ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.239
Committed: Fri Jul 19 19:34:43 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.238: +1 -1 lines
Log Message:
enforce standard javadoc tag order

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.ConcurrentModificationException;
18 import java.util.Enumeration;
19 import java.util.HashMap;
20 import java.util.Hashtable;
21 import java.util.Iterator;
22 import java.util.Map;
23 import java.util.NoSuchElementException;
24 import java.util.Set;
25 import java.util.Spliterator;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ForkJoinPool;
28 import java.util.concurrent.atomic.AtomicReference;
29 import java.util.concurrent.locks.LockSupport;
30 import java.util.concurrent.locks.ReentrantLock;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.BinaryOperator;
34 import java.util.function.Consumer;
35 import java.util.function.DoubleBinaryOperator;
36 import java.util.function.Function;
37 import java.util.function.IntBinaryOperator;
38 import java.util.function.LongBinaryOperator;
39 import java.util.function.ToDoubleBiFunction;
40 import java.util.function.ToDoubleFunction;
41 import java.util.function.ToIntBiFunction;
42 import java.util.function.ToIntFunction;
43 import java.util.function.ToLongBiFunction;
44 import java.util.function.ToLongFunction;
45 import java.util.stream.Stream;
46
47 /**
48 * A hash table supporting full concurrency of retrievals and
49 * high expected concurrency for updates. This class obeys the
50 * same functional specification as {@link java.util.Hashtable}, and
51 * includes versions of methods corresponding to each method of
52 * {@code Hashtable}. However, even though all operations are
53 * thread-safe, retrieval operations do <em>not</em> entail locking,
54 * and there is <em>not</em> any support for locking the entire table
55 * in a way that prevents all access. This class is fully
56 * interoperable with {@code Hashtable} in programs that rely on its
57 * thread safety but not on its synchronization details.
58 *
59 * <p>Retrieval operations (including {@code get}) generally do not
60 * block, so may overlap with update operations (including {@code put}
61 * and {@code remove}). Retrievals reflect the results of the most
62 * recently <em>completed</em> update operations holding upon their
63 * onset. (More formally, an update operation for a given key bears a
64 * <em>happens-before</em> relation with any (non-null) retrieval for
65 * that key reporting the updated value.) For aggregate operations
66 * such as {@code putAll} and {@code clear}, concurrent retrievals may
67 * reflect insertion or removal of only some entries. Similarly,
68 * Iterators and Enumerations return elements reflecting the state of
69 * the hash table at some point at or since the creation of the
70 * iterator/enumeration. They do <em>not</em> throw {@link
71 * ConcurrentModificationException}. However, iterators are designed
72 * to be used by only one thread at a time. Bear in mind that the
73 * results of aggregate status methods including {@code size}, {@code
74 * isEmpty}, and {@code containsValue} are typically useful only when
75 * a map is not undergoing concurrent updates in other threads.
76 * Otherwise the results of these methods reflect transient states
77 * that may be adequate for monitoring or estimation purposes, but not
78 * for program control.
79 *
80 * <p>The table is dynamically expanded when there are too many
81 * collisions (i.e., keys that have distinct hash codes but fall into
82 * the same slot modulo the table size), with the expected average
83 * effect of maintaining roughly two bins per mapping (corresponding
84 * to a 0.75 load factor threshold for resizing). There may be much
85 * variance around this average as mappings are added and removed, but
86 * overall, this maintains a commonly accepted time/space tradeoff for
87 * hash tables. However, resizing this or any other kind of hash
88 * table may be a relatively slow operation. When possible, it is a
89 * good idea to provide a size estimate as an optional {@code
90 * initialCapacity} constructor argument. An additional optional
91 * {@code loadFactor} constructor argument provides a further means of
92 * customizing initial table capacity by specifying the table density
93 * to be used in calculating the amount of space to allocate for the
94 * given number of elements. Also, for compatibility with previous
95 * versions of this class, constructors may optionally specify an
96 * expected {@code concurrencyLevel} as an additional hint for
97 * internal sizing. Note that using many keys with exactly the same
98 * {@code hashCode()} is a sure way to slow down performance of any
99 * hash table. To ameliorate impact, when keys are {@link Comparable},
100 * this class may use comparison order among keys to help break ties.
101 *
102 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
104 * (using {@link #keySet(Object)} when only keys are of interest, and the
105 * mapped values are (perhaps transiently) not used or all take the
106 * same mapping value.
107 *
108 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
109 * form of histogram or multiset) by using {@link
110 * java.util.concurrent.atomic.LongAdder} values and initializing via
111 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
112 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
113 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
114 *
115 * <p>This class and its views and iterators implement all of the
116 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
117 * interfaces.
118 *
119 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120 * does <em>not</em> allow {@code null} to be used as a key or value.
121 *
122 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 * operations that, unlike most {@link Stream} methods, are designed
124 * to be safely, and often sensibly, applied even with maps that are
125 * being concurrently updated by other threads; for example, when
126 * computing a snapshot summary of the values in a shared registry.
127 * There are three kinds of operation, each with four forms, accepting
128 * functions with Keys, Values, Entries, and (Key, Value) arguments
129 * and/or return values. Because the elements of a ConcurrentHashMap
130 * are not ordered in any particular way, and may be processed in
131 * different orders in different parallel executions, the correctness
132 * of supplied functions should not depend on any ordering, or on any
133 * other objects or values that may transiently change while
134 * computation is in progress; and except for forEach actions, should
135 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 * objects do not support method {@code setValue}.
137 *
138 * <ul>
139 * <li> forEach: Perform a given action on each element.
140 * A variant form applies a given transformation on each element
141 * before performing the action.</li>
142 *
143 * <li> search: Return the first available non-null result of
144 * applying a given function on each element; skipping further
145 * search when a result is found.</li>
146 *
147 * <li> reduce: Accumulate each element. The supplied reduction
148 * function cannot rely on ordering (more formally, it should be
149 * both associative and commutative). There are five variants:
150 *
151 * <ul>
152 *
153 * <li> Plain reductions. (There is not a form of this method for
154 * (key, value) function arguments since there is no corresponding
155 * return type.)</li>
156 *
157 * <li> Mapped reductions that accumulate the results of a given
158 * function applied to each element.</li>
159 *
160 * <li> Reductions to scalar doubles, longs, and ints, using a
161 * given basis value.</li>
162 *
163 * </ul>
164 * </li>
165 * </ul>
166 *
167 * <p>These bulk operations accept a {@code parallelismThreshold}
168 * argument. Methods proceed sequentially if the current map size is
169 * estimated to be less than the given threshold. Using a value of
170 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
171 * of {@code 1} results in maximal parallelism by partitioning into
172 * enough subtasks to fully utilize the {@link
173 * ForkJoinPool#commonPool()} that is used for all parallel
174 * computations. Normally, you would initially choose one of these
175 * extreme values, and then measure performance of using in-between
176 * values that trade off overhead versus throughput.
177 *
178 * <p>The concurrency properties of bulk operations follow
179 * from those of ConcurrentHashMap: Any non-null result returned
180 * from {@code get(key)} and related access methods bears a
181 * happens-before relation with the associated insertion or
182 * update. The result of any bulk operation reflects the
183 * composition of these per-element relations (but is not
184 * necessarily atomic with respect to the map as a whole unless it
185 * is somehow known to be quiescent). Conversely, because keys
186 * and values in the map are never null, null serves as a reliable
187 * atomic indicator of the current lack of any result. To
188 * maintain this property, null serves as an implicit basis for
189 * all non-scalar reduction operations. For the double, long, and
190 * int versions, the basis should be one that, when combined with
191 * any other value, returns that other value (more formally, it
192 * should be the identity element for the reduction). Most common
193 * reductions have these properties; for example, computing a sum
194 * with basis 0 or a minimum with basis MAX_VALUE.
195 *
196 * <p>Search and transformation functions provided as arguments
197 * should similarly return null to indicate the lack of any result
198 * (in which case it is not used). In the case of mapped
199 * reductions, this also enables transformations to serve as
200 * filters, returning null (or, in the case of primitive
201 * specializations, the identity basis) if the element should not
202 * be combined. You can create compound transformations and
203 * filterings by composing them yourself under this "null means
204 * there is nothing there now" rule before using them in search or
205 * reduce operations.
206 *
207 * <p>Methods accepting and/or returning Entry arguments maintain
208 * key-value associations. They may be useful for example when
209 * finding the key for the greatest value. Note that "plain" Entry
210 * arguments can be supplied using {@code new
211 * AbstractMap.SimpleEntry(k,v)}.
212 *
213 * <p>Bulk operations may complete abruptly, throwing an
214 * exception encountered in the application of a supplied
215 * function. Bear in mind when handling such exceptions that other
216 * concurrently executing functions could also have thrown
217 * exceptions, or would have done so if the first exception had
218 * not occurred.
219 *
220 * <p>Speedups for parallel compared to sequential forms are common
221 * but not guaranteed. Parallel operations involving brief functions
222 * on small maps may execute more slowly than sequential forms if the
223 * underlying work to parallelize the computation is more expensive
224 * than the computation itself. Similarly, parallelization may not
225 * lead to much actual parallelism if all processors are busy
226 * performing unrelated tasks.
227 *
228 * <p>All arguments to all task methods must be non-null.
229 *
230 * <p>This class is a member of the
231 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232 * Java Collections Framework</a>.
233 *
234 * @since 1.5
235 * @author Doug Lea
236 * @param <K> the type of keys maintained by this map
237 * @param <V> the type of mapped values
238 */
239 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement
348 * array. However, rather than stalling, these other threads may
349 * proceed with insertions etc. The use of TreeBins shields us
350 * from the worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. To enable concurrency, the
353 * next table must be (incrementally) prefilled with place-holders
354 * serving as reverse forwarders to the old table. Because we are
355 * using power-of-two expansion, the elements from each bin must
356 * either stay at same index, or move with a power of two
357 * offset. We eliminate unnecessary node creation by catching
358 * cases where old nodes can be reused because their next fields
359 * won't change. On average, only about one-sixth of them need
360 * cloning when a table doubles. The nodes they replace will be
361 * garbage collectable as soon as they are no longer referenced by
362 * any reader thread that may be in the midst of concurrently
363 * traversing table. Upon transfer, the old table bin contains
364 * only a special forwarding node (with hash field "MOVED") that
365 * contains the next table as its key. On encountering a
366 * forwarding node, access and update operations restart, using
367 * the new table.
368 *
369 * Each bin transfer requires its bin lock, which can stall
370 * waiting for locks while resizing. However, because other
371 * threads can join in and help resize rather than contend for
372 * locks, average aggregate waits become shorter as resizing
373 * progresses. The transfer operation must also ensure that all
374 * accessible bins in both the old and new table are usable by any
375 * traversal. This is arranged by proceeding from the last bin
376 * (table.length - 1) up towards the first. Upon seeing a
377 * forwarding node, traversals (see class Traverser) arrange to
378 * move to the new table without revisiting nodes. However, to
379 * ensure that no intervening nodes are skipped, bin splitting can
380 * only begin after the associated reverse-forwarders are in
381 * place.
382 *
383 * The traversal scheme also applies to partial traversals of
384 * ranges of bins (via an alternate Traverser constructor)
385 * to support partitioned aggregate operations. Also, read-only
386 * operations give up if ever forwarded to a null table, which
387 * provides support for shutdown-style clearing, which is also not
388 * currently implemented.
389 *
390 * Lazy table initialization minimizes footprint until first use,
391 * and also avoids resizings when the first operation is from a
392 * putAll, constructor with map argument, or deserialization.
393 * These cases attempt to override the initial capacity settings,
394 * but harmlessly fail to take effect in cases of races.
395 *
396 * The element count is maintained using a specialization of
397 * LongAdder. We need to incorporate a specialization rather than
398 * just use a LongAdder in order to access implicit
399 * contention-sensing that leads to creation of multiple
400 * CounterCells. The counter mechanics avoid contention on
401 * updates but can encounter cache thrashing if read too
402 * frequently during concurrent access. To avoid reading so often,
403 * resizing under contention is attempted only upon adding to a
404 * bin already holding two or more nodes. Under uniform hash
405 * distributions, the probability of this occurring at threshold
406 * is around 13%, meaning that only about 1 in 8 puts check
407 * threshold (and after resizing, many fewer do so).
408 *
409 * TreeBins use a special form of comparison for search and
410 * related operations (which is the main reason we cannot use
411 * existing collections such as TreeMaps). TreeBins contain
412 * Comparable elements, but may contain others, as well as
413 * elements that are Comparable but not necessarily Comparable
414 * for the same T, so we cannot invoke compareTo among them. To
415 * handle this, the tree is ordered primarily by hash value, then
416 * by Comparable.compareTo order if applicable. On lookup at a
417 * node, if elements are not comparable or compare as 0 then both
418 * left and right children may need to be searched in the case of
419 * tied hash values. (This corresponds to the full list search
420 * that would be necessary if all elements were non-Comparable and
421 * had tied hashes.) The red-black balancing code is updated from
422 * pre-jdk-collections
423 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
424 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
425 * Algorithms" (CLR).
426 *
427 * TreeBins also require an additional locking mechanism. While
428 * list traversal is always possible by readers even during
429 * updates, tree traversal is not, mainly because of tree-rotations
430 * that may change the root node and/or its linkages. TreeBins
431 * include a simple read-write lock mechanism parasitic on the
432 * main bin-synchronization strategy: Structural adjustments
433 * associated with an insertion or removal are already bin-locked
434 * (and so cannot conflict with other writers) but must wait for
435 * ongoing readers to finish. Since there can be only one such
436 * waiter, we use a simple scheme using a single "waiter" field to
437 * block writers. However, readers need never block. If the root
438 * lock is held, they proceed along the slow traversal path (via
439 * next-pointers) until the lock becomes available or the list is
440 * exhausted, whichever comes first. These cases are not fast, but
441 * maximize aggregate expected throughput.
442 *
443 * Maintaining API and serialization compatibility with previous
444 * versions of this class introduces several oddities. Mainly: We
445 * leave untouched but unused constructor arguments refering to
446 * concurrencyLevel. We accept a loadFactor constructor argument,
447 * but apply it only to initial table capacity (which is the only
448 * time that we can guarantee to honor it.) We also declare an
449 * unused "Segment" class that is instantiated in minimal form
450 * only when serializing.
451 *
452 * This file is organized to make things a little easier to follow
453 * while reading than they might otherwise: First the main static
454 * declarations and utilities, then fields, then main public
455 * methods (with a few factorings of multiple public methods into
456 * internal ones), then sizing methods, trees, traversers, and
457 * bulk operations.
458 */
459
460 /* ---------------- Constants -------------- */
461
462 /**
463 * The largest possible table capacity. This value must be
464 * exactly 1<<30 to stay within Java array allocation and indexing
465 * bounds for power of two table sizes, and is further required
466 * because the top two bits of 32bit hash fields are used for
467 * control purposes.
468 */
469 private static final int MAXIMUM_CAPACITY = 1 << 30;
470
471 /**
472 * The default initial table capacity. Must be a power of 2
473 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
474 */
475 private static final int DEFAULT_CAPACITY = 16;
476
477 /**
478 * The largest possible (non-power of two) array size.
479 * Needed by toArray and related methods.
480 */
481 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
482
483 /**
484 * The default concurrency level for this table. Unused but
485 * defined for compatibility with previous versions of this class.
486 */
487 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
488
489 /**
490 * The load factor for this table. Overrides of this value in
491 * constructors affect only the initial table capacity. The
492 * actual floating point value isn't normally used -- it is
493 * simpler to use expressions such as {@code n - (n >>> 2)} for
494 * the associated resizing threshold.
495 */
496 private static final float LOAD_FACTOR = 0.75f;
497
498 /**
499 * The bin count threshold for using a tree rather than list for a
500 * bin. Bins are converted to trees when adding an element to a
501 * bin with at least this many nodes. The value must be greater
502 * than 2, and should be at least 8 to mesh with assumptions in
503 * tree removal about conversion back to plain bins upon
504 * shrinkage.
505 */
506 static final int TREEIFY_THRESHOLD = 8;
507
508 /**
509 * The bin count threshold for untreeifying a (split) bin during a
510 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
511 * most 6 to mesh with shrinkage detection under removal.
512 */
513 static final int UNTREEIFY_THRESHOLD = 6;
514
515 /**
516 * The smallest table capacity for which bins may be treeified.
517 * (Otherwise the table is resized if too many nodes in a bin.)
518 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
519 * conflicts between resizing and treeification thresholds.
520 */
521 static final int MIN_TREEIFY_CAPACITY = 64;
522
523 /**
524 * Minimum number of rebinnings per transfer step. Ranges are
525 * subdivided to allow multiple resizer threads. This value
526 * serves as a lower bound to avoid resizers encountering
527 * excessive memory contention. The value should be at least
528 * DEFAULT_CAPACITY.
529 */
530 private static final int MIN_TRANSFER_STRIDE = 16;
531
532 /*
533 * Encodings for Node hash fields. See above for explanation.
534 */
535 static final int MOVED = -1; // hash for forwarding nodes
536 static final int TREEBIN = -2; // hash for roots of trees
537 static final int RESERVED = -3; // hash for transient reservations
538 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
539
540 /** Number of CPUS, to place bounds on some sizings */
541 static final int NCPU = Runtime.getRuntime().availableProcessors();
542
543 /** For serialization compatibility. */
544 private static final ObjectStreamField[] serialPersistentFields = {
545 new ObjectStreamField("segments", Segment[].class),
546 new ObjectStreamField("segmentMask", Integer.TYPE),
547 new ObjectStreamField("segmentShift", Integer.TYPE)
548 };
549
550 /* ---------------- Nodes -------------- */
551
552 /**
553 * Key-value entry. This class is never exported out as a
554 * user-mutable Map.Entry (i.e., one supporting setValue; see
555 * MapEntry below), but can be used for read-only traversals used
556 * in bulk tasks. Subclasses of Node with a negative hash field
557 * are special, and contain null keys and values (but are never
558 * exported). Otherwise, keys and vals are never null.
559 */
560 static class Node<K,V> implements Map.Entry<K,V> {
561 final int hash;
562 final K key;
563 volatile V val;
564 volatile Node<K,V> next;
565
566 Node(int hash, K key, V val, Node<K,V> next) {
567 this.hash = hash;
568 this.key = key;
569 this.val = val;
570 this.next = next;
571 }
572
573 public final K getKey() { return key; }
574 public final V getValue() { return val; }
575 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
576 public final String toString(){ return key + "=" + val; }
577 public final V setValue(V value) {
578 throw new UnsupportedOperationException();
579 }
580
581 public final boolean equals(Object o) {
582 Object k, v, u; Map.Entry<?,?> e;
583 return ((o instanceof Map.Entry) &&
584 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
585 (v = e.getValue()) != null &&
586 (k == key || k.equals(key)) &&
587 (v == (u = val) || v.equals(u)));
588 }
589
590 /**
591 * Virtualized support for map.get(); overridden in subclasses.
592 */
593 Node<K,V> find(int h, Object k) {
594 Node<K,V> e = this;
595 if (k != null) {
596 do {
597 K ek;
598 if (e.hash == h &&
599 ((ek = e.key) == k || (ek != null && k.equals(ek))))
600 return e;
601 } while ((e = e.next) != null);
602 }
603 return null;
604 }
605 }
606
607 /* ---------------- Static utilities -------------- */
608
609 /**
610 * Spreads (XORs) higher bits of hash to lower and also forces top
611 * bit to 0. Because the table uses power-of-two masking, sets of
612 * hashes that vary only in bits above the current mask will
613 * always collide. (Among known examples are sets of Float keys
614 * holding consecutive whole numbers in small tables.) So we
615 * apply a transform that spreads the impact of higher bits
616 * downward. There is a tradeoff between speed, utility, and
617 * quality of bit-spreading. Because many common sets of hashes
618 * are already reasonably distributed (so don't benefit from
619 * spreading), and because we use trees to handle large sets of
620 * collisions in bins, we just XOR some shifted bits in the
621 * cheapest possible way to reduce systematic lossage, as well as
622 * to incorporate impact of the highest bits that would otherwise
623 * never be used in index calculations because of table bounds.
624 */
625 static final int spread(int h) {
626 return (h ^ (h >>> 16)) & HASH_BITS;
627 }
628
629 /**
630 * Returns a power of two table size for the given desired capacity.
631 * See Hackers Delight, sec 3.2
632 */
633 private static final int tableSizeFor(int c) {
634 int n = c - 1;
635 n |= n >>> 1;
636 n |= n >>> 2;
637 n |= n >>> 4;
638 n |= n >>> 8;
639 n |= n >>> 16;
640 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
641 }
642
643 /**
644 * Returns x's Class if it is of the form "class C implements
645 * Comparable<C>", else null.
646 */
647 static Class<?> comparableClassFor(Object x) {
648 if (x instanceof Comparable) {
649 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
650 if ((c = x.getClass()) == String.class) // bypass checks
651 return c;
652 if ((ts = c.getGenericInterfaces()) != null) {
653 for (int i = 0; i < ts.length; ++i) {
654 if (((t = ts[i]) instanceof ParameterizedType) &&
655 ((p = (ParameterizedType)t).getRawType() ==
656 Comparable.class) &&
657 (as = p.getActualTypeArguments()) != null &&
658 as.length == 1 && as[0] == c) // type arg is c
659 return c;
660 }
661 }
662 }
663 return null;
664 }
665
666 /**
667 * Returns k.compareTo(x) if x matches kc (k's screened comparable
668 * class), else 0.
669 */
670 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
671 static int compareComparables(Class<?> kc, Object k, Object x) {
672 return (x == null || x.getClass() != kc ? 0 :
673 ((Comparable)k).compareTo(x));
674 }
675
676 /* ---------------- Table element access -------------- */
677
678 /*
679 * Volatile access methods are used for table elements as well as
680 * elements of in-progress next table while resizing. All uses of
681 * the tab arguments must be null checked by callers. All callers
682 * also paranoically precheck that tab's length is not zero (or an
683 * equivalent check), thus ensuring that any index argument taking
684 * the form of a hash value anded with (length - 1) is a valid
685 * index. Note that, to be correct wrt arbitrary concurrency
686 * errors by users, these checks must operate on local variables,
687 * which accounts for some odd-looking inline assignments below.
688 * Note that calls to setTabAt always occur within locked regions,
689 * and so in principle require only release ordering, not need
690 * full volatile semantics, but are currently coded as volatile
691 * writes to be conservative.
692 */
693
694 @SuppressWarnings("unchecked")
695 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
696 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
697 }
698
699 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
700 Node<K,V> c, Node<K,V> v) {
701 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
702 }
703
704 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
705 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
706 }
707
708 /* ---------------- Fields -------------- */
709
710 /**
711 * The array of bins. Lazily initialized upon first insertion.
712 * Size is always a power of two. Accessed directly by iterators.
713 */
714 transient volatile Node<K,V>[] table;
715
716 /**
717 * The next table to use; non-null only while resizing.
718 */
719 private transient volatile Node<K,V>[] nextTable;
720
721 /**
722 * Base counter value, used mainly when there is no contention,
723 * but also as a fallback during table initialization
724 * races. Updated via CAS.
725 */
726 private transient volatile long baseCount;
727
728 /**
729 * Table initialization and resizing control. When negative, the
730 * table is being initialized or resized: -1 for initialization,
731 * else -(1 + the number of active resizing threads). Otherwise,
732 * when table is null, holds the initial table size to use upon
733 * creation, or 0 for default. After initialization, holds the
734 * next element count value upon which to resize the table.
735 */
736 private transient volatile int sizeCtl;
737
738 /**
739 * The next table index (plus one) to split while resizing.
740 */
741 private transient volatile int transferIndex;
742
743 /**
744 * The least available table index to split while resizing.
745 */
746 private transient volatile int transferOrigin;
747
748 /**
749 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
750 */
751 private transient volatile int cellsBusy;
752
753 /**
754 * Table of counter cells. When non-null, size is a power of 2.
755 */
756 private transient volatile CounterCell[] counterCells;
757
758 // views
759 private transient KeySetView<K,V> keySet;
760 private transient ValuesView<K,V> values;
761 private transient EntrySetView<K,V> entrySet;
762
763
764 /* ---------------- Public operations -------------- */
765
766 /**
767 * Creates a new, empty map with the default initial table size (16).
768 */
769 public ConcurrentHashMap() {
770 }
771
772 /**
773 * Creates a new, empty map with an initial table size
774 * accommodating the specified number of elements without the need
775 * to dynamically resize.
776 *
777 * @param initialCapacity The implementation performs internal
778 * sizing to accommodate this many elements.
779 * @throws IllegalArgumentException if the initial capacity of
780 * elements is negative
781 */
782 public ConcurrentHashMap(int initialCapacity) {
783 if (initialCapacity < 0)
784 throw new IllegalArgumentException();
785 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
786 MAXIMUM_CAPACITY :
787 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
788 this.sizeCtl = cap;
789 }
790
791 /**
792 * Creates a new map with the same mappings as the given map.
793 *
794 * @param m the map
795 */
796 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
797 this.sizeCtl = DEFAULT_CAPACITY;
798 putAll(m);
799 }
800
801 /**
802 * Creates a new, empty map with an initial table size based on
803 * the given number of elements ({@code initialCapacity}) and
804 * initial table density ({@code loadFactor}).
805 *
806 * @param initialCapacity the initial capacity. The implementation
807 * performs internal sizing to accommodate this many elements,
808 * given the specified load factor.
809 * @param loadFactor the load factor (table density) for
810 * establishing the initial table size
811 * @throws IllegalArgumentException if the initial capacity of
812 * elements is negative or the load factor is nonpositive
813 *
814 * @since 1.6
815 */
816 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
817 this(initialCapacity, loadFactor, 1);
818 }
819
820 /**
821 * Creates a new, empty map with an initial table size based on
822 * the given number of elements ({@code initialCapacity}), table
823 * density ({@code loadFactor}), and number of concurrently
824 * updating threads ({@code concurrencyLevel}).
825 *
826 * @param initialCapacity the initial capacity. The implementation
827 * performs internal sizing to accommodate this many elements,
828 * given the specified load factor.
829 * @param loadFactor the load factor (table density) for
830 * establishing the initial table size
831 * @param concurrencyLevel the estimated number of concurrently
832 * updating threads. The implementation may use this value as
833 * a sizing hint.
834 * @throws IllegalArgumentException if the initial capacity is
835 * negative or the load factor or concurrencyLevel are
836 * nonpositive
837 */
838 public ConcurrentHashMap(int initialCapacity,
839 float loadFactor, int concurrencyLevel) {
840 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
841 throw new IllegalArgumentException();
842 if (initialCapacity < concurrencyLevel) // Use at least as many bins
843 initialCapacity = concurrencyLevel; // as estimated threads
844 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
845 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
846 MAXIMUM_CAPACITY : tableSizeFor((int)size);
847 this.sizeCtl = cap;
848 }
849
850 // Original (since JDK1.2) Map methods
851
852 /**
853 * {@inheritDoc}
854 */
855 public int size() {
856 long n = sumCount();
857 return ((n < 0L) ? 0 :
858 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
859 (int)n);
860 }
861
862 /**
863 * {@inheritDoc}
864 */
865 public boolean isEmpty() {
866 return sumCount() <= 0L; // ignore transient negative values
867 }
868
869 /**
870 * Returns the value to which the specified key is mapped,
871 * or {@code null} if this map contains no mapping for the key.
872 *
873 * <p>More formally, if this map contains a mapping from a key
874 * {@code k} to a value {@code v} such that {@code key.equals(k)},
875 * then this method returns {@code v}; otherwise it returns
876 * {@code null}. (There can be at most one such mapping.)
877 *
878 * @throws NullPointerException if the specified key is null
879 */
880 public V get(Object key) {
881 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
882 int h = spread(key.hashCode());
883 if ((tab = table) != null && (n = tab.length) > 0 &&
884 (e = tabAt(tab, (n - 1) & h)) != null) {
885 if ((eh = e.hash) == h) {
886 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
887 return e.val;
888 }
889 else if (eh < 0)
890 return (p = e.find(h, key)) != null ? p.val : null;
891 while ((e = e.next) != null) {
892 if (e.hash == h &&
893 ((ek = e.key) == key || (ek != null && key.equals(ek))))
894 return e.val;
895 }
896 }
897 return null;
898 }
899
900 /**
901 * Tests if the specified object is a key in this table.
902 *
903 * @param key possible key
904 * @return {@code true} if and only if the specified object
905 * is a key in this table, as determined by the
906 * {@code equals} method; {@code false} otherwise
907 * @throws NullPointerException if the specified key is null
908 */
909 public boolean containsKey(Object key) {
910 return get(key) != null;
911 }
912
913 /**
914 * Returns {@code true} if this map maps one or more keys to the
915 * specified value. Note: This method may require a full traversal
916 * of the map, and is much slower than method {@code containsKey}.
917 *
918 * @param value value whose presence in this map is to be tested
919 * @return {@code true} if this map maps one or more keys to the
920 * specified value
921 * @throws NullPointerException if the specified value is null
922 */
923 public boolean containsValue(Object value) {
924 if (value == null)
925 throw new NullPointerException();
926 Node<K,V>[] t;
927 if ((t = table) != null) {
928 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
929 for (Node<K,V> p; (p = it.advance()) != null; ) {
930 V v;
931 if ((v = p.val) == value || (v != null && value.equals(v)))
932 return true;
933 }
934 }
935 return false;
936 }
937
938 /**
939 * Maps the specified key to the specified value in this table.
940 * Neither the key nor the value can be null.
941 *
942 * <p>The value can be retrieved by calling the {@code get} method
943 * with a key that is equal to the original key.
944 *
945 * @param key key with which the specified value is to be associated
946 * @param value value to be associated with the specified key
947 * @return the previous value associated with {@code key}, or
948 * {@code null} if there was no mapping for {@code key}
949 * @throws NullPointerException if the specified key or value is null
950 */
951 public V put(K key, V value) {
952 return putVal(key, value, false);
953 }
954
955 /** Implementation for put and putIfAbsent */
956 final V putVal(K key, V value, boolean onlyIfAbsent) {
957 if (key == null || value == null) throw new NullPointerException();
958 int hash = spread(key.hashCode());
959 int binCount = 0;
960 for (Node<K,V>[] tab = table;;) {
961 Node<K,V> f; int n, i, fh;
962 if (tab == null || (n = tab.length) == 0)
963 tab = initTable();
964 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
965 if (casTabAt(tab, i, null,
966 new Node<K,V>(hash, key, value, null)))
967 break; // no lock when adding to empty bin
968 }
969 else if ((fh = f.hash) == MOVED)
970 tab = helpTransfer(tab, f);
971 else {
972 V oldVal = null;
973 synchronized (f) {
974 if (tabAt(tab, i) == f) {
975 if (fh >= 0) {
976 binCount = 1;
977 for (Node<K,V> e = f;; ++binCount) {
978 K ek;
979 if (e.hash == hash &&
980 ((ek = e.key) == key ||
981 (ek != null && key.equals(ek)))) {
982 oldVal = e.val;
983 if (!onlyIfAbsent)
984 e.val = value;
985 break;
986 }
987 Node<K,V> pred = e;
988 if ((e = e.next) == null) {
989 pred.next = new Node<K,V>(hash, key,
990 value, null);
991 break;
992 }
993 }
994 }
995 else if (f instanceof TreeBin) {
996 Node<K,V> p;
997 binCount = 2;
998 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
999 value)) != null) {
1000 oldVal = p.val;
1001 if (!onlyIfAbsent)
1002 p.val = value;
1003 }
1004 }
1005 }
1006 }
1007 if (binCount != 0) {
1008 if (binCount >= TREEIFY_THRESHOLD)
1009 treeifyBin(tab, i);
1010 if (oldVal != null)
1011 return oldVal;
1012 break;
1013 }
1014 }
1015 }
1016 addCount(1L, binCount);
1017 return null;
1018 }
1019
1020 /**
1021 * Copies all of the mappings from the specified map to this one.
1022 * These mappings replace any mappings that this map had for any of the
1023 * keys currently in the specified map.
1024 *
1025 * @param m mappings to be stored in this map
1026 */
1027 public void putAll(Map<? extends K, ? extends V> m) {
1028 tryPresize(m.size());
1029 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1030 putVal(e.getKey(), e.getValue(), false);
1031 }
1032
1033 /**
1034 * Removes the key (and its corresponding value) from this map.
1035 * This method does nothing if the key is not in the map.
1036 *
1037 * @param key the key that needs to be removed
1038 * @return the previous value associated with {@code key}, or
1039 * {@code null} if there was no mapping for {@code key}
1040 * @throws NullPointerException if the specified key is null
1041 */
1042 public V remove(Object key) {
1043 return replaceNode(key, null, null);
1044 }
1045
1046 /**
1047 * Implementation for the four public remove/replace methods:
1048 * Replaces node value with v, conditional upon match of cv if
1049 * non-null. If resulting value is null, delete.
1050 */
1051 final V replaceNode(Object key, V value, Object cv) {
1052 int hash = spread(key.hashCode());
1053 for (Node<K,V>[] tab = table;;) {
1054 Node<K,V> f; int n, i, fh;
1055 if (tab == null || (n = tab.length) == 0 ||
1056 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1057 break;
1058 else if ((fh = f.hash) == MOVED)
1059 tab = helpTransfer(tab, f);
1060 else {
1061 V oldVal = null;
1062 boolean validated = false;
1063 synchronized (f) {
1064 if (tabAt(tab, i) == f) {
1065 if (fh >= 0) {
1066 validated = true;
1067 for (Node<K,V> e = f, pred = null;;) {
1068 K ek;
1069 if (e.hash == hash &&
1070 ((ek = e.key) == key ||
1071 (ek != null && key.equals(ek)))) {
1072 V ev = e.val;
1073 if (cv == null || cv == ev ||
1074 (ev != null && cv.equals(ev))) {
1075 oldVal = ev;
1076 if (value != null)
1077 e.val = value;
1078 else if (pred != null)
1079 pred.next = e.next;
1080 else
1081 setTabAt(tab, i, e.next);
1082 }
1083 break;
1084 }
1085 pred = e;
1086 if ((e = e.next) == null)
1087 break;
1088 }
1089 }
1090 else if (f instanceof TreeBin) {
1091 validated = true;
1092 TreeBin<K,V> t = (TreeBin<K,V>)f;
1093 TreeNode<K,V> r, p;
1094 if ((r = t.root) != null &&
1095 (p = r.findTreeNode(hash, key, null)) != null) {
1096 V pv = p.val;
1097 if (cv == null || cv == pv ||
1098 (pv != null && cv.equals(pv))) {
1099 oldVal = pv;
1100 if (value != null)
1101 p.val = value;
1102 else if (t.removeTreeNode(p))
1103 setTabAt(tab, i, untreeify(t.first));
1104 }
1105 }
1106 }
1107 }
1108 }
1109 if (validated) {
1110 if (oldVal != null) {
1111 if (value == null)
1112 addCount(-1L, -1);
1113 return oldVal;
1114 }
1115 break;
1116 }
1117 }
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Removes all of the mappings from this map.
1124 */
1125 public void clear() {
1126 long delta = 0L; // negative number of deletions
1127 int i = 0;
1128 Node<K,V>[] tab = table;
1129 while (tab != null && i < tab.length) {
1130 int fh;
1131 Node<K,V> f = tabAt(tab, i);
1132 if (f == null)
1133 ++i;
1134 else if ((fh = f.hash) == MOVED) {
1135 tab = helpTransfer(tab, f);
1136 i = 0; // restart
1137 }
1138 else {
1139 synchronized (f) {
1140 if (tabAt(tab, i) == f) {
1141 Node<K,V> p = (fh >= 0 ? f :
1142 (f instanceof TreeBin) ?
1143 ((TreeBin<K,V>)f).first : null);
1144 while (p != null) {
1145 --delta;
1146 p = p.next;
1147 }
1148 setTabAt(tab, i++, null);
1149 }
1150 }
1151 }
1152 }
1153 if (delta != 0L)
1154 addCount(delta, -1);
1155 }
1156
1157 /**
1158 * Returns a {@link Set} view of the keys contained in this map.
1159 * The set is backed by the map, so changes to the map are
1160 * reflected in the set, and vice-versa. The set supports element
1161 * removal, which removes the corresponding mapping from this map,
1162 * via the {@code Iterator.remove}, {@code Set.remove},
1163 * {@code removeAll}, {@code retainAll}, and {@code clear}
1164 * operations. It does not support the {@code add} or
1165 * {@code addAll} operations.
1166 *
1167 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1168 * that will never throw {@link ConcurrentModificationException},
1169 * and guarantees to traverse elements as they existed upon
1170 * construction of the iterator, and may (but is not guaranteed to)
1171 * reflect any modifications subsequent to construction.
1172 *
1173 * @return the set view
1174 */
1175 public KeySetView<K,V> keySet() {
1176 KeySetView<K,V> ks;
1177 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1178 }
1179
1180 /**
1181 * Returns a {@link Collection} view of the values contained in this map.
1182 * The collection is backed by the map, so changes to the map are
1183 * reflected in the collection, and vice-versa. The collection
1184 * supports element removal, which removes the corresponding
1185 * mapping from this map, via the {@code Iterator.remove},
1186 * {@code Collection.remove}, {@code removeAll},
1187 * {@code retainAll}, and {@code clear} operations. It does not
1188 * support the {@code add} or {@code addAll} operations.
1189 *
1190 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1191 * that will never throw {@link ConcurrentModificationException},
1192 * and guarantees to traverse elements as they existed upon
1193 * construction of the iterator, and may (but is not guaranteed to)
1194 * reflect any modifications subsequent to construction.
1195 *
1196 * @return the collection view
1197 */
1198 public Collection<V> values() {
1199 ValuesView<K,V> vs;
1200 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1201 }
1202
1203 /**
1204 * Returns a {@link Set} view of the mappings contained in this map.
1205 * The set is backed by the map, so changes to the map are
1206 * reflected in the set, and vice-versa. The set supports element
1207 * removal, which removes the corresponding mapping from the map,
1208 * via the {@code Iterator.remove}, {@code Set.remove},
1209 * {@code removeAll}, {@code retainAll}, and {@code clear}
1210 * operations.
1211 *
1212 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1213 * that will never throw {@link ConcurrentModificationException},
1214 * and guarantees to traverse elements as they existed upon
1215 * construction of the iterator, and may (but is not guaranteed to)
1216 * reflect any modifications subsequent to construction.
1217 *
1218 * @return the set view
1219 */
1220 public Set<Map.Entry<K,V>> entrySet() {
1221 EntrySetView<K,V> es;
1222 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1223 }
1224
1225 /**
1226 * Returns the hash code value for this {@link Map}, i.e.,
1227 * the sum of, for each key-value pair in the map,
1228 * {@code key.hashCode() ^ value.hashCode()}.
1229 *
1230 * @return the hash code value for this map
1231 */
1232 public int hashCode() {
1233 int h = 0;
1234 Node<K,V>[] t;
1235 if ((t = table) != null) {
1236 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1237 for (Node<K,V> p; (p = it.advance()) != null; )
1238 h += p.key.hashCode() ^ p.val.hashCode();
1239 }
1240 return h;
1241 }
1242
1243 /**
1244 * Returns a string representation of this map. The string
1245 * representation consists of a list of key-value mappings (in no
1246 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1247 * mappings are separated by the characters {@code ", "} (comma
1248 * and space). Each key-value mapping is rendered as the key
1249 * followed by an equals sign ("{@code =}") followed by the
1250 * associated value.
1251 *
1252 * @return a string representation of this map
1253 */
1254 public String toString() {
1255 Node<K,V>[] t;
1256 int f = (t = table) == null ? 0 : t.length;
1257 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1258 StringBuilder sb = new StringBuilder();
1259 sb.append('{');
1260 Node<K,V> p;
1261 if ((p = it.advance()) != null) {
1262 for (;;) {
1263 K k = p.key;
1264 V v = p.val;
1265 sb.append(k == this ? "(this Map)" : k);
1266 sb.append('=');
1267 sb.append(v == this ? "(this Map)" : v);
1268 if ((p = it.advance()) == null)
1269 break;
1270 sb.append(',').append(' ');
1271 }
1272 }
1273 return sb.append('}').toString();
1274 }
1275
1276 /**
1277 * Compares the specified object with this map for equality.
1278 * Returns {@code true} if the given object is a map with the same
1279 * mappings as this map. This operation may return misleading
1280 * results if either map is concurrently modified during execution
1281 * of this method.
1282 *
1283 * @param o object to be compared for equality with this map
1284 * @return {@code true} if the specified object is equal to this map
1285 */
1286 public boolean equals(Object o) {
1287 if (o != this) {
1288 if (!(o instanceof Map))
1289 return false;
1290 Map<?,?> m = (Map<?,?>) o;
1291 Node<K,V>[] t;
1292 int f = (t = table) == null ? 0 : t.length;
1293 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 for (Node<K,V> p; (p = it.advance()) != null; ) {
1295 V val = p.val;
1296 Object v = m.get(p.key);
1297 if (v == null || (v != val && !v.equals(val)))
1298 return false;
1299 }
1300 for (Map.Entry<?,?> e : m.entrySet()) {
1301 Object mk, mv, v;
1302 if ((mk = e.getKey()) == null ||
1303 (mv = e.getValue()) == null ||
1304 (v = get(mk)) == null ||
1305 (mv != v && !mv.equals(v)))
1306 return false;
1307 }
1308 }
1309 return true;
1310 }
1311
1312 /**
1313 * Stripped-down version of helper class used in previous version,
1314 * declared for the sake of serialization compatibility
1315 */
1316 static class Segment<K,V> extends ReentrantLock implements Serializable {
1317 private static final long serialVersionUID = 2249069246763182397L;
1318 final float loadFactor;
1319 Segment(float lf) { this.loadFactor = lf; }
1320 }
1321
1322 /**
1323 * Saves the state of the {@code ConcurrentHashMap} instance to a
1324 * stream (i.e., serializes it).
1325 * @param s the stream
1326 * @throws java.io.IOException if an I/O error occurs
1327 * @serialData
1328 * the key (Object) and value (Object)
1329 * for each key-value mapping, followed by a null pair.
1330 * The key-value mappings are emitted in no particular order.
1331 */
1332 private void writeObject(java.io.ObjectOutputStream s)
1333 throws java.io.IOException {
1334 // For serialization compatibility
1335 // Emulate segment calculation from previous version of this class
1336 int sshift = 0;
1337 int ssize = 1;
1338 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1339 ++sshift;
1340 ssize <<= 1;
1341 }
1342 int segmentShift = 32 - sshift;
1343 int segmentMask = ssize - 1;
1344 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1345 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1346 for (int i = 0; i < segments.length; ++i)
1347 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1348 s.putFields().put("segments", segments);
1349 s.putFields().put("segmentShift", segmentShift);
1350 s.putFields().put("segmentMask", segmentMask);
1351 s.writeFields();
1352
1353 Node<K,V>[] t;
1354 if ((t = table) != null) {
1355 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1356 for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 s.writeObject(p.key);
1358 s.writeObject(p.val);
1359 }
1360 }
1361 s.writeObject(null);
1362 s.writeObject(null);
1363 segments = null; // throw away
1364 }
1365
1366 /**
1367 * Reconstitutes the instance from a stream (that is, deserializes it).
1368 * @param s the stream
1369 * @throws ClassNotFoundException if the class of a serialized object
1370 * could not be found
1371 * @throws java.io.IOException if an I/O error occurs
1372 */
1373 private void readObject(java.io.ObjectInputStream s)
1374 throws java.io.IOException, ClassNotFoundException {
1375 /*
1376 * To improve performance in typical cases, we create nodes
1377 * while reading, then place in table once size is known.
1378 * However, we must also validate uniqueness and deal with
1379 * overpopulated bins while doing so, which requires
1380 * specialized versions of putVal mechanics.
1381 */
1382 sizeCtl = -1; // force exclusion for table construction
1383 s.defaultReadObject();
1384 long size = 0L;
1385 Node<K,V> p = null;
1386 for (;;) {
1387 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1388 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1389 if (k != null && v != null) {
1390 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1391 ++size;
1392 }
1393 else
1394 break;
1395 }
1396 if (size == 0L)
1397 sizeCtl = 0;
1398 else {
1399 int n;
1400 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1401 n = MAXIMUM_CAPACITY;
1402 else {
1403 int sz = (int)size;
1404 n = tableSizeFor(sz + (sz >>> 1) + 1);
1405 }
1406 @SuppressWarnings({"rawtypes","unchecked"})
1407 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1408 int mask = n - 1;
1409 long added = 0L;
1410 while (p != null) {
1411 boolean insertAtFront;
1412 Node<K,V> next = p.next, first;
1413 int h = p.hash, j = h & mask;
1414 if ((first = tabAt(tab, j)) == null)
1415 insertAtFront = true;
1416 else {
1417 K k = p.key;
1418 if (first.hash < 0) {
1419 TreeBin<K,V> t = (TreeBin<K,V>)first;
1420 if (t.putTreeVal(h, k, p.val) == null)
1421 ++added;
1422 insertAtFront = false;
1423 }
1424 else {
1425 int binCount = 0;
1426 insertAtFront = true;
1427 Node<K,V> q; K qk;
1428 for (q = first; q != null; q = q.next) {
1429 if (q.hash == h &&
1430 ((qk = q.key) == k ||
1431 (qk != null && k.equals(qk)))) {
1432 insertAtFront = false;
1433 break;
1434 }
1435 ++binCount;
1436 }
1437 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1438 insertAtFront = false;
1439 ++added;
1440 p.next = first;
1441 TreeNode<K,V> hd = null, tl = null;
1442 for (q = p; q != null; q = q.next) {
1443 TreeNode<K,V> t = new TreeNode<K,V>
1444 (q.hash, q.key, q.val, null, null);
1445 if ((t.prev = tl) == null)
1446 hd = t;
1447 else
1448 tl.next = t;
1449 tl = t;
1450 }
1451 setTabAt(tab, j, new TreeBin<K,V>(hd));
1452 }
1453 }
1454 }
1455 if (insertAtFront) {
1456 ++added;
1457 p.next = first;
1458 setTabAt(tab, j, p);
1459 }
1460 p = next;
1461 }
1462 table = tab;
1463 sizeCtl = n - (n >>> 2);
1464 baseCount = added;
1465 }
1466 }
1467
1468 // ConcurrentMap methods
1469
1470 /**
1471 * {@inheritDoc}
1472 *
1473 * @return the previous value associated with the specified key,
1474 * or {@code null} if there was no mapping for the key
1475 * @throws NullPointerException if the specified key or value is null
1476 */
1477 public V putIfAbsent(K key, V value) {
1478 return putVal(key, value, true);
1479 }
1480
1481 /**
1482 * {@inheritDoc}
1483 *
1484 * @throws NullPointerException if the specified key is null
1485 */
1486 public boolean remove(Object key, Object value) {
1487 if (key == null)
1488 throw new NullPointerException();
1489 return value != null && replaceNode(key, null, value) != null;
1490 }
1491
1492 /**
1493 * {@inheritDoc}
1494 *
1495 * @throws NullPointerException if any of the arguments are null
1496 */
1497 public boolean replace(K key, V oldValue, V newValue) {
1498 if (key == null || oldValue == null || newValue == null)
1499 throw new NullPointerException();
1500 return replaceNode(key, newValue, oldValue) != null;
1501 }
1502
1503 /**
1504 * {@inheritDoc}
1505 *
1506 * @return the previous value associated with the specified key,
1507 * or {@code null} if there was no mapping for the key
1508 * @throws NullPointerException if the specified key or value is null
1509 */
1510 public V replace(K key, V value) {
1511 if (key == null || value == null)
1512 throw new NullPointerException();
1513 return replaceNode(key, value, null);
1514 }
1515
1516 // Overrides of JDK8+ Map extension method defaults
1517
1518 /**
1519 * Returns the value to which the specified key is mapped, or the
1520 * given default value if this map contains no mapping for the
1521 * key.
1522 *
1523 * @param key the key whose associated value is to be returned
1524 * @param defaultValue the value to return if this map contains
1525 * no mapping for the given key
1526 * @return the mapping for the key, if present; else the default value
1527 * @throws NullPointerException if the specified key is null
1528 */
1529 public V getOrDefault(Object key, V defaultValue) {
1530 V v;
1531 return (v = get(key)) == null ? defaultValue : v;
1532 }
1533
1534 public void forEach(BiConsumer<? super K, ? super V> action) {
1535 if (action == null) throw new NullPointerException();
1536 Node<K,V>[] t;
1537 if ((t = table) != null) {
1538 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1539 for (Node<K,V> p; (p = it.advance()) != null; ) {
1540 action.accept(p.key, p.val);
1541 }
1542 }
1543 }
1544
1545 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1546 if (function == null) throw new NullPointerException();
1547 Node<K,V>[] t;
1548 if ((t = table) != null) {
1549 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1550 for (Node<K,V> p; (p = it.advance()) != null; ) {
1551 V oldValue = p.val;
1552 for (K key = p.key;;) {
1553 V newValue = function.apply(key, oldValue);
1554 if (newValue == null)
1555 throw new NullPointerException();
1556 if (replaceNode(key, newValue, oldValue) != null ||
1557 (oldValue = get(key)) == null)
1558 break;
1559 }
1560 }
1561 }
1562 }
1563
1564 /**
1565 * If the specified key is not already associated with a value,
1566 * attempts to compute its value using the given mapping function
1567 * and enters it into this map unless {@code null}. The entire
1568 * method invocation is performed atomically, so the function is
1569 * applied at most once per key. Some attempted update operations
1570 * on this map by other threads may be blocked while computation
1571 * is in progress, so the computation should be short and simple,
1572 * and must not attempt to update any other mappings of this map.
1573 *
1574 * @param key key with which the specified value is to be associated
1575 * @param mappingFunction the function to compute a value
1576 * @return the current (existing or computed) value associated with
1577 * the specified key, or null if the computed value is null
1578 * @throws NullPointerException if the specified key or mappingFunction
1579 * is null
1580 * @throws IllegalStateException if the computation detectably
1581 * attempts a recursive update to this map that would
1582 * otherwise never complete
1583 * @throws RuntimeException or Error if the mappingFunction does so,
1584 * in which case the mapping is left unestablished
1585 */
1586 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1587 if (key == null || mappingFunction == null)
1588 throw new NullPointerException();
1589 int h = spread(key.hashCode());
1590 V val = null;
1591 int binCount = 0;
1592 for (Node<K,V>[] tab = table;;) {
1593 Node<K,V> f; int n, i, fh;
1594 if (tab == null || (n = tab.length) == 0)
1595 tab = initTable();
1596 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1597 Node<K,V> r = new ReservationNode<K,V>();
1598 synchronized (r) {
1599 if (casTabAt(tab, i, null, r)) {
1600 binCount = 1;
1601 Node<K,V> node = null;
1602 try {
1603 if ((val = mappingFunction.apply(key)) != null)
1604 node = new Node<K,V>(h, key, val, null);
1605 } finally {
1606 setTabAt(tab, i, node);
1607 }
1608 }
1609 }
1610 if (binCount != 0)
1611 break;
1612 }
1613 else if ((fh = f.hash) == MOVED)
1614 tab = helpTransfer(tab, f);
1615 else {
1616 boolean added = false;
1617 synchronized (f) {
1618 if (tabAt(tab, i) == f) {
1619 if (fh >= 0) {
1620 binCount = 1;
1621 for (Node<K,V> e = f;; ++binCount) {
1622 K ek; V ev;
1623 if (e.hash == h &&
1624 ((ek = e.key) == key ||
1625 (ek != null && key.equals(ek)))) {
1626 val = e.val;
1627 break;
1628 }
1629 Node<K,V> pred = e;
1630 if ((e = e.next) == null) {
1631 if ((val = mappingFunction.apply(key)) != null) {
1632 added = true;
1633 pred.next = new Node<K,V>(h, key, val, null);
1634 }
1635 break;
1636 }
1637 }
1638 }
1639 else if (f instanceof TreeBin) {
1640 binCount = 2;
1641 TreeBin<K,V> t = (TreeBin<K,V>)f;
1642 TreeNode<K,V> r, p;
1643 if ((r = t.root) != null &&
1644 (p = r.findTreeNode(h, key, null)) != null)
1645 val = p.val;
1646 else if ((val = mappingFunction.apply(key)) != null) {
1647 added = true;
1648 t.putTreeVal(h, key, val);
1649 }
1650 }
1651 }
1652 }
1653 if (binCount != 0) {
1654 if (binCount >= TREEIFY_THRESHOLD)
1655 treeifyBin(tab, i);
1656 if (!added)
1657 return val;
1658 break;
1659 }
1660 }
1661 }
1662 if (val != null)
1663 addCount(1L, binCount);
1664 return val;
1665 }
1666
1667 /**
1668 * If the value for the specified key is present, attempts to
1669 * compute a new mapping given the key and its current mapped
1670 * value. The entire method invocation is performed atomically.
1671 * Some attempted update operations on this map by other threads
1672 * may be blocked while computation is in progress, so the
1673 * computation should be short and simple, and must not attempt to
1674 * update any other mappings of this map.
1675 *
1676 * @param key key with which a value may be associated
1677 * @param remappingFunction the function to compute a value
1678 * @return the new value associated with the specified key, or null if none
1679 * @throws NullPointerException if the specified key or remappingFunction
1680 * is null
1681 * @throws IllegalStateException if the computation detectably
1682 * attempts a recursive update to this map that would
1683 * otherwise never complete
1684 * @throws RuntimeException or Error if the remappingFunction does so,
1685 * in which case the mapping is unchanged
1686 */
1687 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1688 if (key == null || remappingFunction == null)
1689 throw new NullPointerException();
1690 int h = spread(key.hashCode());
1691 V val = null;
1692 int delta = 0;
1693 int binCount = 0;
1694 for (Node<K,V>[] tab = table;;) {
1695 Node<K,V> f; int n, i, fh;
1696 if (tab == null || (n = tab.length) == 0)
1697 tab = initTable();
1698 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1699 break;
1700 else if ((fh = f.hash) == MOVED)
1701 tab = helpTransfer(tab, f);
1702 else {
1703 synchronized (f) {
1704 if (tabAt(tab, i) == f) {
1705 if (fh >= 0) {
1706 binCount = 1;
1707 for (Node<K,V> e = f, pred = null;; ++binCount) {
1708 K ek;
1709 if (e.hash == h &&
1710 ((ek = e.key) == key ||
1711 (ek != null && key.equals(ek)))) {
1712 val = remappingFunction.apply(key, e.val);
1713 if (val != null)
1714 e.val = val;
1715 else {
1716 delta = -1;
1717 Node<K,V> en = e.next;
1718 if (pred != null)
1719 pred.next = en;
1720 else
1721 setTabAt(tab, i, en);
1722 }
1723 break;
1724 }
1725 pred = e;
1726 if ((e = e.next) == null)
1727 break;
1728 }
1729 }
1730 else if (f instanceof TreeBin) {
1731 binCount = 2;
1732 TreeBin<K,V> t = (TreeBin<K,V>)f;
1733 TreeNode<K,V> r, p;
1734 if ((r = t.root) != null &&
1735 (p = r.findTreeNode(h, key, null)) != null) {
1736 val = remappingFunction.apply(key, p.val);
1737 if (val != null)
1738 p.val = val;
1739 else {
1740 delta = -1;
1741 if (t.removeTreeNode(p))
1742 setTabAt(tab, i, untreeify(t.first));
1743 }
1744 }
1745 }
1746 }
1747 }
1748 if (binCount != 0)
1749 break;
1750 }
1751 }
1752 if (delta != 0)
1753 addCount((long)delta, binCount);
1754 return val;
1755 }
1756
1757 /**
1758 * Attempts to compute a mapping for the specified key and its
1759 * current mapped value (or {@code null} if there is no current
1760 * mapping). The entire method invocation is performed atomically.
1761 * Some attempted update operations on this map by other threads
1762 * may be blocked while computation is in progress, so the
1763 * computation should be short and simple, and must not attempt to
1764 * update any other mappings of this Map.
1765 *
1766 * @param key key with which the specified value is to be associated
1767 * @param remappingFunction the function to compute a value
1768 * @return the new value associated with the specified key, or null if none
1769 * @throws NullPointerException if the specified key or remappingFunction
1770 * is null
1771 * @throws IllegalStateException if the computation detectably
1772 * attempts a recursive update to this map that would
1773 * otherwise never complete
1774 * @throws RuntimeException or Error if the remappingFunction does so,
1775 * in which case the mapping is unchanged
1776 */
1777 public V compute(K key,
1778 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1779 if (key == null || remappingFunction == null)
1780 throw new NullPointerException();
1781 int h = spread(key.hashCode());
1782 V val = null;
1783 int delta = 0;
1784 int binCount = 0;
1785 for (Node<K,V>[] tab = table;;) {
1786 Node<K,V> f; int n, i, fh;
1787 if (tab == null || (n = tab.length) == 0)
1788 tab = initTable();
1789 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1790 Node<K,V> r = new ReservationNode<K,V>();
1791 synchronized (r) {
1792 if (casTabAt(tab, i, null, r)) {
1793 binCount = 1;
1794 Node<K,V> node = null;
1795 try {
1796 if ((val = remappingFunction.apply(key, null)) != null) {
1797 delta = 1;
1798 node = new Node<K,V>(h, key, val, null);
1799 }
1800 } finally {
1801 setTabAt(tab, i, node);
1802 }
1803 }
1804 }
1805 if (binCount != 0)
1806 break;
1807 }
1808 else if ((fh = f.hash) == MOVED)
1809 tab = helpTransfer(tab, f);
1810 else {
1811 synchronized (f) {
1812 if (tabAt(tab, i) == f) {
1813 if (fh >= 0) {
1814 binCount = 1;
1815 for (Node<K,V> e = f, pred = null;; ++binCount) {
1816 K ek;
1817 if (e.hash == h &&
1818 ((ek = e.key) == key ||
1819 (ek != null && key.equals(ek)))) {
1820 val = remappingFunction.apply(key, e.val);
1821 if (val != null)
1822 e.val = val;
1823 else {
1824 delta = -1;
1825 Node<K,V> en = e.next;
1826 if (pred != null)
1827 pred.next = en;
1828 else
1829 setTabAt(tab, i, en);
1830 }
1831 break;
1832 }
1833 pred = e;
1834 if ((e = e.next) == null) {
1835 val = remappingFunction.apply(key, null);
1836 if (val != null) {
1837 delta = 1;
1838 pred.next =
1839 new Node<K,V>(h, key, val, null);
1840 }
1841 break;
1842 }
1843 }
1844 }
1845 else if (f instanceof TreeBin) {
1846 binCount = 1;
1847 TreeBin<K,V> t = (TreeBin<K,V>)f;
1848 TreeNode<K,V> r, p;
1849 if ((r = t.root) != null)
1850 p = r.findTreeNode(h, key, null);
1851 else
1852 p = null;
1853 V pv = (p == null) ? null : p.val;
1854 val = remappingFunction.apply(key, pv);
1855 if (val != null) {
1856 if (p != null)
1857 p.val = val;
1858 else {
1859 delta = 1;
1860 t.putTreeVal(h, key, val);
1861 }
1862 }
1863 else if (p != null) {
1864 delta = -1;
1865 if (t.removeTreeNode(p))
1866 setTabAt(tab, i, untreeify(t.first));
1867 }
1868 }
1869 }
1870 }
1871 if (binCount != 0) {
1872 if (binCount >= TREEIFY_THRESHOLD)
1873 treeifyBin(tab, i);
1874 break;
1875 }
1876 }
1877 }
1878 if (delta != 0)
1879 addCount((long)delta, binCount);
1880 return val;
1881 }
1882
1883 /**
1884 * If the specified key is not already associated with a
1885 * (non-null) value, associates it with the given value.
1886 * Otherwise, replaces the value with the results of the given
1887 * remapping function, or removes if {@code null}. The entire
1888 * method invocation is performed atomically. Some attempted
1889 * update operations on this map by other threads may be blocked
1890 * while computation is in progress, so the computation should be
1891 * short and simple, and must not attempt to update any other
1892 * mappings of this Map.
1893 *
1894 * @param key key with which the specified value is to be associated
1895 * @param value the value to use if absent
1896 * @param remappingFunction the function to recompute a value if present
1897 * @return the new value associated with the specified key, or null if none
1898 * @throws NullPointerException if the specified key or the
1899 * remappingFunction is null
1900 * @throws RuntimeException or Error if the remappingFunction does so,
1901 * in which case the mapping is unchanged
1902 */
1903 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1904 if (key == null || value == null || remappingFunction == null)
1905 throw new NullPointerException();
1906 int h = spread(key.hashCode());
1907 V val = null;
1908 int delta = 0;
1909 int binCount = 0;
1910 for (Node<K,V>[] tab = table;;) {
1911 Node<K,V> f; int n, i, fh;
1912 if (tab == null || (n = tab.length) == 0)
1913 tab = initTable();
1914 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1915 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1916 delta = 1;
1917 val = value;
1918 break;
1919 }
1920 }
1921 else if ((fh = f.hash) == MOVED)
1922 tab = helpTransfer(tab, f);
1923 else {
1924 synchronized (f) {
1925 if (tabAt(tab, i) == f) {
1926 if (fh >= 0) {
1927 binCount = 1;
1928 for (Node<K,V> e = f, pred = null;; ++binCount) {
1929 K ek;
1930 if (e.hash == h &&
1931 ((ek = e.key) == key ||
1932 (ek != null && key.equals(ek)))) {
1933 val = remappingFunction.apply(e.val, value);
1934 if (val != null)
1935 e.val = val;
1936 else {
1937 delta = -1;
1938 Node<K,V> en = e.next;
1939 if (pred != null)
1940 pred.next = en;
1941 else
1942 setTabAt(tab, i, en);
1943 }
1944 break;
1945 }
1946 pred = e;
1947 if ((e = e.next) == null) {
1948 delta = 1;
1949 val = value;
1950 pred.next =
1951 new Node<K,V>(h, key, val, null);
1952 break;
1953 }
1954 }
1955 }
1956 else if (f instanceof TreeBin) {
1957 binCount = 2;
1958 TreeBin<K,V> t = (TreeBin<K,V>)f;
1959 TreeNode<K,V> r = t.root;
1960 TreeNode<K,V> p = (r == null) ? null :
1961 r.findTreeNode(h, key, null);
1962 val = (p == null) ? value :
1963 remappingFunction.apply(p.val, value);
1964 if (val != null) {
1965 if (p != null)
1966 p.val = val;
1967 else {
1968 delta = 1;
1969 t.putTreeVal(h, key, val);
1970 }
1971 }
1972 else if (p != null) {
1973 delta = -1;
1974 if (t.removeTreeNode(p))
1975 setTabAt(tab, i, untreeify(t.first));
1976 }
1977 }
1978 }
1979 }
1980 if (binCount != 0) {
1981 if (binCount >= TREEIFY_THRESHOLD)
1982 treeifyBin(tab, i);
1983 break;
1984 }
1985 }
1986 }
1987 if (delta != 0)
1988 addCount((long)delta, binCount);
1989 return val;
1990 }
1991
1992 // Hashtable legacy methods
1993
1994 /**
1995 * Legacy method testing if some key maps into the specified value
1996 * in this table. This method is identical in functionality to
1997 * {@link #containsValue(Object)}, and exists solely to ensure
1998 * full compatibility with class {@link java.util.Hashtable},
1999 * which supported this method prior to introduction of the
2000 * Java Collections framework.
2001 *
2002 * @param value a value to search for
2003 * @return {@code true} if and only if some key maps to the
2004 * {@code value} argument in this table as
2005 * determined by the {@code equals} method;
2006 * {@code false} otherwise
2007 * @throws NullPointerException if the specified value is null
2008 */
2009 @Deprecated public boolean contains(Object value) {
2010 return containsValue(value);
2011 }
2012
2013 /**
2014 * Returns an enumeration of the keys in this table.
2015 *
2016 * @return an enumeration of the keys in this table
2017 * @see #keySet()
2018 */
2019 public Enumeration<K> keys() {
2020 Node<K,V>[] t;
2021 int f = (t = table) == null ? 0 : t.length;
2022 return new KeyIterator<K,V>(t, f, 0, f, this);
2023 }
2024
2025 /**
2026 * Returns an enumeration of the values in this table.
2027 *
2028 * @return an enumeration of the values in this table
2029 * @see #values()
2030 */
2031 public Enumeration<V> elements() {
2032 Node<K,V>[] t;
2033 int f = (t = table) == null ? 0 : t.length;
2034 return new ValueIterator<K,V>(t, f, 0, f, this);
2035 }
2036
2037 // ConcurrentHashMap-only methods
2038
2039 /**
2040 * Returns the number of mappings. This method should be used
2041 * instead of {@link #size} because a ConcurrentHashMap may
2042 * contain more mappings than can be represented as an int. The
2043 * value returned is an estimate; the actual count may differ if
2044 * there are concurrent insertions or removals.
2045 *
2046 * @return the number of mappings
2047 * @since 1.8
2048 */
2049 public long mappingCount() {
2050 long n = sumCount();
2051 return (n < 0L) ? 0L : n; // ignore transient negative values
2052 }
2053
2054 /**
2055 * Creates a new {@link Set} backed by a ConcurrentHashMap
2056 * from the given type to {@code Boolean.TRUE}.
2057 *
2058 * @param <K> the element type of the returned set
2059 * @return the new set
2060 * @since 1.8
2061 */
2062 public static <K> KeySetView<K,Boolean> newKeySet() {
2063 return new KeySetView<K,Boolean>
2064 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2065 }
2066
2067 /**
2068 * Creates a new {@link Set} backed by a ConcurrentHashMap
2069 * from the given type to {@code Boolean.TRUE}.
2070 *
2071 * @param initialCapacity The implementation performs internal
2072 * sizing to accommodate this many elements.
2073 * @param <K> the element type of the returned set
2074 * @return the new set
2075 * @throws IllegalArgumentException if the initial capacity of
2076 * elements is negative
2077 * @since 1.8
2078 */
2079 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2080 return new KeySetView<K,Boolean>
2081 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2082 }
2083
2084 /**
2085 * Returns a {@link Set} view of the keys in this map, using the
2086 * given common mapped value for any additions (i.e., {@link
2087 * Collection#add} and {@link Collection#addAll(Collection)}).
2088 * This is of course only appropriate if it is acceptable to use
2089 * the same value for all additions from this view.
2090 *
2091 * @param mappedValue the mapped value to use for any additions
2092 * @return the set view
2093 * @throws NullPointerException if the mappedValue is null
2094 */
2095 public KeySetView<K,V> keySet(V mappedValue) {
2096 if (mappedValue == null)
2097 throw new NullPointerException();
2098 return new KeySetView<K,V>(this, mappedValue);
2099 }
2100
2101 /* ---------------- Special Nodes -------------- */
2102
2103 /**
2104 * A node inserted at head of bins during transfer operations.
2105 */
2106 static final class ForwardingNode<K,V> extends Node<K,V> {
2107 final Node<K,V>[] nextTable;
2108 ForwardingNode(Node<K,V>[] tab) {
2109 super(MOVED, null, null, null);
2110 this.nextTable = tab;
2111 }
2112
2113 Node<K,V> find(int h, Object k) {
2114 // loop to avoid arbitrarily deep recursion on forwarding nodes
2115 outer: for (Node<K,V>[] tab = nextTable;;) {
2116 Node<K,V> e; int n;
2117 if (k == null || tab == null || (n = tab.length) == 0 ||
2118 (e = tabAt(tab, (n - 1) & h)) == null)
2119 return null;
2120 for (;;) {
2121 int eh; K ek;
2122 if ((eh = e.hash) == h &&
2123 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2124 return e;
2125 if (eh < 0) {
2126 if (e instanceof ForwardingNode) {
2127 tab = ((ForwardingNode<K,V>)e).nextTable;
2128 continue outer;
2129 }
2130 else
2131 return e.find(h, k);
2132 }
2133 if ((e = e.next) == null)
2134 return null;
2135 }
2136 }
2137 }
2138 }
2139
2140 /**
2141 * A place-holder node used in computeIfAbsent and compute
2142 */
2143 static final class ReservationNode<K,V> extends Node<K,V> {
2144 ReservationNode() {
2145 super(RESERVED, null, null, null);
2146 }
2147
2148 Node<K,V> find(int h, Object k) {
2149 return null;
2150 }
2151 }
2152
2153 /* ---------------- Table Initialization and Resizing -------------- */
2154
2155 /**
2156 * Initializes table, using the size recorded in sizeCtl.
2157 */
2158 private final Node<K,V>[] initTable() {
2159 Node<K,V>[] tab; int sc;
2160 while ((tab = table) == null || tab.length == 0) {
2161 if ((sc = sizeCtl) < 0)
2162 Thread.yield(); // lost initialization race; just spin
2163 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2164 try {
2165 if ((tab = table) == null || tab.length == 0) {
2166 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2167 @SuppressWarnings({"rawtypes","unchecked"})
2168 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2169 table = tab = nt;
2170 sc = n - (n >>> 2);
2171 }
2172 } finally {
2173 sizeCtl = sc;
2174 }
2175 break;
2176 }
2177 }
2178 return tab;
2179 }
2180
2181 /**
2182 * Adds to count, and if table is too small and not already
2183 * resizing, initiates transfer. If already resizing, helps
2184 * perform transfer if work is available. Rechecks occupancy
2185 * after a transfer to see if another resize is already needed
2186 * because resizings are lagging additions.
2187 *
2188 * @param x the count to add
2189 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2190 */
2191 private final void addCount(long x, int check) {
2192 CounterCell[] as; long b, s;
2193 if ((as = counterCells) != null ||
2194 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2195 CounterCell a; long v; int m;
2196 boolean uncontended = true;
2197 if (as == null || (m = as.length - 1) < 0 ||
2198 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2199 !(uncontended =
2200 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2201 fullAddCount(x, uncontended);
2202 return;
2203 }
2204 if (check <= 1)
2205 return;
2206 s = sumCount();
2207 }
2208 if (check >= 0) {
2209 Node<K,V>[] tab, nt; int sc;
2210 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2211 tab.length < MAXIMUM_CAPACITY) {
2212 if (sc < 0) {
2213 if (sc == -1 || transferIndex <= transferOrigin ||
2214 (nt = nextTable) == null)
2215 break;
2216 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2217 transfer(tab, nt);
2218 }
2219 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2220 transfer(tab, null);
2221 s = sumCount();
2222 }
2223 }
2224 }
2225
2226 /**
2227 * Helps transfer if a resize is in progress.
2228 */
2229 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2230 Node<K,V>[] nextTab; int sc;
2231 if ((f instanceof ForwardingNode) &&
2232 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2233 if (nextTab == nextTable && tab == table &&
2234 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2235 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2236 transfer(tab, nextTab);
2237 return nextTab;
2238 }
2239 return table;
2240 }
2241
2242 /**
2243 * Tries to presize table to accommodate the given number of elements.
2244 *
2245 * @param size number of elements (doesn't need to be perfectly accurate)
2246 */
2247 private final void tryPresize(int size) {
2248 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2249 tableSizeFor(size + (size >>> 1) + 1);
2250 int sc;
2251 while ((sc = sizeCtl) >= 0) {
2252 Node<K,V>[] tab = table; int n;
2253 if (tab == null || (n = tab.length) == 0) {
2254 n = (sc > c) ? sc : c;
2255 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2256 try {
2257 if (table == tab) {
2258 @SuppressWarnings({"rawtypes","unchecked"})
2259 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2260 table = nt;
2261 sc = n - (n >>> 2);
2262 }
2263 } finally {
2264 sizeCtl = sc;
2265 }
2266 }
2267 }
2268 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2269 break;
2270 else if (tab == table &&
2271 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2272 transfer(tab, null);
2273 }
2274 }
2275
2276 /**
2277 * Moves and/or copies the nodes in each bin to new table. See
2278 * above for explanation.
2279 */
2280 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2281 int n = tab.length, stride;
2282 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2283 stride = MIN_TRANSFER_STRIDE; // subdivide range
2284 if (nextTab == null) { // initiating
2285 try {
2286 @SuppressWarnings({"rawtypes","unchecked"})
2287 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2288 nextTab = nt;
2289 } catch (Throwable ex) { // try to cope with OOME
2290 sizeCtl = Integer.MAX_VALUE;
2291 return;
2292 }
2293 nextTable = nextTab;
2294 transferOrigin = n;
2295 transferIndex = n;
2296 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2297 for (int k = n; k > 0;) { // progressively reveal ready slots
2298 int nextk = (k > stride) ? k - stride : 0;
2299 for (int m = nextk; m < k; ++m)
2300 nextTab[m] = rev;
2301 for (int m = n + nextk; m < n + k; ++m)
2302 nextTab[m] = rev;
2303 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2304 }
2305 }
2306 int nextn = nextTab.length;
2307 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2308 boolean advance = true;
2309 boolean finishing = false; // to ensure sweep before committing nextTab
2310 for (int i = 0, bound = 0;;) {
2311 int nextIndex, nextBound, fh; Node<K,V> f;
2312 while (advance) {
2313 if (--i >= bound || finishing)
2314 advance = false;
2315 else if ((nextIndex = transferIndex) <= transferOrigin) {
2316 i = -1;
2317 advance = false;
2318 }
2319 else if (U.compareAndSwapInt
2320 (this, TRANSFERINDEX, nextIndex,
2321 nextBound = (nextIndex > stride ?
2322 nextIndex - stride : 0))) {
2323 bound = nextBound;
2324 i = nextIndex - 1;
2325 advance = false;
2326 }
2327 }
2328 if (i < 0 || i >= n || i + n >= nextn) {
2329 if (finishing) {
2330 nextTable = null;
2331 table = nextTab;
2332 sizeCtl = (n << 1) - (n >>> 1);
2333 return;
2334 }
2335 for (int sc;;) {
2336 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2337 if (sc != -1)
2338 return;
2339 finishing = advance = true;
2340 i = n; // recheck before commit
2341 break;
2342 }
2343 }
2344 }
2345 else if ((f = tabAt(tab, i)) == null) {
2346 if (casTabAt(tab, i, null, fwd)) {
2347 setTabAt(nextTab, i, null);
2348 setTabAt(nextTab, i + n, null);
2349 advance = true;
2350 }
2351 }
2352 else if ((fh = f.hash) == MOVED)
2353 advance = true; // already processed
2354 else {
2355 synchronized (f) {
2356 if (tabAt(tab, i) == f) {
2357 Node<K,V> ln, hn;
2358 if (fh >= 0) {
2359 int runBit = fh & n;
2360 Node<K,V> lastRun = f;
2361 for (Node<K,V> p = f.next; p != null; p = p.next) {
2362 int b = p.hash & n;
2363 if (b != runBit) {
2364 runBit = b;
2365 lastRun = p;
2366 }
2367 }
2368 if (runBit == 0) {
2369 ln = lastRun;
2370 hn = null;
2371 }
2372 else {
2373 hn = lastRun;
2374 ln = null;
2375 }
2376 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2377 int ph = p.hash; K pk = p.key; V pv = p.val;
2378 if ((ph & n) == 0)
2379 ln = new Node<K,V>(ph, pk, pv, ln);
2380 else
2381 hn = new Node<K,V>(ph, pk, pv, hn);
2382 }
2383 setTabAt(nextTab, i, ln);
2384 setTabAt(nextTab, i + n, hn);
2385 setTabAt(tab, i, fwd);
2386 advance = true;
2387 }
2388 else if (f instanceof TreeBin) {
2389 TreeBin<K,V> t = (TreeBin<K,V>)f;
2390 TreeNode<K,V> lo = null, loTail = null;
2391 TreeNode<K,V> hi = null, hiTail = null;
2392 int lc = 0, hc = 0;
2393 for (Node<K,V> e = t.first; e != null; e = e.next) {
2394 int h = e.hash;
2395 TreeNode<K,V> p = new TreeNode<K,V>
2396 (h, e.key, e.val, null, null);
2397 if ((h & n) == 0) {
2398 if ((p.prev = loTail) == null)
2399 lo = p;
2400 else
2401 loTail.next = p;
2402 loTail = p;
2403 ++lc;
2404 }
2405 else {
2406 if ((p.prev = hiTail) == null)
2407 hi = p;
2408 else
2409 hiTail.next = p;
2410 hiTail = p;
2411 ++hc;
2412 }
2413 }
2414 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2415 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2416 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2417 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2418 setTabAt(nextTab, i, ln);
2419 setTabAt(nextTab, i + n, hn);
2420 setTabAt(tab, i, fwd);
2421 advance = true;
2422 }
2423 }
2424 }
2425 }
2426 }
2427 }
2428
2429 /* ---------------- Counter support -------------- */
2430
2431 /**
2432 * A padded cell for distributing counts. Adapted from LongAdder
2433 * and Striped64. See their internal docs for explanation.
2434 */
2435 @sun.misc.Contended static final class CounterCell {
2436 volatile long value;
2437 CounterCell(long x) { value = x; }
2438 }
2439
2440 final long sumCount() {
2441 CounterCell[] as = counterCells; CounterCell a;
2442 long sum = baseCount;
2443 if (as != null) {
2444 for (int i = 0; i < as.length; ++i) {
2445 if ((a = as[i]) != null)
2446 sum += a.value;
2447 }
2448 }
2449 return sum;
2450 }
2451
2452 // See LongAdder version for explanation
2453 private final void fullAddCount(long x, boolean wasUncontended) {
2454 int h;
2455 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2456 ThreadLocalRandom.localInit(); // force initialization
2457 h = ThreadLocalRandom.getProbe();
2458 wasUncontended = true;
2459 }
2460 boolean collide = false; // True if last slot nonempty
2461 for (;;) {
2462 CounterCell[] as; CounterCell a; int n; long v;
2463 if ((as = counterCells) != null && (n = as.length) > 0) {
2464 if ((a = as[(n - 1) & h]) == null) {
2465 if (cellsBusy == 0) { // Try to attach new Cell
2466 CounterCell r = new CounterCell(x); // Optimistic create
2467 if (cellsBusy == 0 &&
2468 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2469 boolean created = false;
2470 try { // Recheck under lock
2471 CounterCell[] rs; int m, j;
2472 if ((rs = counterCells) != null &&
2473 (m = rs.length) > 0 &&
2474 rs[j = (m - 1) & h] == null) {
2475 rs[j] = r;
2476 created = true;
2477 }
2478 } finally {
2479 cellsBusy = 0;
2480 }
2481 if (created)
2482 break;
2483 continue; // Slot is now non-empty
2484 }
2485 }
2486 collide = false;
2487 }
2488 else if (!wasUncontended) // CAS already known to fail
2489 wasUncontended = true; // Continue after rehash
2490 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2491 break;
2492 else if (counterCells != as || n >= NCPU)
2493 collide = false; // At max size or stale
2494 else if (!collide)
2495 collide = true;
2496 else if (cellsBusy == 0 &&
2497 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2498 try {
2499 if (counterCells == as) {// Expand table unless stale
2500 CounterCell[] rs = new CounterCell[n << 1];
2501 for (int i = 0; i < n; ++i)
2502 rs[i] = as[i];
2503 counterCells = rs;
2504 }
2505 } finally {
2506 cellsBusy = 0;
2507 }
2508 collide = false;
2509 continue; // Retry with expanded table
2510 }
2511 h = ThreadLocalRandom.advanceProbe(h);
2512 }
2513 else if (cellsBusy == 0 && counterCells == as &&
2514 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2515 boolean init = false;
2516 try { // Initialize table
2517 if (counterCells == as) {
2518 CounterCell[] rs = new CounterCell[2];
2519 rs[h & 1] = new CounterCell(x);
2520 counterCells = rs;
2521 init = true;
2522 }
2523 } finally {
2524 cellsBusy = 0;
2525 }
2526 if (init)
2527 break;
2528 }
2529 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2530 break; // Fall back on using base
2531 }
2532 }
2533
2534 /* ---------------- Conversion from/to TreeBins -------------- */
2535
2536 /**
2537 * Replaces all linked nodes in bin at given index unless table is
2538 * too small, in which case resizes instead.
2539 */
2540 private final void treeifyBin(Node<K,V>[] tab, int index) {
2541 Node<K,V> b; int n, sc;
2542 if (tab != null) {
2543 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2544 if (tab == table && (sc = sizeCtl) >= 0 &&
2545 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2546 transfer(tab, null);
2547 }
2548 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2549 synchronized (b) {
2550 if (tabAt(tab, index) == b) {
2551 TreeNode<K,V> hd = null, tl = null;
2552 for (Node<K,V> e = b; e != null; e = e.next) {
2553 TreeNode<K,V> p =
2554 new TreeNode<K,V>(e.hash, e.key, e.val,
2555 null, null);
2556 if ((p.prev = tl) == null)
2557 hd = p;
2558 else
2559 tl.next = p;
2560 tl = p;
2561 }
2562 setTabAt(tab, index, new TreeBin<K,V>(hd));
2563 }
2564 }
2565 }
2566 }
2567 }
2568
2569 /**
2570 * Returns a list on non-TreeNodes replacing those in given list.
2571 */
2572 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2573 Node<K,V> hd = null, tl = null;
2574 for (Node<K,V> q = b; q != null; q = q.next) {
2575 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2576 if (tl == null)
2577 hd = p;
2578 else
2579 tl.next = p;
2580 tl = p;
2581 }
2582 return hd;
2583 }
2584
2585 /* ---------------- TreeNodes -------------- */
2586
2587 /**
2588 * Nodes for use in TreeBins
2589 */
2590 static final class TreeNode<K,V> extends Node<K,V> {
2591 TreeNode<K,V> parent; // red-black tree links
2592 TreeNode<K,V> left;
2593 TreeNode<K,V> right;
2594 TreeNode<K,V> prev; // needed to unlink next upon deletion
2595 boolean red;
2596
2597 TreeNode(int hash, K key, V val, Node<K,V> next,
2598 TreeNode<K,V> parent) {
2599 super(hash, key, val, next);
2600 this.parent = parent;
2601 }
2602
2603 Node<K,V> find(int h, Object k) {
2604 return findTreeNode(h, k, null);
2605 }
2606
2607 /**
2608 * Returns the TreeNode (or null if not found) for the given key
2609 * starting at given root.
2610 */
2611 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2612 if (k != null) {
2613 TreeNode<K,V> p = this;
2614 do {
2615 int ph, dir; K pk; TreeNode<K,V> q;
2616 TreeNode<K,V> pl = p.left, pr = p.right;
2617 if ((ph = p.hash) > h)
2618 p = pl;
2619 else if (ph < h)
2620 p = pr;
2621 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2622 return p;
2623 else if (pl == null && pr == null)
2624 break;
2625 else if ((kc != null ||
2626 (kc = comparableClassFor(k)) != null) &&
2627 (dir = compareComparables(kc, k, pk)) != 0)
2628 p = (dir < 0) ? pl : pr;
2629 else if (pl == null)
2630 p = pr;
2631 else if (pr == null ||
2632 (q = pr.findTreeNode(h, k, kc)) == null)
2633 p = pl;
2634 else
2635 return q;
2636 } while (p != null);
2637 }
2638 return null;
2639 }
2640 }
2641
2642 /* ---------------- TreeBins -------------- */
2643
2644 /**
2645 * TreeNodes used at the heads of bins. TreeBins do not hold user
2646 * keys or values, but instead point to list of TreeNodes and
2647 * their root. They also maintain a parasitic read-write lock
2648 * forcing writers (who hold bin lock) to wait for readers (who do
2649 * not) to complete before tree restructuring operations.
2650 */
2651 static final class TreeBin<K,V> extends Node<K,V> {
2652 TreeNode<K,V> root;
2653 volatile TreeNode<K,V> first;
2654 volatile Thread waiter;
2655 volatile int lockState;
2656 // values for lockState
2657 static final int WRITER = 1; // set while holding write lock
2658 static final int WAITER = 2; // set when waiting for write lock
2659 static final int READER = 4; // increment value for setting read lock
2660
2661 /**
2662 * Creates bin with initial set of nodes headed by b.
2663 */
2664 TreeBin(TreeNode<K,V> b) {
2665 super(TREEBIN, null, null, null);
2666 this.first = b;
2667 TreeNode<K,V> r = null;
2668 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2669 next = (TreeNode<K,V>)x.next;
2670 x.left = x.right = null;
2671 if (r == null) {
2672 x.parent = null;
2673 x.red = false;
2674 r = x;
2675 }
2676 else {
2677 Object key = x.key;
2678 int hash = x.hash;
2679 Class<?> kc = null;
2680 for (TreeNode<K,V> p = r;;) {
2681 int dir, ph;
2682 if ((ph = p.hash) > hash)
2683 dir = -1;
2684 else if (ph < hash)
2685 dir = 1;
2686 else if ((kc != null ||
2687 (kc = comparableClassFor(key)) != null))
2688 dir = compareComparables(kc, key, p.key);
2689 else
2690 dir = 0;
2691 TreeNode<K,V> xp = p;
2692 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2693 x.parent = xp;
2694 if (dir <= 0)
2695 xp.left = x;
2696 else
2697 xp.right = x;
2698 r = balanceInsertion(r, x);
2699 break;
2700 }
2701 }
2702 }
2703 }
2704 this.root = r;
2705 }
2706
2707 /**
2708 * Acquires write lock for tree restructuring.
2709 */
2710 private final void lockRoot() {
2711 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2712 contendedLock(); // offload to separate method
2713 }
2714
2715 /**
2716 * Releases write lock for tree restructuring.
2717 */
2718 private final void unlockRoot() {
2719 lockState = 0;
2720 }
2721
2722 /**
2723 * Possibly blocks awaiting root lock.
2724 */
2725 private final void contendedLock() {
2726 boolean waiting = false;
2727 for (int s;;) {
2728 if (((s = lockState) & WRITER) == 0) {
2729 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2730 if (waiting)
2731 waiter = null;
2732 return;
2733 }
2734 }
2735 else if ((s | WAITER) == 0) {
2736 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2737 waiting = true;
2738 waiter = Thread.currentThread();
2739 }
2740 }
2741 else if (waiting)
2742 LockSupport.park(this);
2743 }
2744 }
2745
2746 /**
2747 * Returns matching node or null if none. Tries to search
2748 * using tree comparisons from root, but continues linear
2749 * search when lock not available.
2750 */
2751 final Node<K,V> find(int h, Object k) {
2752 if (k != null) {
2753 for (Node<K,V> e = first; e != null; e = e.next) {
2754 int s; K ek;
2755 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2756 if (e.hash == h &&
2757 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2758 return e;
2759 }
2760 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2761 s + READER)) {
2762 TreeNode<K,V> r, p;
2763 try {
2764 p = ((r = root) == null ? null :
2765 r.findTreeNode(h, k, null));
2766 } finally {
2767 Thread w;
2768 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2769 (READER|WAITER) && (w = waiter) != null)
2770 LockSupport.unpark(w);
2771 }
2772 return p;
2773 }
2774 }
2775 }
2776 return null;
2777 }
2778
2779 /**
2780 * Finds or adds a node.
2781 * @return null if added
2782 */
2783 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2784 Class<?> kc = null;
2785 for (TreeNode<K,V> p = root;;) {
2786 int dir, ph; K pk; TreeNode<K,V> q, pr;
2787 if (p == null) {
2788 first = root = new TreeNode<K,V>(h, k, v, null, null);
2789 break;
2790 }
2791 else if ((ph = p.hash) > h)
2792 dir = -1;
2793 else if (ph < h)
2794 dir = 1;
2795 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2796 return p;
2797 else if ((kc == null &&
2798 (kc = comparableClassFor(k)) == null) ||
2799 (dir = compareComparables(kc, k, pk)) == 0) {
2800 if (p.left == null)
2801 dir = 1;
2802 else if ((pr = p.right) == null ||
2803 (q = pr.findTreeNode(h, k, kc)) == null)
2804 dir = -1;
2805 else
2806 return q;
2807 }
2808 TreeNode<K,V> xp = p;
2809 if ((p = (dir < 0) ? p.left : p.right) == null) {
2810 TreeNode<K,V> x, f = first;
2811 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2812 if (f != null)
2813 f.prev = x;
2814 if (dir < 0)
2815 xp.left = x;
2816 else
2817 xp.right = x;
2818 if (!xp.red)
2819 x.red = true;
2820 else {
2821 lockRoot();
2822 try {
2823 root = balanceInsertion(root, x);
2824 } finally {
2825 unlockRoot();
2826 }
2827 }
2828 break;
2829 }
2830 }
2831 assert checkInvariants(root);
2832 return null;
2833 }
2834
2835 /**
2836 * Removes the given node, that must be present before this
2837 * call. This is messier than typical red-black deletion code
2838 * because we cannot swap the contents of an interior node
2839 * with a leaf successor that is pinned by "next" pointers
2840 * that are accessible independently of lock. So instead we
2841 * swap the tree linkages.
2842 *
2843 * @return true if now too small, so should be untreeified
2844 */
2845 final boolean removeTreeNode(TreeNode<K,V> p) {
2846 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2847 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2848 TreeNode<K,V> r, rl;
2849 if (pred == null)
2850 first = next;
2851 else
2852 pred.next = next;
2853 if (next != null)
2854 next.prev = pred;
2855 if (first == null) {
2856 root = null;
2857 return true;
2858 }
2859 if ((r = root) == null || r.right == null || // too small
2860 (rl = r.left) == null || rl.left == null)
2861 return true;
2862 lockRoot();
2863 try {
2864 TreeNode<K,V> replacement;
2865 TreeNode<K,V> pl = p.left;
2866 TreeNode<K,V> pr = p.right;
2867 if (pl != null && pr != null) {
2868 TreeNode<K,V> s = pr, sl;
2869 while ((sl = s.left) != null) // find successor
2870 s = sl;
2871 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2872 TreeNode<K,V> sr = s.right;
2873 TreeNode<K,V> pp = p.parent;
2874 if (s == pr) { // p was s's direct parent
2875 p.parent = s;
2876 s.right = p;
2877 }
2878 else {
2879 TreeNode<K,V> sp = s.parent;
2880 if ((p.parent = sp) != null) {
2881 if (s == sp.left)
2882 sp.left = p;
2883 else
2884 sp.right = p;
2885 }
2886 if ((s.right = pr) != null)
2887 pr.parent = s;
2888 }
2889 p.left = null;
2890 if ((p.right = sr) != null)
2891 sr.parent = p;
2892 if ((s.left = pl) != null)
2893 pl.parent = s;
2894 if ((s.parent = pp) == null)
2895 r = s;
2896 else if (p == pp.left)
2897 pp.left = s;
2898 else
2899 pp.right = s;
2900 if (sr != null)
2901 replacement = sr;
2902 else
2903 replacement = p;
2904 }
2905 else if (pl != null)
2906 replacement = pl;
2907 else if (pr != null)
2908 replacement = pr;
2909 else
2910 replacement = p;
2911 if (replacement != p) {
2912 TreeNode<K,V> pp = replacement.parent = p.parent;
2913 if (pp == null)
2914 r = replacement;
2915 else if (p == pp.left)
2916 pp.left = replacement;
2917 else
2918 pp.right = replacement;
2919 p.left = p.right = p.parent = null;
2920 }
2921
2922 root = (p.red) ? r : balanceDeletion(r, replacement);
2923
2924 if (p == replacement) { // detach pointers
2925 TreeNode<K,V> pp;
2926 if ((pp = p.parent) != null) {
2927 if (p == pp.left)
2928 pp.left = null;
2929 else if (p == pp.right)
2930 pp.right = null;
2931 p.parent = null;
2932 }
2933 }
2934 } finally {
2935 unlockRoot();
2936 }
2937 assert checkInvariants(root);
2938 return false;
2939 }
2940
2941 /* ------------------------------------------------------------ */
2942 // Red-black tree methods, all adapted from CLR
2943
2944 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2945 TreeNode<K,V> p) {
2946 TreeNode<K,V> r, pp, rl;
2947 if (p != null && (r = p.right) != null) {
2948 if ((rl = p.right = r.left) != null)
2949 rl.parent = p;
2950 if ((pp = r.parent = p.parent) == null)
2951 (root = r).red = false;
2952 else if (pp.left == p)
2953 pp.left = r;
2954 else
2955 pp.right = r;
2956 r.left = p;
2957 p.parent = r;
2958 }
2959 return root;
2960 }
2961
2962 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2963 TreeNode<K,V> p) {
2964 TreeNode<K,V> l, pp, lr;
2965 if (p != null && (l = p.left) != null) {
2966 if ((lr = p.left = l.right) != null)
2967 lr.parent = p;
2968 if ((pp = l.parent = p.parent) == null)
2969 (root = l).red = false;
2970 else if (pp.right == p)
2971 pp.right = l;
2972 else
2973 pp.left = l;
2974 l.right = p;
2975 p.parent = l;
2976 }
2977 return root;
2978 }
2979
2980 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2981 TreeNode<K,V> x) {
2982 x.red = true;
2983 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2984 if ((xp = x.parent) == null) {
2985 x.red = false;
2986 return x;
2987 }
2988 else if (!xp.red || (xpp = xp.parent) == null)
2989 return root;
2990 if (xp == (xppl = xpp.left)) {
2991 if ((xppr = xpp.right) != null && xppr.red) {
2992 xppr.red = false;
2993 xp.red = false;
2994 xpp.red = true;
2995 x = xpp;
2996 }
2997 else {
2998 if (x == xp.right) {
2999 root = rotateLeft(root, x = xp);
3000 xpp = (xp = x.parent) == null ? null : xp.parent;
3001 }
3002 if (xp != null) {
3003 xp.red = false;
3004 if (xpp != null) {
3005 xpp.red = true;
3006 root = rotateRight(root, xpp);
3007 }
3008 }
3009 }
3010 }
3011 else {
3012 if (xppl != null && xppl.red) {
3013 xppl.red = false;
3014 xp.red = false;
3015 xpp.red = true;
3016 x = xpp;
3017 }
3018 else {
3019 if (x == xp.left) {
3020 root = rotateRight(root, x = xp);
3021 xpp = (xp = x.parent) == null ? null : xp.parent;
3022 }
3023 if (xp != null) {
3024 xp.red = false;
3025 if (xpp != null) {
3026 xpp.red = true;
3027 root = rotateLeft(root, xpp);
3028 }
3029 }
3030 }
3031 }
3032 }
3033 }
3034
3035 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3036 TreeNode<K,V> x) {
3037 for (TreeNode<K,V> xp, xpl, xpr;;) {
3038 if (x == null || x == root)
3039 return root;
3040 else if ((xp = x.parent) == null) {
3041 x.red = false;
3042 return x;
3043 }
3044 else if (x.red) {
3045 x.red = false;
3046 return root;
3047 }
3048 else if ((xpl = xp.left) == x) {
3049 if ((xpr = xp.right) != null && xpr.red) {
3050 xpr.red = false;
3051 xp.red = true;
3052 root = rotateLeft(root, xp);
3053 xpr = (xp = x.parent) == null ? null : xp.right;
3054 }
3055 if (xpr == null)
3056 x = xp;
3057 else {
3058 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3059 if ((sr == null || !sr.red) &&
3060 (sl == null || !sl.red)) {
3061 xpr.red = true;
3062 x = xp;
3063 }
3064 else {
3065 if (sr == null || !sr.red) {
3066 if (sl != null)
3067 sl.red = false;
3068 xpr.red = true;
3069 root = rotateRight(root, xpr);
3070 xpr = (xp = x.parent) == null ?
3071 null : xp.right;
3072 }
3073 if (xpr != null) {
3074 xpr.red = (xp == null) ? false : xp.red;
3075 if ((sr = xpr.right) != null)
3076 sr.red = false;
3077 }
3078 if (xp != null) {
3079 xp.red = false;
3080 root = rotateLeft(root, xp);
3081 }
3082 x = root;
3083 }
3084 }
3085 }
3086 else { // symmetric
3087 if (xpl != null && xpl.red) {
3088 xpl.red = false;
3089 xp.red = true;
3090 root = rotateRight(root, xp);
3091 xpl = (xp = x.parent) == null ? null : xp.left;
3092 }
3093 if (xpl == null)
3094 x = xp;
3095 else {
3096 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3097 if ((sl == null || !sl.red) &&
3098 (sr == null || !sr.red)) {
3099 xpl.red = true;
3100 x = xp;
3101 }
3102 else {
3103 if (sl == null || !sl.red) {
3104 if (sr != null)
3105 sr.red = false;
3106 xpl.red = true;
3107 root = rotateLeft(root, xpl);
3108 xpl = (xp = x.parent) == null ?
3109 null : xp.left;
3110 }
3111 if (xpl != null) {
3112 xpl.red = (xp == null) ? false : xp.red;
3113 if ((sl = xpl.left) != null)
3114 sl.red = false;
3115 }
3116 if (xp != null) {
3117 xp.red = false;
3118 root = rotateRight(root, xp);
3119 }
3120 x = root;
3121 }
3122 }
3123 }
3124 }
3125 }
3126
3127 /**
3128 * Recursive invariant check
3129 */
3130 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3131 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3132 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3133 if (tb != null && tb.next != t)
3134 return false;
3135 if (tn != null && tn.prev != t)
3136 return false;
3137 if (tp != null && t != tp.left && t != tp.right)
3138 return false;
3139 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3140 return false;
3141 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3142 return false;
3143 if (t.red && tl != null && tl.red && tr != null && tr.red)
3144 return false;
3145 if (tl != null && !checkInvariants(tl))
3146 return false;
3147 if (tr != null && !checkInvariants(tr))
3148 return false;
3149 return true;
3150 }
3151
3152 private static final sun.misc.Unsafe U;
3153 private static final long LOCKSTATE;
3154 static {
3155 try {
3156 U = sun.misc.Unsafe.getUnsafe();
3157 Class<?> k = TreeBin.class;
3158 LOCKSTATE = U.objectFieldOffset
3159 (k.getDeclaredField("lockState"));
3160 } catch (Exception e) {
3161 throw new Error(e);
3162 }
3163 }
3164 }
3165
3166 /* ----------------Table Traversal -------------- */
3167
3168 /**
3169 * Encapsulates traversal for methods such as containsValue; also
3170 * serves as a base class for other iterators and spliterators.
3171 *
3172 * Method advance visits once each still-valid node that was
3173 * reachable upon iterator construction. It might miss some that
3174 * were added to a bin after the bin was visited, which is OK wrt
3175 * consistency guarantees. Maintaining this property in the face
3176 * of possible ongoing resizes requires a fair amount of
3177 * bookkeeping state that is difficult to optimize away amidst
3178 * volatile accesses. Even so, traversal maintains reasonable
3179 * throughput.
3180 *
3181 * Normally, iteration proceeds bin-by-bin traversing lists.
3182 * However, if the table has been resized, then all future steps
3183 * must traverse both the bin at the current index as well as at
3184 * (index + baseSize); and so on for further resizings. To
3185 * paranoically cope with potential sharing by users of iterators
3186 * across threads, iteration terminates if a bounds checks fails
3187 * for a table read.
3188 */
3189 static class Traverser<K,V> {
3190 Node<K,V>[] tab; // current table; updated if resized
3191 Node<K,V> next; // the next entry to use
3192 int index; // index of bin to use next
3193 int baseIndex; // current index of initial table
3194 int baseLimit; // index bound for initial table
3195 final int baseSize; // initial table size
3196
3197 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3198 this.tab = tab;
3199 this.baseSize = size;
3200 this.baseIndex = this.index = index;
3201 this.baseLimit = limit;
3202 this.next = null;
3203 }
3204
3205 /**
3206 * Advances if possible, returning next valid node, or null if none.
3207 */
3208 final Node<K,V> advance() {
3209 Node<K,V> e;
3210 if ((e = next) != null)
3211 e = e.next;
3212 for (;;) {
3213 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3214 if (e != null)
3215 return next = e;
3216 if (baseIndex >= baseLimit || (t = tab) == null ||
3217 (n = t.length) <= (i = index) || i < 0)
3218 return next = null;
3219 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3220 if (e instanceof ForwardingNode) {
3221 tab = ((ForwardingNode<K,V>)e).nextTable;
3222 e = null;
3223 continue;
3224 }
3225 else if (e instanceof TreeBin)
3226 e = ((TreeBin<K,V>)e).first;
3227 else
3228 e = null;
3229 }
3230 if ((index += baseSize) >= n)
3231 index = ++baseIndex; // visit upper slots if present
3232 }
3233 }
3234 }
3235
3236 /**
3237 * Base of key, value, and entry Iterators. Adds fields to
3238 * Traverser to support iterator.remove.
3239 */
3240 static class BaseIterator<K,V> extends Traverser<K,V> {
3241 final ConcurrentHashMap<K,V> map;
3242 Node<K,V> lastReturned;
3243 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3244 ConcurrentHashMap<K,V> map) {
3245 super(tab, size, index, limit);
3246 this.map = map;
3247 advance();
3248 }
3249
3250 public final boolean hasNext() { return next != null; }
3251 public final boolean hasMoreElements() { return next != null; }
3252
3253 public final void remove() {
3254 Node<K,V> p;
3255 if ((p = lastReturned) == null)
3256 throw new IllegalStateException();
3257 lastReturned = null;
3258 map.replaceNode(p.key, null, null);
3259 }
3260 }
3261
3262 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3263 implements Iterator<K>, Enumeration<K> {
3264 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3265 ConcurrentHashMap<K,V> map) {
3266 super(tab, index, size, limit, map);
3267 }
3268
3269 public final K next() {
3270 Node<K,V> p;
3271 if ((p = next) == null)
3272 throw new NoSuchElementException();
3273 K k = p.key;
3274 lastReturned = p;
3275 advance();
3276 return k;
3277 }
3278
3279 public final K nextElement() { return next(); }
3280 }
3281
3282 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3283 implements Iterator<V>, Enumeration<V> {
3284 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3285 ConcurrentHashMap<K,V> map) {
3286 super(tab, index, size, limit, map);
3287 }
3288
3289 public final V next() {
3290 Node<K,V> p;
3291 if ((p = next) == null)
3292 throw new NoSuchElementException();
3293 V v = p.val;
3294 lastReturned = p;
3295 advance();
3296 return v;
3297 }
3298
3299 public final V nextElement() { return next(); }
3300 }
3301
3302 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3303 implements Iterator<Map.Entry<K,V>> {
3304 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3305 ConcurrentHashMap<K,V> map) {
3306 super(tab, index, size, limit, map);
3307 }
3308
3309 public final Map.Entry<K,V> next() {
3310 Node<K,V> p;
3311 if ((p = next) == null)
3312 throw new NoSuchElementException();
3313 K k = p.key;
3314 V v = p.val;
3315 lastReturned = p;
3316 advance();
3317 return new MapEntry<K,V>(k, v, map);
3318 }
3319 }
3320
3321 /**
3322 * Exported Entry for EntryIterator
3323 */
3324 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3325 final K key; // non-null
3326 V val; // non-null
3327 final ConcurrentHashMap<K,V> map;
3328 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3329 this.key = key;
3330 this.val = val;
3331 this.map = map;
3332 }
3333 public K getKey() { return key; }
3334 public V getValue() { return val; }
3335 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3336 public String toString() { return key + "=" + val; }
3337
3338 public boolean equals(Object o) {
3339 Object k, v; Map.Entry<?,?> e;
3340 return ((o instanceof Map.Entry) &&
3341 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3342 (v = e.getValue()) != null &&
3343 (k == key || k.equals(key)) &&
3344 (v == val || v.equals(val)));
3345 }
3346
3347 /**
3348 * Sets our entry's value and writes through to the map. The
3349 * value to return is somewhat arbitrary here. Since we do not
3350 * necessarily track asynchronous changes, the most recent
3351 * "previous" value could be different from what we return (or
3352 * could even have been removed, in which case the put will
3353 * re-establish). We do not and cannot guarantee more.
3354 */
3355 public V setValue(V value) {
3356 if (value == null) throw new NullPointerException();
3357 V v = val;
3358 val = value;
3359 map.put(key, value);
3360 return v;
3361 }
3362 }
3363
3364 static final class KeySpliterator<K,V> extends Traverser<K,V>
3365 implements Spliterator<K> {
3366 long est; // size estimate
3367 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 long est) {
3369 super(tab, size, index, limit);
3370 this.est = est;
3371 }
3372
3373 public Spliterator<K> trySplit() {
3374 int i, f, h;
3375 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3376 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3377 f, est >>>= 1);
3378 }
3379
3380 public void forEachRemaining(Consumer<? super K> action) {
3381 if (action == null) throw new NullPointerException();
3382 for (Node<K,V> p; (p = advance()) != null;)
3383 action.accept(p.key);
3384 }
3385
3386 public boolean tryAdvance(Consumer<? super K> action) {
3387 if (action == null) throw new NullPointerException();
3388 Node<K,V> p;
3389 if ((p = advance()) == null)
3390 return false;
3391 action.accept(p.key);
3392 return true;
3393 }
3394
3395 public long estimateSize() { return est; }
3396
3397 public int characteristics() {
3398 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3399 Spliterator.NONNULL;
3400 }
3401 }
3402
3403 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3404 implements Spliterator<V> {
3405 long est; // size estimate
3406 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3407 long est) {
3408 super(tab, size, index, limit);
3409 this.est = est;
3410 }
3411
3412 public Spliterator<V> trySplit() {
3413 int i, f, h;
3414 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3415 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3416 f, est >>>= 1);
3417 }
3418
3419 public void forEachRemaining(Consumer<? super V> action) {
3420 if (action == null) throw new NullPointerException();
3421 for (Node<K,V> p; (p = advance()) != null;)
3422 action.accept(p.val);
3423 }
3424
3425 public boolean tryAdvance(Consumer<? super V> action) {
3426 if (action == null) throw new NullPointerException();
3427 Node<K,V> p;
3428 if ((p = advance()) == null)
3429 return false;
3430 action.accept(p.val);
3431 return true;
3432 }
3433
3434 public long estimateSize() { return est; }
3435
3436 public int characteristics() {
3437 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3438 }
3439 }
3440
3441 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3442 implements Spliterator<Map.Entry<K,V>> {
3443 final ConcurrentHashMap<K,V> map; // To export MapEntry
3444 long est; // size estimate
3445 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3446 long est, ConcurrentHashMap<K,V> map) {
3447 super(tab, size, index, limit);
3448 this.map = map;
3449 this.est = est;
3450 }
3451
3452 public Spliterator<Map.Entry<K,V>> trySplit() {
3453 int i, f, h;
3454 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3455 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3456 f, est >>>= 1, map);
3457 }
3458
3459 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3460 if (action == null) throw new NullPointerException();
3461 for (Node<K,V> p; (p = advance()) != null; )
3462 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3463 }
3464
3465 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3466 if (action == null) throw new NullPointerException();
3467 Node<K,V> p;
3468 if ((p = advance()) == null)
3469 return false;
3470 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3471 return true;
3472 }
3473
3474 public long estimateSize() { return est; }
3475
3476 public int characteristics() {
3477 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3478 Spliterator.NONNULL;
3479 }
3480 }
3481
3482 // Parallel bulk operations
3483
3484 /**
3485 * Computes initial batch value for bulk tasks. The returned value
3486 * is approximately exp2 of the number of times (minus one) to
3487 * split task by two before executing leaf action. This value is
3488 * faster to compute and more convenient to use as a guide to
3489 * splitting than is the depth, since it is used while dividing by
3490 * two anyway.
3491 */
3492 final int batchFor(long b) {
3493 long n;
3494 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3495 return 0;
3496 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3497 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3498 }
3499
3500 /**
3501 * Performs the given action for each (key, value).
3502 *
3503 * @param parallelismThreshold the (estimated) number of elements
3504 * needed for this operation to be executed in parallel
3505 * @param action the action
3506 * @since 1.8
3507 */
3508 public void forEach(long parallelismThreshold,
3509 BiConsumer<? super K,? super V> action) {
3510 if (action == null) throw new NullPointerException();
3511 new ForEachMappingTask<K,V>
3512 (null, batchFor(parallelismThreshold), 0, 0, table,
3513 action).invoke();
3514 }
3515
3516 /**
3517 * Performs the given action for each non-null transformation
3518 * of each (key, value).
3519 *
3520 * @param parallelismThreshold the (estimated) number of elements
3521 * needed for this operation to be executed in parallel
3522 * @param transformer a function returning the transformation
3523 * for an element, or null if there is no transformation (in
3524 * which case the action is not applied)
3525 * @param action the action
3526 * @param <U> the return type of the transformer
3527 * @since 1.8
3528 */
3529 public <U> void forEach(long parallelismThreshold,
3530 BiFunction<? super K, ? super V, ? extends U> transformer,
3531 Consumer<? super U> action) {
3532 if (transformer == null || action == null)
3533 throw new NullPointerException();
3534 new ForEachTransformedMappingTask<K,V,U>
3535 (null, batchFor(parallelismThreshold), 0, 0, table,
3536 transformer, action).invoke();
3537 }
3538
3539 /**
3540 * Returns a non-null result from applying the given search
3541 * function on each (key, value), or null if none. Upon
3542 * success, further element processing is suppressed and the
3543 * results of any other parallel invocations of the search
3544 * function are ignored.
3545 *
3546 * @param parallelismThreshold the (estimated) number of elements
3547 * needed for this operation to be executed in parallel
3548 * @param searchFunction a function returning a non-null
3549 * result on success, else null
3550 * @param <U> the return type of the search function
3551 * @return a non-null result from applying the given search
3552 * function on each (key, value), or null if none
3553 * @since 1.8
3554 */
3555 public <U> U search(long parallelismThreshold,
3556 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3557 if (searchFunction == null) throw new NullPointerException();
3558 return new SearchMappingsTask<K,V,U>
3559 (null, batchFor(parallelismThreshold), 0, 0, table,
3560 searchFunction, new AtomicReference<U>()).invoke();
3561 }
3562
3563 /**
3564 * Returns the result of accumulating the given transformation
3565 * of all (key, value) pairs using the given reducer to
3566 * combine values, or null if none.
3567 *
3568 * @param parallelismThreshold the (estimated) number of elements
3569 * needed for this operation to be executed in parallel
3570 * @param transformer a function returning the transformation
3571 * for an element, or null if there is no transformation (in
3572 * which case it is not combined)
3573 * @param reducer a commutative associative combining function
3574 * @param <U> the return type of the transformer
3575 * @return the result of accumulating the given transformation
3576 * of all (key, value) pairs
3577 * @since 1.8
3578 */
3579 public <U> U reduce(long parallelismThreshold,
3580 BiFunction<? super K, ? super V, ? extends U> transformer,
3581 BiFunction<? super U, ? super U, ? extends U> reducer) {
3582 if (transformer == null || reducer == null)
3583 throw new NullPointerException();
3584 return new MapReduceMappingsTask<K,V,U>
3585 (null, batchFor(parallelismThreshold), 0, 0, table,
3586 null, transformer, reducer).invoke();
3587 }
3588
3589 /**
3590 * Returns the result of accumulating the given transformation
3591 * of all (key, value) pairs using the given reducer to
3592 * combine values, and the given basis as an identity value.
3593 *
3594 * @param parallelismThreshold the (estimated) number of elements
3595 * needed for this operation to be executed in parallel
3596 * @param transformer a function returning the transformation
3597 * for an element
3598 * @param basis the identity (initial default value) for the reduction
3599 * @param reducer a commutative associative combining function
3600 * @return the result of accumulating the given transformation
3601 * of all (key, value) pairs
3602 * @since 1.8
3603 */
3604 public double reduceToDouble(long parallelismThreshold,
3605 ToDoubleBiFunction<? super K, ? super V> transformer,
3606 double basis,
3607 DoubleBinaryOperator reducer) {
3608 if (transformer == null || reducer == null)
3609 throw new NullPointerException();
3610 return new MapReduceMappingsToDoubleTask<K,V>
3611 (null, batchFor(parallelismThreshold), 0, 0, table,
3612 null, transformer, basis, reducer).invoke();
3613 }
3614
3615 /**
3616 * Returns the result of accumulating the given transformation
3617 * of all (key, value) pairs using the given reducer to
3618 * combine values, and the given basis as an identity value.
3619 *
3620 * @param parallelismThreshold the (estimated) number of elements
3621 * needed for this operation to be executed in parallel
3622 * @param transformer a function returning the transformation
3623 * for an element
3624 * @param basis the identity (initial default value) for the reduction
3625 * @param reducer a commutative associative combining function
3626 * @return the result of accumulating the given transformation
3627 * of all (key, value) pairs
3628 * @since 1.8
3629 */
3630 public long reduceToLong(long parallelismThreshold,
3631 ToLongBiFunction<? super K, ? super V> transformer,
3632 long basis,
3633 LongBinaryOperator reducer) {
3634 if (transformer == null || reducer == null)
3635 throw new NullPointerException();
3636 return new MapReduceMappingsToLongTask<K,V>
3637 (null, batchFor(parallelismThreshold), 0, 0, table,
3638 null, transformer, basis, reducer).invoke();
3639 }
3640
3641 /**
3642 * Returns the result of accumulating the given transformation
3643 * of all (key, value) pairs using the given reducer to
3644 * combine values, and the given basis as an identity value.
3645 *
3646 * @param parallelismThreshold the (estimated) number of elements
3647 * needed for this operation to be executed in parallel
3648 * @param transformer a function returning the transformation
3649 * for an element
3650 * @param basis the identity (initial default value) for the reduction
3651 * @param reducer a commutative associative combining function
3652 * @return the result of accumulating the given transformation
3653 * of all (key, value) pairs
3654 * @since 1.8
3655 */
3656 public int reduceToInt(long parallelismThreshold,
3657 ToIntBiFunction<? super K, ? super V> transformer,
3658 int basis,
3659 IntBinaryOperator reducer) {
3660 if (transformer == null || reducer == null)
3661 throw new NullPointerException();
3662 return new MapReduceMappingsToIntTask<K,V>
3663 (null, batchFor(parallelismThreshold), 0, 0, table,
3664 null, transformer, basis, reducer).invoke();
3665 }
3666
3667 /**
3668 * Performs the given action for each key.
3669 *
3670 * @param parallelismThreshold the (estimated) number of elements
3671 * needed for this operation to be executed in parallel
3672 * @param action the action
3673 * @since 1.8
3674 */
3675 public void forEachKey(long parallelismThreshold,
3676 Consumer<? super K> action) {
3677 if (action == null) throw new NullPointerException();
3678 new ForEachKeyTask<K,V>
3679 (null, batchFor(parallelismThreshold), 0, 0, table,
3680 action).invoke();
3681 }
3682
3683 /**
3684 * Performs the given action for each non-null transformation
3685 * of each key.
3686 *
3687 * @param parallelismThreshold the (estimated) number of elements
3688 * needed for this operation to be executed in parallel
3689 * @param transformer a function returning the transformation
3690 * for an element, or null if there is no transformation (in
3691 * which case the action is not applied)
3692 * @param action the action
3693 * @param <U> the return type of the transformer
3694 * @since 1.8
3695 */
3696 public <U> void forEachKey(long parallelismThreshold,
3697 Function<? super K, ? extends U> transformer,
3698 Consumer<? super U> action) {
3699 if (transformer == null || action == null)
3700 throw new NullPointerException();
3701 new ForEachTransformedKeyTask<K,V,U>
3702 (null, batchFor(parallelismThreshold), 0, 0, table,
3703 transformer, action).invoke();
3704 }
3705
3706 /**
3707 * Returns a non-null result from applying the given search
3708 * function on each key, or null if none. Upon success,
3709 * further element processing is suppressed and the results of
3710 * any other parallel invocations of the search function are
3711 * ignored.
3712 *
3713 * @param parallelismThreshold the (estimated) number of elements
3714 * needed for this operation to be executed in parallel
3715 * @param searchFunction a function returning a non-null
3716 * result on success, else null
3717 * @param <U> the return type of the search function
3718 * @return a non-null result from applying the given search
3719 * function on each key, or null if none
3720 * @since 1.8
3721 */
3722 public <U> U searchKeys(long parallelismThreshold,
3723 Function<? super K, ? extends U> searchFunction) {
3724 if (searchFunction == null) throw new NullPointerException();
3725 return new SearchKeysTask<K,V,U>
3726 (null, batchFor(parallelismThreshold), 0, 0, table,
3727 searchFunction, new AtomicReference<U>()).invoke();
3728 }
3729
3730 /**
3731 * Returns the result of accumulating all keys using the given
3732 * reducer to combine values, or null if none.
3733 *
3734 * @param parallelismThreshold the (estimated) number of elements
3735 * needed for this operation to be executed in parallel
3736 * @param reducer a commutative associative combining function
3737 * @return the result of accumulating all keys using the given
3738 * reducer to combine values, or null if none
3739 * @since 1.8
3740 */
3741 public K reduceKeys(long parallelismThreshold,
3742 BiFunction<? super K, ? super K, ? extends K> reducer) {
3743 if (reducer == null) throw new NullPointerException();
3744 return new ReduceKeysTask<K,V>
3745 (null, batchFor(parallelismThreshold), 0, 0, table,
3746 null, reducer).invoke();
3747 }
3748
3749 /**
3750 * Returns the result of accumulating the given transformation
3751 * of all keys using the given reducer to combine values, or
3752 * null if none.
3753 *
3754 * @param parallelismThreshold the (estimated) number of elements
3755 * needed for this operation to be executed in parallel
3756 * @param transformer a function returning the transformation
3757 * for an element, or null if there is no transformation (in
3758 * which case it is not combined)
3759 * @param reducer a commutative associative combining function
3760 * @param <U> the return type of the transformer
3761 * @return the result of accumulating the given transformation
3762 * of all keys
3763 * @since 1.8
3764 */
3765 public <U> U reduceKeys(long parallelismThreshold,
3766 Function<? super K, ? extends U> transformer,
3767 BiFunction<? super U, ? super U, ? extends U> reducer) {
3768 if (transformer == null || reducer == null)
3769 throw new NullPointerException();
3770 return new MapReduceKeysTask<K,V,U>
3771 (null, batchFor(parallelismThreshold), 0, 0, table,
3772 null, transformer, reducer).invoke();
3773 }
3774
3775 /**
3776 * Returns the result of accumulating the given transformation
3777 * of all keys using the given reducer to combine values, and
3778 * the given basis as an identity value.
3779 *
3780 * @param parallelismThreshold the (estimated) number of elements
3781 * needed for this operation to be executed in parallel
3782 * @param transformer a function returning the transformation
3783 * for an element
3784 * @param basis the identity (initial default value) for the reduction
3785 * @param reducer a commutative associative combining function
3786 * @return the result of accumulating the given transformation
3787 * of all keys
3788 * @since 1.8
3789 */
3790 public double reduceKeysToDouble(long parallelismThreshold,
3791 ToDoubleFunction<? super K> transformer,
3792 double basis,
3793 DoubleBinaryOperator reducer) {
3794 if (transformer == null || reducer == null)
3795 throw new NullPointerException();
3796 return new MapReduceKeysToDoubleTask<K,V>
3797 (null, batchFor(parallelismThreshold), 0, 0, table,
3798 null, transformer, basis, reducer).invoke();
3799 }
3800
3801 /**
3802 * Returns the result of accumulating the given transformation
3803 * of all keys using the given reducer to combine values, and
3804 * the given basis as an identity value.
3805 *
3806 * @param parallelismThreshold the (estimated) number of elements
3807 * needed for this operation to be executed in parallel
3808 * @param transformer a function returning the transformation
3809 * for an element
3810 * @param basis the identity (initial default value) for the reduction
3811 * @param reducer a commutative associative combining function
3812 * @return the result of accumulating the given transformation
3813 * of all keys
3814 * @since 1.8
3815 */
3816 public long reduceKeysToLong(long parallelismThreshold,
3817 ToLongFunction<? super K> transformer,
3818 long basis,
3819 LongBinaryOperator reducer) {
3820 if (transformer == null || reducer == null)
3821 throw new NullPointerException();
3822 return new MapReduceKeysToLongTask<K,V>
3823 (null, batchFor(parallelismThreshold), 0, 0, table,
3824 null, transformer, basis, reducer).invoke();
3825 }
3826
3827 /**
3828 * Returns the result of accumulating the given transformation
3829 * of all keys using the given reducer to combine values, and
3830 * the given basis as an identity value.
3831 *
3832 * @param parallelismThreshold the (estimated) number of elements
3833 * needed for this operation to be executed in parallel
3834 * @param transformer a function returning the transformation
3835 * for an element
3836 * @param basis the identity (initial default value) for the reduction
3837 * @param reducer a commutative associative combining function
3838 * @return the result of accumulating the given transformation
3839 * of all keys
3840 * @since 1.8
3841 */
3842 public int reduceKeysToInt(long parallelismThreshold,
3843 ToIntFunction<? super K> transformer,
3844 int basis,
3845 IntBinaryOperator reducer) {
3846 if (transformer == null || reducer == null)
3847 throw new NullPointerException();
3848 return new MapReduceKeysToIntTask<K,V>
3849 (null, batchFor(parallelismThreshold), 0, 0, table,
3850 null, transformer, basis, reducer).invoke();
3851 }
3852
3853 /**
3854 * Performs the given action for each value.
3855 *
3856 * @param parallelismThreshold the (estimated) number of elements
3857 * needed for this operation to be executed in parallel
3858 * @param action the action
3859 * @since 1.8
3860 */
3861 public void forEachValue(long parallelismThreshold,
3862 Consumer<? super V> action) {
3863 if (action == null)
3864 throw new NullPointerException();
3865 new ForEachValueTask<K,V>
3866 (null, batchFor(parallelismThreshold), 0, 0, table,
3867 action).invoke();
3868 }
3869
3870 /**
3871 * Performs the given action for each non-null transformation
3872 * of each value.
3873 *
3874 * @param parallelismThreshold the (estimated) number of elements
3875 * needed for this operation to be executed in parallel
3876 * @param transformer a function returning the transformation
3877 * for an element, or null if there is no transformation (in
3878 * which case the action is not applied)
3879 * @param action the action
3880 * @param <U> the return type of the transformer
3881 * @since 1.8
3882 */
3883 public <U> void forEachValue(long parallelismThreshold,
3884 Function<? super V, ? extends U> transformer,
3885 Consumer<? super U> action) {
3886 if (transformer == null || action == null)
3887 throw new NullPointerException();
3888 new ForEachTransformedValueTask<K,V,U>
3889 (null, batchFor(parallelismThreshold), 0, 0, table,
3890 transformer, action).invoke();
3891 }
3892
3893 /**
3894 * Returns a non-null result from applying the given search
3895 * function on each value, or null if none. Upon success,
3896 * further element processing is suppressed and the results of
3897 * any other parallel invocations of the search function are
3898 * ignored.
3899 *
3900 * @param parallelismThreshold the (estimated) number of elements
3901 * needed for this operation to be executed in parallel
3902 * @param searchFunction a function returning a non-null
3903 * result on success, else null
3904 * @param <U> the return type of the search function
3905 * @return a non-null result from applying the given search
3906 * function on each value, or null if none
3907 * @since 1.8
3908 */
3909 public <U> U searchValues(long parallelismThreshold,
3910 Function<? super V, ? extends U> searchFunction) {
3911 if (searchFunction == null) throw new NullPointerException();
3912 return new SearchValuesTask<K,V,U>
3913 (null, batchFor(parallelismThreshold), 0, 0, table,
3914 searchFunction, new AtomicReference<U>()).invoke();
3915 }
3916
3917 /**
3918 * Returns the result of accumulating all values using the
3919 * given reducer to combine values, or null if none.
3920 *
3921 * @param parallelismThreshold the (estimated) number of elements
3922 * needed for this operation to be executed in parallel
3923 * @param reducer a commutative associative combining function
3924 * @return the result of accumulating all values
3925 * @since 1.8
3926 */
3927 public V reduceValues(long parallelismThreshold,
3928 BiFunction<? super V, ? super V, ? extends V> reducer) {
3929 if (reducer == null) throw new NullPointerException();
3930 return new ReduceValuesTask<K,V>
3931 (null, batchFor(parallelismThreshold), 0, 0, table,
3932 null, reducer).invoke();
3933 }
3934
3935 /**
3936 * Returns the result of accumulating the given transformation
3937 * of all values using the given reducer to combine values, or
3938 * null if none.
3939 *
3940 * @param parallelismThreshold the (estimated) number of elements
3941 * needed for this operation to be executed in parallel
3942 * @param transformer a function returning the transformation
3943 * for an element, or null if there is no transformation (in
3944 * which case it is not combined)
3945 * @param reducer a commutative associative combining function
3946 * @param <U> the return type of the transformer
3947 * @return the result of accumulating the given transformation
3948 * of all values
3949 * @since 1.8
3950 */
3951 public <U> U reduceValues(long parallelismThreshold,
3952 Function<? super V, ? extends U> transformer,
3953 BiFunction<? super U, ? super U, ? extends U> reducer) {
3954 if (transformer == null || reducer == null)
3955 throw new NullPointerException();
3956 return new MapReduceValuesTask<K,V,U>
3957 (null, batchFor(parallelismThreshold), 0, 0, table,
3958 null, transformer, reducer).invoke();
3959 }
3960
3961 /**
3962 * Returns the result of accumulating the given transformation
3963 * of all values using the given reducer to combine values,
3964 * and the given basis as an identity value.
3965 *
3966 * @param parallelismThreshold the (estimated) number of elements
3967 * needed for this operation to be executed in parallel
3968 * @param transformer a function returning the transformation
3969 * for an element
3970 * @param basis the identity (initial default value) for the reduction
3971 * @param reducer a commutative associative combining function
3972 * @return the result of accumulating the given transformation
3973 * of all values
3974 * @since 1.8
3975 */
3976 public double reduceValuesToDouble(long parallelismThreshold,
3977 ToDoubleFunction<? super V> transformer,
3978 double basis,
3979 DoubleBinaryOperator reducer) {
3980 if (transformer == null || reducer == null)
3981 throw new NullPointerException();
3982 return new MapReduceValuesToDoubleTask<K,V>
3983 (null, batchFor(parallelismThreshold), 0, 0, table,
3984 null, transformer, basis, reducer).invoke();
3985 }
3986
3987 /**
3988 * Returns the result of accumulating the given transformation
3989 * of all values using the given reducer to combine values,
3990 * and the given basis as an identity value.
3991 *
3992 * @param parallelismThreshold the (estimated) number of elements
3993 * needed for this operation to be executed in parallel
3994 * @param transformer a function returning the transformation
3995 * for an element
3996 * @param basis the identity (initial default value) for the reduction
3997 * @param reducer a commutative associative combining function
3998 * @return the result of accumulating the given transformation
3999 * of all values
4000 * @since 1.8
4001 */
4002 public long reduceValuesToLong(long parallelismThreshold,
4003 ToLongFunction<? super V> transformer,
4004 long basis,
4005 LongBinaryOperator reducer) {
4006 if (transformer == null || reducer == null)
4007 throw new NullPointerException();
4008 return new MapReduceValuesToLongTask<K,V>
4009 (null, batchFor(parallelismThreshold), 0, 0, table,
4010 null, transformer, basis, reducer).invoke();
4011 }
4012
4013 /**
4014 * Returns the result of accumulating the given transformation
4015 * of all values using the given reducer to combine values,
4016 * and the given basis as an identity value.
4017 *
4018 * @param parallelismThreshold the (estimated) number of elements
4019 * needed for this operation to be executed in parallel
4020 * @param transformer a function returning the transformation
4021 * for an element
4022 * @param basis the identity (initial default value) for the reduction
4023 * @param reducer a commutative associative combining function
4024 * @return the result of accumulating the given transformation
4025 * of all values
4026 * @since 1.8
4027 */
4028 public int reduceValuesToInt(long parallelismThreshold,
4029 ToIntFunction<? super V> transformer,
4030 int basis,
4031 IntBinaryOperator reducer) {
4032 if (transformer == null || reducer == null)
4033 throw new NullPointerException();
4034 return new MapReduceValuesToIntTask<K,V>
4035 (null, batchFor(parallelismThreshold), 0, 0, table,
4036 null, transformer, basis, reducer).invoke();
4037 }
4038
4039 /**
4040 * Performs the given action for each entry.
4041 *
4042 * @param parallelismThreshold the (estimated) number of elements
4043 * needed for this operation to be executed in parallel
4044 * @param action the action
4045 * @since 1.8
4046 */
4047 public void forEachEntry(long parallelismThreshold,
4048 Consumer<? super Map.Entry<K,V>> action) {
4049 if (action == null) throw new NullPointerException();
4050 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4051 action).invoke();
4052 }
4053
4054 /**
4055 * Performs the given action for each non-null transformation
4056 * of each entry.
4057 *
4058 * @param parallelismThreshold the (estimated) number of elements
4059 * needed for this operation to be executed in parallel
4060 * @param transformer a function returning the transformation
4061 * for an element, or null if there is no transformation (in
4062 * which case the action is not applied)
4063 * @param action the action
4064 * @param <U> the return type of the transformer
4065 * @since 1.8
4066 */
4067 public <U> void forEachEntry(long parallelismThreshold,
4068 Function<Map.Entry<K,V>, ? extends U> transformer,
4069 Consumer<? super U> action) {
4070 if (transformer == null || action == null)
4071 throw new NullPointerException();
4072 new ForEachTransformedEntryTask<K,V,U>
4073 (null, batchFor(parallelismThreshold), 0, 0, table,
4074 transformer, action).invoke();
4075 }
4076
4077 /**
4078 * Returns a non-null result from applying the given search
4079 * function on each entry, or null if none. Upon success,
4080 * further element processing is suppressed and the results of
4081 * any other parallel invocations of the search function are
4082 * ignored.
4083 *
4084 * @param parallelismThreshold the (estimated) number of elements
4085 * needed for this operation to be executed in parallel
4086 * @param searchFunction a function returning a non-null
4087 * result on success, else null
4088 * @param <U> the return type of the search function
4089 * @return a non-null result from applying the given search
4090 * function on each entry, or null if none
4091 * @since 1.8
4092 */
4093 public <U> U searchEntries(long parallelismThreshold,
4094 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4095 if (searchFunction == null) throw new NullPointerException();
4096 return new SearchEntriesTask<K,V,U>
4097 (null, batchFor(parallelismThreshold), 0, 0, table,
4098 searchFunction, new AtomicReference<U>()).invoke();
4099 }
4100
4101 /**
4102 * Returns the result of accumulating all entries using the
4103 * given reducer to combine values, or null if none.
4104 *
4105 * @param parallelismThreshold the (estimated) number of elements
4106 * needed for this operation to be executed in parallel
4107 * @param reducer a commutative associative combining function
4108 * @return the result of accumulating all entries
4109 * @since 1.8
4110 */
4111 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4112 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4113 if (reducer == null) throw new NullPointerException();
4114 return new ReduceEntriesTask<K,V>
4115 (null, batchFor(parallelismThreshold), 0, 0, table,
4116 null, reducer).invoke();
4117 }
4118
4119 /**
4120 * Returns the result of accumulating the given transformation
4121 * of all entries using the given reducer to combine values,
4122 * or null if none.
4123 *
4124 * @param parallelismThreshold the (estimated) number of elements
4125 * needed for this operation to be executed in parallel
4126 * @param transformer a function returning the transformation
4127 * for an element, or null if there is no transformation (in
4128 * which case it is not combined)
4129 * @param reducer a commutative associative combining function
4130 * @param <U> the return type of the transformer
4131 * @return the result of accumulating the given transformation
4132 * of all entries
4133 * @since 1.8
4134 */
4135 public <U> U reduceEntries(long parallelismThreshold,
4136 Function<Map.Entry<K,V>, ? extends U> transformer,
4137 BiFunction<? super U, ? super U, ? extends U> reducer) {
4138 if (transformer == null || reducer == null)
4139 throw new NullPointerException();
4140 return new MapReduceEntriesTask<K,V,U>
4141 (null, batchFor(parallelismThreshold), 0, 0, table,
4142 null, transformer, reducer).invoke();
4143 }
4144
4145 /**
4146 * Returns the result of accumulating the given transformation
4147 * of all entries using the given reducer to combine values,
4148 * and the given basis as an identity value.
4149 *
4150 * @param parallelismThreshold the (estimated) number of elements
4151 * needed for this operation to be executed in parallel
4152 * @param transformer a function returning the transformation
4153 * for an element
4154 * @param basis the identity (initial default value) for the reduction
4155 * @param reducer a commutative associative combining function
4156 * @return the result of accumulating the given transformation
4157 * of all entries
4158 * @since 1.8
4159 */
4160 public double reduceEntriesToDouble(long parallelismThreshold,
4161 ToDoubleFunction<Map.Entry<K,V>> transformer,
4162 double basis,
4163 DoubleBinaryOperator reducer) {
4164 if (transformer == null || reducer == null)
4165 throw new NullPointerException();
4166 return new MapReduceEntriesToDoubleTask<K,V>
4167 (null, batchFor(parallelismThreshold), 0, 0, table,
4168 null, transformer, basis, reducer).invoke();
4169 }
4170
4171 /**
4172 * Returns the result of accumulating the given transformation
4173 * of all entries using the given reducer to combine values,
4174 * and the given basis as an identity value.
4175 *
4176 * @param parallelismThreshold the (estimated) number of elements
4177 * needed for this operation to be executed in parallel
4178 * @param transformer a function returning the transformation
4179 * for an element
4180 * @param basis the identity (initial default value) for the reduction
4181 * @param reducer a commutative associative combining function
4182 * @return the result of accumulating the given transformation
4183 * of all entries
4184 * @since 1.8
4185 */
4186 public long reduceEntriesToLong(long parallelismThreshold,
4187 ToLongFunction<Map.Entry<K,V>> transformer,
4188 long basis,
4189 LongBinaryOperator reducer) {
4190 if (transformer == null || reducer == null)
4191 throw new NullPointerException();
4192 return new MapReduceEntriesToLongTask<K,V>
4193 (null, batchFor(parallelismThreshold), 0, 0, table,
4194 null, transformer, basis, reducer).invoke();
4195 }
4196
4197 /**
4198 * Returns the result of accumulating the given transformation
4199 * of all entries using the given reducer to combine values,
4200 * and the given basis as an identity value.
4201 *
4202 * @param parallelismThreshold the (estimated) number of elements
4203 * needed for this operation to be executed in parallel
4204 * @param transformer a function returning the transformation
4205 * for an element
4206 * @param basis the identity (initial default value) for the reduction
4207 * @param reducer a commutative associative combining function
4208 * @return the result of accumulating the given transformation
4209 * of all entries
4210 * @since 1.8
4211 */
4212 public int reduceEntriesToInt(long parallelismThreshold,
4213 ToIntFunction<Map.Entry<K,V>> transformer,
4214 int basis,
4215 IntBinaryOperator reducer) {
4216 if (transformer == null || reducer == null)
4217 throw new NullPointerException();
4218 return new MapReduceEntriesToIntTask<K,V>
4219 (null, batchFor(parallelismThreshold), 0, 0, table,
4220 null, transformer, basis, reducer).invoke();
4221 }
4222
4223
4224 /* ----------------Views -------------- */
4225
4226 /**
4227 * Base class for views.
4228 */
4229 abstract static class CollectionView<K,V,E>
4230 implements Collection<E>, java.io.Serializable {
4231 private static final long serialVersionUID = 7249069246763182397L;
4232 final ConcurrentHashMap<K,V> map;
4233 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4234
4235 /**
4236 * Returns the map backing this view.
4237 *
4238 * @return the map backing this view
4239 */
4240 public ConcurrentHashMap<K,V> getMap() { return map; }
4241
4242 /**
4243 * Removes all of the elements from this view, by removing all
4244 * the mappings from the map backing this view.
4245 */
4246 public final void clear() { map.clear(); }
4247 public final int size() { return map.size(); }
4248 public final boolean isEmpty() { return map.isEmpty(); }
4249
4250 // implementations below rely on concrete classes supplying these
4251 // abstract methods
4252 /**
4253 * Returns a "weakly consistent" iterator that will never
4254 * throw {@link ConcurrentModificationException}, and
4255 * guarantees to traverse elements as they existed upon
4256 * construction of the iterator, and may (but is not
4257 * guaranteed to) reflect any modifications subsequent to
4258 * construction.
4259 */
4260 public abstract Iterator<E> iterator();
4261 public abstract boolean contains(Object o);
4262 public abstract boolean remove(Object o);
4263
4264 private static final String oomeMsg = "Required array size too large";
4265
4266 public final Object[] toArray() {
4267 long sz = map.mappingCount();
4268 if (sz > MAX_ARRAY_SIZE)
4269 throw new OutOfMemoryError(oomeMsg);
4270 int n = (int)sz;
4271 Object[] r = new Object[n];
4272 int i = 0;
4273 for (E e : this) {
4274 if (i == n) {
4275 if (n >= MAX_ARRAY_SIZE)
4276 throw new OutOfMemoryError(oomeMsg);
4277 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4278 n = MAX_ARRAY_SIZE;
4279 else
4280 n += (n >>> 1) + 1;
4281 r = Arrays.copyOf(r, n);
4282 }
4283 r[i++] = e;
4284 }
4285 return (i == n) ? r : Arrays.copyOf(r, i);
4286 }
4287
4288 @SuppressWarnings("unchecked")
4289 public final <T> T[] toArray(T[] a) {
4290 long sz = map.mappingCount();
4291 if (sz > MAX_ARRAY_SIZE)
4292 throw new OutOfMemoryError(oomeMsg);
4293 int m = (int)sz;
4294 T[] r = (a.length >= m) ? a :
4295 (T[])java.lang.reflect.Array
4296 .newInstance(a.getClass().getComponentType(), m);
4297 int n = r.length;
4298 int i = 0;
4299 for (E e : this) {
4300 if (i == n) {
4301 if (n >= MAX_ARRAY_SIZE)
4302 throw new OutOfMemoryError(oomeMsg);
4303 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4304 n = MAX_ARRAY_SIZE;
4305 else
4306 n += (n >>> 1) + 1;
4307 r = Arrays.copyOf(r, n);
4308 }
4309 r[i++] = (T)e;
4310 }
4311 if (a == r && i < n) {
4312 r[i] = null; // null-terminate
4313 return r;
4314 }
4315 return (i == n) ? r : Arrays.copyOf(r, i);
4316 }
4317
4318 /**
4319 * Returns a string representation of this collection.
4320 * The string representation consists of the string representations
4321 * of the collection's elements in the order they are returned by
4322 * its iterator, enclosed in square brackets ({@code "[]"}).
4323 * Adjacent elements are separated by the characters {@code ", "}
4324 * (comma and space). Elements are converted to strings as by
4325 * {@link String#valueOf(Object)}.
4326 *
4327 * @return a string representation of this collection
4328 */
4329 public final String toString() {
4330 StringBuilder sb = new StringBuilder();
4331 sb.append('[');
4332 Iterator<E> it = iterator();
4333 if (it.hasNext()) {
4334 for (;;) {
4335 Object e = it.next();
4336 sb.append(e == this ? "(this Collection)" : e);
4337 if (!it.hasNext())
4338 break;
4339 sb.append(',').append(' ');
4340 }
4341 }
4342 return sb.append(']').toString();
4343 }
4344
4345 public final boolean containsAll(Collection<?> c) {
4346 if (c != this) {
4347 for (Object e : c) {
4348 if (e == null || !contains(e))
4349 return false;
4350 }
4351 }
4352 return true;
4353 }
4354
4355 public final boolean removeAll(Collection<?> c) {
4356 boolean modified = false;
4357 for (Iterator<E> it = iterator(); it.hasNext();) {
4358 if (c.contains(it.next())) {
4359 it.remove();
4360 modified = true;
4361 }
4362 }
4363 return modified;
4364 }
4365
4366 public final boolean retainAll(Collection<?> c) {
4367 boolean modified = false;
4368 for (Iterator<E> it = iterator(); it.hasNext();) {
4369 if (!c.contains(it.next())) {
4370 it.remove();
4371 modified = true;
4372 }
4373 }
4374 return modified;
4375 }
4376
4377 }
4378
4379 /**
4380 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4381 * which additions may optionally be enabled by mapping to a
4382 * common value. This class cannot be directly instantiated.
4383 * See {@link #keySet() keySet()},
4384 * {@link #keySet(Object) keySet(V)},
4385 * {@link #newKeySet() newKeySet()},
4386 * {@link #newKeySet(int) newKeySet(int)}.
4387 *
4388 * @since 1.8
4389 */
4390 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4391 implements Set<K>, java.io.Serializable {
4392 private static final long serialVersionUID = 7249069246763182397L;
4393 private final V value;
4394 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4395 super(map);
4396 this.value = value;
4397 }
4398
4399 /**
4400 * Returns the default mapped value for additions,
4401 * or {@code null} if additions are not supported.
4402 *
4403 * @return the default mapped value for additions, or {@code null}
4404 * if not supported
4405 */
4406 public V getMappedValue() { return value; }
4407
4408 /**
4409 * {@inheritDoc}
4410 * @throws NullPointerException if the specified key is null
4411 */
4412 public boolean contains(Object o) { return map.containsKey(o); }
4413
4414 /**
4415 * Removes the key from this map view, by removing the key (and its
4416 * corresponding value) from the backing map. This method does
4417 * nothing if the key is not in the map.
4418 *
4419 * @param o the key to be removed from the backing map
4420 * @return {@code true} if the backing map contained the specified key
4421 * @throws NullPointerException if the specified key is null
4422 */
4423 public boolean remove(Object o) { return map.remove(o) != null; }
4424
4425 /**
4426 * @return an iterator over the keys of the backing map
4427 */
4428 public Iterator<K> iterator() {
4429 Node<K,V>[] t;
4430 ConcurrentHashMap<K,V> m = map;
4431 int f = (t = m.table) == null ? 0 : t.length;
4432 return new KeyIterator<K,V>(t, f, 0, f, m);
4433 }
4434
4435 /**
4436 * Adds the specified key to this set view by mapping the key to
4437 * the default mapped value in the backing map, if defined.
4438 *
4439 * @param e key to be added
4440 * @return {@code true} if this set changed as a result of the call
4441 * @throws NullPointerException if the specified key is null
4442 * @throws UnsupportedOperationException if no default mapped value
4443 * for additions was provided
4444 */
4445 public boolean add(K e) {
4446 V v;
4447 if ((v = value) == null)
4448 throw new UnsupportedOperationException();
4449 return map.putVal(e, v, true) == null;
4450 }
4451
4452 /**
4453 * Adds all of the elements in the specified collection to this set,
4454 * as if by calling {@link #add} on each one.
4455 *
4456 * @param c the elements to be inserted into this set
4457 * @return {@code true} if this set changed as a result of the call
4458 * @throws NullPointerException if the collection or any of its
4459 * elements are {@code null}
4460 * @throws UnsupportedOperationException if no default mapped value
4461 * for additions was provided
4462 */
4463 public boolean addAll(Collection<? extends K> c) {
4464 boolean added = false;
4465 V v;
4466 if ((v = value) == null)
4467 throw new UnsupportedOperationException();
4468 for (K e : c) {
4469 if (map.putVal(e, v, true) == null)
4470 added = true;
4471 }
4472 return added;
4473 }
4474
4475 public int hashCode() {
4476 int h = 0;
4477 for (K e : this)
4478 h += e.hashCode();
4479 return h;
4480 }
4481
4482 public boolean equals(Object o) {
4483 Set<?> c;
4484 return ((o instanceof Set) &&
4485 ((c = (Set<?>)o) == this ||
4486 (containsAll(c) && c.containsAll(this))));
4487 }
4488
4489 public Spliterator<K> spliterator() {
4490 Node<K,V>[] t;
4491 ConcurrentHashMap<K,V> m = map;
4492 long n = m.sumCount();
4493 int f = (t = m.table) == null ? 0 : t.length;
4494 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4495 }
4496
4497 public void forEach(Consumer<? super K> action) {
4498 if (action == null) throw new NullPointerException();
4499 Node<K,V>[] t;
4500 if ((t = map.table) != null) {
4501 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4502 for (Node<K,V> p; (p = it.advance()) != null; )
4503 action.accept(p.key);
4504 }
4505 }
4506 }
4507
4508 /**
4509 * A view of a ConcurrentHashMap as a {@link Collection} of
4510 * values, in which additions are disabled. This class cannot be
4511 * directly instantiated. See {@link #values()}.
4512 */
4513 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4514 implements Collection<V>, java.io.Serializable {
4515 private static final long serialVersionUID = 2249069246763182397L;
4516 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4517 public final boolean contains(Object o) {
4518 return map.containsValue(o);
4519 }
4520
4521 public final boolean remove(Object o) {
4522 if (o != null) {
4523 for (Iterator<V> it = iterator(); it.hasNext();) {
4524 if (o.equals(it.next())) {
4525 it.remove();
4526 return true;
4527 }
4528 }
4529 }
4530 return false;
4531 }
4532
4533 public final Iterator<V> iterator() {
4534 ConcurrentHashMap<K,V> m = map;
4535 Node<K,V>[] t;
4536 int f = (t = m.table) == null ? 0 : t.length;
4537 return new ValueIterator<K,V>(t, f, 0, f, m);
4538 }
4539
4540 public final boolean add(V e) {
4541 throw new UnsupportedOperationException();
4542 }
4543 public final boolean addAll(Collection<? extends V> c) {
4544 throw new UnsupportedOperationException();
4545 }
4546
4547 public Spliterator<V> spliterator() {
4548 Node<K,V>[] t;
4549 ConcurrentHashMap<K,V> m = map;
4550 long n = m.sumCount();
4551 int f = (t = m.table) == null ? 0 : t.length;
4552 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4553 }
4554
4555 public void forEach(Consumer<? super V> action) {
4556 if (action == null) throw new NullPointerException();
4557 Node<K,V>[] t;
4558 if ((t = map.table) != null) {
4559 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4560 for (Node<K,V> p; (p = it.advance()) != null; )
4561 action.accept(p.val);
4562 }
4563 }
4564 }
4565
4566 /**
4567 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4568 * entries. This class cannot be directly instantiated. See
4569 * {@link #entrySet()}.
4570 */
4571 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4572 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4573 private static final long serialVersionUID = 2249069246763182397L;
4574 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4575
4576 public boolean contains(Object o) {
4577 Object k, v, r; Map.Entry<?,?> e;
4578 return ((o instanceof Map.Entry) &&
4579 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4580 (r = map.get(k)) != null &&
4581 (v = e.getValue()) != null &&
4582 (v == r || v.equals(r)));
4583 }
4584
4585 public boolean remove(Object o) {
4586 Object k, v; Map.Entry<?,?> e;
4587 return ((o instanceof Map.Entry) &&
4588 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4589 (v = e.getValue()) != null &&
4590 map.remove(k, v));
4591 }
4592
4593 /**
4594 * @return an iterator over the entries of the backing map
4595 */
4596 public Iterator<Map.Entry<K,V>> iterator() {
4597 ConcurrentHashMap<K,V> m = map;
4598 Node<K,V>[] t;
4599 int f = (t = m.table) == null ? 0 : t.length;
4600 return new EntryIterator<K,V>(t, f, 0, f, m);
4601 }
4602
4603 public boolean add(Entry<K,V> e) {
4604 return map.putVal(e.getKey(), e.getValue(), false) == null;
4605 }
4606
4607 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4608 boolean added = false;
4609 for (Entry<K,V> e : c) {
4610 if (add(e))
4611 added = true;
4612 }
4613 return added;
4614 }
4615
4616 public final int hashCode() {
4617 int h = 0;
4618 Node<K,V>[] t;
4619 if ((t = map.table) != null) {
4620 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4621 for (Node<K,V> p; (p = it.advance()) != null; ) {
4622 h += p.hashCode();
4623 }
4624 }
4625 return h;
4626 }
4627
4628 public final boolean equals(Object o) {
4629 Set<?> c;
4630 return ((o instanceof Set) &&
4631 ((c = (Set<?>)o) == this ||
4632 (containsAll(c) && c.containsAll(this))));
4633 }
4634
4635 public Spliterator<Map.Entry<K,V>> spliterator() {
4636 Node<K,V>[] t;
4637 ConcurrentHashMap<K,V> m = map;
4638 long n = m.sumCount();
4639 int f = (t = m.table) == null ? 0 : t.length;
4640 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4641 }
4642
4643 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4644 if (action == null) throw new NullPointerException();
4645 Node<K,V>[] t;
4646 if ((t = map.table) != null) {
4647 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4648 for (Node<K,V> p; (p = it.advance()) != null; )
4649 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4650 }
4651 }
4652
4653 }
4654
4655 // -------------------------------------------------------
4656
4657 /**
4658 * Base class for bulk tasks. Repeats some fields and code from
4659 * class Traverser, because we need to subclass CountedCompleter.
4660 */
4661 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4662 Node<K,V>[] tab; // same as Traverser
4663 Node<K,V> next;
4664 int index;
4665 int baseIndex;
4666 int baseLimit;
4667 final int baseSize;
4668 int batch; // split control
4669
4670 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4671 super(par);
4672 this.batch = b;
4673 this.index = this.baseIndex = i;
4674 if ((this.tab = t) == null)
4675 this.baseSize = this.baseLimit = 0;
4676 else if (par == null)
4677 this.baseSize = this.baseLimit = t.length;
4678 else {
4679 this.baseLimit = f;
4680 this.baseSize = par.baseSize;
4681 }
4682 }
4683
4684 /**
4685 * Same as Traverser version
4686 */
4687 final Node<K,V> advance() {
4688 Node<K,V> e;
4689 if ((e = next) != null)
4690 e = e.next;
4691 for (;;) {
4692 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4693 if (e != null)
4694 return next = e;
4695 if (baseIndex >= baseLimit || (t = tab) == null ||
4696 (n = t.length) <= (i = index) || i < 0)
4697 return next = null;
4698 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4699 if (e instanceof ForwardingNode) {
4700 tab = ((ForwardingNode<K,V>)e).nextTable;
4701 e = null;
4702 continue;
4703 }
4704 else if (e instanceof TreeBin)
4705 e = ((TreeBin<K,V>)e).first;
4706 else
4707 e = null;
4708 }
4709 if ((index += baseSize) >= n)
4710 index = ++baseIndex; // visit upper slots if present
4711 }
4712 }
4713 }
4714
4715 /*
4716 * Task classes. Coded in a regular but ugly format/style to
4717 * simplify checks that each variant differs in the right way from
4718 * others. The null screenings exist because compilers cannot tell
4719 * that we've already null-checked task arguments, so we force
4720 * simplest hoisted bypass to help avoid convoluted traps.
4721 */
4722 @SuppressWarnings("serial")
4723 static final class ForEachKeyTask<K,V>
4724 extends BulkTask<K,V,Void> {
4725 final Consumer<? super K> action;
4726 ForEachKeyTask
4727 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4728 Consumer<? super K> action) {
4729 super(p, b, i, f, t);
4730 this.action = action;
4731 }
4732 public final void compute() {
4733 final Consumer<? super K> action;
4734 if ((action = this.action) != null) {
4735 for (int i = baseIndex, f, h; batch > 0 &&
4736 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4737 addToPendingCount(1);
4738 new ForEachKeyTask<K,V>
4739 (this, batch >>>= 1, baseLimit = h, f, tab,
4740 action).fork();
4741 }
4742 for (Node<K,V> p; (p = advance()) != null;)
4743 action.accept(p.key);
4744 propagateCompletion();
4745 }
4746 }
4747 }
4748
4749 @SuppressWarnings("serial")
4750 static final class ForEachValueTask<K,V>
4751 extends BulkTask<K,V,Void> {
4752 final Consumer<? super V> action;
4753 ForEachValueTask
4754 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4755 Consumer<? super V> action) {
4756 super(p, b, i, f, t);
4757 this.action = action;
4758 }
4759 public final void compute() {
4760 final Consumer<? super V> action;
4761 if ((action = this.action) != null) {
4762 for (int i = baseIndex, f, h; batch > 0 &&
4763 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4764 addToPendingCount(1);
4765 new ForEachValueTask<K,V>
4766 (this, batch >>>= 1, baseLimit = h, f, tab,
4767 action).fork();
4768 }
4769 for (Node<K,V> p; (p = advance()) != null;)
4770 action.accept(p.val);
4771 propagateCompletion();
4772 }
4773 }
4774 }
4775
4776 @SuppressWarnings("serial")
4777 static final class ForEachEntryTask<K,V>
4778 extends BulkTask<K,V,Void> {
4779 final Consumer<? super Entry<K,V>> action;
4780 ForEachEntryTask
4781 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4782 Consumer<? super Entry<K,V>> action) {
4783 super(p, b, i, f, t);
4784 this.action = action;
4785 }
4786 public final void compute() {
4787 final Consumer<? super Entry<K,V>> action;
4788 if ((action = this.action) != null) {
4789 for (int i = baseIndex, f, h; batch > 0 &&
4790 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4791 addToPendingCount(1);
4792 new ForEachEntryTask<K,V>
4793 (this, batch >>>= 1, baseLimit = h, f, tab,
4794 action).fork();
4795 }
4796 for (Node<K,V> p; (p = advance()) != null; )
4797 action.accept(p);
4798 propagateCompletion();
4799 }
4800 }
4801 }
4802
4803 @SuppressWarnings("serial")
4804 static final class ForEachMappingTask<K,V>
4805 extends BulkTask<K,V,Void> {
4806 final BiConsumer<? super K, ? super V> action;
4807 ForEachMappingTask
4808 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 BiConsumer<? super K,? super V> action) {
4810 super(p, b, i, f, t);
4811 this.action = action;
4812 }
4813 public final void compute() {
4814 final BiConsumer<? super K, ? super V> action;
4815 if ((action = this.action) != null) {
4816 for (int i = baseIndex, f, h; batch > 0 &&
4817 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4818 addToPendingCount(1);
4819 new ForEachMappingTask<K,V>
4820 (this, batch >>>= 1, baseLimit = h, f, tab,
4821 action).fork();
4822 }
4823 for (Node<K,V> p; (p = advance()) != null; )
4824 action.accept(p.key, p.val);
4825 propagateCompletion();
4826 }
4827 }
4828 }
4829
4830 @SuppressWarnings("serial")
4831 static final class ForEachTransformedKeyTask<K,V,U>
4832 extends BulkTask<K,V,Void> {
4833 final Function<? super K, ? extends U> transformer;
4834 final Consumer<? super U> action;
4835 ForEachTransformedKeyTask
4836 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4837 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4838 super(p, b, i, f, t);
4839 this.transformer = transformer; this.action = action;
4840 }
4841 public final void compute() {
4842 final Function<? super K, ? extends U> transformer;
4843 final Consumer<? super U> action;
4844 if ((transformer = this.transformer) != null &&
4845 (action = this.action) != null) {
4846 for (int i = baseIndex, f, h; batch > 0 &&
4847 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4848 addToPendingCount(1);
4849 new ForEachTransformedKeyTask<K,V,U>
4850 (this, batch >>>= 1, baseLimit = h, f, tab,
4851 transformer, action).fork();
4852 }
4853 for (Node<K,V> p; (p = advance()) != null; ) {
4854 U u;
4855 if ((u = transformer.apply(p.key)) != null)
4856 action.accept(u);
4857 }
4858 propagateCompletion();
4859 }
4860 }
4861 }
4862
4863 @SuppressWarnings("serial")
4864 static final class ForEachTransformedValueTask<K,V,U>
4865 extends BulkTask<K,V,Void> {
4866 final Function<? super V, ? extends U> transformer;
4867 final Consumer<? super U> action;
4868 ForEachTransformedValueTask
4869 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4870 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4871 super(p, b, i, f, t);
4872 this.transformer = transformer; this.action = action;
4873 }
4874 public final void compute() {
4875 final Function<? super V, ? extends U> transformer;
4876 final Consumer<? super U> action;
4877 if ((transformer = this.transformer) != null &&
4878 (action = this.action) != null) {
4879 for (int i = baseIndex, f, h; batch > 0 &&
4880 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4881 addToPendingCount(1);
4882 new ForEachTransformedValueTask<K,V,U>
4883 (this, batch >>>= 1, baseLimit = h, f, tab,
4884 transformer, action).fork();
4885 }
4886 for (Node<K,V> p; (p = advance()) != null; ) {
4887 U u;
4888 if ((u = transformer.apply(p.val)) != null)
4889 action.accept(u);
4890 }
4891 propagateCompletion();
4892 }
4893 }
4894 }
4895
4896 @SuppressWarnings("serial")
4897 static final class ForEachTransformedEntryTask<K,V,U>
4898 extends BulkTask<K,V,Void> {
4899 final Function<Map.Entry<K,V>, ? extends U> transformer;
4900 final Consumer<? super U> action;
4901 ForEachTransformedEntryTask
4902 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4903 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4904 super(p, b, i, f, t);
4905 this.transformer = transformer; this.action = action;
4906 }
4907 public final void compute() {
4908 final Function<Map.Entry<K,V>, ? extends U> transformer;
4909 final Consumer<? super U> action;
4910 if ((transformer = this.transformer) != null &&
4911 (action = this.action) != null) {
4912 for (int i = baseIndex, f, h; batch > 0 &&
4913 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 addToPendingCount(1);
4915 new ForEachTransformedEntryTask<K,V,U>
4916 (this, batch >>>= 1, baseLimit = h, f, tab,
4917 transformer, action).fork();
4918 }
4919 for (Node<K,V> p; (p = advance()) != null; ) {
4920 U u;
4921 if ((u = transformer.apply(p)) != null)
4922 action.accept(u);
4923 }
4924 propagateCompletion();
4925 }
4926 }
4927 }
4928
4929 @SuppressWarnings("serial")
4930 static final class ForEachTransformedMappingTask<K,V,U>
4931 extends BulkTask<K,V,Void> {
4932 final BiFunction<? super K, ? super V, ? extends U> transformer;
4933 final Consumer<? super U> action;
4934 ForEachTransformedMappingTask
4935 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936 BiFunction<? super K, ? super V, ? extends U> transformer,
4937 Consumer<? super U> action) {
4938 super(p, b, i, f, t);
4939 this.transformer = transformer; this.action = action;
4940 }
4941 public final void compute() {
4942 final BiFunction<? super K, ? super V, ? extends U> transformer;
4943 final Consumer<? super U> action;
4944 if ((transformer = this.transformer) != null &&
4945 (action = this.action) != null) {
4946 for (int i = baseIndex, f, h; batch > 0 &&
4947 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4948 addToPendingCount(1);
4949 new ForEachTransformedMappingTask<K,V,U>
4950 (this, batch >>>= 1, baseLimit = h, f, tab,
4951 transformer, action).fork();
4952 }
4953 for (Node<K,V> p; (p = advance()) != null; ) {
4954 U u;
4955 if ((u = transformer.apply(p.key, p.val)) != null)
4956 action.accept(u);
4957 }
4958 propagateCompletion();
4959 }
4960 }
4961 }
4962
4963 @SuppressWarnings("serial")
4964 static final class SearchKeysTask<K,V,U>
4965 extends BulkTask<K,V,U> {
4966 final Function<? super K, ? extends U> searchFunction;
4967 final AtomicReference<U> result;
4968 SearchKeysTask
4969 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4970 Function<? super K, ? extends U> searchFunction,
4971 AtomicReference<U> result) {
4972 super(p, b, i, f, t);
4973 this.searchFunction = searchFunction; this.result = result;
4974 }
4975 public final U getRawResult() { return result.get(); }
4976 public final void compute() {
4977 final Function<? super K, ? extends U> searchFunction;
4978 final AtomicReference<U> result;
4979 if ((searchFunction = this.searchFunction) != null &&
4980 (result = this.result) != null) {
4981 for (int i = baseIndex, f, h; batch > 0 &&
4982 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983 if (result.get() != null)
4984 return;
4985 addToPendingCount(1);
4986 new SearchKeysTask<K,V,U>
4987 (this, batch >>>= 1, baseLimit = h, f, tab,
4988 searchFunction, result).fork();
4989 }
4990 while (result.get() == null) {
4991 U u;
4992 Node<K,V> p;
4993 if ((p = advance()) == null) {
4994 propagateCompletion();
4995 break;
4996 }
4997 if ((u = searchFunction.apply(p.key)) != null) {
4998 if (result.compareAndSet(null, u))
4999 quietlyCompleteRoot();
5000 break;
5001 }
5002 }
5003 }
5004 }
5005 }
5006
5007 @SuppressWarnings("serial")
5008 static final class SearchValuesTask<K,V,U>
5009 extends BulkTask<K,V,U> {
5010 final Function<? super V, ? extends U> searchFunction;
5011 final AtomicReference<U> result;
5012 SearchValuesTask
5013 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5014 Function<? super V, ? extends U> searchFunction,
5015 AtomicReference<U> result) {
5016 super(p, b, i, f, t);
5017 this.searchFunction = searchFunction; this.result = result;
5018 }
5019 public final U getRawResult() { return result.get(); }
5020 public final void compute() {
5021 final Function<? super V, ? extends U> searchFunction;
5022 final AtomicReference<U> result;
5023 if ((searchFunction = this.searchFunction) != null &&
5024 (result = this.result) != null) {
5025 for (int i = baseIndex, f, h; batch > 0 &&
5026 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5027 if (result.get() != null)
5028 return;
5029 addToPendingCount(1);
5030 new SearchValuesTask<K,V,U>
5031 (this, batch >>>= 1, baseLimit = h, f, tab,
5032 searchFunction, result).fork();
5033 }
5034 while (result.get() == null) {
5035 U u;
5036 Node<K,V> p;
5037 if ((p = advance()) == null) {
5038 propagateCompletion();
5039 break;
5040 }
5041 if ((u = searchFunction.apply(p.val)) != null) {
5042 if (result.compareAndSet(null, u))
5043 quietlyCompleteRoot();
5044 break;
5045 }
5046 }
5047 }
5048 }
5049 }
5050
5051 @SuppressWarnings("serial")
5052 static final class SearchEntriesTask<K,V,U>
5053 extends BulkTask<K,V,U> {
5054 final Function<Entry<K,V>, ? extends U> searchFunction;
5055 final AtomicReference<U> result;
5056 SearchEntriesTask
5057 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5058 Function<Entry<K,V>, ? extends U> searchFunction,
5059 AtomicReference<U> result) {
5060 super(p, b, i, f, t);
5061 this.searchFunction = searchFunction; this.result = result;
5062 }
5063 public final U getRawResult() { return result.get(); }
5064 public final void compute() {
5065 final Function<Entry<K,V>, ? extends U> searchFunction;
5066 final AtomicReference<U> result;
5067 if ((searchFunction = this.searchFunction) != null &&
5068 (result = this.result) != null) {
5069 for (int i = baseIndex, f, h; batch > 0 &&
5070 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5071 if (result.get() != null)
5072 return;
5073 addToPendingCount(1);
5074 new SearchEntriesTask<K,V,U>
5075 (this, batch >>>= 1, baseLimit = h, f, tab,
5076 searchFunction, result).fork();
5077 }
5078 while (result.get() == null) {
5079 U u;
5080 Node<K,V> p;
5081 if ((p = advance()) == null) {
5082 propagateCompletion();
5083 break;
5084 }
5085 if ((u = searchFunction.apply(p)) != null) {
5086 if (result.compareAndSet(null, u))
5087 quietlyCompleteRoot();
5088 return;
5089 }
5090 }
5091 }
5092 }
5093 }
5094
5095 @SuppressWarnings("serial")
5096 static final class SearchMappingsTask<K,V,U>
5097 extends BulkTask<K,V,U> {
5098 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5099 final AtomicReference<U> result;
5100 SearchMappingsTask
5101 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5102 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5103 AtomicReference<U> result) {
5104 super(p, b, i, f, t);
5105 this.searchFunction = searchFunction; this.result = result;
5106 }
5107 public final U getRawResult() { return result.get(); }
5108 public final void compute() {
5109 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5110 final AtomicReference<U> result;
5111 if ((searchFunction = this.searchFunction) != null &&
5112 (result = this.result) != null) {
5113 for (int i = baseIndex, f, h; batch > 0 &&
5114 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5115 if (result.get() != null)
5116 return;
5117 addToPendingCount(1);
5118 new SearchMappingsTask<K,V,U>
5119 (this, batch >>>= 1, baseLimit = h, f, tab,
5120 searchFunction, result).fork();
5121 }
5122 while (result.get() == null) {
5123 U u;
5124 Node<K,V> p;
5125 if ((p = advance()) == null) {
5126 propagateCompletion();
5127 break;
5128 }
5129 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5130 if (result.compareAndSet(null, u))
5131 quietlyCompleteRoot();
5132 break;
5133 }
5134 }
5135 }
5136 }
5137 }
5138
5139 @SuppressWarnings("serial")
5140 static final class ReduceKeysTask<K,V>
5141 extends BulkTask<K,V,K> {
5142 final BiFunction<? super K, ? super K, ? extends K> reducer;
5143 K result;
5144 ReduceKeysTask<K,V> rights, nextRight;
5145 ReduceKeysTask
5146 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147 ReduceKeysTask<K,V> nextRight,
5148 BiFunction<? super K, ? super K, ? extends K> reducer) {
5149 super(p, b, i, f, t); this.nextRight = nextRight;
5150 this.reducer = reducer;
5151 }
5152 public final K getRawResult() { return result; }
5153 public final void compute() {
5154 final BiFunction<? super K, ? super K, ? extends K> reducer;
5155 if ((reducer = this.reducer) != null) {
5156 for (int i = baseIndex, f, h; batch > 0 &&
5157 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 addToPendingCount(1);
5159 (rights = new ReduceKeysTask<K,V>
5160 (this, batch >>>= 1, baseLimit = h, f, tab,
5161 rights, reducer)).fork();
5162 }
5163 K r = null;
5164 for (Node<K,V> p; (p = advance()) != null; ) {
5165 K u = p.key;
5166 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5167 }
5168 result = r;
5169 CountedCompleter<?> c;
5170 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5171 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5172 t = (ReduceKeysTask<K,V>)c,
5173 s = t.rights;
5174 while (s != null) {
5175 K tr, sr;
5176 if ((sr = s.result) != null)
5177 t.result = (((tr = t.result) == null) ? sr :
5178 reducer.apply(tr, sr));
5179 s = t.rights = s.nextRight;
5180 }
5181 }
5182 }
5183 }
5184 }
5185
5186 @SuppressWarnings("serial")
5187 static final class ReduceValuesTask<K,V>
5188 extends BulkTask<K,V,V> {
5189 final BiFunction<? super V, ? super V, ? extends V> reducer;
5190 V result;
5191 ReduceValuesTask<K,V> rights, nextRight;
5192 ReduceValuesTask
5193 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5194 ReduceValuesTask<K,V> nextRight,
5195 BiFunction<? super V, ? super V, ? extends V> reducer) {
5196 super(p, b, i, f, t); this.nextRight = nextRight;
5197 this.reducer = reducer;
5198 }
5199 public final V getRawResult() { return result; }
5200 public final void compute() {
5201 final BiFunction<? super V, ? super V, ? extends V> reducer;
5202 if ((reducer = this.reducer) != null) {
5203 for (int i = baseIndex, f, h; batch > 0 &&
5204 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5205 addToPendingCount(1);
5206 (rights = new ReduceValuesTask<K,V>
5207 (this, batch >>>= 1, baseLimit = h, f, tab,
5208 rights, reducer)).fork();
5209 }
5210 V r = null;
5211 for (Node<K,V> p; (p = advance()) != null; ) {
5212 V v = p.val;
5213 r = (r == null) ? v : reducer.apply(r, v);
5214 }
5215 result = r;
5216 CountedCompleter<?> c;
5217 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5218 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5219 t = (ReduceValuesTask<K,V>)c,
5220 s = t.rights;
5221 while (s != null) {
5222 V tr, sr;
5223 if ((sr = s.result) != null)
5224 t.result = (((tr = t.result) == null) ? sr :
5225 reducer.apply(tr, sr));
5226 s = t.rights = s.nextRight;
5227 }
5228 }
5229 }
5230 }
5231 }
5232
5233 @SuppressWarnings("serial")
5234 static final class ReduceEntriesTask<K,V>
5235 extends BulkTask<K,V,Map.Entry<K,V>> {
5236 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5237 Map.Entry<K,V> result;
5238 ReduceEntriesTask<K,V> rights, nextRight;
5239 ReduceEntriesTask
5240 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5241 ReduceEntriesTask<K,V> nextRight,
5242 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5243 super(p, b, i, f, t); this.nextRight = nextRight;
5244 this.reducer = reducer;
5245 }
5246 public final Map.Entry<K,V> getRawResult() { return result; }
5247 public final void compute() {
5248 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5249 if ((reducer = this.reducer) != null) {
5250 for (int i = baseIndex, f, h; batch > 0 &&
5251 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5252 addToPendingCount(1);
5253 (rights = new ReduceEntriesTask<K,V>
5254 (this, batch >>>= 1, baseLimit = h, f, tab,
5255 rights, reducer)).fork();
5256 }
5257 Map.Entry<K,V> r = null;
5258 for (Node<K,V> p; (p = advance()) != null; )
5259 r = (r == null) ? p : reducer.apply(r, p);
5260 result = r;
5261 CountedCompleter<?> c;
5262 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5263 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5264 t = (ReduceEntriesTask<K,V>)c,
5265 s = t.rights;
5266 while (s != null) {
5267 Map.Entry<K,V> tr, sr;
5268 if ((sr = s.result) != null)
5269 t.result = (((tr = t.result) == null) ? sr :
5270 reducer.apply(tr, sr));
5271 s = t.rights = s.nextRight;
5272 }
5273 }
5274 }
5275 }
5276 }
5277
5278 @SuppressWarnings("serial")
5279 static final class MapReduceKeysTask<K,V,U>
5280 extends BulkTask<K,V,U> {
5281 final Function<? super K, ? extends U> transformer;
5282 final BiFunction<? super U, ? super U, ? extends U> reducer;
5283 U result;
5284 MapReduceKeysTask<K,V,U> rights, nextRight;
5285 MapReduceKeysTask
5286 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287 MapReduceKeysTask<K,V,U> nextRight,
5288 Function<? super K, ? extends U> transformer,
5289 BiFunction<? super U, ? super U, ? extends U> reducer) {
5290 super(p, b, i, f, t); this.nextRight = nextRight;
5291 this.transformer = transformer;
5292 this.reducer = reducer;
5293 }
5294 public final U getRawResult() { return result; }
5295 public final void compute() {
5296 final Function<? super K, ? extends U> transformer;
5297 final BiFunction<? super U, ? super U, ? extends U> reducer;
5298 if ((transformer = this.transformer) != null &&
5299 (reducer = this.reducer) != null) {
5300 for (int i = baseIndex, f, h; batch > 0 &&
5301 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5302 addToPendingCount(1);
5303 (rights = new MapReduceKeysTask<K,V,U>
5304 (this, batch >>>= 1, baseLimit = h, f, tab,
5305 rights, transformer, reducer)).fork();
5306 }
5307 U r = null;
5308 for (Node<K,V> p; (p = advance()) != null; ) {
5309 U u;
5310 if ((u = transformer.apply(p.key)) != null)
5311 r = (r == null) ? u : reducer.apply(r, u);
5312 }
5313 result = r;
5314 CountedCompleter<?> c;
5315 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5316 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5317 t = (MapReduceKeysTask<K,V,U>)c,
5318 s = t.rights;
5319 while (s != null) {
5320 U tr, sr;
5321 if ((sr = s.result) != null)
5322 t.result = (((tr = t.result) == null) ? sr :
5323 reducer.apply(tr, sr));
5324 s = t.rights = s.nextRight;
5325 }
5326 }
5327 }
5328 }
5329 }
5330
5331 @SuppressWarnings("serial")
5332 static final class MapReduceValuesTask<K,V,U>
5333 extends BulkTask<K,V,U> {
5334 final Function<? super V, ? extends U> transformer;
5335 final BiFunction<? super U, ? super U, ? extends U> reducer;
5336 U result;
5337 MapReduceValuesTask<K,V,U> rights, nextRight;
5338 MapReduceValuesTask
5339 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5340 MapReduceValuesTask<K,V,U> nextRight,
5341 Function<? super V, ? extends U> transformer,
5342 BiFunction<? super U, ? super U, ? extends U> reducer) {
5343 super(p, b, i, f, t); this.nextRight = nextRight;
5344 this.transformer = transformer;
5345 this.reducer = reducer;
5346 }
5347 public final U getRawResult() { return result; }
5348 public final void compute() {
5349 final Function<? super V, ? extends U> transformer;
5350 final BiFunction<? super U, ? super U, ? extends U> reducer;
5351 if ((transformer = this.transformer) != null &&
5352 (reducer = this.reducer) != null) {
5353 for (int i = baseIndex, f, h; batch > 0 &&
5354 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5355 addToPendingCount(1);
5356 (rights = new MapReduceValuesTask<K,V,U>
5357 (this, batch >>>= 1, baseLimit = h, f, tab,
5358 rights, transformer, reducer)).fork();
5359 }
5360 U r = null;
5361 for (Node<K,V> p; (p = advance()) != null; ) {
5362 U u;
5363 if ((u = transformer.apply(p.val)) != null)
5364 r = (r == null) ? u : reducer.apply(r, u);
5365 }
5366 result = r;
5367 CountedCompleter<?> c;
5368 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5369 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5370 t = (MapReduceValuesTask<K,V,U>)c,
5371 s = t.rights;
5372 while (s != null) {
5373 U tr, sr;
5374 if ((sr = s.result) != null)
5375 t.result = (((tr = t.result) == null) ? sr :
5376 reducer.apply(tr, sr));
5377 s = t.rights = s.nextRight;
5378 }
5379 }
5380 }
5381 }
5382 }
5383
5384 @SuppressWarnings("serial")
5385 static final class MapReduceEntriesTask<K,V,U>
5386 extends BulkTask<K,V,U> {
5387 final Function<Map.Entry<K,V>, ? extends U> transformer;
5388 final BiFunction<? super U, ? super U, ? extends U> reducer;
5389 U result;
5390 MapReduceEntriesTask<K,V,U> rights, nextRight;
5391 MapReduceEntriesTask
5392 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5393 MapReduceEntriesTask<K,V,U> nextRight,
5394 Function<Map.Entry<K,V>, ? extends U> transformer,
5395 BiFunction<? super U, ? super U, ? extends U> reducer) {
5396 super(p, b, i, f, t); this.nextRight = nextRight;
5397 this.transformer = transformer;
5398 this.reducer = reducer;
5399 }
5400 public final U getRawResult() { return result; }
5401 public final void compute() {
5402 final Function<Map.Entry<K,V>, ? extends U> transformer;
5403 final BiFunction<? super U, ? super U, ? extends U> reducer;
5404 if ((transformer = this.transformer) != null &&
5405 (reducer = this.reducer) != null) {
5406 for (int i = baseIndex, f, h; batch > 0 &&
5407 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5408 addToPendingCount(1);
5409 (rights = new MapReduceEntriesTask<K,V,U>
5410 (this, batch >>>= 1, baseLimit = h, f, tab,
5411 rights, transformer, reducer)).fork();
5412 }
5413 U r = null;
5414 for (Node<K,V> p; (p = advance()) != null; ) {
5415 U u;
5416 if ((u = transformer.apply(p)) != null)
5417 r = (r == null) ? u : reducer.apply(r, u);
5418 }
5419 result = r;
5420 CountedCompleter<?> c;
5421 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5422 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5423 t = (MapReduceEntriesTask<K,V,U>)c,
5424 s = t.rights;
5425 while (s != null) {
5426 U tr, sr;
5427 if ((sr = s.result) != null)
5428 t.result = (((tr = t.result) == null) ? sr :
5429 reducer.apply(tr, sr));
5430 s = t.rights = s.nextRight;
5431 }
5432 }
5433 }
5434 }
5435 }
5436
5437 @SuppressWarnings("serial")
5438 static final class MapReduceMappingsTask<K,V,U>
5439 extends BulkTask<K,V,U> {
5440 final BiFunction<? super K, ? super V, ? extends U> transformer;
5441 final BiFunction<? super U, ? super U, ? extends U> reducer;
5442 U result;
5443 MapReduceMappingsTask<K,V,U> rights, nextRight;
5444 MapReduceMappingsTask
5445 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5446 MapReduceMappingsTask<K,V,U> nextRight,
5447 BiFunction<? super K, ? super V, ? extends U> transformer,
5448 BiFunction<? super U, ? super U, ? extends U> reducer) {
5449 super(p, b, i, f, t); this.nextRight = nextRight;
5450 this.transformer = transformer;
5451 this.reducer = reducer;
5452 }
5453 public final U getRawResult() { return result; }
5454 public final void compute() {
5455 final BiFunction<? super K, ? super V, ? extends U> transformer;
5456 final BiFunction<? super U, ? super U, ? extends U> reducer;
5457 if ((transformer = this.transformer) != null &&
5458 (reducer = this.reducer) != null) {
5459 for (int i = baseIndex, f, h; batch > 0 &&
5460 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 addToPendingCount(1);
5462 (rights = new MapReduceMappingsTask<K,V,U>
5463 (this, batch >>>= 1, baseLimit = h, f, tab,
5464 rights, transformer, reducer)).fork();
5465 }
5466 U r = null;
5467 for (Node<K,V> p; (p = advance()) != null; ) {
5468 U u;
5469 if ((u = transformer.apply(p.key, p.val)) != null)
5470 r = (r == null) ? u : reducer.apply(r, u);
5471 }
5472 result = r;
5473 CountedCompleter<?> c;
5474 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5475 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5476 t = (MapReduceMappingsTask<K,V,U>)c,
5477 s = t.rights;
5478 while (s != null) {
5479 U tr, sr;
5480 if ((sr = s.result) != null)
5481 t.result = (((tr = t.result) == null) ? sr :
5482 reducer.apply(tr, sr));
5483 s = t.rights = s.nextRight;
5484 }
5485 }
5486 }
5487 }
5488 }
5489
5490 @SuppressWarnings("serial")
5491 static final class MapReduceKeysToDoubleTask<K,V>
5492 extends BulkTask<K,V,Double> {
5493 final ToDoubleFunction<? super K> transformer;
5494 final DoubleBinaryOperator reducer;
5495 final double basis;
5496 double result;
5497 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5498 MapReduceKeysToDoubleTask
5499 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5500 MapReduceKeysToDoubleTask<K,V> nextRight,
5501 ToDoubleFunction<? super K> transformer,
5502 double basis,
5503 DoubleBinaryOperator reducer) {
5504 super(p, b, i, f, t); this.nextRight = nextRight;
5505 this.transformer = transformer;
5506 this.basis = basis; this.reducer = reducer;
5507 }
5508 public final Double getRawResult() { return result; }
5509 public final void compute() {
5510 final ToDoubleFunction<? super K> transformer;
5511 final DoubleBinaryOperator reducer;
5512 if ((transformer = this.transformer) != null &&
5513 (reducer = this.reducer) != null) {
5514 double r = this.basis;
5515 for (int i = baseIndex, f, h; batch > 0 &&
5516 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5517 addToPendingCount(1);
5518 (rights = new MapReduceKeysToDoubleTask<K,V>
5519 (this, batch >>>= 1, baseLimit = h, f, tab,
5520 rights, transformer, r, reducer)).fork();
5521 }
5522 for (Node<K,V> p; (p = advance()) != null; )
5523 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5524 result = r;
5525 CountedCompleter<?> c;
5526 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5528 t = (MapReduceKeysToDoubleTask<K,V>)c,
5529 s = t.rights;
5530 while (s != null) {
5531 t.result = reducer.applyAsDouble(t.result, s.result);
5532 s = t.rights = s.nextRight;
5533 }
5534 }
5535 }
5536 }
5537 }
5538
5539 @SuppressWarnings("serial")
5540 static final class MapReduceValuesToDoubleTask<K,V>
5541 extends BulkTask<K,V,Double> {
5542 final ToDoubleFunction<? super V> transformer;
5543 final DoubleBinaryOperator reducer;
5544 final double basis;
5545 double result;
5546 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5547 MapReduceValuesToDoubleTask
5548 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5549 MapReduceValuesToDoubleTask<K,V> nextRight,
5550 ToDoubleFunction<? super V> transformer,
5551 double basis,
5552 DoubleBinaryOperator reducer) {
5553 super(p, b, i, f, t); this.nextRight = nextRight;
5554 this.transformer = transformer;
5555 this.basis = basis; this.reducer = reducer;
5556 }
5557 public final Double getRawResult() { return result; }
5558 public final void compute() {
5559 final ToDoubleFunction<? super V> transformer;
5560 final DoubleBinaryOperator reducer;
5561 if ((transformer = this.transformer) != null &&
5562 (reducer = this.reducer) != null) {
5563 double r = this.basis;
5564 for (int i = baseIndex, f, h; batch > 0 &&
5565 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 addToPendingCount(1);
5567 (rights = new MapReduceValuesToDoubleTask<K,V>
5568 (this, batch >>>= 1, baseLimit = h, f, tab,
5569 rights, transformer, r, reducer)).fork();
5570 }
5571 for (Node<K,V> p; (p = advance()) != null; )
5572 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5573 result = r;
5574 CountedCompleter<?> c;
5575 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5576 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5577 t = (MapReduceValuesToDoubleTask<K,V>)c,
5578 s = t.rights;
5579 while (s != null) {
5580 t.result = reducer.applyAsDouble(t.result, s.result);
5581 s = t.rights = s.nextRight;
5582 }
5583 }
5584 }
5585 }
5586 }
5587
5588 @SuppressWarnings("serial")
5589 static final class MapReduceEntriesToDoubleTask<K,V>
5590 extends BulkTask<K,V,Double> {
5591 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5592 final DoubleBinaryOperator reducer;
5593 final double basis;
5594 double result;
5595 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5596 MapReduceEntriesToDoubleTask
5597 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5598 MapReduceEntriesToDoubleTask<K,V> nextRight,
5599 ToDoubleFunction<Map.Entry<K,V>> transformer,
5600 double basis,
5601 DoubleBinaryOperator reducer) {
5602 super(p, b, i, f, t); this.nextRight = nextRight;
5603 this.transformer = transformer;
5604 this.basis = basis; this.reducer = reducer;
5605 }
5606 public final Double getRawResult() { return result; }
5607 public final void compute() {
5608 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5609 final DoubleBinaryOperator reducer;
5610 if ((transformer = this.transformer) != null &&
5611 (reducer = this.reducer) != null) {
5612 double r = this.basis;
5613 for (int i = baseIndex, f, h; batch > 0 &&
5614 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5615 addToPendingCount(1);
5616 (rights = new MapReduceEntriesToDoubleTask<K,V>
5617 (this, batch >>>= 1, baseLimit = h, f, tab,
5618 rights, transformer, r, reducer)).fork();
5619 }
5620 for (Node<K,V> p; (p = advance()) != null; )
5621 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5622 result = r;
5623 CountedCompleter<?> c;
5624 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5625 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5626 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5627 s = t.rights;
5628 while (s != null) {
5629 t.result = reducer.applyAsDouble(t.result, s.result);
5630 s = t.rights = s.nextRight;
5631 }
5632 }
5633 }
5634 }
5635 }
5636
5637 @SuppressWarnings("serial")
5638 static final class MapReduceMappingsToDoubleTask<K,V>
5639 extends BulkTask<K,V,Double> {
5640 final ToDoubleBiFunction<? super K, ? super V> transformer;
5641 final DoubleBinaryOperator reducer;
5642 final double basis;
5643 double result;
5644 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5645 MapReduceMappingsToDoubleTask
5646 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5647 MapReduceMappingsToDoubleTask<K,V> nextRight,
5648 ToDoubleBiFunction<? super K, ? super V> transformer,
5649 double basis,
5650 DoubleBinaryOperator reducer) {
5651 super(p, b, i, f, t); this.nextRight = nextRight;
5652 this.transformer = transformer;
5653 this.basis = basis; this.reducer = reducer;
5654 }
5655 public final Double getRawResult() { return result; }
5656 public final void compute() {
5657 final ToDoubleBiFunction<? super K, ? super V> transformer;
5658 final DoubleBinaryOperator reducer;
5659 if ((transformer = this.transformer) != null &&
5660 (reducer = this.reducer) != null) {
5661 double r = this.basis;
5662 for (int i = baseIndex, f, h; batch > 0 &&
5663 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5664 addToPendingCount(1);
5665 (rights = new MapReduceMappingsToDoubleTask<K,V>
5666 (this, batch >>>= 1, baseLimit = h, f, tab,
5667 rights, transformer, r, reducer)).fork();
5668 }
5669 for (Node<K,V> p; (p = advance()) != null; )
5670 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5671 result = r;
5672 CountedCompleter<?> c;
5673 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5674 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5675 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5676 s = t.rights;
5677 while (s != null) {
5678 t.result = reducer.applyAsDouble(t.result, s.result);
5679 s = t.rights = s.nextRight;
5680 }
5681 }
5682 }
5683 }
5684 }
5685
5686 @SuppressWarnings("serial")
5687 static final class MapReduceKeysToLongTask<K,V>
5688 extends BulkTask<K,V,Long> {
5689 final ToLongFunction<? super K> transformer;
5690 final LongBinaryOperator reducer;
5691 final long basis;
5692 long result;
5693 MapReduceKeysToLongTask<K,V> rights, nextRight;
5694 MapReduceKeysToLongTask
5695 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5696 MapReduceKeysToLongTask<K,V> nextRight,
5697 ToLongFunction<? super K> transformer,
5698 long basis,
5699 LongBinaryOperator reducer) {
5700 super(p, b, i, f, t); this.nextRight = nextRight;
5701 this.transformer = transformer;
5702 this.basis = basis; this.reducer = reducer;
5703 }
5704 public final Long getRawResult() { return result; }
5705 public final void compute() {
5706 final ToLongFunction<? super K> transformer;
5707 final LongBinaryOperator reducer;
5708 if ((transformer = this.transformer) != null &&
5709 (reducer = this.reducer) != null) {
5710 long r = this.basis;
5711 for (int i = baseIndex, f, h; batch > 0 &&
5712 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5713 addToPendingCount(1);
5714 (rights = new MapReduceKeysToLongTask<K,V>
5715 (this, batch >>>= 1, baseLimit = h, f, tab,
5716 rights, transformer, r, reducer)).fork();
5717 }
5718 for (Node<K,V> p; (p = advance()) != null; )
5719 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5720 result = r;
5721 CountedCompleter<?> c;
5722 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5723 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5724 t = (MapReduceKeysToLongTask<K,V>)c,
5725 s = t.rights;
5726 while (s != null) {
5727 t.result = reducer.applyAsLong(t.result, s.result);
5728 s = t.rights = s.nextRight;
5729 }
5730 }
5731 }
5732 }
5733 }
5734
5735 @SuppressWarnings("serial")
5736 static final class MapReduceValuesToLongTask<K,V>
5737 extends BulkTask<K,V,Long> {
5738 final ToLongFunction<? super V> transformer;
5739 final LongBinaryOperator reducer;
5740 final long basis;
5741 long result;
5742 MapReduceValuesToLongTask<K,V> rights, nextRight;
5743 MapReduceValuesToLongTask
5744 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5745 MapReduceValuesToLongTask<K,V> nextRight,
5746 ToLongFunction<? super V> transformer,
5747 long basis,
5748 LongBinaryOperator reducer) {
5749 super(p, b, i, f, t); this.nextRight = nextRight;
5750 this.transformer = transformer;
5751 this.basis = basis; this.reducer = reducer;
5752 }
5753 public final Long getRawResult() { return result; }
5754 public final void compute() {
5755 final ToLongFunction<? super V> transformer;
5756 final LongBinaryOperator reducer;
5757 if ((transformer = this.transformer) != null &&
5758 (reducer = this.reducer) != null) {
5759 long r = this.basis;
5760 for (int i = baseIndex, f, h; batch > 0 &&
5761 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5762 addToPendingCount(1);
5763 (rights = new MapReduceValuesToLongTask<K,V>
5764 (this, batch >>>= 1, baseLimit = h, f, tab,
5765 rights, transformer, r, reducer)).fork();
5766 }
5767 for (Node<K,V> p; (p = advance()) != null; )
5768 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5769 result = r;
5770 CountedCompleter<?> c;
5771 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5772 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5773 t = (MapReduceValuesToLongTask<K,V>)c,
5774 s = t.rights;
5775 while (s != null) {
5776 t.result = reducer.applyAsLong(t.result, s.result);
5777 s = t.rights = s.nextRight;
5778 }
5779 }
5780 }
5781 }
5782 }
5783
5784 @SuppressWarnings("serial")
5785 static final class MapReduceEntriesToLongTask<K,V>
5786 extends BulkTask<K,V,Long> {
5787 final ToLongFunction<Map.Entry<K,V>> transformer;
5788 final LongBinaryOperator reducer;
5789 final long basis;
5790 long result;
5791 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5792 MapReduceEntriesToLongTask
5793 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5794 MapReduceEntriesToLongTask<K,V> nextRight,
5795 ToLongFunction<Map.Entry<K,V>> transformer,
5796 long basis,
5797 LongBinaryOperator reducer) {
5798 super(p, b, i, f, t); this.nextRight = nextRight;
5799 this.transformer = transformer;
5800 this.basis = basis; this.reducer = reducer;
5801 }
5802 public final Long getRawResult() { return result; }
5803 public final void compute() {
5804 final ToLongFunction<Map.Entry<K,V>> transformer;
5805 final LongBinaryOperator reducer;
5806 if ((transformer = this.transformer) != null &&
5807 (reducer = this.reducer) != null) {
5808 long r = this.basis;
5809 for (int i = baseIndex, f, h; batch > 0 &&
5810 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5811 addToPendingCount(1);
5812 (rights = new MapReduceEntriesToLongTask<K,V>
5813 (this, batch >>>= 1, baseLimit = h, f, tab,
5814 rights, transformer, r, reducer)).fork();
5815 }
5816 for (Node<K,V> p; (p = advance()) != null; )
5817 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5818 result = r;
5819 CountedCompleter<?> c;
5820 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5821 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5822 t = (MapReduceEntriesToLongTask<K,V>)c,
5823 s = t.rights;
5824 while (s != null) {
5825 t.result = reducer.applyAsLong(t.result, s.result);
5826 s = t.rights = s.nextRight;
5827 }
5828 }
5829 }
5830 }
5831 }
5832
5833 @SuppressWarnings("serial")
5834 static final class MapReduceMappingsToLongTask<K,V>
5835 extends BulkTask<K,V,Long> {
5836 final ToLongBiFunction<? super K, ? super V> transformer;
5837 final LongBinaryOperator reducer;
5838 final long basis;
5839 long result;
5840 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5841 MapReduceMappingsToLongTask
5842 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5843 MapReduceMappingsToLongTask<K,V> nextRight,
5844 ToLongBiFunction<? super K, ? super V> transformer,
5845 long basis,
5846 LongBinaryOperator reducer) {
5847 super(p, b, i, f, t); this.nextRight = nextRight;
5848 this.transformer = transformer;
5849 this.basis = basis; this.reducer = reducer;
5850 }
5851 public final Long getRawResult() { return result; }
5852 public final void compute() {
5853 final ToLongBiFunction<? super K, ? super V> transformer;
5854 final LongBinaryOperator reducer;
5855 if ((transformer = this.transformer) != null &&
5856 (reducer = this.reducer) != null) {
5857 long r = this.basis;
5858 for (int i = baseIndex, f, h; batch > 0 &&
5859 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5860 addToPendingCount(1);
5861 (rights = new MapReduceMappingsToLongTask<K,V>
5862 (this, batch >>>= 1, baseLimit = h, f, tab,
5863 rights, transformer, r, reducer)).fork();
5864 }
5865 for (Node<K,V> p; (p = advance()) != null; )
5866 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5867 result = r;
5868 CountedCompleter<?> c;
5869 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5870 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5871 t = (MapReduceMappingsToLongTask<K,V>)c,
5872 s = t.rights;
5873 while (s != null) {
5874 t.result = reducer.applyAsLong(t.result, s.result);
5875 s = t.rights = s.nextRight;
5876 }
5877 }
5878 }
5879 }
5880 }
5881
5882 @SuppressWarnings("serial")
5883 static final class MapReduceKeysToIntTask<K,V>
5884 extends BulkTask<K,V,Integer> {
5885 final ToIntFunction<? super K> transformer;
5886 final IntBinaryOperator reducer;
5887 final int basis;
5888 int result;
5889 MapReduceKeysToIntTask<K,V> rights, nextRight;
5890 MapReduceKeysToIntTask
5891 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5892 MapReduceKeysToIntTask<K,V> nextRight,
5893 ToIntFunction<? super K> transformer,
5894 int basis,
5895 IntBinaryOperator reducer) {
5896 super(p, b, i, f, t); this.nextRight = nextRight;
5897 this.transformer = transformer;
5898 this.basis = basis; this.reducer = reducer;
5899 }
5900 public final Integer getRawResult() { return result; }
5901 public final void compute() {
5902 final ToIntFunction<? super K> transformer;
5903 final IntBinaryOperator reducer;
5904 if ((transformer = this.transformer) != null &&
5905 (reducer = this.reducer) != null) {
5906 int r = this.basis;
5907 for (int i = baseIndex, f, h; batch > 0 &&
5908 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5909 addToPendingCount(1);
5910 (rights = new MapReduceKeysToIntTask<K,V>
5911 (this, batch >>>= 1, baseLimit = h, f, tab,
5912 rights, transformer, r, reducer)).fork();
5913 }
5914 for (Node<K,V> p; (p = advance()) != null; )
5915 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5916 result = r;
5917 CountedCompleter<?> c;
5918 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5919 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5920 t = (MapReduceKeysToIntTask<K,V>)c,
5921 s = t.rights;
5922 while (s != null) {
5923 t.result = reducer.applyAsInt(t.result, s.result);
5924 s = t.rights = s.nextRight;
5925 }
5926 }
5927 }
5928 }
5929 }
5930
5931 @SuppressWarnings("serial")
5932 static final class MapReduceValuesToIntTask<K,V>
5933 extends BulkTask<K,V,Integer> {
5934 final ToIntFunction<? super V> transformer;
5935 final IntBinaryOperator reducer;
5936 final int basis;
5937 int result;
5938 MapReduceValuesToIntTask<K,V> rights, nextRight;
5939 MapReduceValuesToIntTask
5940 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5941 MapReduceValuesToIntTask<K,V> nextRight,
5942 ToIntFunction<? super V> transformer,
5943 int basis,
5944 IntBinaryOperator reducer) {
5945 super(p, b, i, f, t); this.nextRight = nextRight;
5946 this.transformer = transformer;
5947 this.basis = basis; this.reducer = reducer;
5948 }
5949 public final Integer getRawResult() { return result; }
5950 public final void compute() {
5951 final ToIntFunction<? super V> transformer;
5952 final IntBinaryOperator reducer;
5953 if ((transformer = this.transformer) != null &&
5954 (reducer = this.reducer) != null) {
5955 int r = this.basis;
5956 for (int i = baseIndex, f, h; batch > 0 &&
5957 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5958 addToPendingCount(1);
5959 (rights = new MapReduceValuesToIntTask<K,V>
5960 (this, batch >>>= 1, baseLimit = h, f, tab,
5961 rights, transformer, r, reducer)).fork();
5962 }
5963 for (Node<K,V> p; (p = advance()) != null; )
5964 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5965 result = r;
5966 CountedCompleter<?> c;
5967 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5968 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5969 t = (MapReduceValuesToIntTask<K,V>)c,
5970 s = t.rights;
5971 while (s != null) {
5972 t.result = reducer.applyAsInt(t.result, s.result);
5973 s = t.rights = s.nextRight;
5974 }
5975 }
5976 }
5977 }
5978 }
5979
5980 @SuppressWarnings("serial")
5981 static final class MapReduceEntriesToIntTask<K,V>
5982 extends BulkTask<K,V,Integer> {
5983 final ToIntFunction<Map.Entry<K,V>> transformer;
5984 final IntBinaryOperator reducer;
5985 final int basis;
5986 int result;
5987 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5988 MapReduceEntriesToIntTask
5989 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5990 MapReduceEntriesToIntTask<K,V> nextRight,
5991 ToIntFunction<Map.Entry<K,V>> transformer,
5992 int basis,
5993 IntBinaryOperator reducer) {
5994 super(p, b, i, f, t); this.nextRight = nextRight;
5995 this.transformer = transformer;
5996 this.basis = basis; this.reducer = reducer;
5997 }
5998 public final Integer getRawResult() { return result; }
5999 public final void compute() {
6000 final ToIntFunction<Map.Entry<K,V>> transformer;
6001 final IntBinaryOperator reducer;
6002 if ((transformer = this.transformer) != null &&
6003 (reducer = this.reducer) != null) {
6004 int r = this.basis;
6005 for (int i = baseIndex, f, h; batch > 0 &&
6006 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6007 addToPendingCount(1);
6008 (rights = new MapReduceEntriesToIntTask<K,V>
6009 (this, batch >>>= 1, baseLimit = h, f, tab,
6010 rights, transformer, r, reducer)).fork();
6011 }
6012 for (Node<K,V> p; (p = advance()) != null; )
6013 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6014 result = r;
6015 CountedCompleter<?> c;
6016 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6017 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6018 t = (MapReduceEntriesToIntTask<K,V>)c,
6019 s = t.rights;
6020 while (s != null) {
6021 t.result = reducer.applyAsInt(t.result, s.result);
6022 s = t.rights = s.nextRight;
6023 }
6024 }
6025 }
6026 }
6027 }
6028
6029 @SuppressWarnings("serial")
6030 static final class MapReduceMappingsToIntTask<K,V>
6031 extends BulkTask<K,V,Integer> {
6032 final ToIntBiFunction<? super K, ? super V> transformer;
6033 final IntBinaryOperator reducer;
6034 final int basis;
6035 int result;
6036 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6037 MapReduceMappingsToIntTask
6038 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6039 MapReduceMappingsToIntTask<K,V> nextRight,
6040 ToIntBiFunction<? super K, ? super V> transformer,
6041 int basis,
6042 IntBinaryOperator reducer) {
6043 super(p, b, i, f, t); this.nextRight = nextRight;
6044 this.transformer = transformer;
6045 this.basis = basis; this.reducer = reducer;
6046 }
6047 public final Integer getRawResult() { return result; }
6048 public final void compute() {
6049 final ToIntBiFunction<? super K, ? super V> transformer;
6050 final IntBinaryOperator reducer;
6051 if ((transformer = this.transformer) != null &&
6052 (reducer = this.reducer) != null) {
6053 int r = this.basis;
6054 for (int i = baseIndex, f, h; batch > 0 &&
6055 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6056 addToPendingCount(1);
6057 (rights = new MapReduceMappingsToIntTask<K,V>
6058 (this, batch >>>= 1, baseLimit = h, f, tab,
6059 rights, transformer, r, reducer)).fork();
6060 }
6061 for (Node<K,V> p; (p = advance()) != null; )
6062 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6063 result = r;
6064 CountedCompleter<?> c;
6065 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6066 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6067 t = (MapReduceMappingsToIntTask<K,V>)c,
6068 s = t.rights;
6069 while (s != null) {
6070 t.result = reducer.applyAsInt(t.result, s.result);
6071 s = t.rights = s.nextRight;
6072 }
6073 }
6074 }
6075 }
6076 }
6077
6078 // Unsafe mechanics
6079 private static final sun.misc.Unsafe U;
6080 private static final long SIZECTL;
6081 private static final long TRANSFERINDEX;
6082 private static final long TRANSFERORIGIN;
6083 private static final long BASECOUNT;
6084 private static final long CELLSBUSY;
6085 private static final long CELLVALUE;
6086 private static final long ABASE;
6087 private static final int ASHIFT;
6088
6089 static {
6090 try {
6091 U = sun.misc.Unsafe.getUnsafe();
6092 Class<?> k = ConcurrentHashMap.class;
6093 SIZECTL = U.objectFieldOffset
6094 (k.getDeclaredField("sizeCtl"));
6095 TRANSFERINDEX = U.objectFieldOffset
6096 (k.getDeclaredField("transferIndex"));
6097 TRANSFERORIGIN = U.objectFieldOffset
6098 (k.getDeclaredField("transferOrigin"));
6099 BASECOUNT = U.objectFieldOffset
6100 (k.getDeclaredField("baseCount"));
6101 CELLSBUSY = U.objectFieldOffset
6102 (k.getDeclaredField("cellsBusy"));
6103 Class<?> ck = CounterCell.class;
6104 CELLVALUE = U.objectFieldOffset
6105 (ck.getDeclaredField("value"));
6106 Class<?> ak = Node[].class;
6107 ABASE = U.arrayBaseOffset(ak);
6108 int scale = U.arrayIndexScale(ak);
6109 if ((scale & (scale - 1)) != 0)
6110 throw new Error("data type scale not a power of two");
6111 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6112 } catch (Exception e) {
6113 throw new Error(e);
6114 }
6115 }
6116 }