ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.237
Committed: Thu Jul 18 17:13:42 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.236: +14 -0 lines
Log Message:
doclint warning fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.ConcurrentModificationException;
18 import java.util.Enumeration;
19 import java.util.HashMap;
20 import java.util.Hashtable;
21 import java.util.Iterator;
22 import java.util.Map;
23 import java.util.NoSuchElementException;
24 import java.util.Set;
25 import java.util.Spliterator;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ForkJoinPool;
28 import java.util.concurrent.atomic.AtomicReference;
29 import java.util.concurrent.locks.LockSupport;
30 import java.util.concurrent.locks.ReentrantLock;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.BinaryOperator;
34 import java.util.function.Consumer;
35 import java.util.function.DoubleBinaryOperator;
36 import java.util.function.Function;
37 import java.util.function.IntBinaryOperator;
38 import java.util.function.LongBinaryOperator;
39 import java.util.function.ToDoubleBiFunction;
40 import java.util.function.ToDoubleFunction;
41 import java.util.function.ToIntBiFunction;
42 import java.util.function.ToIntFunction;
43 import java.util.function.ToLongBiFunction;
44 import java.util.function.ToLongFunction;
45 import java.util.stream.Stream;
46
47 /**
48 * A hash table supporting full concurrency of retrievals and
49 * high expected concurrency for updates. This class obeys the
50 * same functional specification as {@link java.util.Hashtable}, and
51 * includes versions of methods corresponding to each method of
52 * {@code Hashtable}. However, even though all operations are
53 * thread-safe, retrieval operations do <em>not</em> entail locking,
54 * and there is <em>not</em> any support for locking the entire table
55 * in a way that prevents all access. This class is fully
56 * interoperable with {@code Hashtable} in programs that rely on its
57 * thread safety but not on its synchronization details.
58 *
59 * <p>Retrieval operations (including {@code get}) generally do not
60 * block, so may overlap with update operations (including {@code put}
61 * and {@code remove}). Retrievals reflect the results of the most
62 * recently <em>completed</em> update operations holding upon their
63 * onset. (More formally, an update operation for a given key bears a
64 * <em>happens-before</em> relation with any (non-null) retrieval for
65 * that key reporting the updated value.) For aggregate operations
66 * such as {@code putAll} and {@code clear}, concurrent retrievals may
67 * reflect insertion or removal of only some entries. Similarly,
68 * Iterators and Enumerations return elements reflecting the state of
69 * the hash table at some point at or since the creation of the
70 * iterator/enumeration. They do <em>not</em> throw {@link
71 * ConcurrentModificationException}. However, iterators are designed
72 * to be used by only one thread at a time. Bear in mind that the
73 * results of aggregate status methods including {@code size}, {@code
74 * isEmpty}, and {@code containsValue} are typically useful only when
75 * a map is not undergoing concurrent updates in other threads.
76 * Otherwise the results of these methods reflect transient states
77 * that may be adequate for monitoring or estimation purposes, but not
78 * for program control.
79 *
80 * <p>The table is dynamically expanded when there are too many
81 * collisions (i.e., keys that have distinct hash codes but fall into
82 * the same slot modulo the table size), with the expected average
83 * effect of maintaining roughly two bins per mapping (corresponding
84 * to a 0.75 load factor threshold for resizing). There may be much
85 * variance around this average as mappings are added and removed, but
86 * overall, this maintains a commonly accepted time/space tradeoff for
87 * hash tables. However, resizing this or any other kind of hash
88 * table may be a relatively slow operation. When possible, it is a
89 * good idea to provide a size estimate as an optional {@code
90 * initialCapacity} constructor argument. An additional optional
91 * {@code loadFactor} constructor argument provides a further means of
92 * customizing initial table capacity by specifying the table density
93 * to be used in calculating the amount of space to allocate for the
94 * given number of elements. Also, for compatibility with previous
95 * versions of this class, constructors may optionally specify an
96 * expected {@code concurrencyLevel} as an additional hint for
97 * internal sizing. Note that using many keys with exactly the same
98 * {@code hashCode()} is a sure way to slow down performance of any
99 * hash table. To ameliorate impact, when keys are {@link Comparable},
100 * this class may use comparison order among keys to help break ties.
101 *
102 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
104 * (using {@link #keySet(Object)} when only keys are of interest, and the
105 * mapped values are (perhaps transiently) not used or all take the
106 * same mapping value.
107 *
108 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
109 * form of histogram or multiset) by using {@link
110 * java.util.concurrent.atomic.LongAdder} values and initializing via
111 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
112 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
113 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
114 *
115 * <p>This class and its views and iterators implement all of the
116 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
117 * interfaces.
118 *
119 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120 * does <em>not</em> allow {@code null} to be used as a key or value.
121 *
122 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 * operations that, unlike most {@link Stream} methods, are designed
124 * to be safely, and often sensibly, applied even with maps that are
125 * being concurrently updated by other threads; for example, when
126 * computing a snapshot summary of the values in a shared registry.
127 * There are three kinds of operation, each with four forms, accepting
128 * functions with Keys, Values, Entries, and (Key, Value) arguments
129 * and/or return values. Because the elements of a ConcurrentHashMap
130 * are not ordered in any particular way, and may be processed in
131 * different orders in different parallel executions, the correctness
132 * of supplied functions should not depend on any ordering, or on any
133 * other objects or values that may transiently change while
134 * computation is in progress; and except for forEach actions, should
135 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 * objects do not support method {@code setValue}.
137 *
138 * <ul>
139 * <li> forEach: Perform a given action on each element.
140 * A variant form applies a given transformation on each element
141 * before performing the action.</li>
142 *
143 * <li> search: Return the first available non-null result of
144 * applying a given function on each element; skipping further
145 * search when a result is found.</li>
146 *
147 * <li> reduce: Accumulate each element. The supplied reduction
148 * function cannot rely on ordering (more formally, it should be
149 * both associative and commutative). There are five variants:
150 *
151 * <ul>
152 *
153 * <li> Plain reductions. (There is not a form of this method for
154 * (key, value) function arguments since there is no corresponding
155 * return type.)</li>
156 *
157 * <li> Mapped reductions that accumulate the results of a given
158 * function applied to each element.</li>
159 *
160 * <li> Reductions to scalar doubles, longs, and ints, using a
161 * given basis value.</li>
162 *
163 * </ul>
164 * </li>
165 * </ul>
166 *
167 * <p>These bulk operations accept a {@code parallelismThreshold}
168 * argument. Methods proceed sequentially if the current map size is
169 * estimated to be less than the given threshold. Using a value of
170 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
171 * of {@code 1} results in maximal parallelism by partitioning into
172 * enough subtasks to fully utilize the {@link
173 * ForkJoinPool#commonPool()} that is used for all parallel
174 * computations. Normally, you would initially choose one of these
175 * extreme values, and then measure performance of using in-between
176 * values that trade off overhead versus throughput.
177 *
178 * <p>The concurrency properties of bulk operations follow
179 * from those of ConcurrentHashMap: Any non-null result returned
180 * from {@code get(key)} and related access methods bears a
181 * happens-before relation with the associated insertion or
182 * update. The result of any bulk operation reflects the
183 * composition of these per-element relations (but is not
184 * necessarily atomic with respect to the map as a whole unless it
185 * is somehow known to be quiescent). Conversely, because keys
186 * and values in the map are never null, null serves as a reliable
187 * atomic indicator of the current lack of any result. To
188 * maintain this property, null serves as an implicit basis for
189 * all non-scalar reduction operations. For the double, long, and
190 * int versions, the basis should be one that, when combined with
191 * any other value, returns that other value (more formally, it
192 * should be the identity element for the reduction). Most common
193 * reductions have these properties; for example, computing a sum
194 * with basis 0 or a minimum with basis MAX_VALUE.
195 *
196 * <p>Search and transformation functions provided as arguments
197 * should similarly return null to indicate the lack of any result
198 * (in which case it is not used). In the case of mapped
199 * reductions, this also enables transformations to serve as
200 * filters, returning null (or, in the case of primitive
201 * specializations, the identity basis) if the element should not
202 * be combined. You can create compound transformations and
203 * filterings by composing them yourself under this "null means
204 * there is nothing there now" rule before using them in search or
205 * reduce operations.
206 *
207 * <p>Methods accepting and/or returning Entry arguments maintain
208 * key-value associations. They may be useful for example when
209 * finding the key for the greatest value. Note that "plain" Entry
210 * arguments can be supplied using {@code new
211 * AbstractMap.SimpleEntry(k,v)}.
212 *
213 * <p>Bulk operations may complete abruptly, throwing an
214 * exception encountered in the application of a supplied
215 * function. Bear in mind when handling such exceptions that other
216 * concurrently executing functions could also have thrown
217 * exceptions, or would have done so if the first exception had
218 * not occurred.
219 *
220 * <p>Speedups for parallel compared to sequential forms are common
221 * but not guaranteed. Parallel operations involving brief functions
222 * on small maps may execute more slowly than sequential forms if the
223 * underlying work to parallelize the computation is more expensive
224 * than the computation itself. Similarly, parallelization may not
225 * lead to much actual parallelism if all processors are busy
226 * performing unrelated tasks.
227 *
228 * <p>All arguments to all task methods must be non-null.
229 *
230 * <p>This class is a member of the
231 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232 * Java Collections Framework</a>.
233 *
234 * @since 1.5
235 * @author Doug Lea
236 * @param <K> the type of keys maintained by this map
237 * @param <V> the type of mapped values
238 */
239 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement
348 * array. However, rather than stalling, these other threads may
349 * proceed with insertions etc. The use of TreeBins shields us
350 * from the worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. To enable concurrency, the
353 * next table must be (incrementally) prefilled with place-holders
354 * serving as reverse forwarders to the old table. Because we are
355 * using power-of-two expansion, the elements from each bin must
356 * either stay at same index, or move with a power of two
357 * offset. We eliminate unnecessary node creation by catching
358 * cases where old nodes can be reused because their next fields
359 * won't change. On average, only about one-sixth of them need
360 * cloning when a table doubles. The nodes they replace will be
361 * garbage collectable as soon as they are no longer referenced by
362 * any reader thread that may be in the midst of concurrently
363 * traversing table. Upon transfer, the old table bin contains
364 * only a special forwarding node (with hash field "MOVED") that
365 * contains the next table as its key. On encountering a
366 * forwarding node, access and update operations restart, using
367 * the new table.
368 *
369 * Each bin transfer requires its bin lock, which can stall
370 * waiting for locks while resizing. However, because other
371 * threads can join in and help resize rather than contend for
372 * locks, average aggregate waits become shorter as resizing
373 * progresses. The transfer operation must also ensure that all
374 * accessible bins in both the old and new table are usable by any
375 * traversal. This is arranged by proceeding from the last bin
376 * (table.length - 1) up towards the first. Upon seeing a
377 * forwarding node, traversals (see class Traverser) arrange to
378 * move to the new table without revisiting nodes. However, to
379 * ensure that no intervening nodes are skipped, bin splitting can
380 * only begin after the associated reverse-forwarders are in
381 * place.
382 *
383 * The traversal scheme also applies to partial traversals of
384 * ranges of bins (via an alternate Traverser constructor)
385 * to support partitioned aggregate operations. Also, read-only
386 * operations give up if ever forwarded to a null table, which
387 * provides support for shutdown-style clearing, which is also not
388 * currently implemented.
389 *
390 * Lazy table initialization minimizes footprint until first use,
391 * and also avoids resizings when the first operation is from a
392 * putAll, constructor with map argument, or deserialization.
393 * These cases attempt to override the initial capacity settings,
394 * but harmlessly fail to take effect in cases of races.
395 *
396 * The element count is maintained using a specialization of
397 * LongAdder. We need to incorporate a specialization rather than
398 * just use a LongAdder in order to access implicit
399 * contention-sensing that leads to creation of multiple
400 * CounterCells. The counter mechanics avoid contention on
401 * updates but can encounter cache thrashing if read too
402 * frequently during concurrent access. To avoid reading so often,
403 * resizing under contention is attempted only upon adding to a
404 * bin already holding two or more nodes. Under uniform hash
405 * distributions, the probability of this occurring at threshold
406 * is around 13%, meaning that only about 1 in 8 puts check
407 * threshold (and after resizing, many fewer do so).
408 *
409 * TreeBins use a special form of comparison for search and
410 * related operations (which is the main reason we cannot use
411 * existing collections such as TreeMaps). TreeBins contain
412 * Comparable elements, but may contain others, as well as
413 * elements that are Comparable but not necessarily Comparable
414 * for the same T, so we cannot invoke compareTo among them. To
415 * handle this, the tree is ordered primarily by hash value, then
416 * by Comparable.compareTo order if applicable. On lookup at a
417 * node, if elements are not comparable or compare as 0 then both
418 * left and right children may need to be searched in the case of
419 * tied hash values. (This corresponds to the full list search
420 * that would be necessary if all elements were non-Comparable and
421 * had tied hashes.) The red-black balancing code is updated from
422 * pre-jdk-collections
423 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
424 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
425 * Algorithms" (CLR).
426 *
427 * TreeBins also require an additional locking mechanism. While
428 * list traversal is always possible by readers even during
429 * updates, tree traversal is not, mainly because of tree-rotations
430 * that may change the root node and/or its linkages. TreeBins
431 * include a simple read-write lock mechanism parasitic on the
432 * main bin-synchronization strategy: Structural adjustments
433 * associated with an insertion or removal are already bin-locked
434 * (and so cannot conflict with other writers) but must wait for
435 * ongoing readers to finish. Since there can be only one such
436 * waiter, we use a simple scheme using a single "waiter" field to
437 * block writers. However, readers need never block. If the root
438 * lock is held, they proceed along the slow traversal path (via
439 * next-pointers) until the lock becomes available or the list is
440 * exhausted, whichever comes first. These cases are not fast, but
441 * maximize aggregate expected throughput.
442 *
443 * Maintaining API and serialization compatibility with previous
444 * versions of this class introduces several oddities. Mainly: We
445 * leave untouched but unused constructor arguments refering to
446 * concurrencyLevel. We accept a loadFactor constructor argument,
447 * but apply it only to initial table capacity (which is the only
448 * time that we can guarantee to honor it.) We also declare an
449 * unused "Segment" class that is instantiated in minimal form
450 * only when serializing.
451 *
452 * This file is organized to make things a little easier to follow
453 * while reading than they might otherwise: First the main static
454 * declarations and utilities, then fields, then main public
455 * methods (with a few factorings of multiple public methods into
456 * internal ones), then sizing methods, trees, traversers, and
457 * bulk operations.
458 */
459
460 /* ---------------- Constants -------------- */
461
462 /**
463 * The largest possible table capacity. This value must be
464 * exactly 1<<30 to stay within Java array allocation and indexing
465 * bounds for power of two table sizes, and is further required
466 * because the top two bits of 32bit hash fields are used for
467 * control purposes.
468 */
469 private static final int MAXIMUM_CAPACITY = 1 << 30;
470
471 /**
472 * The default initial table capacity. Must be a power of 2
473 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
474 */
475 private static final int DEFAULT_CAPACITY = 16;
476
477 /**
478 * The largest possible (non-power of two) array size.
479 * Needed by toArray and related methods.
480 */
481 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
482
483 /**
484 * The default concurrency level for this table. Unused but
485 * defined for compatibility with previous versions of this class.
486 */
487 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
488
489 /**
490 * The load factor for this table. Overrides of this value in
491 * constructors affect only the initial table capacity. The
492 * actual floating point value isn't normally used -- it is
493 * simpler to use expressions such as {@code n - (n >>> 2)} for
494 * the associated resizing threshold.
495 */
496 private static final float LOAD_FACTOR = 0.75f;
497
498 /**
499 * The bin count threshold for using a tree rather than list for a
500 * bin. Bins are converted to trees when adding an element to a
501 * bin with at least this many nodes. The value must be greater
502 * than 2, and should be at least 8 to mesh with assumptions in
503 * tree removal about conversion back to plain bins upon
504 * shrinkage.
505 */
506 static final int TREEIFY_THRESHOLD = 8;
507
508 /**
509 * The bin count threshold for untreeifying a (split) bin during a
510 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
511 * most 6 to mesh with shrinkage detection under removal.
512 */
513 static final int UNTREEIFY_THRESHOLD = 6;
514
515 /**
516 * The smallest table capacity for which bins may be treeified.
517 * (Otherwise the table is resized if too many nodes in a bin.)
518 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
519 * conflicts between resizing and treeification thresholds.
520 */
521 static final int MIN_TREEIFY_CAPACITY = 64;
522
523 /**
524 * Minimum number of rebinnings per transfer step. Ranges are
525 * subdivided to allow multiple resizer threads. This value
526 * serves as a lower bound to avoid resizers encountering
527 * excessive memory contention. The value should be at least
528 * DEFAULT_CAPACITY.
529 */
530 private static final int MIN_TRANSFER_STRIDE = 16;
531
532 /*
533 * Encodings for Node hash fields. See above for explanation.
534 */
535 static final int MOVED = -1; // hash for forwarding nodes
536 static final int TREEBIN = -2; // hash for roots of trees
537 static final int RESERVED = -3; // hash for transient reservations
538 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
539
540 /** Number of CPUS, to place bounds on some sizings */
541 static final int NCPU = Runtime.getRuntime().availableProcessors();
542
543 /** For serialization compatibility. */
544 private static final ObjectStreamField[] serialPersistentFields = {
545 new ObjectStreamField("segments", Segment[].class),
546 new ObjectStreamField("segmentMask", Integer.TYPE),
547 new ObjectStreamField("segmentShift", Integer.TYPE)
548 };
549
550 /* ---------------- Nodes -------------- */
551
552 /**
553 * Key-value entry. This class is never exported out as a
554 * user-mutable Map.Entry (i.e., one supporting setValue; see
555 * MapEntry below), but can be used for read-only traversals used
556 * in bulk tasks. Subclasses of Node with a negative hash field
557 * are special, and contain null keys and values (but are never
558 * exported). Otherwise, keys and vals are never null.
559 */
560 static class Node<K,V> implements Map.Entry<K,V> {
561 final int hash;
562 final K key;
563 volatile V val;
564 volatile Node<K,V> next;
565
566 Node(int hash, K key, V val, Node<K,V> next) {
567 this.hash = hash;
568 this.key = key;
569 this.val = val;
570 this.next = next;
571 }
572
573 public final K getKey() { return key; }
574 public final V getValue() { return val; }
575 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
576 public final String toString(){ return key + "=" + val; }
577 public final V setValue(V value) {
578 throw new UnsupportedOperationException();
579 }
580
581 public final boolean equals(Object o) {
582 Object k, v, u; Map.Entry<?,?> e;
583 return ((o instanceof Map.Entry) &&
584 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
585 (v = e.getValue()) != null &&
586 (k == key || k.equals(key)) &&
587 (v == (u = val) || v.equals(u)));
588 }
589
590 /**
591 * Virtualized support for map.get(); overridden in subclasses.
592 */
593 Node<K,V> find(int h, Object k) {
594 Node<K,V> e = this;
595 if (k != null) {
596 do {
597 K ek;
598 if (e.hash == h &&
599 ((ek = e.key) == k || (ek != null && k.equals(ek))))
600 return e;
601 } while ((e = e.next) != null);
602 }
603 return null;
604 }
605 }
606
607 /* ---------------- Static utilities -------------- */
608
609 /**
610 * Spreads (XORs) higher bits of hash to lower and also forces top
611 * bit to 0. Because the table uses power-of-two masking, sets of
612 * hashes that vary only in bits above the current mask will
613 * always collide. (Among known examples are sets of Float keys
614 * holding consecutive whole numbers in small tables.) So we
615 * apply a transform that spreads the impact of higher bits
616 * downward. There is a tradeoff between speed, utility, and
617 * quality of bit-spreading. Because many common sets of hashes
618 * are already reasonably distributed (so don't benefit from
619 * spreading), and because we use trees to handle large sets of
620 * collisions in bins, we just XOR some shifted bits in the
621 * cheapest possible way to reduce systematic lossage, as well as
622 * to incorporate impact of the highest bits that would otherwise
623 * never be used in index calculations because of table bounds.
624 */
625 static final int spread(int h) {
626 return (h ^ (h >>> 16)) & HASH_BITS;
627 }
628
629 /**
630 * Returns a power of two table size for the given desired capacity.
631 * See Hackers Delight, sec 3.2
632 */
633 private static final int tableSizeFor(int c) {
634 int n = c - 1;
635 n |= n >>> 1;
636 n |= n >>> 2;
637 n |= n >>> 4;
638 n |= n >>> 8;
639 n |= n >>> 16;
640 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
641 }
642
643 /**
644 * Returns x's Class if it is of the form "class C implements
645 * Comparable<C>", else null.
646 */
647 static Class<?> comparableClassFor(Object x) {
648 if (x instanceof Comparable) {
649 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
650 if ((c = x.getClass()) == String.class) // bypass checks
651 return c;
652 if ((ts = c.getGenericInterfaces()) != null) {
653 for (int i = 0; i < ts.length; ++i) {
654 if (((t = ts[i]) instanceof ParameterizedType) &&
655 ((p = (ParameterizedType)t).getRawType() ==
656 Comparable.class) &&
657 (as = p.getActualTypeArguments()) != null &&
658 as.length == 1 && as[0] == c) // type arg is c
659 return c;
660 }
661 }
662 }
663 return null;
664 }
665
666 /**
667 * Returns k.compareTo(x) if x matches kc (k's screened comparable
668 * class), else 0.
669 */
670 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
671 static int compareComparables(Class<?> kc, Object k, Object x) {
672 return (x == null || x.getClass() != kc ? 0 :
673 ((Comparable)k).compareTo(x));
674 }
675
676 /* ---------------- Table element access -------------- */
677
678 /*
679 * Volatile access methods are used for table elements as well as
680 * elements of in-progress next table while resizing. All uses of
681 * the tab arguments must be null checked by callers. All callers
682 * also paranoically precheck that tab's length is not zero (or an
683 * equivalent check), thus ensuring that any index argument taking
684 * the form of a hash value anded with (length - 1) is a valid
685 * index. Note that, to be correct wrt arbitrary concurrency
686 * errors by users, these checks must operate on local variables,
687 * which accounts for some odd-looking inline assignments below.
688 * Note that calls to setTabAt always occur within locked regions,
689 * and so in principle require only release ordering, not need
690 * full volatile semantics, but are currently coded as volatile
691 * writes to be conservative.
692 */
693
694 @SuppressWarnings("unchecked")
695 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
696 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
697 }
698
699 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
700 Node<K,V> c, Node<K,V> v) {
701 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
702 }
703
704 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
705 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
706 }
707
708 /* ---------------- Fields -------------- */
709
710 /**
711 * The array of bins. Lazily initialized upon first insertion.
712 * Size is always a power of two. Accessed directly by iterators.
713 */
714 transient volatile Node<K,V>[] table;
715
716 /**
717 * The next table to use; non-null only while resizing.
718 */
719 private transient volatile Node<K,V>[] nextTable;
720
721 /**
722 * Base counter value, used mainly when there is no contention,
723 * but also as a fallback during table initialization
724 * races. Updated via CAS.
725 */
726 private transient volatile long baseCount;
727
728 /**
729 * Table initialization and resizing control. When negative, the
730 * table is being initialized or resized: -1 for initialization,
731 * else -(1 + the number of active resizing threads). Otherwise,
732 * when table is null, holds the initial table size to use upon
733 * creation, or 0 for default. After initialization, holds the
734 * next element count value upon which to resize the table.
735 */
736 private transient volatile int sizeCtl;
737
738 /**
739 * The next table index (plus one) to split while resizing.
740 */
741 private transient volatile int transferIndex;
742
743 /**
744 * The least available table index to split while resizing.
745 */
746 private transient volatile int transferOrigin;
747
748 /**
749 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
750 */
751 private transient volatile int cellsBusy;
752
753 /**
754 * Table of counter cells. When non-null, size is a power of 2.
755 */
756 private transient volatile CounterCell[] counterCells;
757
758 // views
759 private transient KeySetView<K,V> keySet;
760 private transient ValuesView<K,V> values;
761 private transient EntrySetView<K,V> entrySet;
762
763
764 /* ---------------- Public operations -------------- */
765
766 /**
767 * Creates a new, empty map with the default initial table size (16).
768 */
769 public ConcurrentHashMap() {
770 }
771
772 /**
773 * Creates a new, empty map with an initial table size
774 * accommodating the specified number of elements without the need
775 * to dynamically resize.
776 *
777 * @param initialCapacity The implementation performs internal
778 * sizing to accommodate this many elements.
779 * @throws IllegalArgumentException if the initial capacity of
780 * elements is negative
781 */
782 public ConcurrentHashMap(int initialCapacity) {
783 if (initialCapacity < 0)
784 throw new IllegalArgumentException();
785 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
786 MAXIMUM_CAPACITY :
787 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
788 this.sizeCtl = cap;
789 }
790
791 /**
792 * Creates a new map with the same mappings as the given map.
793 *
794 * @param m the map
795 */
796 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
797 this.sizeCtl = DEFAULT_CAPACITY;
798 putAll(m);
799 }
800
801 /**
802 * Creates a new, empty map with an initial table size based on
803 * the given number of elements ({@code initialCapacity}) and
804 * initial table density ({@code loadFactor}).
805 *
806 * @param initialCapacity the initial capacity. The implementation
807 * performs internal sizing to accommodate this many elements,
808 * given the specified load factor.
809 * @param loadFactor the load factor (table density) for
810 * establishing the initial table size
811 * @throws IllegalArgumentException if the initial capacity of
812 * elements is negative or the load factor is nonpositive
813 *
814 * @since 1.6
815 */
816 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
817 this(initialCapacity, loadFactor, 1);
818 }
819
820 /**
821 * Creates a new, empty map with an initial table size based on
822 * the given number of elements ({@code initialCapacity}), table
823 * density ({@code loadFactor}), and number of concurrently
824 * updating threads ({@code concurrencyLevel}).
825 *
826 * @param initialCapacity the initial capacity. The implementation
827 * performs internal sizing to accommodate this many elements,
828 * given the specified load factor.
829 * @param loadFactor the load factor (table density) for
830 * establishing the initial table size
831 * @param concurrencyLevel the estimated number of concurrently
832 * updating threads. The implementation may use this value as
833 * a sizing hint.
834 * @throws IllegalArgumentException if the initial capacity is
835 * negative or the load factor or concurrencyLevel are
836 * nonpositive
837 */
838 public ConcurrentHashMap(int initialCapacity,
839 float loadFactor, int concurrencyLevel) {
840 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
841 throw new IllegalArgumentException();
842 if (initialCapacity < concurrencyLevel) // Use at least as many bins
843 initialCapacity = concurrencyLevel; // as estimated threads
844 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
845 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
846 MAXIMUM_CAPACITY : tableSizeFor((int)size);
847 this.sizeCtl = cap;
848 }
849
850 // Original (since JDK1.2) Map methods
851
852 /**
853 * {@inheritDoc}
854 */
855 public int size() {
856 long n = sumCount();
857 return ((n < 0L) ? 0 :
858 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
859 (int)n);
860 }
861
862 /**
863 * {@inheritDoc}
864 */
865 public boolean isEmpty() {
866 return sumCount() <= 0L; // ignore transient negative values
867 }
868
869 /**
870 * Returns the value to which the specified key is mapped,
871 * or {@code null} if this map contains no mapping for the key.
872 *
873 * <p>More formally, if this map contains a mapping from a key
874 * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 * then this method returns {@code v}; otherwise it returns
876 * {@code null}. (There can be at most one such mapping.)
877 *
878 * @throws NullPointerException if the specified key is null
879 */
880 public V get(Object key) {
881 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
882 int h = spread(key.hashCode());
883 if ((tab = table) != null && (n = tab.length) > 0 &&
884 (e = tabAt(tab, (n - 1) & h)) != null) {
885 if ((eh = e.hash) == h) {
886 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
887 return e.val;
888 }
889 else if (eh < 0)
890 return (p = e.find(h, key)) != null ? p.val : null;
891 while ((e = e.next) != null) {
892 if (e.hash == h &&
893 ((ek = e.key) == key || (ek != null && key.equals(ek))))
894 return e.val;
895 }
896 }
897 return null;
898 }
899
900 /**
901 * Tests if the specified object is a key in this table.
902 *
903 * @param key possible key
904 * @return {@code true} if and only if the specified object
905 * is a key in this table, as determined by the
906 * {@code equals} method; {@code false} otherwise
907 * @throws NullPointerException if the specified key is null
908 */
909 public boolean containsKey(Object key) {
910 return get(key) != null;
911 }
912
913 /**
914 * Returns {@code true} if this map maps one or more keys to the
915 * specified value. Note: This method may require a full traversal
916 * of the map, and is much slower than method {@code containsKey}.
917 *
918 * @param value value whose presence in this map is to be tested
919 * @return {@code true} if this map maps one or more keys to the
920 * specified value
921 * @throws NullPointerException if the specified value is null
922 */
923 public boolean containsValue(Object value) {
924 if (value == null)
925 throw new NullPointerException();
926 Node<K,V>[] t;
927 if ((t = table) != null) {
928 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
929 for (Node<K,V> p; (p = it.advance()) != null; ) {
930 V v;
931 if ((v = p.val) == value || (v != null && value.equals(v)))
932 return true;
933 }
934 }
935 return false;
936 }
937
938 /**
939 * Maps the specified key to the specified value in this table.
940 * Neither the key nor the value can be null.
941 *
942 * <p>The value can be retrieved by calling the {@code get} method
943 * with a key that is equal to the original key.
944 *
945 * @param key key with which the specified value is to be associated
946 * @param value value to be associated with the specified key
947 * @return the previous value associated with {@code key}, or
948 * {@code null} if there was no mapping for {@code key}
949 * @throws NullPointerException if the specified key or value is null
950 */
951 public V put(K key, V value) {
952 return putVal(key, value, false);
953 }
954
955 /** Implementation for put and putIfAbsent */
956 final V putVal(K key, V value, boolean onlyIfAbsent) {
957 if (key == null || value == null) throw new NullPointerException();
958 int hash = spread(key.hashCode());
959 int binCount = 0;
960 for (Node<K,V>[] tab = table;;) {
961 Node<K,V> f; int n, i, fh;
962 if (tab == null || (n = tab.length) == 0)
963 tab = initTable();
964 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
965 if (casTabAt(tab, i, null,
966 new Node<K,V>(hash, key, value, null)))
967 break; // no lock when adding to empty bin
968 }
969 else if ((fh = f.hash) == MOVED)
970 tab = helpTransfer(tab, f);
971 else {
972 V oldVal = null;
973 synchronized (f) {
974 if (tabAt(tab, i) == f) {
975 if (fh >= 0) {
976 binCount = 1;
977 for (Node<K,V> e = f;; ++binCount) {
978 K ek;
979 if (e.hash == hash &&
980 ((ek = e.key) == key ||
981 (ek != null && key.equals(ek)))) {
982 oldVal = e.val;
983 if (!onlyIfAbsent)
984 e.val = value;
985 break;
986 }
987 Node<K,V> pred = e;
988 if ((e = e.next) == null) {
989 pred.next = new Node<K,V>(hash, key,
990 value, null);
991 break;
992 }
993 }
994 }
995 else if (f instanceof TreeBin) {
996 Node<K,V> p;
997 binCount = 2;
998 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
999 value)) != null) {
1000 oldVal = p.val;
1001 if (!onlyIfAbsent)
1002 p.val = value;
1003 }
1004 }
1005 }
1006 }
1007 if (binCount != 0) {
1008 if (binCount >= TREEIFY_THRESHOLD)
1009 treeifyBin(tab, i);
1010 if (oldVal != null)
1011 return oldVal;
1012 break;
1013 }
1014 }
1015 }
1016 addCount(1L, binCount);
1017 return null;
1018 }
1019
1020 /**
1021 * Copies all of the mappings from the specified map to this one.
1022 * These mappings replace any mappings that this map had for any of the
1023 * keys currently in the specified map.
1024 *
1025 * @param m mappings to be stored in this map
1026 */
1027 public void putAll(Map<? extends K, ? extends V> m) {
1028 tryPresize(m.size());
1029 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1030 putVal(e.getKey(), e.getValue(), false);
1031 }
1032
1033 /**
1034 * Removes the key (and its corresponding value) from this map.
1035 * This method does nothing if the key is not in the map.
1036 *
1037 * @param key the key that needs to be removed
1038 * @return the previous value associated with {@code key}, or
1039 * {@code null} if there was no mapping for {@code key}
1040 * @throws NullPointerException if the specified key is null
1041 */
1042 public V remove(Object key) {
1043 return replaceNode(key, null, null);
1044 }
1045
1046 /**
1047 * Implementation for the four public remove/replace methods:
1048 * Replaces node value with v, conditional upon match of cv if
1049 * non-null. If resulting value is null, delete.
1050 */
1051 final V replaceNode(Object key, V value, Object cv) {
1052 int hash = spread(key.hashCode());
1053 for (Node<K,V>[] tab = table;;) {
1054 Node<K,V> f; int n, i, fh;
1055 if (tab == null || (n = tab.length) == 0 ||
1056 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1057 break;
1058 else if ((fh = f.hash) == MOVED)
1059 tab = helpTransfer(tab, f);
1060 else {
1061 V oldVal = null;
1062 boolean validated = false;
1063 synchronized (f) {
1064 if (tabAt(tab, i) == f) {
1065 if (fh >= 0) {
1066 validated = true;
1067 for (Node<K,V> e = f, pred = null;;) {
1068 K ek;
1069 if (e.hash == hash &&
1070 ((ek = e.key) == key ||
1071 (ek != null && key.equals(ek)))) {
1072 V ev = e.val;
1073 if (cv == null || cv == ev ||
1074 (ev != null && cv.equals(ev))) {
1075 oldVal = ev;
1076 if (value != null)
1077 e.val = value;
1078 else if (pred != null)
1079 pred.next = e.next;
1080 else
1081 setTabAt(tab, i, e.next);
1082 }
1083 break;
1084 }
1085 pred = e;
1086 if ((e = e.next) == null)
1087 break;
1088 }
1089 }
1090 else if (f instanceof TreeBin) {
1091 validated = true;
1092 TreeBin<K,V> t = (TreeBin<K,V>)f;
1093 TreeNode<K,V> r, p;
1094 if ((r = t.root) != null &&
1095 (p = r.findTreeNode(hash, key, null)) != null) {
1096 V pv = p.val;
1097 if (cv == null || cv == pv ||
1098 (pv != null && cv.equals(pv))) {
1099 oldVal = pv;
1100 if (value != null)
1101 p.val = value;
1102 else if (t.removeTreeNode(p))
1103 setTabAt(tab, i, untreeify(t.first));
1104 }
1105 }
1106 }
1107 }
1108 }
1109 if (validated) {
1110 if (oldVal != null) {
1111 if (value == null)
1112 addCount(-1L, -1);
1113 return oldVal;
1114 }
1115 break;
1116 }
1117 }
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Removes all of the mappings from this map.
1124 */
1125 public void clear() {
1126 long delta = 0L; // negative number of deletions
1127 int i = 0;
1128 Node<K,V>[] tab = table;
1129 while (tab != null && i < tab.length) {
1130 int fh;
1131 Node<K,V> f = tabAt(tab, i);
1132 if (f == null)
1133 ++i;
1134 else if ((fh = f.hash) == MOVED) {
1135 tab = helpTransfer(tab, f);
1136 i = 0; // restart
1137 }
1138 else {
1139 synchronized (f) {
1140 if (tabAt(tab, i) == f) {
1141 Node<K,V> p = (fh >= 0 ? f :
1142 (f instanceof TreeBin) ?
1143 ((TreeBin<K,V>)f).first : null);
1144 while (p != null) {
1145 --delta;
1146 p = p.next;
1147 }
1148 setTabAt(tab, i++, null);
1149 }
1150 }
1151 }
1152 }
1153 if (delta != 0L)
1154 addCount(delta, -1);
1155 }
1156
1157 /**
1158 * Returns a {@link Set} view of the keys contained in this map.
1159 * The set is backed by the map, so changes to the map are
1160 * reflected in the set, and vice-versa. The set supports element
1161 * removal, which removes the corresponding mapping from this map,
1162 * via the {@code Iterator.remove}, {@code Set.remove},
1163 * {@code removeAll}, {@code retainAll}, and {@code clear}
1164 * operations. It does not support the {@code add} or
1165 * {@code addAll} operations.
1166 *
1167 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1168 * that will never throw {@link ConcurrentModificationException},
1169 * and guarantees to traverse elements as they existed upon
1170 * construction of the iterator, and may (but is not guaranteed to)
1171 * reflect any modifications subsequent to construction.
1172 *
1173 * @return the set view
1174 */
1175 public KeySetView<K,V> keySet() {
1176 KeySetView<K,V> ks;
1177 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1178 }
1179
1180 /**
1181 * Returns a {@link Collection} view of the values contained in this map.
1182 * The collection is backed by the map, so changes to the map are
1183 * reflected in the collection, and vice-versa. The collection
1184 * supports element removal, which removes the corresponding
1185 * mapping from this map, via the {@code Iterator.remove},
1186 * {@code Collection.remove}, {@code removeAll},
1187 * {@code retainAll}, and {@code clear} operations. It does not
1188 * support the {@code add} or {@code addAll} operations.
1189 *
1190 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1191 * that will never throw {@link ConcurrentModificationException},
1192 * and guarantees to traverse elements as they existed upon
1193 * construction of the iterator, and may (but is not guaranteed to)
1194 * reflect any modifications subsequent to construction.
1195 *
1196 * @return the collection view
1197 */
1198 public Collection<V> values() {
1199 ValuesView<K,V> vs;
1200 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1201 }
1202
1203 /**
1204 * Returns a {@link Set} view of the mappings contained in this map.
1205 * The set is backed by the map, so changes to the map are
1206 * reflected in the set, and vice-versa. The set supports element
1207 * removal, which removes the corresponding mapping from the map,
1208 * via the {@code Iterator.remove}, {@code Set.remove},
1209 * {@code removeAll}, {@code retainAll}, and {@code clear}
1210 * operations.
1211 *
1212 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1213 * that will never throw {@link ConcurrentModificationException},
1214 * and guarantees to traverse elements as they existed upon
1215 * construction of the iterator, and may (but is not guaranteed to)
1216 * reflect any modifications subsequent to construction.
1217 *
1218 * @return the set view
1219 */
1220 public Set<Map.Entry<K,V>> entrySet() {
1221 EntrySetView<K,V> es;
1222 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1223 }
1224
1225 /**
1226 * Returns the hash code value for this {@link Map}, i.e.,
1227 * the sum of, for each key-value pair in the map,
1228 * {@code key.hashCode() ^ value.hashCode()}.
1229 *
1230 * @return the hash code value for this map
1231 */
1232 public int hashCode() {
1233 int h = 0;
1234 Node<K,V>[] t;
1235 if ((t = table) != null) {
1236 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1237 for (Node<K,V> p; (p = it.advance()) != null; )
1238 h += p.key.hashCode() ^ p.val.hashCode();
1239 }
1240 return h;
1241 }
1242
1243 /**
1244 * Returns a string representation of this map. The string
1245 * representation consists of a list of key-value mappings (in no
1246 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1247 * mappings are separated by the characters {@code ", "} (comma
1248 * and space). Each key-value mapping is rendered as the key
1249 * followed by an equals sign ("{@code =}") followed by the
1250 * associated value.
1251 *
1252 * @return a string representation of this map
1253 */
1254 public String toString() {
1255 Node<K,V>[] t;
1256 int f = (t = table) == null ? 0 : t.length;
1257 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1258 StringBuilder sb = new StringBuilder();
1259 sb.append('{');
1260 Node<K,V> p;
1261 if ((p = it.advance()) != null) {
1262 for (;;) {
1263 K k = p.key;
1264 V v = p.val;
1265 sb.append(k == this ? "(this Map)" : k);
1266 sb.append('=');
1267 sb.append(v == this ? "(this Map)" : v);
1268 if ((p = it.advance()) == null)
1269 break;
1270 sb.append(',').append(' ');
1271 }
1272 }
1273 return sb.append('}').toString();
1274 }
1275
1276 /**
1277 * Compares the specified object with this map for equality.
1278 * Returns {@code true} if the given object is a map with the same
1279 * mappings as this map. This operation may return misleading
1280 * results if either map is concurrently modified during execution
1281 * of this method.
1282 *
1283 * @param o object to be compared for equality with this map
1284 * @return {@code true} if the specified object is equal to this map
1285 */
1286 public boolean equals(Object o) {
1287 if (o != this) {
1288 if (!(o instanceof Map))
1289 return false;
1290 Map<?,?> m = (Map<?,?>) o;
1291 Node<K,V>[] t;
1292 int f = (t = table) == null ? 0 : t.length;
1293 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 for (Node<K,V> p; (p = it.advance()) != null; ) {
1295 V val = p.val;
1296 Object v = m.get(p.key);
1297 if (v == null || (v != val && !v.equals(val)))
1298 return false;
1299 }
1300 for (Map.Entry<?,?> e : m.entrySet()) {
1301 Object mk, mv, v;
1302 if ((mk = e.getKey()) == null ||
1303 (mv = e.getValue()) == null ||
1304 (v = get(mk)) == null ||
1305 (mv != v && !mv.equals(v)))
1306 return false;
1307 }
1308 }
1309 return true;
1310 }
1311
1312 /**
1313 * Stripped-down version of helper class used in previous version,
1314 * declared for the sake of serialization compatibility
1315 */
1316 static class Segment<K,V> extends ReentrantLock implements Serializable {
1317 private static final long serialVersionUID = 2249069246763182397L;
1318 final float loadFactor;
1319 Segment(float lf) { this.loadFactor = lf; }
1320 }
1321
1322 /**
1323 * Saves the state of the {@code ConcurrentHashMap} instance to a
1324 * stream (i.e., serializes it).
1325 * @param s the stream
1326 * @serialData
1327 * the key (Object) and value (Object)
1328 * for each key-value mapping, followed by a null pair.
1329 * The key-value mappings are emitted in no particular order.
1330 */
1331 private void writeObject(java.io.ObjectOutputStream s)
1332 throws java.io.IOException {
1333 // For serialization compatibility
1334 // Emulate segment calculation from previous version of this class
1335 int sshift = 0;
1336 int ssize = 1;
1337 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1338 ++sshift;
1339 ssize <<= 1;
1340 }
1341 int segmentShift = 32 - sshift;
1342 int segmentMask = ssize - 1;
1343 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1344 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1345 for (int i = 0; i < segments.length; ++i)
1346 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1347 s.putFields().put("segments", segments);
1348 s.putFields().put("segmentShift", segmentShift);
1349 s.putFields().put("segmentMask", segmentMask);
1350 s.writeFields();
1351
1352 Node<K,V>[] t;
1353 if ((t = table) != null) {
1354 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1355 for (Node<K,V> p; (p = it.advance()) != null; ) {
1356 s.writeObject(p.key);
1357 s.writeObject(p.val);
1358 }
1359 }
1360 s.writeObject(null);
1361 s.writeObject(null);
1362 segments = null; // throw away
1363 }
1364
1365 /**
1366 * Reconstitutes the instance from a stream (that is, deserializes it).
1367 * @param s the stream
1368 */
1369 private void readObject(java.io.ObjectInputStream s)
1370 throws java.io.IOException, ClassNotFoundException {
1371 /*
1372 * To improve performance in typical cases, we create nodes
1373 * while reading, then place in table once size is known.
1374 * However, we must also validate uniqueness and deal with
1375 * overpopulated bins while doing so, which requires
1376 * specialized versions of putVal mechanics.
1377 */
1378 sizeCtl = -1; // force exclusion for table construction
1379 s.defaultReadObject();
1380 long size = 0L;
1381 Node<K,V> p = null;
1382 for (;;) {
1383 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1384 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1385 if (k != null && v != null) {
1386 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1387 ++size;
1388 }
1389 else
1390 break;
1391 }
1392 if (size == 0L)
1393 sizeCtl = 0;
1394 else {
1395 int n;
1396 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1397 n = MAXIMUM_CAPACITY;
1398 else {
1399 int sz = (int)size;
1400 n = tableSizeFor(sz + (sz >>> 1) + 1);
1401 }
1402 @SuppressWarnings({"rawtypes","unchecked"})
1403 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1404 int mask = n - 1;
1405 long added = 0L;
1406 while (p != null) {
1407 boolean insertAtFront;
1408 Node<K,V> next = p.next, first;
1409 int h = p.hash, j = h & mask;
1410 if ((first = tabAt(tab, j)) == null)
1411 insertAtFront = true;
1412 else {
1413 K k = p.key;
1414 if (first.hash < 0) {
1415 TreeBin<K,V> t = (TreeBin<K,V>)first;
1416 if (t.putTreeVal(h, k, p.val) == null)
1417 ++added;
1418 insertAtFront = false;
1419 }
1420 else {
1421 int binCount = 0;
1422 insertAtFront = true;
1423 Node<K,V> q; K qk;
1424 for (q = first; q != null; q = q.next) {
1425 if (q.hash == h &&
1426 ((qk = q.key) == k ||
1427 (qk != null && k.equals(qk)))) {
1428 insertAtFront = false;
1429 break;
1430 }
1431 ++binCount;
1432 }
1433 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1434 insertAtFront = false;
1435 ++added;
1436 p.next = first;
1437 TreeNode<K,V> hd = null, tl = null;
1438 for (q = p; q != null; q = q.next) {
1439 TreeNode<K,V> t = new TreeNode<K,V>
1440 (q.hash, q.key, q.val, null, null);
1441 if ((t.prev = tl) == null)
1442 hd = t;
1443 else
1444 tl.next = t;
1445 tl = t;
1446 }
1447 setTabAt(tab, j, new TreeBin<K,V>(hd));
1448 }
1449 }
1450 }
1451 if (insertAtFront) {
1452 ++added;
1453 p.next = first;
1454 setTabAt(tab, j, p);
1455 }
1456 p = next;
1457 }
1458 table = tab;
1459 sizeCtl = n - (n >>> 2);
1460 baseCount = added;
1461 }
1462 }
1463
1464 // ConcurrentMap methods
1465
1466 /**
1467 * {@inheritDoc}
1468 *
1469 * @return the previous value associated with the specified key,
1470 * or {@code null} if there was no mapping for the key
1471 * @throws NullPointerException if the specified key or value is null
1472 */
1473 public V putIfAbsent(K key, V value) {
1474 return putVal(key, value, true);
1475 }
1476
1477 /**
1478 * {@inheritDoc}
1479 *
1480 * @throws NullPointerException if the specified key is null
1481 */
1482 public boolean remove(Object key, Object value) {
1483 if (key == null)
1484 throw new NullPointerException();
1485 return value != null && replaceNode(key, null, value) != null;
1486 }
1487
1488 /**
1489 * {@inheritDoc}
1490 *
1491 * @throws NullPointerException if any of the arguments are null
1492 */
1493 public boolean replace(K key, V oldValue, V newValue) {
1494 if (key == null || oldValue == null || newValue == null)
1495 throw new NullPointerException();
1496 return replaceNode(key, newValue, oldValue) != null;
1497 }
1498
1499 /**
1500 * {@inheritDoc}
1501 *
1502 * @return the previous value associated with the specified key,
1503 * or {@code null} if there was no mapping for the key
1504 * @throws NullPointerException if the specified key or value is null
1505 */
1506 public V replace(K key, V value) {
1507 if (key == null || value == null)
1508 throw new NullPointerException();
1509 return replaceNode(key, value, null);
1510 }
1511
1512 // Overrides of JDK8+ Map extension method defaults
1513
1514 /**
1515 * Returns the value to which the specified key is mapped, or the
1516 * given default value if this map contains no mapping for the
1517 * key.
1518 *
1519 * @param key the key whose associated value is to be returned
1520 * @param defaultValue the value to return if this map contains
1521 * no mapping for the given key
1522 * @return the mapping for the key, if present; else the default value
1523 * @throws NullPointerException if the specified key is null
1524 */
1525 public V getOrDefault(Object key, V defaultValue) {
1526 V v;
1527 return (v = get(key)) == null ? defaultValue : v;
1528 }
1529
1530 public void forEach(BiConsumer<? super K, ? super V> action) {
1531 if (action == null) throw new NullPointerException();
1532 Node<K,V>[] t;
1533 if ((t = table) != null) {
1534 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1535 for (Node<K,V> p; (p = it.advance()) != null; ) {
1536 action.accept(p.key, p.val);
1537 }
1538 }
1539 }
1540
1541 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1542 if (function == null) throw new NullPointerException();
1543 Node<K,V>[] t;
1544 if ((t = table) != null) {
1545 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1546 for (Node<K,V> p; (p = it.advance()) != null; ) {
1547 V oldValue = p.val;
1548 for (K key = p.key;;) {
1549 V newValue = function.apply(key, oldValue);
1550 if (newValue == null)
1551 throw new NullPointerException();
1552 if (replaceNode(key, newValue, oldValue) != null ||
1553 (oldValue = get(key)) == null)
1554 break;
1555 }
1556 }
1557 }
1558 }
1559
1560 /**
1561 * If the specified key is not already associated with a value,
1562 * attempts to compute its value using the given mapping function
1563 * and enters it into this map unless {@code null}. The entire
1564 * method invocation is performed atomically, so the function is
1565 * applied at most once per key. Some attempted update operations
1566 * on this map by other threads may be blocked while computation
1567 * is in progress, so the computation should be short and simple,
1568 * and must not attempt to update any other mappings of this map.
1569 *
1570 * @param key key with which the specified value is to be associated
1571 * @param mappingFunction the function to compute a value
1572 * @return the current (existing or computed) value associated with
1573 * the specified key, or null if the computed value is null
1574 * @throws NullPointerException if the specified key or mappingFunction
1575 * is null
1576 * @throws IllegalStateException if the computation detectably
1577 * attempts a recursive update to this map that would
1578 * otherwise never complete
1579 * @throws RuntimeException or Error if the mappingFunction does so,
1580 * in which case the mapping is left unestablished
1581 */
1582 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1583 if (key == null || mappingFunction == null)
1584 throw new NullPointerException();
1585 int h = spread(key.hashCode());
1586 V val = null;
1587 int binCount = 0;
1588 for (Node<K,V>[] tab = table;;) {
1589 Node<K,V> f; int n, i, fh;
1590 if (tab == null || (n = tab.length) == 0)
1591 tab = initTable();
1592 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1593 Node<K,V> r = new ReservationNode<K,V>();
1594 synchronized (r) {
1595 if (casTabAt(tab, i, null, r)) {
1596 binCount = 1;
1597 Node<K,V> node = null;
1598 try {
1599 if ((val = mappingFunction.apply(key)) != null)
1600 node = new Node<K,V>(h, key, val, null);
1601 } finally {
1602 setTabAt(tab, i, node);
1603 }
1604 }
1605 }
1606 if (binCount != 0)
1607 break;
1608 }
1609 else if ((fh = f.hash) == MOVED)
1610 tab = helpTransfer(tab, f);
1611 else {
1612 boolean added = false;
1613 synchronized (f) {
1614 if (tabAt(tab, i) == f) {
1615 if (fh >= 0) {
1616 binCount = 1;
1617 for (Node<K,V> e = f;; ++binCount) {
1618 K ek; V ev;
1619 if (e.hash == h &&
1620 ((ek = e.key) == key ||
1621 (ek != null && key.equals(ek)))) {
1622 val = e.val;
1623 break;
1624 }
1625 Node<K,V> pred = e;
1626 if ((e = e.next) == null) {
1627 if ((val = mappingFunction.apply(key)) != null) {
1628 added = true;
1629 pred.next = new Node<K,V>(h, key, val, null);
1630 }
1631 break;
1632 }
1633 }
1634 }
1635 else if (f instanceof TreeBin) {
1636 binCount = 2;
1637 TreeBin<K,V> t = (TreeBin<K,V>)f;
1638 TreeNode<K,V> r, p;
1639 if ((r = t.root) != null &&
1640 (p = r.findTreeNode(h, key, null)) != null)
1641 val = p.val;
1642 else if ((val = mappingFunction.apply(key)) != null) {
1643 added = true;
1644 t.putTreeVal(h, key, val);
1645 }
1646 }
1647 }
1648 }
1649 if (binCount != 0) {
1650 if (binCount >= TREEIFY_THRESHOLD)
1651 treeifyBin(tab, i);
1652 if (!added)
1653 return val;
1654 break;
1655 }
1656 }
1657 }
1658 if (val != null)
1659 addCount(1L, binCount);
1660 return val;
1661 }
1662
1663 /**
1664 * If the value for the specified key is present, attempts to
1665 * compute a new mapping given the key and its current mapped
1666 * value. The entire method invocation is performed atomically.
1667 * Some attempted update operations on this map by other threads
1668 * may be blocked while computation is in progress, so the
1669 * computation should be short and simple, and must not attempt to
1670 * update any other mappings of this map.
1671 *
1672 * @param key key with which a value may be associated
1673 * @param remappingFunction the function to compute a value
1674 * @return the new value associated with the specified key, or null if none
1675 * @throws NullPointerException if the specified key or remappingFunction
1676 * is null
1677 * @throws IllegalStateException if the computation detectably
1678 * attempts a recursive update to this map that would
1679 * otherwise never complete
1680 * @throws RuntimeException or Error if the remappingFunction does so,
1681 * in which case the mapping is unchanged
1682 */
1683 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1684 if (key == null || remappingFunction == null)
1685 throw new NullPointerException();
1686 int h = spread(key.hashCode());
1687 V val = null;
1688 int delta = 0;
1689 int binCount = 0;
1690 for (Node<K,V>[] tab = table;;) {
1691 Node<K,V> f; int n, i, fh;
1692 if (tab == null || (n = tab.length) == 0)
1693 tab = initTable();
1694 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1695 break;
1696 else if ((fh = f.hash) == MOVED)
1697 tab = helpTransfer(tab, f);
1698 else {
1699 synchronized (f) {
1700 if (tabAt(tab, i) == f) {
1701 if (fh >= 0) {
1702 binCount = 1;
1703 for (Node<K,V> e = f, pred = null;; ++binCount) {
1704 K ek;
1705 if (e.hash == h &&
1706 ((ek = e.key) == key ||
1707 (ek != null && key.equals(ek)))) {
1708 val = remappingFunction.apply(key, e.val);
1709 if (val != null)
1710 e.val = val;
1711 else {
1712 delta = -1;
1713 Node<K,V> en = e.next;
1714 if (pred != null)
1715 pred.next = en;
1716 else
1717 setTabAt(tab, i, en);
1718 }
1719 break;
1720 }
1721 pred = e;
1722 if ((e = e.next) == null)
1723 break;
1724 }
1725 }
1726 else if (f instanceof TreeBin) {
1727 binCount = 2;
1728 TreeBin<K,V> t = (TreeBin<K,V>)f;
1729 TreeNode<K,V> r, p;
1730 if ((r = t.root) != null &&
1731 (p = r.findTreeNode(h, key, null)) != null) {
1732 val = remappingFunction.apply(key, p.val);
1733 if (val != null)
1734 p.val = val;
1735 else {
1736 delta = -1;
1737 if (t.removeTreeNode(p))
1738 setTabAt(tab, i, untreeify(t.first));
1739 }
1740 }
1741 }
1742 }
1743 }
1744 if (binCount != 0)
1745 break;
1746 }
1747 }
1748 if (delta != 0)
1749 addCount((long)delta, binCount);
1750 return val;
1751 }
1752
1753 /**
1754 * Attempts to compute a mapping for the specified key and its
1755 * current mapped value (or {@code null} if there is no current
1756 * mapping). The entire method invocation is performed atomically.
1757 * Some attempted update operations on this map by other threads
1758 * may be blocked while computation is in progress, so the
1759 * computation should be short and simple, and must not attempt to
1760 * update any other mappings of this Map.
1761 *
1762 * @param key key with which the specified value is to be associated
1763 * @param remappingFunction the function to compute a value
1764 * @return the new value associated with the specified key, or null if none
1765 * @throws NullPointerException if the specified key or remappingFunction
1766 * is null
1767 * @throws IllegalStateException if the computation detectably
1768 * attempts a recursive update to this map that would
1769 * otherwise never complete
1770 * @throws RuntimeException or Error if the remappingFunction does so,
1771 * in which case the mapping is unchanged
1772 */
1773 public V compute(K key,
1774 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1775 if (key == null || remappingFunction == null)
1776 throw new NullPointerException();
1777 int h = spread(key.hashCode());
1778 V val = null;
1779 int delta = 0;
1780 int binCount = 0;
1781 for (Node<K,V>[] tab = table;;) {
1782 Node<K,V> f; int n, i, fh;
1783 if (tab == null || (n = tab.length) == 0)
1784 tab = initTable();
1785 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1786 Node<K,V> r = new ReservationNode<K,V>();
1787 synchronized (r) {
1788 if (casTabAt(tab, i, null, r)) {
1789 binCount = 1;
1790 Node<K,V> node = null;
1791 try {
1792 if ((val = remappingFunction.apply(key, null)) != null) {
1793 delta = 1;
1794 node = new Node<K,V>(h, key, val, null);
1795 }
1796 } finally {
1797 setTabAt(tab, i, node);
1798 }
1799 }
1800 }
1801 if (binCount != 0)
1802 break;
1803 }
1804 else if ((fh = f.hash) == MOVED)
1805 tab = helpTransfer(tab, f);
1806 else {
1807 synchronized (f) {
1808 if (tabAt(tab, i) == f) {
1809 if (fh >= 0) {
1810 binCount = 1;
1811 for (Node<K,V> e = f, pred = null;; ++binCount) {
1812 K ek;
1813 if (e.hash == h &&
1814 ((ek = e.key) == key ||
1815 (ek != null && key.equals(ek)))) {
1816 val = remappingFunction.apply(key, e.val);
1817 if (val != null)
1818 e.val = val;
1819 else {
1820 delta = -1;
1821 Node<K,V> en = e.next;
1822 if (pred != null)
1823 pred.next = en;
1824 else
1825 setTabAt(tab, i, en);
1826 }
1827 break;
1828 }
1829 pred = e;
1830 if ((e = e.next) == null) {
1831 val = remappingFunction.apply(key, null);
1832 if (val != null) {
1833 delta = 1;
1834 pred.next =
1835 new Node<K,V>(h, key, val, null);
1836 }
1837 break;
1838 }
1839 }
1840 }
1841 else if (f instanceof TreeBin) {
1842 binCount = 1;
1843 TreeBin<K,V> t = (TreeBin<K,V>)f;
1844 TreeNode<K,V> r, p;
1845 if ((r = t.root) != null)
1846 p = r.findTreeNode(h, key, null);
1847 else
1848 p = null;
1849 V pv = (p == null) ? null : p.val;
1850 val = remappingFunction.apply(key, pv);
1851 if (val != null) {
1852 if (p != null)
1853 p.val = val;
1854 else {
1855 delta = 1;
1856 t.putTreeVal(h, key, val);
1857 }
1858 }
1859 else if (p != null) {
1860 delta = -1;
1861 if (t.removeTreeNode(p))
1862 setTabAt(tab, i, untreeify(t.first));
1863 }
1864 }
1865 }
1866 }
1867 if (binCount != 0) {
1868 if (binCount >= TREEIFY_THRESHOLD)
1869 treeifyBin(tab, i);
1870 break;
1871 }
1872 }
1873 }
1874 if (delta != 0)
1875 addCount((long)delta, binCount);
1876 return val;
1877 }
1878
1879 /**
1880 * If the specified key is not already associated with a
1881 * (non-null) value, associates it with the given value.
1882 * Otherwise, replaces the value with the results of the given
1883 * remapping function, or removes if {@code null}. The entire
1884 * method invocation is performed atomically. Some attempted
1885 * update operations on this map by other threads may be blocked
1886 * while computation is in progress, so the computation should be
1887 * short and simple, and must not attempt to update any other
1888 * mappings of this Map.
1889 *
1890 * @param key key with which the specified value is to be associated
1891 * @param value the value to use if absent
1892 * @param remappingFunction the function to recompute a value if present
1893 * @return the new value associated with the specified key, or null if none
1894 * @throws NullPointerException if the specified key or the
1895 * remappingFunction is null
1896 * @throws RuntimeException or Error if the remappingFunction does so,
1897 * in which case the mapping is unchanged
1898 */
1899 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1900 if (key == null || value == null || remappingFunction == null)
1901 throw new NullPointerException();
1902 int h = spread(key.hashCode());
1903 V val = null;
1904 int delta = 0;
1905 int binCount = 0;
1906 for (Node<K,V>[] tab = table;;) {
1907 Node<K,V> f; int n, i, fh;
1908 if (tab == null || (n = tab.length) == 0)
1909 tab = initTable();
1910 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1911 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1912 delta = 1;
1913 val = value;
1914 break;
1915 }
1916 }
1917 else if ((fh = f.hash) == MOVED)
1918 tab = helpTransfer(tab, f);
1919 else {
1920 synchronized (f) {
1921 if (tabAt(tab, i) == f) {
1922 if (fh >= 0) {
1923 binCount = 1;
1924 for (Node<K,V> e = f, pred = null;; ++binCount) {
1925 K ek;
1926 if (e.hash == h &&
1927 ((ek = e.key) == key ||
1928 (ek != null && key.equals(ek)))) {
1929 val = remappingFunction.apply(e.val, value);
1930 if (val != null)
1931 e.val = val;
1932 else {
1933 delta = -1;
1934 Node<K,V> en = e.next;
1935 if (pred != null)
1936 pred.next = en;
1937 else
1938 setTabAt(tab, i, en);
1939 }
1940 break;
1941 }
1942 pred = e;
1943 if ((e = e.next) == null) {
1944 delta = 1;
1945 val = value;
1946 pred.next =
1947 new Node<K,V>(h, key, val, null);
1948 break;
1949 }
1950 }
1951 }
1952 else if (f instanceof TreeBin) {
1953 binCount = 2;
1954 TreeBin<K,V> t = (TreeBin<K,V>)f;
1955 TreeNode<K,V> r = t.root;
1956 TreeNode<K,V> p = (r == null) ? null :
1957 r.findTreeNode(h, key, null);
1958 val = (p == null) ? value :
1959 remappingFunction.apply(p.val, value);
1960 if (val != null) {
1961 if (p != null)
1962 p.val = val;
1963 else {
1964 delta = 1;
1965 t.putTreeVal(h, key, val);
1966 }
1967 }
1968 else if (p != null) {
1969 delta = -1;
1970 if (t.removeTreeNode(p))
1971 setTabAt(tab, i, untreeify(t.first));
1972 }
1973 }
1974 }
1975 }
1976 if (binCount != 0) {
1977 if (binCount >= TREEIFY_THRESHOLD)
1978 treeifyBin(tab, i);
1979 break;
1980 }
1981 }
1982 }
1983 if (delta != 0)
1984 addCount((long)delta, binCount);
1985 return val;
1986 }
1987
1988 // Hashtable legacy methods
1989
1990 /**
1991 * Legacy method testing if some key maps into the specified value
1992 * in this table. This method is identical in functionality to
1993 * {@link #containsValue(Object)}, and exists solely to ensure
1994 * full compatibility with class {@link java.util.Hashtable},
1995 * which supported this method prior to introduction of the
1996 * Java Collections framework.
1997 *
1998 * @param value a value to search for
1999 * @return {@code true} if and only if some key maps to the
2000 * {@code value} argument in this table as
2001 * determined by the {@code equals} method;
2002 * {@code false} otherwise
2003 * @throws NullPointerException if the specified value is null
2004 */
2005 @Deprecated public boolean contains(Object value) {
2006 return containsValue(value);
2007 }
2008
2009 /**
2010 * Returns an enumeration of the keys in this table.
2011 *
2012 * @return an enumeration of the keys in this table
2013 * @see #keySet()
2014 */
2015 public Enumeration<K> keys() {
2016 Node<K,V>[] t;
2017 int f = (t = table) == null ? 0 : t.length;
2018 return new KeyIterator<K,V>(t, f, 0, f, this);
2019 }
2020
2021 /**
2022 * Returns an enumeration of the values in this table.
2023 *
2024 * @return an enumeration of the values in this table
2025 * @see #values()
2026 */
2027 public Enumeration<V> elements() {
2028 Node<K,V>[] t;
2029 int f = (t = table) == null ? 0 : t.length;
2030 return new ValueIterator<K,V>(t, f, 0, f, this);
2031 }
2032
2033 // ConcurrentHashMap-only methods
2034
2035 /**
2036 * Returns the number of mappings. This method should be used
2037 * instead of {@link #size} because a ConcurrentHashMap may
2038 * contain more mappings than can be represented as an int. The
2039 * value returned is an estimate; the actual count may differ if
2040 * there are concurrent insertions or removals.
2041 *
2042 * @return the number of mappings
2043 * @since 1.8
2044 */
2045 public long mappingCount() {
2046 long n = sumCount();
2047 return (n < 0L) ? 0L : n; // ignore transient negative values
2048 }
2049
2050 /**
2051 * Creates a new {@link Set} backed by a ConcurrentHashMap
2052 * from the given type to {@code Boolean.TRUE}.
2053 *
2054 * @param <K> the element type of the returned set
2055 * @return the new set
2056 * @since 1.8
2057 */
2058 public static <K> KeySetView<K,Boolean> newKeySet() {
2059 return new KeySetView<K,Boolean>
2060 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2061 }
2062
2063 /**
2064 * Creates a new {@link Set} backed by a ConcurrentHashMap
2065 * from the given type to {@code Boolean.TRUE}.
2066 *
2067 * @param initialCapacity The implementation performs internal
2068 * sizing to accommodate this many elements.
2069 * @param <K> the element type of the returned set
2070 * @throws IllegalArgumentException if the initial capacity of
2071 * elements is negative
2072 * @return the new set
2073 * @since 1.8
2074 */
2075 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2076 return new KeySetView<K,Boolean>
2077 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2078 }
2079
2080 /**
2081 * Returns a {@link Set} view of the keys in this map, using the
2082 * given common mapped value for any additions (i.e., {@link
2083 * Collection#add} and {@link Collection#addAll(Collection)}).
2084 * This is of course only appropriate if it is acceptable to use
2085 * the same value for all additions from this view.
2086 *
2087 * @param mappedValue the mapped value to use for any additions
2088 * @return the set view
2089 * @throws NullPointerException if the mappedValue is null
2090 */
2091 public KeySetView<K,V> keySet(V mappedValue) {
2092 if (mappedValue == null)
2093 throw new NullPointerException();
2094 return new KeySetView<K,V>(this, mappedValue);
2095 }
2096
2097 /* ---------------- Special Nodes -------------- */
2098
2099 /**
2100 * A node inserted at head of bins during transfer operations.
2101 */
2102 static final class ForwardingNode<K,V> extends Node<K,V> {
2103 final Node<K,V>[] nextTable;
2104 ForwardingNode(Node<K,V>[] tab) {
2105 super(MOVED, null, null, null);
2106 this.nextTable = tab;
2107 }
2108
2109 Node<K,V> find(int h, Object k) {
2110 // loop to avoid arbitrarily deep recursion on forwarding nodes
2111 outer: for (Node<K,V>[] tab = nextTable;;) {
2112 Node<K,V> e; int n;
2113 if (k == null || tab == null || (n = tab.length) == 0 ||
2114 (e = tabAt(tab, (n - 1) & h)) == null)
2115 return null;
2116 for (;;) {
2117 int eh; K ek;
2118 if ((eh = e.hash) == h &&
2119 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2120 return e;
2121 if (eh < 0) {
2122 if (e instanceof ForwardingNode) {
2123 tab = ((ForwardingNode<K,V>)e).nextTable;
2124 continue outer;
2125 }
2126 else
2127 return e.find(h, k);
2128 }
2129 if ((e = e.next) == null)
2130 return null;
2131 }
2132 }
2133 }
2134 }
2135
2136 /**
2137 * A place-holder node used in computeIfAbsent and compute
2138 */
2139 static final class ReservationNode<K,V> extends Node<K,V> {
2140 ReservationNode() {
2141 super(RESERVED, null, null, null);
2142 }
2143
2144 Node<K,V> find(int h, Object k) {
2145 return null;
2146 }
2147 }
2148
2149 /* ---------------- Table Initialization and Resizing -------------- */
2150
2151 /**
2152 * Initializes table, using the size recorded in sizeCtl.
2153 */
2154 private final Node<K,V>[] initTable() {
2155 Node<K,V>[] tab; int sc;
2156 while ((tab = table) == null || tab.length == 0) {
2157 if ((sc = sizeCtl) < 0)
2158 Thread.yield(); // lost initialization race; just spin
2159 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2160 try {
2161 if ((tab = table) == null || tab.length == 0) {
2162 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2163 @SuppressWarnings({"rawtypes","unchecked"})
2164 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2165 table = tab = nt;
2166 sc = n - (n >>> 2);
2167 }
2168 } finally {
2169 sizeCtl = sc;
2170 }
2171 break;
2172 }
2173 }
2174 return tab;
2175 }
2176
2177 /**
2178 * Adds to count, and if table is too small and not already
2179 * resizing, initiates transfer. If already resizing, helps
2180 * perform transfer if work is available. Rechecks occupancy
2181 * after a transfer to see if another resize is already needed
2182 * because resizings are lagging additions.
2183 *
2184 * @param x the count to add
2185 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2186 */
2187 private final void addCount(long x, int check) {
2188 CounterCell[] as; long b, s;
2189 if ((as = counterCells) != null ||
2190 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2191 CounterCell a; long v; int m;
2192 boolean uncontended = true;
2193 if (as == null || (m = as.length - 1) < 0 ||
2194 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2195 !(uncontended =
2196 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2197 fullAddCount(x, uncontended);
2198 return;
2199 }
2200 if (check <= 1)
2201 return;
2202 s = sumCount();
2203 }
2204 if (check >= 0) {
2205 Node<K,V>[] tab, nt; int sc;
2206 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2207 tab.length < MAXIMUM_CAPACITY) {
2208 if (sc < 0) {
2209 if (sc == -1 || transferIndex <= transferOrigin ||
2210 (nt = nextTable) == null)
2211 break;
2212 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2213 transfer(tab, nt);
2214 }
2215 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2216 transfer(tab, null);
2217 s = sumCount();
2218 }
2219 }
2220 }
2221
2222 /**
2223 * Helps transfer if a resize is in progress.
2224 */
2225 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2226 Node<K,V>[] nextTab; int sc;
2227 if ((f instanceof ForwardingNode) &&
2228 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2229 if (nextTab == nextTable && tab == table &&
2230 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2231 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2232 transfer(tab, nextTab);
2233 return nextTab;
2234 }
2235 return table;
2236 }
2237
2238 /**
2239 * Tries to presize table to accommodate the given number of elements.
2240 *
2241 * @param size number of elements (doesn't need to be perfectly accurate)
2242 */
2243 private final void tryPresize(int size) {
2244 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2245 tableSizeFor(size + (size >>> 1) + 1);
2246 int sc;
2247 while ((sc = sizeCtl) >= 0) {
2248 Node<K,V>[] tab = table; int n;
2249 if (tab == null || (n = tab.length) == 0) {
2250 n = (sc > c) ? sc : c;
2251 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2252 try {
2253 if (table == tab) {
2254 @SuppressWarnings({"rawtypes","unchecked"})
2255 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2256 table = nt;
2257 sc = n - (n >>> 2);
2258 }
2259 } finally {
2260 sizeCtl = sc;
2261 }
2262 }
2263 }
2264 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2265 break;
2266 else if (tab == table &&
2267 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2268 transfer(tab, null);
2269 }
2270 }
2271
2272 /**
2273 * Moves and/or copies the nodes in each bin to new table. See
2274 * above for explanation.
2275 */
2276 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2277 int n = tab.length, stride;
2278 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2279 stride = MIN_TRANSFER_STRIDE; // subdivide range
2280 if (nextTab == null) { // initiating
2281 try {
2282 @SuppressWarnings({"rawtypes","unchecked"})
2283 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2284 nextTab = nt;
2285 } catch (Throwable ex) { // try to cope with OOME
2286 sizeCtl = Integer.MAX_VALUE;
2287 return;
2288 }
2289 nextTable = nextTab;
2290 transferOrigin = n;
2291 transferIndex = n;
2292 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2293 for (int k = n; k > 0;) { // progressively reveal ready slots
2294 int nextk = (k > stride) ? k - stride : 0;
2295 for (int m = nextk; m < k; ++m)
2296 nextTab[m] = rev;
2297 for (int m = n + nextk; m < n + k; ++m)
2298 nextTab[m] = rev;
2299 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2300 }
2301 }
2302 int nextn = nextTab.length;
2303 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2304 boolean advance = true;
2305 boolean finishing = false; // to ensure sweep before committing nextTab
2306 for (int i = 0, bound = 0;;) {
2307 int nextIndex, nextBound, fh; Node<K,V> f;
2308 while (advance) {
2309 if (--i >= bound || finishing)
2310 advance = false;
2311 else if ((nextIndex = transferIndex) <= transferOrigin) {
2312 i = -1;
2313 advance = false;
2314 }
2315 else if (U.compareAndSwapInt
2316 (this, TRANSFERINDEX, nextIndex,
2317 nextBound = (nextIndex > stride ?
2318 nextIndex - stride : 0))) {
2319 bound = nextBound;
2320 i = nextIndex - 1;
2321 advance = false;
2322 }
2323 }
2324 if (i < 0 || i >= n || i + n >= nextn) {
2325 if (finishing) {
2326 nextTable = null;
2327 table = nextTab;
2328 sizeCtl = (n << 1) - (n >>> 1);
2329 return;
2330 }
2331 for (int sc;;) {
2332 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2333 if (sc != -1)
2334 return;
2335 finishing = advance = true;
2336 i = n; // recheck before commit
2337 break;
2338 }
2339 }
2340 }
2341 else if ((f = tabAt(tab, i)) == null) {
2342 if (casTabAt(tab, i, null, fwd)) {
2343 setTabAt(nextTab, i, null);
2344 setTabAt(nextTab, i + n, null);
2345 advance = true;
2346 }
2347 }
2348 else if ((fh = f.hash) == MOVED)
2349 advance = true; // already processed
2350 else {
2351 synchronized (f) {
2352 if (tabAt(tab, i) == f) {
2353 Node<K,V> ln, hn;
2354 if (fh >= 0) {
2355 int runBit = fh & n;
2356 Node<K,V> lastRun = f;
2357 for (Node<K,V> p = f.next; p != null; p = p.next) {
2358 int b = p.hash & n;
2359 if (b != runBit) {
2360 runBit = b;
2361 lastRun = p;
2362 }
2363 }
2364 if (runBit == 0) {
2365 ln = lastRun;
2366 hn = null;
2367 }
2368 else {
2369 hn = lastRun;
2370 ln = null;
2371 }
2372 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2373 int ph = p.hash; K pk = p.key; V pv = p.val;
2374 if ((ph & n) == 0)
2375 ln = new Node<K,V>(ph, pk, pv, ln);
2376 else
2377 hn = new Node<K,V>(ph, pk, pv, hn);
2378 }
2379 setTabAt(nextTab, i, ln);
2380 setTabAt(nextTab, i + n, hn);
2381 setTabAt(tab, i, fwd);
2382 advance = true;
2383 }
2384 else if (f instanceof TreeBin) {
2385 TreeBin<K,V> t = (TreeBin<K,V>)f;
2386 TreeNode<K,V> lo = null, loTail = null;
2387 TreeNode<K,V> hi = null, hiTail = null;
2388 int lc = 0, hc = 0;
2389 for (Node<K,V> e = t.first; e != null; e = e.next) {
2390 int h = e.hash;
2391 TreeNode<K,V> p = new TreeNode<K,V>
2392 (h, e.key, e.val, null, null);
2393 if ((h & n) == 0) {
2394 if ((p.prev = loTail) == null)
2395 lo = p;
2396 else
2397 loTail.next = p;
2398 loTail = p;
2399 ++lc;
2400 }
2401 else {
2402 if ((p.prev = hiTail) == null)
2403 hi = p;
2404 else
2405 hiTail.next = p;
2406 hiTail = p;
2407 ++hc;
2408 }
2409 }
2410 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2411 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2412 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2413 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2414 setTabAt(nextTab, i, ln);
2415 setTabAt(nextTab, i + n, hn);
2416 setTabAt(tab, i, fwd);
2417 advance = true;
2418 }
2419 }
2420 }
2421 }
2422 }
2423 }
2424
2425 /* ---------------- Counter support -------------- */
2426
2427 /**
2428 * A padded cell for distributing counts. Adapted from LongAdder
2429 * and Striped64. See their internal docs for explanation.
2430 */
2431 @sun.misc.Contended static final class CounterCell {
2432 volatile long value;
2433 CounterCell(long x) { value = x; }
2434 }
2435
2436 final long sumCount() {
2437 CounterCell[] as = counterCells; CounterCell a;
2438 long sum = baseCount;
2439 if (as != null) {
2440 for (int i = 0; i < as.length; ++i) {
2441 if ((a = as[i]) != null)
2442 sum += a.value;
2443 }
2444 }
2445 return sum;
2446 }
2447
2448 // See LongAdder version for explanation
2449 private final void fullAddCount(long x, boolean wasUncontended) {
2450 int h;
2451 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2452 ThreadLocalRandom.localInit(); // force initialization
2453 h = ThreadLocalRandom.getProbe();
2454 wasUncontended = true;
2455 }
2456 boolean collide = false; // True if last slot nonempty
2457 for (;;) {
2458 CounterCell[] as; CounterCell a; int n; long v;
2459 if ((as = counterCells) != null && (n = as.length) > 0) {
2460 if ((a = as[(n - 1) & h]) == null) {
2461 if (cellsBusy == 0) { // Try to attach new Cell
2462 CounterCell r = new CounterCell(x); // Optimistic create
2463 if (cellsBusy == 0 &&
2464 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2465 boolean created = false;
2466 try { // Recheck under lock
2467 CounterCell[] rs; int m, j;
2468 if ((rs = counterCells) != null &&
2469 (m = rs.length) > 0 &&
2470 rs[j = (m - 1) & h] == null) {
2471 rs[j] = r;
2472 created = true;
2473 }
2474 } finally {
2475 cellsBusy = 0;
2476 }
2477 if (created)
2478 break;
2479 continue; // Slot is now non-empty
2480 }
2481 }
2482 collide = false;
2483 }
2484 else if (!wasUncontended) // CAS already known to fail
2485 wasUncontended = true; // Continue after rehash
2486 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2487 break;
2488 else if (counterCells != as || n >= NCPU)
2489 collide = false; // At max size or stale
2490 else if (!collide)
2491 collide = true;
2492 else if (cellsBusy == 0 &&
2493 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2494 try {
2495 if (counterCells == as) {// Expand table unless stale
2496 CounterCell[] rs = new CounterCell[n << 1];
2497 for (int i = 0; i < n; ++i)
2498 rs[i] = as[i];
2499 counterCells = rs;
2500 }
2501 } finally {
2502 cellsBusy = 0;
2503 }
2504 collide = false;
2505 continue; // Retry with expanded table
2506 }
2507 h = ThreadLocalRandom.advanceProbe(h);
2508 }
2509 else if (cellsBusy == 0 && counterCells == as &&
2510 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2511 boolean init = false;
2512 try { // Initialize table
2513 if (counterCells == as) {
2514 CounterCell[] rs = new CounterCell[2];
2515 rs[h & 1] = new CounterCell(x);
2516 counterCells = rs;
2517 init = true;
2518 }
2519 } finally {
2520 cellsBusy = 0;
2521 }
2522 if (init)
2523 break;
2524 }
2525 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2526 break; // Fall back on using base
2527 }
2528 }
2529
2530 /* ---------------- Conversion from/to TreeBins -------------- */
2531
2532 /**
2533 * Replaces all linked nodes in bin at given index unless table is
2534 * too small, in which case resizes instead.
2535 */
2536 private final void treeifyBin(Node<K,V>[] tab, int index) {
2537 Node<K,V> b; int n, sc;
2538 if (tab != null) {
2539 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2540 if (tab == table && (sc = sizeCtl) >= 0 &&
2541 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2542 transfer(tab, null);
2543 }
2544 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2545 synchronized (b) {
2546 if (tabAt(tab, index) == b) {
2547 TreeNode<K,V> hd = null, tl = null;
2548 for (Node<K,V> e = b; e != null; e = e.next) {
2549 TreeNode<K,V> p =
2550 new TreeNode<K,V>(e.hash, e.key, e.val,
2551 null, null);
2552 if ((p.prev = tl) == null)
2553 hd = p;
2554 else
2555 tl.next = p;
2556 tl = p;
2557 }
2558 setTabAt(tab, index, new TreeBin<K,V>(hd));
2559 }
2560 }
2561 }
2562 }
2563 }
2564
2565 /**
2566 * Returns a list on non-TreeNodes replacing those in given list.
2567 */
2568 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2569 Node<K,V> hd = null, tl = null;
2570 for (Node<K,V> q = b; q != null; q = q.next) {
2571 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2572 if (tl == null)
2573 hd = p;
2574 else
2575 tl.next = p;
2576 tl = p;
2577 }
2578 return hd;
2579 }
2580
2581 /* ---------------- TreeNodes -------------- */
2582
2583 /**
2584 * Nodes for use in TreeBins
2585 */
2586 static final class TreeNode<K,V> extends Node<K,V> {
2587 TreeNode<K,V> parent; // red-black tree links
2588 TreeNode<K,V> left;
2589 TreeNode<K,V> right;
2590 TreeNode<K,V> prev; // needed to unlink next upon deletion
2591 boolean red;
2592
2593 TreeNode(int hash, K key, V val, Node<K,V> next,
2594 TreeNode<K,V> parent) {
2595 super(hash, key, val, next);
2596 this.parent = parent;
2597 }
2598
2599 Node<K,V> find(int h, Object k) {
2600 return findTreeNode(h, k, null);
2601 }
2602
2603 /**
2604 * Returns the TreeNode (or null if not found) for the given key
2605 * starting at given root.
2606 */
2607 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2608 if (k != null) {
2609 TreeNode<K,V> p = this;
2610 do {
2611 int ph, dir; K pk; TreeNode<K,V> q;
2612 TreeNode<K,V> pl = p.left, pr = p.right;
2613 if ((ph = p.hash) > h)
2614 p = pl;
2615 else if (ph < h)
2616 p = pr;
2617 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2618 return p;
2619 else if (pl == null && pr == null)
2620 break;
2621 else if ((kc != null ||
2622 (kc = comparableClassFor(k)) != null) &&
2623 (dir = compareComparables(kc, k, pk)) != 0)
2624 p = (dir < 0) ? pl : pr;
2625 else if (pl == null)
2626 p = pr;
2627 else if (pr == null ||
2628 (q = pr.findTreeNode(h, k, kc)) == null)
2629 p = pl;
2630 else
2631 return q;
2632 } while (p != null);
2633 }
2634 return null;
2635 }
2636 }
2637
2638 /* ---------------- TreeBins -------------- */
2639
2640 /**
2641 * TreeNodes used at the heads of bins. TreeBins do not hold user
2642 * keys or values, but instead point to list of TreeNodes and
2643 * their root. They also maintain a parasitic read-write lock
2644 * forcing writers (who hold bin lock) to wait for readers (who do
2645 * not) to complete before tree restructuring operations.
2646 */
2647 static final class TreeBin<K,V> extends Node<K,V> {
2648 TreeNode<K,V> root;
2649 volatile TreeNode<K,V> first;
2650 volatile Thread waiter;
2651 volatile int lockState;
2652 // values for lockState
2653 static final int WRITER = 1; // set while holding write lock
2654 static final int WAITER = 2; // set when waiting for write lock
2655 static final int READER = 4; // increment value for setting read lock
2656
2657 /**
2658 * Creates bin with initial set of nodes headed by b.
2659 */
2660 TreeBin(TreeNode<K,V> b) {
2661 super(TREEBIN, null, null, null);
2662 this.first = b;
2663 TreeNode<K,V> r = null;
2664 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2665 next = (TreeNode<K,V>)x.next;
2666 x.left = x.right = null;
2667 if (r == null) {
2668 x.parent = null;
2669 x.red = false;
2670 r = x;
2671 }
2672 else {
2673 Object key = x.key;
2674 int hash = x.hash;
2675 Class<?> kc = null;
2676 for (TreeNode<K,V> p = r;;) {
2677 int dir, ph;
2678 if ((ph = p.hash) > hash)
2679 dir = -1;
2680 else if (ph < hash)
2681 dir = 1;
2682 else if ((kc != null ||
2683 (kc = comparableClassFor(key)) != null))
2684 dir = compareComparables(kc, key, p.key);
2685 else
2686 dir = 0;
2687 TreeNode<K,V> xp = p;
2688 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2689 x.parent = xp;
2690 if (dir <= 0)
2691 xp.left = x;
2692 else
2693 xp.right = x;
2694 r = balanceInsertion(r, x);
2695 break;
2696 }
2697 }
2698 }
2699 }
2700 this.root = r;
2701 }
2702
2703 /**
2704 * Acquires write lock for tree restructuring.
2705 */
2706 private final void lockRoot() {
2707 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2708 contendedLock(); // offload to separate method
2709 }
2710
2711 /**
2712 * Releases write lock for tree restructuring.
2713 */
2714 private final void unlockRoot() {
2715 lockState = 0;
2716 }
2717
2718 /**
2719 * Possibly blocks awaiting root lock.
2720 */
2721 private final void contendedLock() {
2722 boolean waiting = false;
2723 for (int s;;) {
2724 if (((s = lockState) & WRITER) == 0) {
2725 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2726 if (waiting)
2727 waiter = null;
2728 return;
2729 }
2730 }
2731 else if ((s | WAITER) == 0) {
2732 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2733 waiting = true;
2734 waiter = Thread.currentThread();
2735 }
2736 }
2737 else if (waiting)
2738 LockSupport.park(this);
2739 }
2740 }
2741
2742 /**
2743 * Returns matching node or null if none. Tries to search
2744 * using tree comparisons from root, but continues linear
2745 * search when lock not available.
2746 */
2747 final Node<K,V> find(int h, Object k) {
2748 if (k != null) {
2749 for (Node<K,V> e = first; e != null; e = e.next) {
2750 int s; K ek;
2751 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2752 if (e.hash == h &&
2753 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2754 return e;
2755 }
2756 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2757 s + READER)) {
2758 TreeNode<K,V> r, p;
2759 try {
2760 p = ((r = root) == null ? null :
2761 r.findTreeNode(h, k, null));
2762 } finally {
2763 Thread w;
2764 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2765 (READER|WAITER) && (w = waiter) != null)
2766 LockSupport.unpark(w);
2767 }
2768 return p;
2769 }
2770 }
2771 }
2772 return null;
2773 }
2774
2775 /**
2776 * Finds or adds a node.
2777 * @return null if added
2778 */
2779 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2780 Class<?> kc = null;
2781 for (TreeNode<K,V> p = root;;) {
2782 int dir, ph; K pk; TreeNode<K,V> q, pr;
2783 if (p == null) {
2784 first = root = new TreeNode<K,V>(h, k, v, null, null);
2785 break;
2786 }
2787 else if ((ph = p.hash) > h)
2788 dir = -1;
2789 else if (ph < h)
2790 dir = 1;
2791 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2792 return p;
2793 else if ((kc == null &&
2794 (kc = comparableClassFor(k)) == null) ||
2795 (dir = compareComparables(kc, k, pk)) == 0) {
2796 if (p.left == null)
2797 dir = 1;
2798 else if ((pr = p.right) == null ||
2799 (q = pr.findTreeNode(h, k, kc)) == null)
2800 dir = -1;
2801 else
2802 return q;
2803 }
2804 TreeNode<K,V> xp = p;
2805 if ((p = (dir < 0) ? p.left : p.right) == null) {
2806 TreeNode<K,V> x, f = first;
2807 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2808 if (f != null)
2809 f.prev = x;
2810 if (dir < 0)
2811 xp.left = x;
2812 else
2813 xp.right = x;
2814 if (!xp.red)
2815 x.red = true;
2816 else {
2817 lockRoot();
2818 try {
2819 root = balanceInsertion(root, x);
2820 } finally {
2821 unlockRoot();
2822 }
2823 }
2824 break;
2825 }
2826 }
2827 assert checkInvariants(root);
2828 return null;
2829 }
2830
2831 /**
2832 * Removes the given node, that must be present before this
2833 * call. This is messier than typical red-black deletion code
2834 * because we cannot swap the contents of an interior node
2835 * with a leaf successor that is pinned by "next" pointers
2836 * that are accessible independently of lock. So instead we
2837 * swap the tree linkages.
2838 *
2839 * @return true if now too small, so should be untreeified
2840 */
2841 final boolean removeTreeNode(TreeNode<K,V> p) {
2842 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2843 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2844 TreeNode<K,V> r, rl;
2845 if (pred == null)
2846 first = next;
2847 else
2848 pred.next = next;
2849 if (next != null)
2850 next.prev = pred;
2851 if (first == null) {
2852 root = null;
2853 return true;
2854 }
2855 if ((r = root) == null || r.right == null || // too small
2856 (rl = r.left) == null || rl.left == null)
2857 return true;
2858 lockRoot();
2859 try {
2860 TreeNode<K,V> replacement;
2861 TreeNode<K,V> pl = p.left;
2862 TreeNode<K,V> pr = p.right;
2863 if (pl != null && pr != null) {
2864 TreeNode<K,V> s = pr, sl;
2865 while ((sl = s.left) != null) // find successor
2866 s = sl;
2867 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2868 TreeNode<K,V> sr = s.right;
2869 TreeNode<K,V> pp = p.parent;
2870 if (s == pr) { // p was s's direct parent
2871 p.parent = s;
2872 s.right = p;
2873 }
2874 else {
2875 TreeNode<K,V> sp = s.parent;
2876 if ((p.parent = sp) != null) {
2877 if (s == sp.left)
2878 sp.left = p;
2879 else
2880 sp.right = p;
2881 }
2882 if ((s.right = pr) != null)
2883 pr.parent = s;
2884 }
2885 p.left = null;
2886 if ((p.right = sr) != null)
2887 sr.parent = p;
2888 if ((s.left = pl) != null)
2889 pl.parent = s;
2890 if ((s.parent = pp) == null)
2891 r = s;
2892 else if (p == pp.left)
2893 pp.left = s;
2894 else
2895 pp.right = s;
2896 if (sr != null)
2897 replacement = sr;
2898 else
2899 replacement = p;
2900 }
2901 else if (pl != null)
2902 replacement = pl;
2903 else if (pr != null)
2904 replacement = pr;
2905 else
2906 replacement = p;
2907 if (replacement != p) {
2908 TreeNode<K,V> pp = replacement.parent = p.parent;
2909 if (pp == null)
2910 r = replacement;
2911 else if (p == pp.left)
2912 pp.left = replacement;
2913 else
2914 pp.right = replacement;
2915 p.left = p.right = p.parent = null;
2916 }
2917
2918 root = (p.red) ? r : balanceDeletion(r, replacement);
2919
2920 if (p == replacement) { // detach pointers
2921 TreeNode<K,V> pp;
2922 if ((pp = p.parent) != null) {
2923 if (p == pp.left)
2924 pp.left = null;
2925 else if (p == pp.right)
2926 pp.right = null;
2927 p.parent = null;
2928 }
2929 }
2930 } finally {
2931 unlockRoot();
2932 }
2933 assert checkInvariants(root);
2934 return false;
2935 }
2936
2937 /* ------------------------------------------------------------ */
2938 // Red-black tree methods, all adapted from CLR
2939
2940 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2941 TreeNode<K,V> p) {
2942 TreeNode<K,V> r, pp, rl;
2943 if (p != null && (r = p.right) != null) {
2944 if ((rl = p.right = r.left) != null)
2945 rl.parent = p;
2946 if ((pp = r.parent = p.parent) == null)
2947 (root = r).red = false;
2948 else if (pp.left == p)
2949 pp.left = r;
2950 else
2951 pp.right = r;
2952 r.left = p;
2953 p.parent = r;
2954 }
2955 return root;
2956 }
2957
2958 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2959 TreeNode<K,V> p) {
2960 TreeNode<K,V> l, pp, lr;
2961 if (p != null && (l = p.left) != null) {
2962 if ((lr = p.left = l.right) != null)
2963 lr.parent = p;
2964 if ((pp = l.parent = p.parent) == null)
2965 (root = l).red = false;
2966 else if (pp.right == p)
2967 pp.right = l;
2968 else
2969 pp.left = l;
2970 l.right = p;
2971 p.parent = l;
2972 }
2973 return root;
2974 }
2975
2976 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2977 TreeNode<K,V> x) {
2978 x.red = true;
2979 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2980 if ((xp = x.parent) == null) {
2981 x.red = false;
2982 return x;
2983 }
2984 else if (!xp.red || (xpp = xp.parent) == null)
2985 return root;
2986 if (xp == (xppl = xpp.left)) {
2987 if ((xppr = xpp.right) != null && xppr.red) {
2988 xppr.red = false;
2989 xp.red = false;
2990 xpp.red = true;
2991 x = xpp;
2992 }
2993 else {
2994 if (x == xp.right) {
2995 root = rotateLeft(root, x = xp);
2996 xpp = (xp = x.parent) == null ? null : xp.parent;
2997 }
2998 if (xp != null) {
2999 xp.red = false;
3000 if (xpp != null) {
3001 xpp.red = true;
3002 root = rotateRight(root, xpp);
3003 }
3004 }
3005 }
3006 }
3007 else {
3008 if (xppl != null && xppl.red) {
3009 xppl.red = false;
3010 xp.red = false;
3011 xpp.red = true;
3012 x = xpp;
3013 }
3014 else {
3015 if (x == xp.left) {
3016 root = rotateRight(root, x = xp);
3017 xpp = (xp = x.parent) == null ? null : xp.parent;
3018 }
3019 if (xp != null) {
3020 xp.red = false;
3021 if (xpp != null) {
3022 xpp.red = true;
3023 root = rotateLeft(root, xpp);
3024 }
3025 }
3026 }
3027 }
3028 }
3029 }
3030
3031 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3032 TreeNode<K,V> x) {
3033 for (TreeNode<K,V> xp, xpl, xpr;;) {
3034 if (x == null || x == root)
3035 return root;
3036 else if ((xp = x.parent) == null) {
3037 x.red = false;
3038 return x;
3039 }
3040 else if (x.red) {
3041 x.red = false;
3042 return root;
3043 }
3044 else if ((xpl = xp.left) == x) {
3045 if ((xpr = xp.right) != null && xpr.red) {
3046 xpr.red = false;
3047 xp.red = true;
3048 root = rotateLeft(root, xp);
3049 xpr = (xp = x.parent) == null ? null : xp.right;
3050 }
3051 if (xpr == null)
3052 x = xp;
3053 else {
3054 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3055 if ((sr == null || !sr.red) &&
3056 (sl == null || !sl.red)) {
3057 xpr.red = true;
3058 x = xp;
3059 }
3060 else {
3061 if (sr == null || !sr.red) {
3062 if (sl != null)
3063 sl.red = false;
3064 xpr.red = true;
3065 root = rotateRight(root, xpr);
3066 xpr = (xp = x.parent) == null ?
3067 null : xp.right;
3068 }
3069 if (xpr != null) {
3070 xpr.red = (xp == null) ? false : xp.red;
3071 if ((sr = xpr.right) != null)
3072 sr.red = false;
3073 }
3074 if (xp != null) {
3075 xp.red = false;
3076 root = rotateLeft(root, xp);
3077 }
3078 x = root;
3079 }
3080 }
3081 }
3082 else { // symmetric
3083 if (xpl != null && xpl.red) {
3084 xpl.red = false;
3085 xp.red = true;
3086 root = rotateRight(root, xp);
3087 xpl = (xp = x.parent) == null ? null : xp.left;
3088 }
3089 if (xpl == null)
3090 x = xp;
3091 else {
3092 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3093 if ((sl == null || !sl.red) &&
3094 (sr == null || !sr.red)) {
3095 xpl.red = true;
3096 x = xp;
3097 }
3098 else {
3099 if (sl == null || !sl.red) {
3100 if (sr != null)
3101 sr.red = false;
3102 xpl.red = true;
3103 root = rotateLeft(root, xpl);
3104 xpl = (xp = x.parent) == null ?
3105 null : xp.left;
3106 }
3107 if (xpl != null) {
3108 xpl.red = (xp == null) ? false : xp.red;
3109 if ((sl = xpl.left) != null)
3110 sl.red = false;
3111 }
3112 if (xp != null) {
3113 xp.red = false;
3114 root = rotateRight(root, xp);
3115 }
3116 x = root;
3117 }
3118 }
3119 }
3120 }
3121 }
3122
3123 /**
3124 * Recursive invariant check
3125 */
3126 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3127 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3128 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3129 if (tb != null && tb.next != t)
3130 return false;
3131 if (tn != null && tn.prev != t)
3132 return false;
3133 if (tp != null && t != tp.left && t != tp.right)
3134 return false;
3135 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3136 return false;
3137 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3138 return false;
3139 if (t.red && tl != null && tl.red && tr != null && tr.red)
3140 return false;
3141 if (tl != null && !checkInvariants(tl))
3142 return false;
3143 if (tr != null && !checkInvariants(tr))
3144 return false;
3145 return true;
3146 }
3147
3148 private static final sun.misc.Unsafe U;
3149 private static final long LOCKSTATE;
3150 static {
3151 try {
3152 U = sun.misc.Unsafe.getUnsafe();
3153 Class<?> k = TreeBin.class;
3154 LOCKSTATE = U.objectFieldOffset
3155 (k.getDeclaredField("lockState"));
3156 } catch (Exception e) {
3157 throw new Error(e);
3158 }
3159 }
3160 }
3161
3162 /* ----------------Table Traversal -------------- */
3163
3164 /**
3165 * Encapsulates traversal for methods such as containsValue; also
3166 * serves as a base class for other iterators and spliterators.
3167 *
3168 * Method advance visits once each still-valid node that was
3169 * reachable upon iterator construction. It might miss some that
3170 * were added to a bin after the bin was visited, which is OK wrt
3171 * consistency guarantees. Maintaining this property in the face
3172 * of possible ongoing resizes requires a fair amount of
3173 * bookkeeping state that is difficult to optimize away amidst
3174 * volatile accesses. Even so, traversal maintains reasonable
3175 * throughput.
3176 *
3177 * Normally, iteration proceeds bin-by-bin traversing lists.
3178 * However, if the table has been resized, then all future steps
3179 * must traverse both the bin at the current index as well as at
3180 * (index + baseSize); and so on for further resizings. To
3181 * paranoically cope with potential sharing by users of iterators
3182 * across threads, iteration terminates if a bounds checks fails
3183 * for a table read.
3184 */
3185 static class Traverser<K,V> {
3186 Node<K,V>[] tab; // current table; updated if resized
3187 Node<K,V> next; // the next entry to use
3188 int index; // index of bin to use next
3189 int baseIndex; // current index of initial table
3190 int baseLimit; // index bound for initial table
3191 final int baseSize; // initial table size
3192
3193 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3194 this.tab = tab;
3195 this.baseSize = size;
3196 this.baseIndex = this.index = index;
3197 this.baseLimit = limit;
3198 this.next = null;
3199 }
3200
3201 /**
3202 * Advances if possible, returning next valid node, or null if none.
3203 */
3204 final Node<K,V> advance() {
3205 Node<K,V> e;
3206 if ((e = next) != null)
3207 e = e.next;
3208 for (;;) {
3209 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3210 if (e != null)
3211 return next = e;
3212 if (baseIndex >= baseLimit || (t = tab) == null ||
3213 (n = t.length) <= (i = index) || i < 0)
3214 return next = null;
3215 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3216 if (e instanceof ForwardingNode) {
3217 tab = ((ForwardingNode<K,V>)e).nextTable;
3218 e = null;
3219 continue;
3220 }
3221 else if (e instanceof TreeBin)
3222 e = ((TreeBin<K,V>)e).first;
3223 else
3224 e = null;
3225 }
3226 if ((index += baseSize) >= n)
3227 index = ++baseIndex; // visit upper slots if present
3228 }
3229 }
3230 }
3231
3232 /**
3233 * Base of key, value, and entry Iterators. Adds fields to
3234 * Traverser to support iterator.remove.
3235 */
3236 static class BaseIterator<K,V> extends Traverser<K,V> {
3237 final ConcurrentHashMap<K,V> map;
3238 Node<K,V> lastReturned;
3239 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3240 ConcurrentHashMap<K,V> map) {
3241 super(tab, size, index, limit);
3242 this.map = map;
3243 advance();
3244 }
3245
3246 public final boolean hasNext() { return next != null; }
3247 public final boolean hasMoreElements() { return next != null; }
3248
3249 public final void remove() {
3250 Node<K,V> p;
3251 if ((p = lastReturned) == null)
3252 throw new IllegalStateException();
3253 lastReturned = null;
3254 map.replaceNode(p.key, null, null);
3255 }
3256 }
3257
3258 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3259 implements Iterator<K>, Enumeration<K> {
3260 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3261 ConcurrentHashMap<K,V> map) {
3262 super(tab, index, size, limit, map);
3263 }
3264
3265 public final K next() {
3266 Node<K,V> p;
3267 if ((p = next) == null)
3268 throw new NoSuchElementException();
3269 K k = p.key;
3270 lastReturned = p;
3271 advance();
3272 return k;
3273 }
3274
3275 public final K nextElement() { return next(); }
3276 }
3277
3278 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3279 implements Iterator<V>, Enumeration<V> {
3280 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3281 ConcurrentHashMap<K,V> map) {
3282 super(tab, index, size, limit, map);
3283 }
3284
3285 public final V next() {
3286 Node<K,V> p;
3287 if ((p = next) == null)
3288 throw new NoSuchElementException();
3289 V v = p.val;
3290 lastReturned = p;
3291 advance();
3292 return v;
3293 }
3294
3295 public final V nextElement() { return next(); }
3296 }
3297
3298 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3299 implements Iterator<Map.Entry<K,V>> {
3300 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3301 ConcurrentHashMap<K,V> map) {
3302 super(tab, index, size, limit, map);
3303 }
3304
3305 public final Map.Entry<K,V> next() {
3306 Node<K,V> p;
3307 if ((p = next) == null)
3308 throw new NoSuchElementException();
3309 K k = p.key;
3310 V v = p.val;
3311 lastReturned = p;
3312 advance();
3313 return new MapEntry<K,V>(k, v, map);
3314 }
3315 }
3316
3317 /**
3318 * Exported Entry for EntryIterator
3319 */
3320 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3321 final K key; // non-null
3322 V val; // non-null
3323 final ConcurrentHashMap<K,V> map;
3324 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3325 this.key = key;
3326 this.val = val;
3327 this.map = map;
3328 }
3329 public K getKey() { return key; }
3330 public V getValue() { return val; }
3331 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3332 public String toString() { return key + "=" + val; }
3333
3334 public boolean equals(Object o) {
3335 Object k, v; Map.Entry<?,?> e;
3336 return ((o instanceof Map.Entry) &&
3337 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3338 (v = e.getValue()) != null &&
3339 (k == key || k.equals(key)) &&
3340 (v == val || v.equals(val)));
3341 }
3342
3343 /**
3344 * Sets our entry's value and writes through to the map. The
3345 * value to return is somewhat arbitrary here. Since we do not
3346 * necessarily track asynchronous changes, the most recent
3347 * "previous" value could be different from what we return (or
3348 * could even have been removed, in which case the put will
3349 * re-establish). We do not and cannot guarantee more.
3350 */
3351 public V setValue(V value) {
3352 if (value == null) throw new NullPointerException();
3353 V v = val;
3354 val = value;
3355 map.put(key, value);
3356 return v;
3357 }
3358 }
3359
3360 static final class KeySpliterator<K,V> extends Traverser<K,V>
3361 implements Spliterator<K> {
3362 long est; // size estimate
3363 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3364 long est) {
3365 super(tab, size, index, limit);
3366 this.est = est;
3367 }
3368
3369 public Spliterator<K> trySplit() {
3370 int i, f, h;
3371 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3372 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3373 f, est >>>= 1);
3374 }
3375
3376 public void forEachRemaining(Consumer<? super K> action) {
3377 if (action == null) throw new NullPointerException();
3378 for (Node<K,V> p; (p = advance()) != null;)
3379 action.accept(p.key);
3380 }
3381
3382 public boolean tryAdvance(Consumer<? super K> action) {
3383 if (action == null) throw new NullPointerException();
3384 Node<K,V> p;
3385 if ((p = advance()) == null)
3386 return false;
3387 action.accept(p.key);
3388 return true;
3389 }
3390
3391 public long estimateSize() { return est; }
3392
3393 public int characteristics() {
3394 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3395 Spliterator.NONNULL;
3396 }
3397 }
3398
3399 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3400 implements Spliterator<V> {
3401 long est; // size estimate
3402 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3403 long est) {
3404 super(tab, size, index, limit);
3405 this.est = est;
3406 }
3407
3408 public Spliterator<V> trySplit() {
3409 int i, f, h;
3410 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3411 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3412 f, est >>>= 1);
3413 }
3414
3415 public void forEachRemaining(Consumer<? super V> action) {
3416 if (action == null) throw new NullPointerException();
3417 for (Node<K,V> p; (p = advance()) != null;)
3418 action.accept(p.val);
3419 }
3420
3421 public boolean tryAdvance(Consumer<? super V> action) {
3422 if (action == null) throw new NullPointerException();
3423 Node<K,V> p;
3424 if ((p = advance()) == null)
3425 return false;
3426 action.accept(p.val);
3427 return true;
3428 }
3429
3430 public long estimateSize() { return est; }
3431
3432 public int characteristics() {
3433 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3434 }
3435 }
3436
3437 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3438 implements Spliterator<Map.Entry<K,V>> {
3439 final ConcurrentHashMap<K,V> map; // To export MapEntry
3440 long est; // size estimate
3441 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3442 long est, ConcurrentHashMap<K,V> map) {
3443 super(tab, size, index, limit);
3444 this.map = map;
3445 this.est = est;
3446 }
3447
3448 public Spliterator<Map.Entry<K,V>> trySplit() {
3449 int i, f, h;
3450 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3451 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3452 f, est >>>= 1, map);
3453 }
3454
3455 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3456 if (action == null) throw new NullPointerException();
3457 for (Node<K,V> p; (p = advance()) != null; )
3458 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3459 }
3460
3461 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3462 if (action == null) throw new NullPointerException();
3463 Node<K,V> p;
3464 if ((p = advance()) == null)
3465 return false;
3466 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3467 return true;
3468 }
3469
3470 public long estimateSize() { return est; }
3471
3472 public int characteristics() {
3473 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3474 Spliterator.NONNULL;
3475 }
3476 }
3477
3478 // Parallel bulk operations
3479
3480 /**
3481 * Computes initial batch value for bulk tasks. The returned value
3482 * is approximately exp2 of the number of times (minus one) to
3483 * split task by two before executing leaf action. This value is
3484 * faster to compute and more convenient to use as a guide to
3485 * splitting than is the depth, since it is used while dividing by
3486 * two anyway.
3487 */
3488 final int batchFor(long b) {
3489 long n;
3490 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3491 return 0;
3492 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3493 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3494 }
3495
3496 /**
3497 * Performs the given action for each (key, value).
3498 *
3499 * @param parallelismThreshold the (estimated) number of elements
3500 * needed for this operation to be executed in parallel
3501 * @param action the action
3502 * @since 1.8
3503 */
3504 public void forEach(long parallelismThreshold,
3505 BiConsumer<? super K,? super V> action) {
3506 if (action == null) throw new NullPointerException();
3507 new ForEachMappingTask<K,V>
3508 (null, batchFor(parallelismThreshold), 0, 0, table,
3509 action).invoke();
3510 }
3511
3512 /**
3513 * Performs the given action for each non-null transformation
3514 * of each (key, value).
3515 *
3516 * @param parallelismThreshold the (estimated) number of elements
3517 * needed for this operation to be executed in parallel
3518 * @param transformer a function returning the transformation
3519 * for an element, or null if there is no transformation (in
3520 * which case the action is not applied)
3521 * @param action the action
3522 * @param <U> the return type of the transformer
3523 * @since 1.8
3524 */
3525 public <U> void forEach(long parallelismThreshold,
3526 BiFunction<? super K, ? super V, ? extends U> transformer,
3527 Consumer<? super U> action) {
3528 if (transformer == null || action == null)
3529 throw new NullPointerException();
3530 new ForEachTransformedMappingTask<K,V,U>
3531 (null, batchFor(parallelismThreshold), 0, 0, table,
3532 transformer, action).invoke();
3533 }
3534
3535 /**
3536 * Returns a non-null result from applying the given search
3537 * function on each (key, value), or null if none. Upon
3538 * success, further element processing is suppressed and the
3539 * results of any other parallel invocations of the search
3540 * function are ignored.
3541 *
3542 * @param parallelismThreshold the (estimated) number of elements
3543 * needed for this operation to be executed in parallel
3544 * @param searchFunction a function returning a non-null
3545 * result on success, else null
3546 * @param <U> the return type of the search function
3547 * @return a non-null result from applying the given search
3548 * function on each (key, value), or null if none
3549 * @since 1.8
3550 */
3551 public <U> U search(long parallelismThreshold,
3552 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3553 if (searchFunction == null) throw new NullPointerException();
3554 return new SearchMappingsTask<K,V,U>
3555 (null, batchFor(parallelismThreshold), 0, 0, table,
3556 searchFunction, new AtomicReference<U>()).invoke();
3557 }
3558
3559 /**
3560 * Returns the result of accumulating the given transformation
3561 * of all (key, value) pairs using the given reducer to
3562 * combine values, or null if none.
3563 *
3564 * @param parallelismThreshold the (estimated) number of elements
3565 * needed for this operation to be executed in parallel
3566 * @param transformer a function returning the transformation
3567 * for an element, or null if there is no transformation (in
3568 * which case it is not combined)
3569 * @param reducer a commutative associative combining function
3570 * @param <U> the return type of the transformer
3571 * @return the result of accumulating the given transformation
3572 * of all (key, value) pairs
3573 * @since 1.8
3574 */
3575 public <U> U reduce(long parallelismThreshold,
3576 BiFunction<? super K, ? super V, ? extends U> transformer,
3577 BiFunction<? super U, ? super U, ? extends U> reducer) {
3578 if (transformer == null || reducer == null)
3579 throw new NullPointerException();
3580 return new MapReduceMappingsTask<K,V,U>
3581 (null, batchFor(parallelismThreshold), 0, 0, table,
3582 null, transformer, reducer).invoke();
3583 }
3584
3585 /**
3586 * Returns the result of accumulating the given transformation
3587 * of all (key, value) pairs using the given reducer to
3588 * combine values, and the given basis as an identity value.
3589 *
3590 * @param parallelismThreshold the (estimated) number of elements
3591 * needed for this operation to be executed in parallel
3592 * @param transformer a function returning the transformation
3593 * for an element
3594 * @param basis the identity (initial default value) for the reduction
3595 * @param reducer a commutative associative combining function
3596 * @return the result of accumulating the given transformation
3597 * of all (key, value) pairs
3598 * @since 1.8
3599 */
3600 public double reduceToDouble(long parallelismThreshold,
3601 ToDoubleBiFunction<? super K, ? super V> transformer,
3602 double basis,
3603 DoubleBinaryOperator reducer) {
3604 if (transformer == null || reducer == null)
3605 throw new NullPointerException();
3606 return new MapReduceMappingsToDoubleTask<K,V>
3607 (null, batchFor(parallelismThreshold), 0, 0, table,
3608 null, transformer, basis, reducer).invoke();
3609 }
3610
3611 /**
3612 * Returns the result of accumulating the given transformation
3613 * of all (key, value) pairs using the given reducer to
3614 * combine values, and the given basis as an identity value.
3615 *
3616 * @param parallelismThreshold the (estimated) number of elements
3617 * needed for this operation to be executed in parallel
3618 * @param transformer a function returning the transformation
3619 * for an element
3620 * @param basis the identity (initial default value) for the reduction
3621 * @param reducer a commutative associative combining function
3622 * @return the result of accumulating the given transformation
3623 * of all (key, value) pairs
3624 * @since 1.8
3625 */
3626 public long reduceToLong(long parallelismThreshold,
3627 ToLongBiFunction<? super K, ? super V> transformer,
3628 long basis,
3629 LongBinaryOperator reducer) {
3630 if (transformer == null || reducer == null)
3631 throw new NullPointerException();
3632 return new MapReduceMappingsToLongTask<K,V>
3633 (null, batchFor(parallelismThreshold), 0, 0, table,
3634 null, transformer, basis, reducer).invoke();
3635 }
3636
3637 /**
3638 * Returns the result of accumulating the given transformation
3639 * of all (key, value) pairs using the given reducer to
3640 * combine values, and the given basis as an identity value.
3641 *
3642 * @param parallelismThreshold the (estimated) number of elements
3643 * needed for this operation to be executed in parallel
3644 * @param transformer a function returning the transformation
3645 * for an element
3646 * @param basis the identity (initial default value) for the reduction
3647 * @param reducer a commutative associative combining function
3648 * @return the result of accumulating the given transformation
3649 * of all (key, value) pairs
3650 * @since 1.8
3651 */
3652 public int reduceToInt(long parallelismThreshold,
3653 ToIntBiFunction<? super K, ? super V> transformer,
3654 int basis,
3655 IntBinaryOperator reducer) {
3656 if (transformer == null || reducer == null)
3657 throw new NullPointerException();
3658 return new MapReduceMappingsToIntTask<K,V>
3659 (null, batchFor(parallelismThreshold), 0, 0, table,
3660 null, transformer, basis, reducer).invoke();
3661 }
3662
3663 /**
3664 * Performs the given action for each key.
3665 *
3666 * @param parallelismThreshold the (estimated) number of elements
3667 * needed for this operation to be executed in parallel
3668 * @param action the action
3669 * @since 1.8
3670 */
3671 public void forEachKey(long parallelismThreshold,
3672 Consumer<? super K> action) {
3673 if (action == null) throw new NullPointerException();
3674 new ForEachKeyTask<K,V>
3675 (null, batchFor(parallelismThreshold), 0, 0, table,
3676 action).invoke();
3677 }
3678
3679 /**
3680 * Performs the given action for each non-null transformation
3681 * of each key.
3682 *
3683 * @param parallelismThreshold the (estimated) number of elements
3684 * needed for this operation to be executed in parallel
3685 * @param transformer a function returning the transformation
3686 * for an element, or null if there is no transformation (in
3687 * which case the action is not applied)
3688 * @param action the action
3689 * @param <U> the return type of the transformer
3690 * @since 1.8
3691 */
3692 public <U> void forEachKey(long parallelismThreshold,
3693 Function<? super K, ? extends U> transformer,
3694 Consumer<? super U> action) {
3695 if (transformer == null || action == null)
3696 throw new NullPointerException();
3697 new ForEachTransformedKeyTask<K,V,U>
3698 (null, batchFor(parallelismThreshold), 0, 0, table,
3699 transformer, action).invoke();
3700 }
3701
3702 /**
3703 * Returns a non-null result from applying the given search
3704 * function on each key, or null if none. Upon success,
3705 * further element processing is suppressed and the results of
3706 * any other parallel invocations of the search function are
3707 * ignored.
3708 *
3709 * @param parallelismThreshold the (estimated) number of elements
3710 * needed for this operation to be executed in parallel
3711 * @param searchFunction a function returning a non-null
3712 * result on success, else null
3713 * @param <U> the return type of the search function
3714 * @return a non-null result from applying the given search
3715 * function on each key, or null if none
3716 * @since 1.8
3717 */
3718 public <U> U searchKeys(long parallelismThreshold,
3719 Function<? super K, ? extends U> searchFunction) {
3720 if (searchFunction == null) throw new NullPointerException();
3721 return new SearchKeysTask<K,V,U>
3722 (null, batchFor(parallelismThreshold), 0, 0, table,
3723 searchFunction, new AtomicReference<U>()).invoke();
3724 }
3725
3726 /**
3727 * Returns the result of accumulating all keys using the given
3728 * reducer to combine values, or null if none.
3729 *
3730 * @param parallelismThreshold the (estimated) number of elements
3731 * needed for this operation to be executed in parallel
3732 * @param reducer a commutative associative combining function
3733 * @return the result of accumulating all keys using the given
3734 * reducer to combine values, or null if none
3735 * @since 1.8
3736 */
3737 public K reduceKeys(long parallelismThreshold,
3738 BiFunction<? super K, ? super K, ? extends K> reducer) {
3739 if (reducer == null) throw new NullPointerException();
3740 return new ReduceKeysTask<K,V>
3741 (null, batchFor(parallelismThreshold), 0, 0, table,
3742 null, reducer).invoke();
3743 }
3744
3745 /**
3746 * Returns the result of accumulating the given transformation
3747 * of all keys using the given reducer to combine values, or
3748 * null if none.
3749 *
3750 * @param parallelismThreshold the (estimated) number of elements
3751 * needed for this operation to be executed in parallel
3752 * @param transformer a function returning the transformation
3753 * for an element, or null if there is no transformation (in
3754 * which case it is not combined)
3755 * @param reducer a commutative associative combining function
3756 * @param <U> the return type of the transformer
3757 * @return the result of accumulating the given transformation
3758 * of all keys
3759 * @since 1.8
3760 */
3761 public <U> U reduceKeys(long parallelismThreshold,
3762 Function<? super K, ? extends U> transformer,
3763 BiFunction<? super U, ? super U, ? extends U> reducer) {
3764 if (transformer == null || reducer == null)
3765 throw new NullPointerException();
3766 return new MapReduceKeysTask<K,V,U>
3767 (null, batchFor(parallelismThreshold), 0, 0, table,
3768 null, transformer, reducer).invoke();
3769 }
3770
3771 /**
3772 * Returns the result of accumulating the given transformation
3773 * of all keys using the given reducer to combine values, and
3774 * the given basis as an identity value.
3775 *
3776 * @param parallelismThreshold the (estimated) number of elements
3777 * needed for this operation to be executed in parallel
3778 * @param transformer a function returning the transformation
3779 * for an element
3780 * @param basis the identity (initial default value) for the reduction
3781 * @param reducer a commutative associative combining function
3782 * @return the result of accumulating the given transformation
3783 * of all keys
3784 * @since 1.8
3785 */
3786 public double reduceKeysToDouble(long parallelismThreshold,
3787 ToDoubleFunction<? super K> transformer,
3788 double basis,
3789 DoubleBinaryOperator reducer) {
3790 if (transformer == null || reducer == null)
3791 throw new NullPointerException();
3792 return new MapReduceKeysToDoubleTask<K,V>
3793 (null, batchFor(parallelismThreshold), 0, 0, table,
3794 null, transformer, basis, reducer).invoke();
3795 }
3796
3797 /**
3798 * Returns the result of accumulating the given transformation
3799 * of all keys using the given reducer to combine values, and
3800 * the given basis as an identity value.
3801 *
3802 * @param parallelismThreshold the (estimated) number of elements
3803 * needed for this operation to be executed in parallel
3804 * @param transformer a function returning the transformation
3805 * for an element
3806 * @param basis the identity (initial default value) for the reduction
3807 * @param reducer a commutative associative combining function
3808 * @return the result of accumulating the given transformation
3809 * of all keys
3810 * @since 1.8
3811 */
3812 public long reduceKeysToLong(long parallelismThreshold,
3813 ToLongFunction<? super K> transformer,
3814 long basis,
3815 LongBinaryOperator reducer) {
3816 if (transformer == null || reducer == null)
3817 throw new NullPointerException();
3818 return new MapReduceKeysToLongTask<K,V>
3819 (null, batchFor(parallelismThreshold), 0, 0, table,
3820 null, transformer, basis, reducer).invoke();
3821 }
3822
3823 /**
3824 * Returns the result of accumulating the given transformation
3825 * of all keys using the given reducer to combine values, and
3826 * the given basis as an identity value.
3827 *
3828 * @param parallelismThreshold the (estimated) number of elements
3829 * needed for this operation to be executed in parallel
3830 * @param transformer a function returning the transformation
3831 * for an element
3832 * @param basis the identity (initial default value) for the reduction
3833 * @param reducer a commutative associative combining function
3834 * @return the result of accumulating the given transformation
3835 * of all keys
3836 * @since 1.8
3837 */
3838 public int reduceKeysToInt(long parallelismThreshold,
3839 ToIntFunction<? super K> transformer,
3840 int basis,
3841 IntBinaryOperator reducer) {
3842 if (transformer == null || reducer == null)
3843 throw new NullPointerException();
3844 return new MapReduceKeysToIntTask<K,V>
3845 (null, batchFor(parallelismThreshold), 0, 0, table,
3846 null, transformer, basis, reducer).invoke();
3847 }
3848
3849 /**
3850 * Performs the given action for each value.
3851 *
3852 * @param parallelismThreshold the (estimated) number of elements
3853 * needed for this operation to be executed in parallel
3854 * @param action the action
3855 * @since 1.8
3856 */
3857 public void forEachValue(long parallelismThreshold,
3858 Consumer<? super V> action) {
3859 if (action == null)
3860 throw new NullPointerException();
3861 new ForEachValueTask<K,V>
3862 (null, batchFor(parallelismThreshold), 0, 0, table,
3863 action).invoke();
3864 }
3865
3866 /**
3867 * Performs the given action for each non-null transformation
3868 * of each value.
3869 *
3870 * @param parallelismThreshold the (estimated) number of elements
3871 * needed for this operation to be executed in parallel
3872 * @param transformer a function returning the transformation
3873 * for an element, or null if there is no transformation (in
3874 * which case the action is not applied)
3875 * @param action the action
3876 * @param <U> the return type of the transformer
3877 * @since 1.8
3878 */
3879 public <U> void forEachValue(long parallelismThreshold,
3880 Function<? super V, ? extends U> transformer,
3881 Consumer<? super U> action) {
3882 if (transformer == null || action == null)
3883 throw new NullPointerException();
3884 new ForEachTransformedValueTask<K,V,U>
3885 (null, batchFor(parallelismThreshold), 0, 0, table,
3886 transformer, action).invoke();
3887 }
3888
3889 /**
3890 * Returns a non-null result from applying the given search
3891 * function on each value, or null if none. Upon success,
3892 * further element processing is suppressed and the results of
3893 * any other parallel invocations of the search function are
3894 * ignored.
3895 *
3896 * @param parallelismThreshold the (estimated) number of elements
3897 * needed for this operation to be executed in parallel
3898 * @param searchFunction a function returning a non-null
3899 * result on success, else null
3900 * @param <U> the return type of the search function
3901 * @return a non-null result from applying the given search
3902 * function on each value, or null if none
3903 * @since 1.8
3904 */
3905 public <U> U searchValues(long parallelismThreshold,
3906 Function<? super V, ? extends U> searchFunction) {
3907 if (searchFunction == null) throw new NullPointerException();
3908 return new SearchValuesTask<K,V,U>
3909 (null, batchFor(parallelismThreshold), 0, 0, table,
3910 searchFunction, new AtomicReference<U>()).invoke();
3911 }
3912
3913 /**
3914 * Returns the result of accumulating all values using the
3915 * given reducer to combine values, or null if none.
3916 *
3917 * @param parallelismThreshold the (estimated) number of elements
3918 * needed for this operation to be executed in parallel
3919 * @param reducer a commutative associative combining function
3920 * @return the result of accumulating all values
3921 * @since 1.8
3922 */
3923 public V reduceValues(long parallelismThreshold,
3924 BiFunction<? super V, ? super V, ? extends V> reducer) {
3925 if (reducer == null) throw new NullPointerException();
3926 return new ReduceValuesTask<K,V>
3927 (null, batchFor(parallelismThreshold), 0, 0, table,
3928 null, reducer).invoke();
3929 }
3930
3931 /**
3932 * Returns the result of accumulating the given transformation
3933 * of all values using the given reducer to combine values, or
3934 * null if none.
3935 *
3936 * @param parallelismThreshold the (estimated) number of elements
3937 * needed for this operation to be executed in parallel
3938 * @param transformer a function returning the transformation
3939 * for an element, or null if there is no transformation (in
3940 * which case it is not combined)
3941 * @param reducer a commutative associative combining function
3942 * @param <U> the return type of the transformer
3943 * @return the result of accumulating the given transformation
3944 * of all values
3945 * @since 1.8
3946 */
3947 public <U> U reduceValues(long parallelismThreshold,
3948 Function<? super V, ? extends U> transformer,
3949 BiFunction<? super U, ? super U, ? extends U> reducer) {
3950 if (transformer == null || reducer == null)
3951 throw new NullPointerException();
3952 return new MapReduceValuesTask<K,V,U>
3953 (null, batchFor(parallelismThreshold), 0, 0, table,
3954 null, transformer, reducer).invoke();
3955 }
3956
3957 /**
3958 * Returns the result of accumulating the given transformation
3959 * of all values using the given reducer to combine values,
3960 * and the given basis as an identity value.
3961 *
3962 * @param parallelismThreshold the (estimated) number of elements
3963 * needed for this operation to be executed in parallel
3964 * @param transformer a function returning the transformation
3965 * for an element
3966 * @param basis the identity (initial default value) for the reduction
3967 * @param reducer a commutative associative combining function
3968 * @return the result of accumulating the given transformation
3969 * of all values
3970 * @since 1.8
3971 */
3972 public double reduceValuesToDouble(long parallelismThreshold,
3973 ToDoubleFunction<? super V> transformer,
3974 double basis,
3975 DoubleBinaryOperator reducer) {
3976 if (transformer == null || reducer == null)
3977 throw new NullPointerException();
3978 return new MapReduceValuesToDoubleTask<K,V>
3979 (null, batchFor(parallelismThreshold), 0, 0, table,
3980 null, transformer, basis, reducer).invoke();
3981 }
3982
3983 /**
3984 * Returns the result of accumulating the given transformation
3985 * of all values using the given reducer to combine values,
3986 * and the given basis as an identity value.
3987 *
3988 * @param parallelismThreshold the (estimated) number of elements
3989 * needed for this operation to be executed in parallel
3990 * @param transformer a function returning the transformation
3991 * for an element
3992 * @param basis the identity (initial default value) for the reduction
3993 * @param reducer a commutative associative combining function
3994 * @return the result of accumulating the given transformation
3995 * of all values
3996 * @since 1.8
3997 */
3998 public long reduceValuesToLong(long parallelismThreshold,
3999 ToLongFunction<? super V> transformer,
4000 long basis,
4001 LongBinaryOperator reducer) {
4002 if (transformer == null || reducer == null)
4003 throw new NullPointerException();
4004 return new MapReduceValuesToLongTask<K,V>
4005 (null, batchFor(parallelismThreshold), 0, 0, table,
4006 null, transformer, basis, reducer).invoke();
4007 }
4008
4009 /**
4010 * Returns the result of accumulating the given transformation
4011 * of all values using the given reducer to combine values,
4012 * and the given basis as an identity value.
4013 *
4014 * @param parallelismThreshold the (estimated) number of elements
4015 * needed for this operation to be executed in parallel
4016 * @param transformer a function returning the transformation
4017 * for an element
4018 * @param basis the identity (initial default value) for the reduction
4019 * @param reducer a commutative associative combining function
4020 * @return the result of accumulating the given transformation
4021 * of all values
4022 * @since 1.8
4023 */
4024 public int reduceValuesToInt(long parallelismThreshold,
4025 ToIntFunction<? super V> transformer,
4026 int basis,
4027 IntBinaryOperator reducer) {
4028 if (transformer == null || reducer == null)
4029 throw new NullPointerException();
4030 return new MapReduceValuesToIntTask<K,V>
4031 (null, batchFor(parallelismThreshold), 0, 0, table,
4032 null, transformer, basis, reducer).invoke();
4033 }
4034
4035 /**
4036 * Performs the given action for each entry.
4037 *
4038 * @param parallelismThreshold the (estimated) number of elements
4039 * needed for this operation to be executed in parallel
4040 * @param action the action
4041 * @since 1.8
4042 */
4043 public void forEachEntry(long parallelismThreshold,
4044 Consumer<? super Map.Entry<K,V>> action) {
4045 if (action == null) throw new NullPointerException();
4046 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4047 action).invoke();
4048 }
4049
4050 /**
4051 * Performs the given action for each non-null transformation
4052 * of each entry.
4053 *
4054 * @param parallelismThreshold the (estimated) number of elements
4055 * needed for this operation to be executed in parallel
4056 * @param transformer a function returning the transformation
4057 * for an element, or null if there is no transformation (in
4058 * which case the action is not applied)
4059 * @param action the action
4060 * @param <U> the return type of the transformer
4061 * @since 1.8
4062 */
4063 public <U> void forEachEntry(long parallelismThreshold,
4064 Function<Map.Entry<K,V>, ? extends U> transformer,
4065 Consumer<? super U> action) {
4066 if (transformer == null || action == null)
4067 throw new NullPointerException();
4068 new ForEachTransformedEntryTask<K,V,U>
4069 (null, batchFor(parallelismThreshold), 0, 0, table,
4070 transformer, action).invoke();
4071 }
4072
4073 /**
4074 * Returns a non-null result from applying the given search
4075 * function on each entry, or null if none. Upon success,
4076 * further element processing is suppressed and the results of
4077 * any other parallel invocations of the search function are
4078 * ignored.
4079 *
4080 * @param parallelismThreshold the (estimated) number of elements
4081 * needed for this operation to be executed in parallel
4082 * @param searchFunction a function returning a non-null
4083 * result on success, else null
4084 * @param <U> the return type of the search function
4085 * @return a non-null result from applying the given search
4086 * function on each entry, or null if none
4087 * @since 1.8
4088 */
4089 public <U> U searchEntries(long parallelismThreshold,
4090 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4091 if (searchFunction == null) throw new NullPointerException();
4092 return new SearchEntriesTask<K,V,U>
4093 (null, batchFor(parallelismThreshold), 0, 0, table,
4094 searchFunction, new AtomicReference<U>()).invoke();
4095 }
4096
4097 /**
4098 * Returns the result of accumulating all entries using the
4099 * given reducer to combine values, or null if none.
4100 *
4101 * @param parallelismThreshold the (estimated) number of elements
4102 * needed for this operation to be executed in parallel
4103 * @param reducer a commutative associative combining function
4104 * @return the result of accumulating all entries
4105 * @since 1.8
4106 */
4107 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4108 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4109 if (reducer == null) throw new NullPointerException();
4110 return new ReduceEntriesTask<K,V>
4111 (null, batchFor(parallelismThreshold), 0, 0, table,
4112 null, reducer).invoke();
4113 }
4114
4115 /**
4116 * Returns the result of accumulating the given transformation
4117 * of all entries using the given reducer to combine values,
4118 * or null if none.
4119 *
4120 * @param parallelismThreshold the (estimated) number of elements
4121 * needed for this operation to be executed in parallel
4122 * @param transformer a function returning the transformation
4123 * for an element, or null if there is no transformation (in
4124 * which case it is not combined)
4125 * @param reducer a commutative associative combining function
4126 * @param <U> the return type of the transformer
4127 * @return the result of accumulating the given transformation
4128 * of all entries
4129 * @since 1.8
4130 */
4131 public <U> U reduceEntries(long parallelismThreshold,
4132 Function<Map.Entry<K,V>, ? extends U> transformer,
4133 BiFunction<? super U, ? super U, ? extends U> reducer) {
4134 if (transformer == null || reducer == null)
4135 throw new NullPointerException();
4136 return new MapReduceEntriesTask<K,V,U>
4137 (null, batchFor(parallelismThreshold), 0, 0, table,
4138 null, transformer, reducer).invoke();
4139 }
4140
4141 /**
4142 * Returns the result of accumulating the given transformation
4143 * of all entries using the given reducer to combine values,
4144 * and the given basis as an identity value.
4145 *
4146 * @param parallelismThreshold the (estimated) number of elements
4147 * needed for this operation to be executed in parallel
4148 * @param transformer a function returning the transformation
4149 * for an element
4150 * @param basis the identity (initial default value) for the reduction
4151 * @param reducer a commutative associative combining function
4152 * @return the result of accumulating the given transformation
4153 * of all entries
4154 * @since 1.8
4155 */
4156 public double reduceEntriesToDouble(long parallelismThreshold,
4157 ToDoubleFunction<Map.Entry<K,V>> transformer,
4158 double basis,
4159 DoubleBinaryOperator reducer) {
4160 if (transformer == null || reducer == null)
4161 throw new NullPointerException();
4162 return new MapReduceEntriesToDoubleTask<K,V>
4163 (null, batchFor(parallelismThreshold), 0, 0, table,
4164 null, transformer, basis, reducer).invoke();
4165 }
4166
4167 /**
4168 * Returns the result of accumulating the given transformation
4169 * of all entries using the given reducer to combine values,
4170 * and the given basis as an identity value.
4171 *
4172 * @param parallelismThreshold the (estimated) number of elements
4173 * needed for this operation to be executed in parallel
4174 * @param transformer a function returning the transformation
4175 * for an element
4176 * @param basis the identity (initial default value) for the reduction
4177 * @param reducer a commutative associative combining function
4178 * @return the result of accumulating the given transformation
4179 * of all entries
4180 * @since 1.8
4181 */
4182 public long reduceEntriesToLong(long parallelismThreshold,
4183 ToLongFunction<Map.Entry<K,V>> transformer,
4184 long basis,
4185 LongBinaryOperator reducer) {
4186 if (transformer == null || reducer == null)
4187 throw new NullPointerException();
4188 return new MapReduceEntriesToLongTask<K,V>
4189 (null, batchFor(parallelismThreshold), 0, 0, table,
4190 null, transformer, basis, reducer).invoke();
4191 }
4192
4193 /**
4194 * Returns the result of accumulating the given transformation
4195 * of all entries using the given reducer to combine values,
4196 * and the given basis as an identity value.
4197 *
4198 * @param parallelismThreshold the (estimated) number of elements
4199 * needed for this operation to be executed in parallel
4200 * @param transformer a function returning the transformation
4201 * for an element
4202 * @param basis the identity (initial default value) for the reduction
4203 * @param reducer a commutative associative combining function
4204 * @return the result of accumulating the given transformation
4205 * of all entries
4206 * @since 1.8
4207 */
4208 public int reduceEntriesToInt(long parallelismThreshold,
4209 ToIntFunction<Map.Entry<K,V>> transformer,
4210 int basis,
4211 IntBinaryOperator reducer) {
4212 if (transformer == null || reducer == null)
4213 throw new NullPointerException();
4214 return new MapReduceEntriesToIntTask<K,V>
4215 (null, batchFor(parallelismThreshold), 0, 0, table,
4216 null, transformer, basis, reducer).invoke();
4217 }
4218
4219
4220 /* ----------------Views -------------- */
4221
4222 /**
4223 * Base class for views.
4224 */
4225 abstract static class CollectionView<K,V,E>
4226 implements Collection<E>, java.io.Serializable {
4227 private static final long serialVersionUID = 7249069246763182397L;
4228 final ConcurrentHashMap<K,V> map;
4229 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4230
4231 /**
4232 * Returns the map backing this view.
4233 *
4234 * @return the map backing this view
4235 */
4236 public ConcurrentHashMap<K,V> getMap() { return map; }
4237
4238 /**
4239 * Removes all of the elements from this view, by removing all
4240 * the mappings from the map backing this view.
4241 */
4242 public final void clear() { map.clear(); }
4243 public final int size() { return map.size(); }
4244 public final boolean isEmpty() { return map.isEmpty(); }
4245
4246 // implementations below rely on concrete classes supplying these
4247 // abstract methods
4248 /**
4249 * Returns a "weakly consistent" iterator that will never
4250 * throw {@link ConcurrentModificationException}, and
4251 * guarantees to traverse elements as they existed upon
4252 * construction of the iterator, and may (but is not
4253 * guaranteed to) reflect any modifications subsequent to
4254 * construction.
4255 */
4256 public abstract Iterator<E> iterator();
4257 public abstract boolean contains(Object o);
4258 public abstract boolean remove(Object o);
4259
4260 private static final String oomeMsg = "Required array size too large";
4261
4262 public final Object[] toArray() {
4263 long sz = map.mappingCount();
4264 if (sz > MAX_ARRAY_SIZE)
4265 throw new OutOfMemoryError(oomeMsg);
4266 int n = (int)sz;
4267 Object[] r = new Object[n];
4268 int i = 0;
4269 for (E e : this) {
4270 if (i == n) {
4271 if (n >= MAX_ARRAY_SIZE)
4272 throw new OutOfMemoryError(oomeMsg);
4273 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4274 n = MAX_ARRAY_SIZE;
4275 else
4276 n += (n >>> 1) + 1;
4277 r = Arrays.copyOf(r, n);
4278 }
4279 r[i++] = e;
4280 }
4281 return (i == n) ? r : Arrays.copyOf(r, i);
4282 }
4283
4284 @SuppressWarnings("unchecked")
4285 public final <T> T[] toArray(T[] a) {
4286 long sz = map.mappingCount();
4287 if (sz > MAX_ARRAY_SIZE)
4288 throw new OutOfMemoryError(oomeMsg);
4289 int m = (int)sz;
4290 T[] r = (a.length >= m) ? a :
4291 (T[])java.lang.reflect.Array
4292 .newInstance(a.getClass().getComponentType(), m);
4293 int n = r.length;
4294 int i = 0;
4295 for (E e : this) {
4296 if (i == n) {
4297 if (n >= MAX_ARRAY_SIZE)
4298 throw new OutOfMemoryError(oomeMsg);
4299 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4300 n = MAX_ARRAY_SIZE;
4301 else
4302 n += (n >>> 1) + 1;
4303 r = Arrays.copyOf(r, n);
4304 }
4305 r[i++] = (T)e;
4306 }
4307 if (a == r && i < n) {
4308 r[i] = null; // null-terminate
4309 return r;
4310 }
4311 return (i == n) ? r : Arrays.copyOf(r, i);
4312 }
4313
4314 /**
4315 * Returns a string representation of this collection.
4316 * The string representation consists of the string representations
4317 * of the collection's elements in the order they are returned by
4318 * its iterator, enclosed in square brackets ({@code "[]"}).
4319 * Adjacent elements are separated by the characters {@code ", "}
4320 * (comma and space). Elements are converted to strings as by
4321 * {@link String#valueOf(Object)}.
4322 *
4323 * @return a string representation of this collection
4324 */
4325 public final String toString() {
4326 StringBuilder sb = new StringBuilder();
4327 sb.append('[');
4328 Iterator<E> it = iterator();
4329 if (it.hasNext()) {
4330 for (;;) {
4331 Object e = it.next();
4332 sb.append(e == this ? "(this Collection)" : e);
4333 if (!it.hasNext())
4334 break;
4335 sb.append(',').append(' ');
4336 }
4337 }
4338 return sb.append(']').toString();
4339 }
4340
4341 public final boolean containsAll(Collection<?> c) {
4342 if (c != this) {
4343 for (Object e : c) {
4344 if (e == null || !contains(e))
4345 return false;
4346 }
4347 }
4348 return true;
4349 }
4350
4351 public final boolean removeAll(Collection<?> c) {
4352 boolean modified = false;
4353 for (Iterator<E> it = iterator(); it.hasNext();) {
4354 if (c.contains(it.next())) {
4355 it.remove();
4356 modified = true;
4357 }
4358 }
4359 return modified;
4360 }
4361
4362 public final boolean retainAll(Collection<?> c) {
4363 boolean modified = false;
4364 for (Iterator<E> it = iterator(); it.hasNext();) {
4365 if (!c.contains(it.next())) {
4366 it.remove();
4367 modified = true;
4368 }
4369 }
4370 return modified;
4371 }
4372
4373 }
4374
4375 /**
4376 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4377 * which additions may optionally be enabled by mapping to a
4378 * common value. This class cannot be directly instantiated.
4379 * See {@link #keySet() keySet()},
4380 * {@link #keySet(Object) keySet(V)},
4381 * {@link #newKeySet() newKeySet()},
4382 * {@link #newKeySet(int) newKeySet(int)}.
4383 *
4384 * @since 1.8
4385 */
4386 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4387 implements Set<K>, java.io.Serializable {
4388 private static final long serialVersionUID = 7249069246763182397L;
4389 private final V value;
4390 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4391 super(map);
4392 this.value = value;
4393 }
4394
4395 /**
4396 * Returns the default mapped value for additions,
4397 * or {@code null} if additions are not supported.
4398 *
4399 * @return the default mapped value for additions, or {@code null}
4400 * if not supported
4401 */
4402 public V getMappedValue() { return value; }
4403
4404 /**
4405 * {@inheritDoc}
4406 * @throws NullPointerException if the specified key is null
4407 */
4408 public boolean contains(Object o) { return map.containsKey(o); }
4409
4410 /**
4411 * Removes the key from this map view, by removing the key (and its
4412 * corresponding value) from the backing map. This method does
4413 * nothing if the key is not in the map.
4414 *
4415 * @param o the key to be removed from the backing map
4416 * @return {@code true} if the backing map contained the specified key
4417 * @throws NullPointerException if the specified key is null
4418 */
4419 public boolean remove(Object o) { return map.remove(o) != null; }
4420
4421 /**
4422 * @return an iterator over the keys of the backing map
4423 */
4424 public Iterator<K> iterator() {
4425 Node<K,V>[] t;
4426 ConcurrentHashMap<K,V> m = map;
4427 int f = (t = m.table) == null ? 0 : t.length;
4428 return new KeyIterator<K,V>(t, f, 0, f, m);
4429 }
4430
4431 /**
4432 * Adds the specified key to this set view by mapping the key to
4433 * the default mapped value in the backing map, if defined.
4434 *
4435 * @param e key to be added
4436 * @return {@code true} if this set changed as a result of the call
4437 * @throws NullPointerException if the specified key is null
4438 * @throws UnsupportedOperationException if no default mapped value
4439 * for additions was provided
4440 */
4441 public boolean add(K e) {
4442 V v;
4443 if ((v = value) == null)
4444 throw new UnsupportedOperationException();
4445 return map.putVal(e, v, true) == null;
4446 }
4447
4448 /**
4449 * Adds all of the elements in the specified collection to this set,
4450 * as if by calling {@link #add} on each one.
4451 *
4452 * @param c the elements to be inserted into this set
4453 * @return {@code true} if this set changed as a result of the call
4454 * @throws NullPointerException if the collection or any of its
4455 * elements are {@code null}
4456 * @throws UnsupportedOperationException if no default mapped value
4457 * for additions was provided
4458 */
4459 public boolean addAll(Collection<? extends K> c) {
4460 boolean added = false;
4461 V v;
4462 if ((v = value) == null)
4463 throw new UnsupportedOperationException();
4464 for (K e : c) {
4465 if (map.putVal(e, v, true) == null)
4466 added = true;
4467 }
4468 return added;
4469 }
4470
4471 public int hashCode() {
4472 int h = 0;
4473 for (K e : this)
4474 h += e.hashCode();
4475 return h;
4476 }
4477
4478 public boolean equals(Object o) {
4479 Set<?> c;
4480 return ((o instanceof Set) &&
4481 ((c = (Set<?>)o) == this ||
4482 (containsAll(c) && c.containsAll(this))));
4483 }
4484
4485 public Spliterator<K> spliterator() {
4486 Node<K,V>[] t;
4487 ConcurrentHashMap<K,V> m = map;
4488 long n = m.sumCount();
4489 int f = (t = m.table) == null ? 0 : t.length;
4490 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4491 }
4492
4493 public void forEach(Consumer<? super K> action) {
4494 if (action == null) throw new NullPointerException();
4495 Node<K,V>[] t;
4496 if ((t = map.table) != null) {
4497 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4498 for (Node<K,V> p; (p = it.advance()) != null; )
4499 action.accept(p.key);
4500 }
4501 }
4502 }
4503
4504 /**
4505 * A view of a ConcurrentHashMap as a {@link Collection} of
4506 * values, in which additions are disabled. This class cannot be
4507 * directly instantiated. See {@link #values()}.
4508 */
4509 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4510 implements Collection<V>, java.io.Serializable {
4511 private static final long serialVersionUID = 2249069246763182397L;
4512 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4513 public final boolean contains(Object o) {
4514 return map.containsValue(o);
4515 }
4516
4517 public final boolean remove(Object o) {
4518 if (o != null) {
4519 for (Iterator<V> it = iterator(); it.hasNext();) {
4520 if (o.equals(it.next())) {
4521 it.remove();
4522 return true;
4523 }
4524 }
4525 }
4526 return false;
4527 }
4528
4529 public final Iterator<V> iterator() {
4530 ConcurrentHashMap<K,V> m = map;
4531 Node<K,V>[] t;
4532 int f = (t = m.table) == null ? 0 : t.length;
4533 return new ValueIterator<K,V>(t, f, 0, f, m);
4534 }
4535
4536 public final boolean add(V e) {
4537 throw new UnsupportedOperationException();
4538 }
4539 public final boolean addAll(Collection<? extends V> c) {
4540 throw new UnsupportedOperationException();
4541 }
4542
4543 public Spliterator<V> spliterator() {
4544 Node<K,V>[] t;
4545 ConcurrentHashMap<K,V> m = map;
4546 long n = m.sumCount();
4547 int f = (t = m.table) == null ? 0 : t.length;
4548 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4549 }
4550
4551 public void forEach(Consumer<? super V> action) {
4552 if (action == null) throw new NullPointerException();
4553 Node<K,V>[] t;
4554 if ((t = map.table) != null) {
4555 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4556 for (Node<K,V> p; (p = it.advance()) != null; )
4557 action.accept(p.val);
4558 }
4559 }
4560 }
4561
4562 /**
4563 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4564 * entries. This class cannot be directly instantiated. See
4565 * {@link #entrySet()}.
4566 */
4567 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4568 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4569 private static final long serialVersionUID = 2249069246763182397L;
4570 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4571
4572 public boolean contains(Object o) {
4573 Object k, v, r; Map.Entry<?,?> e;
4574 return ((o instanceof Map.Entry) &&
4575 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4576 (r = map.get(k)) != null &&
4577 (v = e.getValue()) != null &&
4578 (v == r || v.equals(r)));
4579 }
4580
4581 public boolean remove(Object o) {
4582 Object k, v; Map.Entry<?,?> e;
4583 return ((o instanceof Map.Entry) &&
4584 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4585 (v = e.getValue()) != null &&
4586 map.remove(k, v));
4587 }
4588
4589 /**
4590 * @return an iterator over the entries of the backing map
4591 */
4592 public Iterator<Map.Entry<K,V>> iterator() {
4593 ConcurrentHashMap<K,V> m = map;
4594 Node<K,V>[] t;
4595 int f = (t = m.table) == null ? 0 : t.length;
4596 return new EntryIterator<K,V>(t, f, 0, f, m);
4597 }
4598
4599 public boolean add(Entry<K,V> e) {
4600 return map.putVal(e.getKey(), e.getValue(), false) == null;
4601 }
4602
4603 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4604 boolean added = false;
4605 for (Entry<K,V> e : c) {
4606 if (add(e))
4607 added = true;
4608 }
4609 return added;
4610 }
4611
4612 public final int hashCode() {
4613 int h = 0;
4614 Node<K,V>[] t;
4615 if ((t = map.table) != null) {
4616 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4617 for (Node<K,V> p; (p = it.advance()) != null; ) {
4618 h += p.hashCode();
4619 }
4620 }
4621 return h;
4622 }
4623
4624 public final boolean equals(Object o) {
4625 Set<?> c;
4626 return ((o instanceof Set) &&
4627 ((c = (Set<?>)o) == this ||
4628 (containsAll(c) && c.containsAll(this))));
4629 }
4630
4631 public Spliterator<Map.Entry<K,V>> spliterator() {
4632 Node<K,V>[] t;
4633 ConcurrentHashMap<K,V> m = map;
4634 long n = m.sumCount();
4635 int f = (t = m.table) == null ? 0 : t.length;
4636 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4637 }
4638
4639 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4640 if (action == null) throw new NullPointerException();
4641 Node<K,V>[] t;
4642 if ((t = map.table) != null) {
4643 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4644 for (Node<K,V> p; (p = it.advance()) != null; )
4645 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4646 }
4647 }
4648
4649 }
4650
4651 // -------------------------------------------------------
4652
4653 /**
4654 * Base class for bulk tasks. Repeats some fields and code from
4655 * class Traverser, because we need to subclass CountedCompleter.
4656 */
4657 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4658 Node<K,V>[] tab; // same as Traverser
4659 Node<K,V> next;
4660 int index;
4661 int baseIndex;
4662 int baseLimit;
4663 final int baseSize;
4664 int batch; // split control
4665
4666 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4667 super(par);
4668 this.batch = b;
4669 this.index = this.baseIndex = i;
4670 if ((this.tab = t) == null)
4671 this.baseSize = this.baseLimit = 0;
4672 else if (par == null)
4673 this.baseSize = this.baseLimit = t.length;
4674 else {
4675 this.baseLimit = f;
4676 this.baseSize = par.baseSize;
4677 }
4678 }
4679
4680 /**
4681 * Same as Traverser version
4682 */
4683 final Node<K,V> advance() {
4684 Node<K,V> e;
4685 if ((e = next) != null)
4686 e = e.next;
4687 for (;;) {
4688 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4689 if (e != null)
4690 return next = e;
4691 if (baseIndex >= baseLimit || (t = tab) == null ||
4692 (n = t.length) <= (i = index) || i < 0)
4693 return next = null;
4694 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4695 if (e instanceof ForwardingNode) {
4696 tab = ((ForwardingNode<K,V>)e).nextTable;
4697 e = null;
4698 continue;
4699 }
4700 else if (e instanceof TreeBin)
4701 e = ((TreeBin<K,V>)e).first;
4702 else
4703 e = null;
4704 }
4705 if ((index += baseSize) >= n)
4706 index = ++baseIndex; // visit upper slots if present
4707 }
4708 }
4709 }
4710
4711 /*
4712 * Task classes. Coded in a regular but ugly format/style to
4713 * simplify checks that each variant differs in the right way from
4714 * others. The null screenings exist because compilers cannot tell
4715 * that we've already null-checked task arguments, so we force
4716 * simplest hoisted bypass to help avoid convoluted traps.
4717 */
4718 @SuppressWarnings("serial")
4719 static final class ForEachKeyTask<K,V>
4720 extends BulkTask<K,V,Void> {
4721 final Consumer<? super K> action;
4722 ForEachKeyTask
4723 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4724 Consumer<? super K> action) {
4725 super(p, b, i, f, t);
4726 this.action = action;
4727 }
4728 public final void compute() {
4729 final Consumer<? super K> action;
4730 if ((action = this.action) != null) {
4731 for (int i = baseIndex, f, h; batch > 0 &&
4732 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4733 addToPendingCount(1);
4734 new ForEachKeyTask<K,V>
4735 (this, batch >>>= 1, baseLimit = h, f, tab,
4736 action).fork();
4737 }
4738 for (Node<K,V> p; (p = advance()) != null;)
4739 action.accept(p.key);
4740 propagateCompletion();
4741 }
4742 }
4743 }
4744
4745 @SuppressWarnings("serial")
4746 static final class ForEachValueTask<K,V>
4747 extends BulkTask<K,V,Void> {
4748 final Consumer<? super V> action;
4749 ForEachValueTask
4750 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4751 Consumer<? super V> action) {
4752 super(p, b, i, f, t);
4753 this.action = action;
4754 }
4755 public final void compute() {
4756 final Consumer<? super V> action;
4757 if ((action = this.action) != null) {
4758 for (int i = baseIndex, f, h; batch > 0 &&
4759 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4760 addToPendingCount(1);
4761 new ForEachValueTask<K,V>
4762 (this, batch >>>= 1, baseLimit = h, f, tab,
4763 action).fork();
4764 }
4765 for (Node<K,V> p; (p = advance()) != null;)
4766 action.accept(p.val);
4767 propagateCompletion();
4768 }
4769 }
4770 }
4771
4772 @SuppressWarnings("serial")
4773 static final class ForEachEntryTask<K,V>
4774 extends BulkTask<K,V,Void> {
4775 final Consumer<? super Entry<K,V>> action;
4776 ForEachEntryTask
4777 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4778 Consumer<? super Entry<K,V>> action) {
4779 super(p, b, i, f, t);
4780 this.action = action;
4781 }
4782 public final void compute() {
4783 final Consumer<? super Entry<K,V>> action;
4784 if ((action = this.action) != null) {
4785 for (int i = baseIndex, f, h; batch > 0 &&
4786 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 addToPendingCount(1);
4788 new ForEachEntryTask<K,V>
4789 (this, batch >>>= 1, baseLimit = h, f, tab,
4790 action).fork();
4791 }
4792 for (Node<K,V> p; (p = advance()) != null; )
4793 action.accept(p);
4794 propagateCompletion();
4795 }
4796 }
4797 }
4798
4799 @SuppressWarnings("serial")
4800 static final class ForEachMappingTask<K,V>
4801 extends BulkTask<K,V,Void> {
4802 final BiConsumer<? super K, ? super V> action;
4803 ForEachMappingTask
4804 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 BiConsumer<? super K,? super V> action) {
4806 super(p, b, i, f, t);
4807 this.action = action;
4808 }
4809 public final void compute() {
4810 final BiConsumer<? super K, ? super V> action;
4811 if ((action = this.action) != null) {
4812 for (int i = baseIndex, f, h; batch > 0 &&
4813 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4814 addToPendingCount(1);
4815 new ForEachMappingTask<K,V>
4816 (this, batch >>>= 1, baseLimit = h, f, tab,
4817 action).fork();
4818 }
4819 for (Node<K,V> p; (p = advance()) != null; )
4820 action.accept(p.key, p.val);
4821 propagateCompletion();
4822 }
4823 }
4824 }
4825
4826 @SuppressWarnings("serial")
4827 static final class ForEachTransformedKeyTask<K,V,U>
4828 extends BulkTask<K,V,Void> {
4829 final Function<? super K, ? extends U> transformer;
4830 final Consumer<? super U> action;
4831 ForEachTransformedKeyTask
4832 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4833 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4834 super(p, b, i, f, t);
4835 this.transformer = transformer; this.action = action;
4836 }
4837 public final void compute() {
4838 final Function<? super K, ? extends U> transformer;
4839 final Consumer<? super U> action;
4840 if ((transformer = this.transformer) != null &&
4841 (action = this.action) != null) {
4842 for (int i = baseIndex, f, h; batch > 0 &&
4843 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4844 addToPendingCount(1);
4845 new ForEachTransformedKeyTask<K,V,U>
4846 (this, batch >>>= 1, baseLimit = h, f, tab,
4847 transformer, action).fork();
4848 }
4849 for (Node<K,V> p; (p = advance()) != null; ) {
4850 U u;
4851 if ((u = transformer.apply(p.key)) != null)
4852 action.accept(u);
4853 }
4854 propagateCompletion();
4855 }
4856 }
4857 }
4858
4859 @SuppressWarnings("serial")
4860 static final class ForEachTransformedValueTask<K,V,U>
4861 extends BulkTask<K,V,Void> {
4862 final Function<? super V, ? extends U> transformer;
4863 final Consumer<? super U> action;
4864 ForEachTransformedValueTask
4865 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4866 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4867 super(p, b, i, f, t);
4868 this.transformer = transformer; this.action = action;
4869 }
4870 public final void compute() {
4871 final Function<? super V, ? extends U> transformer;
4872 final Consumer<? super U> action;
4873 if ((transformer = this.transformer) != null &&
4874 (action = this.action) != null) {
4875 for (int i = baseIndex, f, h; batch > 0 &&
4876 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4877 addToPendingCount(1);
4878 new ForEachTransformedValueTask<K,V,U>
4879 (this, batch >>>= 1, baseLimit = h, f, tab,
4880 transformer, action).fork();
4881 }
4882 for (Node<K,V> p; (p = advance()) != null; ) {
4883 U u;
4884 if ((u = transformer.apply(p.val)) != null)
4885 action.accept(u);
4886 }
4887 propagateCompletion();
4888 }
4889 }
4890 }
4891
4892 @SuppressWarnings("serial")
4893 static final class ForEachTransformedEntryTask<K,V,U>
4894 extends BulkTask<K,V,Void> {
4895 final Function<Map.Entry<K,V>, ? extends U> transformer;
4896 final Consumer<? super U> action;
4897 ForEachTransformedEntryTask
4898 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4899 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4900 super(p, b, i, f, t);
4901 this.transformer = transformer; this.action = action;
4902 }
4903 public final void compute() {
4904 final Function<Map.Entry<K,V>, ? extends U> transformer;
4905 final Consumer<? super U> action;
4906 if ((transformer = this.transformer) != null &&
4907 (action = this.action) != null) {
4908 for (int i = baseIndex, f, h; batch > 0 &&
4909 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4910 addToPendingCount(1);
4911 new ForEachTransformedEntryTask<K,V,U>
4912 (this, batch >>>= 1, baseLimit = h, f, tab,
4913 transformer, action).fork();
4914 }
4915 for (Node<K,V> p; (p = advance()) != null; ) {
4916 U u;
4917 if ((u = transformer.apply(p)) != null)
4918 action.accept(u);
4919 }
4920 propagateCompletion();
4921 }
4922 }
4923 }
4924
4925 @SuppressWarnings("serial")
4926 static final class ForEachTransformedMappingTask<K,V,U>
4927 extends BulkTask<K,V,Void> {
4928 final BiFunction<? super K, ? super V, ? extends U> transformer;
4929 final Consumer<? super U> action;
4930 ForEachTransformedMappingTask
4931 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4932 BiFunction<? super K, ? super V, ? extends U> transformer,
4933 Consumer<? super U> action) {
4934 super(p, b, i, f, t);
4935 this.transformer = transformer; this.action = action;
4936 }
4937 public final void compute() {
4938 final BiFunction<? super K, ? super V, ? extends U> transformer;
4939 final Consumer<? super U> action;
4940 if ((transformer = this.transformer) != null &&
4941 (action = this.action) != null) {
4942 for (int i = baseIndex, f, h; batch > 0 &&
4943 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944 addToPendingCount(1);
4945 new ForEachTransformedMappingTask<K,V,U>
4946 (this, batch >>>= 1, baseLimit = h, f, tab,
4947 transformer, action).fork();
4948 }
4949 for (Node<K,V> p; (p = advance()) != null; ) {
4950 U u;
4951 if ((u = transformer.apply(p.key, p.val)) != null)
4952 action.accept(u);
4953 }
4954 propagateCompletion();
4955 }
4956 }
4957 }
4958
4959 @SuppressWarnings("serial")
4960 static final class SearchKeysTask<K,V,U>
4961 extends BulkTask<K,V,U> {
4962 final Function<? super K, ? extends U> searchFunction;
4963 final AtomicReference<U> result;
4964 SearchKeysTask
4965 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4966 Function<? super K, ? extends U> searchFunction,
4967 AtomicReference<U> result) {
4968 super(p, b, i, f, t);
4969 this.searchFunction = searchFunction; this.result = result;
4970 }
4971 public final U getRawResult() { return result.get(); }
4972 public final void compute() {
4973 final Function<? super K, ? extends U> searchFunction;
4974 final AtomicReference<U> result;
4975 if ((searchFunction = this.searchFunction) != null &&
4976 (result = this.result) != null) {
4977 for (int i = baseIndex, f, h; batch > 0 &&
4978 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4979 if (result.get() != null)
4980 return;
4981 addToPendingCount(1);
4982 new SearchKeysTask<K,V,U>
4983 (this, batch >>>= 1, baseLimit = h, f, tab,
4984 searchFunction, result).fork();
4985 }
4986 while (result.get() == null) {
4987 U u;
4988 Node<K,V> p;
4989 if ((p = advance()) == null) {
4990 propagateCompletion();
4991 break;
4992 }
4993 if ((u = searchFunction.apply(p.key)) != null) {
4994 if (result.compareAndSet(null, u))
4995 quietlyCompleteRoot();
4996 break;
4997 }
4998 }
4999 }
5000 }
5001 }
5002
5003 @SuppressWarnings("serial")
5004 static final class SearchValuesTask<K,V,U>
5005 extends BulkTask<K,V,U> {
5006 final Function<? super V, ? extends U> searchFunction;
5007 final AtomicReference<U> result;
5008 SearchValuesTask
5009 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5010 Function<? super V, ? extends U> searchFunction,
5011 AtomicReference<U> result) {
5012 super(p, b, i, f, t);
5013 this.searchFunction = searchFunction; this.result = result;
5014 }
5015 public final U getRawResult() { return result.get(); }
5016 public final void compute() {
5017 final Function<? super V, ? extends U> searchFunction;
5018 final AtomicReference<U> result;
5019 if ((searchFunction = this.searchFunction) != null &&
5020 (result = this.result) != null) {
5021 for (int i = baseIndex, f, h; batch > 0 &&
5022 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5023 if (result.get() != null)
5024 return;
5025 addToPendingCount(1);
5026 new SearchValuesTask<K,V,U>
5027 (this, batch >>>= 1, baseLimit = h, f, tab,
5028 searchFunction, result).fork();
5029 }
5030 while (result.get() == null) {
5031 U u;
5032 Node<K,V> p;
5033 if ((p = advance()) == null) {
5034 propagateCompletion();
5035 break;
5036 }
5037 if ((u = searchFunction.apply(p.val)) != null) {
5038 if (result.compareAndSet(null, u))
5039 quietlyCompleteRoot();
5040 break;
5041 }
5042 }
5043 }
5044 }
5045 }
5046
5047 @SuppressWarnings("serial")
5048 static final class SearchEntriesTask<K,V,U>
5049 extends BulkTask<K,V,U> {
5050 final Function<Entry<K,V>, ? extends U> searchFunction;
5051 final AtomicReference<U> result;
5052 SearchEntriesTask
5053 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5054 Function<Entry<K,V>, ? extends U> searchFunction,
5055 AtomicReference<U> result) {
5056 super(p, b, i, f, t);
5057 this.searchFunction = searchFunction; this.result = result;
5058 }
5059 public final U getRawResult() { return result.get(); }
5060 public final void compute() {
5061 final Function<Entry<K,V>, ? extends U> searchFunction;
5062 final AtomicReference<U> result;
5063 if ((searchFunction = this.searchFunction) != null &&
5064 (result = this.result) != null) {
5065 for (int i = baseIndex, f, h; batch > 0 &&
5066 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5067 if (result.get() != null)
5068 return;
5069 addToPendingCount(1);
5070 new SearchEntriesTask<K,V,U>
5071 (this, batch >>>= 1, baseLimit = h, f, tab,
5072 searchFunction, result).fork();
5073 }
5074 while (result.get() == null) {
5075 U u;
5076 Node<K,V> p;
5077 if ((p = advance()) == null) {
5078 propagateCompletion();
5079 break;
5080 }
5081 if ((u = searchFunction.apply(p)) != null) {
5082 if (result.compareAndSet(null, u))
5083 quietlyCompleteRoot();
5084 return;
5085 }
5086 }
5087 }
5088 }
5089 }
5090
5091 @SuppressWarnings("serial")
5092 static final class SearchMappingsTask<K,V,U>
5093 extends BulkTask<K,V,U> {
5094 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5095 final AtomicReference<U> result;
5096 SearchMappingsTask
5097 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5098 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5099 AtomicReference<U> result) {
5100 super(p, b, i, f, t);
5101 this.searchFunction = searchFunction; this.result = result;
5102 }
5103 public final U getRawResult() { return result.get(); }
5104 public final void compute() {
5105 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5106 final AtomicReference<U> result;
5107 if ((searchFunction = this.searchFunction) != null &&
5108 (result = this.result) != null) {
5109 for (int i = baseIndex, f, h; batch > 0 &&
5110 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5111 if (result.get() != null)
5112 return;
5113 addToPendingCount(1);
5114 new SearchMappingsTask<K,V,U>
5115 (this, batch >>>= 1, baseLimit = h, f, tab,
5116 searchFunction, result).fork();
5117 }
5118 while (result.get() == null) {
5119 U u;
5120 Node<K,V> p;
5121 if ((p = advance()) == null) {
5122 propagateCompletion();
5123 break;
5124 }
5125 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5126 if (result.compareAndSet(null, u))
5127 quietlyCompleteRoot();
5128 break;
5129 }
5130 }
5131 }
5132 }
5133 }
5134
5135 @SuppressWarnings("serial")
5136 static final class ReduceKeysTask<K,V>
5137 extends BulkTask<K,V,K> {
5138 final BiFunction<? super K, ? super K, ? extends K> reducer;
5139 K result;
5140 ReduceKeysTask<K,V> rights, nextRight;
5141 ReduceKeysTask
5142 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5143 ReduceKeysTask<K,V> nextRight,
5144 BiFunction<? super K, ? super K, ? extends K> reducer) {
5145 super(p, b, i, f, t); this.nextRight = nextRight;
5146 this.reducer = reducer;
5147 }
5148 public final K getRawResult() { return result; }
5149 public final void compute() {
5150 final BiFunction<? super K, ? super K, ? extends K> reducer;
5151 if ((reducer = this.reducer) != null) {
5152 for (int i = baseIndex, f, h; batch > 0 &&
5153 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5154 addToPendingCount(1);
5155 (rights = new ReduceKeysTask<K,V>
5156 (this, batch >>>= 1, baseLimit = h, f, tab,
5157 rights, reducer)).fork();
5158 }
5159 K r = null;
5160 for (Node<K,V> p; (p = advance()) != null; ) {
5161 K u = p.key;
5162 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5163 }
5164 result = r;
5165 CountedCompleter<?> c;
5166 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5167 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5168 t = (ReduceKeysTask<K,V>)c,
5169 s = t.rights;
5170 while (s != null) {
5171 K tr, sr;
5172 if ((sr = s.result) != null)
5173 t.result = (((tr = t.result) == null) ? sr :
5174 reducer.apply(tr, sr));
5175 s = t.rights = s.nextRight;
5176 }
5177 }
5178 }
5179 }
5180 }
5181
5182 @SuppressWarnings("serial")
5183 static final class ReduceValuesTask<K,V>
5184 extends BulkTask<K,V,V> {
5185 final BiFunction<? super V, ? super V, ? extends V> reducer;
5186 V result;
5187 ReduceValuesTask<K,V> rights, nextRight;
5188 ReduceValuesTask
5189 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5190 ReduceValuesTask<K,V> nextRight,
5191 BiFunction<? super V, ? super V, ? extends V> reducer) {
5192 super(p, b, i, f, t); this.nextRight = nextRight;
5193 this.reducer = reducer;
5194 }
5195 public final V getRawResult() { return result; }
5196 public final void compute() {
5197 final BiFunction<? super V, ? super V, ? extends V> reducer;
5198 if ((reducer = this.reducer) != null) {
5199 for (int i = baseIndex, f, h; batch > 0 &&
5200 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5201 addToPendingCount(1);
5202 (rights = new ReduceValuesTask<K,V>
5203 (this, batch >>>= 1, baseLimit = h, f, tab,
5204 rights, reducer)).fork();
5205 }
5206 V r = null;
5207 for (Node<K,V> p; (p = advance()) != null; ) {
5208 V v = p.val;
5209 r = (r == null) ? v : reducer.apply(r, v);
5210 }
5211 result = r;
5212 CountedCompleter<?> c;
5213 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5214 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5215 t = (ReduceValuesTask<K,V>)c,
5216 s = t.rights;
5217 while (s != null) {
5218 V tr, sr;
5219 if ((sr = s.result) != null)
5220 t.result = (((tr = t.result) == null) ? sr :
5221 reducer.apply(tr, sr));
5222 s = t.rights = s.nextRight;
5223 }
5224 }
5225 }
5226 }
5227 }
5228
5229 @SuppressWarnings("serial")
5230 static final class ReduceEntriesTask<K,V>
5231 extends BulkTask<K,V,Map.Entry<K,V>> {
5232 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5233 Map.Entry<K,V> result;
5234 ReduceEntriesTask<K,V> rights, nextRight;
5235 ReduceEntriesTask
5236 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5237 ReduceEntriesTask<K,V> nextRight,
5238 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5239 super(p, b, i, f, t); this.nextRight = nextRight;
5240 this.reducer = reducer;
5241 }
5242 public final Map.Entry<K,V> getRawResult() { return result; }
5243 public final void compute() {
5244 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5245 if ((reducer = this.reducer) != null) {
5246 for (int i = baseIndex, f, h; batch > 0 &&
5247 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5248 addToPendingCount(1);
5249 (rights = new ReduceEntriesTask<K,V>
5250 (this, batch >>>= 1, baseLimit = h, f, tab,
5251 rights, reducer)).fork();
5252 }
5253 Map.Entry<K,V> r = null;
5254 for (Node<K,V> p; (p = advance()) != null; )
5255 r = (r == null) ? p : reducer.apply(r, p);
5256 result = r;
5257 CountedCompleter<?> c;
5258 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5259 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5260 t = (ReduceEntriesTask<K,V>)c,
5261 s = t.rights;
5262 while (s != null) {
5263 Map.Entry<K,V> tr, sr;
5264 if ((sr = s.result) != null)
5265 t.result = (((tr = t.result) == null) ? sr :
5266 reducer.apply(tr, sr));
5267 s = t.rights = s.nextRight;
5268 }
5269 }
5270 }
5271 }
5272 }
5273
5274 @SuppressWarnings("serial")
5275 static final class MapReduceKeysTask<K,V,U>
5276 extends BulkTask<K,V,U> {
5277 final Function<? super K, ? extends U> transformer;
5278 final BiFunction<? super U, ? super U, ? extends U> reducer;
5279 U result;
5280 MapReduceKeysTask<K,V,U> rights, nextRight;
5281 MapReduceKeysTask
5282 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5283 MapReduceKeysTask<K,V,U> nextRight,
5284 Function<? super K, ? extends U> transformer,
5285 BiFunction<? super U, ? super U, ? extends U> reducer) {
5286 super(p, b, i, f, t); this.nextRight = nextRight;
5287 this.transformer = transformer;
5288 this.reducer = reducer;
5289 }
5290 public final U getRawResult() { return result; }
5291 public final void compute() {
5292 final Function<? super K, ? extends U> transformer;
5293 final BiFunction<? super U, ? super U, ? extends U> reducer;
5294 if ((transformer = this.transformer) != null &&
5295 (reducer = this.reducer) != null) {
5296 for (int i = baseIndex, f, h; batch > 0 &&
5297 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5298 addToPendingCount(1);
5299 (rights = new MapReduceKeysTask<K,V,U>
5300 (this, batch >>>= 1, baseLimit = h, f, tab,
5301 rights, transformer, reducer)).fork();
5302 }
5303 U r = null;
5304 for (Node<K,V> p; (p = advance()) != null; ) {
5305 U u;
5306 if ((u = transformer.apply(p.key)) != null)
5307 r = (r == null) ? u : reducer.apply(r, u);
5308 }
5309 result = r;
5310 CountedCompleter<?> c;
5311 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5312 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5313 t = (MapReduceKeysTask<K,V,U>)c,
5314 s = t.rights;
5315 while (s != null) {
5316 U tr, sr;
5317 if ((sr = s.result) != null)
5318 t.result = (((tr = t.result) == null) ? sr :
5319 reducer.apply(tr, sr));
5320 s = t.rights = s.nextRight;
5321 }
5322 }
5323 }
5324 }
5325 }
5326
5327 @SuppressWarnings("serial")
5328 static final class MapReduceValuesTask<K,V,U>
5329 extends BulkTask<K,V,U> {
5330 final Function<? super V, ? extends U> transformer;
5331 final BiFunction<? super U, ? super U, ? extends U> reducer;
5332 U result;
5333 MapReduceValuesTask<K,V,U> rights, nextRight;
5334 MapReduceValuesTask
5335 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5336 MapReduceValuesTask<K,V,U> nextRight,
5337 Function<? super V, ? extends U> transformer,
5338 BiFunction<? super U, ? super U, ? extends U> reducer) {
5339 super(p, b, i, f, t); this.nextRight = nextRight;
5340 this.transformer = transformer;
5341 this.reducer = reducer;
5342 }
5343 public final U getRawResult() { return result; }
5344 public final void compute() {
5345 final Function<? super V, ? extends U> transformer;
5346 final BiFunction<? super U, ? super U, ? extends U> reducer;
5347 if ((transformer = this.transformer) != null &&
5348 (reducer = this.reducer) != null) {
5349 for (int i = baseIndex, f, h; batch > 0 &&
5350 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5351 addToPendingCount(1);
5352 (rights = new MapReduceValuesTask<K,V,U>
5353 (this, batch >>>= 1, baseLimit = h, f, tab,
5354 rights, transformer, reducer)).fork();
5355 }
5356 U r = null;
5357 for (Node<K,V> p; (p = advance()) != null; ) {
5358 U u;
5359 if ((u = transformer.apply(p.val)) != null)
5360 r = (r == null) ? u : reducer.apply(r, u);
5361 }
5362 result = r;
5363 CountedCompleter<?> c;
5364 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5365 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5366 t = (MapReduceValuesTask<K,V,U>)c,
5367 s = t.rights;
5368 while (s != null) {
5369 U tr, sr;
5370 if ((sr = s.result) != null)
5371 t.result = (((tr = t.result) == null) ? sr :
5372 reducer.apply(tr, sr));
5373 s = t.rights = s.nextRight;
5374 }
5375 }
5376 }
5377 }
5378 }
5379
5380 @SuppressWarnings("serial")
5381 static final class MapReduceEntriesTask<K,V,U>
5382 extends BulkTask<K,V,U> {
5383 final Function<Map.Entry<K,V>, ? extends U> transformer;
5384 final BiFunction<? super U, ? super U, ? extends U> reducer;
5385 U result;
5386 MapReduceEntriesTask<K,V,U> rights, nextRight;
5387 MapReduceEntriesTask
5388 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5389 MapReduceEntriesTask<K,V,U> nextRight,
5390 Function<Map.Entry<K,V>, ? extends U> transformer,
5391 BiFunction<? super U, ? super U, ? extends U> reducer) {
5392 super(p, b, i, f, t); this.nextRight = nextRight;
5393 this.transformer = transformer;
5394 this.reducer = reducer;
5395 }
5396 public final U getRawResult() { return result; }
5397 public final void compute() {
5398 final Function<Map.Entry<K,V>, ? extends U> transformer;
5399 final BiFunction<? super U, ? super U, ? extends U> reducer;
5400 if ((transformer = this.transformer) != null &&
5401 (reducer = this.reducer) != null) {
5402 for (int i = baseIndex, f, h; batch > 0 &&
5403 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5404 addToPendingCount(1);
5405 (rights = new MapReduceEntriesTask<K,V,U>
5406 (this, batch >>>= 1, baseLimit = h, f, tab,
5407 rights, transformer, reducer)).fork();
5408 }
5409 U r = null;
5410 for (Node<K,V> p; (p = advance()) != null; ) {
5411 U u;
5412 if ((u = transformer.apply(p)) != null)
5413 r = (r == null) ? u : reducer.apply(r, u);
5414 }
5415 result = r;
5416 CountedCompleter<?> c;
5417 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5418 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5419 t = (MapReduceEntriesTask<K,V,U>)c,
5420 s = t.rights;
5421 while (s != null) {
5422 U tr, sr;
5423 if ((sr = s.result) != null)
5424 t.result = (((tr = t.result) == null) ? sr :
5425 reducer.apply(tr, sr));
5426 s = t.rights = s.nextRight;
5427 }
5428 }
5429 }
5430 }
5431 }
5432
5433 @SuppressWarnings("serial")
5434 static final class MapReduceMappingsTask<K,V,U>
5435 extends BulkTask<K,V,U> {
5436 final BiFunction<? super K, ? super V, ? extends U> transformer;
5437 final BiFunction<? super U, ? super U, ? extends U> reducer;
5438 U result;
5439 MapReduceMappingsTask<K,V,U> rights, nextRight;
5440 MapReduceMappingsTask
5441 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5442 MapReduceMappingsTask<K,V,U> nextRight,
5443 BiFunction<? super K, ? super V, ? extends U> transformer,
5444 BiFunction<? super U, ? super U, ? extends U> reducer) {
5445 super(p, b, i, f, t); this.nextRight = nextRight;
5446 this.transformer = transformer;
5447 this.reducer = reducer;
5448 }
5449 public final U getRawResult() { return result; }
5450 public final void compute() {
5451 final BiFunction<? super K, ? super V, ? extends U> transformer;
5452 final BiFunction<? super U, ? super U, ? extends U> reducer;
5453 if ((transformer = this.transformer) != null &&
5454 (reducer = this.reducer) != null) {
5455 for (int i = baseIndex, f, h; batch > 0 &&
5456 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5457 addToPendingCount(1);
5458 (rights = new MapReduceMappingsTask<K,V,U>
5459 (this, batch >>>= 1, baseLimit = h, f, tab,
5460 rights, transformer, reducer)).fork();
5461 }
5462 U r = null;
5463 for (Node<K,V> p; (p = advance()) != null; ) {
5464 U u;
5465 if ((u = transformer.apply(p.key, p.val)) != null)
5466 r = (r == null) ? u : reducer.apply(r, u);
5467 }
5468 result = r;
5469 CountedCompleter<?> c;
5470 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5471 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5472 t = (MapReduceMappingsTask<K,V,U>)c,
5473 s = t.rights;
5474 while (s != null) {
5475 U tr, sr;
5476 if ((sr = s.result) != null)
5477 t.result = (((tr = t.result) == null) ? sr :
5478 reducer.apply(tr, sr));
5479 s = t.rights = s.nextRight;
5480 }
5481 }
5482 }
5483 }
5484 }
5485
5486 @SuppressWarnings("serial")
5487 static final class MapReduceKeysToDoubleTask<K,V>
5488 extends BulkTask<K,V,Double> {
5489 final ToDoubleFunction<? super K> transformer;
5490 final DoubleBinaryOperator reducer;
5491 final double basis;
5492 double result;
5493 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5494 MapReduceKeysToDoubleTask
5495 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5496 MapReduceKeysToDoubleTask<K,V> nextRight,
5497 ToDoubleFunction<? super K> transformer,
5498 double basis,
5499 DoubleBinaryOperator reducer) {
5500 super(p, b, i, f, t); this.nextRight = nextRight;
5501 this.transformer = transformer;
5502 this.basis = basis; this.reducer = reducer;
5503 }
5504 public final Double getRawResult() { return result; }
5505 public final void compute() {
5506 final ToDoubleFunction<? super K> transformer;
5507 final DoubleBinaryOperator reducer;
5508 if ((transformer = this.transformer) != null &&
5509 (reducer = this.reducer) != null) {
5510 double r = this.basis;
5511 for (int i = baseIndex, f, h; batch > 0 &&
5512 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5513 addToPendingCount(1);
5514 (rights = new MapReduceKeysToDoubleTask<K,V>
5515 (this, batch >>>= 1, baseLimit = h, f, tab,
5516 rights, transformer, r, reducer)).fork();
5517 }
5518 for (Node<K,V> p; (p = advance()) != null; )
5519 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5520 result = r;
5521 CountedCompleter<?> c;
5522 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5523 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5524 t = (MapReduceKeysToDoubleTask<K,V>)c,
5525 s = t.rights;
5526 while (s != null) {
5527 t.result = reducer.applyAsDouble(t.result, s.result);
5528 s = t.rights = s.nextRight;
5529 }
5530 }
5531 }
5532 }
5533 }
5534
5535 @SuppressWarnings("serial")
5536 static final class MapReduceValuesToDoubleTask<K,V>
5537 extends BulkTask<K,V,Double> {
5538 final ToDoubleFunction<? super V> transformer;
5539 final DoubleBinaryOperator reducer;
5540 final double basis;
5541 double result;
5542 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5543 MapReduceValuesToDoubleTask
5544 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5545 MapReduceValuesToDoubleTask<K,V> nextRight,
5546 ToDoubleFunction<? super V> transformer,
5547 double basis,
5548 DoubleBinaryOperator reducer) {
5549 super(p, b, i, f, t); this.nextRight = nextRight;
5550 this.transformer = transformer;
5551 this.basis = basis; this.reducer = reducer;
5552 }
5553 public final Double getRawResult() { return result; }
5554 public final void compute() {
5555 final ToDoubleFunction<? super V> transformer;
5556 final DoubleBinaryOperator reducer;
5557 if ((transformer = this.transformer) != null &&
5558 (reducer = this.reducer) != null) {
5559 double r = this.basis;
5560 for (int i = baseIndex, f, h; batch > 0 &&
5561 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5562 addToPendingCount(1);
5563 (rights = new MapReduceValuesToDoubleTask<K,V>
5564 (this, batch >>>= 1, baseLimit = h, f, tab,
5565 rights, transformer, r, reducer)).fork();
5566 }
5567 for (Node<K,V> p; (p = advance()) != null; )
5568 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5569 result = r;
5570 CountedCompleter<?> c;
5571 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5572 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5573 t = (MapReduceValuesToDoubleTask<K,V>)c,
5574 s = t.rights;
5575 while (s != null) {
5576 t.result = reducer.applyAsDouble(t.result, s.result);
5577 s = t.rights = s.nextRight;
5578 }
5579 }
5580 }
5581 }
5582 }
5583
5584 @SuppressWarnings("serial")
5585 static final class MapReduceEntriesToDoubleTask<K,V>
5586 extends BulkTask<K,V,Double> {
5587 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5588 final DoubleBinaryOperator reducer;
5589 final double basis;
5590 double result;
5591 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5592 MapReduceEntriesToDoubleTask
5593 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5594 MapReduceEntriesToDoubleTask<K,V> nextRight,
5595 ToDoubleFunction<Map.Entry<K,V>> transformer,
5596 double basis,
5597 DoubleBinaryOperator reducer) {
5598 super(p, b, i, f, t); this.nextRight = nextRight;
5599 this.transformer = transformer;
5600 this.basis = basis; this.reducer = reducer;
5601 }
5602 public final Double getRawResult() { return result; }
5603 public final void compute() {
5604 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5605 final DoubleBinaryOperator reducer;
5606 if ((transformer = this.transformer) != null &&
5607 (reducer = this.reducer) != null) {
5608 double r = this.basis;
5609 for (int i = baseIndex, f, h; batch > 0 &&
5610 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5611 addToPendingCount(1);
5612 (rights = new MapReduceEntriesToDoubleTask<K,V>
5613 (this, batch >>>= 1, baseLimit = h, f, tab,
5614 rights, transformer, r, reducer)).fork();
5615 }
5616 for (Node<K,V> p; (p = advance()) != null; )
5617 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5618 result = r;
5619 CountedCompleter<?> c;
5620 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5621 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5622 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5623 s = t.rights;
5624 while (s != null) {
5625 t.result = reducer.applyAsDouble(t.result, s.result);
5626 s = t.rights = s.nextRight;
5627 }
5628 }
5629 }
5630 }
5631 }
5632
5633 @SuppressWarnings("serial")
5634 static final class MapReduceMappingsToDoubleTask<K,V>
5635 extends BulkTask<K,V,Double> {
5636 final ToDoubleBiFunction<? super K, ? super V> transformer;
5637 final DoubleBinaryOperator reducer;
5638 final double basis;
5639 double result;
5640 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5641 MapReduceMappingsToDoubleTask
5642 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5643 MapReduceMappingsToDoubleTask<K,V> nextRight,
5644 ToDoubleBiFunction<? super K, ? super V> transformer,
5645 double basis,
5646 DoubleBinaryOperator reducer) {
5647 super(p, b, i, f, t); this.nextRight = nextRight;
5648 this.transformer = transformer;
5649 this.basis = basis; this.reducer = reducer;
5650 }
5651 public final Double getRawResult() { return result; }
5652 public final void compute() {
5653 final ToDoubleBiFunction<? super K, ? super V> transformer;
5654 final DoubleBinaryOperator reducer;
5655 if ((transformer = this.transformer) != null &&
5656 (reducer = this.reducer) != null) {
5657 double r = this.basis;
5658 for (int i = baseIndex, f, h; batch > 0 &&
5659 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5660 addToPendingCount(1);
5661 (rights = new MapReduceMappingsToDoubleTask<K,V>
5662 (this, batch >>>= 1, baseLimit = h, f, tab,
5663 rights, transformer, r, reducer)).fork();
5664 }
5665 for (Node<K,V> p; (p = advance()) != null; )
5666 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5667 result = r;
5668 CountedCompleter<?> c;
5669 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5670 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5671 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5672 s = t.rights;
5673 while (s != null) {
5674 t.result = reducer.applyAsDouble(t.result, s.result);
5675 s = t.rights = s.nextRight;
5676 }
5677 }
5678 }
5679 }
5680 }
5681
5682 @SuppressWarnings("serial")
5683 static final class MapReduceKeysToLongTask<K,V>
5684 extends BulkTask<K,V,Long> {
5685 final ToLongFunction<? super K> transformer;
5686 final LongBinaryOperator reducer;
5687 final long basis;
5688 long result;
5689 MapReduceKeysToLongTask<K,V> rights, nextRight;
5690 MapReduceKeysToLongTask
5691 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5692 MapReduceKeysToLongTask<K,V> nextRight,
5693 ToLongFunction<? super K> transformer,
5694 long basis,
5695 LongBinaryOperator reducer) {
5696 super(p, b, i, f, t); this.nextRight = nextRight;
5697 this.transformer = transformer;
5698 this.basis = basis; this.reducer = reducer;
5699 }
5700 public final Long getRawResult() { return result; }
5701 public final void compute() {
5702 final ToLongFunction<? super K> transformer;
5703 final LongBinaryOperator reducer;
5704 if ((transformer = this.transformer) != null &&
5705 (reducer = this.reducer) != null) {
5706 long r = this.basis;
5707 for (int i = baseIndex, f, h; batch > 0 &&
5708 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5709 addToPendingCount(1);
5710 (rights = new MapReduceKeysToLongTask<K,V>
5711 (this, batch >>>= 1, baseLimit = h, f, tab,
5712 rights, transformer, r, reducer)).fork();
5713 }
5714 for (Node<K,V> p; (p = advance()) != null; )
5715 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5716 result = r;
5717 CountedCompleter<?> c;
5718 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5719 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5720 t = (MapReduceKeysToLongTask<K,V>)c,
5721 s = t.rights;
5722 while (s != null) {
5723 t.result = reducer.applyAsLong(t.result, s.result);
5724 s = t.rights = s.nextRight;
5725 }
5726 }
5727 }
5728 }
5729 }
5730
5731 @SuppressWarnings("serial")
5732 static final class MapReduceValuesToLongTask<K,V>
5733 extends BulkTask<K,V,Long> {
5734 final ToLongFunction<? super V> transformer;
5735 final LongBinaryOperator reducer;
5736 final long basis;
5737 long result;
5738 MapReduceValuesToLongTask<K,V> rights, nextRight;
5739 MapReduceValuesToLongTask
5740 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5741 MapReduceValuesToLongTask<K,V> nextRight,
5742 ToLongFunction<? super V> transformer,
5743 long basis,
5744 LongBinaryOperator reducer) {
5745 super(p, b, i, f, t); this.nextRight = nextRight;
5746 this.transformer = transformer;
5747 this.basis = basis; this.reducer = reducer;
5748 }
5749 public final Long getRawResult() { return result; }
5750 public final void compute() {
5751 final ToLongFunction<? super V> transformer;
5752 final LongBinaryOperator reducer;
5753 if ((transformer = this.transformer) != null &&
5754 (reducer = this.reducer) != null) {
5755 long r = this.basis;
5756 for (int i = baseIndex, f, h; batch > 0 &&
5757 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5758 addToPendingCount(1);
5759 (rights = new MapReduceValuesToLongTask<K,V>
5760 (this, batch >>>= 1, baseLimit = h, f, tab,
5761 rights, transformer, r, reducer)).fork();
5762 }
5763 for (Node<K,V> p; (p = advance()) != null; )
5764 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5765 result = r;
5766 CountedCompleter<?> c;
5767 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5768 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5769 t = (MapReduceValuesToLongTask<K,V>)c,
5770 s = t.rights;
5771 while (s != null) {
5772 t.result = reducer.applyAsLong(t.result, s.result);
5773 s = t.rights = s.nextRight;
5774 }
5775 }
5776 }
5777 }
5778 }
5779
5780 @SuppressWarnings("serial")
5781 static final class MapReduceEntriesToLongTask<K,V>
5782 extends BulkTask<K,V,Long> {
5783 final ToLongFunction<Map.Entry<K,V>> transformer;
5784 final LongBinaryOperator reducer;
5785 final long basis;
5786 long result;
5787 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5788 MapReduceEntriesToLongTask
5789 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5790 MapReduceEntriesToLongTask<K,V> nextRight,
5791 ToLongFunction<Map.Entry<K,V>> transformer,
5792 long basis,
5793 LongBinaryOperator reducer) {
5794 super(p, b, i, f, t); this.nextRight = nextRight;
5795 this.transformer = transformer;
5796 this.basis = basis; this.reducer = reducer;
5797 }
5798 public final Long getRawResult() { return result; }
5799 public final void compute() {
5800 final ToLongFunction<Map.Entry<K,V>> transformer;
5801 final LongBinaryOperator reducer;
5802 if ((transformer = this.transformer) != null &&
5803 (reducer = this.reducer) != null) {
5804 long r = this.basis;
5805 for (int i = baseIndex, f, h; batch > 0 &&
5806 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5807 addToPendingCount(1);
5808 (rights = new MapReduceEntriesToLongTask<K,V>
5809 (this, batch >>>= 1, baseLimit = h, f, tab,
5810 rights, transformer, r, reducer)).fork();
5811 }
5812 for (Node<K,V> p; (p = advance()) != null; )
5813 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5814 result = r;
5815 CountedCompleter<?> c;
5816 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5817 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5818 t = (MapReduceEntriesToLongTask<K,V>)c,
5819 s = t.rights;
5820 while (s != null) {
5821 t.result = reducer.applyAsLong(t.result, s.result);
5822 s = t.rights = s.nextRight;
5823 }
5824 }
5825 }
5826 }
5827 }
5828
5829 @SuppressWarnings("serial")
5830 static final class MapReduceMappingsToLongTask<K,V>
5831 extends BulkTask<K,V,Long> {
5832 final ToLongBiFunction<? super K, ? super V> transformer;
5833 final LongBinaryOperator reducer;
5834 final long basis;
5835 long result;
5836 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5837 MapReduceMappingsToLongTask
5838 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5839 MapReduceMappingsToLongTask<K,V> nextRight,
5840 ToLongBiFunction<? super K, ? super V> transformer,
5841 long basis,
5842 LongBinaryOperator reducer) {
5843 super(p, b, i, f, t); this.nextRight = nextRight;
5844 this.transformer = transformer;
5845 this.basis = basis; this.reducer = reducer;
5846 }
5847 public final Long getRawResult() { return result; }
5848 public final void compute() {
5849 final ToLongBiFunction<? super K, ? super V> transformer;
5850 final LongBinaryOperator reducer;
5851 if ((transformer = this.transformer) != null &&
5852 (reducer = this.reducer) != null) {
5853 long r = this.basis;
5854 for (int i = baseIndex, f, h; batch > 0 &&
5855 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5856 addToPendingCount(1);
5857 (rights = new MapReduceMappingsToLongTask<K,V>
5858 (this, batch >>>= 1, baseLimit = h, f, tab,
5859 rights, transformer, r, reducer)).fork();
5860 }
5861 for (Node<K,V> p; (p = advance()) != null; )
5862 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5863 result = r;
5864 CountedCompleter<?> c;
5865 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5866 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5867 t = (MapReduceMappingsToLongTask<K,V>)c,
5868 s = t.rights;
5869 while (s != null) {
5870 t.result = reducer.applyAsLong(t.result, s.result);
5871 s = t.rights = s.nextRight;
5872 }
5873 }
5874 }
5875 }
5876 }
5877
5878 @SuppressWarnings("serial")
5879 static final class MapReduceKeysToIntTask<K,V>
5880 extends BulkTask<K,V,Integer> {
5881 final ToIntFunction<? super K> transformer;
5882 final IntBinaryOperator reducer;
5883 final int basis;
5884 int result;
5885 MapReduceKeysToIntTask<K,V> rights, nextRight;
5886 MapReduceKeysToIntTask
5887 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5888 MapReduceKeysToIntTask<K,V> nextRight,
5889 ToIntFunction<? super K> transformer,
5890 int basis,
5891 IntBinaryOperator reducer) {
5892 super(p, b, i, f, t); this.nextRight = nextRight;
5893 this.transformer = transformer;
5894 this.basis = basis; this.reducer = reducer;
5895 }
5896 public final Integer getRawResult() { return result; }
5897 public final void compute() {
5898 final ToIntFunction<? super K> transformer;
5899 final IntBinaryOperator reducer;
5900 if ((transformer = this.transformer) != null &&
5901 (reducer = this.reducer) != null) {
5902 int r = this.basis;
5903 for (int i = baseIndex, f, h; batch > 0 &&
5904 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5905 addToPendingCount(1);
5906 (rights = new MapReduceKeysToIntTask<K,V>
5907 (this, batch >>>= 1, baseLimit = h, f, tab,
5908 rights, transformer, r, reducer)).fork();
5909 }
5910 for (Node<K,V> p; (p = advance()) != null; )
5911 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5912 result = r;
5913 CountedCompleter<?> c;
5914 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5915 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5916 t = (MapReduceKeysToIntTask<K,V>)c,
5917 s = t.rights;
5918 while (s != null) {
5919 t.result = reducer.applyAsInt(t.result, s.result);
5920 s = t.rights = s.nextRight;
5921 }
5922 }
5923 }
5924 }
5925 }
5926
5927 @SuppressWarnings("serial")
5928 static final class MapReduceValuesToIntTask<K,V>
5929 extends BulkTask<K,V,Integer> {
5930 final ToIntFunction<? super V> transformer;
5931 final IntBinaryOperator reducer;
5932 final int basis;
5933 int result;
5934 MapReduceValuesToIntTask<K,V> rights, nextRight;
5935 MapReduceValuesToIntTask
5936 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5937 MapReduceValuesToIntTask<K,V> nextRight,
5938 ToIntFunction<? super V> transformer,
5939 int basis,
5940 IntBinaryOperator reducer) {
5941 super(p, b, i, f, t); this.nextRight = nextRight;
5942 this.transformer = transformer;
5943 this.basis = basis; this.reducer = reducer;
5944 }
5945 public final Integer getRawResult() { return result; }
5946 public final void compute() {
5947 final ToIntFunction<? super V> transformer;
5948 final IntBinaryOperator reducer;
5949 if ((transformer = this.transformer) != null &&
5950 (reducer = this.reducer) != null) {
5951 int r = this.basis;
5952 for (int i = baseIndex, f, h; batch > 0 &&
5953 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5954 addToPendingCount(1);
5955 (rights = new MapReduceValuesToIntTask<K,V>
5956 (this, batch >>>= 1, baseLimit = h, f, tab,
5957 rights, transformer, r, reducer)).fork();
5958 }
5959 for (Node<K,V> p; (p = advance()) != null; )
5960 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5961 result = r;
5962 CountedCompleter<?> c;
5963 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5965 t = (MapReduceValuesToIntTask<K,V>)c,
5966 s = t.rights;
5967 while (s != null) {
5968 t.result = reducer.applyAsInt(t.result, s.result);
5969 s = t.rights = s.nextRight;
5970 }
5971 }
5972 }
5973 }
5974 }
5975
5976 @SuppressWarnings("serial")
5977 static final class MapReduceEntriesToIntTask<K,V>
5978 extends BulkTask<K,V,Integer> {
5979 final ToIntFunction<Map.Entry<K,V>> transformer;
5980 final IntBinaryOperator reducer;
5981 final int basis;
5982 int result;
5983 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5984 MapReduceEntriesToIntTask
5985 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5986 MapReduceEntriesToIntTask<K,V> nextRight,
5987 ToIntFunction<Map.Entry<K,V>> transformer,
5988 int basis,
5989 IntBinaryOperator reducer) {
5990 super(p, b, i, f, t); this.nextRight = nextRight;
5991 this.transformer = transformer;
5992 this.basis = basis; this.reducer = reducer;
5993 }
5994 public final Integer getRawResult() { return result; }
5995 public final void compute() {
5996 final ToIntFunction<Map.Entry<K,V>> transformer;
5997 final IntBinaryOperator reducer;
5998 if ((transformer = this.transformer) != null &&
5999 (reducer = this.reducer) != null) {
6000 int r = this.basis;
6001 for (int i = baseIndex, f, h; batch > 0 &&
6002 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6003 addToPendingCount(1);
6004 (rights = new MapReduceEntriesToIntTask<K,V>
6005 (this, batch >>>= 1, baseLimit = h, f, tab,
6006 rights, transformer, r, reducer)).fork();
6007 }
6008 for (Node<K,V> p; (p = advance()) != null; )
6009 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6010 result = r;
6011 CountedCompleter<?> c;
6012 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6013 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6014 t = (MapReduceEntriesToIntTask<K,V>)c,
6015 s = t.rights;
6016 while (s != null) {
6017 t.result = reducer.applyAsInt(t.result, s.result);
6018 s = t.rights = s.nextRight;
6019 }
6020 }
6021 }
6022 }
6023 }
6024
6025 @SuppressWarnings("serial")
6026 static final class MapReduceMappingsToIntTask<K,V>
6027 extends BulkTask<K,V,Integer> {
6028 final ToIntBiFunction<? super K, ? super V> transformer;
6029 final IntBinaryOperator reducer;
6030 final int basis;
6031 int result;
6032 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6033 MapReduceMappingsToIntTask
6034 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6035 MapReduceMappingsToIntTask<K,V> nextRight,
6036 ToIntBiFunction<? super K, ? super V> transformer,
6037 int basis,
6038 IntBinaryOperator reducer) {
6039 super(p, b, i, f, t); this.nextRight = nextRight;
6040 this.transformer = transformer;
6041 this.basis = basis; this.reducer = reducer;
6042 }
6043 public final Integer getRawResult() { return result; }
6044 public final void compute() {
6045 final ToIntBiFunction<? super K, ? super V> transformer;
6046 final IntBinaryOperator reducer;
6047 if ((transformer = this.transformer) != null &&
6048 (reducer = this.reducer) != null) {
6049 int r = this.basis;
6050 for (int i = baseIndex, f, h; batch > 0 &&
6051 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6052 addToPendingCount(1);
6053 (rights = new MapReduceMappingsToIntTask<K,V>
6054 (this, batch >>>= 1, baseLimit = h, f, tab,
6055 rights, transformer, r, reducer)).fork();
6056 }
6057 for (Node<K,V> p; (p = advance()) != null; )
6058 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6059 result = r;
6060 CountedCompleter<?> c;
6061 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6062 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6063 t = (MapReduceMappingsToIntTask<K,V>)c,
6064 s = t.rights;
6065 while (s != null) {
6066 t.result = reducer.applyAsInt(t.result, s.result);
6067 s = t.rights = s.nextRight;
6068 }
6069 }
6070 }
6071 }
6072 }
6073
6074 // Unsafe mechanics
6075 private static final sun.misc.Unsafe U;
6076 private static final long SIZECTL;
6077 private static final long TRANSFERINDEX;
6078 private static final long TRANSFERORIGIN;
6079 private static final long BASECOUNT;
6080 private static final long CELLSBUSY;
6081 private static final long CELLVALUE;
6082 private static final long ABASE;
6083 private static final int ASHIFT;
6084
6085 static {
6086 try {
6087 U = sun.misc.Unsafe.getUnsafe();
6088 Class<?> k = ConcurrentHashMap.class;
6089 SIZECTL = U.objectFieldOffset
6090 (k.getDeclaredField("sizeCtl"));
6091 TRANSFERINDEX = U.objectFieldOffset
6092 (k.getDeclaredField("transferIndex"));
6093 TRANSFERORIGIN = U.objectFieldOffset
6094 (k.getDeclaredField("transferOrigin"));
6095 BASECOUNT = U.objectFieldOffset
6096 (k.getDeclaredField("baseCount"));
6097 CELLSBUSY = U.objectFieldOffset
6098 (k.getDeclaredField("cellsBusy"));
6099 Class<?> ck = CounterCell.class;
6100 CELLVALUE = U.objectFieldOffset
6101 (ck.getDeclaredField("value"));
6102 Class<?> ak = Node[].class;
6103 ABASE = U.arrayBaseOffset(ak);
6104 int scale = U.arrayIndexScale(ak);
6105 if ((scale & (scale - 1)) != 0)
6106 throw new Error("data type scale not a power of two");
6107 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6108 } catch (Exception e) {
6109 throw new Error(e);
6110 }
6111 }
6112 }