<? super K, ? super V, ? extends U> transformer;
5403 final BiFunction<? super U, ? super U, ? extends U> reducer;
5404 U result;
5405 MapReduceMappingsTask<K,V,U> rights, nextRight;
5406 MapReduceMappingsTask
5407 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5408 MapReduceMappingsTask<K,V,U> nextRight,
5409 BiFunction<? super K, ? super V, ? extends U> transformer,
5410 BiFunction<? super U, ? super U, ? extends U> reducer) {
5411 super(p, b, i, f, t); this.nextRight = nextRight;
5412 this.transformer = transformer;
5413 this.reducer = reducer;
5414 }
5415 public final U getRawResult() { return result; }
5416 public final void compute() {
5417 final BiFunction<? super K, ? super V, ? extends U> transformer;
5418 final BiFunction<? super U, ? super U, ? extends U> reducer;
5419 if ((transformer = this.transformer) != null &&
5420 (reducer = this.reducer) != null) {
5421 for (int i = baseIndex, f, h; batch > 0 &&
5422 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423 addToPendingCount(1);
5424 (rights = new MapReduceMappingsTask<K,V,U>
5425 (this, batch >>>= 1, baseLimit = h, f, tab,
5426 rights, transformer, reducer)).fork();
5427 }
5428 U r = null;
5429 for (Node<K,V> p; (p = advance()) != null; ) {
5430 U u;
5431 if ((u = transformer.apply(p.key, p.val)) != null)
5432 r = (r == null) ? u : reducer.apply(r, u);
5433 }
5434 result = r;
5435 CountedCompleter<?> c;
5436 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5437 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5438 t = (MapReduceMappingsTask<K,V,U>)c,
5439 s = t.rights;
5440 while (s != null) {
5441 U tr, sr;
5442 if ((sr = s.result) != null)
5443 t.result = (((tr = t.result) == null) ? sr :
5444 reducer.apply(tr, sr));
5445 s = t.rights = s.nextRight;
5446 }
5447 }
5448 }
5449 }
5450 }
5451
5452 @SuppressWarnings("serial")
5453 static final class MapReduceKeysToDoubleTask<K,V>
5454 extends BulkTask<K,V,Double> {
5455 final ToDoubleFunction<? super K> transformer;
5456 final DoubleBinaryOperator reducer;
5457 final double basis;
5458 double result;
5459 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5460 MapReduceKeysToDoubleTask
5461 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5462 MapReduceKeysToDoubleTask<K,V> nextRight,
5463 ToDoubleFunction<? super K> transformer,
5464 double basis,
5465 DoubleBinaryOperator reducer) {
5466 super(p, b, i, f, t); this.nextRight = nextRight;
5467 this.transformer = transformer;
5468 this.basis = basis; this.reducer = reducer;
5469 }
5470 public final Double getRawResult() { return result; }
5471 public final void compute() {
5472 final ToDoubleFunction<? super K> transformer;
5473 final DoubleBinaryOperator reducer;
5474 if ((transformer = this.transformer) != null &&
5475 (reducer = this.reducer) != null) {
5476 double r = this.basis;
5477 for (int i = baseIndex, f, h; batch > 0 &&
5478 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5479 addToPendingCount(1);
5480 (rights = new MapReduceKeysToDoubleTask<K,V>
5481 (this, batch >>>= 1, baseLimit = h, f, tab,
5482 rights, transformer, r, reducer)).fork();
5483 }
5484 for (Node<K,V> p; (p = advance()) != null; )
5485 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5486 result = r;
5487 CountedCompleter<?> c;
5488 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5489 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5490 t = (MapReduceKeysToDoubleTask<K,V>)c,
5491 s = t.rights;
5492 while (s != null) {
5493 t.result = reducer.applyAsDouble(t.result, s.result);
5494 s = t.rights = s.nextRight;
5495 }
5496 }
5497 }
5498 }
5499 }
5500
5501 @SuppressWarnings("serial")
5502 static final class MapReduceValuesToDoubleTask<K,V>
5503 extends BulkTask<K,V,Double> {
5504 final ToDoubleFunction<? super V> transformer;
5505 final DoubleBinaryOperator reducer;
5506 final double basis;
5507 double result;
5508 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5509 MapReduceValuesToDoubleTask
5510 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5511 MapReduceValuesToDoubleTask<K,V> nextRight,
5512 ToDoubleFunction<? super V> transformer,
5513 double basis,
5514 DoubleBinaryOperator reducer) {
5515 super(p, b, i, f, t); this.nextRight = nextRight;
5516 this.transformer = transformer;
5517 this.basis = basis; this.reducer = reducer;
5518 }
5519 public final Double getRawResult() { return result; }
5520 public final void compute() {
5521 final ToDoubleFunction<? super V> transformer;
5522 final DoubleBinaryOperator reducer;
5523 if ((transformer = this.transformer) != null &&
5524 (reducer = this.reducer) != null) {
5525 double r = this.basis;
5526 for (int i = baseIndex, f, h; batch > 0 &&
5527 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5528 addToPendingCount(1);
5529 (rights = new MapReduceValuesToDoubleTask<K,V>
5530 (this, batch >>>= 1, baseLimit = h, f, tab,
5531 rights, transformer, r, reducer)).fork();
5532 }
5533 for (Node<K,V> p; (p = advance()) != null; )
5534 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5535 result = r;
5536 CountedCompleter<?> c;
5537 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5538 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5539 t = (MapReduceValuesToDoubleTask<K,V>)c,
5540 s = t.rights;
5541 while (s != null) {
5542 t.result = reducer.applyAsDouble(t.result, s.result);
5543 s = t.rights = s.nextRight;
5544 }
5545 }
5546 }
5547 }
5548 }
5549
5550 @SuppressWarnings("serial")
5551 static final class MapReduceEntriesToDoubleTask<K,V>
5552 extends BulkTask<K,V,Double> {
5553 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5554 final DoubleBinaryOperator reducer;
5555 final double basis;
5556 double result;
5557 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5558 MapReduceEntriesToDoubleTask
5559 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5560 MapReduceEntriesToDoubleTask<K,V> nextRight,
5561 ToDoubleFunction<Map.Entry<K,V>> transformer,
5562 double basis,
5563 DoubleBinaryOperator reducer) {
5564 super(p, b, i, f, t); this.nextRight = nextRight;
5565 this.transformer = transformer;
5566 this.basis = basis; this.reducer = reducer;
5567 }
5568 public final Double getRawResult() { return result; }
5569 public final void compute() {
5570 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5571 final DoubleBinaryOperator reducer;
5572 if ((transformer = this.transformer) != null &&
5573 (reducer = this.reducer) != null) {
5574 double r = this.basis;
5575 for (int i = baseIndex, f, h; batch > 0 &&
5576 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5577 addToPendingCount(1);
5578 (rights = new MapReduceEntriesToDoubleTask<K,V>
5579 (this, batch >>>= 1, baseLimit = h, f, tab,
5580 rights, transformer, r, reducer)).fork();
5581 }
5582 for (Node<K,V> p; (p = advance()) != null; )
5583 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5584 result = r;
5585 CountedCompleter<?> c;
5586 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5588 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5589 s = t.rights;
5590 while (s != null) {
5591 t.result = reducer.applyAsDouble(t.result, s.result);
5592 s = t.rights = s.nextRight;
5593 }
5594 }
5595 }
5596 }
5597 }
5598
5599 @SuppressWarnings("serial")
5600 static final class MapReduceMappingsToDoubleTask<K,V>
5601 extends BulkTask<K,V,Double> {
5602 final ToDoubleBiFunction<? super K, ? super V> transformer;
5603 final DoubleBinaryOperator reducer;
5604 final double basis;
5605 double result;
5606 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5607 MapReduceMappingsToDoubleTask
5608 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5609 MapReduceMappingsToDoubleTask<K,V> nextRight,
5610 ToDoubleBiFunction<? super K, ? super V> transformer,
5611 double basis,
5612 DoubleBinaryOperator reducer) {
5613 super(p, b, i, f, t); this.nextRight = nextRight;
5614 this.transformer = transformer;
5615 this.basis = basis; this.reducer = reducer;
5616 }
5617 public final Double getRawResult() { return result; }
5618 public final void compute() {
5619 final ToDoubleBiFunction<? super K, ? super V> transformer;
5620 final DoubleBinaryOperator reducer;
5621 if ((transformer = this.transformer) != null &&
5622 (reducer = this.reducer) != null) {
5623 double r = this.basis;
5624 for (int i = baseIndex, f, h; batch > 0 &&
5625 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5626 addToPendingCount(1);
5627 (rights = new MapReduceMappingsToDoubleTask<K,V>
5628 (this, batch >>>= 1, baseLimit = h, f, tab,
5629 rights, transformer, r, reducer)).fork();
5630 }
5631 for (Node<K,V> p; (p = advance()) != null; )
5632 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5633 result = r;
5634 CountedCompleter<?> c;
5635 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5636 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5637 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5638 s = t.rights;
5639 while (s != null) {
5640 t.result = reducer.applyAsDouble(t.result, s.result);
5641 s = t.rights = s.nextRight;
5642 }
5643 }
5644 }
5645 }
5646 }
5647
5648 @SuppressWarnings("serial")
5649 static final class MapReduceKeysToLongTask<K,V>
5650 extends BulkTask<K,V,Long> {
5651 final ToLongFunction<? super K> transformer;
5652 final LongBinaryOperator reducer;
5653 final long basis;
5654 long result;
5655 MapReduceKeysToLongTask<K,V> rights, nextRight;
5656 MapReduceKeysToLongTask
5657 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5658 MapReduceKeysToLongTask<K,V> nextRight,
5659 ToLongFunction<? super K> transformer,
5660 long basis,
5661 LongBinaryOperator reducer) {
5662 super(p, b, i, f, t); this.nextRight = nextRight;
5663 this.transformer = transformer;
5664 this.basis = basis; this.reducer = reducer;
5665 }
5666 public final Long getRawResult() { return result; }
5667 public final void compute() {
5668 final ToLongFunction<? super K> transformer;
5669 final LongBinaryOperator reducer;
5670 if ((transformer = this.transformer) != null &&
5671 (reducer = this.reducer) != null) {
5672 long r = this.basis;
5673 for (int i = baseIndex, f, h; batch > 0 &&
5674 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5675 addToPendingCount(1);
5676 (rights = new MapReduceKeysToLongTask<K,V>
5677 (this, batch >>>= 1, baseLimit = h, f, tab,
5678 rights, transformer, r, reducer)).fork();
5679 }
5680 for (Node<K,V> p; (p = advance()) != null; )
5681 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5682 result = r;
5683 CountedCompleter<?> c;
5684 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5685 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5686 t = (MapReduceKeysToLongTask<K,V>)c,
5687 s = t.rights;
5688 while (s != null) {
5689 t.result = reducer.applyAsLong(t.result, s.result);
5690 s = t.rights = s.nextRight;
5691 }
5692 }
5693 }
5694 }
5695 }
5696
5697 @SuppressWarnings("serial")
5698 static final class MapReduceValuesToLongTask<K,V>
5699 extends BulkTask<K,V,Long> {
5700 final ToLongFunction<? super V> transformer;
5701 final LongBinaryOperator reducer;
5702 final long basis;
5703 long result;
5704 MapReduceValuesToLongTask<K,V> rights, nextRight;
5705 MapReduceValuesToLongTask
5706 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5707 MapReduceValuesToLongTask<K,V> nextRight,
5708 ToLongFunction<? super V> transformer,
5709 long basis,
5710 LongBinaryOperator reducer) {
5711 super(p, b, i, f, t); this.nextRight = nextRight;
5712 this.transformer = transformer;
5713 this.basis = basis; this.reducer = reducer;
5714 }
5715 public final Long getRawResult() { return result; }
5716 public final void compute() {
5717 final ToLongFunction<? super V> transformer;
5718 final LongBinaryOperator reducer;
5719 if ((transformer = this.transformer) != null &&
5720 (reducer = this.reducer) != null) {
5721 long r = this.basis;
5722 for (int i = baseIndex, f, h; batch > 0 &&
5723 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5724 addToPendingCount(1);
5725 (rights = new MapReduceValuesToLongTask<K,V>
5726 (this, batch >>>= 1, baseLimit = h, f, tab,
5727 rights, transformer, r, reducer)).fork();
5728 }
5729 for (Node<K,V> p; (p = advance()) != null; )
5730 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5731 result = r;
5732 CountedCompleter<?> c;
5733 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5734 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5735 t = (MapReduceValuesToLongTask<K,V>)c,
5736 s = t.rights;
5737 while (s != null) {
5738 t.result = reducer.applyAsLong(t.result, s.result);
5739 s = t.rights = s.nextRight;
5740 }
5741 }
5742 }
5743 }
5744 }
5745
5746 @SuppressWarnings("serial")
5747 static final class MapReduceEntriesToLongTask<K,V>
5748 extends BulkTask<K,V,Long> {
5749 final ToLongFunction<Map.Entry<K,V>> transformer;
5750 final LongBinaryOperator reducer;
5751 final long basis;
5752 long result;
5753 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5754 MapReduceEntriesToLongTask
5755 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5756 MapReduceEntriesToLongTask<K,V> nextRight,
5757 ToLongFunction<Map.Entry<K,V>> transformer,
5758 long basis,
5759 LongBinaryOperator reducer) {
5760 super(p, b, i, f, t); this.nextRight = nextRight;
5761 this.transformer = transformer;
5762 this.basis = basis; this.reducer = reducer;
5763 }
5764 public final Long getRawResult() { return result; }
5765 public final void compute() {
5766 final ToLongFunction<Map.Entry<K,V>> transformer;
5767 final LongBinaryOperator reducer;
5768 if ((transformer = this.transformer) != null &&
5769 (reducer = this.reducer) != null) {
5770 long r = this.basis;
5771 for (int i = baseIndex, f, h; batch > 0 &&
5772 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5773 addToPendingCount(1);
5774 (rights = new MapReduceEntriesToLongTask<K,V>
5775 (this, batch >>>= 1, baseLimit = h, f, tab,
5776 rights, transformer, r, reducer)).fork();
5777 }
5778 for (Node<K,V> p; (p = advance()) != null; )
5779 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5780 result = r;
5781 CountedCompleter<?> c;
5782 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5783 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5784 t = (MapReduceEntriesToLongTask<K,V>)c,
5785 s = t.rights;
5786 while (s != null) {
5787 t.result = reducer.applyAsLong(t.result, s.result);
5788 s = t.rights = s.nextRight;
5789 }
5790 }
5791 }
5792 }
5793 }
5794
5795 @SuppressWarnings("serial")
5796 static final class MapReduceMappingsToLongTask<K,V>
5797 extends BulkTask<K,V,Long> {
5798 final ToLongBiFunction<? super K, ? super V> transformer;
5799 final LongBinaryOperator reducer;
5800 final long basis;
5801 long result;
5802 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5803 MapReduceMappingsToLongTask
5804 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5805 MapReduceMappingsToLongTask<K,V> nextRight,
5806 ToLongBiFunction<? super K, ? super V> transformer,
5807 long basis,
5808 LongBinaryOperator reducer) {
5809 super(p, b, i, f, t); this.nextRight = nextRight;
5810 this.transformer = transformer;
5811 this.basis = basis; this.reducer = reducer;
5812 }
5813 public final Long getRawResult() { return result; }
5814 public final void compute() {
5815 final ToLongBiFunction<? super K, ? super V> transformer;
5816 final LongBinaryOperator reducer;
5817 if ((transformer = this.transformer) != null &&
5818 (reducer = this.reducer) != null) {
5819 long r = this.basis;
5820 for (int i = baseIndex, f, h; batch > 0 &&
5821 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5822 addToPendingCount(1);
5823 (rights = new MapReduceMappingsToLongTask<K,V>
5824 (this, batch >>>= 1, baseLimit = h, f, tab,
5825 rights, transformer, r, reducer)).fork();
5826 }
5827 for (Node<K,V> p; (p = advance()) != null; )
5828 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5829 result = r;
5830 CountedCompleter<?> c;
5831 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5832 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5833 t = (MapReduceMappingsToLongTask<K,V>)c,
5834 s = t.rights;
5835 while (s != null) {
5836 t.result = reducer.applyAsLong(t.result, s.result);
5837 s = t.rights = s.nextRight;
5838 }
5839 }
5840 }
5841 }
5842 }
5843
5844 @SuppressWarnings("serial")
5845 static final class MapReduceKeysToIntTask<K,V>
5846 extends BulkTask<K,V,Integer> {
5847 final ToIntFunction<? super K> transformer;
5848 final IntBinaryOperator reducer;
5849 final int basis;
5850 int result;
5851 MapReduceKeysToIntTask<K,V> rights, nextRight;
5852 MapReduceKeysToIntTask
5853 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5854 MapReduceKeysToIntTask<K,V> nextRight,
5855 ToIntFunction<? super K> transformer,
5856 int basis,
5857 IntBinaryOperator reducer) {
5858 super(p, b, i, f, t); this.nextRight = nextRight;
5859 this.transformer = transformer;
5860 this.basis = basis; this.reducer = reducer;
5861 }
5862 public final Integer getRawResult() { return result; }
5863 public final void compute() {
5864 final ToIntFunction<? super K> transformer;
5865 final IntBinaryOperator reducer;
5866 if ((transformer = this.transformer) != null &&
5867 (reducer = this.reducer) != null) {
5868 int r = this.basis;
5869 for (int i = baseIndex, f, h; batch > 0 &&
5870 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5871 addToPendingCount(1);
5872 (rights = new MapReduceKeysToIntTask<K,V>
5873 (this, batch >>>= 1, baseLimit = h, f, tab,
5874 rights, transformer, r, reducer)).fork();
5875 }
5876 for (Node<K,V> p; (p = advance()) != null; )
5877 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5878 result = r;
5879 CountedCompleter<?> c;
5880 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5881 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5882 t = (MapReduceKeysToIntTask<K,V>)c,
5883 s = t.rights;
5884 while (s != null) {
5885 t.result = reducer.applyAsInt(t.result, s.result);
5886 s = t.rights = s.nextRight;
5887 }
5888 }
5889 }
5890 }
5891 }
5892
5893 @SuppressWarnings("serial")
5894 static final class MapReduceValuesToIntTask<K,V>
5895 extends BulkTask<K,V,Integer> {
5896 final ToIntFunction<? super V> transformer;
5897 final IntBinaryOperator reducer;
5898 final int basis;
5899 int result;
5900 MapReduceValuesToIntTask<K,V> rights, nextRight;
5901 MapReduceValuesToIntTask
5902 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5903 MapReduceValuesToIntTask<K,V> nextRight,
5904 ToIntFunction<? super V> transformer,
5905 int basis,
5906 IntBinaryOperator reducer) {
5907 super(p, b, i, f, t); this.nextRight = nextRight;
5908 this.transformer = transformer;
5909 this.basis = basis; this.reducer = reducer;
5910 }
5911 public final Integer getRawResult() { return result; }
5912 public final void compute() {
5913 final ToIntFunction<? super V> transformer;
5914 final IntBinaryOperator reducer;
5915 if ((transformer = this.transformer) != null &&
5916 (reducer = this.reducer) != null) {
5917 int r = this.basis;
5918 for (int i = baseIndex, f, h; batch > 0 &&
5919 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5920 addToPendingCount(1);
5921 (rights = new MapReduceValuesToIntTask<K,V>
5922 (this, batch >>>= 1, baseLimit = h, f, tab,
5923 rights, transformer, r, reducer)).fork();
5924 }
5925 for (Node<K,V> p; (p = advance()) != null; )
5926 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5927 result = r;
5928 CountedCompleter<?> c;
5929 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5930 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5931 t = (MapReduceValuesToIntTask<K,V>)c,
5932 s = t.rights;
5933 while (s != null) {
5934 t.result = reducer.applyAsInt(t.result, s.result);
5935 s = t.rights = s.nextRight;
5936 }
5937 }
5938 }
5939 }
5940 }
5941
5942 @SuppressWarnings("serial")
5943 static final class MapReduceEntriesToIntTask<K,V>
5944 extends BulkTask<K,V,Integer> {
5945 final ToIntFunction<Map.Entry<K,V>> transformer;
5946 final IntBinaryOperator reducer;
5947 final int basis;
5948 int result;
5949 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5950 MapReduceEntriesToIntTask
5951 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5952 MapReduceEntriesToIntTask<K,V> nextRight,
5953 ToIntFunction<Map.Entry<K,V>> transformer,
5954 int basis,
5955 IntBinaryOperator reducer) {
5956 super(p, b, i, f, t); this.nextRight = nextRight;
5957 this.transformer = transformer;
5958 this.basis = basis; this.reducer = reducer;
5959 }
5960 public final Integer getRawResult() { return result; }
5961 public final void compute() {
5962 final ToIntFunction<Map.Entry<K,V>> transformer;
5963 final IntBinaryOperator reducer;
5964 if ((transformer = this.transformer) != null &&
5965 (reducer = this.reducer) != null) {
5966 int r = this.basis;
5967 for (int i = baseIndex, f, h; batch > 0 &&
5968 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5969 addToPendingCount(1);
5970 (rights = new MapReduceEntriesToIntTask<K,V>
5971 (this, batch >>>= 1, baseLimit = h, f, tab,
5972 rights, transformer, r, reducer)).fork();
5973 }
5974 for (Node<K,V> p; (p = advance()) != null; )
5975 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5976 result = r;
5977 CountedCompleter<?> c;
5978 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5979 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5980 t = (MapReduceEntriesToIntTask<K,V>)c,
5981 s = t.rights;
5982 while (s != null) {
5983 t.result = reducer.applyAsInt(t.result, s.result);
5984 s = t.rights = s.nextRight;
5985 }
5986 }
5987 }
5988 }
5989 }
5990
5991 @SuppressWarnings("serial")
5992 static final class MapReduceMappingsToIntTask<K,V>
5993 extends BulkTask<K,V,Integer> {
5994 final ToIntBiFunction<? super K, ? super V> transformer;
5995 final IntBinaryOperator reducer;
5996 final int basis;
5997 int result;
5998 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5999 MapReduceMappingsToIntTask
6000 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6001 MapReduceMappingsToIntTask<K,V> nextRight,
6002 ToIntBiFunction<? super K, ? super V> transformer,
6003 int basis,
6004 IntBinaryOperator reducer) {
6005 super(p, b, i, f, t); this.nextRight = nextRight;
6006 this.transformer = transformer;
6007 this.basis = basis; this.reducer = reducer;
6008 }
6009 public final Integer getRawResult() { return result; }
6010 public final void compute() {
6011 final ToIntBiFunction<? super K, ? super V> transformer;
6012 final IntBinaryOperator reducer;
6013 if ((transformer = this.transformer) != null &&
6014 (reducer = this.reducer) != null) {
6015 int r = this.basis;
6016 for (int i = baseIndex, f, h; batch > 0 &&
6017 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6018 addToPendingCount(1);
6019 (rights = new MapReduceMappingsToIntTask<K,V>
6020 (this, batch >>>= 1, baseLimit = h, f, tab,
6021 rights, transformer, r, reducer)).fork();
6022 }
6023 for (Node<K,V> p; (p = advance()) != null; )
6024 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6025 result = r;
6026 CountedCompleter<?> c;
6027 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6028 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6029 t = (MapReduceMappingsToIntTask<K,V>)c,
6030 s = t.rights;
6031 while (s != null) {
6032 t.result = reducer.applyAsInt(t.result, s.result);
6033 s = t.rights = s.nextRight;
6034 }
6035 }
6036 }
6037 }
6038 }
6039
6040 // Unsafe mechanics
6041 private static final sun.misc.Unsafe U;
6042 private static final long SIZECTL;
6043 private static final long TRANSFERINDEX;
6044 private static final long TRANSFERORIGIN;
6045 private static final long BASECOUNT;
6046 private static final long CELLSBUSY;
6047 private static final long CELLVALUE;
6048 private static final long ABASE;
6049 private static final int ASHIFT;
6050
6051 static {
6052 try {
6053 U = sun.misc.Unsafe.getUnsafe();
6054 Class<?> k = ConcurrentHashMap.class;
6055 SIZECTL = U.objectFieldOffset
6056 (k.getDeclaredField("sizeCtl"));
6057 TRANSFERINDEX = U.objectFieldOffset
6058 (k.getDeclaredField("transferIndex"));
6059 TRANSFERORIGIN = U.objectFieldOffset
6060 (k.getDeclaredField("transferOrigin"));
6061 BASECOUNT = U.objectFieldOffset
6062 (k.getDeclaredField("baseCount"));
6063 CELLSBUSY = U.objectFieldOffset
6064 (k.getDeclaredField("cellsBusy"));
6065 Class<?> ck = CounterCell.class;
6066 CELLVALUE = U.objectFieldOffset
6067 (ck.getDeclaredField("value"));
6068 Class<?> sc = Node[].class;
6069 ABASE = U.arrayBaseOffset(sc);
6070 int scale = U.arrayIndexScale(sc);
6071 if ((scale & (scale - 1)) != 0)
6072 throw new Error("data type scale not a power of two");
6073 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6074 } catch (Exception e) {
6075 throw new Error(e);
6076 }
6077 }
6078 }