ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.245
Committed: Fri Aug 23 20:12:21 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.244: +8 -8 lines
Log Message:
prefer unbounded wildcards in array creation to raw types

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators, Spliterators and Enumerations return elements reflecting the
68 * state of the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 * However, iterators are designed to be used by only one thread at a time.
72 * Bear in mind that the results of aggregate status methods including
73 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 * useful only when a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement
348 * array. However, rather than stalling, these other threads may
349 * proceed with insertions etc. The use of TreeBins shields us
350 * from the worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. To enable concurrency, the
353 * next table must be (incrementally) prefilled with place-holders
354 * serving as reverse forwarders to the old table. Because we are
355 * using power-of-two expansion, the elements from each bin must
356 * either stay at same index, or move with a power of two
357 * offset. We eliminate unnecessary node creation by catching
358 * cases where old nodes can be reused because their next fields
359 * won't change. On average, only about one-sixth of them need
360 * cloning when a table doubles. The nodes they replace will be
361 * garbage collectable as soon as they are no longer referenced by
362 * any reader thread that may be in the midst of concurrently
363 * traversing table. Upon transfer, the old table bin contains
364 * only a special forwarding node (with hash field "MOVED") that
365 * contains the next table as its key. On encountering a
366 * forwarding node, access and update operations restart, using
367 * the new table.
368 *
369 * Each bin transfer requires its bin lock, which can stall
370 * waiting for locks while resizing. However, because other
371 * threads can join in and help resize rather than contend for
372 * locks, average aggregate waits become shorter as resizing
373 * progresses. The transfer operation must also ensure that all
374 * accessible bins in both the old and new table are usable by any
375 * traversal. This is arranged by proceeding from the last bin
376 * (table.length - 1) up towards the first. Upon seeing a
377 * forwarding node, traversals (see class Traverser) arrange to
378 * move to the new table without revisiting nodes. However, to
379 * ensure that no intervening nodes are skipped, bin splitting can
380 * only begin after the associated reverse-forwarders are in
381 * place.
382 *
383 * The traversal scheme also applies to partial traversals of
384 * ranges of bins (via an alternate Traverser constructor)
385 * to support partitioned aggregate operations. Also, read-only
386 * operations give up if ever forwarded to a null table, which
387 * provides support for shutdown-style clearing, which is also not
388 * currently implemented.
389 *
390 * Lazy table initialization minimizes footprint until first use,
391 * and also avoids resizings when the first operation is from a
392 * putAll, constructor with map argument, or deserialization.
393 * These cases attempt to override the initial capacity settings,
394 * but harmlessly fail to take effect in cases of races.
395 *
396 * The element count is maintained using a specialization of
397 * LongAdder. We need to incorporate a specialization rather than
398 * just use a LongAdder in order to access implicit
399 * contention-sensing that leads to creation of multiple
400 * CounterCells. The counter mechanics avoid contention on
401 * updates but can encounter cache thrashing if read too
402 * frequently during concurrent access. To avoid reading so often,
403 * resizing under contention is attempted only upon adding to a
404 * bin already holding two or more nodes. Under uniform hash
405 * distributions, the probability of this occurring at threshold
406 * is around 13%, meaning that only about 1 in 8 puts check
407 * threshold (and after resizing, many fewer do so).
408 *
409 * TreeBins use a special form of comparison for search and
410 * related operations (which is the main reason we cannot use
411 * existing collections such as TreeMaps). TreeBins contain
412 * Comparable elements, but may contain others, as well as
413 * elements that are Comparable but not necessarily Comparable for
414 * the same T, so we cannot invoke compareTo among them. To handle
415 * this, the tree is ordered primarily by hash value, then by
416 * Comparable.compareTo order if applicable. On lookup at a node,
417 * if elements are not comparable or compare as 0 then both left
418 * and right children may need to be searched in the case of tied
419 * hash values. (This corresponds to the full list search that
420 * would be necessary if all elements were non-Comparable and had
421 * tied hashes.) On insertion, to keep a total ordering (or as
422 * close as is required here) across rebalancings, we compare
423 * classes and identityHashCodes as tie-breakers. The red-black
424 * balancing code is updated from pre-jdk-collections
425 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
426 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
427 * Algorithms" (CLR).
428 *
429 * TreeBins also require an additional locking mechanism. While
430 * list traversal is always possible by readers even during
431 * updates, tree traversal is not, mainly because of tree-rotations
432 * that may change the root node and/or its linkages. TreeBins
433 * include a simple read-write lock mechanism parasitic on the
434 * main bin-synchronization strategy: Structural adjustments
435 * associated with an insertion or removal are already bin-locked
436 * (and so cannot conflict with other writers) but must wait for
437 * ongoing readers to finish. Since there can be only one such
438 * waiter, we use a simple scheme using a single "waiter" field to
439 * block writers. However, readers need never block. If the root
440 * lock is held, they proceed along the slow traversal path (via
441 * next-pointers) until the lock becomes available or the list is
442 * exhausted, whichever comes first. These cases are not fast, but
443 * maximize aggregate expected throughput.
444 *
445 * Maintaining API and serialization compatibility with previous
446 * versions of this class introduces several oddities. Mainly: We
447 * leave untouched but unused constructor arguments refering to
448 * concurrencyLevel. We accept a loadFactor constructor argument,
449 * but apply it only to initial table capacity (which is the only
450 * time that we can guarantee to honor it.) We also declare an
451 * unused "Segment" class that is instantiated in minimal form
452 * only when serializing.
453 *
454 * Also, solely for compatibility with previous versions of this
455 * class, it extends AbstractMap, even though all of its methods
456 * are overridden, so it is just useless baggage.
457 *
458 * This file is organized to make things a little easier to follow
459 * while reading than they might otherwise: First the main static
460 * declarations and utilities, then fields, then main public
461 * methods (with a few factorings of multiple public methods into
462 * internal ones), then sizing methods, trees, traversers, and
463 * bulk operations.
464 */
465
466 /* ---------------- Constants -------------- */
467
468 /**
469 * The largest possible table capacity. This value must be
470 * exactly 1<<30 to stay within Java array allocation and indexing
471 * bounds for power of two table sizes, and is further required
472 * because the top two bits of 32bit hash fields are used for
473 * control purposes.
474 */
475 private static final int MAXIMUM_CAPACITY = 1 << 30;
476
477 /**
478 * The default initial table capacity. Must be a power of 2
479 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
480 */
481 private static final int DEFAULT_CAPACITY = 16;
482
483 /**
484 * The largest possible (non-power of two) array size.
485 * Needed by toArray and related methods.
486 */
487 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
488
489 /**
490 * The default concurrency level for this table. Unused but
491 * defined for compatibility with previous versions of this class.
492 */
493 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
494
495 /**
496 * The load factor for this table. Overrides of this value in
497 * constructors affect only the initial table capacity. The
498 * actual floating point value isn't normally used -- it is
499 * simpler to use expressions such as {@code n - (n >>> 2)} for
500 * the associated resizing threshold.
501 */
502 private static final float LOAD_FACTOR = 0.75f;
503
504 /**
505 * The bin count threshold for using a tree rather than list for a
506 * bin. Bins are converted to trees when adding an element to a
507 * bin with at least this many nodes. The value must be greater
508 * than 2, and should be at least 8 to mesh with assumptions in
509 * tree removal about conversion back to plain bins upon
510 * shrinkage.
511 */
512 static final int TREEIFY_THRESHOLD = 8;
513
514 /**
515 * The bin count threshold for untreeifying a (split) bin during a
516 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
517 * most 6 to mesh with shrinkage detection under removal.
518 */
519 static final int UNTREEIFY_THRESHOLD = 6;
520
521 /**
522 * The smallest table capacity for which bins may be treeified.
523 * (Otherwise the table is resized if too many nodes in a bin.)
524 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
525 * conflicts between resizing and treeification thresholds.
526 */
527 static final int MIN_TREEIFY_CAPACITY = 64;
528
529 /**
530 * Minimum number of rebinnings per transfer step. Ranges are
531 * subdivided to allow multiple resizer threads. This value
532 * serves as a lower bound to avoid resizers encountering
533 * excessive memory contention. The value should be at least
534 * DEFAULT_CAPACITY.
535 */
536 private static final int MIN_TRANSFER_STRIDE = 16;
537
538 /*
539 * Encodings for Node hash fields. See above for explanation.
540 */
541 static final int MOVED = -1; // hash for forwarding nodes
542 static final int TREEBIN = -2; // hash for roots of trees
543 static final int RESERVED = -3; // hash for transient reservations
544 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
545
546 /** Number of CPUS, to place bounds on some sizings */
547 static final int NCPU = Runtime.getRuntime().availableProcessors();
548
549 /** For serialization compatibility. */
550 private static final ObjectStreamField[] serialPersistentFields = {
551 new ObjectStreamField("segments", Segment[].class),
552 new ObjectStreamField("segmentMask", Integer.TYPE),
553 new ObjectStreamField("segmentShift", Integer.TYPE)
554 };
555
556 /* ---------------- Nodes -------------- */
557
558 /**
559 * Key-value entry. This class is never exported out as a
560 * user-mutable Map.Entry (i.e., one supporting setValue; see
561 * MapEntry below), but can be used for read-only traversals used
562 * in bulk tasks. Subclasses of Node with a negative hash field
563 * are special, and contain null keys and values (but are never
564 * exported). Otherwise, keys and vals are never null.
565 */
566 static class Node<K,V> implements Map.Entry<K,V> {
567 final int hash;
568 final K key;
569 volatile V val;
570 volatile Node<K,V> next;
571
572 Node(int hash, K key, V val, Node<K,V> next) {
573 this.hash = hash;
574 this.key = key;
575 this.val = val;
576 this.next = next;
577 }
578
579 public final K getKey() { return key; }
580 public final V getValue() { return val; }
581 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
582 public final String toString(){ return key + "=" + val; }
583 public final V setValue(V value) {
584 throw new UnsupportedOperationException();
585 }
586
587 public final boolean equals(Object o) {
588 Object k, v, u; Map.Entry<?,?> e;
589 return ((o instanceof Map.Entry) &&
590 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
591 (v = e.getValue()) != null &&
592 (k == key || k.equals(key)) &&
593 (v == (u = val) || v.equals(u)));
594 }
595
596 /**
597 * Virtualized support for map.get(); overridden in subclasses.
598 */
599 Node<K,V> find(int h, Object k) {
600 Node<K,V> e = this;
601 if (k != null) {
602 do {
603 K ek;
604 if (e.hash == h &&
605 ((ek = e.key) == k || (ek != null && k.equals(ek))))
606 return e;
607 } while ((e = e.next) != null);
608 }
609 return null;
610 }
611 }
612
613 /* ---------------- Static utilities -------------- */
614
615 /**
616 * Spreads (XORs) higher bits of hash to lower and also forces top
617 * bit to 0. Because the table uses power-of-two masking, sets of
618 * hashes that vary only in bits above the current mask will
619 * always collide. (Among known examples are sets of Float keys
620 * holding consecutive whole numbers in small tables.) So we
621 * apply a transform that spreads the impact of higher bits
622 * downward. There is a tradeoff between speed, utility, and
623 * quality of bit-spreading. Because many common sets of hashes
624 * are already reasonably distributed (so don't benefit from
625 * spreading), and because we use trees to handle large sets of
626 * collisions in bins, we just XOR some shifted bits in the
627 * cheapest possible way to reduce systematic lossage, as well as
628 * to incorporate impact of the highest bits that would otherwise
629 * never be used in index calculations because of table bounds.
630 */
631 static final int spread(int h) {
632 return (h ^ (h >>> 16)) & HASH_BITS;
633 }
634
635 /**
636 * Returns a power of two table size for the given desired capacity.
637 * See Hackers Delight, sec 3.2
638 */
639 private static final int tableSizeFor(int c) {
640 int n = c - 1;
641 n |= n >>> 1;
642 n |= n >>> 2;
643 n |= n >>> 4;
644 n |= n >>> 8;
645 n |= n >>> 16;
646 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
647 }
648
649 /**
650 * Returns x's Class if it is of the form "class C implements
651 * Comparable<C>", else null.
652 */
653 static Class<?> comparableClassFor(Object x) {
654 if (x instanceof Comparable) {
655 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
656 if ((c = x.getClass()) == String.class) // bypass checks
657 return c;
658 if ((ts = c.getGenericInterfaces()) != null) {
659 for (int i = 0; i < ts.length; ++i) {
660 if (((t = ts[i]) instanceof ParameterizedType) &&
661 ((p = (ParameterizedType)t).getRawType() ==
662 Comparable.class) &&
663 (as = p.getActualTypeArguments()) != null &&
664 as.length == 1 && as[0] == c) // type arg is c
665 return c;
666 }
667 }
668 }
669 return null;
670 }
671
672 /**
673 * Returns k.compareTo(x) if x matches kc (k's screened comparable
674 * class), else 0.
675 */
676 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
677 static int compareComparables(Class<?> kc, Object k, Object x) {
678 return (x == null || x.getClass() != kc ? 0 :
679 ((Comparable)k).compareTo(x));
680 }
681
682 /* ---------------- Table element access -------------- */
683
684 /*
685 * Volatile access methods are used for table elements as well as
686 * elements of in-progress next table while resizing. All uses of
687 * the tab arguments must be null checked by callers. All callers
688 * also paranoically precheck that tab's length is not zero (or an
689 * equivalent check), thus ensuring that any index argument taking
690 * the form of a hash value anded with (length - 1) is a valid
691 * index. Note that, to be correct wrt arbitrary concurrency
692 * errors by users, these checks must operate on local variables,
693 * which accounts for some odd-looking inline assignments below.
694 * Note that calls to setTabAt always occur within locked regions,
695 * and so in principle require only release ordering, not need
696 * full volatile semantics, but are currently coded as volatile
697 * writes to be conservative.
698 */
699
700 @SuppressWarnings("unchecked")
701 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
702 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
703 }
704
705 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
706 Node<K,V> c, Node<K,V> v) {
707 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
708 }
709
710 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
711 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
712 }
713
714 /* ---------------- Fields -------------- */
715
716 /**
717 * The array of bins. Lazily initialized upon first insertion.
718 * Size is always a power of two. Accessed directly by iterators.
719 */
720 transient volatile Node<K,V>[] table;
721
722 /**
723 * The next table to use; non-null only while resizing.
724 */
725 private transient volatile Node<K,V>[] nextTable;
726
727 /**
728 * Base counter value, used mainly when there is no contention,
729 * but also as a fallback during table initialization
730 * races. Updated via CAS.
731 */
732 private transient volatile long baseCount;
733
734 /**
735 * Table initialization and resizing control. When negative, the
736 * table is being initialized or resized: -1 for initialization,
737 * else -(1 + the number of active resizing threads). Otherwise,
738 * when table is null, holds the initial table size to use upon
739 * creation, or 0 for default. After initialization, holds the
740 * next element count value upon which to resize the table.
741 */
742 private transient volatile int sizeCtl;
743
744 /**
745 * The next table index (plus one) to split while resizing.
746 */
747 private transient volatile int transferIndex;
748
749 /**
750 * The least available table index to split while resizing.
751 */
752 private transient volatile int transferOrigin;
753
754 /**
755 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
756 */
757 private transient volatile int cellsBusy;
758
759 /**
760 * Table of counter cells. When non-null, size is a power of 2.
761 */
762 private transient volatile CounterCell[] counterCells;
763
764 // views
765 private transient KeySetView<K,V> keySet;
766 private transient ValuesView<K,V> values;
767 private transient EntrySetView<K,V> entrySet;
768
769
770 /* ---------------- Public operations -------------- */
771
772 /**
773 * Creates a new, empty map with the default initial table size (16).
774 */
775 public ConcurrentHashMap() {
776 }
777
778 /**
779 * Creates a new, empty map with an initial table size
780 * accommodating the specified number of elements without the need
781 * to dynamically resize.
782 *
783 * @param initialCapacity The implementation performs internal
784 * sizing to accommodate this many elements.
785 * @throws IllegalArgumentException if the initial capacity of
786 * elements is negative
787 */
788 public ConcurrentHashMap(int initialCapacity) {
789 if (initialCapacity < 0)
790 throw new IllegalArgumentException();
791 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
792 MAXIMUM_CAPACITY :
793 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
794 this.sizeCtl = cap;
795 }
796
797 /**
798 * Creates a new map with the same mappings as the given map.
799 *
800 * @param m the map
801 */
802 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
803 this.sizeCtl = DEFAULT_CAPACITY;
804 putAll(m);
805 }
806
807 /**
808 * Creates a new, empty map with an initial table size based on
809 * the given number of elements ({@code initialCapacity}) and
810 * initial table density ({@code loadFactor}).
811 *
812 * @param initialCapacity the initial capacity. The implementation
813 * performs internal sizing to accommodate this many elements,
814 * given the specified load factor.
815 * @param loadFactor the load factor (table density) for
816 * establishing the initial table size
817 * @throws IllegalArgumentException if the initial capacity of
818 * elements is negative or the load factor is nonpositive
819 *
820 * @since 1.6
821 */
822 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
823 this(initialCapacity, loadFactor, 1);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}), table
829 * density ({@code loadFactor}), and number of concurrently
830 * updating threads ({@code concurrencyLevel}).
831 *
832 * @param initialCapacity the initial capacity. The implementation
833 * performs internal sizing to accommodate this many elements,
834 * given the specified load factor.
835 * @param loadFactor the load factor (table density) for
836 * establishing the initial table size
837 * @param concurrencyLevel the estimated number of concurrently
838 * updating threads. The implementation may use this value as
839 * a sizing hint.
840 * @throws IllegalArgumentException if the initial capacity is
841 * negative or the load factor or concurrencyLevel are
842 * nonpositive
843 */
844 public ConcurrentHashMap(int initialCapacity,
845 float loadFactor, int concurrencyLevel) {
846 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
847 throw new IllegalArgumentException();
848 if (initialCapacity < concurrencyLevel) // Use at least as many bins
849 initialCapacity = concurrencyLevel; // as estimated threads
850 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
851 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
852 MAXIMUM_CAPACITY : tableSizeFor((int)size);
853 this.sizeCtl = cap;
854 }
855
856 // Original (since JDK1.2) Map methods
857
858 /**
859 * {@inheritDoc}
860 */
861 public int size() {
862 long n = sumCount();
863 return ((n < 0L) ? 0 :
864 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
865 (int)n);
866 }
867
868 /**
869 * {@inheritDoc}
870 */
871 public boolean isEmpty() {
872 return sumCount() <= 0L; // ignore transient negative values
873 }
874
875 /**
876 * Returns the value to which the specified key is mapped,
877 * or {@code null} if this map contains no mapping for the key.
878 *
879 * <p>More formally, if this map contains a mapping from a key
880 * {@code k} to a value {@code v} such that {@code key.equals(k)},
881 * then this method returns {@code v}; otherwise it returns
882 * {@code null}. (There can be at most one such mapping.)
883 *
884 * @throws NullPointerException if the specified key is null
885 */
886 public V get(Object key) {
887 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
888 int h = spread(key.hashCode());
889 if ((tab = table) != null && (n = tab.length) > 0 &&
890 (e = tabAt(tab, (n - 1) & h)) != null) {
891 if ((eh = e.hash) == h) {
892 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
893 return e.val;
894 }
895 else if (eh < 0)
896 return (p = e.find(h, key)) != null ? p.val : null;
897 while ((e = e.next) != null) {
898 if (e.hash == h &&
899 ((ek = e.key) == key || (ek != null && key.equals(ek))))
900 return e.val;
901 }
902 }
903 return null;
904 }
905
906 /**
907 * Tests if the specified object is a key in this table.
908 *
909 * @param key possible key
910 * @return {@code true} if and only if the specified object
911 * is a key in this table, as determined by the
912 * {@code equals} method; {@code false} otherwise
913 * @throws NullPointerException if the specified key is null
914 */
915 public boolean containsKey(Object key) {
916 return get(key) != null;
917 }
918
919 /**
920 * Returns {@code true} if this map maps one or more keys to the
921 * specified value. Note: This method may require a full traversal
922 * of the map, and is much slower than method {@code containsKey}.
923 *
924 * @param value value whose presence in this map is to be tested
925 * @return {@code true} if this map maps one or more keys to the
926 * specified value
927 * @throws NullPointerException if the specified value is null
928 */
929 public boolean containsValue(Object value) {
930 if (value == null)
931 throw new NullPointerException();
932 Node<K,V>[] t;
933 if ((t = table) != null) {
934 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
935 for (Node<K,V> p; (p = it.advance()) != null; ) {
936 V v;
937 if ((v = p.val) == value || (v != null && value.equals(v)))
938 return true;
939 }
940 }
941 return false;
942 }
943
944 /**
945 * Maps the specified key to the specified value in this table.
946 * Neither the key nor the value can be null.
947 *
948 * <p>The value can be retrieved by calling the {@code get} method
949 * with a key that is equal to the original key.
950 *
951 * @param key key with which the specified value is to be associated
952 * @param value value to be associated with the specified key
953 * @return the previous value associated with {@code key}, or
954 * {@code null} if there was no mapping for {@code key}
955 * @throws NullPointerException if the specified key or value is null
956 */
957 public V put(K key, V value) {
958 return putVal(key, value, false);
959 }
960
961 /** Implementation for put and putIfAbsent */
962 final V putVal(K key, V value, boolean onlyIfAbsent) {
963 if (key == null || value == null) throw new NullPointerException();
964 int hash = spread(key.hashCode());
965 int binCount = 0;
966 for (Node<K,V>[] tab = table;;) {
967 Node<K,V> f; int n, i, fh;
968 if (tab == null || (n = tab.length) == 0)
969 tab = initTable();
970 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
971 if (casTabAt(tab, i, null,
972 new Node<K,V>(hash, key, value, null)))
973 break; // no lock when adding to empty bin
974 }
975 else if ((fh = f.hash) == MOVED)
976 tab = helpTransfer(tab, f);
977 else {
978 V oldVal = null;
979 synchronized (f) {
980 if (tabAt(tab, i) == f) {
981 if (fh >= 0) {
982 binCount = 1;
983 for (Node<K,V> e = f;; ++binCount) {
984 K ek;
985 if (e.hash == hash &&
986 ((ek = e.key) == key ||
987 (ek != null && key.equals(ek)))) {
988 oldVal = e.val;
989 if (!onlyIfAbsent)
990 e.val = value;
991 break;
992 }
993 Node<K,V> pred = e;
994 if ((e = e.next) == null) {
995 pred.next = new Node<K,V>(hash, key,
996 value, null);
997 break;
998 }
999 }
1000 }
1001 else if (f instanceof TreeBin) {
1002 Node<K,V> p;
1003 binCount = 2;
1004 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1005 value)) != null) {
1006 oldVal = p.val;
1007 if (!onlyIfAbsent)
1008 p.val = value;
1009 }
1010 }
1011 }
1012 }
1013 if (binCount != 0) {
1014 if (binCount >= TREEIFY_THRESHOLD)
1015 treeifyBin(tab, i);
1016 if (oldVal != null)
1017 return oldVal;
1018 break;
1019 }
1020 }
1021 }
1022 addCount(1L, binCount);
1023 return null;
1024 }
1025
1026 /**
1027 * Copies all of the mappings from the specified map to this one.
1028 * These mappings replace any mappings that this map had for any of the
1029 * keys currently in the specified map.
1030 *
1031 * @param m mappings to be stored in this map
1032 */
1033 public void putAll(Map<? extends K, ? extends V> m) {
1034 tryPresize(m.size());
1035 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1036 putVal(e.getKey(), e.getValue(), false);
1037 }
1038
1039 /**
1040 * Removes the key (and its corresponding value) from this map.
1041 * This method does nothing if the key is not in the map.
1042 *
1043 * @param key the key that needs to be removed
1044 * @return the previous value associated with {@code key}, or
1045 * {@code null} if there was no mapping for {@code key}
1046 * @throws NullPointerException if the specified key is null
1047 */
1048 public V remove(Object key) {
1049 return replaceNode(key, null, null);
1050 }
1051
1052 /**
1053 * Implementation for the four public remove/replace methods:
1054 * Replaces node value with v, conditional upon match of cv if
1055 * non-null. If resulting value is null, delete.
1056 */
1057 final V replaceNode(Object key, V value, Object cv) {
1058 int hash = spread(key.hashCode());
1059 for (Node<K,V>[] tab = table;;) {
1060 Node<K,V> f; int n, i, fh;
1061 if (tab == null || (n = tab.length) == 0 ||
1062 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1063 break;
1064 else if ((fh = f.hash) == MOVED)
1065 tab = helpTransfer(tab, f);
1066 else {
1067 V oldVal = null;
1068 boolean validated = false;
1069 synchronized (f) {
1070 if (tabAt(tab, i) == f) {
1071 if (fh >= 0) {
1072 validated = true;
1073 for (Node<K,V> e = f, pred = null;;) {
1074 K ek;
1075 if (e.hash == hash &&
1076 ((ek = e.key) == key ||
1077 (ek != null && key.equals(ek)))) {
1078 V ev = e.val;
1079 if (cv == null || cv == ev ||
1080 (ev != null && cv.equals(ev))) {
1081 oldVal = ev;
1082 if (value != null)
1083 e.val = value;
1084 else if (pred != null)
1085 pred.next = e.next;
1086 else
1087 setTabAt(tab, i, e.next);
1088 }
1089 break;
1090 }
1091 pred = e;
1092 if ((e = e.next) == null)
1093 break;
1094 }
1095 }
1096 else if (f instanceof TreeBin) {
1097 validated = true;
1098 TreeBin<K,V> t = (TreeBin<K,V>)f;
1099 TreeNode<K,V> r, p;
1100 if ((r = t.root) != null &&
1101 (p = r.findTreeNode(hash, key, null)) != null) {
1102 V pv = p.val;
1103 if (cv == null || cv == pv ||
1104 (pv != null && cv.equals(pv))) {
1105 oldVal = pv;
1106 if (value != null)
1107 p.val = value;
1108 else if (t.removeTreeNode(p))
1109 setTabAt(tab, i, untreeify(t.first));
1110 }
1111 }
1112 }
1113 }
1114 }
1115 if (validated) {
1116 if (oldVal != null) {
1117 if (value == null)
1118 addCount(-1L, -1);
1119 return oldVal;
1120 }
1121 break;
1122 }
1123 }
1124 }
1125 return null;
1126 }
1127
1128 /**
1129 * Removes all of the mappings from this map.
1130 */
1131 public void clear() {
1132 long delta = 0L; // negative number of deletions
1133 int i = 0;
1134 Node<K,V>[] tab = table;
1135 while (tab != null && i < tab.length) {
1136 int fh;
1137 Node<K,V> f = tabAt(tab, i);
1138 if (f == null)
1139 ++i;
1140 else if ((fh = f.hash) == MOVED) {
1141 tab = helpTransfer(tab, f);
1142 i = 0; // restart
1143 }
1144 else {
1145 synchronized (f) {
1146 if (tabAt(tab, i) == f) {
1147 Node<K,V> p = (fh >= 0 ? f :
1148 (f instanceof TreeBin) ?
1149 ((TreeBin<K,V>)f).first : null);
1150 while (p != null) {
1151 --delta;
1152 p = p.next;
1153 }
1154 setTabAt(tab, i++, null);
1155 }
1156 }
1157 }
1158 }
1159 if (delta != 0L)
1160 addCount(delta, -1);
1161 }
1162
1163 /**
1164 * Returns a {@link Set} view of the keys contained in this map.
1165 * The set is backed by the map, so changes to the map are
1166 * reflected in the set, and vice-versa. The set supports element
1167 * removal, which removes the corresponding mapping from this map,
1168 * via the {@code Iterator.remove}, {@code Set.remove},
1169 * {@code removeAll}, {@code retainAll}, and {@code clear}
1170 * operations. It does not support the {@code add} or
1171 * {@code addAll} operations.
1172 *
1173 * <p>The view's iterators and spliterators are
1174 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1175 *
1176 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1177 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1178 *
1179 * @return the set view
1180 */
1181 public KeySetView<K,V> keySet() {
1182 KeySetView<K,V> ks;
1183 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1184 }
1185
1186 /**
1187 * Returns a {@link Collection} view of the values contained in this map.
1188 * The collection is backed by the map, so changes to the map are
1189 * reflected in the collection, and vice-versa. The collection
1190 * supports element removal, which removes the corresponding
1191 * mapping from this map, via the {@code Iterator.remove},
1192 * {@code Collection.remove}, {@code removeAll},
1193 * {@code retainAll}, and {@code clear} operations. It does not
1194 * support the {@code add} or {@code addAll} operations.
1195 *
1196 * <p>The view's iterators and spliterators are
1197 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 *
1199 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1200 * and {@link Spliterator#NONNULL}.
1201 *
1202 * @return the collection view
1203 */
1204 public Collection<V> values() {
1205 ValuesView<K,V> vs;
1206 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1207 }
1208
1209 /**
1210 * Returns a {@link Set} view of the mappings contained in this map.
1211 * The set is backed by the map, so changes to the map are
1212 * reflected in the set, and vice-versa. The set supports element
1213 * removal, which removes the corresponding mapping from the map,
1214 * via the {@code Iterator.remove}, {@code Set.remove},
1215 * {@code removeAll}, {@code retainAll}, and {@code clear}
1216 * operations.
1217 *
1218 * <p>The view's iterators and spliterators are
1219 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 *
1221 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1222 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1223 *
1224 * @return the set view
1225 */
1226 public Set<Map.Entry<K,V>> entrySet() {
1227 EntrySetView<K,V> es;
1228 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1229 }
1230
1231 /**
1232 * Returns the hash code value for this {@link Map}, i.e.,
1233 * the sum of, for each key-value pair in the map,
1234 * {@code key.hashCode() ^ value.hashCode()}.
1235 *
1236 * @return the hash code value for this map
1237 */
1238 public int hashCode() {
1239 int h = 0;
1240 Node<K,V>[] t;
1241 if ((t = table) != null) {
1242 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1243 for (Node<K,V> p; (p = it.advance()) != null; )
1244 h += p.key.hashCode() ^ p.val.hashCode();
1245 }
1246 return h;
1247 }
1248
1249 /**
1250 * Returns a string representation of this map. The string
1251 * representation consists of a list of key-value mappings (in no
1252 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1253 * mappings are separated by the characters {@code ", "} (comma
1254 * and space). Each key-value mapping is rendered as the key
1255 * followed by an equals sign ("{@code =}") followed by the
1256 * associated value.
1257 *
1258 * @return a string representation of this map
1259 */
1260 public String toString() {
1261 Node<K,V>[] t;
1262 int f = (t = table) == null ? 0 : t.length;
1263 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1264 StringBuilder sb = new StringBuilder();
1265 sb.append('{');
1266 Node<K,V> p;
1267 if ((p = it.advance()) != null) {
1268 for (;;) {
1269 K k = p.key;
1270 V v = p.val;
1271 sb.append(k == this ? "(this Map)" : k);
1272 sb.append('=');
1273 sb.append(v == this ? "(this Map)" : v);
1274 if ((p = it.advance()) == null)
1275 break;
1276 sb.append(',').append(' ');
1277 }
1278 }
1279 return sb.append('}').toString();
1280 }
1281
1282 /**
1283 * Compares the specified object with this map for equality.
1284 * Returns {@code true} if the given object is a map with the same
1285 * mappings as this map. This operation may return misleading
1286 * results if either map is concurrently modified during execution
1287 * of this method.
1288 *
1289 * @param o object to be compared for equality with this map
1290 * @return {@code true} if the specified object is equal to this map
1291 */
1292 public boolean equals(Object o) {
1293 if (o != this) {
1294 if (!(o instanceof Map))
1295 return false;
1296 Map<?,?> m = (Map<?,?>) o;
1297 Node<K,V>[] t;
1298 int f = (t = table) == null ? 0 : t.length;
1299 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300 for (Node<K,V> p; (p = it.advance()) != null; ) {
1301 V val = p.val;
1302 Object v = m.get(p.key);
1303 if (v == null || (v != val && !v.equals(val)))
1304 return false;
1305 }
1306 for (Map.Entry<?,?> e : m.entrySet()) {
1307 Object mk, mv, v;
1308 if ((mk = e.getKey()) == null ||
1309 (mv = e.getValue()) == null ||
1310 (v = get(mk)) == null ||
1311 (mv != v && !mv.equals(v)))
1312 return false;
1313 }
1314 }
1315 return true;
1316 }
1317
1318 /**
1319 * Stripped-down version of helper class used in previous version,
1320 * declared for the sake of serialization compatibility
1321 */
1322 static class Segment<K,V> extends ReentrantLock implements Serializable {
1323 private static final long serialVersionUID = 2249069246763182397L;
1324 final float loadFactor;
1325 Segment(float lf) { this.loadFactor = lf; }
1326 }
1327
1328 /**
1329 * Saves the state of the {@code ConcurrentHashMap} instance to a
1330 * stream (i.e., serializes it).
1331 * @param s the stream
1332 * @throws java.io.IOException if an I/O error occurs
1333 * @serialData
1334 * the key (Object) and value (Object)
1335 * for each key-value mapping, followed by a null pair.
1336 * The key-value mappings are emitted in no particular order.
1337 */
1338 private void writeObject(java.io.ObjectOutputStream s)
1339 throws java.io.IOException {
1340 // For serialization compatibility
1341 // Emulate segment calculation from previous version of this class
1342 int sshift = 0;
1343 int ssize = 1;
1344 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1345 ++sshift;
1346 ssize <<= 1;
1347 }
1348 int segmentShift = 32 - sshift;
1349 int segmentMask = ssize - 1;
1350 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1351 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1352 for (int i = 0; i < segments.length; ++i)
1353 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1354 s.putFields().put("segments", segments);
1355 s.putFields().put("segmentShift", segmentShift);
1356 s.putFields().put("segmentMask", segmentMask);
1357 s.writeFields();
1358
1359 Node<K,V>[] t;
1360 if ((t = table) != null) {
1361 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1362 for (Node<K,V> p; (p = it.advance()) != null; ) {
1363 s.writeObject(p.key);
1364 s.writeObject(p.val);
1365 }
1366 }
1367 s.writeObject(null);
1368 s.writeObject(null);
1369 segments = null; // throw away
1370 }
1371
1372 /**
1373 * Reconstitutes the instance from a stream (that is, deserializes it).
1374 * @param s the stream
1375 * @throws ClassNotFoundException if the class of a serialized object
1376 * could not be found
1377 * @throws java.io.IOException if an I/O error occurs
1378 */
1379 private void readObject(java.io.ObjectInputStream s)
1380 throws java.io.IOException, ClassNotFoundException {
1381 /*
1382 * To improve performance in typical cases, we create nodes
1383 * while reading, then place in table once size is known.
1384 * However, we must also validate uniqueness and deal with
1385 * overpopulated bins while doing so, which requires
1386 * specialized versions of putVal mechanics.
1387 */
1388 sizeCtl = -1; // force exclusion for table construction
1389 s.defaultReadObject();
1390 long size = 0L;
1391 Node<K,V> p = null;
1392 for (;;) {
1393 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1394 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1395 if (k != null && v != null) {
1396 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1397 ++size;
1398 }
1399 else
1400 break;
1401 }
1402 if (size == 0L)
1403 sizeCtl = 0;
1404 else {
1405 int n;
1406 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1407 n = MAXIMUM_CAPACITY;
1408 else {
1409 int sz = (int)size;
1410 n = tableSizeFor(sz + (sz >>> 1) + 1);
1411 }
1412 @SuppressWarnings("unchecked")
1413 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1414 int mask = n - 1;
1415 long added = 0L;
1416 while (p != null) {
1417 boolean insertAtFront;
1418 Node<K,V> next = p.next, first;
1419 int h = p.hash, j = h & mask;
1420 if ((first = tabAt(tab, j)) == null)
1421 insertAtFront = true;
1422 else {
1423 K k = p.key;
1424 if (first.hash < 0) {
1425 TreeBin<K,V> t = (TreeBin<K,V>)first;
1426 if (t.putTreeVal(h, k, p.val) == null)
1427 ++added;
1428 insertAtFront = false;
1429 }
1430 else {
1431 int binCount = 0;
1432 insertAtFront = true;
1433 Node<K,V> q; K qk;
1434 for (q = first; q != null; q = q.next) {
1435 if (q.hash == h &&
1436 ((qk = q.key) == k ||
1437 (qk != null && k.equals(qk)))) {
1438 insertAtFront = false;
1439 break;
1440 }
1441 ++binCount;
1442 }
1443 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1444 insertAtFront = false;
1445 ++added;
1446 p.next = first;
1447 TreeNode<K,V> hd = null, tl = null;
1448 for (q = p; q != null; q = q.next) {
1449 TreeNode<K,V> t = new TreeNode<K,V>
1450 (q.hash, q.key, q.val, null, null);
1451 if ((t.prev = tl) == null)
1452 hd = t;
1453 else
1454 tl.next = t;
1455 tl = t;
1456 }
1457 setTabAt(tab, j, new TreeBin<K,V>(hd));
1458 }
1459 }
1460 }
1461 if (insertAtFront) {
1462 ++added;
1463 p.next = first;
1464 setTabAt(tab, j, p);
1465 }
1466 p = next;
1467 }
1468 table = tab;
1469 sizeCtl = n - (n >>> 2);
1470 baseCount = added;
1471 }
1472 }
1473
1474 // ConcurrentMap methods
1475
1476 /**
1477 * {@inheritDoc}
1478 *
1479 * @return the previous value associated with the specified key,
1480 * or {@code null} if there was no mapping for the key
1481 * @throws NullPointerException if the specified key or value is null
1482 */
1483 public V putIfAbsent(K key, V value) {
1484 return putVal(key, value, true);
1485 }
1486
1487 /**
1488 * {@inheritDoc}
1489 *
1490 * @throws NullPointerException if the specified key is null
1491 */
1492 public boolean remove(Object key, Object value) {
1493 if (key == null)
1494 throw new NullPointerException();
1495 return value != null && replaceNode(key, null, value) != null;
1496 }
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @throws NullPointerException if any of the arguments are null
1502 */
1503 public boolean replace(K key, V oldValue, V newValue) {
1504 if (key == null || oldValue == null || newValue == null)
1505 throw new NullPointerException();
1506 return replaceNode(key, newValue, oldValue) != null;
1507 }
1508
1509 /**
1510 * {@inheritDoc}
1511 *
1512 * @return the previous value associated with the specified key,
1513 * or {@code null} if there was no mapping for the key
1514 * @throws NullPointerException if the specified key or value is null
1515 */
1516 public V replace(K key, V value) {
1517 if (key == null || value == null)
1518 throw new NullPointerException();
1519 return replaceNode(key, value, null);
1520 }
1521
1522 // Overrides of JDK8+ Map extension method defaults
1523
1524 /**
1525 * Returns the value to which the specified key is mapped, or the
1526 * given default value if this map contains no mapping for the
1527 * key.
1528 *
1529 * @param key the key whose associated value is to be returned
1530 * @param defaultValue the value to return if this map contains
1531 * no mapping for the given key
1532 * @return the mapping for the key, if present; else the default value
1533 * @throws NullPointerException if the specified key is null
1534 */
1535 public V getOrDefault(Object key, V defaultValue) {
1536 V v;
1537 return (v = get(key)) == null ? defaultValue : v;
1538 }
1539
1540 public void forEach(BiConsumer<? super K, ? super V> action) {
1541 if (action == null) throw new NullPointerException();
1542 Node<K,V>[] t;
1543 if ((t = table) != null) {
1544 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1545 for (Node<K,V> p; (p = it.advance()) != null; ) {
1546 action.accept(p.key, p.val);
1547 }
1548 }
1549 }
1550
1551 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1552 if (function == null) throw new NullPointerException();
1553 Node<K,V>[] t;
1554 if ((t = table) != null) {
1555 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1556 for (Node<K,V> p; (p = it.advance()) != null; ) {
1557 V oldValue = p.val;
1558 for (K key = p.key;;) {
1559 V newValue = function.apply(key, oldValue);
1560 if (newValue == null)
1561 throw new NullPointerException();
1562 if (replaceNode(key, newValue, oldValue) != null ||
1563 (oldValue = get(key)) == null)
1564 break;
1565 }
1566 }
1567 }
1568 }
1569
1570 /**
1571 * If the specified key is not already associated with a value,
1572 * attempts to compute its value using the given mapping function
1573 * and enters it into this map unless {@code null}. The entire
1574 * method invocation is performed atomically, so the function is
1575 * applied at most once per key. Some attempted update operations
1576 * on this map by other threads may be blocked while computation
1577 * is in progress, so the computation should be short and simple,
1578 * and must not attempt to update any other mappings of this map.
1579 *
1580 * @param key key with which the specified value is to be associated
1581 * @param mappingFunction the function to compute a value
1582 * @return the current (existing or computed) value associated with
1583 * the specified key, or null if the computed value is null
1584 * @throws NullPointerException if the specified key or mappingFunction
1585 * is null
1586 * @throws IllegalStateException if the computation detectably
1587 * attempts a recursive update to this map that would
1588 * otherwise never complete
1589 * @throws RuntimeException or Error if the mappingFunction does so,
1590 * in which case the mapping is left unestablished
1591 */
1592 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1593 if (key == null || mappingFunction == null)
1594 throw new NullPointerException();
1595 int h = spread(key.hashCode());
1596 V val = null;
1597 int binCount = 0;
1598 for (Node<K,V>[] tab = table;;) {
1599 Node<K,V> f; int n, i, fh;
1600 if (tab == null || (n = tab.length) == 0)
1601 tab = initTable();
1602 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1603 Node<K,V> r = new ReservationNode<K,V>();
1604 synchronized (r) {
1605 if (casTabAt(tab, i, null, r)) {
1606 binCount = 1;
1607 Node<K,V> node = null;
1608 try {
1609 if ((val = mappingFunction.apply(key)) != null)
1610 node = new Node<K,V>(h, key, val, null);
1611 } finally {
1612 setTabAt(tab, i, node);
1613 }
1614 }
1615 }
1616 if (binCount != 0)
1617 break;
1618 }
1619 else if ((fh = f.hash) == MOVED)
1620 tab = helpTransfer(tab, f);
1621 else {
1622 boolean added = false;
1623 synchronized (f) {
1624 if (tabAt(tab, i) == f) {
1625 if (fh >= 0) {
1626 binCount = 1;
1627 for (Node<K,V> e = f;; ++binCount) {
1628 K ek; V ev;
1629 if (e.hash == h &&
1630 ((ek = e.key) == key ||
1631 (ek != null && key.equals(ek)))) {
1632 val = e.val;
1633 break;
1634 }
1635 Node<K,V> pred = e;
1636 if ((e = e.next) == null) {
1637 if ((val = mappingFunction.apply(key)) != null) {
1638 added = true;
1639 pred.next = new Node<K,V>(h, key, val, null);
1640 }
1641 break;
1642 }
1643 }
1644 }
1645 else if (f instanceof TreeBin) {
1646 binCount = 2;
1647 TreeBin<K,V> t = (TreeBin<K,V>)f;
1648 TreeNode<K,V> r, p;
1649 if ((r = t.root) != null &&
1650 (p = r.findTreeNode(h, key, null)) != null)
1651 val = p.val;
1652 else if ((val = mappingFunction.apply(key)) != null) {
1653 added = true;
1654 t.putTreeVal(h, key, val);
1655 }
1656 }
1657 }
1658 }
1659 if (binCount != 0) {
1660 if (binCount >= TREEIFY_THRESHOLD)
1661 treeifyBin(tab, i);
1662 if (!added)
1663 return val;
1664 break;
1665 }
1666 }
1667 }
1668 if (val != null)
1669 addCount(1L, binCount);
1670 return val;
1671 }
1672
1673 /**
1674 * If the value for the specified key is present, attempts to
1675 * compute a new mapping given the key and its current mapped
1676 * value. The entire method invocation is performed atomically.
1677 * Some attempted update operations on this map by other threads
1678 * may be blocked while computation is in progress, so the
1679 * computation should be short and simple, and must not attempt to
1680 * update any other mappings of this map.
1681 *
1682 * @param key key with which a value may be associated
1683 * @param remappingFunction the function to compute a value
1684 * @return the new value associated with the specified key, or null if none
1685 * @throws NullPointerException if the specified key or remappingFunction
1686 * is null
1687 * @throws IllegalStateException if the computation detectably
1688 * attempts a recursive update to this map that would
1689 * otherwise never complete
1690 * @throws RuntimeException or Error if the remappingFunction does so,
1691 * in which case the mapping is unchanged
1692 */
1693 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1694 if (key == null || remappingFunction == null)
1695 throw new NullPointerException();
1696 int h = spread(key.hashCode());
1697 V val = null;
1698 int delta = 0;
1699 int binCount = 0;
1700 for (Node<K,V>[] tab = table;;) {
1701 Node<K,V> f; int n, i, fh;
1702 if (tab == null || (n = tab.length) == 0)
1703 tab = initTable();
1704 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1705 break;
1706 else if ((fh = f.hash) == MOVED)
1707 tab = helpTransfer(tab, f);
1708 else {
1709 synchronized (f) {
1710 if (tabAt(tab, i) == f) {
1711 if (fh >= 0) {
1712 binCount = 1;
1713 for (Node<K,V> e = f, pred = null;; ++binCount) {
1714 K ek;
1715 if (e.hash == h &&
1716 ((ek = e.key) == key ||
1717 (ek != null && key.equals(ek)))) {
1718 val = remappingFunction.apply(key, e.val);
1719 if (val != null)
1720 e.val = val;
1721 else {
1722 delta = -1;
1723 Node<K,V> en = e.next;
1724 if (pred != null)
1725 pred.next = en;
1726 else
1727 setTabAt(tab, i, en);
1728 }
1729 break;
1730 }
1731 pred = e;
1732 if ((e = e.next) == null)
1733 break;
1734 }
1735 }
1736 else if (f instanceof TreeBin) {
1737 binCount = 2;
1738 TreeBin<K,V> t = (TreeBin<K,V>)f;
1739 TreeNode<K,V> r, p;
1740 if ((r = t.root) != null &&
1741 (p = r.findTreeNode(h, key, null)) != null) {
1742 val = remappingFunction.apply(key, p.val);
1743 if (val != null)
1744 p.val = val;
1745 else {
1746 delta = -1;
1747 if (t.removeTreeNode(p))
1748 setTabAt(tab, i, untreeify(t.first));
1749 }
1750 }
1751 }
1752 }
1753 }
1754 if (binCount != 0)
1755 break;
1756 }
1757 }
1758 if (delta != 0)
1759 addCount((long)delta, binCount);
1760 return val;
1761 }
1762
1763 /**
1764 * Attempts to compute a mapping for the specified key and its
1765 * current mapped value (or {@code null} if there is no current
1766 * mapping). The entire method invocation is performed atomically.
1767 * Some attempted update operations on this map by other threads
1768 * may be blocked while computation is in progress, so the
1769 * computation should be short and simple, and must not attempt to
1770 * update any other mappings of this Map.
1771 *
1772 * @param key key with which the specified value is to be associated
1773 * @param remappingFunction the function to compute a value
1774 * @return the new value associated with the specified key, or null if none
1775 * @throws NullPointerException if the specified key or remappingFunction
1776 * is null
1777 * @throws IllegalStateException if the computation detectably
1778 * attempts a recursive update to this map that would
1779 * otherwise never complete
1780 * @throws RuntimeException or Error if the remappingFunction does so,
1781 * in which case the mapping is unchanged
1782 */
1783 public V compute(K key,
1784 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1785 if (key == null || remappingFunction == null)
1786 throw new NullPointerException();
1787 int h = spread(key.hashCode());
1788 V val = null;
1789 int delta = 0;
1790 int binCount = 0;
1791 for (Node<K,V>[] tab = table;;) {
1792 Node<K,V> f; int n, i, fh;
1793 if (tab == null || (n = tab.length) == 0)
1794 tab = initTable();
1795 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1796 Node<K,V> r = new ReservationNode<K,V>();
1797 synchronized (r) {
1798 if (casTabAt(tab, i, null, r)) {
1799 binCount = 1;
1800 Node<K,V> node = null;
1801 try {
1802 if ((val = remappingFunction.apply(key, null)) != null) {
1803 delta = 1;
1804 node = new Node<K,V>(h, key, val, null);
1805 }
1806 } finally {
1807 setTabAt(tab, i, node);
1808 }
1809 }
1810 }
1811 if (binCount != 0)
1812 break;
1813 }
1814 else if ((fh = f.hash) == MOVED)
1815 tab = helpTransfer(tab, f);
1816 else {
1817 synchronized (f) {
1818 if (tabAt(tab, i) == f) {
1819 if (fh >= 0) {
1820 binCount = 1;
1821 for (Node<K,V> e = f, pred = null;; ++binCount) {
1822 K ek;
1823 if (e.hash == h &&
1824 ((ek = e.key) == key ||
1825 (ek != null && key.equals(ek)))) {
1826 val = remappingFunction.apply(key, e.val);
1827 if (val != null)
1828 e.val = val;
1829 else {
1830 delta = -1;
1831 Node<K,V> en = e.next;
1832 if (pred != null)
1833 pred.next = en;
1834 else
1835 setTabAt(tab, i, en);
1836 }
1837 break;
1838 }
1839 pred = e;
1840 if ((e = e.next) == null) {
1841 val = remappingFunction.apply(key, null);
1842 if (val != null) {
1843 delta = 1;
1844 pred.next =
1845 new Node<K,V>(h, key, val, null);
1846 }
1847 break;
1848 }
1849 }
1850 }
1851 else if (f instanceof TreeBin) {
1852 binCount = 1;
1853 TreeBin<K,V> t = (TreeBin<K,V>)f;
1854 TreeNode<K,V> r, p;
1855 if ((r = t.root) != null)
1856 p = r.findTreeNode(h, key, null);
1857 else
1858 p = null;
1859 V pv = (p == null) ? null : p.val;
1860 val = remappingFunction.apply(key, pv);
1861 if (val != null) {
1862 if (p != null)
1863 p.val = val;
1864 else {
1865 delta = 1;
1866 t.putTreeVal(h, key, val);
1867 }
1868 }
1869 else if (p != null) {
1870 delta = -1;
1871 if (t.removeTreeNode(p))
1872 setTabAt(tab, i, untreeify(t.first));
1873 }
1874 }
1875 }
1876 }
1877 if (binCount != 0) {
1878 if (binCount >= TREEIFY_THRESHOLD)
1879 treeifyBin(tab, i);
1880 break;
1881 }
1882 }
1883 }
1884 if (delta != 0)
1885 addCount((long)delta, binCount);
1886 return val;
1887 }
1888
1889 /**
1890 * If the specified key is not already associated with a
1891 * (non-null) value, associates it with the given value.
1892 * Otherwise, replaces the value with the results of the given
1893 * remapping function, or removes if {@code null}. The entire
1894 * method invocation is performed atomically. Some attempted
1895 * update operations on this map by other threads may be blocked
1896 * while computation is in progress, so the computation should be
1897 * short and simple, and must not attempt to update any other
1898 * mappings of this Map.
1899 *
1900 * @param key key with which the specified value is to be associated
1901 * @param value the value to use if absent
1902 * @param remappingFunction the function to recompute a value if present
1903 * @return the new value associated with the specified key, or null if none
1904 * @throws NullPointerException if the specified key or the
1905 * remappingFunction is null
1906 * @throws RuntimeException or Error if the remappingFunction does so,
1907 * in which case the mapping is unchanged
1908 */
1909 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1910 if (key == null || value == null || remappingFunction == null)
1911 throw new NullPointerException();
1912 int h = spread(key.hashCode());
1913 V val = null;
1914 int delta = 0;
1915 int binCount = 0;
1916 for (Node<K,V>[] tab = table;;) {
1917 Node<K,V> f; int n, i, fh;
1918 if (tab == null || (n = tab.length) == 0)
1919 tab = initTable();
1920 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1921 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1922 delta = 1;
1923 val = value;
1924 break;
1925 }
1926 }
1927 else if ((fh = f.hash) == MOVED)
1928 tab = helpTransfer(tab, f);
1929 else {
1930 synchronized (f) {
1931 if (tabAt(tab, i) == f) {
1932 if (fh >= 0) {
1933 binCount = 1;
1934 for (Node<K,V> e = f, pred = null;; ++binCount) {
1935 K ek;
1936 if (e.hash == h &&
1937 ((ek = e.key) == key ||
1938 (ek != null && key.equals(ek)))) {
1939 val = remappingFunction.apply(e.val, value);
1940 if (val != null)
1941 e.val = val;
1942 else {
1943 delta = -1;
1944 Node<K,V> en = e.next;
1945 if (pred != null)
1946 pred.next = en;
1947 else
1948 setTabAt(tab, i, en);
1949 }
1950 break;
1951 }
1952 pred = e;
1953 if ((e = e.next) == null) {
1954 delta = 1;
1955 val = value;
1956 pred.next =
1957 new Node<K,V>(h, key, val, null);
1958 break;
1959 }
1960 }
1961 }
1962 else if (f instanceof TreeBin) {
1963 binCount = 2;
1964 TreeBin<K,V> t = (TreeBin<K,V>)f;
1965 TreeNode<K,V> r = t.root;
1966 TreeNode<K,V> p = (r == null) ? null :
1967 r.findTreeNode(h, key, null);
1968 val = (p == null) ? value :
1969 remappingFunction.apply(p.val, value);
1970 if (val != null) {
1971 if (p != null)
1972 p.val = val;
1973 else {
1974 delta = 1;
1975 t.putTreeVal(h, key, val);
1976 }
1977 }
1978 else if (p != null) {
1979 delta = -1;
1980 if (t.removeTreeNode(p))
1981 setTabAt(tab, i, untreeify(t.first));
1982 }
1983 }
1984 }
1985 }
1986 if (binCount != 0) {
1987 if (binCount >= TREEIFY_THRESHOLD)
1988 treeifyBin(tab, i);
1989 break;
1990 }
1991 }
1992 }
1993 if (delta != 0)
1994 addCount((long)delta, binCount);
1995 return val;
1996 }
1997
1998 // Hashtable legacy methods
1999
2000 /**
2001 * Legacy method testing if some key maps into the specified value
2002 * in this table. This method is identical in functionality to
2003 * {@link #containsValue(Object)}, and exists solely to ensure
2004 * full compatibility with class {@link java.util.Hashtable},
2005 * which supported this method prior to introduction of the
2006 * Java Collections framework.
2007 *
2008 * @param value a value to search for
2009 * @return {@code true} if and only if some key maps to the
2010 * {@code value} argument in this table as
2011 * determined by the {@code equals} method;
2012 * {@code false} otherwise
2013 * @throws NullPointerException if the specified value is null
2014 */
2015 @Deprecated public boolean contains(Object value) {
2016 return containsValue(value);
2017 }
2018
2019 /**
2020 * Returns an enumeration of the keys in this table.
2021 *
2022 * @return an enumeration of the keys in this table
2023 * @see #keySet()
2024 */
2025 public Enumeration<K> keys() {
2026 Node<K,V>[] t;
2027 int f = (t = table) == null ? 0 : t.length;
2028 return new KeyIterator<K,V>(t, f, 0, f, this);
2029 }
2030
2031 /**
2032 * Returns an enumeration of the values in this table.
2033 *
2034 * @return an enumeration of the values in this table
2035 * @see #values()
2036 */
2037 public Enumeration<V> elements() {
2038 Node<K,V>[] t;
2039 int f = (t = table) == null ? 0 : t.length;
2040 return new ValueIterator<K,V>(t, f, 0, f, this);
2041 }
2042
2043 // ConcurrentHashMap-only methods
2044
2045 /**
2046 * Returns the number of mappings. This method should be used
2047 * instead of {@link #size} because a ConcurrentHashMap may
2048 * contain more mappings than can be represented as an int. The
2049 * value returned is an estimate; the actual count may differ if
2050 * there are concurrent insertions or removals.
2051 *
2052 * @return the number of mappings
2053 * @since 1.8
2054 */
2055 public long mappingCount() {
2056 long n = sumCount();
2057 return (n < 0L) ? 0L : n; // ignore transient negative values
2058 }
2059
2060 /**
2061 * Creates a new {@link Set} backed by a ConcurrentHashMap
2062 * from the given type to {@code Boolean.TRUE}.
2063 *
2064 * @param <K> the element type of the returned set
2065 * @return the new set
2066 * @since 1.8
2067 */
2068 public static <K> KeySetView<K,Boolean> newKeySet() {
2069 return new KeySetView<K,Boolean>
2070 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2071 }
2072
2073 /**
2074 * Creates a new {@link Set} backed by a ConcurrentHashMap
2075 * from the given type to {@code Boolean.TRUE}.
2076 *
2077 * @param initialCapacity The implementation performs internal
2078 * sizing to accommodate this many elements.
2079 * @param <K> the element type of the returned set
2080 * @return the new set
2081 * @throws IllegalArgumentException if the initial capacity of
2082 * elements is negative
2083 * @since 1.8
2084 */
2085 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2086 return new KeySetView<K,Boolean>
2087 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2088 }
2089
2090 /**
2091 * Returns a {@link Set} view of the keys in this map, using the
2092 * given common mapped value for any additions (i.e., {@link
2093 * Collection#add} and {@link Collection#addAll(Collection)}).
2094 * This is of course only appropriate if it is acceptable to use
2095 * the same value for all additions from this view.
2096 *
2097 * @param mappedValue the mapped value to use for any additions
2098 * @return the set view
2099 * @throws NullPointerException if the mappedValue is null
2100 */
2101 public KeySetView<K,V> keySet(V mappedValue) {
2102 if (mappedValue == null)
2103 throw new NullPointerException();
2104 return new KeySetView<K,V>(this, mappedValue);
2105 }
2106
2107 /* ---------------- Special Nodes -------------- */
2108
2109 /**
2110 * A node inserted at head of bins during transfer operations.
2111 */
2112 static final class ForwardingNode<K,V> extends Node<K,V> {
2113 final Node<K,V>[] nextTable;
2114 ForwardingNode(Node<K,V>[] tab) {
2115 super(MOVED, null, null, null);
2116 this.nextTable = tab;
2117 }
2118
2119 Node<K,V> find(int h, Object k) {
2120 // loop to avoid arbitrarily deep recursion on forwarding nodes
2121 outer: for (Node<K,V>[] tab = nextTable;;) {
2122 Node<K,V> e; int n;
2123 if (k == null || tab == null || (n = tab.length) == 0 ||
2124 (e = tabAt(tab, (n - 1) & h)) == null)
2125 return null;
2126 for (;;) {
2127 int eh; K ek;
2128 if ((eh = e.hash) == h &&
2129 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2130 return e;
2131 if (eh < 0) {
2132 if (e instanceof ForwardingNode) {
2133 tab = ((ForwardingNode<K,V>)e).nextTable;
2134 continue outer;
2135 }
2136 else
2137 return e.find(h, k);
2138 }
2139 if ((e = e.next) == null)
2140 return null;
2141 }
2142 }
2143 }
2144 }
2145
2146 /**
2147 * A place-holder node used in computeIfAbsent and compute
2148 */
2149 static final class ReservationNode<K,V> extends Node<K,V> {
2150 ReservationNode() {
2151 super(RESERVED, null, null, null);
2152 }
2153
2154 Node<K,V> find(int h, Object k) {
2155 return null;
2156 }
2157 }
2158
2159 /* ---------------- Table Initialization and Resizing -------------- */
2160
2161 /**
2162 * Initializes table, using the size recorded in sizeCtl.
2163 */
2164 private final Node<K,V>[] initTable() {
2165 Node<K,V>[] tab; int sc;
2166 while ((tab = table) == null || tab.length == 0) {
2167 if ((sc = sizeCtl) < 0)
2168 Thread.yield(); // lost initialization race; just spin
2169 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2170 try {
2171 if ((tab = table) == null || tab.length == 0) {
2172 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2173 @SuppressWarnings("unchecked")
2174 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2175 table = tab = nt;
2176 sc = n - (n >>> 2);
2177 }
2178 } finally {
2179 sizeCtl = sc;
2180 }
2181 break;
2182 }
2183 }
2184 return tab;
2185 }
2186
2187 /**
2188 * Adds to count, and if table is too small and not already
2189 * resizing, initiates transfer. If already resizing, helps
2190 * perform transfer if work is available. Rechecks occupancy
2191 * after a transfer to see if another resize is already needed
2192 * because resizings are lagging additions.
2193 *
2194 * @param x the count to add
2195 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2196 */
2197 private final void addCount(long x, int check) {
2198 CounterCell[] as; long b, s;
2199 if ((as = counterCells) != null ||
2200 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2201 CounterCell a; long v; int m;
2202 boolean uncontended = true;
2203 if (as == null || (m = as.length - 1) < 0 ||
2204 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2205 !(uncontended =
2206 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2207 fullAddCount(x, uncontended);
2208 return;
2209 }
2210 if (check <= 1)
2211 return;
2212 s = sumCount();
2213 }
2214 if (check >= 0) {
2215 Node<K,V>[] tab, nt; int sc;
2216 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2217 tab.length < MAXIMUM_CAPACITY) {
2218 if (sc < 0) {
2219 if (sc == -1 || transferIndex <= transferOrigin ||
2220 (nt = nextTable) == null)
2221 break;
2222 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2223 transfer(tab, nt);
2224 }
2225 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2226 transfer(tab, null);
2227 s = sumCount();
2228 }
2229 }
2230 }
2231
2232 /**
2233 * Helps transfer if a resize is in progress.
2234 */
2235 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2236 Node<K,V>[] nextTab; int sc;
2237 if ((f instanceof ForwardingNode) &&
2238 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2239 if (nextTab == nextTable && tab == table &&
2240 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2241 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2242 transfer(tab, nextTab);
2243 return nextTab;
2244 }
2245 return table;
2246 }
2247
2248 /**
2249 * Tries to presize table to accommodate the given number of elements.
2250 *
2251 * @param size number of elements (doesn't need to be perfectly accurate)
2252 */
2253 private final void tryPresize(int size) {
2254 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2255 tableSizeFor(size + (size >>> 1) + 1);
2256 int sc;
2257 while ((sc = sizeCtl) >= 0) {
2258 Node<K,V>[] tab = table; int n;
2259 if (tab == null || (n = tab.length) == 0) {
2260 n = (sc > c) ? sc : c;
2261 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2262 try {
2263 if (table == tab) {
2264 @SuppressWarnings("unchecked")
2265 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2266 table = nt;
2267 sc = n - (n >>> 2);
2268 }
2269 } finally {
2270 sizeCtl = sc;
2271 }
2272 }
2273 }
2274 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2275 break;
2276 else if (tab == table &&
2277 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2278 transfer(tab, null);
2279 }
2280 }
2281
2282 /**
2283 * Moves and/or copies the nodes in each bin to new table. See
2284 * above for explanation.
2285 */
2286 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2287 int n = tab.length, stride;
2288 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2289 stride = MIN_TRANSFER_STRIDE; // subdivide range
2290 if (nextTab == null) { // initiating
2291 try {
2292 @SuppressWarnings("unchecked")
2293 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2294 nextTab = nt;
2295 } catch (Throwable ex) { // try to cope with OOME
2296 sizeCtl = Integer.MAX_VALUE;
2297 return;
2298 }
2299 nextTable = nextTab;
2300 transferOrigin = n;
2301 transferIndex = n;
2302 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2303 for (int k = n; k > 0;) { // progressively reveal ready slots
2304 int nextk = (k > stride) ? k - stride : 0;
2305 for (int m = nextk; m < k; ++m)
2306 nextTab[m] = rev;
2307 for (int m = n + nextk; m < n + k; ++m)
2308 nextTab[m] = rev;
2309 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2310 }
2311 }
2312 int nextn = nextTab.length;
2313 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2314 boolean advance = true;
2315 boolean finishing = false; // to ensure sweep before committing nextTab
2316 for (int i = 0, bound = 0;;) {
2317 int nextIndex, nextBound, fh; Node<K,V> f;
2318 while (advance) {
2319 if (--i >= bound || finishing)
2320 advance = false;
2321 else if ((nextIndex = transferIndex) <= transferOrigin) {
2322 i = -1;
2323 advance = false;
2324 }
2325 else if (U.compareAndSwapInt
2326 (this, TRANSFERINDEX, nextIndex,
2327 nextBound = (nextIndex > stride ?
2328 nextIndex - stride : 0))) {
2329 bound = nextBound;
2330 i = nextIndex - 1;
2331 advance = false;
2332 }
2333 }
2334 if (i < 0 || i >= n || i + n >= nextn) {
2335 if (finishing) {
2336 nextTable = null;
2337 table = nextTab;
2338 sizeCtl = (n << 1) - (n >>> 1);
2339 return;
2340 }
2341 for (int sc;;) {
2342 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2343 if (sc != -1)
2344 return;
2345 finishing = advance = true;
2346 i = n; // recheck before commit
2347 break;
2348 }
2349 }
2350 }
2351 else if ((f = tabAt(tab, i)) == null) {
2352 if (casTabAt(tab, i, null, fwd)) {
2353 setTabAt(nextTab, i, null);
2354 setTabAt(nextTab, i + n, null);
2355 advance = true;
2356 }
2357 }
2358 else if ((fh = f.hash) == MOVED)
2359 advance = true; // already processed
2360 else {
2361 synchronized (f) {
2362 if (tabAt(tab, i) == f) {
2363 Node<K,V> ln, hn;
2364 if (fh >= 0) {
2365 int runBit = fh & n;
2366 Node<K,V> lastRun = f;
2367 for (Node<K,V> p = f.next; p != null; p = p.next) {
2368 int b = p.hash & n;
2369 if (b != runBit) {
2370 runBit = b;
2371 lastRun = p;
2372 }
2373 }
2374 if (runBit == 0) {
2375 ln = lastRun;
2376 hn = null;
2377 }
2378 else {
2379 hn = lastRun;
2380 ln = null;
2381 }
2382 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2383 int ph = p.hash; K pk = p.key; V pv = p.val;
2384 if ((ph & n) == 0)
2385 ln = new Node<K,V>(ph, pk, pv, ln);
2386 else
2387 hn = new Node<K,V>(ph, pk, pv, hn);
2388 }
2389 setTabAt(nextTab, i, ln);
2390 setTabAt(nextTab, i + n, hn);
2391 setTabAt(tab, i, fwd);
2392 advance = true;
2393 }
2394 else if (f instanceof TreeBin) {
2395 TreeBin<K,V> t = (TreeBin<K,V>)f;
2396 TreeNode<K,V> lo = null, loTail = null;
2397 TreeNode<K,V> hi = null, hiTail = null;
2398 int lc = 0, hc = 0;
2399 for (Node<K,V> e = t.first; e != null; e = e.next) {
2400 int h = e.hash;
2401 TreeNode<K,V> p = new TreeNode<K,V>
2402 (h, e.key, e.val, null, null);
2403 if ((h & n) == 0) {
2404 if ((p.prev = loTail) == null)
2405 lo = p;
2406 else
2407 loTail.next = p;
2408 loTail = p;
2409 ++lc;
2410 }
2411 else {
2412 if ((p.prev = hiTail) == null)
2413 hi = p;
2414 else
2415 hiTail.next = p;
2416 hiTail = p;
2417 ++hc;
2418 }
2419 }
2420 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2421 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2422 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2423 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2424 setTabAt(nextTab, i, ln);
2425 setTabAt(nextTab, i + n, hn);
2426 setTabAt(tab, i, fwd);
2427 advance = true;
2428 }
2429 }
2430 }
2431 }
2432 }
2433 }
2434
2435 /* ---------------- Counter support -------------- */
2436
2437 /**
2438 * A padded cell for distributing counts. Adapted from LongAdder
2439 * and Striped64. See their internal docs for explanation.
2440 */
2441 @sun.misc.Contended static final class CounterCell {
2442 volatile long value;
2443 CounterCell(long x) { value = x; }
2444 }
2445
2446 final long sumCount() {
2447 CounterCell[] as = counterCells; CounterCell a;
2448 long sum = baseCount;
2449 if (as != null) {
2450 for (int i = 0; i < as.length; ++i) {
2451 if ((a = as[i]) != null)
2452 sum += a.value;
2453 }
2454 }
2455 return sum;
2456 }
2457
2458 // See LongAdder version for explanation
2459 private final void fullAddCount(long x, boolean wasUncontended) {
2460 int h;
2461 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2462 ThreadLocalRandom.localInit(); // force initialization
2463 h = ThreadLocalRandom.getProbe();
2464 wasUncontended = true;
2465 }
2466 boolean collide = false; // True if last slot nonempty
2467 for (;;) {
2468 CounterCell[] as; CounterCell a; int n; long v;
2469 if ((as = counterCells) != null && (n = as.length) > 0) {
2470 if ((a = as[(n - 1) & h]) == null) {
2471 if (cellsBusy == 0) { // Try to attach new Cell
2472 CounterCell r = new CounterCell(x); // Optimistic create
2473 if (cellsBusy == 0 &&
2474 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2475 boolean created = false;
2476 try { // Recheck under lock
2477 CounterCell[] rs; int m, j;
2478 if ((rs = counterCells) != null &&
2479 (m = rs.length) > 0 &&
2480 rs[j = (m - 1) & h] == null) {
2481 rs[j] = r;
2482 created = true;
2483 }
2484 } finally {
2485 cellsBusy = 0;
2486 }
2487 if (created)
2488 break;
2489 continue; // Slot is now non-empty
2490 }
2491 }
2492 collide = false;
2493 }
2494 else if (!wasUncontended) // CAS already known to fail
2495 wasUncontended = true; // Continue after rehash
2496 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2497 break;
2498 else if (counterCells != as || n >= NCPU)
2499 collide = false; // At max size or stale
2500 else if (!collide)
2501 collide = true;
2502 else if (cellsBusy == 0 &&
2503 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2504 try {
2505 if (counterCells == as) {// Expand table unless stale
2506 CounterCell[] rs = new CounterCell[n << 1];
2507 for (int i = 0; i < n; ++i)
2508 rs[i] = as[i];
2509 counterCells = rs;
2510 }
2511 } finally {
2512 cellsBusy = 0;
2513 }
2514 collide = false;
2515 continue; // Retry with expanded table
2516 }
2517 h = ThreadLocalRandom.advanceProbe(h);
2518 }
2519 else if (cellsBusy == 0 && counterCells == as &&
2520 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2521 boolean init = false;
2522 try { // Initialize table
2523 if (counterCells == as) {
2524 CounterCell[] rs = new CounterCell[2];
2525 rs[h & 1] = new CounterCell(x);
2526 counterCells = rs;
2527 init = true;
2528 }
2529 } finally {
2530 cellsBusy = 0;
2531 }
2532 if (init)
2533 break;
2534 }
2535 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2536 break; // Fall back on using base
2537 }
2538 }
2539
2540 /* ---------------- Conversion from/to TreeBins -------------- */
2541
2542 /**
2543 * Replaces all linked nodes in bin at given index unless table is
2544 * too small, in which case resizes instead.
2545 */
2546 private final void treeifyBin(Node<K,V>[] tab, int index) {
2547 Node<K,V> b; int n, sc;
2548 if (tab != null) {
2549 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2550 if (tab == table && (sc = sizeCtl) >= 0 &&
2551 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2552 transfer(tab, null);
2553 }
2554 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2555 synchronized (b) {
2556 if (tabAt(tab, index) == b) {
2557 TreeNode<K,V> hd = null, tl = null;
2558 for (Node<K,V> e = b; e != null; e = e.next) {
2559 TreeNode<K,V> p =
2560 new TreeNode<K,V>(e.hash, e.key, e.val,
2561 null, null);
2562 if ((p.prev = tl) == null)
2563 hd = p;
2564 else
2565 tl.next = p;
2566 tl = p;
2567 }
2568 setTabAt(tab, index, new TreeBin<K,V>(hd));
2569 }
2570 }
2571 }
2572 }
2573 }
2574
2575 /**
2576 * Returns a list on non-TreeNodes replacing those in given list.
2577 */
2578 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2579 Node<K,V> hd = null, tl = null;
2580 for (Node<K,V> q = b; q != null; q = q.next) {
2581 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2582 if (tl == null)
2583 hd = p;
2584 else
2585 tl.next = p;
2586 tl = p;
2587 }
2588 return hd;
2589 }
2590
2591 /* ---------------- TreeNodes -------------- */
2592
2593 /**
2594 * Nodes for use in TreeBins
2595 */
2596 static final class TreeNode<K,V> extends Node<K,V> {
2597 TreeNode<K,V> parent; // red-black tree links
2598 TreeNode<K,V> left;
2599 TreeNode<K,V> right;
2600 TreeNode<K,V> prev; // needed to unlink next upon deletion
2601 boolean red;
2602
2603 TreeNode(int hash, K key, V val, Node<K,V> next,
2604 TreeNode<K,V> parent) {
2605 super(hash, key, val, next);
2606 this.parent = parent;
2607 }
2608
2609 Node<K,V> find(int h, Object k) {
2610 return findTreeNode(h, k, null);
2611 }
2612
2613 /**
2614 * Returns the TreeNode (or null if not found) for the given key
2615 * starting at given root.
2616 */
2617 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2618 if (k != null) {
2619 TreeNode<K,V> p = this;
2620 do {
2621 int ph, dir; K pk; TreeNode<K,V> q;
2622 TreeNode<K,V> pl = p.left, pr = p.right;
2623 if ((ph = p.hash) > h)
2624 p = pl;
2625 else if (ph < h)
2626 p = pr;
2627 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2628 return p;
2629 else if (pl == null)
2630 p = pr;
2631 else if (pr == null)
2632 p = pl;
2633 else if ((kc != null ||
2634 (kc = comparableClassFor(k)) != null) &&
2635 (dir = compareComparables(kc, k, pk)) != 0)
2636 p = (dir < 0) ? pl : pr;
2637 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2638 return q;
2639 else
2640 p = pl;
2641 } while (p != null);
2642 }
2643 return null;
2644 }
2645 }
2646
2647 /* ---------------- TreeBins -------------- */
2648
2649 /**
2650 * TreeNodes used at the heads of bins. TreeBins do not hold user
2651 * keys or values, but instead point to list of TreeNodes and
2652 * their root. They also maintain a parasitic read-write lock
2653 * forcing writers (who hold bin lock) to wait for readers (who do
2654 * not) to complete before tree restructuring operations.
2655 */
2656 static final class TreeBin<K,V> extends Node<K,V> {
2657 TreeNode<K,V> root;
2658 volatile TreeNode<K,V> first;
2659 volatile Thread waiter;
2660 volatile int lockState;
2661 // values for lockState
2662 static final int WRITER = 1; // set while holding write lock
2663 static final int WAITER = 2; // set when waiting for write lock
2664 static final int READER = 4; // increment value for setting read lock
2665
2666 /**
2667 * Tie-breaking utility for ordering insertions when equal
2668 * hashCodes and non-comparable. We don't require a total
2669 * order, just a consistent insertion rule to maintain
2670 * equivalence across rebalancings. Tie-breaking further than
2671 * necessary simplifies testing a bit.
2672 */
2673 static int tieBreakOrder(Object a, Object b) {
2674 int d;
2675 if (a == null || b == null ||
2676 (d = a.getClass().getName().
2677 compareTo(b.getClass().getName())) == 0)
2678 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2679 -1 : 1);
2680 return d;
2681 }
2682
2683 /**
2684 * Creates bin with initial set of nodes headed by b.
2685 */
2686 TreeBin(TreeNode<K,V> b) {
2687 super(TREEBIN, null, null, null);
2688 this.first = b;
2689 TreeNode<K,V> r = null;
2690 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2691 next = (TreeNode<K,V>)x.next;
2692 x.left = x.right = null;
2693 if (r == null) {
2694 x.parent = null;
2695 x.red = false;
2696 r = x;
2697 }
2698 else {
2699 K k = x.key;
2700 int h = x.hash;
2701 Class<?> kc = null;
2702 for (TreeNode<K,V> p = r;;) {
2703 int dir, ph;
2704 K pk = p.key;
2705 if ((ph = p.hash) > h)
2706 dir = -1;
2707 else if (ph < h)
2708 dir = 1;
2709 else if ((kc == null &&
2710 (kc = comparableClassFor(k)) == null) ||
2711 (dir = compareComparables(kc, k, pk)) == 0)
2712 dir = tieBreakOrder(k, pk);
2713 TreeNode<K,V> xp = p;
2714 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2715 x.parent = xp;
2716 if (dir <= 0)
2717 xp.left = x;
2718 else
2719 xp.right = x;
2720 r = balanceInsertion(r, x);
2721 break;
2722 }
2723 }
2724 }
2725 }
2726 this.root = r;
2727 assert checkInvariants(root);
2728 }
2729
2730 /**
2731 * Acquires write lock for tree restructuring.
2732 */
2733 private final void lockRoot() {
2734 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2735 contendedLock(); // offload to separate method
2736 }
2737
2738 /**
2739 * Releases write lock for tree restructuring.
2740 */
2741 private final void unlockRoot() {
2742 lockState = 0;
2743 }
2744
2745 /**
2746 * Possibly blocks awaiting root lock.
2747 */
2748 private final void contendedLock() {
2749 boolean waiting = false;
2750 for (int s;;) {
2751 if (((s = lockState) & WRITER) == 0) {
2752 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2753 if (waiting)
2754 waiter = null;
2755 return;
2756 }
2757 }
2758 else if ((s & WAITER) == 0) {
2759 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2760 waiting = true;
2761 waiter = Thread.currentThread();
2762 }
2763 }
2764 else if (waiting)
2765 LockSupport.park(this);
2766 }
2767 }
2768
2769 /**
2770 * Returns matching node or null if none. Tries to search
2771 * using tree comparisons from root, but continues linear
2772 * search when lock not available.
2773 */
2774 final Node<K,V> find(int h, Object k) {
2775 if (k != null) {
2776 for (Node<K,V> e = first; e != null; e = e.next) {
2777 int s; K ek;
2778 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2779 if (e.hash == h &&
2780 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2781 return e;
2782 }
2783 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2784 s + READER)) {
2785 TreeNode<K,V> r, p;
2786 try {
2787 p = ((r = root) == null ? null :
2788 r.findTreeNode(h, k, null));
2789 } finally {
2790 Thread w;
2791 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2792 (READER|WAITER) && (w = waiter) != null)
2793 LockSupport.unpark(w);
2794 }
2795 return p;
2796 }
2797 }
2798 }
2799 return null;
2800 }
2801
2802 /**
2803 * Finds or adds a node.
2804 * @return null if added
2805 */
2806 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2807 Class<?> kc = null;
2808 boolean searched = false;
2809 for (TreeNode<K,V> p = root;;) {
2810 int dir, ph; K pk;
2811 if (p == null) {
2812 first = root = new TreeNode<K,V>(h, k, v, null, null);
2813 break;
2814 }
2815 else if ((ph = p.hash) > h)
2816 dir = -1;
2817 else if (ph < h)
2818 dir = 1;
2819 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2820 return p;
2821 else if ((kc == null &&
2822 (kc = comparableClassFor(k)) == null) ||
2823 (dir = compareComparables(kc, k, pk)) == 0) {
2824 if (!searched) {
2825 TreeNode<K,V> q, ch;
2826 searched = true;
2827 if (((ch = p.left) != null &&
2828 (q = ch.findTreeNode(h, k, kc)) != null) ||
2829 ((ch = p.right) != null &&
2830 (q = ch.findTreeNode(h, k, kc)) != null))
2831 return q;
2832 }
2833 dir = tieBreakOrder(k, pk);
2834 }
2835
2836 TreeNode<K,V> xp = p;
2837 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2838 TreeNode<K,V> x, f = first;
2839 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2840 if (f != null)
2841 f.prev = x;
2842 if (dir <= 0)
2843 xp.left = x;
2844 else
2845 xp.right = x;
2846 if (!xp.red)
2847 x.red = true;
2848 else {
2849 lockRoot();
2850 try {
2851 root = balanceInsertion(root, x);
2852 } finally {
2853 unlockRoot();
2854 }
2855 }
2856 break;
2857 }
2858 }
2859 assert checkInvariants(root);
2860 return null;
2861 }
2862
2863 /**
2864 * Removes the given node, that must be present before this
2865 * call. This is messier than typical red-black deletion code
2866 * because we cannot swap the contents of an interior node
2867 * with a leaf successor that is pinned by "next" pointers
2868 * that are accessible independently of lock. So instead we
2869 * swap the tree linkages.
2870 *
2871 * @return true if now too small, so should be untreeified
2872 */
2873 final boolean removeTreeNode(TreeNode<K,V> p) {
2874 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2875 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2876 TreeNode<K,V> r, rl;
2877 if (pred == null)
2878 first = next;
2879 else
2880 pred.next = next;
2881 if (next != null)
2882 next.prev = pred;
2883 if (first == null) {
2884 root = null;
2885 return true;
2886 }
2887 if ((r = root) == null || r.right == null || // too small
2888 (rl = r.left) == null || rl.left == null)
2889 return true;
2890 lockRoot();
2891 try {
2892 TreeNode<K,V> replacement;
2893 TreeNode<K,V> pl = p.left;
2894 TreeNode<K,V> pr = p.right;
2895 if (pl != null && pr != null) {
2896 TreeNode<K,V> s = pr, sl;
2897 while ((sl = s.left) != null) // find successor
2898 s = sl;
2899 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2900 TreeNode<K,V> sr = s.right;
2901 TreeNode<K,V> pp = p.parent;
2902 if (s == pr) { // p was s's direct parent
2903 p.parent = s;
2904 s.right = p;
2905 }
2906 else {
2907 TreeNode<K,V> sp = s.parent;
2908 if ((p.parent = sp) != null) {
2909 if (s == sp.left)
2910 sp.left = p;
2911 else
2912 sp.right = p;
2913 }
2914 if ((s.right = pr) != null)
2915 pr.parent = s;
2916 }
2917 p.left = null;
2918 if ((p.right = sr) != null)
2919 sr.parent = p;
2920 if ((s.left = pl) != null)
2921 pl.parent = s;
2922 if ((s.parent = pp) == null)
2923 r = s;
2924 else if (p == pp.left)
2925 pp.left = s;
2926 else
2927 pp.right = s;
2928 if (sr != null)
2929 replacement = sr;
2930 else
2931 replacement = p;
2932 }
2933 else if (pl != null)
2934 replacement = pl;
2935 else if (pr != null)
2936 replacement = pr;
2937 else
2938 replacement = p;
2939 if (replacement != p) {
2940 TreeNode<K,V> pp = replacement.parent = p.parent;
2941 if (pp == null)
2942 r = replacement;
2943 else if (p == pp.left)
2944 pp.left = replacement;
2945 else
2946 pp.right = replacement;
2947 p.left = p.right = p.parent = null;
2948 }
2949
2950 root = (p.red) ? r : balanceDeletion(r, replacement);
2951
2952 if (p == replacement) { // detach pointers
2953 TreeNode<K,V> pp;
2954 if ((pp = p.parent) != null) {
2955 if (p == pp.left)
2956 pp.left = null;
2957 else if (p == pp.right)
2958 pp.right = null;
2959 p.parent = null;
2960 }
2961 }
2962 } finally {
2963 unlockRoot();
2964 }
2965 assert checkInvariants(root);
2966 return false;
2967 }
2968
2969 /* ------------------------------------------------------------ */
2970 // Red-black tree methods, all adapted from CLR
2971
2972 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2973 TreeNode<K,V> p) {
2974 TreeNode<K,V> r, pp, rl;
2975 if (p != null && (r = p.right) != null) {
2976 if ((rl = p.right = r.left) != null)
2977 rl.parent = p;
2978 if ((pp = r.parent = p.parent) == null)
2979 (root = r).red = false;
2980 else if (pp.left == p)
2981 pp.left = r;
2982 else
2983 pp.right = r;
2984 r.left = p;
2985 p.parent = r;
2986 }
2987 return root;
2988 }
2989
2990 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2991 TreeNode<K,V> p) {
2992 TreeNode<K,V> l, pp, lr;
2993 if (p != null && (l = p.left) != null) {
2994 if ((lr = p.left = l.right) != null)
2995 lr.parent = p;
2996 if ((pp = l.parent = p.parent) == null)
2997 (root = l).red = false;
2998 else if (pp.right == p)
2999 pp.right = l;
3000 else
3001 pp.left = l;
3002 l.right = p;
3003 p.parent = l;
3004 }
3005 return root;
3006 }
3007
3008 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3009 TreeNode<K,V> x) {
3010 x.red = true;
3011 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3012 if ((xp = x.parent) == null) {
3013 x.red = false;
3014 return x;
3015 }
3016 else if (!xp.red || (xpp = xp.parent) == null)
3017 return root;
3018 if (xp == (xppl = xpp.left)) {
3019 if ((xppr = xpp.right) != null && xppr.red) {
3020 xppr.red = false;
3021 xp.red = false;
3022 xpp.red = true;
3023 x = xpp;
3024 }
3025 else {
3026 if (x == xp.right) {
3027 root = rotateLeft(root, x = xp);
3028 xpp = (xp = x.parent) == null ? null : xp.parent;
3029 }
3030 if (xp != null) {
3031 xp.red = false;
3032 if (xpp != null) {
3033 xpp.red = true;
3034 root = rotateRight(root, xpp);
3035 }
3036 }
3037 }
3038 }
3039 else {
3040 if (xppl != null && xppl.red) {
3041 xppl.red = false;
3042 xp.red = false;
3043 xpp.red = true;
3044 x = xpp;
3045 }
3046 else {
3047 if (x == xp.left) {
3048 root = rotateRight(root, x = xp);
3049 xpp = (xp = x.parent) == null ? null : xp.parent;
3050 }
3051 if (xp != null) {
3052 xp.red = false;
3053 if (xpp != null) {
3054 xpp.red = true;
3055 root = rotateLeft(root, xpp);
3056 }
3057 }
3058 }
3059 }
3060 }
3061 }
3062
3063 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3064 TreeNode<K,V> x) {
3065 for (TreeNode<K,V> xp, xpl, xpr;;) {
3066 if (x == null || x == root)
3067 return root;
3068 else if ((xp = x.parent) == null) {
3069 x.red = false;
3070 return x;
3071 }
3072 else if (x.red) {
3073 x.red = false;
3074 return root;
3075 }
3076 else if ((xpl = xp.left) == x) {
3077 if ((xpr = xp.right) != null && xpr.red) {
3078 xpr.red = false;
3079 xp.red = true;
3080 root = rotateLeft(root, xp);
3081 xpr = (xp = x.parent) == null ? null : xp.right;
3082 }
3083 if (xpr == null)
3084 x = xp;
3085 else {
3086 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3087 if ((sr == null || !sr.red) &&
3088 (sl == null || !sl.red)) {
3089 xpr.red = true;
3090 x = xp;
3091 }
3092 else {
3093 if (sr == null || !sr.red) {
3094 if (sl != null)
3095 sl.red = false;
3096 xpr.red = true;
3097 root = rotateRight(root, xpr);
3098 xpr = (xp = x.parent) == null ?
3099 null : xp.right;
3100 }
3101 if (xpr != null) {
3102 xpr.red = (xp == null) ? false : xp.red;
3103 if ((sr = xpr.right) != null)
3104 sr.red = false;
3105 }
3106 if (xp != null) {
3107 xp.red = false;
3108 root = rotateLeft(root, xp);
3109 }
3110 x = root;
3111 }
3112 }
3113 }
3114 else { // symmetric
3115 if (xpl != null && xpl.red) {
3116 xpl.red = false;
3117 xp.red = true;
3118 root = rotateRight(root, xp);
3119 xpl = (xp = x.parent) == null ? null : xp.left;
3120 }
3121 if (xpl == null)
3122 x = xp;
3123 else {
3124 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3125 if ((sl == null || !sl.red) &&
3126 (sr == null || !sr.red)) {
3127 xpl.red = true;
3128 x = xp;
3129 }
3130 else {
3131 if (sl == null || !sl.red) {
3132 if (sr != null)
3133 sr.red = false;
3134 xpl.red = true;
3135 root = rotateLeft(root, xpl);
3136 xpl = (xp = x.parent) == null ?
3137 null : xp.left;
3138 }
3139 if (xpl != null) {
3140 xpl.red = (xp == null) ? false : xp.red;
3141 if ((sl = xpl.left) != null)
3142 sl.red = false;
3143 }
3144 if (xp != null) {
3145 xp.red = false;
3146 root = rotateRight(root, xp);
3147 }
3148 x = root;
3149 }
3150 }
3151 }
3152 }
3153 }
3154
3155 /**
3156 * Recursive invariant check
3157 */
3158 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3159 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3160 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3161 if (tb != null && tb.next != t)
3162 return false;
3163 if (tn != null && tn.prev != t)
3164 return false;
3165 if (tp != null && t != tp.left && t != tp.right)
3166 return false;
3167 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3168 return false;
3169 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3170 return false;
3171 if (t.red && tl != null && tl.red && tr != null && tr.red)
3172 return false;
3173 if (tl != null && !checkInvariants(tl))
3174 return false;
3175 if (tr != null && !checkInvariants(tr))
3176 return false;
3177 return true;
3178 }
3179
3180 private static final sun.misc.Unsafe U;
3181 private static final long LOCKSTATE;
3182 static {
3183 try {
3184 U = sun.misc.Unsafe.getUnsafe();
3185 Class<?> k = TreeBin.class;
3186 LOCKSTATE = U.objectFieldOffset
3187 (k.getDeclaredField("lockState"));
3188 } catch (Exception e) {
3189 throw new Error(e);
3190 }
3191 }
3192 }
3193
3194 /* ----------------Table Traversal -------------- */
3195
3196 /**
3197 * Encapsulates traversal for methods such as containsValue; also
3198 * serves as a base class for other iterators and spliterators.
3199 *
3200 * Method advance visits once each still-valid node that was
3201 * reachable upon iterator construction. It might miss some that
3202 * were added to a bin after the bin was visited, which is OK wrt
3203 * consistency guarantees. Maintaining this property in the face
3204 * of possible ongoing resizes requires a fair amount of
3205 * bookkeeping state that is difficult to optimize away amidst
3206 * volatile accesses. Even so, traversal maintains reasonable
3207 * throughput.
3208 *
3209 * Normally, iteration proceeds bin-by-bin traversing lists.
3210 * However, if the table has been resized, then all future steps
3211 * must traverse both the bin at the current index as well as at
3212 * (index + baseSize); and so on for further resizings. To
3213 * paranoically cope with potential sharing by users of iterators
3214 * across threads, iteration terminates if a bounds checks fails
3215 * for a table read.
3216 */
3217 static class Traverser<K,V> {
3218 Node<K,V>[] tab; // current table; updated if resized
3219 Node<K,V> next; // the next entry to use
3220 int index; // index of bin to use next
3221 int baseIndex; // current index of initial table
3222 int baseLimit; // index bound for initial table
3223 final int baseSize; // initial table size
3224
3225 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3226 this.tab = tab;
3227 this.baseSize = size;
3228 this.baseIndex = this.index = index;
3229 this.baseLimit = limit;
3230 this.next = null;
3231 }
3232
3233 /**
3234 * Advances if possible, returning next valid node, or null if none.
3235 */
3236 final Node<K,V> advance() {
3237 Node<K,V> e;
3238 if ((e = next) != null)
3239 e = e.next;
3240 for (;;) {
3241 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3242 if (e != null)
3243 return next = e;
3244 if (baseIndex >= baseLimit || (t = tab) == null ||
3245 (n = t.length) <= (i = index) || i < 0)
3246 return next = null;
3247 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3248 if (e instanceof ForwardingNode) {
3249 tab = ((ForwardingNode<K,V>)e).nextTable;
3250 e = null;
3251 continue;
3252 }
3253 else if (e instanceof TreeBin)
3254 e = ((TreeBin<K,V>)e).first;
3255 else
3256 e = null;
3257 }
3258 if ((index += baseSize) >= n)
3259 index = ++baseIndex; // visit upper slots if present
3260 }
3261 }
3262 }
3263
3264 /**
3265 * Base of key, value, and entry Iterators. Adds fields to
3266 * Traverser to support iterator.remove.
3267 */
3268 static class BaseIterator<K,V> extends Traverser<K,V> {
3269 final ConcurrentHashMap<K,V> map;
3270 Node<K,V> lastReturned;
3271 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3272 ConcurrentHashMap<K,V> map) {
3273 super(tab, size, index, limit);
3274 this.map = map;
3275 advance();
3276 }
3277
3278 public final boolean hasNext() { return next != null; }
3279 public final boolean hasMoreElements() { return next != null; }
3280
3281 public final void remove() {
3282 Node<K,V> p;
3283 if ((p = lastReturned) == null)
3284 throw new IllegalStateException();
3285 lastReturned = null;
3286 map.replaceNode(p.key, null, null);
3287 }
3288 }
3289
3290 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3291 implements Iterator<K>, Enumeration<K> {
3292 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3293 ConcurrentHashMap<K,V> map) {
3294 super(tab, index, size, limit, map);
3295 }
3296
3297 public final K next() {
3298 Node<K,V> p;
3299 if ((p = next) == null)
3300 throw new NoSuchElementException();
3301 K k = p.key;
3302 lastReturned = p;
3303 advance();
3304 return k;
3305 }
3306
3307 public final K nextElement() { return next(); }
3308 }
3309
3310 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3311 implements Iterator<V>, Enumeration<V> {
3312 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3313 ConcurrentHashMap<K,V> map) {
3314 super(tab, index, size, limit, map);
3315 }
3316
3317 public final V next() {
3318 Node<K,V> p;
3319 if ((p = next) == null)
3320 throw new NoSuchElementException();
3321 V v = p.val;
3322 lastReturned = p;
3323 advance();
3324 return v;
3325 }
3326
3327 public final V nextElement() { return next(); }
3328 }
3329
3330 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3331 implements Iterator<Map.Entry<K,V>> {
3332 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3333 ConcurrentHashMap<K,V> map) {
3334 super(tab, index, size, limit, map);
3335 }
3336
3337 public final Map.Entry<K,V> next() {
3338 Node<K,V> p;
3339 if ((p = next) == null)
3340 throw new NoSuchElementException();
3341 K k = p.key;
3342 V v = p.val;
3343 lastReturned = p;
3344 advance();
3345 return new MapEntry<K,V>(k, v, map);
3346 }
3347 }
3348
3349 /**
3350 * Exported Entry for EntryIterator
3351 */
3352 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3353 final K key; // non-null
3354 V val; // non-null
3355 final ConcurrentHashMap<K,V> map;
3356 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3357 this.key = key;
3358 this.val = val;
3359 this.map = map;
3360 }
3361 public K getKey() { return key; }
3362 public V getValue() { return val; }
3363 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3364 public String toString() { return key + "=" + val; }
3365
3366 public boolean equals(Object o) {
3367 Object k, v; Map.Entry<?,?> e;
3368 return ((o instanceof Map.Entry) &&
3369 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3370 (v = e.getValue()) != null &&
3371 (k == key || k.equals(key)) &&
3372 (v == val || v.equals(val)));
3373 }
3374
3375 /**
3376 * Sets our entry's value and writes through to the map. The
3377 * value to return is somewhat arbitrary here. Since we do not
3378 * necessarily track asynchronous changes, the most recent
3379 * "previous" value could be different from what we return (or
3380 * could even have been removed, in which case the put will
3381 * re-establish). We do not and cannot guarantee more.
3382 */
3383 public V setValue(V value) {
3384 if (value == null) throw new NullPointerException();
3385 V v = val;
3386 val = value;
3387 map.put(key, value);
3388 return v;
3389 }
3390 }
3391
3392 static final class KeySpliterator<K,V> extends Traverser<K,V>
3393 implements Spliterator<K> {
3394 long est; // size estimate
3395 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3396 long est) {
3397 super(tab, size, index, limit);
3398 this.est = est;
3399 }
3400
3401 public Spliterator<K> trySplit() {
3402 int i, f, h;
3403 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3404 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3405 f, est >>>= 1);
3406 }
3407
3408 public void forEachRemaining(Consumer<? super K> action) {
3409 if (action == null) throw new NullPointerException();
3410 for (Node<K,V> p; (p = advance()) != null;)
3411 action.accept(p.key);
3412 }
3413
3414 public boolean tryAdvance(Consumer<? super K> action) {
3415 if (action == null) throw new NullPointerException();
3416 Node<K,V> p;
3417 if ((p = advance()) == null)
3418 return false;
3419 action.accept(p.key);
3420 return true;
3421 }
3422
3423 public long estimateSize() { return est; }
3424
3425 public int characteristics() {
3426 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3427 Spliterator.NONNULL;
3428 }
3429 }
3430
3431 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3432 implements Spliterator<V> {
3433 long est; // size estimate
3434 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3435 long est) {
3436 super(tab, size, index, limit);
3437 this.est = est;
3438 }
3439
3440 public Spliterator<V> trySplit() {
3441 int i, f, h;
3442 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3443 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3444 f, est >>>= 1);
3445 }
3446
3447 public void forEachRemaining(Consumer<? super V> action) {
3448 if (action == null) throw new NullPointerException();
3449 for (Node<K,V> p; (p = advance()) != null;)
3450 action.accept(p.val);
3451 }
3452
3453 public boolean tryAdvance(Consumer<? super V> action) {
3454 if (action == null) throw new NullPointerException();
3455 Node<K,V> p;
3456 if ((p = advance()) == null)
3457 return false;
3458 action.accept(p.val);
3459 return true;
3460 }
3461
3462 public long estimateSize() { return est; }
3463
3464 public int characteristics() {
3465 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3466 }
3467 }
3468
3469 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3470 implements Spliterator<Map.Entry<K,V>> {
3471 final ConcurrentHashMap<K,V> map; // To export MapEntry
3472 long est; // size estimate
3473 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3474 long est, ConcurrentHashMap<K,V> map) {
3475 super(tab, size, index, limit);
3476 this.map = map;
3477 this.est = est;
3478 }
3479
3480 public Spliterator<Map.Entry<K,V>> trySplit() {
3481 int i, f, h;
3482 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3483 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3484 f, est >>>= 1, map);
3485 }
3486
3487 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3488 if (action == null) throw new NullPointerException();
3489 for (Node<K,V> p; (p = advance()) != null; )
3490 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3491 }
3492
3493 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3494 if (action == null) throw new NullPointerException();
3495 Node<K,V> p;
3496 if ((p = advance()) == null)
3497 return false;
3498 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3499 return true;
3500 }
3501
3502 public long estimateSize() { return est; }
3503
3504 public int characteristics() {
3505 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3506 Spliterator.NONNULL;
3507 }
3508 }
3509
3510 // Parallel bulk operations
3511
3512 /**
3513 * Computes initial batch value for bulk tasks. The returned value
3514 * is approximately exp2 of the number of times (minus one) to
3515 * split task by two before executing leaf action. This value is
3516 * faster to compute and more convenient to use as a guide to
3517 * splitting than is the depth, since it is used while dividing by
3518 * two anyway.
3519 */
3520 final int batchFor(long b) {
3521 long n;
3522 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3523 return 0;
3524 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3525 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3526 }
3527
3528 /**
3529 * Performs the given action for each (key, value).
3530 *
3531 * @param parallelismThreshold the (estimated) number of elements
3532 * needed for this operation to be executed in parallel
3533 * @param action the action
3534 * @since 1.8
3535 */
3536 public void forEach(long parallelismThreshold,
3537 BiConsumer<? super K,? super V> action) {
3538 if (action == null) throw new NullPointerException();
3539 new ForEachMappingTask<K,V>
3540 (null, batchFor(parallelismThreshold), 0, 0, table,
3541 action).invoke();
3542 }
3543
3544 /**
3545 * Performs the given action for each non-null transformation
3546 * of each (key, value).
3547 *
3548 * @param parallelismThreshold the (estimated) number of elements
3549 * needed for this operation to be executed in parallel
3550 * @param transformer a function returning the transformation
3551 * for an element, or null if there is no transformation (in
3552 * which case the action is not applied)
3553 * @param action the action
3554 * @param <U> the return type of the transformer
3555 * @since 1.8
3556 */
3557 public <U> void forEach(long parallelismThreshold,
3558 BiFunction<? super K, ? super V, ? extends U> transformer,
3559 Consumer<? super U> action) {
3560 if (transformer == null || action == null)
3561 throw new NullPointerException();
3562 new ForEachTransformedMappingTask<K,V,U>
3563 (null, batchFor(parallelismThreshold), 0, 0, table,
3564 transformer, action).invoke();
3565 }
3566
3567 /**
3568 * Returns a non-null result from applying the given search
3569 * function on each (key, value), or null if none. Upon
3570 * success, further element processing is suppressed and the
3571 * results of any other parallel invocations of the search
3572 * function are ignored.
3573 *
3574 * @param parallelismThreshold the (estimated) number of elements
3575 * needed for this operation to be executed in parallel
3576 * @param searchFunction a function returning a non-null
3577 * result on success, else null
3578 * @param <U> the return type of the search function
3579 * @return a non-null result from applying the given search
3580 * function on each (key, value), or null if none
3581 * @since 1.8
3582 */
3583 public <U> U search(long parallelismThreshold,
3584 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3585 if (searchFunction == null) throw new NullPointerException();
3586 return new SearchMappingsTask<K,V,U>
3587 (null, batchFor(parallelismThreshold), 0, 0, table,
3588 searchFunction, new AtomicReference<U>()).invoke();
3589 }
3590
3591 /**
3592 * Returns the result of accumulating the given transformation
3593 * of all (key, value) pairs using the given reducer to
3594 * combine values, or null if none.
3595 *
3596 * @param parallelismThreshold the (estimated) number of elements
3597 * needed for this operation to be executed in parallel
3598 * @param transformer a function returning the transformation
3599 * for an element, or null if there is no transformation (in
3600 * which case it is not combined)
3601 * @param reducer a commutative associative combining function
3602 * @param <U> the return type of the transformer
3603 * @return the result of accumulating the given transformation
3604 * of all (key, value) pairs
3605 * @since 1.8
3606 */
3607 public <U> U reduce(long parallelismThreshold,
3608 BiFunction<? super K, ? super V, ? extends U> transformer,
3609 BiFunction<? super U, ? super U, ? extends U> reducer) {
3610 if (transformer == null || reducer == null)
3611 throw new NullPointerException();
3612 return new MapReduceMappingsTask<K,V,U>
3613 (null, batchFor(parallelismThreshold), 0, 0, table,
3614 null, transformer, reducer).invoke();
3615 }
3616
3617 /**
3618 * Returns the result of accumulating the given transformation
3619 * of all (key, value) pairs using the given reducer to
3620 * combine values, and the given basis as an identity value.
3621 *
3622 * @param parallelismThreshold the (estimated) number of elements
3623 * needed for this operation to be executed in parallel
3624 * @param transformer a function returning the transformation
3625 * for an element
3626 * @param basis the identity (initial default value) for the reduction
3627 * @param reducer a commutative associative combining function
3628 * @return the result of accumulating the given transformation
3629 * of all (key, value) pairs
3630 * @since 1.8
3631 */
3632 public double reduceToDouble(long parallelismThreshold,
3633 ToDoubleBiFunction<? super K, ? super V> transformer,
3634 double basis,
3635 DoubleBinaryOperator reducer) {
3636 if (transformer == null || reducer == null)
3637 throw new NullPointerException();
3638 return new MapReduceMappingsToDoubleTask<K,V>
3639 (null, batchFor(parallelismThreshold), 0, 0, table,
3640 null, transformer, basis, reducer).invoke();
3641 }
3642
3643 /**
3644 * Returns the result of accumulating the given transformation
3645 * of all (key, value) pairs using the given reducer to
3646 * combine values, and the given basis as an identity value.
3647 *
3648 * @param parallelismThreshold the (estimated) number of elements
3649 * needed for this operation to be executed in parallel
3650 * @param transformer a function returning the transformation
3651 * for an element
3652 * @param basis the identity (initial default value) for the reduction
3653 * @param reducer a commutative associative combining function
3654 * @return the result of accumulating the given transformation
3655 * of all (key, value) pairs
3656 * @since 1.8
3657 */
3658 public long reduceToLong(long parallelismThreshold,
3659 ToLongBiFunction<? super K, ? super V> transformer,
3660 long basis,
3661 LongBinaryOperator reducer) {
3662 if (transformer == null || reducer == null)
3663 throw new NullPointerException();
3664 return new MapReduceMappingsToLongTask<K,V>
3665 (null, batchFor(parallelismThreshold), 0, 0, table,
3666 null, transformer, basis, reducer).invoke();
3667 }
3668
3669 /**
3670 * Returns the result of accumulating the given transformation
3671 * of all (key, value) pairs using the given reducer to
3672 * combine values, and the given basis as an identity value.
3673 *
3674 * @param parallelismThreshold the (estimated) number of elements
3675 * needed for this operation to be executed in parallel
3676 * @param transformer a function returning the transformation
3677 * for an element
3678 * @param basis the identity (initial default value) for the reduction
3679 * @param reducer a commutative associative combining function
3680 * @return the result of accumulating the given transformation
3681 * of all (key, value) pairs
3682 * @since 1.8
3683 */
3684 public int reduceToInt(long parallelismThreshold,
3685 ToIntBiFunction<? super K, ? super V> transformer,
3686 int basis,
3687 IntBinaryOperator reducer) {
3688 if (transformer == null || reducer == null)
3689 throw new NullPointerException();
3690 return new MapReduceMappingsToIntTask<K,V>
3691 (null, batchFor(parallelismThreshold), 0, 0, table,
3692 null, transformer, basis, reducer).invoke();
3693 }
3694
3695 /**
3696 * Performs the given action for each key.
3697 *
3698 * @param parallelismThreshold the (estimated) number of elements
3699 * needed for this operation to be executed in parallel
3700 * @param action the action
3701 * @since 1.8
3702 */
3703 public void forEachKey(long parallelismThreshold,
3704 Consumer<? super K> action) {
3705 if (action == null) throw new NullPointerException();
3706 new ForEachKeyTask<K,V>
3707 (null, batchFor(parallelismThreshold), 0, 0, table,
3708 action).invoke();
3709 }
3710
3711 /**
3712 * Performs the given action for each non-null transformation
3713 * of each key.
3714 *
3715 * @param parallelismThreshold the (estimated) number of elements
3716 * needed for this operation to be executed in parallel
3717 * @param transformer a function returning the transformation
3718 * for an element, or null if there is no transformation (in
3719 * which case the action is not applied)
3720 * @param action the action
3721 * @param <U> the return type of the transformer
3722 * @since 1.8
3723 */
3724 public <U> void forEachKey(long parallelismThreshold,
3725 Function<? super K, ? extends U> transformer,
3726 Consumer<? super U> action) {
3727 if (transformer == null || action == null)
3728 throw new NullPointerException();
3729 new ForEachTransformedKeyTask<K,V,U>
3730 (null, batchFor(parallelismThreshold), 0, 0, table,
3731 transformer, action).invoke();
3732 }
3733
3734 /**
3735 * Returns a non-null result from applying the given search
3736 * function on each key, or null if none. Upon success,
3737 * further element processing is suppressed and the results of
3738 * any other parallel invocations of the search function are
3739 * ignored.
3740 *
3741 * @param parallelismThreshold the (estimated) number of elements
3742 * needed for this operation to be executed in parallel
3743 * @param searchFunction a function returning a non-null
3744 * result on success, else null
3745 * @param <U> the return type of the search function
3746 * @return a non-null result from applying the given search
3747 * function on each key, or null if none
3748 * @since 1.8
3749 */
3750 public <U> U searchKeys(long parallelismThreshold,
3751 Function<? super K, ? extends U> searchFunction) {
3752 if (searchFunction == null) throw new NullPointerException();
3753 return new SearchKeysTask<K,V,U>
3754 (null, batchFor(parallelismThreshold), 0, 0, table,
3755 searchFunction, new AtomicReference<U>()).invoke();
3756 }
3757
3758 /**
3759 * Returns the result of accumulating all keys using the given
3760 * reducer to combine values, or null if none.
3761 *
3762 * @param parallelismThreshold the (estimated) number of elements
3763 * needed for this operation to be executed in parallel
3764 * @param reducer a commutative associative combining function
3765 * @return the result of accumulating all keys using the given
3766 * reducer to combine values, or null if none
3767 * @since 1.8
3768 */
3769 public K reduceKeys(long parallelismThreshold,
3770 BiFunction<? super K, ? super K, ? extends K> reducer) {
3771 if (reducer == null) throw new NullPointerException();
3772 return new ReduceKeysTask<K,V>
3773 (null, batchFor(parallelismThreshold), 0, 0, table,
3774 null, reducer).invoke();
3775 }
3776
3777 /**
3778 * Returns the result of accumulating the given transformation
3779 * of all keys using the given reducer to combine values, or
3780 * null if none.
3781 *
3782 * @param parallelismThreshold the (estimated) number of elements
3783 * needed for this operation to be executed in parallel
3784 * @param transformer a function returning the transformation
3785 * for an element, or null if there is no transformation (in
3786 * which case it is not combined)
3787 * @param reducer a commutative associative combining function
3788 * @param <U> the return type of the transformer
3789 * @return the result of accumulating the given transformation
3790 * of all keys
3791 * @since 1.8
3792 */
3793 public <U> U reduceKeys(long parallelismThreshold,
3794 Function<? super K, ? extends U> transformer,
3795 BiFunction<? super U, ? super U, ? extends U> reducer) {
3796 if (transformer == null || reducer == null)
3797 throw new NullPointerException();
3798 return new MapReduceKeysTask<K,V,U>
3799 (null, batchFor(parallelismThreshold), 0, 0, table,
3800 null, transformer, reducer).invoke();
3801 }
3802
3803 /**
3804 * Returns the result of accumulating the given transformation
3805 * of all keys using the given reducer to combine values, and
3806 * the given basis as an identity value.
3807 *
3808 * @param parallelismThreshold the (estimated) number of elements
3809 * needed for this operation to be executed in parallel
3810 * @param transformer a function returning the transformation
3811 * for an element
3812 * @param basis the identity (initial default value) for the reduction
3813 * @param reducer a commutative associative combining function
3814 * @return the result of accumulating the given transformation
3815 * of all keys
3816 * @since 1.8
3817 */
3818 public double reduceKeysToDouble(long parallelismThreshold,
3819 ToDoubleFunction<? super K> transformer,
3820 double basis,
3821 DoubleBinaryOperator reducer) {
3822 if (transformer == null || reducer == null)
3823 throw new NullPointerException();
3824 return new MapReduceKeysToDoubleTask<K,V>
3825 (null, batchFor(parallelismThreshold), 0, 0, table,
3826 null, transformer, basis, reducer).invoke();
3827 }
3828
3829 /**
3830 * Returns the result of accumulating the given transformation
3831 * of all keys using the given reducer to combine values, and
3832 * the given basis as an identity value.
3833 *
3834 * @param parallelismThreshold the (estimated) number of elements
3835 * needed for this operation to be executed in parallel
3836 * @param transformer a function returning the transformation
3837 * for an element
3838 * @param basis the identity (initial default value) for the reduction
3839 * @param reducer a commutative associative combining function
3840 * @return the result of accumulating the given transformation
3841 * of all keys
3842 * @since 1.8
3843 */
3844 public long reduceKeysToLong(long parallelismThreshold,
3845 ToLongFunction<? super K> transformer,
3846 long basis,
3847 LongBinaryOperator reducer) {
3848 if (transformer == null || reducer == null)
3849 throw new NullPointerException();
3850 return new MapReduceKeysToLongTask<K,V>
3851 (null, batchFor(parallelismThreshold), 0, 0, table,
3852 null, transformer, basis, reducer).invoke();
3853 }
3854
3855 /**
3856 * Returns the result of accumulating the given transformation
3857 * of all keys using the given reducer to combine values, and
3858 * the given basis as an identity value.
3859 *
3860 * @param parallelismThreshold the (estimated) number of elements
3861 * needed for this operation to be executed in parallel
3862 * @param transformer a function returning the transformation
3863 * for an element
3864 * @param basis the identity (initial default value) for the reduction
3865 * @param reducer a commutative associative combining function
3866 * @return the result of accumulating the given transformation
3867 * of all keys
3868 * @since 1.8
3869 */
3870 public int reduceKeysToInt(long parallelismThreshold,
3871 ToIntFunction<? super K> transformer,
3872 int basis,
3873 IntBinaryOperator reducer) {
3874 if (transformer == null || reducer == null)
3875 throw new NullPointerException();
3876 return new MapReduceKeysToIntTask<K,V>
3877 (null, batchFor(parallelismThreshold), 0, 0, table,
3878 null, transformer, basis, reducer).invoke();
3879 }
3880
3881 /**
3882 * Performs the given action for each value.
3883 *
3884 * @param parallelismThreshold the (estimated) number of elements
3885 * needed for this operation to be executed in parallel
3886 * @param action the action
3887 * @since 1.8
3888 */
3889 public void forEachValue(long parallelismThreshold,
3890 Consumer<? super V> action) {
3891 if (action == null)
3892 throw new NullPointerException();
3893 new ForEachValueTask<K,V>
3894 (null, batchFor(parallelismThreshold), 0, 0, table,
3895 action).invoke();
3896 }
3897
3898 /**
3899 * Performs the given action for each non-null transformation
3900 * of each value.
3901 *
3902 * @param parallelismThreshold the (estimated) number of elements
3903 * needed for this operation to be executed in parallel
3904 * @param transformer a function returning the transformation
3905 * for an element, or null if there is no transformation (in
3906 * which case the action is not applied)
3907 * @param action the action
3908 * @param <U> the return type of the transformer
3909 * @since 1.8
3910 */
3911 public <U> void forEachValue(long parallelismThreshold,
3912 Function<? super V, ? extends U> transformer,
3913 Consumer<? super U> action) {
3914 if (transformer == null || action == null)
3915 throw new NullPointerException();
3916 new ForEachTransformedValueTask<K,V,U>
3917 (null, batchFor(parallelismThreshold), 0, 0, table,
3918 transformer, action).invoke();
3919 }
3920
3921 /**
3922 * Returns a non-null result from applying the given search
3923 * function on each value, or null if none. Upon success,
3924 * further element processing is suppressed and the results of
3925 * any other parallel invocations of the search function are
3926 * ignored.
3927 *
3928 * @param parallelismThreshold the (estimated) number of elements
3929 * needed for this operation to be executed in parallel
3930 * @param searchFunction a function returning a non-null
3931 * result on success, else null
3932 * @param <U> the return type of the search function
3933 * @return a non-null result from applying the given search
3934 * function on each value, or null if none
3935 * @since 1.8
3936 */
3937 public <U> U searchValues(long parallelismThreshold,
3938 Function<? super V, ? extends U> searchFunction) {
3939 if (searchFunction == null) throw new NullPointerException();
3940 return new SearchValuesTask<K,V,U>
3941 (null, batchFor(parallelismThreshold), 0, 0, table,
3942 searchFunction, new AtomicReference<U>()).invoke();
3943 }
3944
3945 /**
3946 * Returns the result of accumulating all values using the
3947 * given reducer to combine values, or null if none.
3948 *
3949 * @param parallelismThreshold the (estimated) number of elements
3950 * needed for this operation to be executed in parallel
3951 * @param reducer a commutative associative combining function
3952 * @return the result of accumulating all values
3953 * @since 1.8
3954 */
3955 public V reduceValues(long parallelismThreshold,
3956 BiFunction<? super V, ? super V, ? extends V> reducer) {
3957 if (reducer == null) throw new NullPointerException();
3958 return new ReduceValuesTask<K,V>
3959 (null, batchFor(parallelismThreshold), 0, 0, table,
3960 null, reducer).invoke();
3961 }
3962
3963 /**
3964 * Returns the result of accumulating the given transformation
3965 * of all values using the given reducer to combine values, or
3966 * null if none.
3967 *
3968 * @param parallelismThreshold the (estimated) number of elements
3969 * needed for this operation to be executed in parallel
3970 * @param transformer a function returning the transformation
3971 * for an element, or null if there is no transformation (in
3972 * which case it is not combined)
3973 * @param reducer a commutative associative combining function
3974 * @param <U> the return type of the transformer
3975 * @return the result of accumulating the given transformation
3976 * of all values
3977 * @since 1.8
3978 */
3979 public <U> U reduceValues(long parallelismThreshold,
3980 Function<? super V, ? extends U> transformer,
3981 BiFunction<? super U, ? super U, ? extends U> reducer) {
3982 if (transformer == null || reducer == null)
3983 throw new NullPointerException();
3984 return new MapReduceValuesTask<K,V,U>
3985 (null, batchFor(parallelismThreshold), 0, 0, table,
3986 null, transformer, reducer).invoke();
3987 }
3988
3989 /**
3990 * Returns the result of accumulating the given transformation
3991 * of all values using the given reducer to combine values,
3992 * and the given basis as an identity value.
3993 *
3994 * @param parallelismThreshold the (estimated) number of elements
3995 * needed for this operation to be executed in parallel
3996 * @param transformer a function returning the transformation
3997 * for an element
3998 * @param basis the identity (initial default value) for the reduction
3999 * @param reducer a commutative associative combining function
4000 * @return the result of accumulating the given transformation
4001 * of all values
4002 * @since 1.8
4003 */
4004 public double reduceValuesToDouble(long parallelismThreshold,
4005 ToDoubleFunction<? super V> transformer,
4006 double basis,
4007 DoubleBinaryOperator reducer) {
4008 if (transformer == null || reducer == null)
4009 throw new NullPointerException();
4010 return new MapReduceValuesToDoubleTask<K,V>
4011 (null, batchFor(parallelismThreshold), 0, 0, table,
4012 null, transformer, basis, reducer).invoke();
4013 }
4014
4015 /**
4016 * Returns the result of accumulating the given transformation
4017 * of all values using the given reducer to combine values,
4018 * and the given basis as an identity value.
4019 *
4020 * @param parallelismThreshold the (estimated) number of elements
4021 * needed for this operation to be executed in parallel
4022 * @param transformer a function returning the transformation
4023 * for an element
4024 * @param basis the identity (initial default value) for the reduction
4025 * @param reducer a commutative associative combining function
4026 * @return the result of accumulating the given transformation
4027 * of all values
4028 * @since 1.8
4029 */
4030 public long reduceValuesToLong(long parallelismThreshold,
4031 ToLongFunction<? super V> transformer,
4032 long basis,
4033 LongBinaryOperator reducer) {
4034 if (transformer == null || reducer == null)
4035 throw new NullPointerException();
4036 return new MapReduceValuesToLongTask<K,V>
4037 (null, batchFor(parallelismThreshold), 0, 0, table,
4038 null, transformer, basis, reducer).invoke();
4039 }
4040
4041 /**
4042 * Returns the result of accumulating the given transformation
4043 * of all values using the given reducer to combine values,
4044 * and the given basis as an identity value.
4045 *
4046 * @param parallelismThreshold the (estimated) number of elements
4047 * needed for this operation to be executed in parallel
4048 * @param transformer a function returning the transformation
4049 * for an element
4050 * @param basis the identity (initial default value) for the reduction
4051 * @param reducer a commutative associative combining function
4052 * @return the result of accumulating the given transformation
4053 * of all values
4054 * @since 1.8
4055 */
4056 public int reduceValuesToInt(long parallelismThreshold,
4057 ToIntFunction<? super V> transformer,
4058 int basis,
4059 IntBinaryOperator reducer) {
4060 if (transformer == null || reducer == null)
4061 throw new NullPointerException();
4062 return new MapReduceValuesToIntTask<K,V>
4063 (null, batchFor(parallelismThreshold), 0, 0, table,
4064 null, transformer, basis, reducer).invoke();
4065 }
4066
4067 /**
4068 * Performs the given action for each entry.
4069 *
4070 * @param parallelismThreshold the (estimated) number of elements
4071 * needed for this operation to be executed in parallel
4072 * @param action the action
4073 * @since 1.8
4074 */
4075 public void forEachEntry(long parallelismThreshold,
4076 Consumer<? super Map.Entry<K,V>> action) {
4077 if (action == null) throw new NullPointerException();
4078 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4079 action).invoke();
4080 }
4081
4082 /**
4083 * Performs the given action for each non-null transformation
4084 * of each entry.
4085 *
4086 * @param parallelismThreshold the (estimated) number of elements
4087 * needed for this operation to be executed in parallel
4088 * @param transformer a function returning the transformation
4089 * for an element, or null if there is no transformation (in
4090 * which case the action is not applied)
4091 * @param action the action
4092 * @param <U> the return type of the transformer
4093 * @since 1.8
4094 */
4095 public <U> void forEachEntry(long parallelismThreshold,
4096 Function<Map.Entry<K,V>, ? extends U> transformer,
4097 Consumer<? super U> action) {
4098 if (transformer == null || action == null)
4099 throw new NullPointerException();
4100 new ForEachTransformedEntryTask<K,V,U>
4101 (null, batchFor(parallelismThreshold), 0, 0, table,
4102 transformer, action).invoke();
4103 }
4104
4105 /**
4106 * Returns a non-null result from applying the given search
4107 * function on each entry, or null if none. Upon success,
4108 * further element processing is suppressed and the results of
4109 * any other parallel invocations of the search function are
4110 * ignored.
4111 *
4112 * @param parallelismThreshold the (estimated) number of elements
4113 * needed for this operation to be executed in parallel
4114 * @param searchFunction a function returning a non-null
4115 * result on success, else null
4116 * @param <U> the return type of the search function
4117 * @return a non-null result from applying the given search
4118 * function on each entry, or null if none
4119 * @since 1.8
4120 */
4121 public <U> U searchEntries(long parallelismThreshold,
4122 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4123 if (searchFunction == null) throw new NullPointerException();
4124 return new SearchEntriesTask<K,V,U>
4125 (null, batchFor(parallelismThreshold), 0, 0, table,
4126 searchFunction, new AtomicReference<U>()).invoke();
4127 }
4128
4129 /**
4130 * Returns the result of accumulating all entries using the
4131 * given reducer to combine values, or null if none.
4132 *
4133 * @param parallelismThreshold the (estimated) number of elements
4134 * needed for this operation to be executed in parallel
4135 * @param reducer a commutative associative combining function
4136 * @return the result of accumulating all entries
4137 * @since 1.8
4138 */
4139 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4140 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4141 if (reducer == null) throw new NullPointerException();
4142 return new ReduceEntriesTask<K,V>
4143 (null, batchFor(parallelismThreshold), 0, 0, table,
4144 null, reducer).invoke();
4145 }
4146
4147 /**
4148 * Returns the result of accumulating the given transformation
4149 * of all entries using the given reducer to combine values,
4150 * or null if none.
4151 *
4152 * @param parallelismThreshold the (estimated) number of elements
4153 * needed for this operation to be executed in parallel
4154 * @param transformer a function returning the transformation
4155 * for an element, or null if there is no transformation (in
4156 * which case it is not combined)
4157 * @param reducer a commutative associative combining function
4158 * @param <U> the return type of the transformer
4159 * @return the result of accumulating the given transformation
4160 * of all entries
4161 * @since 1.8
4162 */
4163 public <U> U reduceEntries(long parallelismThreshold,
4164 Function<Map.Entry<K,V>, ? extends U> transformer,
4165 BiFunction<? super U, ? super U, ? extends U> reducer) {
4166 if (transformer == null || reducer == null)
4167 throw new NullPointerException();
4168 return new MapReduceEntriesTask<K,V,U>
4169 (null, batchFor(parallelismThreshold), 0, 0, table,
4170 null, transformer, reducer).invoke();
4171 }
4172
4173 /**
4174 * Returns the result of accumulating the given transformation
4175 * of all entries using the given reducer to combine values,
4176 * and the given basis as an identity value.
4177 *
4178 * @param parallelismThreshold the (estimated) number of elements
4179 * needed for this operation to be executed in parallel
4180 * @param transformer a function returning the transformation
4181 * for an element
4182 * @param basis the identity (initial default value) for the reduction
4183 * @param reducer a commutative associative combining function
4184 * @return the result of accumulating the given transformation
4185 * of all entries
4186 * @since 1.8
4187 */
4188 public double reduceEntriesToDouble(long parallelismThreshold,
4189 ToDoubleFunction<Map.Entry<K,V>> transformer,
4190 double basis,
4191 DoubleBinaryOperator reducer) {
4192 if (transformer == null || reducer == null)
4193 throw new NullPointerException();
4194 return new MapReduceEntriesToDoubleTask<K,V>
4195 (null, batchFor(parallelismThreshold), 0, 0, table,
4196 null, transformer, basis, reducer).invoke();
4197 }
4198
4199 /**
4200 * Returns the result of accumulating the given transformation
4201 * of all entries using the given reducer to combine values,
4202 * and the given basis as an identity value.
4203 *
4204 * @param parallelismThreshold the (estimated) number of elements
4205 * needed for this operation to be executed in parallel
4206 * @param transformer a function returning the transformation
4207 * for an element
4208 * @param basis the identity (initial default value) for the reduction
4209 * @param reducer a commutative associative combining function
4210 * @return the result of accumulating the given transformation
4211 * of all entries
4212 * @since 1.8
4213 */
4214 public long reduceEntriesToLong(long parallelismThreshold,
4215 ToLongFunction<Map.Entry<K,V>> transformer,
4216 long basis,
4217 LongBinaryOperator reducer) {
4218 if (transformer == null || reducer == null)
4219 throw new NullPointerException();
4220 return new MapReduceEntriesToLongTask<K,V>
4221 (null, batchFor(parallelismThreshold), 0, 0, table,
4222 null, transformer, basis, reducer).invoke();
4223 }
4224
4225 /**
4226 * Returns the result of accumulating the given transformation
4227 * of all entries using the given reducer to combine values,
4228 * and the given basis as an identity value.
4229 *
4230 * @param parallelismThreshold the (estimated) number of elements
4231 * needed for this operation to be executed in parallel
4232 * @param transformer a function returning the transformation
4233 * for an element
4234 * @param basis the identity (initial default value) for the reduction
4235 * @param reducer a commutative associative combining function
4236 * @return the result of accumulating the given transformation
4237 * of all entries
4238 * @since 1.8
4239 */
4240 public int reduceEntriesToInt(long parallelismThreshold,
4241 ToIntFunction<Map.Entry<K,V>> transformer,
4242 int basis,
4243 IntBinaryOperator reducer) {
4244 if (transformer == null || reducer == null)
4245 throw new NullPointerException();
4246 return new MapReduceEntriesToIntTask<K,V>
4247 (null, batchFor(parallelismThreshold), 0, 0, table,
4248 null, transformer, basis, reducer).invoke();
4249 }
4250
4251
4252 /* ----------------Views -------------- */
4253
4254 /**
4255 * Base class for views.
4256 */
4257 abstract static class CollectionView<K,V,E>
4258 implements Collection<E>, java.io.Serializable {
4259 private static final long serialVersionUID = 7249069246763182397L;
4260 final ConcurrentHashMap<K,V> map;
4261 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4262
4263 /**
4264 * Returns the map backing this view.
4265 *
4266 * @return the map backing this view
4267 */
4268 public ConcurrentHashMap<K,V> getMap() { return map; }
4269
4270 /**
4271 * Removes all of the elements from this view, by removing all
4272 * the mappings from the map backing this view.
4273 */
4274 public final void clear() { map.clear(); }
4275 public final int size() { return map.size(); }
4276 public final boolean isEmpty() { return map.isEmpty(); }
4277
4278 // implementations below rely on concrete classes supplying these
4279 // abstract methods
4280 /**
4281 * Returns an iterator over the elements in this collection.
4282 *
4283 * <p>The returned iterator is
4284 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4285 *
4286 * @return an iterator over the elements in this collection
4287 */
4288 public abstract Iterator<E> iterator();
4289 public abstract boolean contains(Object o);
4290 public abstract boolean remove(Object o);
4291
4292 private static final String oomeMsg = "Required array size too large";
4293
4294 public final Object[] toArray() {
4295 long sz = map.mappingCount();
4296 if (sz > MAX_ARRAY_SIZE)
4297 throw new OutOfMemoryError(oomeMsg);
4298 int n = (int)sz;
4299 Object[] r = new Object[n];
4300 int i = 0;
4301 for (E e : this) {
4302 if (i == n) {
4303 if (n >= MAX_ARRAY_SIZE)
4304 throw new OutOfMemoryError(oomeMsg);
4305 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4306 n = MAX_ARRAY_SIZE;
4307 else
4308 n += (n >>> 1) + 1;
4309 r = Arrays.copyOf(r, n);
4310 }
4311 r[i++] = e;
4312 }
4313 return (i == n) ? r : Arrays.copyOf(r, i);
4314 }
4315
4316 @SuppressWarnings("unchecked")
4317 public final <T> T[] toArray(T[] a) {
4318 long sz = map.mappingCount();
4319 if (sz > MAX_ARRAY_SIZE)
4320 throw new OutOfMemoryError(oomeMsg);
4321 int m = (int)sz;
4322 T[] r = (a.length >= m) ? a :
4323 (T[])java.lang.reflect.Array
4324 .newInstance(a.getClass().getComponentType(), m);
4325 int n = r.length;
4326 int i = 0;
4327 for (E e : this) {
4328 if (i == n) {
4329 if (n >= MAX_ARRAY_SIZE)
4330 throw new OutOfMemoryError(oomeMsg);
4331 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4332 n = MAX_ARRAY_SIZE;
4333 else
4334 n += (n >>> 1) + 1;
4335 r = Arrays.copyOf(r, n);
4336 }
4337 r[i++] = (T)e;
4338 }
4339 if (a == r && i < n) {
4340 r[i] = null; // null-terminate
4341 return r;
4342 }
4343 return (i == n) ? r : Arrays.copyOf(r, i);
4344 }
4345
4346 /**
4347 * Returns a string representation of this collection.
4348 * The string representation consists of the string representations
4349 * of the collection's elements in the order they are returned by
4350 * its iterator, enclosed in square brackets ({@code "[]"}).
4351 * Adjacent elements are separated by the characters {@code ", "}
4352 * (comma and space). Elements are converted to strings as by
4353 * {@link String#valueOf(Object)}.
4354 *
4355 * @return a string representation of this collection
4356 */
4357 public final String toString() {
4358 StringBuilder sb = new StringBuilder();
4359 sb.append('[');
4360 Iterator<E> it = iterator();
4361 if (it.hasNext()) {
4362 for (;;) {
4363 Object e = it.next();
4364 sb.append(e == this ? "(this Collection)" : e);
4365 if (!it.hasNext())
4366 break;
4367 sb.append(',').append(' ');
4368 }
4369 }
4370 return sb.append(']').toString();
4371 }
4372
4373 public final boolean containsAll(Collection<?> c) {
4374 if (c != this) {
4375 for (Object e : c) {
4376 if (e == null || !contains(e))
4377 return false;
4378 }
4379 }
4380 return true;
4381 }
4382
4383 public final boolean removeAll(Collection<?> c) {
4384 boolean modified = false;
4385 for (Iterator<E> it = iterator(); it.hasNext();) {
4386 if (c.contains(it.next())) {
4387 it.remove();
4388 modified = true;
4389 }
4390 }
4391 return modified;
4392 }
4393
4394 public final boolean retainAll(Collection<?> c) {
4395 boolean modified = false;
4396 for (Iterator<E> it = iterator(); it.hasNext();) {
4397 if (!c.contains(it.next())) {
4398 it.remove();
4399 modified = true;
4400 }
4401 }
4402 return modified;
4403 }
4404
4405 }
4406
4407 /**
4408 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4409 * which additions may optionally be enabled by mapping to a
4410 * common value. This class cannot be directly instantiated.
4411 * See {@link #keySet() keySet()},
4412 * {@link #keySet(Object) keySet(V)},
4413 * {@link #newKeySet() newKeySet()},
4414 * {@link #newKeySet(int) newKeySet(int)}.
4415 *
4416 * @since 1.8
4417 */
4418 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4419 implements Set<K>, java.io.Serializable {
4420 private static final long serialVersionUID = 7249069246763182397L;
4421 private final V value;
4422 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4423 super(map);
4424 this.value = value;
4425 }
4426
4427 /**
4428 * Returns the default mapped value for additions,
4429 * or {@code null} if additions are not supported.
4430 *
4431 * @return the default mapped value for additions, or {@code null}
4432 * if not supported
4433 */
4434 public V getMappedValue() { return value; }
4435
4436 /**
4437 * {@inheritDoc}
4438 * @throws NullPointerException if the specified key is null
4439 */
4440 public boolean contains(Object o) { return map.containsKey(o); }
4441
4442 /**
4443 * Removes the key from this map view, by removing the key (and its
4444 * corresponding value) from the backing map. This method does
4445 * nothing if the key is not in the map.
4446 *
4447 * @param o the key to be removed from the backing map
4448 * @return {@code true} if the backing map contained the specified key
4449 * @throws NullPointerException if the specified key is null
4450 */
4451 public boolean remove(Object o) { return map.remove(o) != null; }
4452
4453 /**
4454 * @return an iterator over the keys of the backing map
4455 */
4456 public Iterator<K> iterator() {
4457 Node<K,V>[] t;
4458 ConcurrentHashMap<K,V> m = map;
4459 int f = (t = m.table) == null ? 0 : t.length;
4460 return new KeyIterator<K,V>(t, f, 0, f, m);
4461 }
4462
4463 /**
4464 * Adds the specified key to this set view by mapping the key to
4465 * the default mapped value in the backing map, if defined.
4466 *
4467 * @param e key to be added
4468 * @return {@code true} if this set changed as a result of the call
4469 * @throws NullPointerException if the specified key is null
4470 * @throws UnsupportedOperationException if no default mapped value
4471 * for additions was provided
4472 */
4473 public boolean add(K e) {
4474 V v;
4475 if ((v = value) == null)
4476 throw new UnsupportedOperationException();
4477 return map.putVal(e, v, true) == null;
4478 }
4479
4480 /**
4481 * Adds all of the elements in the specified collection to this set,
4482 * as if by calling {@link #add} on each one.
4483 *
4484 * @param c the elements to be inserted into this set
4485 * @return {@code true} if this set changed as a result of the call
4486 * @throws NullPointerException if the collection or any of its
4487 * elements are {@code null}
4488 * @throws UnsupportedOperationException if no default mapped value
4489 * for additions was provided
4490 */
4491 public boolean addAll(Collection<? extends K> c) {
4492 boolean added = false;
4493 V v;
4494 if ((v = value) == null)
4495 throw new UnsupportedOperationException();
4496 for (K e : c) {
4497 if (map.putVal(e, v, true) == null)
4498 added = true;
4499 }
4500 return added;
4501 }
4502
4503 public int hashCode() {
4504 int h = 0;
4505 for (K e : this)
4506 h += e.hashCode();
4507 return h;
4508 }
4509
4510 public boolean equals(Object o) {
4511 Set<?> c;
4512 return ((o instanceof Set) &&
4513 ((c = (Set<?>)o) == this ||
4514 (containsAll(c) && c.containsAll(this))));
4515 }
4516
4517 public Spliterator<K> spliterator() {
4518 Node<K,V>[] t;
4519 ConcurrentHashMap<K,V> m = map;
4520 long n = m.sumCount();
4521 int f = (t = m.table) == null ? 0 : t.length;
4522 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4523 }
4524
4525 public void forEach(Consumer<? super K> action) {
4526 if (action == null) throw new NullPointerException();
4527 Node<K,V>[] t;
4528 if ((t = map.table) != null) {
4529 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4530 for (Node<K,V> p; (p = it.advance()) != null; )
4531 action.accept(p.key);
4532 }
4533 }
4534 }
4535
4536 /**
4537 * A view of a ConcurrentHashMap as a {@link Collection} of
4538 * values, in which additions are disabled. This class cannot be
4539 * directly instantiated. See {@link #values()}.
4540 */
4541 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4542 implements Collection<V>, java.io.Serializable {
4543 private static final long serialVersionUID = 2249069246763182397L;
4544 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4545 public final boolean contains(Object o) {
4546 return map.containsValue(o);
4547 }
4548
4549 public final boolean remove(Object o) {
4550 if (o != null) {
4551 for (Iterator<V> it = iterator(); it.hasNext();) {
4552 if (o.equals(it.next())) {
4553 it.remove();
4554 return true;
4555 }
4556 }
4557 }
4558 return false;
4559 }
4560
4561 public final Iterator<V> iterator() {
4562 ConcurrentHashMap<K,V> m = map;
4563 Node<K,V>[] t;
4564 int f = (t = m.table) == null ? 0 : t.length;
4565 return new ValueIterator<K,V>(t, f, 0, f, m);
4566 }
4567
4568 public final boolean add(V e) {
4569 throw new UnsupportedOperationException();
4570 }
4571 public final boolean addAll(Collection<? extends V> c) {
4572 throw new UnsupportedOperationException();
4573 }
4574
4575 public Spliterator<V> spliterator() {
4576 Node<K,V>[] t;
4577 ConcurrentHashMap<K,V> m = map;
4578 long n = m.sumCount();
4579 int f = (t = m.table) == null ? 0 : t.length;
4580 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4581 }
4582
4583 public void forEach(Consumer<? super V> action) {
4584 if (action == null) throw new NullPointerException();
4585 Node<K,V>[] t;
4586 if ((t = map.table) != null) {
4587 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4588 for (Node<K,V> p; (p = it.advance()) != null; )
4589 action.accept(p.val);
4590 }
4591 }
4592 }
4593
4594 /**
4595 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4596 * entries. This class cannot be directly instantiated. See
4597 * {@link #entrySet()}.
4598 */
4599 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4600 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4601 private static final long serialVersionUID = 2249069246763182397L;
4602 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4603
4604 public boolean contains(Object o) {
4605 Object k, v, r; Map.Entry<?,?> e;
4606 return ((o instanceof Map.Entry) &&
4607 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4608 (r = map.get(k)) != null &&
4609 (v = e.getValue()) != null &&
4610 (v == r || v.equals(r)));
4611 }
4612
4613 public boolean remove(Object o) {
4614 Object k, v; Map.Entry<?,?> e;
4615 return ((o instanceof Map.Entry) &&
4616 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4617 (v = e.getValue()) != null &&
4618 map.remove(k, v));
4619 }
4620
4621 /**
4622 * @return an iterator over the entries of the backing map
4623 */
4624 public Iterator<Map.Entry<K,V>> iterator() {
4625 ConcurrentHashMap<K,V> m = map;
4626 Node<K,V>[] t;
4627 int f = (t = m.table) == null ? 0 : t.length;
4628 return new EntryIterator<K,V>(t, f, 0, f, m);
4629 }
4630
4631 public boolean add(Entry<K,V> e) {
4632 return map.putVal(e.getKey(), e.getValue(), false) == null;
4633 }
4634
4635 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4636 boolean added = false;
4637 for (Entry<K,V> e : c) {
4638 if (add(e))
4639 added = true;
4640 }
4641 return added;
4642 }
4643
4644 public final int hashCode() {
4645 int h = 0;
4646 Node<K,V>[] t;
4647 if ((t = map.table) != null) {
4648 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4649 for (Node<K,V> p; (p = it.advance()) != null; ) {
4650 h += p.hashCode();
4651 }
4652 }
4653 return h;
4654 }
4655
4656 public final boolean equals(Object o) {
4657 Set<?> c;
4658 return ((o instanceof Set) &&
4659 ((c = (Set<?>)o) == this ||
4660 (containsAll(c) && c.containsAll(this))));
4661 }
4662
4663 public Spliterator<Map.Entry<K,V>> spliterator() {
4664 Node<K,V>[] t;
4665 ConcurrentHashMap<K,V> m = map;
4666 long n = m.sumCount();
4667 int f = (t = m.table) == null ? 0 : t.length;
4668 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4669 }
4670
4671 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4672 if (action == null) throw new NullPointerException();
4673 Node<K,V>[] t;
4674 if ((t = map.table) != null) {
4675 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4676 for (Node<K,V> p; (p = it.advance()) != null; )
4677 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4678 }
4679 }
4680
4681 }
4682
4683 // -------------------------------------------------------
4684
4685 /**
4686 * Base class for bulk tasks. Repeats some fields and code from
4687 * class Traverser, because we need to subclass CountedCompleter.
4688 */
4689 @SuppressWarnings("serial")
4690 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4691 Node<K,V>[] tab; // same as Traverser
4692 Node<K,V> next;
4693 int index;
4694 int baseIndex;
4695 int baseLimit;
4696 final int baseSize;
4697 int batch; // split control
4698
4699 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4700 super(par);
4701 this.batch = b;
4702 this.index = this.baseIndex = i;
4703 if ((this.tab = t) == null)
4704 this.baseSize = this.baseLimit = 0;
4705 else if (par == null)
4706 this.baseSize = this.baseLimit = t.length;
4707 else {
4708 this.baseLimit = f;
4709 this.baseSize = par.baseSize;
4710 }
4711 }
4712
4713 /**
4714 * Same as Traverser version
4715 */
4716 final Node<K,V> advance() {
4717 Node<K,V> e;
4718 if ((e = next) != null)
4719 e = e.next;
4720 for (;;) {
4721 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4722 if (e != null)
4723 return next = e;
4724 if (baseIndex >= baseLimit || (t = tab) == null ||
4725 (n = t.length) <= (i = index) || i < 0)
4726 return next = null;
4727 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4728 if (e instanceof ForwardingNode) {
4729 tab = ((ForwardingNode<K,V>)e).nextTable;
4730 e = null;
4731 continue;
4732 }
4733 else if (e instanceof TreeBin)
4734 e = ((TreeBin<K,V>)e).first;
4735 else
4736 e = null;
4737 }
4738 if ((index += baseSize) >= n)
4739 index = ++baseIndex; // visit upper slots if present
4740 }
4741 }
4742 }
4743
4744 /*
4745 * Task classes. Coded in a regular but ugly format/style to
4746 * simplify checks that each variant differs in the right way from
4747 * others. The null screenings exist because compilers cannot tell
4748 * that we've already null-checked task arguments, so we force
4749 * simplest hoisted bypass to help avoid convoluted traps.
4750 */
4751 @SuppressWarnings("serial")
4752 static final class ForEachKeyTask<K,V>
4753 extends BulkTask<K,V,Void> {
4754 final Consumer<? super K> action;
4755 ForEachKeyTask
4756 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4757 Consumer<? super K> action) {
4758 super(p, b, i, f, t);
4759 this.action = action;
4760 }
4761 public final void compute() {
4762 final Consumer<? super K> action;
4763 if ((action = this.action) != null) {
4764 for (int i = baseIndex, f, h; batch > 0 &&
4765 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4766 addToPendingCount(1);
4767 new ForEachKeyTask<K,V>
4768 (this, batch >>>= 1, baseLimit = h, f, tab,
4769 action).fork();
4770 }
4771 for (Node<K,V> p; (p = advance()) != null;)
4772 action.accept(p.key);
4773 propagateCompletion();
4774 }
4775 }
4776 }
4777
4778 @SuppressWarnings("serial")
4779 static final class ForEachValueTask<K,V>
4780 extends BulkTask<K,V,Void> {
4781 final Consumer<? super V> action;
4782 ForEachValueTask
4783 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4784 Consumer<? super V> action) {
4785 super(p, b, i, f, t);
4786 this.action = action;
4787 }
4788 public final void compute() {
4789 final Consumer<? super V> action;
4790 if ((action = this.action) != null) {
4791 for (int i = baseIndex, f, h; batch > 0 &&
4792 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4793 addToPendingCount(1);
4794 new ForEachValueTask<K,V>
4795 (this, batch >>>= 1, baseLimit = h, f, tab,
4796 action).fork();
4797 }
4798 for (Node<K,V> p; (p = advance()) != null;)
4799 action.accept(p.val);
4800 propagateCompletion();
4801 }
4802 }
4803 }
4804
4805 @SuppressWarnings("serial")
4806 static final class ForEachEntryTask<K,V>
4807 extends BulkTask<K,V,Void> {
4808 final Consumer<? super Entry<K,V>> action;
4809 ForEachEntryTask
4810 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4811 Consumer<? super Entry<K,V>> action) {
4812 super(p, b, i, f, t);
4813 this.action = action;
4814 }
4815 public final void compute() {
4816 final Consumer<? super Entry<K,V>> action;
4817 if ((action = this.action) != null) {
4818 for (int i = baseIndex, f, h; batch > 0 &&
4819 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 addToPendingCount(1);
4821 new ForEachEntryTask<K,V>
4822 (this, batch >>>= 1, baseLimit = h, f, tab,
4823 action).fork();
4824 }
4825 for (Node<K,V> p; (p = advance()) != null; )
4826 action.accept(p);
4827 propagateCompletion();
4828 }
4829 }
4830 }
4831
4832 @SuppressWarnings("serial")
4833 static final class ForEachMappingTask<K,V>
4834 extends BulkTask<K,V,Void> {
4835 final BiConsumer<? super K, ? super V> action;
4836 ForEachMappingTask
4837 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4838 BiConsumer<? super K,? super V> action) {
4839 super(p, b, i, f, t);
4840 this.action = action;
4841 }
4842 public final void compute() {
4843 final BiConsumer<? super K, ? super V> action;
4844 if ((action = this.action) != null) {
4845 for (int i = baseIndex, f, h; batch > 0 &&
4846 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4847 addToPendingCount(1);
4848 new ForEachMappingTask<K,V>
4849 (this, batch >>>= 1, baseLimit = h, f, tab,
4850 action).fork();
4851 }
4852 for (Node<K,V> p; (p = advance()) != null; )
4853 action.accept(p.key, p.val);
4854 propagateCompletion();
4855 }
4856 }
4857 }
4858
4859 @SuppressWarnings("serial")
4860 static final class ForEachTransformedKeyTask<K,V,U>
4861 extends BulkTask<K,V,Void> {
4862 final Function<? super K, ? extends U> transformer;
4863 final Consumer<? super U> action;
4864 ForEachTransformedKeyTask
4865 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4866 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4867 super(p, b, i, f, t);
4868 this.transformer = transformer; this.action = action;
4869 }
4870 public final void compute() {
4871 final Function<? super K, ? extends U> transformer;
4872 final Consumer<? super U> action;
4873 if ((transformer = this.transformer) != null &&
4874 (action = this.action) != null) {
4875 for (int i = baseIndex, f, h; batch > 0 &&
4876 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4877 addToPendingCount(1);
4878 new ForEachTransformedKeyTask<K,V,U>
4879 (this, batch >>>= 1, baseLimit = h, f, tab,
4880 transformer, action).fork();
4881 }
4882 for (Node<K,V> p; (p = advance()) != null; ) {
4883 U u;
4884 if ((u = transformer.apply(p.key)) != null)
4885 action.accept(u);
4886 }
4887 propagateCompletion();
4888 }
4889 }
4890 }
4891
4892 @SuppressWarnings("serial")
4893 static final class ForEachTransformedValueTask<K,V,U>
4894 extends BulkTask<K,V,Void> {
4895 final Function<? super V, ? extends U> transformer;
4896 final Consumer<? super U> action;
4897 ForEachTransformedValueTask
4898 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4899 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4900 super(p, b, i, f, t);
4901 this.transformer = transformer; this.action = action;
4902 }
4903 public final void compute() {
4904 final Function<? super V, ? extends U> transformer;
4905 final Consumer<? super U> action;
4906 if ((transformer = this.transformer) != null &&
4907 (action = this.action) != null) {
4908 for (int i = baseIndex, f, h; batch > 0 &&
4909 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4910 addToPendingCount(1);
4911 new ForEachTransformedValueTask<K,V,U>
4912 (this, batch >>>= 1, baseLimit = h, f, tab,
4913 transformer, action).fork();
4914 }
4915 for (Node<K,V> p; (p = advance()) != null; ) {
4916 U u;
4917 if ((u = transformer.apply(p.val)) != null)
4918 action.accept(u);
4919 }
4920 propagateCompletion();
4921 }
4922 }
4923 }
4924
4925 @SuppressWarnings("serial")
4926 static final class ForEachTransformedEntryTask<K,V,U>
4927 extends BulkTask<K,V,Void> {
4928 final Function<Map.Entry<K,V>, ? extends U> transformer;
4929 final Consumer<? super U> action;
4930 ForEachTransformedEntryTask
4931 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4932 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4933 super(p, b, i, f, t);
4934 this.transformer = transformer; this.action = action;
4935 }
4936 public final void compute() {
4937 final Function<Map.Entry<K,V>, ? extends U> transformer;
4938 final Consumer<? super U> action;
4939 if ((transformer = this.transformer) != null &&
4940 (action = this.action) != null) {
4941 for (int i = baseIndex, f, h; batch > 0 &&
4942 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4943 addToPendingCount(1);
4944 new ForEachTransformedEntryTask<K,V,U>
4945 (this, batch >>>= 1, baseLimit = h, f, tab,
4946 transformer, action).fork();
4947 }
4948 for (Node<K,V> p; (p = advance()) != null; ) {
4949 U u;
4950 if ((u = transformer.apply(p)) != null)
4951 action.accept(u);
4952 }
4953 propagateCompletion();
4954 }
4955 }
4956 }
4957
4958 @SuppressWarnings("serial")
4959 static final class ForEachTransformedMappingTask<K,V,U>
4960 extends BulkTask<K,V,Void> {
4961 final BiFunction<? super K, ? super V, ? extends U> transformer;
4962 final Consumer<? super U> action;
4963 ForEachTransformedMappingTask
4964 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4965 BiFunction<? super K, ? super V, ? extends U> transformer,
4966 Consumer<? super U> action) {
4967 super(p, b, i, f, t);
4968 this.transformer = transformer; this.action = action;
4969 }
4970 public final void compute() {
4971 final BiFunction<? super K, ? super V, ? extends U> transformer;
4972 final Consumer<? super U> action;
4973 if ((transformer = this.transformer) != null &&
4974 (action = this.action) != null) {
4975 for (int i = baseIndex, f, h; batch > 0 &&
4976 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4977 addToPendingCount(1);
4978 new ForEachTransformedMappingTask<K,V,U>
4979 (this, batch >>>= 1, baseLimit = h, f, tab,
4980 transformer, action).fork();
4981 }
4982 for (Node<K,V> p; (p = advance()) != null; ) {
4983 U u;
4984 if ((u = transformer.apply(p.key, p.val)) != null)
4985 action.accept(u);
4986 }
4987 propagateCompletion();
4988 }
4989 }
4990 }
4991
4992 @SuppressWarnings("serial")
4993 static final class SearchKeysTask<K,V,U>
4994 extends BulkTask<K,V,U> {
4995 final Function<? super K, ? extends U> searchFunction;
4996 final AtomicReference<U> result;
4997 SearchKeysTask
4998 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4999 Function<? super K, ? extends U> searchFunction,
5000 AtomicReference<U> result) {
5001 super(p, b, i, f, t);
5002 this.searchFunction = searchFunction; this.result = result;
5003 }
5004 public final U getRawResult() { return result.get(); }
5005 public final void compute() {
5006 final Function<? super K, ? extends U> searchFunction;
5007 final AtomicReference<U> result;
5008 if ((searchFunction = this.searchFunction) != null &&
5009 (result = this.result) != null) {
5010 for (int i = baseIndex, f, h; batch > 0 &&
5011 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5012 if (result.get() != null)
5013 return;
5014 addToPendingCount(1);
5015 new SearchKeysTask<K,V,U>
5016 (this, batch >>>= 1, baseLimit = h, f, tab,
5017 searchFunction, result).fork();
5018 }
5019 while (result.get() == null) {
5020 U u;
5021 Node<K,V> p;
5022 if ((p = advance()) == null) {
5023 propagateCompletion();
5024 break;
5025 }
5026 if ((u = searchFunction.apply(p.key)) != null) {
5027 if (result.compareAndSet(null, u))
5028 quietlyCompleteRoot();
5029 break;
5030 }
5031 }
5032 }
5033 }
5034 }
5035
5036 @SuppressWarnings("serial")
5037 static final class SearchValuesTask<K,V,U>
5038 extends BulkTask<K,V,U> {
5039 final Function<? super V, ? extends U> searchFunction;
5040 final AtomicReference<U> result;
5041 SearchValuesTask
5042 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5043 Function<? super V, ? extends U> searchFunction,
5044 AtomicReference<U> result) {
5045 super(p, b, i, f, t);
5046 this.searchFunction = searchFunction; this.result = result;
5047 }
5048 public final U getRawResult() { return result.get(); }
5049 public final void compute() {
5050 final Function<? super V, ? extends U> searchFunction;
5051 final AtomicReference<U> result;
5052 if ((searchFunction = this.searchFunction) != null &&
5053 (result = this.result) != null) {
5054 for (int i = baseIndex, f, h; batch > 0 &&
5055 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5056 if (result.get() != null)
5057 return;
5058 addToPendingCount(1);
5059 new SearchValuesTask<K,V,U>
5060 (this, batch >>>= 1, baseLimit = h, f, tab,
5061 searchFunction, result).fork();
5062 }
5063 while (result.get() == null) {
5064 U u;
5065 Node<K,V> p;
5066 if ((p = advance()) == null) {
5067 propagateCompletion();
5068 break;
5069 }
5070 if ((u = searchFunction.apply(p.val)) != null) {
5071 if (result.compareAndSet(null, u))
5072 quietlyCompleteRoot();
5073 break;
5074 }
5075 }
5076 }
5077 }
5078 }
5079
5080 @SuppressWarnings("serial")
5081 static final class SearchEntriesTask<K,V,U>
5082 extends BulkTask<K,V,U> {
5083 final Function<Entry<K,V>, ? extends U> searchFunction;
5084 final AtomicReference<U> result;
5085 SearchEntriesTask
5086 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5087 Function<Entry<K,V>, ? extends U> searchFunction,
5088 AtomicReference<U> result) {
5089 super(p, b, i, f, t);
5090 this.searchFunction = searchFunction; this.result = result;
5091 }
5092 public final U getRawResult() { return result.get(); }
5093 public final void compute() {
5094 final Function<Entry<K,V>, ? extends U> searchFunction;
5095 final AtomicReference<U> result;
5096 if ((searchFunction = this.searchFunction) != null &&
5097 (result = this.result) != null) {
5098 for (int i = baseIndex, f, h; batch > 0 &&
5099 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5100 if (result.get() != null)
5101 return;
5102 addToPendingCount(1);
5103 new SearchEntriesTask<K,V,U>
5104 (this, batch >>>= 1, baseLimit = h, f, tab,
5105 searchFunction, result).fork();
5106 }
5107 while (result.get() == null) {
5108 U u;
5109 Node<K,V> p;
5110 if ((p = advance()) == null) {
5111 propagateCompletion();
5112 break;
5113 }
5114 if ((u = searchFunction.apply(p)) != null) {
5115 if (result.compareAndSet(null, u))
5116 quietlyCompleteRoot();
5117 return;
5118 }
5119 }
5120 }
5121 }
5122 }
5123
5124 @SuppressWarnings("serial")
5125 static final class SearchMappingsTask<K,V,U>
5126 extends BulkTask<K,V,U> {
5127 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5128 final AtomicReference<U> result;
5129 SearchMappingsTask
5130 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5131 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5132 AtomicReference<U> result) {
5133 super(p, b, i, f, t);
5134 this.searchFunction = searchFunction; this.result = result;
5135 }
5136 public final U getRawResult() { return result.get(); }
5137 public final void compute() {
5138 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5139 final AtomicReference<U> result;
5140 if ((searchFunction = this.searchFunction) != null &&
5141 (result = this.result) != null) {
5142 for (int i = baseIndex, f, h; batch > 0 &&
5143 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5144 if (result.get() != null)
5145 return;
5146 addToPendingCount(1);
5147 new SearchMappingsTask<K,V,U>
5148 (this, batch >>>= 1, baseLimit = h, f, tab,
5149 searchFunction, result).fork();
5150 }
5151 while (result.get() == null) {
5152 U u;
5153 Node<K,V> p;
5154 if ((p = advance()) == null) {
5155 propagateCompletion();
5156 break;
5157 }
5158 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5159 if (result.compareAndSet(null, u))
5160 quietlyCompleteRoot();
5161 break;
5162 }
5163 }
5164 }
5165 }
5166 }
5167
5168 @SuppressWarnings("serial")
5169 static final class ReduceKeysTask<K,V>
5170 extends BulkTask<K,V,K> {
5171 final BiFunction<? super K, ? super K, ? extends K> reducer;
5172 K result;
5173 ReduceKeysTask<K,V> rights, nextRight;
5174 ReduceKeysTask
5175 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 ReduceKeysTask<K,V> nextRight,
5177 BiFunction<? super K, ? super K, ? extends K> reducer) {
5178 super(p, b, i, f, t); this.nextRight = nextRight;
5179 this.reducer = reducer;
5180 }
5181 public final K getRawResult() { return result; }
5182 public final void compute() {
5183 final BiFunction<? super K, ? super K, ? extends K> reducer;
5184 if ((reducer = this.reducer) != null) {
5185 for (int i = baseIndex, f, h; batch > 0 &&
5186 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 addToPendingCount(1);
5188 (rights = new ReduceKeysTask<K,V>
5189 (this, batch >>>= 1, baseLimit = h, f, tab,
5190 rights, reducer)).fork();
5191 }
5192 K r = null;
5193 for (Node<K,V> p; (p = advance()) != null; ) {
5194 K u = p.key;
5195 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5196 }
5197 result = r;
5198 CountedCompleter<?> c;
5199 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5200 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5201 t = (ReduceKeysTask<K,V>)c,
5202 s = t.rights;
5203 while (s != null) {
5204 K tr, sr;
5205 if ((sr = s.result) != null)
5206 t.result = (((tr = t.result) == null) ? sr :
5207 reducer.apply(tr, sr));
5208 s = t.rights = s.nextRight;
5209 }
5210 }
5211 }
5212 }
5213 }
5214
5215 @SuppressWarnings("serial")
5216 static final class ReduceValuesTask<K,V>
5217 extends BulkTask<K,V,V> {
5218 final BiFunction<? super V, ? super V, ? extends V> reducer;
5219 V result;
5220 ReduceValuesTask<K,V> rights, nextRight;
5221 ReduceValuesTask
5222 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5223 ReduceValuesTask<K,V> nextRight,
5224 BiFunction<? super V, ? super V, ? extends V> reducer) {
5225 super(p, b, i, f, t); this.nextRight = nextRight;
5226 this.reducer = reducer;
5227 }
5228 public final V getRawResult() { return result; }
5229 public final void compute() {
5230 final BiFunction<? super V, ? super V, ? extends V> reducer;
5231 if ((reducer = this.reducer) != null) {
5232 for (int i = baseIndex, f, h; batch > 0 &&
5233 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234 addToPendingCount(1);
5235 (rights = new ReduceValuesTask<K,V>
5236 (this, batch >>>= 1, baseLimit = h, f, tab,
5237 rights, reducer)).fork();
5238 }
5239 V r = null;
5240 for (Node<K,V> p; (p = advance()) != null; ) {
5241 V v = p.val;
5242 r = (r == null) ? v : reducer.apply(r, v);
5243 }
5244 result = r;
5245 CountedCompleter<?> c;
5246 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5247 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5248 t = (ReduceValuesTask<K,V>)c,
5249 s = t.rights;
5250 while (s != null) {
5251 V tr, sr;
5252 if ((sr = s.result) != null)
5253 t.result = (((tr = t.result) == null) ? sr :
5254 reducer.apply(tr, sr));
5255 s = t.rights = s.nextRight;
5256 }
5257 }
5258 }
5259 }
5260 }
5261
5262 @SuppressWarnings("serial")
5263 static final class ReduceEntriesTask<K,V>
5264 extends BulkTask<K,V,Map.Entry<K,V>> {
5265 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5266 Map.Entry<K,V> result;
5267 ReduceEntriesTask<K,V> rights, nextRight;
5268 ReduceEntriesTask
5269 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5270 ReduceEntriesTask<K,V> nextRight,
5271 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5272 super(p, b, i, f, t); this.nextRight = nextRight;
5273 this.reducer = reducer;
5274 }
5275 public final Map.Entry<K,V> getRawResult() { return result; }
5276 public final void compute() {
5277 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5278 if ((reducer = this.reducer) != null) {
5279 for (int i = baseIndex, f, h; batch > 0 &&
5280 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5281 addToPendingCount(1);
5282 (rights = new ReduceEntriesTask<K,V>
5283 (this, batch >>>= 1, baseLimit = h, f, tab,
5284 rights, reducer)).fork();
5285 }
5286 Map.Entry<K,V> r = null;
5287 for (Node<K,V> p; (p = advance()) != null; )
5288 r = (r == null) ? p : reducer.apply(r, p);
5289 result = r;
5290 CountedCompleter<?> c;
5291 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5292 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5293 t = (ReduceEntriesTask<K,V>)c,
5294 s = t.rights;
5295 while (s != null) {
5296 Map.Entry<K,V> tr, sr;
5297 if ((sr = s.result) != null)
5298 t.result = (((tr = t.result) == null) ? sr :
5299 reducer.apply(tr, sr));
5300 s = t.rights = s.nextRight;
5301 }
5302 }
5303 }
5304 }
5305 }
5306
5307 @SuppressWarnings("serial")
5308 static final class MapReduceKeysTask<K,V,U>
5309 extends BulkTask<K,V,U> {
5310 final Function<? super K, ? extends U> transformer;
5311 final BiFunction<? super U, ? super U, ? extends U> reducer;
5312 U result;
5313 MapReduceKeysTask<K,V,U> rights, nextRight;
5314 MapReduceKeysTask
5315 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5316 MapReduceKeysTask<K,V,U> nextRight,
5317 Function<? super K, ? extends U> transformer,
5318 BiFunction<? super U, ? super U, ? extends U> reducer) {
5319 super(p, b, i, f, t); this.nextRight = nextRight;
5320 this.transformer = transformer;
5321 this.reducer = reducer;
5322 }
5323 public final U getRawResult() { return result; }
5324 public final void compute() {
5325 final Function<? super K, ? extends U> transformer;
5326 final BiFunction<? super U, ? super U, ? extends U> reducer;
5327 if ((transformer = this.transformer) != null &&
5328 (reducer = this.reducer) != null) {
5329 for (int i = baseIndex, f, h; batch > 0 &&
5330 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5331 addToPendingCount(1);
5332 (rights = new MapReduceKeysTask<K,V,U>
5333 (this, batch >>>= 1, baseLimit = h, f, tab,
5334 rights, transformer, reducer)).fork();
5335 }
5336 U r = null;
5337 for (Node<K,V> p; (p = advance()) != null; ) {
5338 U u;
5339 if ((u = transformer.apply(p.key)) != null)
5340 r = (r == null) ? u : reducer.apply(r, u);
5341 }
5342 result = r;
5343 CountedCompleter<?> c;
5344 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5345 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5346 t = (MapReduceKeysTask<K,V,U>)c,
5347 s = t.rights;
5348 while (s != null) {
5349 U tr, sr;
5350 if ((sr = s.result) != null)
5351 t.result = (((tr = t.result) == null) ? sr :
5352 reducer.apply(tr, sr));
5353 s = t.rights = s.nextRight;
5354 }
5355 }
5356 }
5357 }
5358 }
5359
5360 @SuppressWarnings("serial")
5361 static final class MapReduceValuesTask<K,V,U>
5362 extends BulkTask<K,V,U> {
5363 final Function<? super V, ? extends U> transformer;
5364 final BiFunction<? super U, ? super U, ? extends U> reducer;
5365 U result;
5366 MapReduceValuesTask<K,V,U> rights, nextRight;
5367 MapReduceValuesTask
5368 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5369 MapReduceValuesTask<K,V,U> nextRight,
5370 Function<? super V, ? extends U> transformer,
5371 BiFunction<? super U, ? super U, ? extends U> reducer) {
5372 super(p, b, i, f, t); this.nextRight = nextRight;
5373 this.transformer = transformer;
5374 this.reducer = reducer;
5375 }
5376 public final U getRawResult() { return result; }
5377 public final void compute() {
5378 final Function<? super V, ? extends U> transformer;
5379 final BiFunction<? super U, ? super U, ? extends U> reducer;
5380 if ((transformer = this.transformer) != null &&
5381 (reducer = this.reducer) != null) {
5382 for (int i = baseIndex, f, h; batch > 0 &&
5383 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5384 addToPendingCount(1);
5385 (rights = new MapReduceValuesTask<K,V,U>
5386 (this, batch >>>= 1, baseLimit = h, f, tab,
5387 rights, transformer, reducer)).fork();
5388 }
5389 U r = null;
5390 for (Node<K,V> p; (p = advance()) != null; ) {
5391 U u;
5392 if ((u = transformer.apply(p.val)) != null)
5393 r = (r == null) ? u : reducer.apply(r, u);
5394 }
5395 result = r;
5396 CountedCompleter<?> c;
5397 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5398 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5399 t = (MapReduceValuesTask<K,V,U>)c,
5400 s = t.rights;
5401 while (s != null) {
5402 U tr, sr;
5403 if ((sr = s.result) != null)
5404 t.result = (((tr = t.result) == null) ? sr :
5405 reducer.apply(tr, sr));
5406 s = t.rights = s.nextRight;
5407 }
5408 }
5409 }
5410 }
5411 }
5412
5413 @SuppressWarnings("serial")
5414 static final class MapReduceEntriesTask<K,V,U>
5415 extends BulkTask<K,V,U> {
5416 final Function<Map.Entry<K,V>, ? extends U> transformer;
5417 final BiFunction<? super U, ? super U, ? extends U> reducer;
5418 U result;
5419 MapReduceEntriesTask<K,V,U> rights, nextRight;
5420 MapReduceEntriesTask
5421 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5422 MapReduceEntriesTask<K,V,U> nextRight,
5423 Function<Map.Entry<K,V>, ? extends U> transformer,
5424 BiFunction<? super U, ? super U, ? extends U> reducer) {
5425 super(p, b, i, f, t); this.nextRight = nextRight;
5426 this.transformer = transformer;
5427 this.reducer = reducer;
5428 }
5429 public final U getRawResult() { return result; }
5430 public final void compute() {
5431 final Function<Map.Entry<K,V>, ? extends U> transformer;
5432 final BiFunction<? super U, ? super U, ? extends U> reducer;
5433 if ((transformer = this.transformer) != null &&
5434 (reducer = this.reducer) != null) {
5435 for (int i = baseIndex, f, h; batch > 0 &&
5436 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5437 addToPendingCount(1);
5438 (rights = new MapReduceEntriesTask<K,V,U>
5439 (this, batch >>>= 1, baseLimit = h, f, tab,
5440 rights, transformer, reducer)).fork();
5441 }
5442 U r = null;
5443 for (Node<K,V> p; (p = advance()) != null; ) {
5444 U u;
5445 if ((u = transformer.apply(p)) != null)
5446 r = (r == null) ? u : reducer.apply(r, u);
5447 }
5448 result = r;
5449 CountedCompleter<?> c;
5450 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5451 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5452 t = (MapReduceEntriesTask<K,V,U>)c,
5453 s = t.rights;
5454 while (s != null) {
5455 U tr, sr;
5456 if ((sr = s.result) != null)
5457 t.result = (((tr = t.result) == null) ? sr :
5458 reducer.apply(tr, sr));
5459 s = t.rights = s.nextRight;
5460 }
5461 }
5462 }
5463 }
5464 }
5465
5466 @SuppressWarnings("serial")
5467 static final class MapReduceMappingsTask<K,V,U>
5468 extends BulkTask<K,V,U> {
5469 final BiFunction<? super K, ? super V, ? extends U> transformer;
5470 final BiFunction<? super U, ? super U, ? extends U> reducer;
5471 U result;
5472 MapReduceMappingsTask<K,V,U> rights, nextRight;
5473 MapReduceMappingsTask
5474 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5475 MapReduceMappingsTask<K,V,U> nextRight,
5476 BiFunction<? super K, ? super V, ? extends U> transformer,
5477 BiFunction<? super U, ? super U, ? extends U> reducer) {
5478 super(p, b, i, f, t); this.nextRight = nextRight;
5479 this.transformer = transformer;
5480 this.reducer = reducer;
5481 }
5482 public final U getRawResult() { return result; }
5483 public final void compute() {
5484 final BiFunction<? super K, ? super V, ? extends U> transformer;
5485 final BiFunction<? super U, ? super U, ? extends U> reducer;
5486 if ((transformer = this.transformer) != null &&
5487 (reducer = this.reducer) != null) {
5488 for (int i = baseIndex, f, h; batch > 0 &&
5489 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5490 addToPendingCount(1);
5491 (rights = new MapReduceMappingsTask<K,V,U>
5492 (this, batch >>>= 1, baseLimit = h, f, tab,
5493 rights, transformer, reducer)).fork();
5494 }
5495 U r = null;
5496 for (Node<K,V> p; (p = advance()) != null; ) {
5497 U u;
5498 if ((u = transformer.apply(p.key, p.val)) != null)
5499 r = (r == null) ? u : reducer.apply(r, u);
5500 }
5501 result = r;
5502 CountedCompleter<?> c;
5503 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5504 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5505 t = (MapReduceMappingsTask<K,V,U>)c,
5506 s = t.rights;
5507 while (s != null) {
5508 U tr, sr;
5509 if ((sr = s.result) != null)
5510 t.result = (((tr = t.result) == null) ? sr :
5511 reducer.apply(tr, sr));
5512 s = t.rights = s.nextRight;
5513 }
5514 }
5515 }
5516 }
5517 }
5518
5519 @SuppressWarnings("serial")
5520 static final class MapReduceKeysToDoubleTask<K,V>
5521 extends BulkTask<K,V,Double> {
5522 final ToDoubleFunction<? super K> transformer;
5523 final DoubleBinaryOperator reducer;
5524 final double basis;
5525 double result;
5526 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5527 MapReduceKeysToDoubleTask
5528 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5529 MapReduceKeysToDoubleTask<K,V> nextRight,
5530 ToDoubleFunction<? super K> transformer,
5531 double basis,
5532 DoubleBinaryOperator reducer) {
5533 super(p, b, i, f, t); this.nextRight = nextRight;
5534 this.transformer = transformer;
5535 this.basis = basis; this.reducer = reducer;
5536 }
5537 public final Double getRawResult() { return result; }
5538 public final void compute() {
5539 final ToDoubleFunction<? super K> transformer;
5540 final DoubleBinaryOperator reducer;
5541 if ((transformer = this.transformer) != null &&
5542 (reducer = this.reducer) != null) {
5543 double r = this.basis;
5544 for (int i = baseIndex, f, h; batch > 0 &&
5545 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5546 addToPendingCount(1);
5547 (rights = new MapReduceKeysToDoubleTask<K,V>
5548 (this, batch >>>= 1, baseLimit = h, f, tab,
5549 rights, transformer, r, reducer)).fork();
5550 }
5551 for (Node<K,V> p; (p = advance()) != null; )
5552 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5553 result = r;
5554 CountedCompleter<?> c;
5555 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5556 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5557 t = (MapReduceKeysToDoubleTask<K,V>)c,
5558 s = t.rights;
5559 while (s != null) {
5560 t.result = reducer.applyAsDouble(t.result, s.result);
5561 s = t.rights = s.nextRight;
5562 }
5563 }
5564 }
5565 }
5566 }
5567
5568 @SuppressWarnings("serial")
5569 static final class MapReduceValuesToDoubleTask<K,V>
5570 extends BulkTask<K,V,Double> {
5571 final ToDoubleFunction<? super V> transformer;
5572 final DoubleBinaryOperator reducer;
5573 final double basis;
5574 double result;
5575 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5576 MapReduceValuesToDoubleTask
5577 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5578 MapReduceValuesToDoubleTask<K,V> nextRight,
5579 ToDoubleFunction<? super V> transformer,
5580 double basis,
5581 DoubleBinaryOperator reducer) {
5582 super(p, b, i, f, t); this.nextRight = nextRight;
5583 this.transformer = transformer;
5584 this.basis = basis; this.reducer = reducer;
5585 }
5586 public final Double getRawResult() { return result; }
5587 public final void compute() {
5588 final ToDoubleFunction<? super V> transformer;
5589 final DoubleBinaryOperator reducer;
5590 if ((transformer = this.transformer) != null &&
5591 (reducer = this.reducer) != null) {
5592 double r = this.basis;
5593 for (int i = baseIndex, f, h; batch > 0 &&
5594 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5595 addToPendingCount(1);
5596 (rights = new MapReduceValuesToDoubleTask<K,V>
5597 (this, batch >>>= 1, baseLimit = h, f, tab,
5598 rights, transformer, r, reducer)).fork();
5599 }
5600 for (Node<K,V> p; (p = advance()) != null; )
5601 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5602 result = r;
5603 CountedCompleter<?> c;
5604 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5605 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5606 t = (MapReduceValuesToDoubleTask<K,V>)c,
5607 s = t.rights;
5608 while (s != null) {
5609 t.result = reducer.applyAsDouble(t.result, s.result);
5610 s = t.rights = s.nextRight;
5611 }
5612 }
5613 }
5614 }
5615 }
5616
5617 @SuppressWarnings("serial")
5618 static final class MapReduceEntriesToDoubleTask<K,V>
5619 extends BulkTask<K,V,Double> {
5620 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5621 final DoubleBinaryOperator reducer;
5622 final double basis;
5623 double result;
5624 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5625 MapReduceEntriesToDoubleTask
5626 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5627 MapReduceEntriesToDoubleTask<K,V> nextRight,
5628 ToDoubleFunction<Map.Entry<K,V>> transformer,
5629 double basis,
5630 DoubleBinaryOperator reducer) {
5631 super(p, b, i, f, t); this.nextRight = nextRight;
5632 this.transformer = transformer;
5633 this.basis = basis; this.reducer = reducer;
5634 }
5635 public final Double getRawResult() { return result; }
5636 public final void compute() {
5637 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5638 final DoubleBinaryOperator reducer;
5639 if ((transformer = this.transformer) != null &&
5640 (reducer = this.reducer) != null) {
5641 double r = this.basis;
5642 for (int i = baseIndex, f, h; batch > 0 &&
5643 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5644 addToPendingCount(1);
5645 (rights = new MapReduceEntriesToDoubleTask<K,V>
5646 (this, batch >>>= 1, baseLimit = h, f, tab,
5647 rights, transformer, r, reducer)).fork();
5648 }
5649 for (Node<K,V> p; (p = advance()) != null; )
5650 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5651 result = r;
5652 CountedCompleter<?> c;
5653 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5654 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5655 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5656 s = t.rights;
5657 while (s != null) {
5658 t.result = reducer.applyAsDouble(t.result, s.result);
5659 s = t.rights = s.nextRight;
5660 }
5661 }
5662 }
5663 }
5664 }
5665
5666 @SuppressWarnings("serial")
5667 static final class MapReduceMappingsToDoubleTask<K,V>
5668 extends BulkTask<K,V,Double> {
5669 final ToDoubleBiFunction<? super K, ? super V> transformer;
5670 final DoubleBinaryOperator reducer;
5671 final double basis;
5672 double result;
5673 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5674 MapReduceMappingsToDoubleTask
5675 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5676 MapReduceMappingsToDoubleTask<K,V> nextRight,
5677 ToDoubleBiFunction<? super K, ? super V> transformer,
5678 double basis,
5679 DoubleBinaryOperator reducer) {
5680 super(p, b, i, f, t); this.nextRight = nextRight;
5681 this.transformer = transformer;
5682 this.basis = basis; this.reducer = reducer;
5683 }
5684 public final Double getRawResult() { return result; }
5685 public final void compute() {
5686 final ToDoubleBiFunction<? super K, ? super V> transformer;
5687 final DoubleBinaryOperator reducer;
5688 if ((transformer = this.transformer) != null &&
5689 (reducer = this.reducer) != null) {
5690 double r = this.basis;
5691 for (int i = baseIndex, f, h; batch > 0 &&
5692 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5693 addToPendingCount(1);
5694 (rights = new MapReduceMappingsToDoubleTask<K,V>
5695 (this, batch >>>= 1, baseLimit = h, f, tab,
5696 rights, transformer, r, reducer)).fork();
5697 }
5698 for (Node<K,V> p; (p = advance()) != null; )
5699 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5700 result = r;
5701 CountedCompleter<?> c;
5702 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5703 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5704 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5705 s = t.rights;
5706 while (s != null) {
5707 t.result = reducer.applyAsDouble(t.result, s.result);
5708 s = t.rights = s.nextRight;
5709 }
5710 }
5711 }
5712 }
5713 }
5714
5715 @SuppressWarnings("serial")
5716 static final class MapReduceKeysToLongTask<K,V>
5717 extends BulkTask<K,V,Long> {
5718 final ToLongFunction<? super K> transformer;
5719 final LongBinaryOperator reducer;
5720 final long basis;
5721 long result;
5722 MapReduceKeysToLongTask<K,V> rights, nextRight;
5723 MapReduceKeysToLongTask
5724 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5725 MapReduceKeysToLongTask<K,V> nextRight,
5726 ToLongFunction<? super K> transformer,
5727 long basis,
5728 LongBinaryOperator reducer) {
5729 super(p, b, i, f, t); this.nextRight = nextRight;
5730 this.transformer = transformer;
5731 this.basis = basis; this.reducer = reducer;
5732 }
5733 public final Long getRawResult() { return result; }
5734 public final void compute() {
5735 final ToLongFunction<? super K> transformer;
5736 final LongBinaryOperator reducer;
5737 if ((transformer = this.transformer) != null &&
5738 (reducer = this.reducer) != null) {
5739 long r = this.basis;
5740 for (int i = baseIndex, f, h; batch > 0 &&
5741 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5742 addToPendingCount(1);
5743 (rights = new MapReduceKeysToLongTask<K,V>
5744 (this, batch >>>= 1, baseLimit = h, f, tab,
5745 rights, transformer, r, reducer)).fork();
5746 }
5747 for (Node<K,V> p; (p = advance()) != null; )
5748 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5749 result = r;
5750 CountedCompleter<?> c;
5751 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5752 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5753 t = (MapReduceKeysToLongTask<K,V>)c,
5754 s = t.rights;
5755 while (s != null) {
5756 t.result = reducer.applyAsLong(t.result, s.result);
5757 s = t.rights = s.nextRight;
5758 }
5759 }
5760 }
5761 }
5762 }
5763
5764 @SuppressWarnings("serial")
5765 static final class MapReduceValuesToLongTask<K,V>
5766 extends BulkTask<K,V,Long> {
5767 final ToLongFunction<? super V> transformer;
5768 final LongBinaryOperator reducer;
5769 final long basis;
5770 long result;
5771 MapReduceValuesToLongTask<K,V> rights, nextRight;
5772 MapReduceValuesToLongTask
5773 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5774 MapReduceValuesToLongTask<K,V> nextRight,
5775 ToLongFunction<? super V> transformer,
5776 long basis,
5777 LongBinaryOperator reducer) {
5778 super(p, b, i, f, t); this.nextRight = nextRight;
5779 this.transformer = transformer;
5780 this.basis = basis; this.reducer = reducer;
5781 }
5782 public final Long getRawResult() { return result; }
5783 public final void compute() {
5784 final ToLongFunction<? super V> transformer;
5785 final LongBinaryOperator reducer;
5786 if ((transformer = this.transformer) != null &&
5787 (reducer = this.reducer) != null) {
5788 long r = this.basis;
5789 for (int i = baseIndex, f, h; batch > 0 &&
5790 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5791 addToPendingCount(1);
5792 (rights = new MapReduceValuesToLongTask<K,V>
5793 (this, batch >>>= 1, baseLimit = h, f, tab,
5794 rights, transformer, r, reducer)).fork();
5795 }
5796 for (Node<K,V> p; (p = advance()) != null; )
5797 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5798 result = r;
5799 CountedCompleter<?> c;
5800 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5801 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5802 t = (MapReduceValuesToLongTask<K,V>)c,
5803 s = t.rights;
5804 while (s != null) {
5805 t.result = reducer.applyAsLong(t.result, s.result);
5806 s = t.rights = s.nextRight;
5807 }
5808 }
5809 }
5810 }
5811 }
5812
5813 @SuppressWarnings("serial")
5814 static final class MapReduceEntriesToLongTask<K,V>
5815 extends BulkTask<K,V,Long> {
5816 final ToLongFunction<Map.Entry<K,V>> transformer;
5817 final LongBinaryOperator reducer;
5818 final long basis;
5819 long result;
5820 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5821 MapReduceEntriesToLongTask
5822 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5823 MapReduceEntriesToLongTask<K,V> nextRight,
5824 ToLongFunction<Map.Entry<K,V>> transformer,
5825 long basis,
5826 LongBinaryOperator reducer) {
5827 super(p, b, i, f, t); this.nextRight = nextRight;
5828 this.transformer = transformer;
5829 this.basis = basis; this.reducer = reducer;
5830 }
5831 public final Long getRawResult() { return result; }
5832 public final void compute() {
5833 final ToLongFunction<Map.Entry<K,V>> transformer;
5834 final LongBinaryOperator reducer;
5835 if ((transformer = this.transformer) != null &&
5836 (reducer = this.reducer) != null) {
5837 long r = this.basis;
5838 for (int i = baseIndex, f, h; batch > 0 &&
5839 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5840 addToPendingCount(1);
5841 (rights = new MapReduceEntriesToLongTask<K,V>
5842 (this, batch >>>= 1, baseLimit = h, f, tab,
5843 rights, transformer, r, reducer)).fork();
5844 }
5845 for (Node<K,V> p; (p = advance()) != null; )
5846 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5847 result = r;
5848 CountedCompleter<?> c;
5849 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5850 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5851 t = (MapReduceEntriesToLongTask<K,V>)c,
5852 s = t.rights;
5853 while (s != null) {
5854 t.result = reducer.applyAsLong(t.result, s.result);
5855 s = t.rights = s.nextRight;
5856 }
5857 }
5858 }
5859 }
5860 }
5861
5862 @SuppressWarnings("serial")
5863 static final class MapReduceMappingsToLongTask<K,V>
5864 extends BulkTask<K,V,Long> {
5865 final ToLongBiFunction<? super K, ? super V> transformer;
5866 final LongBinaryOperator reducer;
5867 final long basis;
5868 long result;
5869 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5870 MapReduceMappingsToLongTask
5871 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5872 MapReduceMappingsToLongTask<K,V> nextRight,
5873 ToLongBiFunction<? super K, ? super V> transformer,
5874 long basis,
5875 LongBinaryOperator reducer) {
5876 super(p, b, i, f, t); this.nextRight = nextRight;
5877 this.transformer = transformer;
5878 this.basis = basis; this.reducer = reducer;
5879 }
5880 public final Long getRawResult() { return result; }
5881 public final void compute() {
5882 final ToLongBiFunction<? super K, ? super V> transformer;
5883 final LongBinaryOperator reducer;
5884 if ((transformer = this.transformer) != null &&
5885 (reducer = this.reducer) != null) {
5886 long r = this.basis;
5887 for (int i = baseIndex, f, h; batch > 0 &&
5888 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5889 addToPendingCount(1);
5890 (rights = new MapReduceMappingsToLongTask<K,V>
5891 (this, batch >>>= 1, baseLimit = h, f, tab,
5892 rights, transformer, r, reducer)).fork();
5893 }
5894 for (Node<K,V> p; (p = advance()) != null; )
5895 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5896 result = r;
5897 CountedCompleter<?> c;
5898 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5899 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5900 t = (MapReduceMappingsToLongTask<K,V>)c,
5901 s = t.rights;
5902 while (s != null) {
5903 t.result = reducer.applyAsLong(t.result, s.result);
5904 s = t.rights = s.nextRight;
5905 }
5906 }
5907 }
5908 }
5909 }
5910
5911 @SuppressWarnings("serial")
5912 static final class MapReduceKeysToIntTask<K,V>
5913 extends BulkTask<K,V,Integer> {
5914 final ToIntFunction<? super K> transformer;
5915 final IntBinaryOperator reducer;
5916 final int basis;
5917 int result;
5918 MapReduceKeysToIntTask<K,V> rights, nextRight;
5919 MapReduceKeysToIntTask
5920 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5921 MapReduceKeysToIntTask<K,V> nextRight,
5922 ToIntFunction<? super K> transformer,
5923 int basis,
5924 IntBinaryOperator reducer) {
5925 super(p, b, i, f, t); this.nextRight = nextRight;
5926 this.transformer = transformer;
5927 this.basis = basis; this.reducer = reducer;
5928 }
5929 public final Integer getRawResult() { return result; }
5930 public final void compute() {
5931 final ToIntFunction<? super K> transformer;
5932 final IntBinaryOperator reducer;
5933 if ((transformer = this.transformer) != null &&
5934 (reducer = this.reducer) != null) {
5935 int r = this.basis;
5936 for (int i = baseIndex, f, h; batch > 0 &&
5937 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5938 addToPendingCount(1);
5939 (rights = new MapReduceKeysToIntTask<K,V>
5940 (this, batch >>>= 1, baseLimit = h, f, tab,
5941 rights, transformer, r, reducer)).fork();
5942 }
5943 for (Node<K,V> p; (p = advance()) != null; )
5944 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5945 result = r;
5946 CountedCompleter<?> c;
5947 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5948 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5949 t = (MapReduceKeysToIntTask<K,V>)c,
5950 s = t.rights;
5951 while (s != null) {
5952 t.result = reducer.applyAsInt(t.result, s.result);
5953 s = t.rights = s.nextRight;
5954 }
5955 }
5956 }
5957 }
5958 }
5959
5960 @SuppressWarnings("serial")
5961 static final class MapReduceValuesToIntTask<K,V>
5962 extends BulkTask<K,V,Integer> {
5963 final ToIntFunction<? super V> transformer;
5964 final IntBinaryOperator reducer;
5965 final int basis;
5966 int result;
5967 MapReduceValuesToIntTask<K,V> rights, nextRight;
5968 MapReduceValuesToIntTask
5969 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5970 MapReduceValuesToIntTask<K,V> nextRight,
5971 ToIntFunction<? super V> transformer,
5972 int basis,
5973 IntBinaryOperator reducer) {
5974 super(p, b, i, f, t); this.nextRight = nextRight;
5975 this.transformer = transformer;
5976 this.basis = basis; this.reducer = reducer;
5977 }
5978 public final Integer getRawResult() { return result; }
5979 public final void compute() {
5980 final ToIntFunction<? super V> transformer;
5981 final IntBinaryOperator reducer;
5982 if ((transformer = this.transformer) != null &&
5983 (reducer = this.reducer) != null) {
5984 int r = this.basis;
5985 for (int i = baseIndex, f, h; batch > 0 &&
5986 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5987 addToPendingCount(1);
5988 (rights = new MapReduceValuesToIntTask<K,V>
5989 (this, batch >>>= 1, baseLimit = h, f, tab,
5990 rights, transformer, r, reducer)).fork();
5991 }
5992 for (Node<K,V> p; (p = advance()) != null; )
5993 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5994 result = r;
5995 CountedCompleter<?> c;
5996 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5997 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5998 t = (MapReduceValuesToIntTask<K,V>)c,
5999 s = t.rights;
6000 while (s != null) {
6001 t.result = reducer.applyAsInt(t.result, s.result);
6002 s = t.rights = s.nextRight;
6003 }
6004 }
6005 }
6006 }
6007 }
6008
6009 @SuppressWarnings("serial")
6010 static final class MapReduceEntriesToIntTask<K,V>
6011 extends BulkTask<K,V,Integer> {
6012 final ToIntFunction<Map.Entry<K,V>> transformer;
6013 final IntBinaryOperator reducer;
6014 final int basis;
6015 int result;
6016 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6017 MapReduceEntriesToIntTask
6018 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6019 MapReduceEntriesToIntTask<K,V> nextRight,
6020 ToIntFunction<Map.Entry<K,V>> transformer,
6021 int basis,
6022 IntBinaryOperator reducer) {
6023 super(p, b, i, f, t); this.nextRight = nextRight;
6024 this.transformer = transformer;
6025 this.basis = basis; this.reducer = reducer;
6026 }
6027 public final Integer getRawResult() { return result; }
6028 public final void compute() {
6029 final ToIntFunction<Map.Entry<K,V>> transformer;
6030 final IntBinaryOperator reducer;
6031 if ((transformer = this.transformer) != null &&
6032 (reducer = this.reducer) != null) {
6033 int r = this.basis;
6034 for (int i = baseIndex, f, h; batch > 0 &&
6035 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6036 addToPendingCount(1);
6037 (rights = new MapReduceEntriesToIntTask<K,V>
6038 (this, batch >>>= 1, baseLimit = h, f, tab,
6039 rights, transformer, r, reducer)).fork();
6040 }
6041 for (Node<K,V> p; (p = advance()) != null; )
6042 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6043 result = r;
6044 CountedCompleter<?> c;
6045 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6046 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6047 t = (MapReduceEntriesToIntTask<K,V>)c,
6048 s = t.rights;
6049 while (s != null) {
6050 t.result = reducer.applyAsInt(t.result, s.result);
6051 s = t.rights = s.nextRight;
6052 }
6053 }
6054 }
6055 }
6056 }
6057
6058 @SuppressWarnings("serial")
6059 static final class MapReduceMappingsToIntTask<K,V>
6060 extends BulkTask<K,V,Integer> {
6061 final ToIntBiFunction<? super K, ? super V> transformer;
6062 final IntBinaryOperator reducer;
6063 final int basis;
6064 int result;
6065 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6066 MapReduceMappingsToIntTask
6067 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6068 MapReduceMappingsToIntTask<K,V> nextRight,
6069 ToIntBiFunction<? super K, ? super V> transformer,
6070 int basis,
6071 IntBinaryOperator reducer) {
6072 super(p, b, i, f, t); this.nextRight = nextRight;
6073 this.transformer = transformer;
6074 this.basis = basis; this.reducer = reducer;
6075 }
6076 public final Integer getRawResult() { return result; }
6077 public final void compute() {
6078 final ToIntBiFunction<? super K, ? super V> transformer;
6079 final IntBinaryOperator reducer;
6080 if ((transformer = this.transformer) != null &&
6081 (reducer = this.reducer) != null) {
6082 int r = this.basis;
6083 for (int i = baseIndex, f, h; batch > 0 &&
6084 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6085 addToPendingCount(1);
6086 (rights = new MapReduceMappingsToIntTask<K,V>
6087 (this, batch >>>= 1, baseLimit = h, f, tab,
6088 rights, transformer, r, reducer)).fork();
6089 }
6090 for (Node<K,V> p; (p = advance()) != null; )
6091 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6092 result = r;
6093 CountedCompleter<?> c;
6094 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6096 t = (MapReduceMappingsToIntTask<K,V>)c,
6097 s = t.rights;
6098 while (s != null) {
6099 t.result = reducer.applyAsInt(t.result, s.result);
6100 s = t.rights = s.nextRight;
6101 }
6102 }
6103 }
6104 }
6105 }
6106
6107 // Unsafe mechanics
6108 private static final sun.misc.Unsafe U;
6109 private static final long SIZECTL;
6110 private static final long TRANSFERINDEX;
6111 private static final long TRANSFERORIGIN;
6112 private static final long BASECOUNT;
6113 private static final long CELLSBUSY;
6114 private static final long CELLVALUE;
6115 private static final long ABASE;
6116 private static final int ASHIFT;
6117
6118 static {
6119 try {
6120 U = sun.misc.Unsafe.getUnsafe();
6121 Class<?> k = ConcurrentHashMap.class;
6122 SIZECTL = U.objectFieldOffset
6123 (k.getDeclaredField("sizeCtl"));
6124 TRANSFERINDEX = U.objectFieldOffset
6125 (k.getDeclaredField("transferIndex"));
6126 TRANSFERORIGIN = U.objectFieldOffset
6127 (k.getDeclaredField("transferOrigin"));
6128 BASECOUNT = U.objectFieldOffset
6129 (k.getDeclaredField("baseCount"));
6130 CELLSBUSY = U.objectFieldOffset
6131 (k.getDeclaredField("cellsBusy"));
6132 Class<?> ck = CounterCell.class;
6133 CELLVALUE = U.objectFieldOffset
6134 (ck.getDeclaredField("value"));
6135 Class<?> ak = Node[].class;
6136 ABASE = U.arrayBaseOffset(ak);
6137 int scale = U.arrayIndexScale(ak);
6138 if ((scale & (scale - 1)) != 0)
6139 throw new Error("data type scale not a power of two");
6140 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6141 } catch (Exception e) {
6142 throw new Error(e);
6143 }
6144 }
6145 }