ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.253
Committed: Sun Dec 1 16:08:09 2013 UTC (10 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.252: +2 -1 lines
Log Message:
Don't skip elements on CAS failure

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators, Spliterators and Enumerations return elements reflecting the
68 * state of the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 * However, iterators are designed to be used by only one thread at a time.
72 * Bear in mind that the results of aggregate status methods including
73 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 * useful only when a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement array.
348 * However, rather than stalling, these other threads may proceed
349 * with insertions etc. The use of TreeBins shields us from the
350 * worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. However, threads claim small
353 * blocks of indices to transfer (via field transferIndex) before
354 * doing so, reducing contention. A generation stamp in field
355 * sizeCtl ensures that resizings do not overlap. Because we are
356 * using power-of-two expansion, the elements from each bin must
357 * either stay at same index, or move with a power of two
358 * offset. We eliminate unnecessary node creation by catching
359 * cases where old nodes can be reused because their next fields
360 * won't change. On average, only about one-sixth of them need
361 * cloning when a table doubles. The nodes they replace will be
362 * garbage collectable as soon as they are no longer referenced by
363 * any reader thread that may be in the midst of concurrently
364 * traversing table. Upon transfer, the old table bin contains
365 * only a special forwarding node (with hash field "MOVED") that
366 * contains the next table as its key. On encountering a
367 * forwarding node, access and update operations restart, using
368 * the new table.
369 *
370 * Each bin transfer requires its bin lock, which can stall
371 * waiting for locks while resizing. However, because other
372 * threads can join in and help resize rather than contend for
373 * locks, average aggregate waits become shorter as resizing
374 * progresses. The transfer operation must also ensure that all
375 * accessible bins in both the old and new table are usable by any
376 * traversal. This is arranged in part by proceeding from the
377 * last bin (table.length - 1) up towards the first. Upon seeing
378 * a forwarding node, traversals (see class Traverser) arrange to
379 * move to the new table without revisiting nodes. To ensure that
380 * no intervening nodes are skipped even when moved out of order,
381 * a stack (see class TableStack) is created on first encounter of
382 * a forwarding node during a traversal, to maintain its place if
383 * later processing the current table. The need for these
384 * save/restore mechanics is relatively rare, but when one
385 * forwarding node is encountered, typically many more will be.
386 * So Traversers use a simple caching scheme to avoid creating so
387 * many new TableStack nodes. (Thanks to Peter Levart for
388 * suggesting use of a stack here.)
389 *
390 * The traversal scheme also applies to partial traversals of
391 * ranges of bins (via an alternate Traverser constructor)
392 * to support partitioned aggregate operations. Also, read-only
393 * operations give up if ever forwarded to a null table, which
394 * provides support for shutdown-style clearing, which is also not
395 * currently implemented.
396 *
397 * Lazy table initialization minimizes footprint until first use,
398 * and also avoids resizings when the first operation is from a
399 * putAll, constructor with map argument, or deserialization.
400 * These cases attempt to override the initial capacity settings,
401 * but harmlessly fail to take effect in cases of races.
402 *
403 * The element count is maintained using a specialization of
404 * LongAdder. We need to incorporate a specialization rather than
405 * just use a LongAdder in order to access implicit
406 * contention-sensing that leads to creation of multiple
407 * CounterCells. The counter mechanics avoid contention on
408 * updates but can encounter cache thrashing if read too
409 * frequently during concurrent access. To avoid reading so often,
410 * resizing under contention is attempted only upon adding to a
411 * bin already holding two or more nodes. Under uniform hash
412 * distributions, the probability of this occurring at threshold
413 * is around 13%, meaning that only about 1 in 8 puts check
414 * threshold (and after resizing, many fewer do so).
415 *
416 * TreeBins use a special form of comparison for search and
417 * related operations (which is the main reason we cannot use
418 * existing collections such as TreeMaps). TreeBins contain
419 * Comparable elements, but may contain others, as well as
420 * elements that are Comparable but not necessarily Comparable for
421 * the same T, so we cannot invoke compareTo among them. To handle
422 * this, the tree is ordered primarily by hash value, then by
423 * Comparable.compareTo order if applicable. On lookup at a node,
424 * if elements are not comparable or compare as 0 then both left
425 * and right children may need to be searched in the case of tied
426 * hash values. (This corresponds to the full list search that
427 * would be necessary if all elements were non-Comparable and had
428 * tied hashes.) On insertion, to keep a total ordering (or as
429 * close as is required here) across rebalancings, we compare
430 * classes and identityHashCodes as tie-breakers. The red-black
431 * balancing code is updated from pre-jdk-collections
432 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
433 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
434 * Algorithms" (CLR).
435 *
436 * TreeBins also require an additional locking mechanism. While
437 * list traversal is always possible by readers even during
438 * updates, tree traversal is not, mainly because of tree-rotations
439 * that may change the root node and/or its linkages. TreeBins
440 * include a simple read-write lock mechanism parasitic on the
441 * main bin-synchronization strategy: Structural adjustments
442 * associated with an insertion or removal are already bin-locked
443 * (and so cannot conflict with other writers) but must wait for
444 * ongoing readers to finish. Since there can be only one such
445 * waiter, we use a simple scheme using a single "waiter" field to
446 * block writers. However, readers need never block. If the root
447 * lock is held, they proceed along the slow traversal path (via
448 * next-pointers) until the lock becomes available or the list is
449 * exhausted, whichever comes first. These cases are not fast, but
450 * maximize aggregate expected throughput.
451 *
452 * Maintaining API and serialization compatibility with previous
453 * versions of this class introduces several oddities. Mainly: We
454 * leave untouched but unused constructor arguments refering to
455 * concurrencyLevel. We accept a loadFactor constructor argument,
456 * but apply it only to initial table capacity (which is the only
457 * time that we can guarantee to honor it.) We also declare an
458 * unused "Segment" class that is instantiated in minimal form
459 * only when serializing.
460 *
461 * Also, solely for compatibility with previous versions of this
462 * class, it extends AbstractMap, even though all of its methods
463 * are overridden, so it is just useless baggage.
464 *
465 * This file is organized to make things a little easier to follow
466 * while reading than they might otherwise: First the main static
467 * declarations and utilities, then fields, then main public
468 * methods (with a few factorings of multiple public methods into
469 * internal ones), then sizing methods, trees, traversers, and
470 * bulk operations.
471 */
472
473 /* ---------------- Constants -------------- */
474
475 /**
476 * The largest possible table capacity. This value must be
477 * exactly 1<<30 to stay within Java array allocation and indexing
478 * bounds for power of two table sizes, and is further required
479 * because the top two bits of 32bit hash fields are used for
480 * control purposes.
481 */
482 private static final int MAXIMUM_CAPACITY = 1 << 30;
483
484 /**
485 * The default initial table capacity. Must be a power of 2
486 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 */
488 private static final int DEFAULT_CAPACITY = 16;
489
490 /**
491 * The largest possible (non-power of two) array size.
492 * Needed by toArray and related methods.
493 */
494 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495
496 /**
497 * The default concurrency level for this table. Unused but
498 * defined for compatibility with previous versions of this class.
499 */
500 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501
502 /**
503 * The load factor for this table. Overrides of this value in
504 * constructors affect only the initial table capacity. The
505 * actual floating point value isn't normally used -- it is
506 * simpler to use expressions such as {@code n - (n >>> 2)} for
507 * the associated resizing threshold.
508 */
509 private static final float LOAD_FACTOR = 0.75f;
510
511 /**
512 * The bin count threshold for using a tree rather than list for a
513 * bin. Bins are converted to trees when adding an element to a
514 * bin with at least this many nodes. The value must be greater
515 * than 2, and should be at least 8 to mesh with assumptions in
516 * tree removal about conversion back to plain bins upon
517 * shrinkage.
518 */
519 static final int TREEIFY_THRESHOLD = 8;
520
521 /**
522 * The bin count threshold for untreeifying a (split) bin during a
523 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
524 * most 6 to mesh with shrinkage detection under removal.
525 */
526 static final int UNTREEIFY_THRESHOLD = 6;
527
528 /**
529 * The smallest table capacity for which bins may be treeified.
530 * (Otherwise the table is resized if too many nodes in a bin.)
531 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
532 * conflicts between resizing and treeification thresholds.
533 */
534 static final int MIN_TREEIFY_CAPACITY = 64;
535
536 /**
537 * Minimum number of rebinnings per transfer step. Ranges are
538 * subdivided to allow multiple resizer threads. This value
539 * serves as a lower bound to avoid resizers encountering
540 * excessive memory contention. The value should be at least
541 * DEFAULT_CAPACITY.
542 */
543 private static final int MIN_TRANSFER_STRIDE = 16;
544
545 /**
546 * The number of bits used for generation stamp in sizeCtl.
547 * Must be at least 6 for 32bit arrays.
548 */
549 private static int RESIZE_STAMP_BITS = 16;
550
551 /**
552 * The maximum number of threads that can help resize.
553 * Must fit in 32 - RESIZE_STAMP_BITS bits.
554 */
555 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
556
557 /**
558 * The bit shift for recording size stamp in sizeCtl.
559 */
560 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
561
562 /*
563 * Encodings for Node hash fields. See above for explanation.
564 */
565 static final int MOVED = -1; // hash for forwarding nodes
566 static final int TREEBIN = -2; // hash for roots of trees
567 static final int RESERVED = -3; // hash for transient reservations
568 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
569
570 /** Number of CPUS, to place bounds on some sizings */
571 static final int NCPU = Runtime.getRuntime().availableProcessors();
572
573 /** For serialization compatibility. */
574 private static final ObjectStreamField[] serialPersistentFields = {
575 new ObjectStreamField("segments", Segment[].class),
576 new ObjectStreamField("segmentMask", Integer.TYPE),
577 new ObjectStreamField("segmentShift", Integer.TYPE)
578 };
579
580 /* ---------------- Nodes -------------- */
581
582 /**
583 * Key-value entry. This class is never exported out as a
584 * user-mutable Map.Entry (i.e., one supporting setValue; see
585 * MapEntry below), but can be used for read-only traversals used
586 * in bulk tasks. Subclasses of Node with a negative hash field
587 * are special, and contain null keys and values (but are never
588 * exported). Otherwise, keys and vals are never null.
589 */
590 static class Node<K,V> implements Map.Entry<K,V> {
591 final int hash;
592 final K key;
593 volatile V val;
594 volatile Node<K,V> next;
595
596 Node(int hash, K key, V val, Node<K,V> next) {
597 this.hash = hash;
598 this.key = key;
599 this.val = val;
600 this.next = next;
601 }
602
603 public final K getKey() { return key; }
604 public final V getValue() { return val; }
605 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
606 public final String toString(){ return key + "=" + val; }
607 public final V setValue(V value) {
608 throw new UnsupportedOperationException();
609 }
610
611 public final boolean equals(Object o) {
612 Object k, v, u; Map.Entry<?,?> e;
613 return ((o instanceof Map.Entry) &&
614 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 (v = e.getValue()) != null &&
616 (k == key || k.equals(key)) &&
617 (v == (u = val) || v.equals(u)));
618 }
619
620 /**
621 * Virtualized support for map.get(); overridden in subclasses.
622 */
623 Node<K,V> find(int h, Object k) {
624 Node<K,V> e = this;
625 if (k != null) {
626 do {
627 K ek;
628 if (e.hash == h &&
629 ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 return e;
631 } while ((e = e.next) != null);
632 }
633 return null;
634 }
635 }
636
637 /* ---------------- Static utilities -------------- */
638
639 /**
640 * Spreads (XORs) higher bits of hash to lower and also forces top
641 * bit to 0. Because the table uses power-of-two masking, sets of
642 * hashes that vary only in bits above the current mask will
643 * always collide. (Among known examples are sets of Float keys
644 * holding consecutive whole numbers in small tables.) So we
645 * apply a transform that spreads the impact of higher bits
646 * downward. There is a tradeoff between speed, utility, and
647 * quality of bit-spreading. Because many common sets of hashes
648 * are already reasonably distributed (so don't benefit from
649 * spreading), and because we use trees to handle large sets of
650 * collisions in bins, we just XOR some shifted bits in the
651 * cheapest possible way to reduce systematic lossage, as well as
652 * to incorporate impact of the highest bits that would otherwise
653 * never be used in index calculations because of table bounds.
654 */
655 static final int spread(int h) {
656 return (h ^ (h >>> 16)) & HASH_BITS;
657 }
658
659 /**
660 * Returns a power of two table size for the given desired capacity.
661 * See Hackers Delight, sec 3.2
662 */
663 private static final int tableSizeFor(int c) {
664 int n = c - 1;
665 n |= n >>> 1;
666 n |= n >>> 2;
667 n |= n >>> 4;
668 n |= n >>> 8;
669 n |= n >>> 16;
670 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 }
672
673 /**
674 * Returns x's Class if it is of the form "class C implements
675 * Comparable<C>", else null.
676 */
677 static Class<?> comparableClassFor(Object x) {
678 if (x instanceof Comparable) {
679 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 if ((c = x.getClass()) == String.class) // bypass checks
681 return c;
682 if ((ts = c.getGenericInterfaces()) != null) {
683 for (int i = 0; i < ts.length; ++i) {
684 if (((t = ts[i]) instanceof ParameterizedType) &&
685 ((p = (ParameterizedType)t).getRawType() ==
686 Comparable.class) &&
687 (as = p.getActualTypeArguments()) != null &&
688 as.length == 1 && as[0] == c) // type arg is c
689 return c;
690 }
691 }
692 }
693 return null;
694 }
695
696 /**
697 * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 * class), else 0.
699 */
700 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 static int compareComparables(Class<?> kc, Object k, Object x) {
702 return (x == null || x.getClass() != kc ? 0 :
703 ((Comparable)k).compareTo(x));
704 }
705
706 /* ---------------- Table element access -------------- */
707
708 /*
709 * Volatile access methods are used for table elements as well as
710 * elements of in-progress next table while resizing. All uses of
711 * the tab arguments must be null checked by callers. All callers
712 * also paranoically precheck that tab's length is not zero (or an
713 * equivalent check), thus ensuring that any index argument taking
714 * the form of a hash value anded with (length - 1) is a valid
715 * index. Note that, to be correct wrt arbitrary concurrency
716 * errors by users, these checks must operate on local variables,
717 * which accounts for some odd-looking inline assignments below.
718 * Note that calls to setTabAt always occur within locked regions,
719 * and so in principle require only release ordering, not
720 * full volatile semantics, but are currently coded as volatile
721 * writes to be conservative.
722 */
723
724 @SuppressWarnings("unchecked")
725 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727 }
728
729 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 Node<K,V> c, Node<K,V> v) {
731 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 }
733
734 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 }
737
738 /* ---------------- Fields -------------- */
739
740 /**
741 * The array of bins. Lazily initialized upon first insertion.
742 * Size is always a power of two. Accessed directly by iterators.
743 */
744 transient volatile Node<K,V>[] table;
745
746 /**
747 * The next table to use; non-null only while resizing.
748 */
749 private transient volatile Node<K,V>[] nextTable;
750
751 /**
752 * Base counter value, used mainly when there is no contention,
753 * but also as a fallback during table initialization
754 * races. Updated via CAS.
755 */
756 private transient volatile long baseCount;
757
758 /**
759 * Table initialization and resizing control. When negative, the
760 * table is being initialized or resized: -1 for initialization,
761 * else -(1 + the number of active resizing threads). Otherwise,
762 * when table is null, holds the initial table size to use upon
763 * creation, or 0 for default. After initialization, holds the
764 * next element count value upon which to resize the table.
765 */
766 private transient volatile int sizeCtl;
767
768 /**
769 * The next table index (plus one) to split while resizing.
770 */
771 private transient volatile int transferIndex;
772
773 /**
774 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 */
776 private transient volatile int cellsBusy;
777
778 /**
779 * Table of counter cells. When non-null, size is a power of 2.
780 */
781 private transient volatile CounterCell[] counterCells;
782
783 // views
784 private transient KeySetView<K,V> keySet;
785 private transient ValuesView<K,V> values;
786 private transient EntrySetView<K,V> entrySet;
787
788
789 /* ---------------- Public operations -------------- */
790
791 /**
792 * Creates a new, empty map with the default initial table size (16).
793 */
794 public ConcurrentHashMap() {
795 }
796
797 /**
798 * Creates a new, empty map with an initial table size
799 * accommodating the specified number of elements without the need
800 * to dynamically resize.
801 *
802 * @param initialCapacity The implementation performs internal
803 * sizing to accommodate this many elements.
804 * @throws IllegalArgumentException if the initial capacity of
805 * elements is negative
806 */
807 public ConcurrentHashMap(int initialCapacity) {
808 if (initialCapacity < 0)
809 throw new IllegalArgumentException();
810 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 MAXIMUM_CAPACITY :
812 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 this.sizeCtl = cap;
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), table
848 * density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null,
991 new Node<K,V>(hash, key, value, null)))
992 break; // no lock when adding to empty bin
993 }
994 else if ((fh = f.hash) == MOVED)
995 tab = helpTransfer(tab, f);
996 else {
997 V oldVal = null;
998 synchronized (f) {
999 if (tabAt(tab, i) == f) {
1000 if (fh >= 0) {
1001 binCount = 1;
1002 for (Node<K,V> e = f;; ++binCount) {
1003 K ek;
1004 if (e.hash == hash &&
1005 ((ek = e.key) == key ||
1006 (ek != null && key.equals(ek)))) {
1007 oldVal = e.val;
1008 if (!onlyIfAbsent)
1009 e.val = value;
1010 break;
1011 }
1012 Node<K,V> pred = e;
1013 if ((e = e.next) == null) {
1014 pred.next = new Node<K,V>(hash, key,
1015 value, null);
1016 break;
1017 }
1018 }
1019 }
1020 else if (f instanceof TreeBin) {
1021 Node<K,V> p;
1022 binCount = 2;
1023 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 value)) != null) {
1025 oldVal = p.val;
1026 if (!onlyIfAbsent)
1027 p.val = value;
1028 }
1029 }
1030 }
1031 }
1032 if (binCount != 0) {
1033 if (binCount >= TREEIFY_THRESHOLD)
1034 treeifyBin(tab, i);
1035 if (oldVal != null)
1036 return oldVal;
1037 break;
1038 }
1039 }
1040 }
1041 addCount(1L, binCount);
1042 return null;
1043 }
1044
1045 /**
1046 * Copies all of the mappings from the specified map to this one.
1047 * These mappings replace any mappings that this map had for any of the
1048 * keys currently in the specified map.
1049 *
1050 * @param m mappings to be stored in this map
1051 */
1052 public void putAll(Map<? extends K, ? extends V> m) {
1053 tryPresize(m.size());
1054 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055 putVal(e.getKey(), e.getValue(), false);
1056 }
1057
1058 /**
1059 * Removes the key (and its corresponding value) from this map.
1060 * This method does nothing if the key is not in the map.
1061 *
1062 * @param key the key that needs to be removed
1063 * @return the previous value associated with {@code key}, or
1064 * {@code null} if there was no mapping for {@code key}
1065 * @throws NullPointerException if the specified key is null
1066 */
1067 public V remove(Object key) {
1068 return replaceNode(key, null, null);
1069 }
1070
1071 /**
1072 * Implementation for the four public remove/replace methods:
1073 * Replaces node value with v, conditional upon match of cv if
1074 * non-null. If resulting value is null, delete.
1075 */
1076 final V replaceNode(Object key, V value, Object cv) {
1077 int hash = spread(key.hashCode());
1078 for (Node<K,V>[] tab = table;;) {
1079 Node<K,V> f; int n, i, fh;
1080 if (tab == null || (n = tab.length) == 0 ||
1081 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082 break;
1083 else if ((fh = f.hash) == MOVED)
1084 tab = helpTransfer(tab, f);
1085 else {
1086 V oldVal = null;
1087 boolean validated = false;
1088 synchronized (f) {
1089 if (tabAt(tab, i) == f) {
1090 if (fh >= 0) {
1091 validated = true;
1092 for (Node<K,V> e = f, pred = null;;) {
1093 K ek;
1094 if (e.hash == hash &&
1095 ((ek = e.key) == key ||
1096 (ek != null && key.equals(ek)))) {
1097 V ev = e.val;
1098 if (cv == null || cv == ev ||
1099 (ev != null && cv.equals(ev))) {
1100 oldVal = ev;
1101 if (value != null)
1102 e.val = value;
1103 else if (pred != null)
1104 pred.next = e.next;
1105 else
1106 setTabAt(tab, i, e.next);
1107 }
1108 break;
1109 }
1110 pred = e;
1111 if ((e = e.next) == null)
1112 break;
1113 }
1114 }
1115 else if (f instanceof TreeBin) {
1116 validated = true;
1117 TreeBin<K,V> t = (TreeBin<K,V>)f;
1118 TreeNode<K,V> r, p;
1119 if ((r = t.root) != null &&
1120 (p = r.findTreeNode(hash, key, null)) != null) {
1121 V pv = p.val;
1122 if (cv == null || cv == pv ||
1123 (pv != null && cv.equals(pv))) {
1124 oldVal = pv;
1125 if (value != null)
1126 p.val = value;
1127 else if (t.removeTreeNode(p))
1128 setTabAt(tab, i, untreeify(t.first));
1129 }
1130 }
1131 }
1132 }
1133 }
1134 if (validated) {
1135 if (oldVal != null) {
1136 if (value == null)
1137 addCount(-1L, -1);
1138 return oldVal;
1139 }
1140 break;
1141 }
1142 }
1143 }
1144 return null;
1145 }
1146
1147 /**
1148 * Removes all of the mappings from this map.
1149 */
1150 public void clear() {
1151 long delta = 0L; // negative number of deletions
1152 int i = 0;
1153 Node<K,V>[] tab = table;
1154 while (tab != null && i < tab.length) {
1155 int fh;
1156 Node<K,V> f = tabAt(tab, i);
1157 if (f == null)
1158 ++i;
1159 else if ((fh = f.hash) == MOVED) {
1160 tab = helpTransfer(tab, f);
1161 i = 0; // restart
1162 }
1163 else {
1164 synchronized (f) {
1165 if (tabAt(tab, i) == f) {
1166 Node<K,V> p = (fh >= 0 ? f :
1167 (f instanceof TreeBin) ?
1168 ((TreeBin<K,V>)f).first : null);
1169 while (p != null) {
1170 --delta;
1171 p = p.next;
1172 }
1173 setTabAt(tab, i++, null);
1174 }
1175 }
1176 }
1177 }
1178 if (delta != 0L)
1179 addCount(delta, -1);
1180 }
1181
1182 /**
1183 * Returns a {@link Set} view of the keys contained in this map.
1184 * The set is backed by the map, so changes to the map are
1185 * reflected in the set, and vice-versa. The set supports element
1186 * removal, which removes the corresponding mapping from this map,
1187 * via the {@code Iterator.remove}, {@code Set.remove},
1188 * {@code removeAll}, {@code retainAll}, and {@code clear}
1189 * operations. It does not support the {@code add} or
1190 * {@code addAll} operations.
1191 *
1192 * <p>The view's iterators and spliterators are
1193 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 *
1195 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197 *
1198 * @return the set view
1199 */
1200 public KeySetView<K,V> keySet() {
1201 KeySetView<K,V> ks;
1202 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203 }
1204
1205 /**
1206 * Returns a {@link Collection} view of the values contained in this map.
1207 * The collection is backed by the map, so changes to the map are
1208 * reflected in the collection, and vice-versa. The collection
1209 * supports element removal, which removes the corresponding
1210 * mapping from this map, via the {@code Iterator.remove},
1211 * {@code Collection.remove}, {@code removeAll},
1212 * {@code retainAll}, and {@code clear} operations. It does not
1213 * support the {@code add} or {@code addAll} operations.
1214 *
1215 * <p>The view's iterators and spliterators are
1216 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 *
1218 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219 * and {@link Spliterator#NONNULL}.
1220 *
1221 * @return the collection view
1222 */
1223 public Collection<V> values() {
1224 ValuesView<K,V> vs;
1225 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226 }
1227
1228 /**
1229 * Returns a {@link Set} view of the mappings contained in this map.
1230 * The set is backed by the map, so changes to the map are
1231 * reflected in the set, and vice-versa. The set supports element
1232 * removal, which removes the corresponding mapping from the map,
1233 * via the {@code Iterator.remove}, {@code Set.remove},
1234 * {@code removeAll}, {@code retainAll}, and {@code clear}
1235 * operations.
1236 *
1237 * <p>The view's iterators and spliterators are
1238 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 *
1240 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242 *
1243 * @return the set view
1244 */
1245 public Set<Map.Entry<K,V>> entrySet() {
1246 EntrySetView<K,V> es;
1247 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248 }
1249
1250 /**
1251 * Returns the hash code value for this {@link Map}, i.e.,
1252 * the sum of, for each key-value pair in the map,
1253 * {@code key.hashCode() ^ value.hashCode()}.
1254 *
1255 * @return the hash code value for this map
1256 */
1257 public int hashCode() {
1258 int h = 0;
1259 Node<K,V>[] t;
1260 if ((t = table) != null) {
1261 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262 for (Node<K,V> p; (p = it.advance()) != null; )
1263 h += p.key.hashCode() ^ p.val.hashCode();
1264 }
1265 return h;
1266 }
1267
1268 /**
1269 * Returns a string representation of this map. The string
1270 * representation consists of a list of key-value mappings (in no
1271 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1272 * mappings are separated by the characters {@code ", "} (comma
1273 * and space). Each key-value mapping is rendered as the key
1274 * followed by an equals sign ("{@code =}") followed by the
1275 * associated value.
1276 *
1277 * @return a string representation of this map
1278 */
1279 public String toString() {
1280 Node<K,V>[] t;
1281 int f = (t = table) == null ? 0 : t.length;
1282 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283 StringBuilder sb = new StringBuilder();
1284 sb.append('{');
1285 Node<K,V> p;
1286 if ((p = it.advance()) != null) {
1287 for (;;) {
1288 K k = p.key;
1289 V v = p.val;
1290 sb.append(k == this ? "(this Map)" : k);
1291 sb.append('=');
1292 sb.append(v == this ? "(this Map)" : v);
1293 if ((p = it.advance()) == null)
1294 break;
1295 sb.append(',').append(' ');
1296 }
1297 }
1298 return sb.append('}').toString();
1299 }
1300
1301 /**
1302 * Compares the specified object with this map for equality.
1303 * Returns {@code true} if the given object is a map with the same
1304 * mappings as this map. This operation may return misleading
1305 * results if either map is concurrently modified during execution
1306 * of this method.
1307 *
1308 * @param o object to be compared for equality with this map
1309 * @return {@code true} if the specified object is equal to this map
1310 */
1311 public boolean equals(Object o) {
1312 if (o != this) {
1313 if (!(o instanceof Map))
1314 return false;
1315 Map<?,?> m = (Map<?,?>) o;
1316 Node<K,V>[] t;
1317 int f = (t = table) == null ? 0 : t.length;
1318 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 for (Node<K,V> p; (p = it.advance()) != null; ) {
1320 V val = p.val;
1321 Object v = m.get(p.key);
1322 if (v == null || (v != val && !v.equals(val)))
1323 return false;
1324 }
1325 for (Map.Entry<?,?> e : m.entrySet()) {
1326 Object mk, mv, v;
1327 if ((mk = e.getKey()) == null ||
1328 (mv = e.getValue()) == null ||
1329 (v = get(mk)) == null ||
1330 (mv != v && !mv.equals(v)))
1331 return false;
1332 }
1333 }
1334 return true;
1335 }
1336
1337 /**
1338 * Stripped-down version of helper class used in previous version,
1339 * declared for the sake of serialization compatibility
1340 */
1341 static class Segment<K,V> extends ReentrantLock implements Serializable {
1342 private static final long serialVersionUID = 2249069246763182397L;
1343 final float loadFactor;
1344 Segment(float lf) { this.loadFactor = lf; }
1345 }
1346
1347 /**
1348 * Saves the state of the {@code ConcurrentHashMap} instance to a
1349 * stream (i.e., serializes it).
1350 * @param s the stream
1351 * @throws java.io.IOException if an I/O error occurs
1352 * @serialData
1353 * the key (Object) and value (Object)
1354 * for each key-value mapping, followed by a null pair.
1355 * The key-value mappings are emitted in no particular order.
1356 */
1357 private void writeObject(java.io.ObjectOutputStream s)
1358 throws java.io.IOException {
1359 // For serialization compatibility
1360 // Emulate segment calculation from previous version of this class
1361 int sshift = 0;
1362 int ssize = 1;
1363 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364 ++sshift;
1365 ssize <<= 1;
1366 }
1367 int segmentShift = 32 - sshift;
1368 int segmentMask = ssize - 1;
1369 @SuppressWarnings("unchecked")
1370 Segment<K,V>[] segments = (Segment<K,V>[])
1371 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372 for (int i = 0; i < segments.length; ++i)
1373 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374 s.putFields().put("segments", segments);
1375 s.putFields().put("segmentShift", segmentShift);
1376 s.putFields().put("segmentMask", segmentMask);
1377 s.writeFields();
1378
1379 Node<K,V>[] t;
1380 if ((t = table) != null) {
1381 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382 for (Node<K,V> p; (p = it.advance()) != null; ) {
1383 s.writeObject(p.key);
1384 s.writeObject(p.val);
1385 }
1386 }
1387 s.writeObject(null);
1388 s.writeObject(null);
1389 segments = null; // throw away
1390 }
1391
1392 /**
1393 * Reconstitutes the instance from a stream (that is, deserializes it).
1394 * @param s the stream
1395 * @throws ClassNotFoundException if the class of a serialized object
1396 * could not be found
1397 * @throws java.io.IOException if an I/O error occurs
1398 */
1399 private void readObject(java.io.ObjectInputStream s)
1400 throws java.io.IOException, ClassNotFoundException {
1401 /*
1402 * To improve performance in typical cases, we create nodes
1403 * while reading, then place in table once size is known.
1404 * However, we must also validate uniqueness and deal with
1405 * overpopulated bins while doing so, which requires
1406 * specialized versions of putVal mechanics.
1407 */
1408 sizeCtl = -1; // force exclusion for table construction
1409 s.defaultReadObject();
1410 long size = 0L;
1411 Node<K,V> p = null;
1412 for (;;) {
1413 @SuppressWarnings("unchecked")
1414 K k = (K) s.readObject();
1415 @SuppressWarnings("unchecked")
1416 V v = (V) s.readObject();
1417 if (k != null && v != null) {
1418 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419 ++size;
1420 }
1421 else
1422 break;
1423 }
1424 if (size == 0L)
1425 sizeCtl = 0;
1426 else {
1427 int n;
1428 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429 n = MAXIMUM_CAPACITY;
1430 else {
1431 int sz = (int)size;
1432 n = tableSizeFor(sz + (sz >>> 1) + 1);
1433 }
1434 @SuppressWarnings("unchecked")
1435 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 int mask = n - 1;
1437 long added = 0L;
1438 while (p != null) {
1439 boolean insertAtFront;
1440 Node<K,V> next = p.next, first;
1441 int h = p.hash, j = h & mask;
1442 if ((first = tabAt(tab, j)) == null)
1443 insertAtFront = true;
1444 else {
1445 K k = p.key;
1446 if (first.hash < 0) {
1447 TreeBin<K,V> t = (TreeBin<K,V>)first;
1448 if (t.putTreeVal(h, k, p.val) == null)
1449 ++added;
1450 insertAtFront = false;
1451 }
1452 else {
1453 int binCount = 0;
1454 insertAtFront = true;
1455 Node<K,V> q; K qk;
1456 for (q = first; q != null; q = q.next) {
1457 if (q.hash == h &&
1458 ((qk = q.key) == k ||
1459 (qk != null && k.equals(qk)))) {
1460 insertAtFront = false;
1461 break;
1462 }
1463 ++binCount;
1464 }
1465 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466 insertAtFront = false;
1467 ++added;
1468 p.next = first;
1469 TreeNode<K,V> hd = null, tl = null;
1470 for (q = p; q != null; q = q.next) {
1471 TreeNode<K,V> t = new TreeNode<K,V>
1472 (q.hash, q.key, q.val, null, null);
1473 if ((t.prev = tl) == null)
1474 hd = t;
1475 else
1476 tl.next = t;
1477 tl = t;
1478 }
1479 setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 }
1481 }
1482 }
1483 if (insertAtFront) {
1484 ++added;
1485 p.next = first;
1486 setTabAt(tab, j, p);
1487 }
1488 p = next;
1489 }
1490 table = tab;
1491 sizeCtl = n - (n >>> 2);
1492 baseCount = added;
1493 }
1494 }
1495
1496 // ConcurrentMap methods
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @return the previous value associated with the specified key,
1502 * or {@code null} if there was no mapping for the key
1503 * @throws NullPointerException if the specified key or value is null
1504 */
1505 public V putIfAbsent(K key, V value) {
1506 return putVal(key, value, true);
1507 }
1508
1509 /**
1510 * {@inheritDoc}
1511 *
1512 * @throws NullPointerException if the specified key is null
1513 */
1514 public boolean remove(Object key, Object value) {
1515 if (key == null)
1516 throw new NullPointerException();
1517 return value != null && replaceNode(key, null, value) != null;
1518 }
1519
1520 /**
1521 * {@inheritDoc}
1522 *
1523 * @throws NullPointerException if any of the arguments are null
1524 */
1525 public boolean replace(K key, V oldValue, V newValue) {
1526 if (key == null || oldValue == null || newValue == null)
1527 throw new NullPointerException();
1528 return replaceNode(key, newValue, oldValue) != null;
1529 }
1530
1531 /**
1532 * {@inheritDoc}
1533 *
1534 * @return the previous value associated with the specified key,
1535 * or {@code null} if there was no mapping for the key
1536 * @throws NullPointerException if the specified key or value is null
1537 */
1538 public V replace(K key, V value) {
1539 if (key == null || value == null)
1540 throw new NullPointerException();
1541 return replaceNode(key, value, null);
1542 }
1543
1544 // Overrides of JDK8+ Map extension method defaults
1545
1546 /**
1547 * Returns the value to which the specified key is mapped, or the
1548 * given default value if this map contains no mapping for the
1549 * key.
1550 *
1551 * @param key the key whose associated value is to be returned
1552 * @param defaultValue the value to return if this map contains
1553 * no mapping for the given key
1554 * @return the mapping for the key, if present; else the default value
1555 * @throws NullPointerException if the specified key is null
1556 */
1557 public V getOrDefault(Object key, V defaultValue) {
1558 V v;
1559 return (v = get(key)) == null ? defaultValue : v;
1560 }
1561
1562 public void forEach(BiConsumer<? super K, ? super V> action) {
1563 if (action == null) throw new NullPointerException();
1564 Node<K,V>[] t;
1565 if ((t = table) != null) {
1566 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567 for (Node<K,V> p; (p = it.advance()) != null; ) {
1568 action.accept(p.key, p.val);
1569 }
1570 }
1571 }
1572
1573 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574 if (function == null) throw new NullPointerException();
1575 Node<K,V>[] t;
1576 if ((t = table) != null) {
1577 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 V oldValue = p.val;
1580 for (K key = p.key;;) {
1581 V newValue = function.apply(key, oldValue);
1582 if (newValue == null)
1583 throw new NullPointerException();
1584 if (replaceNode(key, newValue, oldValue) != null ||
1585 (oldValue = get(key)) == null)
1586 break;
1587 }
1588 }
1589 }
1590 }
1591
1592 /**
1593 * If the specified key is not already associated with a value,
1594 * attempts to compute its value using the given mapping function
1595 * and enters it into this map unless {@code null}. The entire
1596 * method invocation is performed atomically, so the function is
1597 * applied at most once per key. Some attempted update operations
1598 * on this map by other threads may be blocked while computation
1599 * is in progress, so the computation should be short and simple,
1600 * and must not attempt to update any other mappings of this map.
1601 *
1602 * @param key key with which the specified value is to be associated
1603 * @param mappingFunction the function to compute a value
1604 * @return the current (existing or computed) value associated with
1605 * the specified key, or null if the computed value is null
1606 * @throws NullPointerException if the specified key or mappingFunction
1607 * is null
1608 * @throws IllegalStateException if the computation detectably
1609 * attempts a recursive update to this map that would
1610 * otherwise never complete
1611 * @throws RuntimeException or Error if the mappingFunction does so,
1612 * in which case the mapping is left unestablished
1613 */
1614 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615 if (key == null || mappingFunction == null)
1616 throw new NullPointerException();
1617 int h = spread(key.hashCode());
1618 V val = null;
1619 int binCount = 0;
1620 for (Node<K,V>[] tab = table;;) {
1621 Node<K,V> f; int n, i, fh;
1622 if (tab == null || (n = tab.length) == 0)
1623 tab = initTable();
1624 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625 Node<K,V> r = new ReservationNode<K,V>();
1626 synchronized (r) {
1627 if (casTabAt(tab, i, null, r)) {
1628 binCount = 1;
1629 Node<K,V> node = null;
1630 try {
1631 if ((val = mappingFunction.apply(key)) != null)
1632 node = new Node<K,V>(h, key, val, null);
1633 } finally {
1634 setTabAt(tab, i, node);
1635 }
1636 }
1637 }
1638 if (binCount != 0)
1639 break;
1640 }
1641 else if ((fh = f.hash) == MOVED)
1642 tab = helpTransfer(tab, f);
1643 else {
1644 boolean added = false;
1645 synchronized (f) {
1646 if (tabAt(tab, i) == f) {
1647 if (fh >= 0) {
1648 binCount = 1;
1649 for (Node<K,V> e = f;; ++binCount) {
1650 K ek; V ev;
1651 if (e.hash == h &&
1652 ((ek = e.key) == key ||
1653 (ek != null && key.equals(ek)))) {
1654 val = e.val;
1655 break;
1656 }
1657 Node<K,V> pred = e;
1658 if ((e = e.next) == null) {
1659 if ((val = mappingFunction.apply(key)) != null) {
1660 added = true;
1661 pred.next = new Node<K,V>(h, key, val, null);
1662 }
1663 break;
1664 }
1665 }
1666 }
1667 else if (f instanceof TreeBin) {
1668 binCount = 2;
1669 TreeBin<K,V> t = (TreeBin<K,V>)f;
1670 TreeNode<K,V> r, p;
1671 if ((r = t.root) != null &&
1672 (p = r.findTreeNode(h, key, null)) != null)
1673 val = p.val;
1674 else if ((val = mappingFunction.apply(key)) != null) {
1675 added = true;
1676 t.putTreeVal(h, key, val);
1677 }
1678 }
1679 }
1680 }
1681 if (binCount != 0) {
1682 if (binCount >= TREEIFY_THRESHOLD)
1683 treeifyBin(tab, i);
1684 if (!added)
1685 return val;
1686 break;
1687 }
1688 }
1689 }
1690 if (val != null)
1691 addCount(1L, binCount);
1692 return val;
1693 }
1694
1695 /**
1696 * If the value for the specified key is present, attempts to
1697 * compute a new mapping given the key and its current mapped
1698 * value. The entire method invocation is performed atomically.
1699 * Some attempted update operations on this map by other threads
1700 * may be blocked while computation is in progress, so the
1701 * computation should be short and simple, and must not attempt to
1702 * update any other mappings of this map.
1703 *
1704 * @param key key with which a value may be associated
1705 * @param remappingFunction the function to compute a value
1706 * @return the new value associated with the specified key, or null if none
1707 * @throws NullPointerException if the specified key or remappingFunction
1708 * is null
1709 * @throws IllegalStateException if the computation detectably
1710 * attempts a recursive update to this map that would
1711 * otherwise never complete
1712 * @throws RuntimeException or Error if the remappingFunction does so,
1713 * in which case the mapping is unchanged
1714 */
1715 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1716 if (key == null || remappingFunction == null)
1717 throw new NullPointerException();
1718 int h = spread(key.hashCode());
1719 V val = null;
1720 int delta = 0;
1721 int binCount = 0;
1722 for (Node<K,V>[] tab = table;;) {
1723 Node<K,V> f; int n, i, fh;
1724 if (tab == null || (n = tab.length) == 0)
1725 tab = initTable();
1726 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1727 break;
1728 else if ((fh = f.hash) == MOVED)
1729 tab = helpTransfer(tab, f);
1730 else {
1731 synchronized (f) {
1732 if (tabAt(tab, i) == f) {
1733 if (fh >= 0) {
1734 binCount = 1;
1735 for (Node<K,V> e = f, pred = null;; ++binCount) {
1736 K ek;
1737 if (e.hash == h &&
1738 ((ek = e.key) == key ||
1739 (ek != null && key.equals(ek)))) {
1740 val = remappingFunction.apply(key, e.val);
1741 if (val != null)
1742 e.val = val;
1743 else {
1744 delta = -1;
1745 Node<K,V> en = e.next;
1746 if (pred != null)
1747 pred.next = en;
1748 else
1749 setTabAt(tab, i, en);
1750 }
1751 break;
1752 }
1753 pred = e;
1754 if ((e = e.next) == null)
1755 break;
1756 }
1757 }
1758 else if (f instanceof TreeBin) {
1759 binCount = 2;
1760 TreeBin<K,V> t = (TreeBin<K,V>)f;
1761 TreeNode<K,V> r, p;
1762 if ((r = t.root) != null &&
1763 (p = r.findTreeNode(h, key, null)) != null) {
1764 val = remappingFunction.apply(key, p.val);
1765 if (val != null)
1766 p.val = val;
1767 else {
1768 delta = -1;
1769 if (t.removeTreeNode(p))
1770 setTabAt(tab, i, untreeify(t.first));
1771 }
1772 }
1773 }
1774 }
1775 }
1776 if (binCount != 0)
1777 break;
1778 }
1779 }
1780 if (delta != 0)
1781 addCount((long)delta, binCount);
1782 return val;
1783 }
1784
1785 /**
1786 * Attempts to compute a mapping for the specified key and its
1787 * current mapped value (or {@code null} if there is no current
1788 * mapping). The entire method invocation is performed atomically.
1789 * Some attempted update operations on this map by other threads
1790 * may be blocked while computation is in progress, so the
1791 * computation should be short and simple, and must not attempt to
1792 * update any other mappings of this Map.
1793 *
1794 * @param key key with which the specified value is to be associated
1795 * @param remappingFunction the function to compute a value
1796 * @return the new value associated with the specified key, or null if none
1797 * @throws NullPointerException if the specified key or remappingFunction
1798 * is null
1799 * @throws IllegalStateException if the computation detectably
1800 * attempts a recursive update to this map that would
1801 * otherwise never complete
1802 * @throws RuntimeException or Error if the remappingFunction does so,
1803 * in which case the mapping is unchanged
1804 */
1805 public V compute(K key,
1806 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1807 if (key == null || remappingFunction == null)
1808 throw new NullPointerException();
1809 int h = spread(key.hashCode());
1810 V val = null;
1811 int delta = 0;
1812 int binCount = 0;
1813 for (Node<K,V>[] tab = table;;) {
1814 Node<K,V> f; int n, i, fh;
1815 if (tab == null || (n = tab.length) == 0)
1816 tab = initTable();
1817 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1818 Node<K,V> r = new ReservationNode<K,V>();
1819 synchronized (r) {
1820 if (casTabAt(tab, i, null, r)) {
1821 binCount = 1;
1822 Node<K,V> node = null;
1823 try {
1824 if ((val = remappingFunction.apply(key, null)) != null) {
1825 delta = 1;
1826 node = new Node<K,V>(h, key, val, null);
1827 }
1828 } finally {
1829 setTabAt(tab, i, node);
1830 }
1831 }
1832 }
1833 if (binCount != 0)
1834 break;
1835 }
1836 else if ((fh = f.hash) == MOVED)
1837 tab = helpTransfer(tab, f);
1838 else {
1839 synchronized (f) {
1840 if (tabAt(tab, i) == f) {
1841 if (fh >= 0) {
1842 binCount = 1;
1843 for (Node<K,V> e = f, pred = null;; ++binCount) {
1844 K ek;
1845 if (e.hash == h &&
1846 ((ek = e.key) == key ||
1847 (ek != null && key.equals(ek)))) {
1848 val = remappingFunction.apply(key, e.val);
1849 if (val != null)
1850 e.val = val;
1851 else {
1852 delta = -1;
1853 Node<K,V> en = e.next;
1854 if (pred != null)
1855 pred.next = en;
1856 else
1857 setTabAt(tab, i, en);
1858 }
1859 break;
1860 }
1861 pred = e;
1862 if ((e = e.next) == null) {
1863 val = remappingFunction.apply(key, null);
1864 if (val != null) {
1865 delta = 1;
1866 pred.next =
1867 new Node<K,V>(h, key, val, null);
1868 }
1869 break;
1870 }
1871 }
1872 }
1873 else if (f instanceof TreeBin) {
1874 binCount = 1;
1875 TreeBin<K,V> t = (TreeBin<K,V>)f;
1876 TreeNode<K,V> r, p;
1877 if ((r = t.root) != null)
1878 p = r.findTreeNode(h, key, null);
1879 else
1880 p = null;
1881 V pv = (p == null) ? null : p.val;
1882 val = remappingFunction.apply(key, pv);
1883 if (val != null) {
1884 if (p != null)
1885 p.val = val;
1886 else {
1887 delta = 1;
1888 t.putTreeVal(h, key, val);
1889 }
1890 }
1891 else if (p != null) {
1892 delta = -1;
1893 if (t.removeTreeNode(p))
1894 setTabAt(tab, i, untreeify(t.first));
1895 }
1896 }
1897 }
1898 }
1899 if (binCount != 0) {
1900 if (binCount >= TREEIFY_THRESHOLD)
1901 treeifyBin(tab, i);
1902 break;
1903 }
1904 }
1905 }
1906 if (delta != 0)
1907 addCount((long)delta, binCount);
1908 return val;
1909 }
1910
1911 /**
1912 * If the specified key is not already associated with a
1913 * (non-null) value, associates it with the given value.
1914 * Otherwise, replaces the value with the results of the given
1915 * remapping function, or removes if {@code null}. The entire
1916 * method invocation is performed atomically. Some attempted
1917 * update operations on this map by other threads may be blocked
1918 * while computation is in progress, so the computation should be
1919 * short and simple, and must not attempt to update any other
1920 * mappings of this Map.
1921 *
1922 * @param key key with which the specified value is to be associated
1923 * @param value the value to use if absent
1924 * @param remappingFunction the function to recompute a value if present
1925 * @return the new value associated with the specified key, or null if none
1926 * @throws NullPointerException if the specified key or the
1927 * remappingFunction is null
1928 * @throws RuntimeException or Error if the remappingFunction does so,
1929 * in which case the mapping is unchanged
1930 */
1931 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1932 if (key == null || value == null || remappingFunction == null)
1933 throw new NullPointerException();
1934 int h = spread(key.hashCode());
1935 V val = null;
1936 int delta = 0;
1937 int binCount = 0;
1938 for (Node<K,V>[] tab = table;;) {
1939 Node<K,V> f; int n, i, fh;
1940 if (tab == null || (n = tab.length) == 0)
1941 tab = initTable();
1942 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1943 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1944 delta = 1;
1945 val = value;
1946 break;
1947 }
1948 }
1949 else if ((fh = f.hash) == MOVED)
1950 tab = helpTransfer(tab, f);
1951 else {
1952 synchronized (f) {
1953 if (tabAt(tab, i) == f) {
1954 if (fh >= 0) {
1955 binCount = 1;
1956 for (Node<K,V> e = f, pred = null;; ++binCount) {
1957 K ek;
1958 if (e.hash == h &&
1959 ((ek = e.key) == key ||
1960 (ek != null && key.equals(ek)))) {
1961 val = remappingFunction.apply(e.val, value);
1962 if (val != null)
1963 e.val = val;
1964 else {
1965 delta = -1;
1966 Node<K,V> en = e.next;
1967 if (pred != null)
1968 pred.next = en;
1969 else
1970 setTabAt(tab, i, en);
1971 }
1972 break;
1973 }
1974 pred = e;
1975 if ((e = e.next) == null) {
1976 delta = 1;
1977 val = value;
1978 pred.next =
1979 new Node<K,V>(h, key, val, null);
1980 break;
1981 }
1982 }
1983 }
1984 else if (f instanceof TreeBin) {
1985 binCount = 2;
1986 TreeBin<K,V> t = (TreeBin<K,V>)f;
1987 TreeNode<K,V> r = t.root;
1988 TreeNode<K,V> p = (r == null) ? null :
1989 r.findTreeNode(h, key, null);
1990 val = (p == null) ? value :
1991 remappingFunction.apply(p.val, value);
1992 if (val != null) {
1993 if (p != null)
1994 p.val = val;
1995 else {
1996 delta = 1;
1997 t.putTreeVal(h, key, val);
1998 }
1999 }
2000 else if (p != null) {
2001 delta = -1;
2002 if (t.removeTreeNode(p))
2003 setTabAt(tab, i, untreeify(t.first));
2004 }
2005 }
2006 }
2007 }
2008 if (binCount != 0) {
2009 if (binCount >= TREEIFY_THRESHOLD)
2010 treeifyBin(tab, i);
2011 break;
2012 }
2013 }
2014 }
2015 if (delta != 0)
2016 addCount((long)delta, binCount);
2017 return val;
2018 }
2019
2020 // Hashtable legacy methods
2021
2022 /**
2023 * Legacy method testing if some key maps into the specified value
2024 * in this table.
2025 *
2026 * @deprecated This method is identical in functionality to
2027 * {@link #containsValue(Object)}, and exists solely to ensure
2028 * full compatibility with class {@link java.util.Hashtable},
2029 * which supported this method prior to introduction of the
2030 * Java Collections framework.
2031 *
2032 * @param value a value to search for
2033 * @return {@code true} if and only if some key maps to the
2034 * {@code value} argument in this table as
2035 * determined by the {@code equals} method;
2036 * {@code false} otherwise
2037 * @throws NullPointerException if the specified value is null
2038 */
2039 @Deprecated
2040 public boolean contains(Object value) {
2041 return containsValue(value);
2042 }
2043
2044 /**
2045 * Returns an enumeration of the keys in this table.
2046 *
2047 * @return an enumeration of the keys in this table
2048 * @see #keySet()
2049 */
2050 public Enumeration<K> keys() {
2051 Node<K,V>[] t;
2052 int f = (t = table) == null ? 0 : t.length;
2053 return new KeyIterator<K,V>(t, f, 0, f, this);
2054 }
2055
2056 /**
2057 * Returns an enumeration of the values in this table.
2058 *
2059 * @return an enumeration of the values in this table
2060 * @see #values()
2061 */
2062 public Enumeration<V> elements() {
2063 Node<K,V>[] t;
2064 int f = (t = table) == null ? 0 : t.length;
2065 return new ValueIterator<K,V>(t, f, 0, f, this);
2066 }
2067
2068 // ConcurrentHashMap-only methods
2069
2070 /**
2071 * Returns the number of mappings. This method should be used
2072 * instead of {@link #size} because a ConcurrentHashMap may
2073 * contain more mappings than can be represented as an int. The
2074 * value returned is an estimate; the actual count may differ if
2075 * there are concurrent insertions or removals.
2076 *
2077 * @return the number of mappings
2078 * @since 1.8
2079 */
2080 public long mappingCount() {
2081 long n = sumCount();
2082 return (n < 0L) ? 0L : n; // ignore transient negative values
2083 }
2084
2085 /**
2086 * Creates a new {@link Set} backed by a ConcurrentHashMap
2087 * from the given type to {@code Boolean.TRUE}.
2088 *
2089 * @param <K> the element type of the returned set
2090 * @return the new set
2091 * @since 1.8
2092 */
2093 public static <K> KeySetView<K,Boolean> newKeySet() {
2094 return new KeySetView<K,Boolean>
2095 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2096 }
2097
2098 /**
2099 * Creates a new {@link Set} backed by a ConcurrentHashMap
2100 * from the given type to {@code Boolean.TRUE}.
2101 *
2102 * @param initialCapacity The implementation performs internal
2103 * sizing to accommodate this many elements.
2104 * @param <K> the element type of the returned set
2105 * @return the new set
2106 * @throws IllegalArgumentException if the initial capacity of
2107 * elements is negative
2108 * @since 1.8
2109 */
2110 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2111 return new KeySetView<K,Boolean>
2112 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2113 }
2114
2115 /**
2116 * Returns a {@link Set} view of the keys in this map, using the
2117 * given common mapped value for any additions (i.e., {@link
2118 * Collection#add} and {@link Collection#addAll(Collection)}).
2119 * This is of course only appropriate if it is acceptable to use
2120 * the same value for all additions from this view.
2121 *
2122 * @param mappedValue the mapped value to use for any additions
2123 * @return the set view
2124 * @throws NullPointerException if the mappedValue is null
2125 */
2126 public KeySetView<K,V> keySet(V mappedValue) {
2127 if (mappedValue == null)
2128 throw new NullPointerException();
2129 return new KeySetView<K,V>(this, mappedValue);
2130 }
2131
2132 /* ---------------- Special Nodes -------------- */
2133
2134 /**
2135 * A node inserted at head of bins during transfer operations.
2136 */
2137 static final class ForwardingNode<K,V> extends Node<K,V> {
2138 final Node<K,V>[] nextTable;
2139 ForwardingNode(Node<K,V>[] tab) {
2140 super(MOVED, null, null, null);
2141 this.nextTable = tab;
2142 }
2143
2144 Node<K,V> find(int h, Object k) {
2145 // loop to avoid arbitrarily deep recursion on forwarding nodes
2146 outer: for (Node<K,V>[] tab = nextTable;;) {
2147 Node<K,V> e; int n;
2148 if (k == null || tab == null || (n = tab.length) == 0 ||
2149 (e = tabAt(tab, (n - 1) & h)) == null)
2150 return null;
2151 for (;;) {
2152 int eh; K ek;
2153 if ((eh = e.hash) == h &&
2154 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2155 return e;
2156 if (eh < 0) {
2157 if (e instanceof ForwardingNode) {
2158 tab = ((ForwardingNode<K,V>)e).nextTable;
2159 continue outer;
2160 }
2161 else
2162 return e.find(h, k);
2163 }
2164 if ((e = e.next) == null)
2165 return null;
2166 }
2167 }
2168 }
2169 }
2170
2171 /**
2172 * A place-holder node used in computeIfAbsent and compute
2173 */
2174 static final class ReservationNode<K,V> extends Node<K,V> {
2175 ReservationNode() {
2176 super(RESERVED, null, null, null);
2177 }
2178
2179 Node<K,V> find(int h, Object k) {
2180 return null;
2181 }
2182 }
2183
2184 /* ---------------- Table Initialization and Resizing -------------- */
2185
2186 /**
2187 * Returns the stamp bits for resizing a table of size n.
2188 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2189 */
2190 static final int resizeStamp(int n) {
2191 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2192 }
2193
2194 /**
2195 * Initializes table, using the size recorded in sizeCtl.
2196 */
2197 private final Node<K,V>[] initTable() {
2198 Node<K,V>[] tab; int sc;
2199 while ((tab = table) == null || tab.length == 0) {
2200 if ((sc = sizeCtl) < 0)
2201 Thread.yield(); // lost initialization race; just spin
2202 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2203 try {
2204 if ((tab = table) == null || tab.length == 0) {
2205 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2206 @SuppressWarnings("unchecked")
2207 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2208 table = tab = nt;
2209 sc = n - (n >>> 2);
2210 }
2211 } finally {
2212 sizeCtl = sc;
2213 }
2214 break;
2215 }
2216 }
2217 return tab;
2218 }
2219
2220 /**
2221 * Adds to count, and if table is too small and not already
2222 * resizing, initiates transfer. If already resizing, helps
2223 * perform transfer if work is available. Rechecks occupancy
2224 * after a transfer to see if another resize is already needed
2225 * because resizings are lagging additions.
2226 *
2227 * @param x the count to add
2228 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2229 */
2230 private final void addCount(long x, int check) {
2231 CounterCell[] as; long b, s;
2232 if ((as = counterCells) != null ||
2233 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2234 CounterCell a; long v; int m;
2235 boolean uncontended = true;
2236 if (as == null || (m = as.length - 1) < 0 ||
2237 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2238 !(uncontended =
2239 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2240 fullAddCount(x, uncontended);
2241 return;
2242 }
2243 if (check <= 1)
2244 return;
2245 s = sumCount();
2246 }
2247 if (check >= 0) {
2248 Node<K,V>[] tab, nt; int n, sc;
2249 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2250 (n = tab.length) < MAXIMUM_CAPACITY) {
2251 int rs = resizeStamp(n);
2252 if (sc < 0) {
2253 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2254 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2255 transferIndex <= 0)
2256 break;
2257 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2258 transfer(tab, nt);
2259 }
2260 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2261 (rs << RESIZE_STAMP_SHIFT) + 2))
2262 transfer(tab, null);
2263 s = sumCount();
2264 }
2265 }
2266 }
2267
2268 /**
2269 * Helps transfer if a resize is in progress.
2270 */
2271 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272 Node<K,V>[] nextTab; int sc;
2273 if (tab != null && (f instanceof ForwardingNode) &&
2274 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 int rs = resizeStamp(tab.length);
2276 while (nextTab == nextTable && table == tab &&
2277 (sc = sizeCtl) < 0) {
2278 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2279 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2280 break;
2281 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2282 transfer(tab, nextTab);
2283 break;
2284 }
2285 }
2286 return nextTab;
2287 }
2288 return table;
2289 }
2290
2291 /**
2292 * Tries to presize table to accommodate the given number of elements.
2293 *
2294 * @param size number of elements (doesn't need to be perfectly accurate)
2295 */
2296 private final void tryPresize(int size) {
2297 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2298 tableSizeFor(size + (size >>> 1) + 1);
2299 int sc;
2300 while ((sc = sizeCtl) >= 0) {
2301 Node<K,V>[] tab = table; int n;
2302 if (tab == null || (n = tab.length) == 0) {
2303 n = (sc > c) ? sc : c;
2304 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2305 try {
2306 if (table == tab) {
2307 @SuppressWarnings("unchecked")
2308 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2309 table = nt;
2310 sc = n - (n >>> 2);
2311 }
2312 } finally {
2313 sizeCtl = sc;
2314 }
2315 }
2316 }
2317 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2318 break;
2319 else if (tab == table) {
2320 int rs = resizeStamp(n);
2321 if (sc < 0) {
2322 Node<K,V>[] nt;
2323 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2324 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2325 transferIndex <= 0)
2326 break;
2327 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2328 transfer(tab, nt);
2329 }
2330 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2331 (rs << RESIZE_STAMP_SHIFT) + 2))
2332 transfer(tab, null);
2333 }
2334 }
2335 }
2336
2337 /**
2338 * Moves and/or copies the nodes in each bin to new table. See
2339 * above for explanation.
2340 */
2341 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2342 int n = tab.length, stride;
2343 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2344 stride = MIN_TRANSFER_STRIDE; // subdivide range
2345 if (nextTab == null) { // initiating
2346 try {
2347 @SuppressWarnings("unchecked")
2348 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2349 nextTab = nt;
2350 } catch (Throwable ex) { // try to cope with OOME
2351 sizeCtl = Integer.MAX_VALUE;
2352 return;
2353 }
2354 nextTable = nextTab;
2355 transferIndex = n;
2356 }
2357 int nextn = nextTab.length;
2358 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2359 boolean advance = true;
2360 boolean finishing = false; // to ensure sweep before committing nextTab
2361 for (int i = 0, bound = 0;;) {
2362 Node<K,V> f; int fh;
2363 while (advance) {
2364 int nextIndex, nextBound;
2365 if (--i >= bound || finishing)
2366 advance = false;
2367 else if ((nextIndex = transferIndex) <= 0) {
2368 i = -1;
2369 advance = false;
2370 }
2371 else if (U.compareAndSwapInt
2372 (this, TRANSFERINDEX, nextIndex,
2373 nextBound = (nextIndex > stride ?
2374 nextIndex - stride : 0))) {
2375 bound = nextBound;
2376 i = nextIndex - 1;
2377 advance = false;
2378 }
2379 }
2380 if (i < 0 || i >= n || i + n >= nextn) {
2381 int sc;
2382 if (finishing) {
2383 nextTable = null;
2384 table = nextTab;
2385 sizeCtl = (n << 1) - (n >>> 1);
2386 return;
2387 }
2388 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2389 if ((sc - 2) != resizeStamp(n))
2390 return;
2391 finishing = advance = true;
2392 i = n; // recheck before commit
2393 }
2394 }
2395 else if ((f = tabAt(tab, i)) == null)
2396 advance = casTabAt(tab, i, null, fwd);
2397 else if ((fh = f.hash) == MOVED)
2398 advance = true; // already processed
2399 else {
2400 synchronized (f) {
2401 if (tabAt(tab, i) == f) {
2402 Node<K,V> ln, hn;
2403 if (fh >= 0) {
2404 int runBit = fh & n;
2405 Node<K,V> lastRun = f;
2406 for (Node<K,V> p = f.next; p != null; p = p.next) {
2407 int b = p.hash & n;
2408 if (b != runBit) {
2409 runBit = b;
2410 lastRun = p;
2411 }
2412 }
2413 if (runBit == 0) {
2414 ln = lastRun;
2415 hn = null;
2416 }
2417 else {
2418 hn = lastRun;
2419 ln = null;
2420 }
2421 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2422 int ph = p.hash; K pk = p.key; V pv = p.val;
2423 if ((ph & n) == 0)
2424 ln = new Node<K,V>(ph, pk, pv, ln);
2425 else
2426 hn = new Node<K,V>(ph, pk, pv, hn);
2427 }
2428 setTabAt(nextTab, i, ln);
2429 setTabAt(nextTab, i + n, hn);
2430 setTabAt(tab, i, fwd);
2431 advance = true;
2432 }
2433 else if (f instanceof TreeBin) {
2434 TreeBin<K,V> t = (TreeBin<K,V>)f;
2435 TreeNode<K,V> lo = null, loTail = null;
2436 TreeNode<K,V> hi = null, hiTail = null;
2437 int lc = 0, hc = 0;
2438 for (Node<K,V> e = t.first; e != null; e = e.next) {
2439 int h = e.hash;
2440 TreeNode<K,V> p = new TreeNode<K,V>
2441 (h, e.key, e.val, null, null);
2442 if ((h & n) == 0) {
2443 if ((p.prev = loTail) == null)
2444 lo = p;
2445 else
2446 loTail.next = p;
2447 loTail = p;
2448 ++lc;
2449 }
2450 else {
2451 if ((p.prev = hiTail) == null)
2452 hi = p;
2453 else
2454 hiTail.next = p;
2455 hiTail = p;
2456 ++hc;
2457 }
2458 }
2459 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2460 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2461 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2462 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2463 setTabAt(nextTab, i, ln);
2464 setTabAt(nextTab, i + n, hn);
2465 setTabAt(tab, i, fwd);
2466 advance = true;
2467 }
2468 }
2469 }
2470 }
2471 }
2472 }
2473
2474 /* ---------------- Counter support -------------- */
2475
2476 /**
2477 * A padded cell for distributing counts. Adapted from LongAdder
2478 * and Striped64. See their internal docs for explanation.
2479 */
2480 @sun.misc.Contended static final class CounterCell {
2481 volatile long value;
2482 CounterCell(long x) { value = x; }
2483 }
2484
2485 final long sumCount() {
2486 CounterCell[] as = counterCells; CounterCell a;
2487 long sum = baseCount;
2488 if (as != null) {
2489 for (int i = 0; i < as.length; ++i) {
2490 if ((a = as[i]) != null)
2491 sum += a.value;
2492 }
2493 }
2494 return sum;
2495 }
2496
2497 // See LongAdder version for explanation
2498 private final void fullAddCount(long x, boolean wasUncontended) {
2499 int h;
2500 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2501 ThreadLocalRandom.localInit(); // force initialization
2502 h = ThreadLocalRandom.getProbe();
2503 wasUncontended = true;
2504 }
2505 boolean collide = false; // True if last slot nonempty
2506 for (;;) {
2507 CounterCell[] as; CounterCell a; int n; long v;
2508 if ((as = counterCells) != null && (n = as.length) > 0) {
2509 if ((a = as[(n - 1) & h]) == null) {
2510 if (cellsBusy == 0) { // Try to attach new Cell
2511 CounterCell r = new CounterCell(x); // Optimistic create
2512 if (cellsBusy == 0 &&
2513 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2514 boolean created = false;
2515 try { // Recheck under lock
2516 CounterCell[] rs; int m, j;
2517 if ((rs = counterCells) != null &&
2518 (m = rs.length) > 0 &&
2519 rs[j = (m - 1) & h] == null) {
2520 rs[j] = r;
2521 created = true;
2522 }
2523 } finally {
2524 cellsBusy = 0;
2525 }
2526 if (created)
2527 break;
2528 continue; // Slot is now non-empty
2529 }
2530 }
2531 collide = false;
2532 }
2533 else if (!wasUncontended) // CAS already known to fail
2534 wasUncontended = true; // Continue after rehash
2535 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2536 break;
2537 else if (counterCells != as || n >= NCPU)
2538 collide = false; // At max size or stale
2539 else if (!collide)
2540 collide = true;
2541 else if (cellsBusy == 0 &&
2542 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2543 try {
2544 if (counterCells == as) {// Expand table unless stale
2545 CounterCell[] rs = new CounterCell[n << 1];
2546 for (int i = 0; i < n; ++i)
2547 rs[i] = as[i];
2548 counterCells = rs;
2549 }
2550 } finally {
2551 cellsBusy = 0;
2552 }
2553 collide = false;
2554 continue; // Retry with expanded table
2555 }
2556 h = ThreadLocalRandom.advanceProbe(h);
2557 }
2558 else if (cellsBusy == 0 && counterCells == as &&
2559 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2560 boolean init = false;
2561 try { // Initialize table
2562 if (counterCells == as) {
2563 CounterCell[] rs = new CounterCell[2];
2564 rs[h & 1] = new CounterCell(x);
2565 counterCells = rs;
2566 init = true;
2567 }
2568 } finally {
2569 cellsBusy = 0;
2570 }
2571 if (init)
2572 break;
2573 }
2574 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2575 break; // Fall back on using base
2576 }
2577 }
2578
2579 /* ---------------- Conversion from/to TreeBins -------------- */
2580
2581 /**
2582 * Replaces all linked nodes in bin at given index unless table is
2583 * too small, in which case resizes instead.
2584 */
2585 private final void treeifyBin(Node<K,V>[] tab, int index) {
2586 Node<K,V> b; int n, sc;
2587 if (tab != null) {
2588 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2589 tryPresize(n << 1);
2590 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2591 synchronized (b) {
2592 if (tabAt(tab, index) == b) {
2593 TreeNode<K,V> hd = null, tl = null;
2594 for (Node<K,V> e = b; e != null; e = e.next) {
2595 TreeNode<K,V> p =
2596 new TreeNode<K,V>(e.hash, e.key, e.val,
2597 null, null);
2598 if ((p.prev = tl) == null)
2599 hd = p;
2600 else
2601 tl.next = p;
2602 tl = p;
2603 }
2604 setTabAt(tab, index, new TreeBin<K,V>(hd));
2605 }
2606 }
2607 }
2608 }
2609 }
2610
2611 /**
2612 * Returns a list on non-TreeNodes replacing those in given list.
2613 */
2614 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2615 Node<K,V> hd = null, tl = null;
2616 for (Node<K,V> q = b; q != null; q = q.next) {
2617 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2618 if (tl == null)
2619 hd = p;
2620 else
2621 tl.next = p;
2622 tl = p;
2623 }
2624 return hd;
2625 }
2626
2627 /* ---------------- TreeNodes -------------- */
2628
2629 /**
2630 * Nodes for use in TreeBins
2631 */
2632 static final class TreeNode<K,V> extends Node<K,V> {
2633 TreeNode<K,V> parent; // red-black tree links
2634 TreeNode<K,V> left;
2635 TreeNode<K,V> right;
2636 TreeNode<K,V> prev; // needed to unlink next upon deletion
2637 boolean red;
2638
2639 TreeNode(int hash, K key, V val, Node<K,V> next,
2640 TreeNode<K,V> parent) {
2641 super(hash, key, val, next);
2642 this.parent = parent;
2643 }
2644
2645 Node<K,V> find(int h, Object k) {
2646 return findTreeNode(h, k, null);
2647 }
2648
2649 /**
2650 * Returns the TreeNode (or null if not found) for the given key
2651 * starting at given root.
2652 */
2653 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2654 if (k != null) {
2655 TreeNode<K,V> p = this;
2656 do {
2657 int ph, dir; K pk; TreeNode<K,V> q;
2658 TreeNode<K,V> pl = p.left, pr = p.right;
2659 if ((ph = p.hash) > h)
2660 p = pl;
2661 else if (ph < h)
2662 p = pr;
2663 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2664 return p;
2665 else if (pl == null)
2666 p = pr;
2667 else if (pr == null)
2668 p = pl;
2669 else if ((kc != null ||
2670 (kc = comparableClassFor(k)) != null) &&
2671 (dir = compareComparables(kc, k, pk)) != 0)
2672 p = (dir < 0) ? pl : pr;
2673 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2674 return q;
2675 else
2676 p = pl;
2677 } while (p != null);
2678 }
2679 return null;
2680 }
2681 }
2682
2683 /* ---------------- TreeBins -------------- */
2684
2685 /**
2686 * TreeNodes used at the heads of bins. TreeBins do not hold user
2687 * keys or values, but instead point to list of TreeNodes and
2688 * their root. They also maintain a parasitic read-write lock
2689 * forcing writers (who hold bin lock) to wait for readers (who do
2690 * not) to complete before tree restructuring operations.
2691 */
2692 static final class TreeBin<K,V> extends Node<K,V> {
2693 TreeNode<K,V> root;
2694 volatile TreeNode<K,V> first;
2695 volatile Thread waiter;
2696 volatile int lockState;
2697 // values for lockState
2698 static final int WRITER = 1; // set while holding write lock
2699 static final int WAITER = 2; // set when waiting for write lock
2700 static final int READER = 4; // increment value for setting read lock
2701
2702 /**
2703 * Tie-breaking utility for ordering insertions when equal
2704 * hashCodes and non-comparable. We don't require a total
2705 * order, just a consistent insertion rule to maintain
2706 * equivalence across rebalancings. Tie-breaking further than
2707 * necessary simplifies testing a bit.
2708 */
2709 static int tieBreakOrder(Object a, Object b) {
2710 int d;
2711 if (a == null || b == null ||
2712 (d = a.getClass().getName().
2713 compareTo(b.getClass().getName())) == 0)
2714 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2715 -1 : 1);
2716 return d;
2717 }
2718
2719 /**
2720 * Creates bin with initial set of nodes headed by b.
2721 */
2722 TreeBin(TreeNode<K,V> b) {
2723 super(TREEBIN, null, null, null);
2724 this.first = b;
2725 TreeNode<K,V> r = null;
2726 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2727 next = (TreeNode<K,V>)x.next;
2728 x.left = x.right = null;
2729 if (r == null) {
2730 x.parent = null;
2731 x.red = false;
2732 r = x;
2733 }
2734 else {
2735 K k = x.key;
2736 int h = x.hash;
2737 Class<?> kc = null;
2738 for (TreeNode<K,V> p = r;;) {
2739 int dir, ph;
2740 K pk = p.key;
2741 if ((ph = p.hash) > h)
2742 dir = -1;
2743 else if (ph < h)
2744 dir = 1;
2745 else if ((kc == null &&
2746 (kc = comparableClassFor(k)) == null) ||
2747 (dir = compareComparables(kc, k, pk)) == 0)
2748 dir = tieBreakOrder(k, pk);
2749 TreeNode<K,V> xp = p;
2750 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2751 x.parent = xp;
2752 if (dir <= 0)
2753 xp.left = x;
2754 else
2755 xp.right = x;
2756 r = balanceInsertion(r, x);
2757 break;
2758 }
2759 }
2760 }
2761 }
2762 this.root = r;
2763 assert checkInvariants(root);
2764 }
2765
2766 /**
2767 * Acquires write lock for tree restructuring.
2768 */
2769 private final void lockRoot() {
2770 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2771 contendedLock(); // offload to separate method
2772 }
2773
2774 /**
2775 * Releases write lock for tree restructuring.
2776 */
2777 private final void unlockRoot() {
2778 lockState = 0;
2779 }
2780
2781 /**
2782 * Possibly blocks awaiting root lock.
2783 */
2784 private final void contendedLock() {
2785 boolean waiting = false;
2786 for (int s;;) {
2787 if (((s = lockState) & ~WAITER) == 0) {
2788 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2789 if (waiting)
2790 waiter = null;
2791 return;
2792 }
2793 }
2794 else if ((s & WAITER) == 0) {
2795 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2796 waiting = true;
2797 waiter = Thread.currentThread();
2798 }
2799 }
2800 else if (waiting)
2801 LockSupport.park(this);
2802 }
2803 }
2804
2805 /**
2806 * Returns matching node or null if none. Tries to search
2807 * using tree comparisons from root, but continues linear
2808 * search when lock not available.
2809 */
2810 final Node<K,V> find(int h, Object k) {
2811 if (k != null) {
2812 for (Node<K,V> e = first; e != null; ) {
2813 int s; K ek;
2814 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2815 if (e.hash == h &&
2816 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2817 return e;
2818 e = e.next;
2819 }
2820 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2821 s + READER)) {
2822 TreeNode<K,V> r, p;
2823 try {
2824 p = ((r = root) == null ? null :
2825 r.findTreeNode(h, k, null));
2826 } finally {
2827 Thread w;
2828 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2829 (READER|WAITER) && (w = waiter) != null)
2830 LockSupport.unpark(w);
2831 }
2832 return p;
2833 }
2834 }
2835 }
2836 return null;
2837 }
2838
2839 /**
2840 * Finds or adds a node.
2841 * @return null if added
2842 */
2843 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2844 Class<?> kc = null;
2845 boolean searched = false;
2846 for (TreeNode<K,V> p = root;;) {
2847 int dir, ph; K pk;
2848 if (p == null) {
2849 first = root = new TreeNode<K,V>(h, k, v, null, null);
2850 break;
2851 }
2852 else if ((ph = p.hash) > h)
2853 dir = -1;
2854 else if (ph < h)
2855 dir = 1;
2856 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2857 return p;
2858 else if ((kc == null &&
2859 (kc = comparableClassFor(k)) == null) ||
2860 (dir = compareComparables(kc, k, pk)) == 0) {
2861 if (!searched) {
2862 TreeNode<K,V> q, ch;
2863 searched = true;
2864 if (((ch = p.left) != null &&
2865 (q = ch.findTreeNode(h, k, kc)) != null) ||
2866 ((ch = p.right) != null &&
2867 (q = ch.findTreeNode(h, k, kc)) != null))
2868 return q;
2869 }
2870 dir = tieBreakOrder(k, pk);
2871 }
2872
2873 TreeNode<K,V> xp = p;
2874 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2875 TreeNode<K,V> x, f = first;
2876 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2877 if (f != null)
2878 f.prev = x;
2879 if (dir <= 0)
2880 xp.left = x;
2881 else
2882 xp.right = x;
2883 if (!xp.red)
2884 x.red = true;
2885 else {
2886 lockRoot();
2887 try {
2888 root = balanceInsertion(root, x);
2889 } finally {
2890 unlockRoot();
2891 }
2892 }
2893 break;
2894 }
2895 }
2896 assert checkInvariants(root);
2897 return null;
2898 }
2899
2900 /**
2901 * Removes the given node, that must be present before this
2902 * call. This is messier than typical red-black deletion code
2903 * because we cannot swap the contents of an interior node
2904 * with a leaf successor that is pinned by "next" pointers
2905 * that are accessible independently of lock. So instead we
2906 * swap the tree linkages.
2907 *
2908 * @return true if now too small, so should be untreeified
2909 */
2910 final boolean removeTreeNode(TreeNode<K,V> p) {
2911 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2912 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2913 TreeNode<K,V> r, rl;
2914 if (pred == null)
2915 first = next;
2916 else
2917 pred.next = next;
2918 if (next != null)
2919 next.prev = pred;
2920 if (first == null) {
2921 root = null;
2922 return true;
2923 }
2924 if ((r = root) == null || r.right == null || // too small
2925 (rl = r.left) == null || rl.left == null)
2926 return true;
2927 lockRoot();
2928 try {
2929 TreeNode<K,V> replacement;
2930 TreeNode<K,V> pl = p.left;
2931 TreeNode<K,V> pr = p.right;
2932 if (pl != null && pr != null) {
2933 TreeNode<K,V> s = pr, sl;
2934 while ((sl = s.left) != null) // find successor
2935 s = sl;
2936 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2937 TreeNode<K,V> sr = s.right;
2938 TreeNode<K,V> pp = p.parent;
2939 if (s == pr) { // p was s's direct parent
2940 p.parent = s;
2941 s.right = p;
2942 }
2943 else {
2944 TreeNode<K,V> sp = s.parent;
2945 if ((p.parent = sp) != null) {
2946 if (s == sp.left)
2947 sp.left = p;
2948 else
2949 sp.right = p;
2950 }
2951 if ((s.right = pr) != null)
2952 pr.parent = s;
2953 }
2954 p.left = null;
2955 if ((p.right = sr) != null)
2956 sr.parent = p;
2957 if ((s.left = pl) != null)
2958 pl.parent = s;
2959 if ((s.parent = pp) == null)
2960 r = s;
2961 else if (p == pp.left)
2962 pp.left = s;
2963 else
2964 pp.right = s;
2965 if (sr != null)
2966 replacement = sr;
2967 else
2968 replacement = p;
2969 }
2970 else if (pl != null)
2971 replacement = pl;
2972 else if (pr != null)
2973 replacement = pr;
2974 else
2975 replacement = p;
2976 if (replacement != p) {
2977 TreeNode<K,V> pp = replacement.parent = p.parent;
2978 if (pp == null)
2979 r = replacement;
2980 else if (p == pp.left)
2981 pp.left = replacement;
2982 else
2983 pp.right = replacement;
2984 p.left = p.right = p.parent = null;
2985 }
2986
2987 root = (p.red) ? r : balanceDeletion(r, replacement);
2988
2989 if (p == replacement) { // detach pointers
2990 TreeNode<K,V> pp;
2991 if ((pp = p.parent) != null) {
2992 if (p == pp.left)
2993 pp.left = null;
2994 else if (p == pp.right)
2995 pp.right = null;
2996 p.parent = null;
2997 }
2998 }
2999 } finally {
3000 unlockRoot();
3001 }
3002 assert checkInvariants(root);
3003 return false;
3004 }
3005
3006 /* ------------------------------------------------------------ */
3007 // Red-black tree methods, all adapted from CLR
3008
3009 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3010 TreeNode<K,V> p) {
3011 TreeNode<K,V> r, pp, rl;
3012 if (p != null && (r = p.right) != null) {
3013 if ((rl = p.right = r.left) != null)
3014 rl.parent = p;
3015 if ((pp = r.parent = p.parent) == null)
3016 (root = r).red = false;
3017 else if (pp.left == p)
3018 pp.left = r;
3019 else
3020 pp.right = r;
3021 r.left = p;
3022 p.parent = r;
3023 }
3024 return root;
3025 }
3026
3027 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3028 TreeNode<K,V> p) {
3029 TreeNode<K,V> l, pp, lr;
3030 if (p != null && (l = p.left) != null) {
3031 if ((lr = p.left = l.right) != null)
3032 lr.parent = p;
3033 if ((pp = l.parent = p.parent) == null)
3034 (root = l).red = false;
3035 else if (pp.right == p)
3036 pp.right = l;
3037 else
3038 pp.left = l;
3039 l.right = p;
3040 p.parent = l;
3041 }
3042 return root;
3043 }
3044
3045 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3046 TreeNode<K,V> x) {
3047 x.red = true;
3048 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3049 if ((xp = x.parent) == null) {
3050 x.red = false;
3051 return x;
3052 }
3053 else if (!xp.red || (xpp = xp.parent) == null)
3054 return root;
3055 if (xp == (xppl = xpp.left)) {
3056 if ((xppr = xpp.right) != null && xppr.red) {
3057 xppr.red = false;
3058 xp.red = false;
3059 xpp.red = true;
3060 x = xpp;
3061 }
3062 else {
3063 if (x == xp.right) {
3064 root = rotateLeft(root, x = xp);
3065 xpp = (xp = x.parent) == null ? null : xp.parent;
3066 }
3067 if (xp != null) {
3068 xp.red = false;
3069 if (xpp != null) {
3070 xpp.red = true;
3071 root = rotateRight(root, xpp);
3072 }
3073 }
3074 }
3075 }
3076 else {
3077 if (xppl != null && xppl.red) {
3078 xppl.red = false;
3079 xp.red = false;
3080 xpp.red = true;
3081 x = xpp;
3082 }
3083 else {
3084 if (x == xp.left) {
3085 root = rotateRight(root, x = xp);
3086 xpp = (xp = x.parent) == null ? null : xp.parent;
3087 }
3088 if (xp != null) {
3089 xp.red = false;
3090 if (xpp != null) {
3091 xpp.red = true;
3092 root = rotateLeft(root, xpp);
3093 }
3094 }
3095 }
3096 }
3097 }
3098 }
3099
3100 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3101 TreeNode<K,V> x) {
3102 for (TreeNode<K,V> xp, xpl, xpr;;) {
3103 if (x == null || x == root)
3104 return root;
3105 else if ((xp = x.parent) == null) {
3106 x.red = false;
3107 return x;
3108 }
3109 else if (x.red) {
3110 x.red = false;
3111 return root;
3112 }
3113 else if ((xpl = xp.left) == x) {
3114 if ((xpr = xp.right) != null && xpr.red) {
3115 xpr.red = false;
3116 xp.red = true;
3117 root = rotateLeft(root, xp);
3118 xpr = (xp = x.parent) == null ? null : xp.right;
3119 }
3120 if (xpr == null)
3121 x = xp;
3122 else {
3123 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3124 if ((sr == null || !sr.red) &&
3125 (sl == null || !sl.red)) {
3126 xpr.red = true;
3127 x = xp;
3128 }
3129 else {
3130 if (sr == null || !sr.red) {
3131 if (sl != null)
3132 sl.red = false;
3133 xpr.red = true;
3134 root = rotateRight(root, xpr);
3135 xpr = (xp = x.parent) == null ?
3136 null : xp.right;
3137 }
3138 if (xpr != null) {
3139 xpr.red = (xp == null) ? false : xp.red;
3140 if ((sr = xpr.right) != null)
3141 sr.red = false;
3142 }
3143 if (xp != null) {
3144 xp.red = false;
3145 root = rotateLeft(root, xp);
3146 }
3147 x = root;
3148 }
3149 }
3150 }
3151 else { // symmetric
3152 if (xpl != null && xpl.red) {
3153 xpl.red = false;
3154 xp.red = true;
3155 root = rotateRight(root, xp);
3156 xpl = (xp = x.parent) == null ? null : xp.left;
3157 }
3158 if (xpl == null)
3159 x = xp;
3160 else {
3161 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3162 if ((sl == null || !sl.red) &&
3163 (sr == null || !sr.red)) {
3164 xpl.red = true;
3165 x = xp;
3166 }
3167 else {
3168 if (sl == null || !sl.red) {
3169 if (sr != null)
3170 sr.red = false;
3171 xpl.red = true;
3172 root = rotateLeft(root, xpl);
3173 xpl = (xp = x.parent) == null ?
3174 null : xp.left;
3175 }
3176 if (xpl != null) {
3177 xpl.red = (xp == null) ? false : xp.red;
3178 if ((sl = xpl.left) != null)
3179 sl.red = false;
3180 }
3181 if (xp != null) {
3182 xp.red = false;
3183 root = rotateRight(root, xp);
3184 }
3185 x = root;
3186 }
3187 }
3188 }
3189 }
3190 }
3191
3192 /**
3193 * Recursive invariant check
3194 */
3195 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3196 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3197 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3198 if (tb != null && tb.next != t)
3199 return false;
3200 if (tn != null && tn.prev != t)
3201 return false;
3202 if (tp != null && t != tp.left && t != tp.right)
3203 return false;
3204 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3205 return false;
3206 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3207 return false;
3208 if (t.red && tl != null && tl.red && tr != null && tr.red)
3209 return false;
3210 if (tl != null && !checkInvariants(tl))
3211 return false;
3212 if (tr != null && !checkInvariants(tr))
3213 return false;
3214 return true;
3215 }
3216
3217 private static final sun.misc.Unsafe U;
3218 private static final long LOCKSTATE;
3219 static {
3220 try {
3221 U = sun.misc.Unsafe.getUnsafe();
3222 Class<?> k = TreeBin.class;
3223 LOCKSTATE = U.objectFieldOffset
3224 (k.getDeclaredField("lockState"));
3225 } catch (Exception e) {
3226 throw new Error(e);
3227 }
3228 }
3229 }
3230
3231 /* ----------------Table Traversal -------------- */
3232
3233 /**
3234 * Records the table, its length, and current traversal index for a
3235 * traverser that must process a region of a forwarded table before
3236 * proceeding with current table.
3237 */
3238 static final class TableStack<K,V> {
3239 int length;
3240 int index;
3241 Node<K,V>[] tab;
3242 TableStack<K,V> next;
3243 }
3244
3245 /**
3246 * Encapsulates traversal for methods such as containsValue; also
3247 * serves as a base class for other iterators and spliterators.
3248 *
3249 * Method advance visits once each still-valid node that was
3250 * reachable upon iterator construction. It might miss some that
3251 * were added to a bin after the bin was visited, which is OK wrt
3252 * consistency guarantees. Maintaining this property in the face
3253 * of possible ongoing resizes requires a fair amount of
3254 * bookkeeping state that is difficult to optimize away amidst
3255 * volatile accesses. Even so, traversal maintains reasonable
3256 * throughput.
3257 *
3258 * Normally, iteration proceeds bin-by-bin traversing lists.
3259 * However, if the table has been resized, then all future steps
3260 * must traverse both the bin at the current index as well as at
3261 * (index + baseSize); and so on for further resizings. To
3262 * paranoically cope with potential sharing by users of iterators
3263 * across threads, iteration terminates if a bounds checks fails
3264 * for a table read.
3265 */
3266 static class Traverser<K,V> {
3267 Node<K,V>[] tab; // current table; updated if resized
3268 Node<K,V> next; // the next entry to use
3269 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3270 int index; // index of bin to use next
3271 int baseIndex; // current index of initial table
3272 int baseLimit; // index bound for initial table
3273 final int baseSize; // initial table size
3274
3275 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3276 this.tab = tab;
3277 this.baseSize = size;
3278 this.baseIndex = this.index = index;
3279 this.baseLimit = limit;
3280 this.next = null;
3281 }
3282
3283 /**
3284 * Advances if possible, returning next valid node, or null if none.
3285 */
3286 final Node<K,V> advance() {
3287 Node<K,V> e;
3288 if ((e = next) != null)
3289 e = e.next;
3290 for (;;) {
3291 Node<K,V>[] t; int i, n; // must use locals in checks
3292 if (e != null)
3293 return next = e;
3294 if (baseIndex >= baseLimit || (t = tab) == null ||
3295 (n = t.length) <= (i = index) || i < 0)
3296 return next = null;
3297 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3298 if (e instanceof ForwardingNode) {
3299 tab = ((ForwardingNode<K,V>)e).nextTable;
3300 e = null;
3301 pushState(t, i, n);
3302 continue;
3303 }
3304 else if (e instanceof TreeBin)
3305 e = ((TreeBin<K,V>)e).first;
3306 else
3307 e = null;
3308 }
3309 if (stack != null)
3310 recoverState(n);
3311 else if ((index = i + baseSize) >= n)
3312 index = ++baseIndex; // visit upper slots if present
3313 }
3314 }
3315
3316 /**
3317 * Saves traversal state upon encountering a forwarding node.
3318 */
3319 private void pushState(Node<K,V>[] t, int i, int n) {
3320 TableStack<K,V> s = spare; // reuse if possible
3321 if (s != null)
3322 spare = s.next;
3323 else
3324 s = new TableStack<K,V>();
3325 s.tab = t;
3326 s.length = n;
3327 s.index = i;
3328 s.next = stack;
3329 stack = s;
3330 }
3331
3332 /**
3333 * Possibly pops traversal state.
3334 *
3335 * @param n length of current table
3336 */
3337 private void recoverState(int n) {
3338 TableStack<K,V> s; int len;
3339 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3340 n = len;
3341 index = s.index;
3342 tab = s.tab;
3343 s.tab = null;
3344 TableStack<K,V> next = s.next;
3345 s.next = spare; // save for reuse
3346 stack = next;
3347 spare = s;
3348 }
3349 if (s == null && (index += baseSize) >= n)
3350 index = ++baseIndex;
3351 }
3352 }
3353
3354 /**
3355 * Base of key, value, and entry Iterators. Adds fields to
3356 * Traverser to support iterator.remove.
3357 */
3358 static class BaseIterator<K,V> extends Traverser<K,V> {
3359 final ConcurrentHashMap<K,V> map;
3360 Node<K,V> lastReturned;
3361 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3362 ConcurrentHashMap<K,V> map) {
3363 super(tab, size, index, limit);
3364 this.map = map;
3365 advance();
3366 }
3367
3368 public final boolean hasNext() { return next != null; }
3369 public final boolean hasMoreElements() { return next != null; }
3370
3371 public final void remove() {
3372 Node<K,V> p;
3373 if ((p = lastReturned) == null)
3374 throw new IllegalStateException();
3375 lastReturned = null;
3376 map.replaceNode(p.key, null, null);
3377 }
3378 }
3379
3380 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3381 implements Iterator<K>, Enumeration<K> {
3382 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3383 ConcurrentHashMap<K,V> map) {
3384 super(tab, index, size, limit, map);
3385 }
3386
3387 public final K next() {
3388 Node<K,V> p;
3389 if ((p = next) == null)
3390 throw new NoSuchElementException();
3391 K k = p.key;
3392 lastReturned = p;
3393 advance();
3394 return k;
3395 }
3396
3397 public final K nextElement() { return next(); }
3398 }
3399
3400 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3401 implements Iterator<V>, Enumeration<V> {
3402 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3403 ConcurrentHashMap<K,V> map) {
3404 super(tab, index, size, limit, map);
3405 }
3406
3407 public final V next() {
3408 Node<K,V> p;
3409 if ((p = next) == null)
3410 throw new NoSuchElementException();
3411 V v = p.val;
3412 lastReturned = p;
3413 advance();
3414 return v;
3415 }
3416
3417 public final V nextElement() { return next(); }
3418 }
3419
3420 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3421 implements Iterator<Map.Entry<K,V>> {
3422 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3423 ConcurrentHashMap<K,V> map) {
3424 super(tab, index, size, limit, map);
3425 }
3426
3427 public final Map.Entry<K,V> next() {
3428 Node<K,V> p;
3429 if ((p = next) == null)
3430 throw new NoSuchElementException();
3431 K k = p.key;
3432 V v = p.val;
3433 lastReturned = p;
3434 advance();
3435 return new MapEntry<K,V>(k, v, map);
3436 }
3437 }
3438
3439 /**
3440 * Exported Entry for EntryIterator
3441 */
3442 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3443 final K key; // non-null
3444 V val; // non-null
3445 final ConcurrentHashMap<K,V> map;
3446 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3447 this.key = key;
3448 this.val = val;
3449 this.map = map;
3450 }
3451 public K getKey() { return key; }
3452 public V getValue() { return val; }
3453 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3454 public String toString() { return key + "=" + val; }
3455
3456 public boolean equals(Object o) {
3457 Object k, v; Map.Entry<?,?> e;
3458 return ((o instanceof Map.Entry) &&
3459 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3460 (v = e.getValue()) != null &&
3461 (k == key || k.equals(key)) &&
3462 (v == val || v.equals(val)));
3463 }
3464
3465 /**
3466 * Sets our entry's value and writes through to the map. The
3467 * value to return is somewhat arbitrary here. Since we do not
3468 * necessarily track asynchronous changes, the most recent
3469 * "previous" value could be different from what we return (or
3470 * could even have been removed, in which case the put will
3471 * re-establish). We do not and cannot guarantee more.
3472 */
3473 public V setValue(V value) {
3474 if (value == null) throw new NullPointerException();
3475 V v = val;
3476 val = value;
3477 map.put(key, value);
3478 return v;
3479 }
3480 }
3481
3482 static final class KeySpliterator<K,V> extends Traverser<K,V>
3483 implements Spliterator<K> {
3484 long est; // size estimate
3485 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3486 long est) {
3487 super(tab, size, index, limit);
3488 this.est = est;
3489 }
3490
3491 public Spliterator<K> trySplit() {
3492 int i, f, h;
3493 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3494 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3495 f, est >>>= 1);
3496 }
3497
3498 public void forEachRemaining(Consumer<? super K> action) {
3499 if (action == null) throw new NullPointerException();
3500 for (Node<K,V> p; (p = advance()) != null;)
3501 action.accept(p.key);
3502 }
3503
3504 public boolean tryAdvance(Consumer<? super K> action) {
3505 if (action == null) throw new NullPointerException();
3506 Node<K,V> p;
3507 if ((p = advance()) == null)
3508 return false;
3509 action.accept(p.key);
3510 return true;
3511 }
3512
3513 public long estimateSize() { return est; }
3514
3515 public int characteristics() {
3516 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3517 Spliterator.NONNULL;
3518 }
3519 }
3520
3521 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3522 implements Spliterator<V> {
3523 long est; // size estimate
3524 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3525 long est) {
3526 super(tab, size, index, limit);
3527 this.est = est;
3528 }
3529
3530 public Spliterator<V> trySplit() {
3531 int i, f, h;
3532 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3533 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3534 f, est >>>= 1);
3535 }
3536
3537 public void forEachRemaining(Consumer<? super V> action) {
3538 if (action == null) throw new NullPointerException();
3539 for (Node<K,V> p; (p = advance()) != null;)
3540 action.accept(p.val);
3541 }
3542
3543 public boolean tryAdvance(Consumer<? super V> action) {
3544 if (action == null) throw new NullPointerException();
3545 Node<K,V> p;
3546 if ((p = advance()) == null)
3547 return false;
3548 action.accept(p.val);
3549 return true;
3550 }
3551
3552 public long estimateSize() { return est; }
3553
3554 public int characteristics() {
3555 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3556 }
3557 }
3558
3559 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3560 implements Spliterator<Map.Entry<K,V>> {
3561 final ConcurrentHashMap<K,V> map; // To export MapEntry
3562 long est; // size estimate
3563 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3564 long est, ConcurrentHashMap<K,V> map) {
3565 super(tab, size, index, limit);
3566 this.map = map;
3567 this.est = est;
3568 }
3569
3570 public Spliterator<Map.Entry<K,V>> trySplit() {
3571 int i, f, h;
3572 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3573 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3574 f, est >>>= 1, map);
3575 }
3576
3577 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3578 if (action == null) throw new NullPointerException();
3579 for (Node<K,V> p; (p = advance()) != null; )
3580 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3581 }
3582
3583 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3584 if (action == null) throw new NullPointerException();
3585 Node<K,V> p;
3586 if ((p = advance()) == null)
3587 return false;
3588 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3589 return true;
3590 }
3591
3592 public long estimateSize() { return est; }
3593
3594 public int characteristics() {
3595 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3596 Spliterator.NONNULL;
3597 }
3598 }
3599
3600 // Parallel bulk operations
3601
3602 /**
3603 * Computes initial batch value for bulk tasks. The returned value
3604 * is approximately exp2 of the number of times (minus one) to
3605 * split task by two before executing leaf action. This value is
3606 * faster to compute and more convenient to use as a guide to
3607 * splitting than is the depth, since it is used while dividing by
3608 * two anyway.
3609 */
3610 final int batchFor(long b) {
3611 long n;
3612 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3613 return 0;
3614 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3615 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3616 }
3617
3618 /**
3619 * Performs the given action for each (key, value).
3620 *
3621 * @param parallelismThreshold the (estimated) number of elements
3622 * needed for this operation to be executed in parallel
3623 * @param action the action
3624 * @since 1.8
3625 */
3626 public void forEach(long parallelismThreshold,
3627 BiConsumer<? super K,? super V> action) {
3628 if (action == null) throw new NullPointerException();
3629 new ForEachMappingTask<K,V>
3630 (null, batchFor(parallelismThreshold), 0, 0, table,
3631 action).invoke();
3632 }
3633
3634 /**
3635 * Performs the given action for each non-null transformation
3636 * of each (key, value).
3637 *
3638 * @param parallelismThreshold the (estimated) number of elements
3639 * needed for this operation to be executed in parallel
3640 * @param transformer a function returning the transformation
3641 * for an element, or null if there is no transformation (in
3642 * which case the action is not applied)
3643 * @param action the action
3644 * @param <U> the return type of the transformer
3645 * @since 1.8
3646 */
3647 public <U> void forEach(long parallelismThreshold,
3648 BiFunction<? super K, ? super V, ? extends U> transformer,
3649 Consumer<? super U> action) {
3650 if (transformer == null || action == null)
3651 throw new NullPointerException();
3652 new ForEachTransformedMappingTask<K,V,U>
3653 (null, batchFor(parallelismThreshold), 0, 0, table,
3654 transformer, action).invoke();
3655 }
3656
3657 /**
3658 * Returns a non-null result from applying the given search
3659 * function on each (key, value), or null if none. Upon
3660 * success, further element processing is suppressed and the
3661 * results of any other parallel invocations of the search
3662 * function are ignored.
3663 *
3664 * @param parallelismThreshold the (estimated) number of elements
3665 * needed for this operation to be executed in parallel
3666 * @param searchFunction a function returning a non-null
3667 * result on success, else null
3668 * @param <U> the return type of the search function
3669 * @return a non-null result from applying the given search
3670 * function on each (key, value), or null if none
3671 * @since 1.8
3672 */
3673 public <U> U search(long parallelismThreshold,
3674 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3675 if (searchFunction == null) throw new NullPointerException();
3676 return new SearchMappingsTask<K,V,U>
3677 (null, batchFor(parallelismThreshold), 0, 0, table,
3678 searchFunction, new AtomicReference<U>()).invoke();
3679 }
3680
3681 /**
3682 * Returns the result of accumulating the given transformation
3683 * of all (key, value) pairs using the given reducer to
3684 * combine values, or null if none.
3685 *
3686 * @param parallelismThreshold the (estimated) number of elements
3687 * needed for this operation to be executed in parallel
3688 * @param transformer a function returning the transformation
3689 * for an element, or null if there is no transformation (in
3690 * which case it is not combined)
3691 * @param reducer a commutative associative combining function
3692 * @param <U> the return type of the transformer
3693 * @return the result of accumulating the given transformation
3694 * of all (key, value) pairs
3695 * @since 1.8
3696 */
3697 public <U> U reduce(long parallelismThreshold,
3698 BiFunction<? super K, ? super V, ? extends U> transformer,
3699 BiFunction<? super U, ? super U, ? extends U> reducer) {
3700 if (transformer == null || reducer == null)
3701 throw new NullPointerException();
3702 return new MapReduceMappingsTask<K,V,U>
3703 (null, batchFor(parallelismThreshold), 0, 0, table,
3704 null, transformer, reducer).invoke();
3705 }
3706
3707 /**
3708 * Returns the result of accumulating the given transformation
3709 * of all (key, value) pairs using the given reducer to
3710 * combine values, and the given basis as an identity value.
3711 *
3712 * @param parallelismThreshold the (estimated) number of elements
3713 * needed for this operation to be executed in parallel
3714 * @param transformer a function returning the transformation
3715 * for an element
3716 * @param basis the identity (initial default value) for the reduction
3717 * @param reducer a commutative associative combining function
3718 * @return the result of accumulating the given transformation
3719 * of all (key, value) pairs
3720 * @since 1.8
3721 */
3722 public double reduceToDouble(long parallelismThreshold,
3723 ToDoubleBiFunction<? super K, ? super V> transformer,
3724 double basis,
3725 DoubleBinaryOperator reducer) {
3726 if (transformer == null || reducer == null)
3727 throw new NullPointerException();
3728 return new MapReduceMappingsToDoubleTask<K,V>
3729 (null, batchFor(parallelismThreshold), 0, 0, table,
3730 null, transformer, basis, reducer).invoke();
3731 }
3732
3733 /**
3734 * Returns the result of accumulating the given transformation
3735 * of all (key, value) pairs using the given reducer to
3736 * combine values, and the given basis as an identity value.
3737 *
3738 * @param parallelismThreshold the (estimated) number of elements
3739 * needed for this operation to be executed in parallel
3740 * @param transformer a function returning the transformation
3741 * for an element
3742 * @param basis the identity (initial default value) for the reduction
3743 * @param reducer a commutative associative combining function
3744 * @return the result of accumulating the given transformation
3745 * of all (key, value) pairs
3746 * @since 1.8
3747 */
3748 public long reduceToLong(long parallelismThreshold,
3749 ToLongBiFunction<? super K, ? super V> transformer,
3750 long basis,
3751 LongBinaryOperator reducer) {
3752 if (transformer == null || reducer == null)
3753 throw new NullPointerException();
3754 return new MapReduceMappingsToLongTask<K,V>
3755 (null, batchFor(parallelismThreshold), 0, 0, table,
3756 null, transformer, basis, reducer).invoke();
3757 }
3758
3759 /**
3760 * Returns the result of accumulating the given transformation
3761 * of all (key, value) pairs using the given reducer to
3762 * combine values, and the given basis as an identity value.
3763 *
3764 * @param parallelismThreshold the (estimated) number of elements
3765 * needed for this operation to be executed in parallel
3766 * @param transformer a function returning the transformation
3767 * for an element
3768 * @param basis the identity (initial default value) for the reduction
3769 * @param reducer a commutative associative combining function
3770 * @return the result of accumulating the given transformation
3771 * of all (key, value) pairs
3772 * @since 1.8
3773 */
3774 public int reduceToInt(long parallelismThreshold,
3775 ToIntBiFunction<? super K, ? super V> transformer,
3776 int basis,
3777 IntBinaryOperator reducer) {
3778 if (transformer == null || reducer == null)
3779 throw new NullPointerException();
3780 return new MapReduceMappingsToIntTask<K,V>
3781 (null, batchFor(parallelismThreshold), 0, 0, table,
3782 null, transformer, basis, reducer).invoke();
3783 }
3784
3785 /**
3786 * Performs the given action for each key.
3787 *
3788 * @param parallelismThreshold the (estimated) number of elements
3789 * needed for this operation to be executed in parallel
3790 * @param action the action
3791 * @since 1.8
3792 */
3793 public void forEachKey(long parallelismThreshold,
3794 Consumer<? super K> action) {
3795 if (action == null) throw new NullPointerException();
3796 new ForEachKeyTask<K,V>
3797 (null, batchFor(parallelismThreshold), 0, 0, table,
3798 action).invoke();
3799 }
3800
3801 /**
3802 * Performs the given action for each non-null transformation
3803 * of each key.
3804 *
3805 * @param parallelismThreshold the (estimated) number of elements
3806 * needed for this operation to be executed in parallel
3807 * @param transformer a function returning the transformation
3808 * for an element, or null if there is no transformation (in
3809 * which case the action is not applied)
3810 * @param action the action
3811 * @param <U> the return type of the transformer
3812 * @since 1.8
3813 */
3814 public <U> void forEachKey(long parallelismThreshold,
3815 Function<? super K, ? extends U> transformer,
3816 Consumer<? super U> action) {
3817 if (transformer == null || action == null)
3818 throw new NullPointerException();
3819 new ForEachTransformedKeyTask<K,V,U>
3820 (null, batchFor(parallelismThreshold), 0, 0, table,
3821 transformer, action).invoke();
3822 }
3823
3824 /**
3825 * Returns a non-null result from applying the given search
3826 * function on each key, or null if none. Upon success,
3827 * further element processing is suppressed and the results of
3828 * any other parallel invocations of the search function are
3829 * ignored.
3830 *
3831 * @param parallelismThreshold the (estimated) number of elements
3832 * needed for this operation to be executed in parallel
3833 * @param searchFunction a function returning a non-null
3834 * result on success, else null
3835 * @param <U> the return type of the search function
3836 * @return a non-null result from applying the given search
3837 * function on each key, or null if none
3838 * @since 1.8
3839 */
3840 public <U> U searchKeys(long parallelismThreshold,
3841 Function<? super K, ? extends U> searchFunction) {
3842 if (searchFunction == null) throw new NullPointerException();
3843 return new SearchKeysTask<K,V,U>
3844 (null, batchFor(parallelismThreshold), 0, 0, table,
3845 searchFunction, new AtomicReference<U>()).invoke();
3846 }
3847
3848 /**
3849 * Returns the result of accumulating all keys using the given
3850 * reducer to combine values, or null if none.
3851 *
3852 * @param parallelismThreshold the (estimated) number of elements
3853 * needed for this operation to be executed in parallel
3854 * @param reducer a commutative associative combining function
3855 * @return the result of accumulating all keys using the given
3856 * reducer to combine values, or null if none
3857 * @since 1.8
3858 */
3859 public K reduceKeys(long parallelismThreshold,
3860 BiFunction<? super K, ? super K, ? extends K> reducer) {
3861 if (reducer == null) throw new NullPointerException();
3862 return new ReduceKeysTask<K,V>
3863 (null, batchFor(parallelismThreshold), 0, 0, table,
3864 null, reducer).invoke();
3865 }
3866
3867 /**
3868 * Returns the result of accumulating the given transformation
3869 * of all keys using the given reducer to combine values, or
3870 * null if none.
3871 *
3872 * @param parallelismThreshold the (estimated) number of elements
3873 * needed for this operation to be executed in parallel
3874 * @param transformer a function returning the transformation
3875 * for an element, or null if there is no transformation (in
3876 * which case it is not combined)
3877 * @param reducer a commutative associative combining function
3878 * @param <U> the return type of the transformer
3879 * @return the result of accumulating the given transformation
3880 * of all keys
3881 * @since 1.8
3882 */
3883 public <U> U reduceKeys(long parallelismThreshold,
3884 Function<? super K, ? extends U> transformer,
3885 BiFunction<? super U, ? super U, ? extends U> reducer) {
3886 if (transformer == null || reducer == null)
3887 throw new NullPointerException();
3888 return new MapReduceKeysTask<K,V,U>
3889 (null, batchFor(parallelismThreshold), 0, 0, table,
3890 null, transformer, reducer).invoke();
3891 }
3892
3893 /**
3894 * Returns the result of accumulating the given transformation
3895 * of all keys using the given reducer to combine values, and
3896 * the given basis as an identity value.
3897 *
3898 * @param parallelismThreshold the (estimated) number of elements
3899 * needed for this operation to be executed in parallel
3900 * @param transformer a function returning the transformation
3901 * for an element
3902 * @param basis the identity (initial default value) for the reduction
3903 * @param reducer a commutative associative combining function
3904 * @return the result of accumulating the given transformation
3905 * of all keys
3906 * @since 1.8
3907 */
3908 public double reduceKeysToDouble(long parallelismThreshold,
3909 ToDoubleFunction<? super K> transformer,
3910 double basis,
3911 DoubleBinaryOperator reducer) {
3912 if (transformer == null || reducer == null)
3913 throw new NullPointerException();
3914 return new MapReduceKeysToDoubleTask<K,V>
3915 (null, batchFor(parallelismThreshold), 0, 0, table,
3916 null, transformer, basis, reducer).invoke();
3917 }
3918
3919 /**
3920 * Returns the result of accumulating the given transformation
3921 * of all keys using the given reducer to combine values, and
3922 * the given basis as an identity value.
3923 *
3924 * @param parallelismThreshold the (estimated) number of elements
3925 * needed for this operation to be executed in parallel
3926 * @param transformer a function returning the transformation
3927 * for an element
3928 * @param basis the identity (initial default value) for the reduction
3929 * @param reducer a commutative associative combining function
3930 * @return the result of accumulating the given transformation
3931 * of all keys
3932 * @since 1.8
3933 */
3934 public long reduceKeysToLong(long parallelismThreshold,
3935 ToLongFunction<? super K> transformer,
3936 long basis,
3937 LongBinaryOperator reducer) {
3938 if (transformer == null || reducer == null)
3939 throw new NullPointerException();
3940 return new MapReduceKeysToLongTask<K,V>
3941 (null, batchFor(parallelismThreshold), 0, 0, table,
3942 null, transformer, basis, reducer).invoke();
3943 }
3944
3945 /**
3946 * Returns the result of accumulating the given transformation
3947 * of all keys using the given reducer to combine values, and
3948 * the given basis as an identity value.
3949 *
3950 * @param parallelismThreshold the (estimated) number of elements
3951 * needed for this operation to be executed in parallel
3952 * @param transformer a function returning the transformation
3953 * for an element
3954 * @param basis the identity (initial default value) for the reduction
3955 * @param reducer a commutative associative combining function
3956 * @return the result of accumulating the given transformation
3957 * of all keys
3958 * @since 1.8
3959 */
3960 public int reduceKeysToInt(long parallelismThreshold,
3961 ToIntFunction<? super K> transformer,
3962 int basis,
3963 IntBinaryOperator reducer) {
3964 if (transformer == null || reducer == null)
3965 throw new NullPointerException();
3966 return new MapReduceKeysToIntTask<K,V>
3967 (null, batchFor(parallelismThreshold), 0, 0, table,
3968 null, transformer, basis, reducer).invoke();
3969 }
3970
3971 /**
3972 * Performs the given action for each value.
3973 *
3974 * @param parallelismThreshold the (estimated) number of elements
3975 * needed for this operation to be executed in parallel
3976 * @param action the action
3977 * @since 1.8
3978 */
3979 public void forEachValue(long parallelismThreshold,
3980 Consumer<? super V> action) {
3981 if (action == null)
3982 throw new NullPointerException();
3983 new ForEachValueTask<K,V>
3984 (null, batchFor(parallelismThreshold), 0, 0, table,
3985 action).invoke();
3986 }
3987
3988 /**
3989 * Performs the given action for each non-null transformation
3990 * of each value.
3991 *
3992 * @param parallelismThreshold the (estimated) number of elements
3993 * needed for this operation to be executed in parallel
3994 * @param transformer a function returning the transformation
3995 * for an element, or null if there is no transformation (in
3996 * which case the action is not applied)
3997 * @param action the action
3998 * @param <U> the return type of the transformer
3999 * @since 1.8
4000 */
4001 public <U> void forEachValue(long parallelismThreshold,
4002 Function<? super V, ? extends U> transformer,
4003 Consumer<? super U> action) {
4004 if (transformer == null || action == null)
4005 throw new NullPointerException();
4006 new ForEachTransformedValueTask<K,V,U>
4007 (null, batchFor(parallelismThreshold), 0, 0, table,
4008 transformer, action).invoke();
4009 }
4010
4011 /**
4012 * Returns a non-null result from applying the given search
4013 * function on each value, or null if none. Upon success,
4014 * further element processing is suppressed and the results of
4015 * any other parallel invocations of the search function are
4016 * ignored.
4017 *
4018 * @param parallelismThreshold the (estimated) number of elements
4019 * needed for this operation to be executed in parallel
4020 * @param searchFunction a function returning a non-null
4021 * result on success, else null
4022 * @param <U> the return type of the search function
4023 * @return a non-null result from applying the given search
4024 * function on each value, or null if none
4025 * @since 1.8
4026 */
4027 public <U> U searchValues(long parallelismThreshold,
4028 Function<? super V, ? extends U> searchFunction) {
4029 if (searchFunction == null) throw new NullPointerException();
4030 return new SearchValuesTask<K,V,U>
4031 (null, batchFor(parallelismThreshold), 0, 0, table,
4032 searchFunction, new AtomicReference<U>()).invoke();
4033 }
4034
4035 /**
4036 * Returns the result of accumulating all values using the
4037 * given reducer to combine values, or null if none.
4038 *
4039 * @param parallelismThreshold the (estimated) number of elements
4040 * needed for this operation to be executed in parallel
4041 * @param reducer a commutative associative combining function
4042 * @return the result of accumulating all values
4043 * @since 1.8
4044 */
4045 public V reduceValues(long parallelismThreshold,
4046 BiFunction<? super V, ? super V, ? extends V> reducer) {
4047 if (reducer == null) throw new NullPointerException();
4048 return new ReduceValuesTask<K,V>
4049 (null, batchFor(parallelismThreshold), 0, 0, table,
4050 null, reducer).invoke();
4051 }
4052
4053 /**
4054 * Returns the result of accumulating the given transformation
4055 * of all values using the given reducer to combine values, or
4056 * null if none.
4057 *
4058 * @param parallelismThreshold the (estimated) number of elements
4059 * needed for this operation to be executed in parallel
4060 * @param transformer a function returning the transformation
4061 * for an element, or null if there is no transformation (in
4062 * which case it is not combined)
4063 * @param reducer a commutative associative combining function
4064 * @param <U> the return type of the transformer
4065 * @return the result of accumulating the given transformation
4066 * of all values
4067 * @since 1.8
4068 */
4069 public <U> U reduceValues(long parallelismThreshold,
4070 Function<? super V, ? extends U> transformer,
4071 BiFunction<? super U, ? super U, ? extends U> reducer) {
4072 if (transformer == null || reducer == null)
4073 throw new NullPointerException();
4074 return new MapReduceValuesTask<K,V,U>
4075 (null, batchFor(parallelismThreshold), 0, 0, table,
4076 null, transformer, reducer).invoke();
4077 }
4078
4079 /**
4080 * Returns the result of accumulating the given transformation
4081 * of all values using the given reducer to combine values,
4082 * and the given basis as an identity value.
4083 *
4084 * @param parallelismThreshold the (estimated) number of elements
4085 * needed for this operation to be executed in parallel
4086 * @param transformer a function returning the transformation
4087 * for an element
4088 * @param basis the identity (initial default value) for the reduction
4089 * @param reducer a commutative associative combining function
4090 * @return the result of accumulating the given transformation
4091 * of all values
4092 * @since 1.8
4093 */
4094 public double reduceValuesToDouble(long parallelismThreshold,
4095 ToDoubleFunction<? super V> transformer,
4096 double basis,
4097 DoubleBinaryOperator reducer) {
4098 if (transformer == null || reducer == null)
4099 throw new NullPointerException();
4100 return new MapReduceValuesToDoubleTask<K,V>
4101 (null, batchFor(parallelismThreshold), 0, 0, table,
4102 null, transformer, basis, reducer).invoke();
4103 }
4104
4105 /**
4106 * Returns the result of accumulating the given transformation
4107 * of all values using the given reducer to combine values,
4108 * and the given basis as an identity value.
4109 *
4110 * @param parallelismThreshold the (estimated) number of elements
4111 * needed for this operation to be executed in parallel
4112 * @param transformer a function returning the transformation
4113 * for an element
4114 * @param basis the identity (initial default value) for the reduction
4115 * @param reducer a commutative associative combining function
4116 * @return the result of accumulating the given transformation
4117 * of all values
4118 * @since 1.8
4119 */
4120 public long reduceValuesToLong(long parallelismThreshold,
4121 ToLongFunction<? super V> transformer,
4122 long basis,
4123 LongBinaryOperator reducer) {
4124 if (transformer == null || reducer == null)
4125 throw new NullPointerException();
4126 return new MapReduceValuesToLongTask<K,V>
4127 (null, batchFor(parallelismThreshold), 0, 0, table,
4128 null, transformer, basis, reducer).invoke();
4129 }
4130
4131 /**
4132 * Returns the result of accumulating the given transformation
4133 * of all values using the given reducer to combine values,
4134 * and the given basis as an identity value.
4135 *
4136 * @param parallelismThreshold the (estimated) number of elements
4137 * needed for this operation to be executed in parallel
4138 * @param transformer a function returning the transformation
4139 * for an element
4140 * @param basis the identity (initial default value) for the reduction
4141 * @param reducer a commutative associative combining function
4142 * @return the result of accumulating the given transformation
4143 * of all values
4144 * @since 1.8
4145 */
4146 public int reduceValuesToInt(long parallelismThreshold,
4147 ToIntFunction<? super V> transformer,
4148 int basis,
4149 IntBinaryOperator reducer) {
4150 if (transformer == null || reducer == null)
4151 throw new NullPointerException();
4152 return new MapReduceValuesToIntTask<K,V>
4153 (null, batchFor(parallelismThreshold), 0, 0, table,
4154 null, transformer, basis, reducer).invoke();
4155 }
4156
4157 /**
4158 * Performs the given action for each entry.
4159 *
4160 * @param parallelismThreshold the (estimated) number of elements
4161 * needed for this operation to be executed in parallel
4162 * @param action the action
4163 * @since 1.8
4164 */
4165 public void forEachEntry(long parallelismThreshold,
4166 Consumer<? super Map.Entry<K,V>> action) {
4167 if (action == null) throw new NullPointerException();
4168 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4169 action).invoke();
4170 }
4171
4172 /**
4173 * Performs the given action for each non-null transformation
4174 * of each entry.
4175 *
4176 * @param parallelismThreshold the (estimated) number of elements
4177 * needed for this operation to be executed in parallel
4178 * @param transformer a function returning the transformation
4179 * for an element, or null if there is no transformation (in
4180 * which case the action is not applied)
4181 * @param action the action
4182 * @param <U> the return type of the transformer
4183 * @since 1.8
4184 */
4185 public <U> void forEachEntry(long parallelismThreshold,
4186 Function<Map.Entry<K,V>, ? extends U> transformer,
4187 Consumer<? super U> action) {
4188 if (transformer == null || action == null)
4189 throw new NullPointerException();
4190 new ForEachTransformedEntryTask<K,V,U>
4191 (null, batchFor(parallelismThreshold), 0, 0, table,
4192 transformer, action).invoke();
4193 }
4194
4195 /**
4196 * Returns a non-null result from applying the given search
4197 * function on each entry, or null if none. Upon success,
4198 * further element processing is suppressed and the results of
4199 * any other parallel invocations of the search function are
4200 * ignored.
4201 *
4202 * @param parallelismThreshold the (estimated) number of elements
4203 * needed for this operation to be executed in parallel
4204 * @param searchFunction a function returning a non-null
4205 * result on success, else null
4206 * @param <U> the return type of the search function
4207 * @return a non-null result from applying the given search
4208 * function on each entry, or null if none
4209 * @since 1.8
4210 */
4211 public <U> U searchEntries(long parallelismThreshold,
4212 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4213 if (searchFunction == null) throw new NullPointerException();
4214 return new SearchEntriesTask<K,V,U>
4215 (null, batchFor(parallelismThreshold), 0, 0, table,
4216 searchFunction, new AtomicReference<U>()).invoke();
4217 }
4218
4219 /**
4220 * Returns the result of accumulating all entries using the
4221 * given reducer to combine values, or null if none.
4222 *
4223 * @param parallelismThreshold the (estimated) number of elements
4224 * needed for this operation to be executed in parallel
4225 * @param reducer a commutative associative combining function
4226 * @return the result of accumulating all entries
4227 * @since 1.8
4228 */
4229 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4230 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4231 if (reducer == null) throw new NullPointerException();
4232 return new ReduceEntriesTask<K,V>
4233 (null, batchFor(parallelismThreshold), 0, 0, table,
4234 null, reducer).invoke();
4235 }
4236
4237 /**
4238 * Returns the result of accumulating the given transformation
4239 * of all entries using the given reducer to combine values,
4240 * or null if none.
4241 *
4242 * @param parallelismThreshold the (estimated) number of elements
4243 * needed for this operation to be executed in parallel
4244 * @param transformer a function returning the transformation
4245 * for an element, or null if there is no transformation (in
4246 * which case it is not combined)
4247 * @param reducer a commutative associative combining function
4248 * @param <U> the return type of the transformer
4249 * @return the result of accumulating the given transformation
4250 * of all entries
4251 * @since 1.8
4252 */
4253 public <U> U reduceEntries(long parallelismThreshold,
4254 Function<Map.Entry<K,V>, ? extends U> transformer,
4255 BiFunction<? super U, ? super U, ? extends U> reducer) {
4256 if (transformer == null || reducer == null)
4257 throw new NullPointerException();
4258 return new MapReduceEntriesTask<K,V,U>
4259 (null, batchFor(parallelismThreshold), 0, 0, table,
4260 null, transformer, reducer).invoke();
4261 }
4262
4263 /**
4264 * Returns the result of accumulating the given transformation
4265 * of all entries using the given reducer to combine values,
4266 * and the given basis as an identity value.
4267 *
4268 * @param parallelismThreshold the (estimated) number of elements
4269 * needed for this operation to be executed in parallel
4270 * @param transformer a function returning the transformation
4271 * for an element
4272 * @param basis the identity (initial default value) for the reduction
4273 * @param reducer a commutative associative combining function
4274 * @return the result of accumulating the given transformation
4275 * of all entries
4276 * @since 1.8
4277 */
4278 public double reduceEntriesToDouble(long parallelismThreshold,
4279 ToDoubleFunction<Map.Entry<K,V>> transformer,
4280 double basis,
4281 DoubleBinaryOperator reducer) {
4282 if (transformer == null || reducer == null)
4283 throw new NullPointerException();
4284 return new MapReduceEntriesToDoubleTask<K,V>
4285 (null, batchFor(parallelismThreshold), 0, 0, table,
4286 null, transformer, basis, reducer).invoke();
4287 }
4288
4289 /**
4290 * Returns the result of accumulating the given transformation
4291 * of all entries using the given reducer to combine values,
4292 * and the given basis as an identity value.
4293 *
4294 * @param parallelismThreshold the (estimated) number of elements
4295 * needed for this operation to be executed in parallel
4296 * @param transformer a function returning the transformation
4297 * for an element
4298 * @param basis the identity (initial default value) for the reduction
4299 * @param reducer a commutative associative combining function
4300 * @return the result of accumulating the given transformation
4301 * of all entries
4302 * @since 1.8
4303 */
4304 public long reduceEntriesToLong(long parallelismThreshold,
4305 ToLongFunction<Map.Entry<K,V>> transformer,
4306 long basis,
4307 LongBinaryOperator reducer) {
4308 if (transformer == null || reducer == null)
4309 throw new NullPointerException();
4310 return new MapReduceEntriesToLongTask<K,V>
4311 (null, batchFor(parallelismThreshold), 0, 0, table,
4312 null, transformer, basis, reducer).invoke();
4313 }
4314
4315 /**
4316 * Returns the result of accumulating the given transformation
4317 * of all entries using the given reducer to combine values,
4318 * and the given basis as an identity value.
4319 *
4320 * @param parallelismThreshold the (estimated) number of elements
4321 * needed for this operation to be executed in parallel
4322 * @param transformer a function returning the transformation
4323 * for an element
4324 * @param basis the identity (initial default value) for the reduction
4325 * @param reducer a commutative associative combining function
4326 * @return the result of accumulating the given transformation
4327 * of all entries
4328 * @since 1.8
4329 */
4330 public int reduceEntriesToInt(long parallelismThreshold,
4331 ToIntFunction<Map.Entry<K,V>> transformer,
4332 int basis,
4333 IntBinaryOperator reducer) {
4334 if (transformer == null || reducer == null)
4335 throw new NullPointerException();
4336 return new MapReduceEntriesToIntTask<K,V>
4337 (null, batchFor(parallelismThreshold), 0, 0, table,
4338 null, transformer, basis, reducer).invoke();
4339 }
4340
4341
4342 /* ----------------Views -------------- */
4343
4344 /**
4345 * Base class for views.
4346 */
4347 abstract static class CollectionView<K,V,E>
4348 implements Collection<E>, java.io.Serializable {
4349 private static final long serialVersionUID = 7249069246763182397L;
4350 final ConcurrentHashMap<K,V> map;
4351 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4352
4353 /**
4354 * Returns the map backing this view.
4355 *
4356 * @return the map backing this view
4357 */
4358 public ConcurrentHashMap<K,V> getMap() { return map; }
4359
4360 /**
4361 * Removes all of the elements from this view, by removing all
4362 * the mappings from the map backing this view.
4363 */
4364 public final void clear() { map.clear(); }
4365 public final int size() { return map.size(); }
4366 public final boolean isEmpty() { return map.isEmpty(); }
4367
4368 // implementations below rely on concrete classes supplying these
4369 // abstract methods
4370 /**
4371 * Returns an iterator over the elements in this collection.
4372 *
4373 * <p>The returned iterator is
4374 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4375 *
4376 * @return an iterator over the elements in this collection
4377 */
4378 public abstract Iterator<E> iterator();
4379 public abstract boolean contains(Object o);
4380 public abstract boolean remove(Object o);
4381
4382 private static final String oomeMsg = "Required array size too large";
4383
4384 public final Object[] toArray() {
4385 long sz = map.mappingCount();
4386 if (sz > MAX_ARRAY_SIZE)
4387 throw new OutOfMemoryError(oomeMsg);
4388 int n = (int)sz;
4389 Object[] r = new Object[n];
4390 int i = 0;
4391 for (E e : this) {
4392 if (i == n) {
4393 if (n >= MAX_ARRAY_SIZE)
4394 throw new OutOfMemoryError(oomeMsg);
4395 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4396 n = MAX_ARRAY_SIZE;
4397 else
4398 n += (n >>> 1) + 1;
4399 r = Arrays.copyOf(r, n);
4400 }
4401 r[i++] = e;
4402 }
4403 return (i == n) ? r : Arrays.copyOf(r, i);
4404 }
4405
4406 @SuppressWarnings("unchecked")
4407 public final <T> T[] toArray(T[] a) {
4408 long sz = map.mappingCount();
4409 if (sz > MAX_ARRAY_SIZE)
4410 throw new OutOfMemoryError(oomeMsg);
4411 int m = (int)sz;
4412 T[] r = (a.length >= m) ? a :
4413 (T[])java.lang.reflect.Array
4414 .newInstance(a.getClass().getComponentType(), m);
4415 int n = r.length;
4416 int i = 0;
4417 for (E e : this) {
4418 if (i == n) {
4419 if (n >= MAX_ARRAY_SIZE)
4420 throw new OutOfMemoryError(oomeMsg);
4421 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4422 n = MAX_ARRAY_SIZE;
4423 else
4424 n += (n >>> 1) + 1;
4425 r = Arrays.copyOf(r, n);
4426 }
4427 r[i++] = (T)e;
4428 }
4429 if (a == r && i < n) {
4430 r[i] = null; // null-terminate
4431 return r;
4432 }
4433 return (i == n) ? r : Arrays.copyOf(r, i);
4434 }
4435
4436 /**
4437 * Returns a string representation of this collection.
4438 * The string representation consists of the string representations
4439 * of the collection's elements in the order they are returned by
4440 * its iterator, enclosed in square brackets ({@code "[]"}).
4441 * Adjacent elements are separated by the characters {@code ", "}
4442 * (comma and space). Elements are converted to strings as by
4443 * {@link String#valueOf(Object)}.
4444 *
4445 * @return a string representation of this collection
4446 */
4447 public final String toString() {
4448 StringBuilder sb = new StringBuilder();
4449 sb.append('[');
4450 Iterator<E> it = iterator();
4451 if (it.hasNext()) {
4452 for (;;) {
4453 Object e = it.next();
4454 sb.append(e == this ? "(this Collection)" : e);
4455 if (!it.hasNext())
4456 break;
4457 sb.append(',').append(' ');
4458 }
4459 }
4460 return sb.append(']').toString();
4461 }
4462
4463 public final boolean containsAll(Collection<?> c) {
4464 if (c != this) {
4465 for (Object e : c) {
4466 if (e == null || !contains(e))
4467 return false;
4468 }
4469 }
4470 return true;
4471 }
4472
4473 public final boolean removeAll(Collection<?> c) {
4474 if (c == null) throw new NullPointerException();
4475 boolean modified = false;
4476 for (Iterator<E> it = iterator(); it.hasNext();) {
4477 if (c.contains(it.next())) {
4478 it.remove();
4479 modified = true;
4480 }
4481 }
4482 return modified;
4483 }
4484
4485 public final boolean retainAll(Collection<?> c) {
4486 if (c == null) throw new NullPointerException();
4487 boolean modified = false;
4488 for (Iterator<E> it = iterator(); it.hasNext();) {
4489 if (!c.contains(it.next())) {
4490 it.remove();
4491 modified = true;
4492 }
4493 }
4494 return modified;
4495 }
4496
4497 }
4498
4499 /**
4500 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4501 * which additions may optionally be enabled by mapping to a
4502 * common value. This class cannot be directly instantiated.
4503 * See {@link #keySet() keySet()},
4504 * {@link #keySet(Object) keySet(V)},
4505 * {@link #newKeySet() newKeySet()},
4506 * {@link #newKeySet(int) newKeySet(int)}.
4507 *
4508 * @since 1.8
4509 */
4510 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4511 implements Set<K>, java.io.Serializable {
4512 private static final long serialVersionUID = 7249069246763182397L;
4513 private final V value;
4514 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4515 super(map);
4516 this.value = value;
4517 }
4518
4519 /**
4520 * Returns the default mapped value for additions,
4521 * or {@code null} if additions are not supported.
4522 *
4523 * @return the default mapped value for additions, or {@code null}
4524 * if not supported
4525 */
4526 public V getMappedValue() { return value; }
4527
4528 /**
4529 * {@inheritDoc}
4530 * @throws NullPointerException if the specified key is null
4531 */
4532 public boolean contains(Object o) { return map.containsKey(o); }
4533
4534 /**
4535 * Removes the key from this map view, by removing the key (and its
4536 * corresponding value) from the backing map. This method does
4537 * nothing if the key is not in the map.
4538 *
4539 * @param o the key to be removed from the backing map
4540 * @return {@code true} if the backing map contained the specified key
4541 * @throws NullPointerException if the specified key is null
4542 */
4543 public boolean remove(Object o) { return map.remove(o) != null; }
4544
4545 /**
4546 * @return an iterator over the keys of the backing map
4547 */
4548 public Iterator<K> iterator() {
4549 Node<K,V>[] t;
4550 ConcurrentHashMap<K,V> m = map;
4551 int f = (t = m.table) == null ? 0 : t.length;
4552 return new KeyIterator<K,V>(t, f, 0, f, m);
4553 }
4554
4555 /**
4556 * Adds the specified key to this set view by mapping the key to
4557 * the default mapped value in the backing map, if defined.
4558 *
4559 * @param e key to be added
4560 * @return {@code true} if this set changed as a result of the call
4561 * @throws NullPointerException if the specified key is null
4562 * @throws UnsupportedOperationException if no default mapped value
4563 * for additions was provided
4564 */
4565 public boolean add(K e) {
4566 V v;
4567 if ((v = value) == null)
4568 throw new UnsupportedOperationException();
4569 return map.putVal(e, v, true) == null;
4570 }
4571
4572 /**
4573 * Adds all of the elements in the specified collection to this set,
4574 * as if by calling {@link #add} on each one.
4575 *
4576 * @param c the elements to be inserted into this set
4577 * @return {@code true} if this set changed as a result of the call
4578 * @throws NullPointerException if the collection or any of its
4579 * elements are {@code null}
4580 * @throws UnsupportedOperationException if no default mapped value
4581 * for additions was provided
4582 */
4583 public boolean addAll(Collection<? extends K> c) {
4584 boolean added = false;
4585 V v;
4586 if ((v = value) == null)
4587 throw new UnsupportedOperationException();
4588 for (K e : c) {
4589 if (map.putVal(e, v, true) == null)
4590 added = true;
4591 }
4592 return added;
4593 }
4594
4595 public int hashCode() {
4596 int h = 0;
4597 for (K e : this)
4598 h += e.hashCode();
4599 return h;
4600 }
4601
4602 public boolean equals(Object o) {
4603 Set<?> c;
4604 return ((o instanceof Set) &&
4605 ((c = (Set<?>)o) == this ||
4606 (containsAll(c) && c.containsAll(this))));
4607 }
4608
4609 public Spliterator<K> spliterator() {
4610 Node<K,V>[] t;
4611 ConcurrentHashMap<K,V> m = map;
4612 long n = m.sumCount();
4613 int f = (t = m.table) == null ? 0 : t.length;
4614 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4615 }
4616
4617 public void forEach(Consumer<? super K> action) {
4618 if (action == null) throw new NullPointerException();
4619 Node<K,V>[] t;
4620 if ((t = map.table) != null) {
4621 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4622 for (Node<K,V> p; (p = it.advance()) != null; )
4623 action.accept(p.key);
4624 }
4625 }
4626 }
4627
4628 /**
4629 * A view of a ConcurrentHashMap as a {@link Collection} of
4630 * values, in which additions are disabled. This class cannot be
4631 * directly instantiated. See {@link #values()}.
4632 */
4633 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4634 implements Collection<V>, java.io.Serializable {
4635 private static final long serialVersionUID = 2249069246763182397L;
4636 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4637 public final boolean contains(Object o) {
4638 return map.containsValue(o);
4639 }
4640
4641 public final boolean remove(Object o) {
4642 if (o != null) {
4643 for (Iterator<V> it = iterator(); it.hasNext();) {
4644 if (o.equals(it.next())) {
4645 it.remove();
4646 return true;
4647 }
4648 }
4649 }
4650 return false;
4651 }
4652
4653 public final Iterator<V> iterator() {
4654 ConcurrentHashMap<K,V> m = map;
4655 Node<K,V>[] t;
4656 int f = (t = m.table) == null ? 0 : t.length;
4657 return new ValueIterator<K,V>(t, f, 0, f, m);
4658 }
4659
4660 public final boolean add(V e) {
4661 throw new UnsupportedOperationException();
4662 }
4663 public final boolean addAll(Collection<? extends V> c) {
4664 throw new UnsupportedOperationException();
4665 }
4666
4667 public Spliterator<V> spliterator() {
4668 Node<K,V>[] t;
4669 ConcurrentHashMap<K,V> m = map;
4670 long n = m.sumCount();
4671 int f = (t = m.table) == null ? 0 : t.length;
4672 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4673 }
4674
4675 public void forEach(Consumer<? super V> action) {
4676 if (action == null) throw new NullPointerException();
4677 Node<K,V>[] t;
4678 if ((t = map.table) != null) {
4679 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4680 for (Node<K,V> p; (p = it.advance()) != null; )
4681 action.accept(p.val);
4682 }
4683 }
4684 }
4685
4686 /**
4687 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4688 * entries. This class cannot be directly instantiated. See
4689 * {@link #entrySet()}.
4690 */
4691 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4692 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4693 private static final long serialVersionUID = 2249069246763182397L;
4694 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4695
4696 public boolean contains(Object o) {
4697 Object k, v, r; Map.Entry<?,?> e;
4698 return ((o instanceof Map.Entry) &&
4699 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4700 (r = map.get(k)) != null &&
4701 (v = e.getValue()) != null &&
4702 (v == r || v.equals(r)));
4703 }
4704
4705 public boolean remove(Object o) {
4706 Object k, v; Map.Entry<?,?> e;
4707 return ((o instanceof Map.Entry) &&
4708 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4709 (v = e.getValue()) != null &&
4710 map.remove(k, v));
4711 }
4712
4713 /**
4714 * @return an iterator over the entries of the backing map
4715 */
4716 public Iterator<Map.Entry<K,V>> iterator() {
4717 ConcurrentHashMap<K,V> m = map;
4718 Node<K,V>[] t;
4719 int f = (t = m.table) == null ? 0 : t.length;
4720 return new EntryIterator<K,V>(t, f, 0, f, m);
4721 }
4722
4723 public boolean add(Entry<K,V> e) {
4724 return map.putVal(e.getKey(), e.getValue(), false) == null;
4725 }
4726
4727 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4728 boolean added = false;
4729 for (Entry<K,V> e : c) {
4730 if (add(e))
4731 added = true;
4732 }
4733 return added;
4734 }
4735
4736 public final int hashCode() {
4737 int h = 0;
4738 Node<K,V>[] t;
4739 if ((t = map.table) != null) {
4740 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4741 for (Node<K,V> p; (p = it.advance()) != null; ) {
4742 h += p.hashCode();
4743 }
4744 }
4745 return h;
4746 }
4747
4748 public final boolean equals(Object o) {
4749 Set<?> c;
4750 return ((o instanceof Set) &&
4751 ((c = (Set<?>)o) == this ||
4752 (containsAll(c) && c.containsAll(this))));
4753 }
4754
4755 public Spliterator<Map.Entry<K,V>> spliterator() {
4756 Node<K,V>[] t;
4757 ConcurrentHashMap<K,V> m = map;
4758 long n = m.sumCount();
4759 int f = (t = m.table) == null ? 0 : t.length;
4760 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4761 }
4762
4763 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4764 if (action == null) throw new NullPointerException();
4765 Node<K,V>[] t;
4766 if ((t = map.table) != null) {
4767 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4768 for (Node<K,V> p; (p = it.advance()) != null; )
4769 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4770 }
4771 }
4772
4773 }
4774
4775 // -------------------------------------------------------
4776
4777 /**
4778 * Base class for bulk tasks. Repeats some fields and code from
4779 * class Traverser, because we need to subclass CountedCompleter.
4780 */
4781 @SuppressWarnings("serial")
4782 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4783 Node<K,V>[] tab; // same as Traverser
4784 Node<K,V> next;
4785 TableStack<K,V> stack, spare;
4786 int index;
4787 int baseIndex;
4788 int baseLimit;
4789 final int baseSize;
4790 int batch; // split control
4791
4792 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4793 super(par);
4794 this.batch = b;
4795 this.index = this.baseIndex = i;
4796 if ((this.tab = t) == null)
4797 this.baseSize = this.baseLimit = 0;
4798 else if (par == null)
4799 this.baseSize = this.baseLimit = t.length;
4800 else {
4801 this.baseLimit = f;
4802 this.baseSize = par.baseSize;
4803 }
4804 }
4805
4806 /**
4807 * Same as Traverser version
4808 */
4809 final Node<K,V> advance() {
4810 Node<K,V> e;
4811 if ((e = next) != null)
4812 e = e.next;
4813 for (;;) {
4814 Node<K,V>[] t; int i, n;
4815 if (e != null)
4816 return next = e;
4817 if (baseIndex >= baseLimit || (t = tab) == null ||
4818 (n = t.length) <= (i = index) || i < 0)
4819 return next = null;
4820 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4821 if (e instanceof ForwardingNode) {
4822 tab = ((ForwardingNode<K,V>)e).nextTable;
4823 e = null;
4824 pushState(t, i, n);
4825 continue;
4826 }
4827 else if (e instanceof TreeBin)
4828 e = ((TreeBin<K,V>)e).first;
4829 else
4830 e = null;
4831 }
4832 if (stack != null)
4833 recoverState(n);
4834 else if ((index = i + baseSize) >= n)
4835 index = ++baseIndex;
4836 }
4837 }
4838
4839 private void pushState(Node<K,V>[] t, int i, int n) {
4840 TableStack<K,V> s = spare;
4841 if (s != null)
4842 spare = s.next;
4843 else
4844 s = new TableStack<K,V>();
4845 s.tab = t;
4846 s.length = n;
4847 s.index = i;
4848 s.next = stack;
4849 stack = s;
4850 }
4851
4852 private void recoverState(int n) {
4853 TableStack<K,V> s; int len;
4854 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4855 n = len;
4856 index = s.index;
4857 tab = s.tab;
4858 s.tab = null;
4859 TableStack<K,V> next = s.next;
4860 s.next = spare; // save for reuse
4861 stack = next;
4862 spare = s;
4863 }
4864 if (s == null && (index += baseSize) >= n)
4865 index = ++baseIndex;
4866 }
4867 }
4868
4869 /*
4870 * Task classes. Coded in a regular but ugly format/style to
4871 * simplify checks that each variant differs in the right way from
4872 * others. The null screenings exist because compilers cannot tell
4873 * that we've already null-checked task arguments, so we force
4874 * simplest hoisted bypass to help avoid convoluted traps.
4875 */
4876 @SuppressWarnings("serial")
4877 static final class ForEachKeyTask<K,V>
4878 extends BulkTask<K,V,Void> {
4879 final Consumer<? super K> action;
4880 ForEachKeyTask
4881 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4882 Consumer<? super K> action) {
4883 super(p, b, i, f, t);
4884 this.action = action;
4885 }
4886 public final void compute() {
4887 final Consumer<? super K> action;
4888 if ((action = this.action) != null) {
4889 for (int i = baseIndex, f, h; batch > 0 &&
4890 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4891 addToPendingCount(1);
4892 new ForEachKeyTask<K,V>
4893 (this, batch >>>= 1, baseLimit = h, f, tab,
4894 action).fork();
4895 }
4896 for (Node<K,V> p; (p = advance()) != null;)
4897 action.accept(p.key);
4898 propagateCompletion();
4899 }
4900 }
4901 }
4902
4903 @SuppressWarnings("serial")
4904 static final class ForEachValueTask<K,V>
4905 extends BulkTask<K,V,Void> {
4906 final Consumer<? super V> action;
4907 ForEachValueTask
4908 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4909 Consumer<? super V> action) {
4910 super(p, b, i, f, t);
4911 this.action = action;
4912 }
4913 public final void compute() {
4914 final Consumer<? super V> action;
4915 if ((action = this.action) != null) {
4916 for (int i = baseIndex, f, h; batch > 0 &&
4917 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4918 addToPendingCount(1);
4919 new ForEachValueTask<K,V>
4920 (this, batch >>>= 1, baseLimit = h, f, tab,
4921 action).fork();
4922 }
4923 for (Node<K,V> p; (p = advance()) != null;)
4924 action.accept(p.val);
4925 propagateCompletion();
4926 }
4927 }
4928 }
4929
4930 @SuppressWarnings("serial")
4931 static final class ForEachEntryTask<K,V>
4932 extends BulkTask<K,V,Void> {
4933 final Consumer<? super Entry<K,V>> action;
4934 ForEachEntryTask
4935 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936 Consumer<? super Entry<K,V>> action) {
4937 super(p, b, i, f, t);
4938 this.action = action;
4939 }
4940 public final void compute() {
4941 final Consumer<? super Entry<K,V>> action;
4942 if ((action = this.action) != null) {
4943 for (int i = baseIndex, f, h; batch > 0 &&
4944 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4945 addToPendingCount(1);
4946 new ForEachEntryTask<K,V>
4947 (this, batch >>>= 1, baseLimit = h, f, tab,
4948 action).fork();
4949 }
4950 for (Node<K,V> p; (p = advance()) != null; )
4951 action.accept(p);
4952 propagateCompletion();
4953 }
4954 }
4955 }
4956
4957 @SuppressWarnings("serial")
4958 static final class ForEachMappingTask<K,V>
4959 extends BulkTask<K,V,Void> {
4960 final BiConsumer<? super K, ? super V> action;
4961 ForEachMappingTask
4962 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4963 BiConsumer<? super K,? super V> action) {
4964 super(p, b, i, f, t);
4965 this.action = action;
4966 }
4967 public final void compute() {
4968 final BiConsumer<? super K, ? super V> action;
4969 if ((action = this.action) != null) {
4970 for (int i = baseIndex, f, h; batch > 0 &&
4971 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4972 addToPendingCount(1);
4973 new ForEachMappingTask<K,V>
4974 (this, batch >>>= 1, baseLimit = h, f, tab,
4975 action).fork();
4976 }
4977 for (Node<K,V> p; (p = advance()) != null; )
4978 action.accept(p.key, p.val);
4979 propagateCompletion();
4980 }
4981 }
4982 }
4983
4984 @SuppressWarnings("serial")
4985 static final class ForEachTransformedKeyTask<K,V,U>
4986 extends BulkTask<K,V,Void> {
4987 final Function<? super K, ? extends U> transformer;
4988 final Consumer<? super U> action;
4989 ForEachTransformedKeyTask
4990 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4991 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4992 super(p, b, i, f, t);
4993 this.transformer = transformer; this.action = action;
4994 }
4995 public final void compute() {
4996 final Function<? super K, ? extends U> transformer;
4997 final Consumer<? super U> action;
4998 if ((transformer = this.transformer) != null &&
4999 (action = this.action) != null) {
5000 for (int i = baseIndex, f, h; batch > 0 &&
5001 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5002 addToPendingCount(1);
5003 new ForEachTransformedKeyTask<K,V,U>
5004 (this, batch >>>= 1, baseLimit = h, f, tab,
5005 transformer, action).fork();
5006 }
5007 for (Node<K,V> p; (p = advance()) != null; ) {
5008 U u;
5009 if ((u = transformer.apply(p.key)) != null)
5010 action.accept(u);
5011 }
5012 propagateCompletion();
5013 }
5014 }
5015 }
5016
5017 @SuppressWarnings("serial")
5018 static final class ForEachTransformedValueTask<K,V,U>
5019 extends BulkTask<K,V,Void> {
5020 final Function<? super V, ? extends U> transformer;
5021 final Consumer<? super U> action;
5022 ForEachTransformedValueTask
5023 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5024 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5025 super(p, b, i, f, t);
5026 this.transformer = transformer; this.action = action;
5027 }
5028 public final void compute() {
5029 final Function<? super V, ? extends U> transformer;
5030 final Consumer<? super U> action;
5031 if ((transformer = this.transformer) != null &&
5032 (action = this.action) != null) {
5033 for (int i = baseIndex, f, h; batch > 0 &&
5034 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5035 addToPendingCount(1);
5036 new ForEachTransformedValueTask<K,V,U>
5037 (this, batch >>>= 1, baseLimit = h, f, tab,
5038 transformer, action).fork();
5039 }
5040 for (Node<K,V> p; (p = advance()) != null; ) {
5041 U u;
5042 if ((u = transformer.apply(p.val)) != null)
5043 action.accept(u);
5044 }
5045 propagateCompletion();
5046 }
5047 }
5048 }
5049
5050 @SuppressWarnings("serial")
5051 static final class ForEachTransformedEntryTask<K,V,U>
5052 extends BulkTask<K,V,Void> {
5053 final Function<Map.Entry<K,V>, ? extends U> transformer;
5054 final Consumer<? super U> action;
5055 ForEachTransformedEntryTask
5056 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5057 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5058 super(p, b, i, f, t);
5059 this.transformer = transformer; this.action = action;
5060 }
5061 public final void compute() {
5062 final Function<Map.Entry<K,V>, ? extends U> transformer;
5063 final Consumer<? super U> action;
5064 if ((transformer = this.transformer) != null &&
5065 (action = this.action) != null) {
5066 for (int i = baseIndex, f, h; batch > 0 &&
5067 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5068 addToPendingCount(1);
5069 new ForEachTransformedEntryTask<K,V,U>
5070 (this, batch >>>= 1, baseLimit = h, f, tab,
5071 transformer, action).fork();
5072 }
5073 for (Node<K,V> p; (p = advance()) != null; ) {
5074 U u;
5075 if ((u = transformer.apply(p)) != null)
5076 action.accept(u);
5077 }
5078 propagateCompletion();
5079 }
5080 }
5081 }
5082
5083 @SuppressWarnings("serial")
5084 static final class ForEachTransformedMappingTask<K,V,U>
5085 extends BulkTask<K,V,Void> {
5086 final BiFunction<? super K, ? super V, ? extends U> transformer;
5087 final Consumer<? super U> action;
5088 ForEachTransformedMappingTask
5089 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5090 BiFunction<? super K, ? super V, ? extends U> transformer,
5091 Consumer<? super U> action) {
5092 super(p, b, i, f, t);
5093 this.transformer = transformer; this.action = action;
5094 }
5095 public final void compute() {
5096 final BiFunction<? super K, ? super V, ? extends U> transformer;
5097 final Consumer<? super U> action;
5098 if ((transformer = this.transformer) != null &&
5099 (action = this.action) != null) {
5100 for (int i = baseIndex, f, h; batch > 0 &&
5101 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5102 addToPendingCount(1);
5103 new ForEachTransformedMappingTask<K,V,U>
5104 (this, batch >>>= 1, baseLimit = h, f, tab,
5105 transformer, action).fork();
5106 }
5107 for (Node<K,V> p; (p = advance()) != null; ) {
5108 U u;
5109 if ((u = transformer.apply(p.key, p.val)) != null)
5110 action.accept(u);
5111 }
5112 propagateCompletion();
5113 }
5114 }
5115 }
5116
5117 @SuppressWarnings("serial")
5118 static final class SearchKeysTask<K,V,U>
5119 extends BulkTask<K,V,U> {
5120 final Function<? super K, ? extends U> searchFunction;
5121 final AtomicReference<U> result;
5122 SearchKeysTask
5123 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124 Function<? super K, ? extends U> searchFunction,
5125 AtomicReference<U> result) {
5126 super(p, b, i, f, t);
5127 this.searchFunction = searchFunction; this.result = result;
5128 }
5129 public final U getRawResult() { return result.get(); }
5130 public final void compute() {
5131 final Function<? super K, ? extends U> searchFunction;
5132 final AtomicReference<U> result;
5133 if ((searchFunction = this.searchFunction) != null &&
5134 (result = this.result) != null) {
5135 for (int i = baseIndex, f, h; batch > 0 &&
5136 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5137 if (result.get() != null)
5138 return;
5139 addToPendingCount(1);
5140 new SearchKeysTask<K,V,U>
5141 (this, batch >>>= 1, baseLimit = h, f, tab,
5142 searchFunction, result).fork();
5143 }
5144 while (result.get() == null) {
5145 U u;
5146 Node<K,V> p;
5147 if ((p = advance()) == null) {
5148 propagateCompletion();
5149 break;
5150 }
5151 if ((u = searchFunction.apply(p.key)) != null) {
5152 if (result.compareAndSet(null, u))
5153 quietlyCompleteRoot();
5154 break;
5155 }
5156 }
5157 }
5158 }
5159 }
5160
5161 @SuppressWarnings("serial")
5162 static final class SearchValuesTask<K,V,U>
5163 extends BulkTask<K,V,U> {
5164 final Function<? super V, ? extends U> searchFunction;
5165 final AtomicReference<U> result;
5166 SearchValuesTask
5167 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5168 Function<? super V, ? extends U> searchFunction,
5169 AtomicReference<U> result) {
5170 super(p, b, i, f, t);
5171 this.searchFunction = searchFunction; this.result = result;
5172 }
5173 public final U getRawResult() { return result.get(); }
5174 public final void compute() {
5175 final Function<? super V, ? extends U> searchFunction;
5176 final AtomicReference<U> result;
5177 if ((searchFunction = this.searchFunction) != null &&
5178 (result = this.result) != null) {
5179 for (int i = baseIndex, f, h; batch > 0 &&
5180 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 if (result.get() != null)
5182 return;
5183 addToPendingCount(1);
5184 new SearchValuesTask<K,V,U>
5185 (this, batch >>>= 1, baseLimit = h, f, tab,
5186 searchFunction, result).fork();
5187 }
5188 while (result.get() == null) {
5189 U u;
5190 Node<K,V> p;
5191 if ((p = advance()) == null) {
5192 propagateCompletion();
5193 break;
5194 }
5195 if ((u = searchFunction.apply(p.val)) != null) {
5196 if (result.compareAndSet(null, u))
5197 quietlyCompleteRoot();
5198 break;
5199 }
5200 }
5201 }
5202 }
5203 }
5204
5205 @SuppressWarnings("serial")
5206 static final class SearchEntriesTask<K,V,U>
5207 extends BulkTask<K,V,U> {
5208 final Function<Entry<K,V>, ? extends U> searchFunction;
5209 final AtomicReference<U> result;
5210 SearchEntriesTask
5211 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5212 Function<Entry<K,V>, ? extends U> searchFunction,
5213 AtomicReference<U> result) {
5214 super(p, b, i, f, t);
5215 this.searchFunction = searchFunction; this.result = result;
5216 }
5217 public final U getRawResult() { return result.get(); }
5218 public final void compute() {
5219 final Function<Entry<K,V>, ? extends U> searchFunction;
5220 final AtomicReference<U> result;
5221 if ((searchFunction = this.searchFunction) != null &&
5222 (result = this.result) != null) {
5223 for (int i = baseIndex, f, h; batch > 0 &&
5224 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5225 if (result.get() != null)
5226 return;
5227 addToPendingCount(1);
5228 new SearchEntriesTask<K,V,U>
5229 (this, batch >>>= 1, baseLimit = h, f, tab,
5230 searchFunction, result).fork();
5231 }
5232 while (result.get() == null) {
5233 U u;
5234 Node<K,V> p;
5235 if ((p = advance()) == null) {
5236 propagateCompletion();
5237 break;
5238 }
5239 if ((u = searchFunction.apply(p)) != null) {
5240 if (result.compareAndSet(null, u))
5241 quietlyCompleteRoot();
5242 return;
5243 }
5244 }
5245 }
5246 }
5247 }
5248
5249 @SuppressWarnings("serial")
5250 static final class SearchMappingsTask<K,V,U>
5251 extends BulkTask<K,V,U> {
5252 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5253 final AtomicReference<U> result;
5254 SearchMappingsTask
5255 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5256 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5257 AtomicReference<U> result) {
5258 super(p, b, i, f, t);
5259 this.searchFunction = searchFunction; this.result = result;
5260 }
5261 public final U getRawResult() { return result.get(); }
5262 public final void compute() {
5263 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5264 final AtomicReference<U> result;
5265 if ((searchFunction = this.searchFunction) != null &&
5266 (result = this.result) != null) {
5267 for (int i = baseIndex, f, h; batch > 0 &&
5268 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5269 if (result.get() != null)
5270 return;
5271 addToPendingCount(1);
5272 new SearchMappingsTask<K,V,U>
5273 (this, batch >>>= 1, baseLimit = h, f, tab,
5274 searchFunction, result).fork();
5275 }
5276 while (result.get() == null) {
5277 U u;
5278 Node<K,V> p;
5279 if ((p = advance()) == null) {
5280 propagateCompletion();
5281 break;
5282 }
5283 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5284 if (result.compareAndSet(null, u))
5285 quietlyCompleteRoot();
5286 break;
5287 }
5288 }
5289 }
5290 }
5291 }
5292
5293 @SuppressWarnings("serial")
5294 static final class ReduceKeysTask<K,V>
5295 extends BulkTask<K,V,K> {
5296 final BiFunction<? super K, ? super K, ? extends K> reducer;
5297 K result;
5298 ReduceKeysTask<K,V> rights, nextRight;
5299 ReduceKeysTask
5300 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5301 ReduceKeysTask<K,V> nextRight,
5302 BiFunction<? super K, ? super K, ? extends K> reducer) {
5303 super(p, b, i, f, t); this.nextRight = nextRight;
5304 this.reducer = reducer;
5305 }
5306 public final K getRawResult() { return result; }
5307 public final void compute() {
5308 final BiFunction<? super K, ? super K, ? extends K> reducer;
5309 if ((reducer = this.reducer) != null) {
5310 for (int i = baseIndex, f, h; batch > 0 &&
5311 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5312 addToPendingCount(1);
5313 (rights = new ReduceKeysTask<K,V>
5314 (this, batch >>>= 1, baseLimit = h, f, tab,
5315 rights, reducer)).fork();
5316 }
5317 K r = null;
5318 for (Node<K,V> p; (p = advance()) != null; ) {
5319 K u = p.key;
5320 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5321 }
5322 result = r;
5323 CountedCompleter<?> c;
5324 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5325 @SuppressWarnings("unchecked")
5326 ReduceKeysTask<K,V>
5327 t = (ReduceKeysTask<K,V>)c,
5328 s = t.rights;
5329 while (s != null) {
5330 K tr, sr;
5331 if ((sr = s.result) != null)
5332 t.result = (((tr = t.result) == null) ? sr :
5333 reducer.apply(tr, sr));
5334 s = t.rights = s.nextRight;
5335 }
5336 }
5337 }
5338 }
5339 }
5340
5341 @SuppressWarnings("serial")
5342 static final class ReduceValuesTask<K,V>
5343 extends BulkTask<K,V,V> {
5344 final BiFunction<? super V, ? super V, ? extends V> reducer;
5345 V result;
5346 ReduceValuesTask<K,V> rights, nextRight;
5347 ReduceValuesTask
5348 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5349 ReduceValuesTask<K,V> nextRight,
5350 BiFunction<? super V, ? super V, ? extends V> reducer) {
5351 super(p, b, i, f, t); this.nextRight = nextRight;
5352 this.reducer = reducer;
5353 }
5354 public final V getRawResult() { return result; }
5355 public final void compute() {
5356 final BiFunction<? super V, ? super V, ? extends V> reducer;
5357 if ((reducer = this.reducer) != null) {
5358 for (int i = baseIndex, f, h; batch > 0 &&
5359 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5360 addToPendingCount(1);
5361 (rights = new ReduceValuesTask<K,V>
5362 (this, batch >>>= 1, baseLimit = h, f, tab,
5363 rights, reducer)).fork();
5364 }
5365 V r = null;
5366 for (Node<K,V> p; (p = advance()) != null; ) {
5367 V v = p.val;
5368 r = (r == null) ? v : reducer.apply(r, v);
5369 }
5370 result = r;
5371 CountedCompleter<?> c;
5372 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5373 @SuppressWarnings("unchecked")
5374 ReduceValuesTask<K,V>
5375 t = (ReduceValuesTask<K,V>)c,
5376 s = t.rights;
5377 while (s != null) {
5378 V tr, sr;
5379 if ((sr = s.result) != null)
5380 t.result = (((tr = t.result) == null) ? sr :
5381 reducer.apply(tr, sr));
5382 s = t.rights = s.nextRight;
5383 }
5384 }
5385 }
5386 }
5387 }
5388
5389 @SuppressWarnings("serial")
5390 static final class ReduceEntriesTask<K,V>
5391 extends BulkTask<K,V,Map.Entry<K,V>> {
5392 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5393 Map.Entry<K,V> result;
5394 ReduceEntriesTask<K,V> rights, nextRight;
5395 ReduceEntriesTask
5396 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5397 ReduceEntriesTask<K,V> nextRight,
5398 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5399 super(p, b, i, f, t); this.nextRight = nextRight;
5400 this.reducer = reducer;
5401 }
5402 public final Map.Entry<K,V> getRawResult() { return result; }
5403 public final void compute() {
5404 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5405 if ((reducer = this.reducer) != null) {
5406 for (int i = baseIndex, f, h; batch > 0 &&
5407 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5408 addToPendingCount(1);
5409 (rights = new ReduceEntriesTask<K,V>
5410 (this, batch >>>= 1, baseLimit = h, f, tab,
5411 rights, reducer)).fork();
5412 }
5413 Map.Entry<K,V> r = null;
5414 for (Node<K,V> p; (p = advance()) != null; )
5415 r = (r == null) ? p : reducer.apply(r, p);
5416 result = r;
5417 CountedCompleter<?> c;
5418 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5419 @SuppressWarnings("unchecked")
5420 ReduceEntriesTask<K,V>
5421 t = (ReduceEntriesTask<K,V>)c,
5422 s = t.rights;
5423 while (s != null) {
5424 Map.Entry<K,V> tr, sr;
5425 if ((sr = s.result) != null)
5426 t.result = (((tr = t.result) == null) ? sr :
5427 reducer.apply(tr, sr));
5428 s = t.rights = s.nextRight;
5429 }
5430 }
5431 }
5432 }
5433 }
5434
5435 @SuppressWarnings("serial")
5436 static final class MapReduceKeysTask<K,V,U>
5437 extends BulkTask<K,V,U> {
5438 final Function<? super K, ? extends U> transformer;
5439 final BiFunction<? super U, ? super U, ? extends U> reducer;
5440 U result;
5441 MapReduceKeysTask<K,V,U> rights, nextRight;
5442 MapReduceKeysTask
5443 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5444 MapReduceKeysTask<K,V,U> nextRight,
5445 Function<? super K, ? extends U> transformer,
5446 BiFunction<? super U, ? super U, ? extends U> reducer) {
5447 super(p, b, i, f, t); this.nextRight = nextRight;
5448 this.transformer = transformer;
5449 this.reducer = reducer;
5450 }
5451 public final U getRawResult() { return result; }
5452 public final void compute() {
5453 final Function<? super K, ? extends U> transformer;
5454 final BiFunction<? super U, ? super U, ? extends U> reducer;
5455 if ((transformer = this.transformer) != null &&
5456 (reducer = this.reducer) != null) {
5457 for (int i = baseIndex, f, h; batch > 0 &&
5458 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5459 addToPendingCount(1);
5460 (rights = new MapReduceKeysTask<K,V,U>
5461 (this, batch >>>= 1, baseLimit = h, f, tab,
5462 rights, transformer, reducer)).fork();
5463 }
5464 U r = null;
5465 for (Node<K,V> p; (p = advance()) != null; ) {
5466 U u;
5467 if ((u = transformer.apply(p.key)) != null)
5468 r = (r == null) ? u : reducer.apply(r, u);
5469 }
5470 result = r;
5471 CountedCompleter<?> c;
5472 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5473 @SuppressWarnings("unchecked")
5474 MapReduceKeysTask<K,V,U>
5475 t = (MapReduceKeysTask<K,V,U>)c,
5476 s = t.rights;
5477 while (s != null) {
5478 U tr, sr;
5479 if ((sr = s.result) != null)
5480 t.result = (((tr = t.result) == null) ? sr :
5481 reducer.apply(tr, sr));
5482 s = t.rights = s.nextRight;
5483 }
5484 }
5485 }
5486 }
5487 }
5488
5489 @SuppressWarnings("serial")
5490 static final class MapReduceValuesTask<K,V,U>
5491 extends BulkTask<K,V,U> {
5492 final Function<? super V, ? extends U> transformer;
5493 final BiFunction<? super U, ? super U, ? extends U> reducer;
5494 U result;
5495 MapReduceValuesTask<K,V,U> rights, nextRight;
5496 MapReduceValuesTask
5497 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5498 MapReduceValuesTask<K,V,U> nextRight,
5499 Function<? super V, ? extends U> transformer,
5500 BiFunction<? super U, ? super U, ? extends U> reducer) {
5501 super(p, b, i, f, t); this.nextRight = nextRight;
5502 this.transformer = transformer;
5503 this.reducer = reducer;
5504 }
5505 public final U getRawResult() { return result; }
5506 public final void compute() {
5507 final Function<? super V, ? extends U> transformer;
5508 final BiFunction<? super U, ? super U, ? extends U> reducer;
5509 if ((transformer = this.transformer) != null &&
5510 (reducer = this.reducer) != null) {
5511 for (int i = baseIndex, f, h; batch > 0 &&
5512 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5513 addToPendingCount(1);
5514 (rights = new MapReduceValuesTask<K,V,U>
5515 (this, batch >>>= 1, baseLimit = h, f, tab,
5516 rights, transformer, reducer)).fork();
5517 }
5518 U r = null;
5519 for (Node<K,V> p; (p = advance()) != null; ) {
5520 U u;
5521 if ((u = transformer.apply(p.val)) != null)
5522 r = (r == null) ? u : reducer.apply(r, u);
5523 }
5524 result = r;
5525 CountedCompleter<?> c;
5526 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 @SuppressWarnings("unchecked")
5528 MapReduceValuesTask<K,V,U>
5529 t = (MapReduceValuesTask<K,V,U>)c,
5530 s = t.rights;
5531 while (s != null) {
5532 U tr, sr;
5533 if ((sr = s.result) != null)
5534 t.result = (((tr = t.result) == null) ? sr :
5535 reducer.apply(tr, sr));
5536 s = t.rights = s.nextRight;
5537 }
5538 }
5539 }
5540 }
5541 }
5542
5543 @SuppressWarnings("serial")
5544 static final class MapReduceEntriesTask<K,V,U>
5545 extends BulkTask<K,V,U> {
5546 final Function<Map.Entry<K,V>, ? extends U> transformer;
5547 final BiFunction<? super U, ? super U, ? extends U> reducer;
5548 U result;
5549 MapReduceEntriesTask<K,V,U> rights, nextRight;
5550 MapReduceEntriesTask
5551 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5552 MapReduceEntriesTask<K,V,U> nextRight,
5553 Function<Map.Entry<K,V>, ? extends U> transformer,
5554 BiFunction<? super U, ? super U, ? extends U> reducer) {
5555 super(p, b, i, f, t); this.nextRight = nextRight;
5556 this.transformer = transformer;
5557 this.reducer = reducer;
5558 }
5559 public final U getRawResult() { return result; }
5560 public final void compute() {
5561 final Function<Map.Entry<K,V>, ? extends U> transformer;
5562 final BiFunction<? super U, ? super U, ? extends U> reducer;
5563 if ((transformer = this.transformer) != null &&
5564 (reducer = this.reducer) != null) {
5565 for (int i = baseIndex, f, h; batch > 0 &&
5566 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5567 addToPendingCount(1);
5568 (rights = new MapReduceEntriesTask<K,V,U>
5569 (this, batch >>>= 1, baseLimit = h, f, tab,
5570 rights, transformer, reducer)).fork();
5571 }
5572 U r = null;
5573 for (Node<K,V> p; (p = advance()) != null; ) {
5574 U u;
5575 if ((u = transformer.apply(p)) != null)
5576 r = (r == null) ? u : reducer.apply(r, u);
5577 }
5578 result = r;
5579 CountedCompleter<?> c;
5580 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5581 @SuppressWarnings("unchecked")
5582 MapReduceEntriesTask<K,V,U>
5583 t = (MapReduceEntriesTask<K,V,U>)c,
5584 s = t.rights;
5585 while (s != null) {
5586 U tr, sr;
5587 if ((sr = s.result) != null)
5588 t.result = (((tr = t.result) == null) ? sr :
5589 reducer.apply(tr, sr));
5590 s = t.rights = s.nextRight;
5591 }
5592 }
5593 }
5594 }
5595 }
5596
5597 @SuppressWarnings("serial")
5598 static final class MapReduceMappingsTask<K,V,U>
5599 extends BulkTask<K,V,U> {
5600 final BiFunction<? super K, ? super V, ? extends U> transformer;
5601 final BiFunction<? super U, ? super U, ? extends U> reducer;
5602 U result;
5603 MapReduceMappingsTask<K,V,U> rights, nextRight;
5604 MapReduceMappingsTask
5605 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5606 MapReduceMappingsTask<K,V,U> nextRight,
5607 BiFunction<? super K, ? super V, ? extends U> transformer,
5608 BiFunction<? super U, ? super U, ? extends U> reducer) {
5609 super(p, b, i, f, t); this.nextRight = nextRight;
5610 this.transformer = transformer;
5611 this.reducer = reducer;
5612 }
5613 public final U getRawResult() { return result; }
5614 public final void compute() {
5615 final BiFunction<? super K, ? super V, ? extends U> transformer;
5616 final BiFunction<? super U, ? super U, ? extends U> reducer;
5617 if ((transformer = this.transformer) != null &&
5618 (reducer = this.reducer) != null) {
5619 for (int i = baseIndex, f, h; batch > 0 &&
5620 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5621 addToPendingCount(1);
5622 (rights = new MapReduceMappingsTask<K,V,U>
5623 (this, batch >>>= 1, baseLimit = h, f, tab,
5624 rights, transformer, reducer)).fork();
5625 }
5626 U r = null;
5627 for (Node<K,V> p; (p = advance()) != null; ) {
5628 U u;
5629 if ((u = transformer.apply(p.key, p.val)) != null)
5630 r = (r == null) ? u : reducer.apply(r, u);
5631 }
5632 result = r;
5633 CountedCompleter<?> c;
5634 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5635 @SuppressWarnings("unchecked")
5636 MapReduceMappingsTask<K,V,U>
5637 t = (MapReduceMappingsTask<K,V,U>)c,
5638 s = t.rights;
5639 while (s != null) {
5640 U tr, sr;
5641 if ((sr = s.result) != null)
5642 t.result = (((tr = t.result) == null) ? sr :
5643 reducer.apply(tr, sr));
5644 s = t.rights = s.nextRight;
5645 }
5646 }
5647 }
5648 }
5649 }
5650
5651 @SuppressWarnings("serial")
5652 static final class MapReduceKeysToDoubleTask<K,V>
5653 extends BulkTask<K,V,Double> {
5654 final ToDoubleFunction<? super K> transformer;
5655 final DoubleBinaryOperator reducer;
5656 final double basis;
5657 double result;
5658 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5659 MapReduceKeysToDoubleTask
5660 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5661 MapReduceKeysToDoubleTask<K,V> nextRight,
5662 ToDoubleFunction<? super K> transformer,
5663 double basis,
5664 DoubleBinaryOperator reducer) {
5665 super(p, b, i, f, t); this.nextRight = nextRight;
5666 this.transformer = transformer;
5667 this.basis = basis; this.reducer = reducer;
5668 }
5669 public final Double getRawResult() { return result; }
5670 public final void compute() {
5671 final ToDoubleFunction<? super K> transformer;
5672 final DoubleBinaryOperator reducer;
5673 if ((transformer = this.transformer) != null &&
5674 (reducer = this.reducer) != null) {
5675 double r = this.basis;
5676 for (int i = baseIndex, f, h; batch > 0 &&
5677 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5678 addToPendingCount(1);
5679 (rights = new MapReduceKeysToDoubleTask<K,V>
5680 (this, batch >>>= 1, baseLimit = h, f, tab,
5681 rights, transformer, r, reducer)).fork();
5682 }
5683 for (Node<K,V> p; (p = advance()) != null; )
5684 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5685 result = r;
5686 CountedCompleter<?> c;
5687 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5688 @SuppressWarnings("unchecked")
5689 MapReduceKeysToDoubleTask<K,V>
5690 t = (MapReduceKeysToDoubleTask<K,V>)c,
5691 s = t.rights;
5692 while (s != null) {
5693 t.result = reducer.applyAsDouble(t.result, s.result);
5694 s = t.rights = s.nextRight;
5695 }
5696 }
5697 }
5698 }
5699 }
5700
5701 @SuppressWarnings("serial")
5702 static final class MapReduceValuesToDoubleTask<K,V>
5703 extends BulkTask<K,V,Double> {
5704 final ToDoubleFunction<? super V> transformer;
5705 final DoubleBinaryOperator reducer;
5706 final double basis;
5707 double result;
5708 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5709 MapReduceValuesToDoubleTask
5710 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5711 MapReduceValuesToDoubleTask<K,V> nextRight,
5712 ToDoubleFunction<? super V> transformer,
5713 double basis,
5714 DoubleBinaryOperator reducer) {
5715 super(p, b, i, f, t); this.nextRight = nextRight;
5716 this.transformer = transformer;
5717 this.basis = basis; this.reducer = reducer;
5718 }
5719 public final Double getRawResult() { return result; }
5720 public final void compute() {
5721 final ToDoubleFunction<? super V> transformer;
5722 final DoubleBinaryOperator reducer;
5723 if ((transformer = this.transformer) != null &&
5724 (reducer = this.reducer) != null) {
5725 double r = this.basis;
5726 for (int i = baseIndex, f, h; batch > 0 &&
5727 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5728 addToPendingCount(1);
5729 (rights = new MapReduceValuesToDoubleTask<K,V>
5730 (this, batch >>>= 1, baseLimit = h, f, tab,
5731 rights, transformer, r, reducer)).fork();
5732 }
5733 for (Node<K,V> p; (p = advance()) != null; )
5734 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5735 result = r;
5736 CountedCompleter<?> c;
5737 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5738 @SuppressWarnings("unchecked")
5739 MapReduceValuesToDoubleTask<K,V>
5740 t = (MapReduceValuesToDoubleTask<K,V>)c,
5741 s = t.rights;
5742 while (s != null) {
5743 t.result = reducer.applyAsDouble(t.result, s.result);
5744 s = t.rights = s.nextRight;
5745 }
5746 }
5747 }
5748 }
5749 }
5750
5751 @SuppressWarnings("serial")
5752 static final class MapReduceEntriesToDoubleTask<K,V>
5753 extends BulkTask<K,V,Double> {
5754 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5755 final DoubleBinaryOperator reducer;
5756 final double basis;
5757 double result;
5758 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5759 MapReduceEntriesToDoubleTask
5760 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5761 MapReduceEntriesToDoubleTask<K,V> nextRight,
5762 ToDoubleFunction<Map.Entry<K,V>> transformer,
5763 double basis,
5764 DoubleBinaryOperator reducer) {
5765 super(p, b, i, f, t); this.nextRight = nextRight;
5766 this.transformer = transformer;
5767 this.basis = basis; this.reducer = reducer;
5768 }
5769 public final Double getRawResult() { return result; }
5770 public final void compute() {
5771 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5772 final DoubleBinaryOperator reducer;
5773 if ((transformer = this.transformer) != null &&
5774 (reducer = this.reducer) != null) {
5775 double r = this.basis;
5776 for (int i = baseIndex, f, h; batch > 0 &&
5777 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5778 addToPendingCount(1);
5779 (rights = new MapReduceEntriesToDoubleTask<K,V>
5780 (this, batch >>>= 1, baseLimit = h, f, tab,
5781 rights, transformer, r, reducer)).fork();
5782 }
5783 for (Node<K,V> p; (p = advance()) != null; )
5784 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5785 result = r;
5786 CountedCompleter<?> c;
5787 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5788 @SuppressWarnings("unchecked")
5789 MapReduceEntriesToDoubleTask<K,V>
5790 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5791 s = t.rights;
5792 while (s != null) {
5793 t.result = reducer.applyAsDouble(t.result, s.result);
5794 s = t.rights = s.nextRight;
5795 }
5796 }
5797 }
5798 }
5799 }
5800
5801 @SuppressWarnings("serial")
5802 static final class MapReduceMappingsToDoubleTask<K,V>
5803 extends BulkTask<K,V,Double> {
5804 final ToDoubleBiFunction<? super K, ? super V> transformer;
5805 final DoubleBinaryOperator reducer;
5806 final double basis;
5807 double result;
5808 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5809 MapReduceMappingsToDoubleTask
5810 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5811 MapReduceMappingsToDoubleTask<K,V> nextRight,
5812 ToDoubleBiFunction<? super K, ? super V> transformer,
5813 double basis,
5814 DoubleBinaryOperator reducer) {
5815 super(p, b, i, f, t); this.nextRight = nextRight;
5816 this.transformer = transformer;
5817 this.basis = basis; this.reducer = reducer;
5818 }
5819 public final Double getRawResult() { return result; }
5820 public final void compute() {
5821 final ToDoubleBiFunction<? super K, ? super V> transformer;
5822 final DoubleBinaryOperator reducer;
5823 if ((transformer = this.transformer) != null &&
5824 (reducer = this.reducer) != null) {
5825 double r = this.basis;
5826 for (int i = baseIndex, f, h; batch > 0 &&
5827 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5828 addToPendingCount(1);
5829 (rights = new MapReduceMappingsToDoubleTask<K,V>
5830 (this, batch >>>= 1, baseLimit = h, f, tab,
5831 rights, transformer, r, reducer)).fork();
5832 }
5833 for (Node<K,V> p; (p = advance()) != null; )
5834 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5835 result = r;
5836 CountedCompleter<?> c;
5837 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5838 @SuppressWarnings("unchecked")
5839 MapReduceMappingsToDoubleTask<K,V>
5840 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5841 s = t.rights;
5842 while (s != null) {
5843 t.result = reducer.applyAsDouble(t.result, s.result);
5844 s = t.rights = s.nextRight;
5845 }
5846 }
5847 }
5848 }
5849 }
5850
5851 @SuppressWarnings("serial")
5852 static final class MapReduceKeysToLongTask<K,V>
5853 extends BulkTask<K,V,Long> {
5854 final ToLongFunction<? super K> transformer;
5855 final LongBinaryOperator reducer;
5856 final long basis;
5857 long result;
5858 MapReduceKeysToLongTask<K,V> rights, nextRight;
5859 MapReduceKeysToLongTask
5860 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5861 MapReduceKeysToLongTask<K,V> nextRight,
5862 ToLongFunction<? super K> transformer,
5863 long basis,
5864 LongBinaryOperator reducer) {
5865 super(p, b, i, f, t); this.nextRight = nextRight;
5866 this.transformer = transformer;
5867 this.basis = basis; this.reducer = reducer;
5868 }
5869 public final Long getRawResult() { return result; }
5870 public final void compute() {
5871 final ToLongFunction<? super K> transformer;
5872 final LongBinaryOperator reducer;
5873 if ((transformer = this.transformer) != null &&
5874 (reducer = this.reducer) != null) {
5875 long r = this.basis;
5876 for (int i = baseIndex, f, h; batch > 0 &&
5877 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5878 addToPendingCount(1);
5879 (rights = new MapReduceKeysToLongTask<K,V>
5880 (this, batch >>>= 1, baseLimit = h, f, tab,
5881 rights, transformer, r, reducer)).fork();
5882 }
5883 for (Node<K,V> p; (p = advance()) != null; )
5884 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5885 result = r;
5886 CountedCompleter<?> c;
5887 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5888 @SuppressWarnings("unchecked")
5889 MapReduceKeysToLongTask<K,V>
5890 t = (MapReduceKeysToLongTask<K,V>)c,
5891 s = t.rights;
5892 while (s != null) {
5893 t.result = reducer.applyAsLong(t.result, s.result);
5894 s = t.rights = s.nextRight;
5895 }
5896 }
5897 }
5898 }
5899 }
5900
5901 @SuppressWarnings("serial")
5902 static final class MapReduceValuesToLongTask<K,V>
5903 extends BulkTask<K,V,Long> {
5904 final ToLongFunction<? super V> transformer;
5905 final LongBinaryOperator reducer;
5906 final long basis;
5907 long result;
5908 MapReduceValuesToLongTask<K,V> rights, nextRight;
5909 MapReduceValuesToLongTask
5910 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5911 MapReduceValuesToLongTask<K,V> nextRight,
5912 ToLongFunction<? super V> transformer,
5913 long basis,
5914 LongBinaryOperator reducer) {
5915 super(p, b, i, f, t); this.nextRight = nextRight;
5916 this.transformer = transformer;
5917 this.basis = basis; this.reducer = reducer;
5918 }
5919 public final Long getRawResult() { return result; }
5920 public final void compute() {
5921 final ToLongFunction<? super V> transformer;
5922 final LongBinaryOperator reducer;
5923 if ((transformer = this.transformer) != null &&
5924 (reducer = this.reducer) != null) {
5925 long r = this.basis;
5926 for (int i = baseIndex, f, h; batch > 0 &&
5927 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5928 addToPendingCount(1);
5929 (rights = new MapReduceValuesToLongTask<K,V>
5930 (this, batch >>>= 1, baseLimit = h, f, tab,
5931 rights, transformer, r, reducer)).fork();
5932 }
5933 for (Node<K,V> p; (p = advance()) != null; )
5934 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5935 result = r;
5936 CountedCompleter<?> c;
5937 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5938 @SuppressWarnings("unchecked")
5939 MapReduceValuesToLongTask<K,V>
5940 t = (MapReduceValuesToLongTask<K,V>)c,
5941 s = t.rights;
5942 while (s != null) {
5943 t.result = reducer.applyAsLong(t.result, s.result);
5944 s = t.rights = s.nextRight;
5945 }
5946 }
5947 }
5948 }
5949 }
5950
5951 @SuppressWarnings("serial")
5952 static final class MapReduceEntriesToLongTask<K,V>
5953 extends BulkTask<K,V,Long> {
5954 final ToLongFunction<Map.Entry<K,V>> transformer;
5955 final LongBinaryOperator reducer;
5956 final long basis;
5957 long result;
5958 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5959 MapReduceEntriesToLongTask
5960 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5961 MapReduceEntriesToLongTask<K,V> nextRight,
5962 ToLongFunction<Map.Entry<K,V>> transformer,
5963 long basis,
5964 LongBinaryOperator reducer) {
5965 super(p, b, i, f, t); this.nextRight = nextRight;
5966 this.transformer = transformer;
5967 this.basis = basis; this.reducer = reducer;
5968 }
5969 public final Long getRawResult() { return result; }
5970 public final void compute() {
5971 final ToLongFunction<Map.Entry<K,V>> transformer;
5972 final LongBinaryOperator reducer;
5973 if ((transformer = this.transformer) != null &&
5974 (reducer = this.reducer) != null) {
5975 long r = this.basis;
5976 for (int i = baseIndex, f, h; batch > 0 &&
5977 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5978 addToPendingCount(1);
5979 (rights = new MapReduceEntriesToLongTask<K,V>
5980 (this, batch >>>= 1, baseLimit = h, f, tab,
5981 rights, transformer, r, reducer)).fork();
5982 }
5983 for (Node<K,V> p; (p = advance()) != null; )
5984 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5985 result = r;
5986 CountedCompleter<?> c;
5987 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5988 @SuppressWarnings("unchecked")
5989 MapReduceEntriesToLongTask<K,V>
5990 t = (MapReduceEntriesToLongTask<K,V>)c,
5991 s = t.rights;
5992 while (s != null) {
5993 t.result = reducer.applyAsLong(t.result, s.result);
5994 s = t.rights = s.nextRight;
5995 }
5996 }
5997 }
5998 }
5999 }
6000
6001 @SuppressWarnings("serial")
6002 static final class MapReduceMappingsToLongTask<K,V>
6003 extends BulkTask<K,V,Long> {
6004 final ToLongBiFunction<? super K, ? super V> transformer;
6005 final LongBinaryOperator reducer;
6006 final long basis;
6007 long result;
6008 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6009 MapReduceMappingsToLongTask
6010 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6011 MapReduceMappingsToLongTask<K,V> nextRight,
6012 ToLongBiFunction<? super K, ? super V> transformer,
6013 long basis,
6014 LongBinaryOperator reducer) {
6015 super(p, b, i, f, t); this.nextRight = nextRight;
6016 this.transformer = transformer;
6017 this.basis = basis; this.reducer = reducer;
6018 }
6019 public final Long getRawResult() { return result; }
6020 public final void compute() {
6021 final ToLongBiFunction<? super K, ? super V> transformer;
6022 final LongBinaryOperator reducer;
6023 if ((transformer = this.transformer) != null &&
6024 (reducer = this.reducer) != null) {
6025 long r = this.basis;
6026 for (int i = baseIndex, f, h; batch > 0 &&
6027 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6028 addToPendingCount(1);
6029 (rights = new MapReduceMappingsToLongTask<K,V>
6030 (this, batch >>>= 1, baseLimit = h, f, tab,
6031 rights, transformer, r, reducer)).fork();
6032 }
6033 for (Node<K,V> p; (p = advance()) != null; )
6034 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6035 result = r;
6036 CountedCompleter<?> c;
6037 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6038 @SuppressWarnings("unchecked")
6039 MapReduceMappingsToLongTask<K,V>
6040 t = (MapReduceMappingsToLongTask<K,V>)c,
6041 s = t.rights;
6042 while (s != null) {
6043 t.result = reducer.applyAsLong(t.result, s.result);
6044 s = t.rights = s.nextRight;
6045 }
6046 }
6047 }
6048 }
6049 }
6050
6051 @SuppressWarnings("serial")
6052 static final class MapReduceKeysToIntTask<K,V>
6053 extends BulkTask<K,V,Integer> {
6054 final ToIntFunction<? super K> transformer;
6055 final IntBinaryOperator reducer;
6056 final int basis;
6057 int result;
6058 MapReduceKeysToIntTask<K,V> rights, nextRight;
6059 MapReduceKeysToIntTask
6060 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061 MapReduceKeysToIntTask<K,V> nextRight,
6062 ToIntFunction<? super K> transformer,
6063 int basis,
6064 IntBinaryOperator reducer) {
6065 super(p, b, i, f, t); this.nextRight = nextRight;
6066 this.transformer = transformer;
6067 this.basis = basis; this.reducer = reducer;
6068 }
6069 public final Integer getRawResult() { return result; }
6070 public final void compute() {
6071 final ToIntFunction<? super K> transformer;
6072 final IntBinaryOperator reducer;
6073 if ((transformer = this.transformer) != null &&
6074 (reducer = this.reducer) != null) {
6075 int r = this.basis;
6076 for (int i = baseIndex, f, h; batch > 0 &&
6077 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078 addToPendingCount(1);
6079 (rights = new MapReduceKeysToIntTask<K,V>
6080 (this, batch >>>= 1, baseLimit = h, f, tab,
6081 rights, transformer, r, reducer)).fork();
6082 }
6083 for (Node<K,V> p; (p = advance()) != null; )
6084 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6085 result = r;
6086 CountedCompleter<?> c;
6087 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088 @SuppressWarnings("unchecked")
6089 MapReduceKeysToIntTask<K,V>
6090 t = (MapReduceKeysToIntTask<K,V>)c,
6091 s = t.rights;
6092 while (s != null) {
6093 t.result = reducer.applyAsInt(t.result, s.result);
6094 s = t.rights = s.nextRight;
6095 }
6096 }
6097 }
6098 }
6099 }
6100
6101 @SuppressWarnings("serial")
6102 static final class MapReduceValuesToIntTask<K,V>
6103 extends BulkTask<K,V,Integer> {
6104 final ToIntFunction<? super V> transformer;
6105 final IntBinaryOperator reducer;
6106 final int basis;
6107 int result;
6108 MapReduceValuesToIntTask<K,V> rights, nextRight;
6109 MapReduceValuesToIntTask
6110 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6111 MapReduceValuesToIntTask<K,V> nextRight,
6112 ToIntFunction<? super V> transformer,
6113 int basis,
6114 IntBinaryOperator reducer) {
6115 super(p, b, i, f, t); this.nextRight = nextRight;
6116 this.transformer = transformer;
6117 this.basis = basis; this.reducer = reducer;
6118 }
6119 public final Integer getRawResult() { return result; }
6120 public final void compute() {
6121 final ToIntFunction<? super V> transformer;
6122 final IntBinaryOperator reducer;
6123 if ((transformer = this.transformer) != null &&
6124 (reducer = this.reducer) != null) {
6125 int r = this.basis;
6126 for (int i = baseIndex, f, h; batch > 0 &&
6127 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6128 addToPendingCount(1);
6129 (rights = new MapReduceValuesToIntTask<K,V>
6130 (this, batch >>>= 1, baseLimit = h, f, tab,
6131 rights, transformer, r, reducer)).fork();
6132 }
6133 for (Node<K,V> p; (p = advance()) != null; )
6134 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6135 result = r;
6136 CountedCompleter<?> c;
6137 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6138 @SuppressWarnings("unchecked")
6139 MapReduceValuesToIntTask<K,V>
6140 t = (MapReduceValuesToIntTask<K,V>)c,
6141 s = t.rights;
6142 while (s != null) {
6143 t.result = reducer.applyAsInt(t.result, s.result);
6144 s = t.rights = s.nextRight;
6145 }
6146 }
6147 }
6148 }
6149 }
6150
6151 @SuppressWarnings("serial")
6152 static final class MapReduceEntriesToIntTask<K,V>
6153 extends BulkTask<K,V,Integer> {
6154 final ToIntFunction<Map.Entry<K,V>> transformer;
6155 final IntBinaryOperator reducer;
6156 final int basis;
6157 int result;
6158 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6159 MapReduceEntriesToIntTask
6160 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6161 MapReduceEntriesToIntTask<K,V> nextRight,
6162 ToIntFunction<Map.Entry<K,V>> transformer,
6163 int basis,
6164 IntBinaryOperator reducer) {
6165 super(p, b, i, f, t); this.nextRight = nextRight;
6166 this.transformer = transformer;
6167 this.basis = basis; this.reducer = reducer;
6168 }
6169 public final Integer getRawResult() { return result; }
6170 public final void compute() {
6171 final ToIntFunction<Map.Entry<K,V>> transformer;
6172 final IntBinaryOperator reducer;
6173 if ((transformer = this.transformer) != null &&
6174 (reducer = this.reducer) != null) {
6175 int r = this.basis;
6176 for (int i = baseIndex, f, h; batch > 0 &&
6177 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6178 addToPendingCount(1);
6179 (rights = new MapReduceEntriesToIntTask<K,V>
6180 (this, batch >>>= 1, baseLimit = h, f, tab,
6181 rights, transformer, r, reducer)).fork();
6182 }
6183 for (Node<K,V> p; (p = advance()) != null; )
6184 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6185 result = r;
6186 CountedCompleter<?> c;
6187 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6188 @SuppressWarnings("unchecked")
6189 MapReduceEntriesToIntTask<K,V>
6190 t = (MapReduceEntriesToIntTask<K,V>)c,
6191 s = t.rights;
6192 while (s != null) {
6193 t.result = reducer.applyAsInt(t.result, s.result);
6194 s = t.rights = s.nextRight;
6195 }
6196 }
6197 }
6198 }
6199 }
6200
6201 @SuppressWarnings("serial")
6202 static final class MapReduceMappingsToIntTask<K,V>
6203 extends BulkTask<K,V,Integer> {
6204 final ToIntBiFunction<? super K, ? super V> transformer;
6205 final IntBinaryOperator reducer;
6206 final int basis;
6207 int result;
6208 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6209 MapReduceMappingsToIntTask
6210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6211 MapReduceMappingsToIntTask<K,V> nextRight,
6212 ToIntBiFunction<? super K, ? super V> transformer,
6213 int basis,
6214 IntBinaryOperator reducer) {
6215 super(p, b, i, f, t); this.nextRight = nextRight;
6216 this.transformer = transformer;
6217 this.basis = basis; this.reducer = reducer;
6218 }
6219 public final Integer getRawResult() { return result; }
6220 public final void compute() {
6221 final ToIntBiFunction<? super K, ? super V> transformer;
6222 final IntBinaryOperator reducer;
6223 if ((transformer = this.transformer) != null &&
6224 (reducer = this.reducer) != null) {
6225 int r = this.basis;
6226 for (int i = baseIndex, f, h; batch > 0 &&
6227 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6228 addToPendingCount(1);
6229 (rights = new MapReduceMappingsToIntTask<K,V>
6230 (this, batch >>>= 1, baseLimit = h, f, tab,
6231 rights, transformer, r, reducer)).fork();
6232 }
6233 for (Node<K,V> p; (p = advance()) != null; )
6234 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6235 result = r;
6236 CountedCompleter<?> c;
6237 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6238 @SuppressWarnings("unchecked")
6239 MapReduceMappingsToIntTask<K,V>
6240 t = (MapReduceMappingsToIntTask<K,V>)c,
6241 s = t.rights;
6242 while (s != null) {
6243 t.result = reducer.applyAsInt(t.result, s.result);
6244 s = t.rights = s.nextRight;
6245 }
6246 }
6247 }
6248 }
6249 }
6250
6251 // Unsafe mechanics
6252 private static final sun.misc.Unsafe U;
6253 private static final long SIZECTL;
6254 private static final long TRANSFERINDEX;
6255 private static final long BASECOUNT;
6256 private static final long CELLSBUSY;
6257 private static final long CELLVALUE;
6258 private static final long ABASE;
6259 private static final int ASHIFT;
6260
6261 static {
6262 try {
6263 U = sun.misc.Unsafe.getUnsafe();
6264 Class<?> k = ConcurrentHashMap.class;
6265 SIZECTL = U.objectFieldOffset
6266 (k.getDeclaredField("sizeCtl"));
6267 TRANSFERINDEX = U.objectFieldOffset
6268 (k.getDeclaredField("transferIndex"));
6269 BASECOUNT = U.objectFieldOffset
6270 (k.getDeclaredField("baseCount"));
6271 CELLSBUSY = U.objectFieldOffset
6272 (k.getDeclaredField("cellsBusy"));
6273 Class<?> ck = CounterCell.class;
6274 CELLVALUE = U.objectFieldOffset
6275 (ck.getDeclaredField("value"));
6276 Class<?> ak = Node[].class;
6277 ABASE = U.arrayBaseOffset(ak);
6278 int scale = U.arrayIndexScale(ak);
6279 if ((scale & (scale - 1)) != 0)
6280 throw new Error("data type scale not a power of two");
6281 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6282 } catch (Exception e) {
6283 throw new Error(e);
6284 }
6285 }
6286 }