ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.259
Committed: Mon Dec 22 12:58:17 2014 UTC (9 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.258: +16 -0 lines
Log Message:
Improve detection of recursive usage errors

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators, Spliterators and Enumerations return elements reflecting the
68 * state of the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 * However, iterators are designed to be used by only one thread at a time.
72 * Bear in mind that the results of aggregate status methods including
73 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 * useful only when a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement array.
348 * However, rather than stalling, these other threads may proceed
349 * with insertions etc. The use of TreeBins shields us from the
350 * worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. However, threads claim small
353 * blocks of indices to transfer (via field transferIndex) before
354 * doing so, reducing contention. A generation stamp in field
355 * sizeCtl ensures that resizings do not overlap. Because we are
356 * using power-of-two expansion, the elements from each bin must
357 * either stay at same index, or move with a power of two
358 * offset. We eliminate unnecessary node creation by catching
359 * cases where old nodes can be reused because their next fields
360 * won't change. On average, only about one-sixth of them need
361 * cloning when a table doubles. The nodes they replace will be
362 * garbage collectable as soon as they are no longer referenced by
363 * any reader thread that may be in the midst of concurrently
364 * traversing table. Upon transfer, the old table bin contains
365 * only a special forwarding node (with hash field "MOVED") that
366 * contains the next table as its key. On encountering a
367 * forwarding node, access and update operations restart, using
368 * the new table.
369 *
370 * Each bin transfer requires its bin lock, which can stall
371 * waiting for locks while resizing. However, because other
372 * threads can join in and help resize rather than contend for
373 * locks, average aggregate waits become shorter as resizing
374 * progresses. The transfer operation must also ensure that all
375 * accessible bins in both the old and new table are usable by any
376 * traversal. This is arranged in part by proceeding from the
377 * last bin (table.length - 1) up towards the first. Upon seeing
378 * a forwarding node, traversals (see class Traverser) arrange to
379 * move to the new table without revisiting nodes. To ensure that
380 * no intervening nodes are skipped even when moved out of order,
381 * a stack (see class TableStack) is created on first encounter of
382 * a forwarding node during a traversal, to maintain its place if
383 * later processing the current table. The need for these
384 * save/restore mechanics is relatively rare, but when one
385 * forwarding node is encountered, typically many more will be.
386 * So Traversers use a simple caching scheme to avoid creating so
387 * many new TableStack nodes. (Thanks to Peter Levart for
388 * suggesting use of a stack here.)
389 *
390 * The traversal scheme also applies to partial traversals of
391 * ranges of bins (via an alternate Traverser constructor)
392 * to support partitioned aggregate operations. Also, read-only
393 * operations give up if ever forwarded to a null table, which
394 * provides support for shutdown-style clearing, which is also not
395 * currently implemented.
396 *
397 * Lazy table initialization minimizes footprint until first use,
398 * and also avoids resizings when the first operation is from a
399 * putAll, constructor with map argument, or deserialization.
400 * These cases attempt to override the initial capacity settings,
401 * but harmlessly fail to take effect in cases of races.
402 *
403 * The element count is maintained using a specialization of
404 * LongAdder. We need to incorporate a specialization rather than
405 * just use a LongAdder in order to access implicit
406 * contention-sensing that leads to creation of multiple
407 * CounterCells. The counter mechanics avoid contention on
408 * updates but can encounter cache thrashing if read too
409 * frequently during concurrent access. To avoid reading so often,
410 * resizing under contention is attempted only upon adding to a
411 * bin already holding two or more nodes. Under uniform hash
412 * distributions, the probability of this occurring at threshold
413 * is around 13%, meaning that only about 1 in 8 puts check
414 * threshold (and after resizing, many fewer do so).
415 *
416 * TreeBins use a special form of comparison for search and
417 * related operations (which is the main reason we cannot use
418 * existing collections such as TreeMaps). TreeBins contain
419 * Comparable elements, but may contain others, as well as
420 * elements that are Comparable but not necessarily Comparable for
421 * the same T, so we cannot invoke compareTo among them. To handle
422 * this, the tree is ordered primarily by hash value, then by
423 * Comparable.compareTo order if applicable. On lookup at a node,
424 * if elements are not comparable or compare as 0 then both left
425 * and right children may need to be searched in the case of tied
426 * hash values. (This corresponds to the full list search that
427 * would be necessary if all elements were non-Comparable and had
428 * tied hashes.) On insertion, to keep a total ordering (or as
429 * close as is required here) across rebalancings, we compare
430 * classes and identityHashCodes as tie-breakers. The red-black
431 * balancing code is updated from pre-jdk-collections
432 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
433 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
434 * Algorithms" (CLR).
435 *
436 * TreeBins also require an additional locking mechanism. While
437 * list traversal is always possible by readers even during
438 * updates, tree traversal is not, mainly because of tree-rotations
439 * that may change the root node and/or its linkages. TreeBins
440 * include a simple read-write lock mechanism parasitic on the
441 * main bin-synchronization strategy: Structural adjustments
442 * associated with an insertion or removal are already bin-locked
443 * (and so cannot conflict with other writers) but must wait for
444 * ongoing readers to finish. Since there can be only one such
445 * waiter, we use a simple scheme using a single "waiter" field to
446 * block writers. However, readers need never block. If the root
447 * lock is held, they proceed along the slow traversal path (via
448 * next-pointers) until the lock becomes available or the list is
449 * exhausted, whichever comes first. These cases are not fast, but
450 * maximize aggregate expected throughput.
451 *
452 * Maintaining API and serialization compatibility with previous
453 * versions of this class introduces several oddities. Mainly: We
454 * leave untouched but unused constructor arguments refering to
455 * concurrencyLevel. We accept a loadFactor constructor argument,
456 * but apply it only to initial table capacity (which is the only
457 * time that we can guarantee to honor it.) We also declare an
458 * unused "Segment" class that is instantiated in minimal form
459 * only when serializing.
460 *
461 * Also, solely for compatibility with previous versions of this
462 * class, it extends AbstractMap, even though all of its methods
463 * are overridden, so it is just useless baggage.
464 *
465 * This file is organized to make things a little easier to follow
466 * while reading than they might otherwise: First the main static
467 * declarations and utilities, then fields, then main public
468 * methods (with a few factorings of multiple public methods into
469 * internal ones), then sizing methods, trees, traversers, and
470 * bulk operations.
471 */
472
473 /* ---------------- Constants -------------- */
474
475 /**
476 * The largest possible table capacity. This value must be
477 * exactly 1<<30 to stay within Java array allocation and indexing
478 * bounds for power of two table sizes, and is further required
479 * because the top two bits of 32bit hash fields are used for
480 * control purposes.
481 */
482 private static final int MAXIMUM_CAPACITY = 1 << 30;
483
484 /**
485 * The default initial table capacity. Must be a power of 2
486 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 */
488 private static final int DEFAULT_CAPACITY = 16;
489
490 /**
491 * The largest possible (non-power of two) array size.
492 * Needed by toArray and related methods.
493 */
494 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495
496 /**
497 * The default concurrency level for this table. Unused but
498 * defined for compatibility with previous versions of this class.
499 */
500 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501
502 /**
503 * The load factor for this table. Overrides of this value in
504 * constructors affect only the initial table capacity. The
505 * actual floating point value isn't normally used -- it is
506 * simpler to use expressions such as {@code n - (n >>> 2)} for
507 * the associated resizing threshold.
508 */
509 private static final float LOAD_FACTOR = 0.75f;
510
511 /**
512 * The bin count threshold for using a tree rather than list for a
513 * bin. Bins are converted to trees when adding an element to a
514 * bin with at least this many nodes. The value must be greater
515 * than 2, and should be at least 8 to mesh with assumptions in
516 * tree removal about conversion back to plain bins upon
517 * shrinkage.
518 */
519 static final int TREEIFY_THRESHOLD = 8;
520
521 /**
522 * The bin count threshold for untreeifying a (split) bin during a
523 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
524 * most 6 to mesh with shrinkage detection under removal.
525 */
526 static final int UNTREEIFY_THRESHOLD = 6;
527
528 /**
529 * The smallest table capacity for which bins may be treeified.
530 * (Otherwise the table is resized if too many nodes in a bin.)
531 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
532 * conflicts between resizing and treeification thresholds.
533 */
534 static final int MIN_TREEIFY_CAPACITY = 64;
535
536 /**
537 * Minimum number of rebinnings per transfer step. Ranges are
538 * subdivided to allow multiple resizer threads. This value
539 * serves as a lower bound to avoid resizers encountering
540 * excessive memory contention. The value should be at least
541 * DEFAULT_CAPACITY.
542 */
543 private static final int MIN_TRANSFER_STRIDE = 16;
544
545 /**
546 * The number of bits used for generation stamp in sizeCtl.
547 * Must be at least 6 for 32bit arrays.
548 */
549 private static int RESIZE_STAMP_BITS = 16;
550
551 /**
552 * The maximum number of threads that can help resize.
553 * Must fit in 32 - RESIZE_STAMP_BITS bits.
554 */
555 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
556
557 /**
558 * The bit shift for recording size stamp in sizeCtl.
559 */
560 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
561
562 /*
563 * Encodings for Node hash fields. See above for explanation.
564 */
565 static final int MOVED = -1; // hash for forwarding nodes
566 static final int TREEBIN = -2; // hash for roots of trees
567 static final int RESERVED = -3; // hash for transient reservations
568 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
569
570 /** Number of CPUS, to place bounds on some sizings */
571 static final int NCPU = Runtime.getRuntime().availableProcessors();
572
573 /** For serialization compatibility. */
574 private static final ObjectStreamField[] serialPersistentFields = {
575 new ObjectStreamField("segments", Segment[].class),
576 new ObjectStreamField("segmentMask", Integer.TYPE),
577 new ObjectStreamField("segmentShift", Integer.TYPE)
578 };
579
580 /* ---------------- Nodes -------------- */
581
582 /**
583 * Key-value entry. This class is never exported out as a
584 * user-mutable Map.Entry (i.e., one supporting setValue; see
585 * MapEntry below), but can be used for read-only traversals used
586 * in bulk tasks. Subclasses of Node with a negative hash field
587 * are special, and contain null keys and values (but are never
588 * exported). Otherwise, keys and vals are never null.
589 */
590 static class Node<K,V> implements Map.Entry<K,V> {
591 final int hash;
592 final K key;
593 volatile V val;
594 volatile Node<K,V> next;
595
596 Node(int hash, K key, V val, Node<K,V> next) {
597 this.hash = hash;
598 this.key = key;
599 this.val = val;
600 this.next = next;
601 }
602
603 public final K getKey() { return key; }
604 public final V getValue() { return val; }
605 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
606 public final String toString(){ return key + "=" + val; }
607 public final V setValue(V value) {
608 throw new UnsupportedOperationException();
609 }
610
611 public final boolean equals(Object o) {
612 Object k, v, u; Map.Entry<?,?> e;
613 return ((o instanceof Map.Entry) &&
614 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 (v = e.getValue()) != null &&
616 (k == key || k.equals(key)) &&
617 (v == (u = val) || v.equals(u)));
618 }
619
620 /**
621 * Virtualized support for map.get(); overridden in subclasses.
622 */
623 Node<K,V> find(int h, Object k) {
624 Node<K,V> e = this;
625 if (k != null) {
626 do {
627 K ek;
628 if (e.hash == h &&
629 ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 return e;
631 } while ((e = e.next) != null);
632 }
633 return null;
634 }
635 }
636
637 /* ---------------- Static utilities -------------- */
638
639 /**
640 * Spreads (XORs) higher bits of hash to lower and also forces top
641 * bit to 0. Because the table uses power-of-two masking, sets of
642 * hashes that vary only in bits above the current mask will
643 * always collide. (Among known examples are sets of Float keys
644 * holding consecutive whole numbers in small tables.) So we
645 * apply a transform that spreads the impact of higher bits
646 * downward. There is a tradeoff between speed, utility, and
647 * quality of bit-spreading. Because many common sets of hashes
648 * are already reasonably distributed (so don't benefit from
649 * spreading), and because we use trees to handle large sets of
650 * collisions in bins, we just XOR some shifted bits in the
651 * cheapest possible way to reduce systematic lossage, as well as
652 * to incorporate impact of the highest bits that would otherwise
653 * never be used in index calculations because of table bounds.
654 */
655 static final int spread(int h) {
656 return (h ^ (h >>> 16)) & HASH_BITS;
657 }
658
659 /**
660 * Returns a power of two table size for the given desired capacity.
661 * See Hackers Delight, sec 3.2
662 */
663 private static final int tableSizeFor(int c) {
664 int n = c - 1;
665 n |= n >>> 1;
666 n |= n >>> 2;
667 n |= n >>> 4;
668 n |= n >>> 8;
669 n |= n >>> 16;
670 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 }
672
673 /**
674 * Returns x's Class if it is of the form "class C implements
675 * Comparable<C>", else null.
676 */
677 static Class<?> comparableClassFor(Object x) {
678 if (x instanceof Comparable) {
679 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 if ((c = x.getClass()) == String.class) // bypass checks
681 return c;
682 if ((ts = c.getGenericInterfaces()) != null) {
683 for (int i = 0; i < ts.length; ++i) {
684 if (((t = ts[i]) instanceof ParameterizedType) &&
685 ((p = (ParameterizedType)t).getRawType() ==
686 Comparable.class) &&
687 (as = p.getActualTypeArguments()) != null &&
688 as.length == 1 && as[0] == c) // type arg is c
689 return c;
690 }
691 }
692 }
693 return null;
694 }
695
696 /**
697 * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 * class), else 0.
699 */
700 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 static int compareComparables(Class<?> kc, Object k, Object x) {
702 return (x == null || x.getClass() != kc ? 0 :
703 ((Comparable)k).compareTo(x));
704 }
705
706 /* ---------------- Table element access -------------- */
707
708 /*
709 * Volatile access methods are used for table elements as well as
710 * elements of in-progress next table while resizing. All uses of
711 * the tab arguments must be null checked by callers. All callers
712 * also paranoically precheck that tab's length is not zero (or an
713 * equivalent check), thus ensuring that any index argument taking
714 * the form of a hash value anded with (length - 1) is a valid
715 * index. Note that, to be correct wrt arbitrary concurrency
716 * errors by users, these checks must operate on local variables,
717 * which accounts for some odd-looking inline assignments below.
718 * Note that calls to setTabAt always occur within locked regions,
719 * and so in principle require only release ordering, not
720 * full volatile semantics, but are currently coded as volatile
721 * writes to be conservative.
722 */
723
724 @SuppressWarnings("unchecked")
725 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727 }
728
729 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 Node<K,V> c, Node<K,V> v) {
731 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 }
733
734 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 }
737
738 /* ---------------- Fields -------------- */
739
740 /**
741 * The array of bins. Lazily initialized upon first insertion.
742 * Size is always a power of two. Accessed directly by iterators.
743 */
744 transient volatile Node<K,V>[] table;
745
746 /**
747 * The next table to use; non-null only while resizing.
748 */
749 private transient volatile Node<K,V>[] nextTable;
750
751 /**
752 * Base counter value, used mainly when there is no contention,
753 * but also as a fallback during table initialization
754 * races. Updated via CAS.
755 */
756 private transient volatile long baseCount;
757
758 /**
759 * Table initialization and resizing control. When negative, the
760 * table is being initialized or resized: -1 for initialization,
761 * else -(1 + the number of active resizing threads). Otherwise,
762 * when table is null, holds the initial table size to use upon
763 * creation, or 0 for default. After initialization, holds the
764 * next element count value upon which to resize the table.
765 */
766 private transient volatile int sizeCtl;
767
768 /**
769 * The next table index (plus one) to split while resizing.
770 */
771 private transient volatile int transferIndex;
772
773 /**
774 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 */
776 private transient volatile int cellsBusy;
777
778 /**
779 * Table of counter cells. When non-null, size is a power of 2.
780 */
781 private transient volatile CounterCell[] counterCells;
782
783 // views
784 private transient KeySetView<K,V> keySet;
785 private transient ValuesView<K,V> values;
786 private transient EntrySetView<K,V> entrySet;
787
788
789 /* ---------------- Public operations -------------- */
790
791 /**
792 * Creates a new, empty map with the default initial table size (16).
793 */
794 public ConcurrentHashMap() {
795 }
796
797 /**
798 * Creates a new, empty map with an initial table size
799 * accommodating the specified number of elements without the need
800 * to dynamically resize.
801 *
802 * @param initialCapacity The implementation performs internal
803 * sizing to accommodate this many elements.
804 * @throws IllegalArgumentException if the initial capacity of
805 * elements is negative
806 */
807 public ConcurrentHashMap(int initialCapacity) {
808 if (initialCapacity < 0)
809 throw new IllegalArgumentException();
810 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 MAXIMUM_CAPACITY :
812 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 this.sizeCtl = cap;
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), table
848 * density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null,
991 new Node<K,V>(hash, key, value, null)))
992 break; // no lock when adding to empty bin
993 }
994 else if ((fh = f.hash) == MOVED)
995 tab = helpTransfer(tab, f);
996 else {
997 V oldVal = null;
998 synchronized (f) {
999 if (tabAt(tab, i) == f) {
1000 if (fh >= 0) {
1001 binCount = 1;
1002 for (Node<K,V> e = f;; ++binCount) {
1003 K ek;
1004 if (e.hash == hash &&
1005 ((ek = e.key) == key ||
1006 (ek != null && key.equals(ek)))) {
1007 oldVal = e.val;
1008 if (!onlyIfAbsent)
1009 e.val = value;
1010 break;
1011 }
1012 Node<K,V> pred = e;
1013 if ((e = e.next) == null) {
1014 pred.next = new Node<K,V>(hash, key,
1015 value, null);
1016 break;
1017 }
1018 }
1019 }
1020 else if (f instanceof TreeBin) {
1021 Node<K,V> p;
1022 binCount = 2;
1023 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 value)) != null) {
1025 oldVal = p.val;
1026 if (!onlyIfAbsent)
1027 p.val = value;
1028 }
1029 }
1030 else if (f instanceof ReservationNode)
1031 throw new IllegalStateException("Recursive update");
1032 }
1033 }
1034 if (binCount != 0) {
1035 if (binCount >= TREEIFY_THRESHOLD)
1036 treeifyBin(tab, i);
1037 if (oldVal != null)
1038 return oldVal;
1039 break;
1040 }
1041 }
1042 }
1043 addCount(1L, binCount);
1044 return null;
1045 }
1046
1047 /**
1048 * Copies all of the mappings from the specified map to this one.
1049 * These mappings replace any mappings that this map had for any of the
1050 * keys currently in the specified map.
1051 *
1052 * @param m mappings to be stored in this map
1053 */
1054 public void putAll(Map<? extends K, ? extends V> m) {
1055 tryPresize(m.size());
1056 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1057 putVal(e.getKey(), e.getValue(), false);
1058 }
1059
1060 /**
1061 * Removes the key (and its corresponding value) from this map.
1062 * This method does nothing if the key is not in the map.
1063 *
1064 * @param key the key that needs to be removed
1065 * @return the previous value associated with {@code key}, or
1066 * {@code null} if there was no mapping for {@code key}
1067 * @throws NullPointerException if the specified key is null
1068 */
1069 public V remove(Object key) {
1070 return replaceNode(key, null, null);
1071 }
1072
1073 /**
1074 * Implementation for the four public remove/replace methods:
1075 * Replaces node value with v, conditional upon match of cv if
1076 * non-null. If resulting value is null, delete.
1077 */
1078 final V replaceNode(Object key, V value, Object cv) {
1079 int hash = spread(key.hashCode());
1080 for (Node<K,V>[] tab = table;;) {
1081 Node<K,V> f; int n, i, fh;
1082 if (tab == null || (n = tab.length) == 0 ||
1083 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1084 break;
1085 else if ((fh = f.hash) == MOVED)
1086 tab = helpTransfer(tab, f);
1087 else {
1088 V oldVal = null;
1089 boolean validated = false;
1090 synchronized (f) {
1091 if (tabAt(tab, i) == f) {
1092 if (fh >= 0) {
1093 validated = true;
1094 for (Node<K,V> e = f, pred = null;;) {
1095 K ek;
1096 if (e.hash == hash &&
1097 ((ek = e.key) == key ||
1098 (ek != null && key.equals(ek)))) {
1099 V ev = e.val;
1100 if (cv == null || cv == ev ||
1101 (ev != null && cv.equals(ev))) {
1102 oldVal = ev;
1103 if (value != null)
1104 e.val = value;
1105 else if (pred != null)
1106 pred.next = e.next;
1107 else
1108 setTabAt(tab, i, e.next);
1109 }
1110 break;
1111 }
1112 pred = e;
1113 if ((e = e.next) == null)
1114 break;
1115 }
1116 }
1117 else if (f instanceof TreeBin) {
1118 validated = true;
1119 TreeBin<K,V> t = (TreeBin<K,V>)f;
1120 TreeNode<K,V> r, p;
1121 if ((r = t.root) != null &&
1122 (p = r.findTreeNode(hash, key, null)) != null) {
1123 V pv = p.val;
1124 if (cv == null || cv == pv ||
1125 (pv != null && cv.equals(pv))) {
1126 oldVal = pv;
1127 if (value != null)
1128 p.val = value;
1129 else if (t.removeTreeNode(p))
1130 setTabAt(tab, i, untreeify(t.first));
1131 }
1132 }
1133 }
1134 else if (f instanceof ReservationNode)
1135 throw new IllegalStateException("Recursive update");
1136 }
1137 }
1138 if (validated) {
1139 if (oldVal != null) {
1140 if (value == null)
1141 addCount(-1L, -1);
1142 return oldVal;
1143 }
1144 break;
1145 }
1146 }
1147 }
1148 return null;
1149 }
1150
1151 /**
1152 * Removes all of the mappings from this map.
1153 */
1154 public void clear() {
1155 long delta = 0L; // negative number of deletions
1156 int i = 0;
1157 Node<K,V>[] tab = table;
1158 while (tab != null && i < tab.length) {
1159 int fh;
1160 Node<K,V> f = tabAt(tab, i);
1161 if (f == null)
1162 ++i;
1163 else if ((fh = f.hash) == MOVED) {
1164 tab = helpTransfer(tab, f);
1165 i = 0; // restart
1166 }
1167 else {
1168 synchronized (f) {
1169 if (tabAt(tab, i) == f) {
1170 Node<K,V> p = (fh >= 0 ? f :
1171 (f instanceof TreeBin) ?
1172 ((TreeBin<K,V>)f).first : null);
1173 while (p != null) {
1174 --delta;
1175 p = p.next;
1176 }
1177 setTabAt(tab, i++, null);
1178 }
1179 }
1180 }
1181 }
1182 if (delta != 0L)
1183 addCount(delta, -1);
1184 }
1185
1186 /**
1187 * Returns a {@link Set} view of the keys contained in this map.
1188 * The set is backed by the map, so changes to the map are
1189 * reflected in the set, and vice-versa. The set supports element
1190 * removal, which removes the corresponding mapping from this map,
1191 * via the {@code Iterator.remove}, {@code Set.remove},
1192 * {@code removeAll}, {@code retainAll}, and {@code clear}
1193 * operations. It does not support the {@code add} or
1194 * {@code addAll} operations.
1195 *
1196 * <p>The view's iterators and spliterators are
1197 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 *
1199 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1200 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1201 *
1202 * @return the set view
1203 */
1204 public KeySetView<K,V> keySet() {
1205 KeySetView<K,V> ks;
1206 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1207 }
1208
1209 /**
1210 * Returns a {@link Collection} view of the values contained in this map.
1211 * The collection is backed by the map, so changes to the map are
1212 * reflected in the collection, and vice-versa. The collection
1213 * supports element removal, which removes the corresponding
1214 * mapping from this map, via the {@code Iterator.remove},
1215 * {@code Collection.remove}, {@code removeAll},
1216 * {@code retainAll}, and {@code clear} operations. It does not
1217 * support the {@code add} or {@code addAll} operations.
1218 *
1219 * <p>The view's iterators and spliterators are
1220 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1221 *
1222 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1223 * and {@link Spliterator#NONNULL}.
1224 *
1225 * @return the collection view
1226 */
1227 public Collection<V> values() {
1228 ValuesView<K,V> vs;
1229 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1230 }
1231
1232 /**
1233 * Returns a {@link Set} view of the mappings contained in this map.
1234 * The set is backed by the map, so changes to the map are
1235 * reflected in the set, and vice-versa. The set supports element
1236 * removal, which removes the corresponding mapping from the map,
1237 * via the {@code Iterator.remove}, {@code Set.remove},
1238 * {@code removeAll}, {@code retainAll}, and {@code clear}
1239 * operations.
1240 *
1241 * <p>The view's iterators and spliterators are
1242 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1243 *
1244 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1245 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1246 *
1247 * @return the set view
1248 */
1249 public Set<Map.Entry<K,V>> entrySet() {
1250 EntrySetView<K,V> es;
1251 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1252 }
1253
1254 /**
1255 * Returns the hash code value for this {@link Map}, i.e.,
1256 * the sum of, for each key-value pair in the map,
1257 * {@code key.hashCode() ^ value.hashCode()}.
1258 *
1259 * @return the hash code value for this map
1260 */
1261 public int hashCode() {
1262 int h = 0;
1263 Node<K,V>[] t;
1264 if ((t = table) != null) {
1265 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1266 for (Node<K,V> p; (p = it.advance()) != null; )
1267 h += p.key.hashCode() ^ p.val.hashCode();
1268 }
1269 return h;
1270 }
1271
1272 /**
1273 * Returns a string representation of this map. The string
1274 * representation consists of a list of key-value mappings (in no
1275 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1276 * mappings are separated by the characters {@code ", "} (comma
1277 * and space). Each key-value mapping is rendered as the key
1278 * followed by an equals sign ("{@code =}") followed by the
1279 * associated value.
1280 *
1281 * @return a string representation of this map
1282 */
1283 public String toString() {
1284 Node<K,V>[] t;
1285 int f = (t = table) == null ? 0 : t.length;
1286 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1287 StringBuilder sb = new StringBuilder();
1288 sb.append('{');
1289 Node<K,V> p;
1290 if ((p = it.advance()) != null) {
1291 for (;;) {
1292 K k = p.key;
1293 V v = p.val;
1294 sb.append(k == this ? "(this Map)" : k);
1295 sb.append('=');
1296 sb.append(v == this ? "(this Map)" : v);
1297 if ((p = it.advance()) == null)
1298 break;
1299 sb.append(',').append(' ');
1300 }
1301 }
1302 return sb.append('}').toString();
1303 }
1304
1305 /**
1306 * Compares the specified object with this map for equality.
1307 * Returns {@code true} if the given object is a map with the same
1308 * mappings as this map. This operation may return misleading
1309 * results if either map is concurrently modified during execution
1310 * of this method.
1311 *
1312 * @param o object to be compared for equality with this map
1313 * @return {@code true} if the specified object is equal to this map
1314 */
1315 public boolean equals(Object o) {
1316 if (o != this) {
1317 if (!(o instanceof Map))
1318 return false;
1319 Map<?,?> m = (Map<?,?>) o;
1320 Node<K,V>[] t;
1321 int f = (t = table) == null ? 0 : t.length;
1322 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1323 for (Node<K,V> p; (p = it.advance()) != null; ) {
1324 V val = p.val;
1325 Object v = m.get(p.key);
1326 if (v == null || (v != val && !v.equals(val)))
1327 return false;
1328 }
1329 for (Map.Entry<?,?> e : m.entrySet()) {
1330 Object mk, mv, v;
1331 if ((mk = e.getKey()) == null ||
1332 (mv = e.getValue()) == null ||
1333 (v = get(mk)) == null ||
1334 (mv != v && !mv.equals(v)))
1335 return false;
1336 }
1337 }
1338 return true;
1339 }
1340
1341 /**
1342 * Stripped-down version of helper class used in previous version,
1343 * declared for the sake of serialization compatibility
1344 */
1345 static class Segment<K,V> extends ReentrantLock implements Serializable {
1346 private static final long serialVersionUID = 2249069246763182397L;
1347 final float loadFactor;
1348 Segment(float lf) { this.loadFactor = lf; }
1349 }
1350
1351 /**
1352 * Saves the state of the {@code ConcurrentHashMap} instance to a
1353 * stream (i.e., serializes it).
1354 * @param s the stream
1355 * @throws java.io.IOException if an I/O error occurs
1356 * @serialData
1357 * the key (Object) and value (Object)
1358 * for each key-value mapping, followed by a null pair.
1359 * The key-value mappings are emitted in no particular order.
1360 */
1361 private void writeObject(java.io.ObjectOutputStream s)
1362 throws java.io.IOException {
1363 // For serialization compatibility
1364 // Emulate segment calculation from previous version of this class
1365 int sshift = 0;
1366 int ssize = 1;
1367 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1368 ++sshift;
1369 ssize <<= 1;
1370 }
1371 int segmentShift = 32 - sshift;
1372 int segmentMask = ssize - 1;
1373 @SuppressWarnings("unchecked")
1374 Segment<K,V>[] segments = (Segment<K,V>[])
1375 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1376 for (int i = 0; i < segments.length; ++i)
1377 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1378 s.putFields().put("segments", segments);
1379 s.putFields().put("segmentShift", segmentShift);
1380 s.putFields().put("segmentMask", segmentMask);
1381 s.writeFields();
1382
1383 Node<K,V>[] t;
1384 if ((t = table) != null) {
1385 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1386 for (Node<K,V> p; (p = it.advance()) != null; ) {
1387 s.writeObject(p.key);
1388 s.writeObject(p.val);
1389 }
1390 }
1391 s.writeObject(null);
1392 s.writeObject(null);
1393 segments = null; // throw away
1394 }
1395
1396 /**
1397 * Reconstitutes the instance from a stream (that is, deserializes it).
1398 * @param s the stream
1399 * @throws ClassNotFoundException if the class of a serialized object
1400 * could not be found
1401 * @throws java.io.IOException if an I/O error occurs
1402 */
1403 private void readObject(java.io.ObjectInputStream s)
1404 throws java.io.IOException, ClassNotFoundException {
1405 /*
1406 * To improve performance in typical cases, we create nodes
1407 * while reading, then place in table once size is known.
1408 * However, we must also validate uniqueness and deal with
1409 * overpopulated bins while doing so, which requires
1410 * specialized versions of putVal mechanics.
1411 */
1412 sizeCtl = -1; // force exclusion for table construction
1413 s.defaultReadObject();
1414 long size = 0L;
1415 Node<K,V> p = null;
1416 for (;;) {
1417 @SuppressWarnings("unchecked")
1418 K k = (K) s.readObject();
1419 @SuppressWarnings("unchecked")
1420 V v = (V) s.readObject();
1421 if (k != null && v != null) {
1422 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 ++size;
1424 }
1425 else
1426 break;
1427 }
1428 if (size == 0L)
1429 sizeCtl = 0;
1430 else {
1431 int n;
1432 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 n = MAXIMUM_CAPACITY;
1434 else {
1435 int sz = (int)size;
1436 n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 }
1438 @SuppressWarnings("unchecked")
1439 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1440 int mask = n - 1;
1441 long added = 0L;
1442 while (p != null) {
1443 boolean insertAtFront;
1444 Node<K,V> next = p.next, first;
1445 int h = p.hash, j = h & mask;
1446 if ((first = tabAt(tab, j)) == null)
1447 insertAtFront = true;
1448 else {
1449 K k = p.key;
1450 if (first.hash < 0) {
1451 TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 if (t.putTreeVal(h, k, p.val) == null)
1453 ++added;
1454 insertAtFront = false;
1455 }
1456 else {
1457 int binCount = 0;
1458 insertAtFront = true;
1459 Node<K,V> q; K qk;
1460 for (q = first; q != null; q = q.next) {
1461 if (q.hash == h &&
1462 ((qk = q.key) == k ||
1463 (qk != null && k.equals(qk)))) {
1464 insertAtFront = false;
1465 break;
1466 }
1467 ++binCount;
1468 }
1469 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 insertAtFront = false;
1471 ++added;
1472 p.next = first;
1473 TreeNode<K,V> hd = null, tl = null;
1474 for (q = p; q != null; q = q.next) {
1475 TreeNode<K,V> t = new TreeNode<K,V>
1476 (q.hash, q.key, q.val, null, null);
1477 if ((t.prev = tl) == null)
1478 hd = t;
1479 else
1480 tl.next = t;
1481 tl = t;
1482 }
1483 setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 }
1485 }
1486 }
1487 if (insertAtFront) {
1488 ++added;
1489 p.next = first;
1490 setTabAt(tab, j, p);
1491 }
1492 p = next;
1493 }
1494 table = tab;
1495 sizeCtl = n - (n >>> 2);
1496 baseCount = added;
1497 }
1498 }
1499
1500 // ConcurrentMap methods
1501
1502 /**
1503 * {@inheritDoc}
1504 *
1505 * @return the previous value associated with the specified key,
1506 * or {@code null} if there was no mapping for the key
1507 * @throws NullPointerException if the specified key or value is null
1508 */
1509 public V putIfAbsent(K key, V value) {
1510 return putVal(key, value, true);
1511 }
1512
1513 /**
1514 * {@inheritDoc}
1515 *
1516 * @throws NullPointerException if the specified key is null
1517 */
1518 public boolean remove(Object key, Object value) {
1519 if (key == null)
1520 throw new NullPointerException();
1521 return value != null && replaceNode(key, null, value) != null;
1522 }
1523
1524 /**
1525 * {@inheritDoc}
1526 *
1527 * @throws NullPointerException if any of the arguments are null
1528 */
1529 public boolean replace(K key, V oldValue, V newValue) {
1530 if (key == null || oldValue == null || newValue == null)
1531 throw new NullPointerException();
1532 return replaceNode(key, newValue, oldValue) != null;
1533 }
1534
1535 /**
1536 * {@inheritDoc}
1537 *
1538 * @return the previous value associated with the specified key,
1539 * or {@code null} if there was no mapping for the key
1540 * @throws NullPointerException if the specified key or value is null
1541 */
1542 public V replace(K key, V value) {
1543 if (key == null || value == null)
1544 throw new NullPointerException();
1545 return replaceNode(key, value, null);
1546 }
1547
1548 // Overrides of JDK8+ Map extension method defaults
1549
1550 /**
1551 * Returns the value to which the specified key is mapped, or the
1552 * given default value if this map contains no mapping for the
1553 * key.
1554 *
1555 * @param key the key whose associated value is to be returned
1556 * @param defaultValue the value to return if this map contains
1557 * no mapping for the given key
1558 * @return the mapping for the key, if present; else the default value
1559 * @throws NullPointerException if the specified key is null
1560 */
1561 public V getOrDefault(Object key, V defaultValue) {
1562 V v;
1563 return (v = get(key)) == null ? defaultValue : v;
1564 }
1565
1566 public void forEach(BiConsumer<? super K, ? super V> action) {
1567 if (action == null) throw new NullPointerException();
1568 Node<K,V>[] t;
1569 if ((t = table) != null) {
1570 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 action.accept(p.key, p.val);
1573 }
1574 }
1575 }
1576
1577 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1578 if (function == null) throw new NullPointerException();
1579 Node<K,V>[] t;
1580 if ((t = table) != null) {
1581 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 V oldValue = p.val;
1584 for (K key = p.key;;) {
1585 V newValue = function.apply(key, oldValue);
1586 if (newValue == null)
1587 throw new NullPointerException();
1588 if (replaceNode(key, newValue, oldValue) != null ||
1589 (oldValue = get(key)) == null)
1590 break;
1591 }
1592 }
1593 }
1594 }
1595
1596 /**
1597 * If the specified key is not already associated with a value,
1598 * attempts to compute its value using the given mapping function
1599 * and enters it into this map unless {@code null}. The entire
1600 * method invocation is performed atomically, so the function is
1601 * applied at most once per key. Some attempted update operations
1602 * on this map by other threads may be blocked while computation
1603 * is in progress, so the computation should be short and simple,
1604 * and must not attempt to update any other mappings of this map.
1605 *
1606 * @param key key with which the specified value is to be associated
1607 * @param mappingFunction the function to compute a value
1608 * @return the current (existing or computed) value associated with
1609 * the specified key, or null if the computed value is null
1610 * @throws NullPointerException if the specified key or mappingFunction
1611 * is null
1612 * @throws IllegalStateException if the computation detectably
1613 * attempts a recursive update to this map that would
1614 * otherwise never complete
1615 * @throws RuntimeException or Error if the mappingFunction does so,
1616 * in which case the mapping is left unestablished
1617 */
1618 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1619 if (key == null || mappingFunction == null)
1620 throw new NullPointerException();
1621 int h = spread(key.hashCode());
1622 V val = null;
1623 int binCount = 0;
1624 for (Node<K,V>[] tab = table;;) {
1625 Node<K,V> f; int n, i, fh;
1626 if (tab == null || (n = tab.length) == 0)
1627 tab = initTable();
1628 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1629 Node<K,V> r = new ReservationNode<K,V>();
1630 synchronized (r) {
1631 if (casTabAt(tab, i, null, r)) {
1632 binCount = 1;
1633 Node<K,V> node = null;
1634 try {
1635 if ((val = mappingFunction.apply(key)) != null)
1636 node = new Node<K,V>(h, key, val, null);
1637 } finally {
1638 setTabAt(tab, i, node);
1639 }
1640 }
1641 }
1642 if (binCount != 0)
1643 break;
1644 }
1645 else if ((fh = f.hash) == MOVED)
1646 tab = helpTransfer(tab, f);
1647 else {
1648 boolean added = false;
1649 synchronized (f) {
1650 if (tabAt(tab, i) == f) {
1651 if (fh >= 0) {
1652 binCount = 1;
1653 for (Node<K,V> e = f;; ++binCount) {
1654 K ek; V ev;
1655 if (e.hash == h &&
1656 ((ek = e.key) == key ||
1657 (ek != null && key.equals(ek)))) {
1658 val = e.val;
1659 break;
1660 }
1661 Node<K,V> pred = e;
1662 if ((e = e.next) == null) {
1663 if ((val = mappingFunction.apply(key)) != null) {
1664 if (pred.next != null)
1665 throw new IllegalStateException("Recursive update");
1666 added = true;
1667 pred.next = new Node<K,V>(h, key, val, null);
1668 }
1669 break;
1670 }
1671 }
1672 }
1673 else if (f instanceof TreeBin) {
1674 binCount = 2;
1675 TreeBin<K,V> t = (TreeBin<K,V>)f;
1676 TreeNode<K,V> r, p;
1677 if ((r = t.root) != null &&
1678 (p = r.findTreeNode(h, key, null)) != null)
1679 val = p.val;
1680 else if ((val = mappingFunction.apply(key)) != null) {
1681 added = true;
1682 t.putTreeVal(h, key, val);
1683 }
1684 }
1685 else if (f instanceof ReservationNode)
1686 throw new IllegalStateException("Recursive update");
1687 }
1688 }
1689 if (binCount != 0) {
1690 if (binCount >= TREEIFY_THRESHOLD)
1691 treeifyBin(tab, i);
1692 if (!added)
1693 return val;
1694 break;
1695 }
1696 }
1697 }
1698 if (val != null)
1699 addCount(1L, binCount);
1700 return val;
1701 }
1702
1703 /**
1704 * If the value for the specified key is present, attempts to
1705 * compute a new mapping given the key and its current mapped
1706 * value. The entire method invocation is performed atomically.
1707 * Some attempted update operations on this map by other threads
1708 * may be blocked while computation is in progress, so the
1709 * computation should be short and simple, and must not attempt to
1710 * update any other mappings of this map.
1711 *
1712 * @param key key with which a value may be associated
1713 * @param remappingFunction the function to compute a value
1714 * @return the new value associated with the specified key, or null if none
1715 * @throws NullPointerException if the specified key or remappingFunction
1716 * is null
1717 * @throws IllegalStateException if the computation detectably
1718 * attempts a recursive update to this map that would
1719 * otherwise never complete
1720 * @throws RuntimeException or Error if the remappingFunction does so,
1721 * in which case the mapping is unchanged
1722 */
1723 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1724 if (key == null || remappingFunction == null)
1725 throw new NullPointerException();
1726 int h = spread(key.hashCode());
1727 V val = null;
1728 int delta = 0;
1729 int binCount = 0;
1730 for (Node<K,V>[] tab = table;;) {
1731 Node<K,V> f; int n, i, fh;
1732 if (tab == null || (n = tab.length) == 0)
1733 tab = initTable();
1734 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1735 break;
1736 else if ((fh = f.hash) == MOVED)
1737 tab = helpTransfer(tab, f);
1738 else {
1739 synchronized (f) {
1740 if (tabAt(tab, i) == f) {
1741 if (fh >= 0) {
1742 binCount = 1;
1743 for (Node<K,V> e = f, pred = null;; ++binCount) {
1744 K ek;
1745 if (e.hash == h &&
1746 ((ek = e.key) == key ||
1747 (ek != null && key.equals(ek)))) {
1748 val = remappingFunction.apply(key, e.val);
1749 if (val != null)
1750 e.val = val;
1751 else {
1752 delta = -1;
1753 Node<K,V> en = e.next;
1754 if (pred != null)
1755 pred.next = en;
1756 else
1757 setTabAt(tab, i, en);
1758 }
1759 break;
1760 }
1761 pred = e;
1762 if ((e = e.next) == null)
1763 break;
1764 }
1765 }
1766 else if (f instanceof TreeBin) {
1767 binCount = 2;
1768 TreeBin<K,V> t = (TreeBin<K,V>)f;
1769 TreeNode<K,V> r, p;
1770 if ((r = t.root) != null &&
1771 (p = r.findTreeNode(h, key, null)) != null) {
1772 val = remappingFunction.apply(key, p.val);
1773 if (val != null)
1774 p.val = val;
1775 else {
1776 delta = -1;
1777 if (t.removeTreeNode(p))
1778 setTabAt(tab, i, untreeify(t.first));
1779 }
1780 }
1781 }
1782 else if (f instanceof ReservationNode)
1783 throw new IllegalStateException("Recursive update");
1784 }
1785 }
1786 if (binCount != 0)
1787 break;
1788 }
1789 }
1790 if (delta != 0)
1791 addCount((long)delta, binCount);
1792 return val;
1793 }
1794
1795 /**
1796 * Attempts to compute a mapping for the specified key and its
1797 * current mapped value (or {@code null} if there is no current
1798 * mapping). The entire method invocation is performed atomically.
1799 * Some attempted update operations on this map by other threads
1800 * may be blocked while computation is in progress, so the
1801 * computation should be short and simple, and must not attempt to
1802 * update any other mappings of this Map.
1803 *
1804 * @param key key with which the specified value is to be associated
1805 * @param remappingFunction the function to compute a value
1806 * @return the new value associated with the specified key, or null if none
1807 * @throws NullPointerException if the specified key or remappingFunction
1808 * is null
1809 * @throws IllegalStateException if the computation detectably
1810 * attempts a recursive update to this map that would
1811 * otherwise never complete
1812 * @throws RuntimeException or Error if the remappingFunction does so,
1813 * in which case the mapping is unchanged
1814 */
1815 public V compute(K key,
1816 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1817 if (key == null || remappingFunction == null)
1818 throw new NullPointerException();
1819 int h = spread(key.hashCode());
1820 V val = null;
1821 int delta = 0;
1822 int binCount = 0;
1823 for (Node<K,V>[] tab = table;;) {
1824 Node<K,V> f; int n, i, fh;
1825 if (tab == null || (n = tab.length) == 0)
1826 tab = initTable();
1827 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1828 Node<K,V> r = new ReservationNode<K,V>();
1829 synchronized (r) {
1830 if (casTabAt(tab, i, null, r)) {
1831 binCount = 1;
1832 Node<K,V> node = null;
1833 try {
1834 if ((val = remappingFunction.apply(key, null)) != null) {
1835 delta = 1;
1836 node = new Node<K,V>(h, key, val, null);
1837 }
1838 } finally {
1839 setTabAt(tab, i, node);
1840 }
1841 }
1842 }
1843 if (binCount != 0)
1844 break;
1845 }
1846 else if ((fh = f.hash) == MOVED)
1847 tab = helpTransfer(tab, f);
1848 else {
1849 synchronized (f) {
1850 if (tabAt(tab, i) == f) {
1851 if (fh >= 0) {
1852 binCount = 1;
1853 for (Node<K,V> e = f, pred = null;; ++binCount) {
1854 K ek;
1855 if (e.hash == h &&
1856 ((ek = e.key) == key ||
1857 (ek != null && key.equals(ek)))) {
1858 val = remappingFunction.apply(key, e.val);
1859 if (val != null)
1860 e.val = val;
1861 else {
1862 delta = -1;
1863 Node<K,V> en = e.next;
1864 if (pred != null)
1865 pred.next = en;
1866 else
1867 setTabAt(tab, i, en);
1868 }
1869 break;
1870 }
1871 pred = e;
1872 if ((e = e.next) == null) {
1873 val = remappingFunction.apply(key, null);
1874 if (val != null) {
1875 if (pred.next != null)
1876 throw new IllegalStateException("Recursive update");
1877 delta = 1;
1878 pred.next =
1879 new Node<K,V>(h, key, val, null);
1880 }
1881 break;
1882 }
1883 }
1884 }
1885 else if (f instanceof TreeBin) {
1886 binCount = 1;
1887 TreeBin<K,V> t = (TreeBin<K,V>)f;
1888 TreeNode<K,V> r, p;
1889 if ((r = t.root) != null)
1890 p = r.findTreeNode(h, key, null);
1891 else
1892 p = null;
1893 V pv = (p == null) ? null : p.val;
1894 val = remappingFunction.apply(key, pv);
1895 if (val != null) {
1896 if (p != null)
1897 p.val = val;
1898 else {
1899 delta = 1;
1900 t.putTreeVal(h, key, val);
1901 }
1902 }
1903 else if (p != null) {
1904 delta = -1;
1905 if (t.removeTreeNode(p))
1906 setTabAt(tab, i, untreeify(t.first));
1907 }
1908 }
1909 else if (f instanceof ReservationNode)
1910 throw new IllegalStateException("Recursive update");
1911 }
1912 }
1913 if (binCount != 0) {
1914 if (binCount >= TREEIFY_THRESHOLD)
1915 treeifyBin(tab, i);
1916 break;
1917 }
1918 }
1919 }
1920 if (delta != 0)
1921 addCount((long)delta, binCount);
1922 return val;
1923 }
1924
1925 /**
1926 * If the specified key is not already associated with a
1927 * (non-null) value, associates it with the given value.
1928 * Otherwise, replaces the value with the results of the given
1929 * remapping function, or removes if {@code null}. The entire
1930 * method invocation is performed atomically. Some attempted
1931 * update operations on this map by other threads may be blocked
1932 * while computation is in progress, so the computation should be
1933 * short and simple, and must not attempt to update any other
1934 * mappings of this Map.
1935 *
1936 * @param key key with which the specified value is to be associated
1937 * @param value the value to use if absent
1938 * @param remappingFunction the function to recompute a value if present
1939 * @return the new value associated with the specified key, or null if none
1940 * @throws NullPointerException if the specified key or the
1941 * remappingFunction is null
1942 * @throws RuntimeException or Error if the remappingFunction does so,
1943 * in which case the mapping is unchanged
1944 */
1945 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1946 if (key == null || value == null || remappingFunction == null)
1947 throw new NullPointerException();
1948 int h = spread(key.hashCode());
1949 V val = null;
1950 int delta = 0;
1951 int binCount = 0;
1952 for (Node<K,V>[] tab = table;;) {
1953 Node<K,V> f; int n, i, fh;
1954 if (tab == null || (n = tab.length) == 0)
1955 tab = initTable();
1956 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1957 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1958 delta = 1;
1959 val = value;
1960 break;
1961 }
1962 }
1963 else if ((fh = f.hash) == MOVED)
1964 tab = helpTransfer(tab, f);
1965 else {
1966 synchronized (f) {
1967 if (tabAt(tab, i) == f) {
1968 if (fh >= 0) {
1969 binCount = 1;
1970 for (Node<K,V> e = f, pred = null;; ++binCount) {
1971 K ek;
1972 if (e.hash == h &&
1973 ((ek = e.key) == key ||
1974 (ek != null && key.equals(ek)))) {
1975 val = remappingFunction.apply(e.val, value);
1976 if (val != null)
1977 e.val = val;
1978 else {
1979 delta = -1;
1980 Node<K,V> en = e.next;
1981 if (pred != null)
1982 pred.next = en;
1983 else
1984 setTabAt(tab, i, en);
1985 }
1986 break;
1987 }
1988 pred = e;
1989 if ((e = e.next) == null) {
1990 delta = 1;
1991 val = value;
1992 pred.next =
1993 new Node<K,V>(h, key, val, null);
1994 break;
1995 }
1996 }
1997 }
1998 else if (f instanceof TreeBin) {
1999 binCount = 2;
2000 TreeBin<K,V> t = (TreeBin<K,V>)f;
2001 TreeNode<K,V> r = t.root;
2002 TreeNode<K,V> p = (r == null) ? null :
2003 r.findTreeNode(h, key, null);
2004 val = (p == null) ? value :
2005 remappingFunction.apply(p.val, value);
2006 if (val != null) {
2007 if (p != null)
2008 p.val = val;
2009 else {
2010 delta = 1;
2011 t.putTreeVal(h, key, val);
2012 }
2013 }
2014 else if (p != null) {
2015 delta = -1;
2016 if (t.removeTreeNode(p))
2017 setTabAt(tab, i, untreeify(t.first));
2018 }
2019 }
2020 else if (f instanceof ReservationNode)
2021 throw new IllegalStateException("Recursive update");
2022 }
2023 }
2024 if (binCount != 0) {
2025 if (binCount >= TREEIFY_THRESHOLD)
2026 treeifyBin(tab, i);
2027 break;
2028 }
2029 }
2030 }
2031 if (delta != 0)
2032 addCount((long)delta, binCount);
2033 return val;
2034 }
2035
2036 // Hashtable legacy methods
2037
2038 /**
2039 * Legacy method testing if some key maps into the specified value
2040 * in this table.
2041 *
2042 * @deprecated This method is identical in functionality to
2043 * {@link #containsValue(Object)}, and exists solely to ensure
2044 * full compatibility with class {@link java.util.Hashtable},
2045 * which supported this method prior to introduction of the
2046 * Java Collections framework.
2047 *
2048 * @param value a value to search for
2049 * @return {@code true} if and only if some key maps to the
2050 * {@code value} argument in this table as
2051 * determined by the {@code equals} method;
2052 * {@code false} otherwise
2053 * @throws NullPointerException if the specified value is null
2054 */
2055 @Deprecated
2056 public boolean contains(Object value) {
2057 return containsValue(value);
2058 }
2059
2060 /**
2061 * Returns an enumeration of the keys in this table.
2062 *
2063 * @return an enumeration of the keys in this table
2064 * @see #keySet()
2065 */
2066 public Enumeration<K> keys() {
2067 Node<K,V>[] t;
2068 int f = (t = table) == null ? 0 : t.length;
2069 return new KeyIterator<K,V>(t, f, 0, f, this);
2070 }
2071
2072 /**
2073 * Returns an enumeration of the values in this table.
2074 *
2075 * @return an enumeration of the values in this table
2076 * @see #values()
2077 */
2078 public Enumeration<V> elements() {
2079 Node<K,V>[] t;
2080 int f = (t = table) == null ? 0 : t.length;
2081 return new ValueIterator<K,V>(t, f, 0, f, this);
2082 }
2083
2084 // ConcurrentHashMap-only methods
2085
2086 /**
2087 * Returns the number of mappings. This method should be used
2088 * instead of {@link #size} because a ConcurrentHashMap may
2089 * contain more mappings than can be represented as an int. The
2090 * value returned is an estimate; the actual count may differ if
2091 * there are concurrent insertions or removals.
2092 *
2093 * @return the number of mappings
2094 * @since 1.8
2095 */
2096 public long mappingCount() {
2097 long n = sumCount();
2098 return (n < 0L) ? 0L : n; // ignore transient negative values
2099 }
2100
2101 /**
2102 * Creates a new {@link Set} backed by a ConcurrentHashMap
2103 * from the given type to {@code Boolean.TRUE}.
2104 *
2105 * @param <K> the element type of the returned set
2106 * @return the new set
2107 * @since 1.8
2108 */
2109 public static <K> KeySetView<K,Boolean> newKeySet() {
2110 return new KeySetView<K,Boolean>
2111 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2112 }
2113
2114 /**
2115 * Creates a new {@link Set} backed by a ConcurrentHashMap
2116 * from the given type to {@code Boolean.TRUE}.
2117 *
2118 * @param initialCapacity The implementation performs internal
2119 * sizing to accommodate this many elements.
2120 * @param <K> the element type of the returned set
2121 * @return the new set
2122 * @throws IllegalArgumentException if the initial capacity of
2123 * elements is negative
2124 * @since 1.8
2125 */
2126 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2127 return new KeySetView<K,Boolean>
2128 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2129 }
2130
2131 /**
2132 * Returns a {@link Set} view of the keys in this map, using the
2133 * given common mapped value for any additions (i.e., {@link
2134 * Collection#add} and {@link Collection#addAll(Collection)}).
2135 * This is of course only appropriate if it is acceptable to use
2136 * the same value for all additions from this view.
2137 *
2138 * @param mappedValue the mapped value to use for any additions
2139 * @return the set view
2140 * @throws NullPointerException if the mappedValue is null
2141 */
2142 public KeySetView<K,V> keySet(V mappedValue) {
2143 if (mappedValue == null)
2144 throw new NullPointerException();
2145 return new KeySetView<K,V>(this, mappedValue);
2146 }
2147
2148 /* ---------------- Special Nodes -------------- */
2149
2150 /**
2151 * A node inserted at head of bins during transfer operations.
2152 */
2153 static final class ForwardingNode<K,V> extends Node<K,V> {
2154 final Node<K,V>[] nextTable;
2155 ForwardingNode(Node<K,V>[] tab) {
2156 super(MOVED, null, null, null);
2157 this.nextTable = tab;
2158 }
2159
2160 Node<K,V> find(int h, Object k) {
2161 // loop to avoid arbitrarily deep recursion on forwarding nodes
2162 outer: for (Node<K,V>[] tab = nextTable;;) {
2163 Node<K,V> e; int n;
2164 if (k == null || tab == null || (n = tab.length) == 0 ||
2165 (e = tabAt(tab, (n - 1) & h)) == null)
2166 return null;
2167 for (;;) {
2168 int eh; K ek;
2169 if ((eh = e.hash) == h &&
2170 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2171 return e;
2172 if (eh < 0) {
2173 if (e instanceof ForwardingNode) {
2174 tab = ((ForwardingNode<K,V>)e).nextTable;
2175 continue outer;
2176 }
2177 else
2178 return e.find(h, k);
2179 }
2180 if ((e = e.next) == null)
2181 return null;
2182 }
2183 }
2184 }
2185 }
2186
2187 /**
2188 * A place-holder node used in computeIfAbsent and compute
2189 */
2190 static final class ReservationNode<K,V> extends Node<K,V> {
2191 ReservationNode() {
2192 super(RESERVED, null, null, null);
2193 }
2194
2195 Node<K,V> find(int h, Object k) {
2196 return null;
2197 }
2198 }
2199
2200 /* ---------------- Table Initialization and Resizing -------------- */
2201
2202 /**
2203 * Returns the stamp bits for resizing a table of size n.
2204 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2205 */
2206 static final int resizeStamp(int n) {
2207 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2208 }
2209
2210 /**
2211 * Initializes table, using the size recorded in sizeCtl.
2212 */
2213 private final Node<K,V>[] initTable() {
2214 Node<K,V>[] tab; int sc;
2215 while ((tab = table) == null || tab.length == 0) {
2216 if ((sc = sizeCtl) < 0)
2217 Thread.yield(); // lost initialization race; just spin
2218 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2219 try {
2220 if ((tab = table) == null || tab.length == 0) {
2221 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2222 @SuppressWarnings("unchecked")
2223 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2224 table = tab = nt;
2225 sc = n - (n >>> 2);
2226 }
2227 } finally {
2228 sizeCtl = sc;
2229 }
2230 break;
2231 }
2232 }
2233 return tab;
2234 }
2235
2236 /**
2237 * Adds to count, and if table is too small and not already
2238 * resizing, initiates transfer. If already resizing, helps
2239 * perform transfer if work is available. Rechecks occupancy
2240 * after a transfer to see if another resize is already needed
2241 * because resizings are lagging additions.
2242 *
2243 * @param x the count to add
2244 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2245 */
2246 private final void addCount(long x, int check) {
2247 CounterCell[] as; long b, s;
2248 if ((as = counterCells) != null ||
2249 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2250 CounterCell a; long v; int m;
2251 boolean uncontended = true;
2252 if (as == null || (m = as.length - 1) < 0 ||
2253 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2254 !(uncontended =
2255 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2256 fullAddCount(x, uncontended);
2257 return;
2258 }
2259 if (check <= 1)
2260 return;
2261 s = sumCount();
2262 }
2263 if (check >= 0) {
2264 Node<K,V>[] tab, nt; int n, sc;
2265 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2266 (n = tab.length) < MAXIMUM_CAPACITY) {
2267 int rs = resizeStamp(n);
2268 if (sc < 0) {
2269 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2270 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2271 transferIndex <= 0)
2272 break;
2273 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2274 transfer(tab, nt);
2275 }
2276 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2277 (rs << RESIZE_STAMP_SHIFT) + 2))
2278 transfer(tab, null);
2279 s = sumCount();
2280 }
2281 }
2282 }
2283
2284 /**
2285 * Helps transfer if a resize is in progress.
2286 */
2287 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2288 Node<K,V>[] nextTab; int sc;
2289 if (tab != null && (f instanceof ForwardingNode) &&
2290 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2291 int rs = resizeStamp(tab.length);
2292 while (nextTab == nextTable && table == tab &&
2293 (sc = sizeCtl) < 0) {
2294 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2295 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2296 break;
2297 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2298 transfer(tab, nextTab);
2299 break;
2300 }
2301 }
2302 return nextTab;
2303 }
2304 return table;
2305 }
2306
2307 /**
2308 * Tries to presize table to accommodate the given number of elements.
2309 *
2310 * @param size number of elements (doesn't need to be perfectly accurate)
2311 */
2312 private final void tryPresize(int size) {
2313 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2314 tableSizeFor(size + (size >>> 1) + 1);
2315 int sc;
2316 while ((sc = sizeCtl) >= 0) {
2317 Node<K,V>[] tab = table; int n;
2318 if (tab == null || (n = tab.length) == 0) {
2319 n = (sc > c) ? sc : c;
2320 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2321 try {
2322 if (table == tab) {
2323 @SuppressWarnings("unchecked")
2324 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2325 table = nt;
2326 sc = n - (n >>> 2);
2327 }
2328 } finally {
2329 sizeCtl = sc;
2330 }
2331 }
2332 }
2333 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2334 break;
2335 else if (tab == table) {
2336 int rs = resizeStamp(n);
2337 if (U.compareAndSwapInt(this, SIZECTL, sc,
2338 (rs << RESIZE_STAMP_SHIFT) + 2))
2339 transfer(tab, null);
2340 }
2341 }
2342 }
2343
2344 /**
2345 * Moves and/or copies the nodes in each bin to new table. See
2346 * above for explanation.
2347 */
2348 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2349 int n = tab.length, stride;
2350 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2351 stride = MIN_TRANSFER_STRIDE; // subdivide range
2352 if (nextTab == null) { // initiating
2353 try {
2354 @SuppressWarnings("unchecked")
2355 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2356 nextTab = nt;
2357 } catch (Throwable ex) { // try to cope with OOME
2358 sizeCtl = Integer.MAX_VALUE;
2359 return;
2360 }
2361 nextTable = nextTab;
2362 transferIndex = n;
2363 }
2364 int nextn = nextTab.length;
2365 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2366 boolean advance = true;
2367 boolean finishing = false; // to ensure sweep before committing nextTab
2368 for (int i = 0, bound = 0;;) {
2369 Node<K,V> f; int fh;
2370 while (advance) {
2371 int nextIndex, nextBound;
2372 if (--i >= bound || finishing)
2373 advance = false;
2374 else if ((nextIndex = transferIndex) <= 0) {
2375 i = -1;
2376 advance = false;
2377 }
2378 else if (U.compareAndSwapInt
2379 (this, TRANSFERINDEX, nextIndex,
2380 nextBound = (nextIndex > stride ?
2381 nextIndex - stride : 0))) {
2382 bound = nextBound;
2383 i = nextIndex - 1;
2384 advance = false;
2385 }
2386 }
2387 if (i < 0 || i >= n || i + n >= nextn) {
2388 int sc;
2389 if (finishing) {
2390 nextTable = null;
2391 table = nextTab;
2392 sizeCtl = (n << 1) - (n >>> 1);
2393 return;
2394 }
2395 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2396 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2397 return;
2398 finishing = advance = true;
2399 i = n; // recheck before commit
2400 }
2401 }
2402 else if ((f = tabAt(tab, i)) == null)
2403 advance = casTabAt(tab, i, null, fwd);
2404 else if ((fh = f.hash) == MOVED)
2405 advance = true; // already processed
2406 else {
2407 synchronized (f) {
2408 if (tabAt(tab, i) == f) {
2409 Node<K,V> ln, hn;
2410 if (fh >= 0) {
2411 int runBit = fh & n;
2412 Node<K,V> lastRun = f;
2413 for (Node<K,V> p = f.next; p != null; p = p.next) {
2414 int b = p.hash & n;
2415 if (b != runBit) {
2416 runBit = b;
2417 lastRun = p;
2418 }
2419 }
2420 if (runBit == 0) {
2421 ln = lastRun;
2422 hn = null;
2423 }
2424 else {
2425 hn = lastRun;
2426 ln = null;
2427 }
2428 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2429 int ph = p.hash; K pk = p.key; V pv = p.val;
2430 if ((ph & n) == 0)
2431 ln = new Node<K,V>(ph, pk, pv, ln);
2432 else
2433 hn = new Node<K,V>(ph, pk, pv, hn);
2434 }
2435 setTabAt(nextTab, i, ln);
2436 setTabAt(nextTab, i + n, hn);
2437 setTabAt(tab, i, fwd);
2438 advance = true;
2439 }
2440 else if (f instanceof TreeBin) {
2441 TreeBin<K,V> t = (TreeBin<K,V>)f;
2442 TreeNode<K,V> lo = null, loTail = null;
2443 TreeNode<K,V> hi = null, hiTail = null;
2444 int lc = 0, hc = 0;
2445 for (Node<K,V> e = t.first; e != null; e = e.next) {
2446 int h = e.hash;
2447 TreeNode<K,V> p = new TreeNode<K,V>
2448 (h, e.key, e.val, null, null);
2449 if ((h & n) == 0) {
2450 if ((p.prev = loTail) == null)
2451 lo = p;
2452 else
2453 loTail.next = p;
2454 loTail = p;
2455 ++lc;
2456 }
2457 else {
2458 if ((p.prev = hiTail) == null)
2459 hi = p;
2460 else
2461 hiTail.next = p;
2462 hiTail = p;
2463 ++hc;
2464 }
2465 }
2466 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2467 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2468 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2469 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2470 setTabAt(nextTab, i, ln);
2471 setTabAt(nextTab, i + n, hn);
2472 setTabAt(tab, i, fwd);
2473 advance = true;
2474 }
2475 }
2476 }
2477 }
2478 }
2479 }
2480
2481 /* ---------------- Counter support -------------- */
2482
2483 /**
2484 * A padded cell for distributing counts. Adapted from LongAdder
2485 * and Striped64. See their internal docs for explanation.
2486 */
2487 @sun.misc.Contended static final class CounterCell {
2488 volatile long value;
2489 CounterCell(long x) { value = x; }
2490 }
2491
2492 final long sumCount() {
2493 CounterCell[] as = counterCells; CounterCell a;
2494 long sum = baseCount;
2495 if (as != null) {
2496 for (int i = 0; i < as.length; ++i) {
2497 if ((a = as[i]) != null)
2498 sum += a.value;
2499 }
2500 }
2501 return sum;
2502 }
2503
2504 // See LongAdder version for explanation
2505 private final void fullAddCount(long x, boolean wasUncontended) {
2506 int h;
2507 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2508 ThreadLocalRandom.localInit(); // force initialization
2509 h = ThreadLocalRandom.getProbe();
2510 wasUncontended = true;
2511 }
2512 boolean collide = false; // True if last slot nonempty
2513 for (;;) {
2514 CounterCell[] as; CounterCell a; int n; long v;
2515 if ((as = counterCells) != null && (n = as.length) > 0) {
2516 if ((a = as[(n - 1) & h]) == null) {
2517 if (cellsBusy == 0) { // Try to attach new Cell
2518 CounterCell r = new CounterCell(x); // Optimistic create
2519 if (cellsBusy == 0 &&
2520 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2521 boolean created = false;
2522 try { // Recheck under lock
2523 CounterCell[] rs; int m, j;
2524 if ((rs = counterCells) != null &&
2525 (m = rs.length) > 0 &&
2526 rs[j = (m - 1) & h] == null) {
2527 rs[j] = r;
2528 created = true;
2529 }
2530 } finally {
2531 cellsBusy = 0;
2532 }
2533 if (created)
2534 break;
2535 continue; // Slot is now non-empty
2536 }
2537 }
2538 collide = false;
2539 }
2540 else if (!wasUncontended) // CAS already known to fail
2541 wasUncontended = true; // Continue after rehash
2542 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2543 break;
2544 else if (counterCells != as || n >= NCPU)
2545 collide = false; // At max size or stale
2546 else if (!collide)
2547 collide = true;
2548 else if (cellsBusy == 0 &&
2549 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2550 try {
2551 if (counterCells == as) {// Expand table unless stale
2552 CounterCell[] rs = new CounterCell[n << 1];
2553 for (int i = 0; i < n; ++i)
2554 rs[i] = as[i];
2555 counterCells = rs;
2556 }
2557 } finally {
2558 cellsBusy = 0;
2559 }
2560 collide = false;
2561 continue; // Retry with expanded table
2562 }
2563 h = ThreadLocalRandom.advanceProbe(h);
2564 }
2565 else if (cellsBusy == 0 && counterCells == as &&
2566 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2567 boolean init = false;
2568 try { // Initialize table
2569 if (counterCells == as) {
2570 CounterCell[] rs = new CounterCell[2];
2571 rs[h & 1] = new CounterCell(x);
2572 counterCells = rs;
2573 init = true;
2574 }
2575 } finally {
2576 cellsBusy = 0;
2577 }
2578 if (init)
2579 break;
2580 }
2581 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2582 break; // Fall back on using base
2583 }
2584 }
2585
2586 /* ---------------- Conversion from/to TreeBins -------------- */
2587
2588 /**
2589 * Replaces all linked nodes in bin at given index unless table is
2590 * too small, in which case resizes instead.
2591 */
2592 private final void treeifyBin(Node<K,V>[] tab, int index) {
2593 Node<K,V> b; int n, sc;
2594 if (tab != null) {
2595 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2596 tryPresize(n << 1);
2597 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2598 synchronized (b) {
2599 if (tabAt(tab, index) == b) {
2600 TreeNode<K,V> hd = null, tl = null;
2601 for (Node<K,V> e = b; e != null; e = e.next) {
2602 TreeNode<K,V> p =
2603 new TreeNode<K,V>(e.hash, e.key, e.val,
2604 null, null);
2605 if ((p.prev = tl) == null)
2606 hd = p;
2607 else
2608 tl.next = p;
2609 tl = p;
2610 }
2611 setTabAt(tab, index, new TreeBin<K,V>(hd));
2612 }
2613 }
2614 }
2615 }
2616 }
2617
2618 /**
2619 * Returns a list on non-TreeNodes replacing those in given list.
2620 */
2621 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2622 Node<K,V> hd = null, tl = null;
2623 for (Node<K,V> q = b; q != null; q = q.next) {
2624 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2625 if (tl == null)
2626 hd = p;
2627 else
2628 tl.next = p;
2629 tl = p;
2630 }
2631 return hd;
2632 }
2633
2634 /* ---------------- TreeNodes -------------- */
2635
2636 /**
2637 * Nodes for use in TreeBins
2638 */
2639 static final class TreeNode<K,V> extends Node<K,V> {
2640 TreeNode<K,V> parent; // red-black tree links
2641 TreeNode<K,V> left;
2642 TreeNode<K,V> right;
2643 TreeNode<K,V> prev; // needed to unlink next upon deletion
2644 boolean red;
2645
2646 TreeNode(int hash, K key, V val, Node<K,V> next,
2647 TreeNode<K,V> parent) {
2648 super(hash, key, val, next);
2649 this.parent = parent;
2650 }
2651
2652 Node<K,V> find(int h, Object k) {
2653 return findTreeNode(h, k, null);
2654 }
2655
2656 /**
2657 * Returns the TreeNode (or null if not found) for the given key
2658 * starting at given root.
2659 */
2660 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2661 if (k != null) {
2662 TreeNode<K,V> p = this;
2663 do {
2664 int ph, dir; K pk; TreeNode<K,V> q;
2665 TreeNode<K,V> pl = p.left, pr = p.right;
2666 if ((ph = p.hash) > h)
2667 p = pl;
2668 else if (ph < h)
2669 p = pr;
2670 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2671 return p;
2672 else if (pl == null)
2673 p = pr;
2674 else if (pr == null)
2675 p = pl;
2676 else if ((kc != null ||
2677 (kc = comparableClassFor(k)) != null) &&
2678 (dir = compareComparables(kc, k, pk)) != 0)
2679 p = (dir < 0) ? pl : pr;
2680 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2681 return q;
2682 else
2683 p = pl;
2684 } while (p != null);
2685 }
2686 return null;
2687 }
2688 }
2689
2690 /* ---------------- TreeBins -------------- */
2691
2692 /**
2693 * TreeNodes used at the heads of bins. TreeBins do not hold user
2694 * keys or values, but instead point to list of TreeNodes and
2695 * their root. They also maintain a parasitic read-write lock
2696 * forcing writers (who hold bin lock) to wait for readers (who do
2697 * not) to complete before tree restructuring operations.
2698 */
2699 static final class TreeBin<K,V> extends Node<K,V> {
2700 TreeNode<K,V> root;
2701 volatile TreeNode<K,V> first;
2702 volatile Thread waiter;
2703 volatile int lockState;
2704 // values for lockState
2705 static final int WRITER = 1; // set while holding write lock
2706 static final int WAITER = 2; // set when waiting for write lock
2707 static final int READER = 4; // increment value for setting read lock
2708
2709 /**
2710 * Tie-breaking utility for ordering insertions when equal
2711 * hashCodes and non-comparable. We don't require a total
2712 * order, just a consistent insertion rule to maintain
2713 * equivalence across rebalancings. Tie-breaking further than
2714 * necessary simplifies testing a bit.
2715 */
2716 static int tieBreakOrder(Object a, Object b) {
2717 int d;
2718 if (a == null || b == null ||
2719 (d = a.getClass().getName().
2720 compareTo(b.getClass().getName())) == 0)
2721 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2722 -1 : 1);
2723 return d;
2724 }
2725
2726 /**
2727 * Creates bin with initial set of nodes headed by b.
2728 */
2729 TreeBin(TreeNode<K,V> b) {
2730 super(TREEBIN, null, null, null);
2731 this.first = b;
2732 TreeNode<K,V> r = null;
2733 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2734 next = (TreeNode<K,V>)x.next;
2735 x.left = x.right = null;
2736 if (r == null) {
2737 x.parent = null;
2738 x.red = false;
2739 r = x;
2740 }
2741 else {
2742 K k = x.key;
2743 int h = x.hash;
2744 Class<?> kc = null;
2745 for (TreeNode<K,V> p = r;;) {
2746 int dir, ph;
2747 K pk = p.key;
2748 if ((ph = p.hash) > h)
2749 dir = -1;
2750 else if (ph < h)
2751 dir = 1;
2752 else if ((kc == null &&
2753 (kc = comparableClassFor(k)) == null) ||
2754 (dir = compareComparables(kc, k, pk)) == 0)
2755 dir = tieBreakOrder(k, pk);
2756 TreeNode<K,V> xp = p;
2757 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2758 x.parent = xp;
2759 if (dir <= 0)
2760 xp.left = x;
2761 else
2762 xp.right = x;
2763 r = balanceInsertion(r, x);
2764 break;
2765 }
2766 }
2767 }
2768 }
2769 this.root = r;
2770 assert checkInvariants(root);
2771 }
2772
2773 /**
2774 * Acquires write lock for tree restructuring.
2775 */
2776 private final void lockRoot() {
2777 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2778 contendedLock(); // offload to separate method
2779 }
2780
2781 /**
2782 * Releases write lock for tree restructuring.
2783 */
2784 private final void unlockRoot() {
2785 lockState = 0;
2786 }
2787
2788 /**
2789 * Possibly blocks awaiting root lock.
2790 */
2791 private final void contendedLock() {
2792 boolean waiting = false;
2793 for (int s;;) {
2794 if (((s = lockState) & ~WAITER) == 0) {
2795 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2796 if (waiting)
2797 waiter = null;
2798 return;
2799 }
2800 }
2801 else if ((s & WAITER) == 0) {
2802 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2803 waiting = true;
2804 waiter = Thread.currentThread();
2805 }
2806 }
2807 else if (waiting)
2808 LockSupport.park(this);
2809 }
2810 }
2811
2812 /**
2813 * Returns matching node or null if none. Tries to search
2814 * using tree comparisons from root, but continues linear
2815 * search when lock not available.
2816 */
2817 final Node<K,V> find(int h, Object k) {
2818 if (k != null) {
2819 for (Node<K,V> e = first; e != null; ) {
2820 int s; K ek;
2821 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2822 if (e.hash == h &&
2823 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2824 return e;
2825 e = e.next;
2826 }
2827 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2828 s + READER)) {
2829 TreeNode<K,V> r, p;
2830 try {
2831 p = ((r = root) == null ? null :
2832 r.findTreeNode(h, k, null));
2833 } finally {
2834 Thread w;
2835 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2836 (READER|WAITER) && (w = waiter) != null)
2837 LockSupport.unpark(w);
2838 }
2839 return p;
2840 }
2841 }
2842 }
2843 return null;
2844 }
2845
2846 /**
2847 * Finds or adds a node.
2848 * @return null if added
2849 */
2850 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2851 Class<?> kc = null;
2852 boolean searched = false;
2853 for (TreeNode<K,V> p = root;;) {
2854 int dir, ph; K pk;
2855 if (p == null) {
2856 first = root = new TreeNode<K,V>(h, k, v, null, null);
2857 break;
2858 }
2859 else if ((ph = p.hash) > h)
2860 dir = -1;
2861 else if (ph < h)
2862 dir = 1;
2863 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2864 return p;
2865 else if ((kc == null &&
2866 (kc = comparableClassFor(k)) == null) ||
2867 (dir = compareComparables(kc, k, pk)) == 0) {
2868 if (!searched) {
2869 TreeNode<K,V> q, ch;
2870 searched = true;
2871 if (((ch = p.left) != null &&
2872 (q = ch.findTreeNode(h, k, kc)) != null) ||
2873 ((ch = p.right) != null &&
2874 (q = ch.findTreeNode(h, k, kc)) != null))
2875 return q;
2876 }
2877 dir = tieBreakOrder(k, pk);
2878 }
2879
2880 TreeNode<K,V> xp = p;
2881 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2882 TreeNode<K,V> x, f = first;
2883 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2884 if (f != null)
2885 f.prev = x;
2886 if (dir <= 0)
2887 xp.left = x;
2888 else
2889 xp.right = x;
2890 if (!xp.red)
2891 x.red = true;
2892 else {
2893 lockRoot();
2894 try {
2895 root = balanceInsertion(root, x);
2896 } finally {
2897 unlockRoot();
2898 }
2899 }
2900 break;
2901 }
2902 }
2903 assert checkInvariants(root);
2904 return null;
2905 }
2906
2907 /**
2908 * Removes the given node, that must be present before this
2909 * call. This is messier than typical red-black deletion code
2910 * because we cannot swap the contents of an interior node
2911 * with a leaf successor that is pinned by "next" pointers
2912 * that are accessible independently of lock. So instead we
2913 * swap the tree linkages.
2914 *
2915 * @return true if now too small, so should be untreeified
2916 */
2917 final boolean removeTreeNode(TreeNode<K,V> p) {
2918 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2919 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2920 TreeNode<K,V> r, rl;
2921 if (pred == null)
2922 first = next;
2923 else
2924 pred.next = next;
2925 if (next != null)
2926 next.prev = pred;
2927 if (first == null) {
2928 root = null;
2929 return true;
2930 }
2931 if ((r = root) == null || r.right == null || // too small
2932 (rl = r.left) == null || rl.left == null)
2933 return true;
2934 lockRoot();
2935 try {
2936 TreeNode<K,V> replacement;
2937 TreeNode<K,V> pl = p.left;
2938 TreeNode<K,V> pr = p.right;
2939 if (pl != null && pr != null) {
2940 TreeNode<K,V> s = pr, sl;
2941 while ((sl = s.left) != null) // find successor
2942 s = sl;
2943 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2944 TreeNode<K,V> sr = s.right;
2945 TreeNode<K,V> pp = p.parent;
2946 if (s == pr) { // p was s's direct parent
2947 p.parent = s;
2948 s.right = p;
2949 }
2950 else {
2951 TreeNode<K,V> sp = s.parent;
2952 if ((p.parent = sp) != null) {
2953 if (s == sp.left)
2954 sp.left = p;
2955 else
2956 sp.right = p;
2957 }
2958 if ((s.right = pr) != null)
2959 pr.parent = s;
2960 }
2961 p.left = null;
2962 if ((p.right = sr) != null)
2963 sr.parent = p;
2964 if ((s.left = pl) != null)
2965 pl.parent = s;
2966 if ((s.parent = pp) == null)
2967 r = s;
2968 else if (p == pp.left)
2969 pp.left = s;
2970 else
2971 pp.right = s;
2972 if (sr != null)
2973 replacement = sr;
2974 else
2975 replacement = p;
2976 }
2977 else if (pl != null)
2978 replacement = pl;
2979 else if (pr != null)
2980 replacement = pr;
2981 else
2982 replacement = p;
2983 if (replacement != p) {
2984 TreeNode<K,V> pp = replacement.parent = p.parent;
2985 if (pp == null)
2986 r = replacement;
2987 else if (p == pp.left)
2988 pp.left = replacement;
2989 else
2990 pp.right = replacement;
2991 p.left = p.right = p.parent = null;
2992 }
2993
2994 root = (p.red) ? r : balanceDeletion(r, replacement);
2995
2996 if (p == replacement) { // detach pointers
2997 TreeNode<K,V> pp;
2998 if ((pp = p.parent) != null) {
2999 if (p == pp.left)
3000 pp.left = null;
3001 else if (p == pp.right)
3002 pp.right = null;
3003 p.parent = null;
3004 }
3005 }
3006 } finally {
3007 unlockRoot();
3008 }
3009 assert checkInvariants(root);
3010 return false;
3011 }
3012
3013 /* ------------------------------------------------------------ */
3014 // Red-black tree methods, all adapted from CLR
3015
3016 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3017 TreeNode<K,V> p) {
3018 TreeNode<K,V> r, pp, rl;
3019 if (p != null && (r = p.right) != null) {
3020 if ((rl = p.right = r.left) != null)
3021 rl.parent = p;
3022 if ((pp = r.parent = p.parent) == null)
3023 (root = r).red = false;
3024 else if (pp.left == p)
3025 pp.left = r;
3026 else
3027 pp.right = r;
3028 r.left = p;
3029 p.parent = r;
3030 }
3031 return root;
3032 }
3033
3034 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3035 TreeNode<K,V> p) {
3036 TreeNode<K,V> l, pp, lr;
3037 if (p != null && (l = p.left) != null) {
3038 if ((lr = p.left = l.right) != null)
3039 lr.parent = p;
3040 if ((pp = l.parent = p.parent) == null)
3041 (root = l).red = false;
3042 else if (pp.right == p)
3043 pp.right = l;
3044 else
3045 pp.left = l;
3046 l.right = p;
3047 p.parent = l;
3048 }
3049 return root;
3050 }
3051
3052 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3053 TreeNode<K,V> x) {
3054 x.red = true;
3055 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3056 if ((xp = x.parent) == null) {
3057 x.red = false;
3058 return x;
3059 }
3060 else if (!xp.red || (xpp = xp.parent) == null)
3061 return root;
3062 if (xp == (xppl = xpp.left)) {
3063 if ((xppr = xpp.right) != null && xppr.red) {
3064 xppr.red = false;
3065 xp.red = false;
3066 xpp.red = true;
3067 x = xpp;
3068 }
3069 else {
3070 if (x == xp.right) {
3071 root = rotateLeft(root, x = xp);
3072 xpp = (xp = x.parent) == null ? null : xp.parent;
3073 }
3074 if (xp != null) {
3075 xp.red = false;
3076 if (xpp != null) {
3077 xpp.red = true;
3078 root = rotateRight(root, xpp);
3079 }
3080 }
3081 }
3082 }
3083 else {
3084 if (xppl != null && xppl.red) {
3085 xppl.red = false;
3086 xp.red = false;
3087 xpp.red = true;
3088 x = xpp;
3089 }
3090 else {
3091 if (x == xp.left) {
3092 root = rotateRight(root, x = xp);
3093 xpp = (xp = x.parent) == null ? null : xp.parent;
3094 }
3095 if (xp != null) {
3096 xp.red = false;
3097 if (xpp != null) {
3098 xpp.red = true;
3099 root = rotateLeft(root, xpp);
3100 }
3101 }
3102 }
3103 }
3104 }
3105 }
3106
3107 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3108 TreeNode<K,V> x) {
3109 for (TreeNode<K,V> xp, xpl, xpr;;) {
3110 if (x == null || x == root)
3111 return root;
3112 else if ((xp = x.parent) == null) {
3113 x.red = false;
3114 return x;
3115 }
3116 else if (x.red) {
3117 x.red = false;
3118 return root;
3119 }
3120 else if ((xpl = xp.left) == x) {
3121 if ((xpr = xp.right) != null && xpr.red) {
3122 xpr.red = false;
3123 xp.red = true;
3124 root = rotateLeft(root, xp);
3125 xpr = (xp = x.parent) == null ? null : xp.right;
3126 }
3127 if (xpr == null)
3128 x = xp;
3129 else {
3130 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3131 if ((sr == null || !sr.red) &&
3132 (sl == null || !sl.red)) {
3133 xpr.red = true;
3134 x = xp;
3135 }
3136 else {
3137 if (sr == null || !sr.red) {
3138 if (sl != null)
3139 sl.red = false;
3140 xpr.red = true;
3141 root = rotateRight(root, xpr);
3142 xpr = (xp = x.parent) == null ?
3143 null : xp.right;
3144 }
3145 if (xpr != null) {
3146 xpr.red = (xp == null) ? false : xp.red;
3147 if ((sr = xpr.right) != null)
3148 sr.red = false;
3149 }
3150 if (xp != null) {
3151 xp.red = false;
3152 root = rotateLeft(root, xp);
3153 }
3154 x = root;
3155 }
3156 }
3157 }
3158 else { // symmetric
3159 if (xpl != null && xpl.red) {
3160 xpl.red = false;
3161 xp.red = true;
3162 root = rotateRight(root, xp);
3163 xpl = (xp = x.parent) == null ? null : xp.left;
3164 }
3165 if (xpl == null)
3166 x = xp;
3167 else {
3168 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3169 if ((sl == null || !sl.red) &&
3170 (sr == null || !sr.red)) {
3171 xpl.red = true;
3172 x = xp;
3173 }
3174 else {
3175 if (sl == null || !sl.red) {
3176 if (sr != null)
3177 sr.red = false;
3178 xpl.red = true;
3179 root = rotateLeft(root, xpl);
3180 xpl = (xp = x.parent) == null ?
3181 null : xp.left;
3182 }
3183 if (xpl != null) {
3184 xpl.red = (xp == null) ? false : xp.red;
3185 if ((sl = xpl.left) != null)
3186 sl.red = false;
3187 }
3188 if (xp != null) {
3189 xp.red = false;
3190 root = rotateRight(root, xp);
3191 }
3192 x = root;
3193 }
3194 }
3195 }
3196 }
3197 }
3198
3199 /**
3200 * Recursive invariant check
3201 */
3202 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3203 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3204 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3205 if (tb != null && tb.next != t)
3206 return false;
3207 if (tn != null && tn.prev != t)
3208 return false;
3209 if (tp != null && t != tp.left && t != tp.right)
3210 return false;
3211 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3212 return false;
3213 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3214 return false;
3215 if (t.red && tl != null && tl.red && tr != null && tr.red)
3216 return false;
3217 if (tl != null && !checkInvariants(tl))
3218 return false;
3219 if (tr != null && !checkInvariants(tr))
3220 return false;
3221 return true;
3222 }
3223
3224 private static final sun.misc.Unsafe U;
3225 private static final long LOCKSTATE;
3226 static {
3227 try {
3228 U = sun.misc.Unsafe.getUnsafe();
3229 Class<?> k = TreeBin.class;
3230 LOCKSTATE = U.objectFieldOffset
3231 (k.getDeclaredField("lockState"));
3232 } catch (Exception e) {
3233 throw new Error(e);
3234 }
3235 }
3236 }
3237
3238 /* ----------------Table Traversal -------------- */
3239
3240 /**
3241 * Records the table, its length, and current traversal index for a
3242 * traverser that must process a region of a forwarded table before
3243 * proceeding with current table.
3244 */
3245 static final class TableStack<K,V> {
3246 int length;
3247 int index;
3248 Node<K,V>[] tab;
3249 TableStack<K,V> next;
3250 }
3251
3252 /**
3253 * Encapsulates traversal for methods such as containsValue; also
3254 * serves as a base class for other iterators and spliterators.
3255 *
3256 * Method advance visits once each still-valid node that was
3257 * reachable upon iterator construction. It might miss some that
3258 * were added to a bin after the bin was visited, which is OK wrt
3259 * consistency guarantees. Maintaining this property in the face
3260 * of possible ongoing resizes requires a fair amount of
3261 * bookkeeping state that is difficult to optimize away amidst
3262 * volatile accesses. Even so, traversal maintains reasonable
3263 * throughput.
3264 *
3265 * Normally, iteration proceeds bin-by-bin traversing lists.
3266 * However, if the table has been resized, then all future steps
3267 * must traverse both the bin at the current index as well as at
3268 * (index + baseSize); and so on for further resizings. To
3269 * paranoically cope with potential sharing by users of iterators
3270 * across threads, iteration terminates if a bounds checks fails
3271 * for a table read.
3272 */
3273 static class Traverser<K,V> {
3274 Node<K,V>[] tab; // current table; updated if resized
3275 Node<K,V> next; // the next entry to use
3276 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3277 int index; // index of bin to use next
3278 int baseIndex; // current index of initial table
3279 int baseLimit; // index bound for initial table
3280 final int baseSize; // initial table size
3281
3282 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3283 this.tab = tab;
3284 this.baseSize = size;
3285 this.baseIndex = this.index = index;
3286 this.baseLimit = limit;
3287 this.next = null;
3288 }
3289
3290 /**
3291 * Advances if possible, returning next valid node, or null if none.
3292 */
3293 final Node<K,V> advance() {
3294 Node<K,V> e;
3295 if ((e = next) != null)
3296 e = e.next;
3297 for (;;) {
3298 Node<K,V>[] t; int i, n; // must use locals in checks
3299 if (e != null)
3300 return next = e;
3301 if (baseIndex >= baseLimit || (t = tab) == null ||
3302 (n = t.length) <= (i = index) || i < 0)
3303 return next = null;
3304 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3305 if (e instanceof ForwardingNode) {
3306 tab = ((ForwardingNode<K,V>)e).nextTable;
3307 e = null;
3308 pushState(t, i, n);
3309 continue;
3310 }
3311 else if (e instanceof TreeBin)
3312 e = ((TreeBin<K,V>)e).first;
3313 else
3314 e = null;
3315 }
3316 if (stack != null)
3317 recoverState(n);
3318 else if ((index = i + baseSize) >= n)
3319 index = ++baseIndex; // visit upper slots if present
3320 }
3321 }
3322
3323 /**
3324 * Saves traversal state upon encountering a forwarding node.
3325 */
3326 private void pushState(Node<K,V>[] t, int i, int n) {
3327 TableStack<K,V> s = spare; // reuse if possible
3328 if (s != null)
3329 spare = s.next;
3330 else
3331 s = new TableStack<K,V>();
3332 s.tab = t;
3333 s.length = n;
3334 s.index = i;
3335 s.next = stack;
3336 stack = s;
3337 }
3338
3339 /**
3340 * Possibly pops traversal state.
3341 *
3342 * @param n length of current table
3343 */
3344 private void recoverState(int n) {
3345 TableStack<K,V> s; int len;
3346 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3347 n = len;
3348 index = s.index;
3349 tab = s.tab;
3350 s.tab = null;
3351 TableStack<K,V> next = s.next;
3352 s.next = spare; // save for reuse
3353 stack = next;
3354 spare = s;
3355 }
3356 if (s == null && (index += baseSize) >= n)
3357 index = ++baseIndex;
3358 }
3359 }
3360
3361 /**
3362 * Base of key, value, and entry Iterators. Adds fields to
3363 * Traverser to support iterator.remove.
3364 */
3365 static class BaseIterator<K,V> extends Traverser<K,V> {
3366 final ConcurrentHashMap<K,V> map;
3367 Node<K,V> lastReturned;
3368 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3369 ConcurrentHashMap<K,V> map) {
3370 super(tab, size, index, limit);
3371 this.map = map;
3372 advance();
3373 }
3374
3375 public final boolean hasNext() { return next != null; }
3376 public final boolean hasMoreElements() { return next != null; }
3377
3378 public final void remove() {
3379 Node<K,V> p;
3380 if ((p = lastReturned) == null)
3381 throw new IllegalStateException();
3382 lastReturned = null;
3383 map.replaceNode(p.key, null, null);
3384 }
3385 }
3386
3387 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3388 implements Iterator<K>, Enumeration<K> {
3389 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3390 ConcurrentHashMap<K,V> map) {
3391 super(tab, index, size, limit, map);
3392 }
3393
3394 public final K next() {
3395 Node<K,V> p;
3396 if ((p = next) == null)
3397 throw new NoSuchElementException();
3398 K k = p.key;
3399 lastReturned = p;
3400 advance();
3401 return k;
3402 }
3403
3404 public final K nextElement() { return next(); }
3405 }
3406
3407 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3408 implements Iterator<V>, Enumeration<V> {
3409 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3410 ConcurrentHashMap<K,V> map) {
3411 super(tab, index, size, limit, map);
3412 }
3413
3414 public final V next() {
3415 Node<K,V> p;
3416 if ((p = next) == null)
3417 throw new NoSuchElementException();
3418 V v = p.val;
3419 lastReturned = p;
3420 advance();
3421 return v;
3422 }
3423
3424 public final V nextElement() { return next(); }
3425 }
3426
3427 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3428 implements Iterator<Map.Entry<K,V>> {
3429 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3430 ConcurrentHashMap<K,V> map) {
3431 super(tab, index, size, limit, map);
3432 }
3433
3434 public final Map.Entry<K,V> next() {
3435 Node<K,V> p;
3436 if ((p = next) == null)
3437 throw new NoSuchElementException();
3438 K k = p.key;
3439 V v = p.val;
3440 lastReturned = p;
3441 advance();
3442 return new MapEntry<K,V>(k, v, map);
3443 }
3444 }
3445
3446 /**
3447 * Exported Entry for EntryIterator
3448 */
3449 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3450 final K key; // non-null
3451 V val; // non-null
3452 final ConcurrentHashMap<K,V> map;
3453 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3454 this.key = key;
3455 this.val = val;
3456 this.map = map;
3457 }
3458 public K getKey() { return key; }
3459 public V getValue() { return val; }
3460 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3461 public String toString() { return key + "=" + val; }
3462
3463 public boolean equals(Object o) {
3464 Object k, v; Map.Entry<?,?> e;
3465 return ((o instanceof Map.Entry) &&
3466 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3467 (v = e.getValue()) != null &&
3468 (k == key || k.equals(key)) &&
3469 (v == val || v.equals(val)));
3470 }
3471
3472 /**
3473 * Sets our entry's value and writes through to the map. The
3474 * value to return is somewhat arbitrary here. Since we do not
3475 * necessarily track asynchronous changes, the most recent
3476 * "previous" value could be different from what we return (or
3477 * could even have been removed, in which case the put will
3478 * re-establish). We do not and cannot guarantee more.
3479 */
3480 public V setValue(V value) {
3481 if (value == null) throw new NullPointerException();
3482 V v = val;
3483 val = value;
3484 map.put(key, value);
3485 return v;
3486 }
3487 }
3488
3489 static final class KeySpliterator<K,V> extends Traverser<K,V>
3490 implements Spliterator<K> {
3491 long est; // size estimate
3492 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3493 long est) {
3494 super(tab, size, index, limit);
3495 this.est = est;
3496 }
3497
3498 public Spliterator<K> trySplit() {
3499 int i, f, h;
3500 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3501 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3502 f, est >>>= 1);
3503 }
3504
3505 public void forEachRemaining(Consumer<? super K> action) {
3506 if (action == null) throw new NullPointerException();
3507 for (Node<K,V> p; (p = advance()) != null;)
3508 action.accept(p.key);
3509 }
3510
3511 public boolean tryAdvance(Consumer<? super K> action) {
3512 if (action == null) throw new NullPointerException();
3513 Node<K,V> p;
3514 if ((p = advance()) == null)
3515 return false;
3516 action.accept(p.key);
3517 return true;
3518 }
3519
3520 public long estimateSize() { return est; }
3521
3522 public int characteristics() {
3523 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3524 Spliterator.NONNULL;
3525 }
3526 }
3527
3528 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3529 implements Spliterator<V> {
3530 long est; // size estimate
3531 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3532 long est) {
3533 super(tab, size, index, limit);
3534 this.est = est;
3535 }
3536
3537 public Spliterator<V> trySplit() {
3538 int i, f, h;
3539 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3540 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3541 f, est >>>= 1);
3542 }
3543
3544 public void forEachRemaining(Consumer<? super V> action) {
3545 if (action == null) throw new NullPointerException();
3546 for (Node<K,V> p; (p = advance()) != null;)
3547 action.accept(p.val);
3548 }
3549
3550 public boolean tryAdvance(Consumer<? super V> action) {
3551 if (action == null) throw new NullPointerException();
3552 Node<K,V> p;
3553 if ((p = advance()) == null)
3554 return false;
3555 action.accept(p.val);
3556 return true;
3557 }
3558
3559 public long estimateSize() { return est; }
3560
3561 public int characteristics() {
3562 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3563 }
3564 }
3565
3566 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3567 implements Spliterator<Map.Entry<K,V>> {
3568 final ConcurrentHashMap<K,V> map; // To export MapEntry
3569 long est; // size estimate
3570 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3571 long est, ConcurrentHashMap<K,V> map) {
3572 super(tab, size, index, limit);
3573 this.map = map;
3574 this.est = est;
3575 }
3576
3577 public Spliterator<Map.Entry<K,V>> trySplit() {
3578 int i, f, h;
3579 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3580 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3581 f, est >>>= 1, map);
3582 }
3583
3584 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3585 if (action == null) throw new NullPointerException();
3586 for (Node<K,V> p; (p = advance()) != null; )
3587 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3588 }
3589
3590 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3591 if (action == null) throw new NullPointerException();
3592 Node<K,V> p;
3593 if ((p = advance()) == null)
3594 return false;
3595 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3596 return true;
3597 }
3598
3599 public long estimateSize() { return est; }
3600
3601 public int characteristics() {
3602 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3603 Spliterator.NONNULL;
3604 }
3605 }
3606
3607 // Parallel bulk operations
3608
3609 /**
3610 * Computes initial batch value for bulk tasks. The returned value
3611 * is approximately exp2 of the number of times (minus one) to
3612 * split task by two before executing leaf action. This value is
3613 * faster to compute and more convenient to use as a guide to
3614 * splitting than is the depth, since it is used while dividing by
3615 * two anyway.
3616 */
3617 final int batchFor(long b) {
3618 long n;
3619 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3620 return 0;
3621 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3622 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3623 }
3624
3625 /**
3626 * Performs the given action for each (key, value).
3627 *
3628 * @param parallelismThreshold the (estimated) number of elements
3629 * needed for this operation to be executed in parallel
3630 * @param action the action
3631 * @since 1.8
3632 */
3633 public void forEach(long parallelismThreshold,
3634 BiConsumer<? super K,? super V> action) {
3635 if (action == null) throw new NullPointerException();
3636 new ForEachMappingTask<K,V>
3637 (null, batchFor(parallelismThreshold), 0, 0, table,
3638 action).invoke();
3639 }
3640
3641 /**
3642 * Performs the given action for each non-null transformation
3643 * of each (key, value).
3644 *
3645 * @param parallelismThreshold the (estimated) number of elements
3646 * needed for this operation to be executed in parallel
3647 * @param transformer a function returning the transformation
3648 * for an element, or null if there is no transformation (in
3649 * which case the action is not applied)
3650 * @param action the action
3651 * @param <U> the return type of the transformer
3652 * @since 1.8
3653 */
3654 public <U> void forEach(long parallelismThreshold,
3655 BiFunction<? super K, ? super V, ? extends U> transformer,
3656 Consumer<? super U> action) {
3657 if (transformer == null || action == null)
3658 throw new NullPointerException();
3659 new ForEachTransformedMappingTask<K,V,U>
3660 (null, batchFor(parallelismThreshold), 0, 0, table,
3661 transformer, action).invoke();
3662 }
3663
3664 /**
3665 * Returns a non-null result from applying the given search
3666 * function on each (key, value), or null if none. Upon
3667 * success, further element processing is suppressed and the
3668 * results of any other parallel invocations of the search
3669 * function are ignored.
3670 *
3671 * @param parallelismThreshold the (estimated) number of elements
3672 * needed for this operation to be executed in parallel
3673 * @param searchFunction a function returning a non-null
3674 * result on success, else null
3675 * @param <U> the return type of the search function
3676 * @return a non-null result from applying the given search
3677 * function on each (key, value), or null if none
3678 * @since 1.8
3679 */
3680 public <U> U search(long parallelismThreshold,
3681 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3682 if (searchFunction == null) throw new NullPointerException();
3683 return new SearchMappingsTask<K,V,U>
3684 (null, batchFor(parallelismThreshold), 0, 0, table,
3685 searchFunction, new AtomicReference<U>()).invoke();
3686 }
3687
3688 /**
3689 * Returns the result of accumulating the given transformation
3690 * of all (key, value) pairs using the given reducer to
3691 * combine values, or null if none.
3692 *
3693 * @param parallelismThreshold the (estimated) number of elements
3694 * needed for this operation to be executed in parallel
3695 * @param transformer a function returning the transformation
3696 * for an element, or null if there is no transformation (in
3697 * which case it is not combined)
3698 * @param reducer a commutative associative combining function
3699 * @param <U> the return type of the transformer
3700 * @return the result of accumulating the given transformation
3701 * of all (key, value) pairs
3702 * @since 1.8
3703 */
3704 public <U> U reduce(long parallelismThreshold,
3705 BiFunction<? super K, ? super V, ? extends U> transformer,
3706 BiFunction<? super U, ? super U, ? extends U> reducer) {
3707 if (transformer == null || reducer == null)
3708 throw new NullPointerException();
3709 return new MapReduceMappingsTask<K,V,U>
3710 (null, batchFor(parallelismThreshold), 0, 0, table,
3711 null, transformer, reducer).invoke();
3712 }
3713
3714 /**
3715 * Returns the result of accumulating the given transformation
3716 * of all (key, value) pairs using the given reducer to
3717 * combine values, and the given basis as an identity value.
3718 *
3719 * @param parallelismThreshold the (estimated) number of elements
3720 * needed for this operation to be executed in parallel
3721 * @param transformer a function returning the transformation
3722 * for an element
3723 * @param basis the identity (initial default value) for the reduction
3724 * @param reducer a commutative associative combining function
3725 * @return the result of accumulating the given transformation
3726 * of all (key, value) pairs
3727 * @since 1.8
3728 */
3729 public double reduceToDouble(long parallelismThreshold,
3730 ToDoubleBiFunction<? super K, ? super V> transformer,
3731 double basis,
3732 DoubleBinaryOperator reducer) {
3733 if (transformer == null || reducer == null)
3734 throw new NullPointerException();
3735 return new MapReduceMappingsToDoubleTask<K,V>
3736 (null, batchFor(parallelismThreshold), 0, 0, table,
3737 null, transformer, basis, reducer).invoke();
3738 }
3739
3740 /**
3741 * Returns the result of accumulating the given transformation
3742 * of all (key, value) pairs using the given reducer to
3743 * combine values, and the given basis as an identity value.
3744 *
3745 * @param parallelismThreshold the (estimated) number of elements
3746 * needed for this operation to be executed in parallel
3747 * @param transformer a function returning the transformation
3748 * for an element
3749 * @param basis the identity (initial default value) for the reduction
3750 * @param reducer a commutative associative combining function
3751 * @return the result of accumulating the given transformation
3752 * of all (key, value) pairs
3753 * @since 1.8
3754 */
3755 public long reduceToLong(long parallelismThreshold,
3756 ToLongBiFunction<? super K, ? super V> transformer,
3757 long basis,
3758 LongBinaryOperator reducer) {
3759 if (transformer == null || reducer == null)
3760 throw new NullPointerException();
3761 return new MapReduceMappingsToLongTask<K,V>
3762 (null, batchFor(parallelismThreshold), 0, 0, table,
3763 null, transformer, basis, reducer).invoke();
3764 }
3765
3766 /**
3767 * Returns the result of accumulating the given transformation
3768 * of all (key, value) pairs using the given reducer to
3769 * combine values, and the given basis as an identity value.
3770 *
3771 * @param parallelismThreshold the (estimated) number of elements
3772 * needed for this operation to be executed in parallel
3773 * @param transformer a function returning the transformation
3774 * for an element
3775 * @param basis the identity (initial default value) for the reduction
3776 * @param reducer a commutative associative combining function
3777 * @return the result of accumulating the given transformation
3778 * of all (key, value) pairs
3779 * @since 1.8
3780 */
3781 public int reduceToInt(long parallelismThreshold,
3782 ToIntBiFunction<? super K, ? super V> transformer,
3783 int basis,
3784 IntBinaryOperator reducer) {
3785 if (transformer == null || reducer == null)
3786 throw new NullPointerException();
3787 return new MapReduceMappingsToIntTask<K,V>
3788 (null, batchFor(parallelismThreshold), 0, 0, table,
3789 null, transformer, basis, reducer).invoke();
3790 }
3791
3792 /**
3793 * Performs the given action for each key.
3794 *
3795 * @param parallelismThreshold the (estimated) number of elements
3796 * needed for this operation to be executed in parallel
3797 * @param action the action
3798 * @since 1.8
3799 */
3800 public void forEachKey(long parallelismThreshold,
3801 Consumer<? super K> action) {
3802 if (action == null) throw new NullPointerException();
3803 new ForEachKeyTask<K,V>
3804 (null, batchFor(parallelismThreshold), 0, 0, table,
3805 action).invoke();
3806 }
3807
3808 /**
3809 * Performs the given action for each non-null transformation
3810 * of each key.
3811 *
3812 * @param parallelismThreshold the (estimated) number of elements
3813 * needed for this operation to be executed in parallel
3814 * @param transformer a function returning the transformation
3815 * for an element, or null if there is no transformation (in
3816 * which case the action is not applied)
3817 * @param action the action
3818 * @param <U> the return type of the transformer
3819 * @since 1.8
3820 */
3821 public <U> void forEachKey(long parallelismThreshold,
3822 Function<? super K, ? extends U> transformer,
3823 Consumer<? super U> action) {
3824 if (transformer == null || action == null)
3825 throw new NullPointerException();
3826 new ForEachTransformedKeyTask<K,V,U>
3827 (null, batchFor(parallelismThreshold), 0, 0, table,
3828 transformer, action).invoke();
3829 }
3830
3831 /**
3832 * Returns a non-null result from applying the given search
3833 * function on each key, or null if none. Upon success,
3834 * further element processing is suppressed and the results of
3835 * any other parallel invocations of the search function are
3836 * ignored.
3837 *
3838 * @param parallelismThreshold the (estimated) number of elements
3839 * needed for this operation to be executed in parallel
3840 * @param searchFunction a function returning a non-null
3841 * result on success, else null
3842 * @param <U> the return type of the search function
3843 * @return a non-null result from applying the given search
3844 * function on each key, or null if none
3845 * @since 1.8
3846 */
3847 public <U> U searchKeys(long parallelismThreshold,
3848 Function<? super K, ? extends U> searchFunction) {
3849 if (searchFunction == null) throw new NullPointerException();
3850 return new SearchKeysTask<K,V,U>
3851 (null, batchFor(parallelismThreshold), 0, 0, table,
3852 searchFunction, new AtomicReference<U>()).invoke();
3853 }
3854
3855 /**
3856 * Returns the result of accumulating all keys using the given
3857 * reducer to combine values, or null if none.
3858 *
3859 * @param parallelismThreshold the (estimated) number of elements
3860 * needed for this operation to be executed in parallel
3861 * @param reducer a commutative associative combining function
3862 * @return the result of accumulating all keys using the given
3863 * reducer to combine values, or null if none
3864 * @since 1.8
3865 */
3866 public K reduceKeys(long parallelismThreshold,
3867 BiFunction<? super K, ? super K, ? extends K> reducer) {
3868 if (reducer == null) throw new NullPointerException();
3869 return new ReduceKeysTask<K,V>
3870 (null, batchFor(parallelismThreshold), 0, 0, table,
3871 null, reducer).invoke();
3872 }
3873
3874 /**
3875 * Returns the result of accumulating the given transformation
3876 * of all keys using the given reducer to combine values, or
3877 * null if none.
3878 *
3879 * @param parallelismThreshold the (estimated) number of elements
3880 * needed for this operation to be executed in parallel
3881 * @param transformer a function returning the transformation
3882 * for an element, or null if there is no transformation (in
3883 * which case it is not combined)
3884 * @param reducer a commutative associative combining function
3885 * @param <U> the return type of the transformer
3886 * @return the result of accumulating the given transformation
3887 * of all keys
3888 * @since 1.8
3889 */
3890 public <U> U reduceKeys(long parallelismThreshold,
3891 Function<? super K, ? extends U> transformer,
3892 BiFunction<? super U, ? super U, ? extends U> reducer) {
3893 if (transformer == null || reducer == null)
3894 throw new NullPointerException();
3895 return new MapReduceKeysTask<K,V,U>
3896 (null, batchFor(parallelismThreshold), 0, 0, table,
3897 null, transformer, reducer).invoke();
3898 }
3899
3900 /**
3901 * Returns the result of accumulating the given transformation
3902 * of all keys using the given reducer to combine values, and
3903 * the given basis as an identity value.
3904 *
3905 * @param parallelismThreshold the (estimated) number of elements
3906 * needed for this operation to be executed in parallel
3907 * @param transformer a function returning the transformation
3908 * for an element
3909 * @param basis the identity (initial default value) for the reduction
3910 * @param reducer a commutative associative combining function
3911 * @return the result of accumulating the given transformation
3912 * of all keys
3913 * @since 1.8
3914 */
3915 public double reduceKeysToDouble(long parallelismThreshold,
3916 ToDoubleFunction<? super K> transformer,
3917 double basis,
3918 DoubleBinaryOperator reducer) {
3919 if (transformer == null || reducer == null)
3920 throw new NullPointerException();
3921 return new MapReduceKeysToDoubleTask<K,V>
3922 (null, batchFor(parallelismThreshold), 0, 0, table,
3923 null, transformer, basis, reducer).invoke();
3924 }
3925
3926 /**
3927 * Returns the result of accumulating the given transformation
3928 * of all keys using the given reducer to combine values, and
3929 * the given basis as an identity value.
3930 *
3931 * @param parallelismThreshold the (estimated) number of elements
3932 * needed for this operation to be executed in parallel
3933 * @param transformer a function returning the transformation
3934 * for an element
3935 * @param basis the identity (initial default value) for the reduction
3936 * @param reducer a commutative associative combining function
3937 * @return the result of accumulating the given transformation
3938 * of all keys
3939 * @since 1.8
3940 */
3941 public long reduceKeysToLong(long parallelismThreshold,
3942 ToLongFunction<? super K> transformer,
3943 long basis,
3944 LongBinaryOperator reducer) {
3945 if (transformer == null || reducer == null)
3946 throw new NullPointerException();
3947 return new MapReduceKeysToLongTask<K,V>
3948 (null, batchFor(parallelismThreshold), 0, 0, table,
3949 null, transformer, basis, reducer).invoke();
3950 }
3951
3952 /**
3953 * Returns the result of accumulating the given transformation
3954 * of all keys using the given reducer to combine values, and
3955 * the given basis as an identity value.
3956 *
3957 * @param parallelismThreshold the (estimated) number of elements
3958 * needed for this operation to be executed in parallel
3959 * @param transformer a function returning the transformation
3960 * for an element
3961 * @param basis the identity (initial default value) for the reduction
3962 * @param reducer a commutative associative combining function
3963 * @return the result of accumulating the given transformation
3964 * of all keys
3965 * @since 1.8
3966 */
3967 public int reduceKeysToInt(long parallelismThreshold,
3968 ToIntFunction<? super K> transformer,
3969 int basis,
3970 IntBinaryOperator reducer) {
3971 if (transformer == null || reducer == null)
3972 throw new NullPointerException();
3973 return new MapReduceKeysToIntTask<K,V>
3974 (null, batchFor(parallelismThreshold), 0, 0, table,
3975 null, transformer, basis, reducer).invoke();
3976 }
3977
3978 /**
3979 * Performs the given action for each value.
3980 *
3981 * @param parallelismThreshold the (estimated) number of elements
3982 * needed for this operation to be executed in parallel
3983 * @param action the action
3984 * @since 1.8
3985 */
3986 public void forEachValue(long parallelismThreshold,
3987 Consumer<? super V> action) {
3988 if (action == null)
3989 throw new NullPointerException();
3990 new ForEachValueTask<K,V>
3991 (null, batchFor(parallelismThreshold), 0, 0, table,
3992 action).invoke();
3993 }
3994
3995 /**
3996 * Performs the given action for each non-null transformation
3997 * of each value.
3998 *
3999 * @param parallelismThreshold the (estimated) number of elements
4000 * needed for this operation to be executed in parallel
4001 * @param transformer a function returning the transformation
4002 * for an element, or null if there is no transformation (in
4003 * which case the action is not applied)
4004 * @param action the action
4005 * @param <U> the return type of the transformer
4006 * @since 1.8
4007 */
4008 public <U> void forEachValue(long parallelismThreshold,
4009 Function<? super V, ? extends U> transformer,
4010 Consumer<? super U> action) {
4011 if (transformer == null || action == null)
4012 throw new NullPointerException();
4013 new ForEachTransformedValueTask<K,V,U>
4014 (null, batchFor(parallelismThreshold), 0, 0, table,
4015 transformer, action).invoke();
4016 }
4017
4018 /**
4019 * Returns a non-null result from applying the given search
4020 * function on each value, or null if none. Upon success,
4021 * further element processing is suppressed and the results of
4022 * any other parallel invocations of the search function are
4023 * ignored.
4024 *
4025 * @param parallelismThreshold the (estimated) number of elements
4026 * needed for this operation to be executed in parallel
4027 * @param searchFunction a function returning a non-null
4028 * result on success, else null
4029 * @param <U> the return type of the search function
4030 * @return a non-null result from applying the given search
4031 * function on each value, or null if none
4032 * @since 1.8
4033 */
4034 public <U> U searchValues(long parallelismThreshold,
4035 Function<? super V, ? extends U> searchFunction) {
4036 if (searchFunction == null) throw new NullPointerException();
4037 return new SearchValuesTask<K,V,U>
4038 (null, batchFor(parallelismThreshold), 0, 0, table,
4039 searchFunction, new AtomicReference<U>()).invoke();
4040 }
4041
4042 /**
4043 * Returns the result of accumulating all values using the
4044 * given reducer to combine values, or null if none.
4045 *
4046 * @param parallelismThreshold the (estimated) number of elements
4047 * needed for this operation to be executed in parallel
4048 * @param reducer a commutative associative combining function
4049 * @return the result of accumulating all values
4050 * @since 1.8
4051 */
4052 public V reduceValues(long parallelismThreshold,
4053 BiFunction<? super V, ? super V, ? extends V> reducer) {
4054 if (reducer == null) throw new NullPointerException();
4055 return new ReduceValuesTask<K,V>
4056 (null, batchFor(parallelismThreshold), 0, 0, table,
4057 null, reducer).invoke();
4058 }
4059
4060 /**
4061 * Returns the result of accumulating the given transformation
4062 * of all values using the given reducer to combine values, or
4063 * null if none.
4064 *
4065 * @param parallelismThreshold the (estimated) number of elements
4066 * needed for this operation to be executed in parallel
4067 * @param transformer a function returning the transformation
4068 * for an element, or null if there is no transformation (in
4069 * which case it is not combined)
4070 * @param reducer a commutative associative combining function
4071 * @param <U> the return type of the transformer
4072 * @return the result of accumulating the given transformation
4073 * of all values
4074 * @since 1.8
4075 */
4076 public <U> U reduceValues(long parallelismThreshold,
4077 Function<? super V, ? extends U> transformer,
4078 BiFunction<? super U, ? super U, ? extends U> reducer) {
4079 if (transformer == null || reducer == null)
4080 throw new NullPointerException();
4081 return new MapReduceValuesTask<K,V,U>
4082 (null, batchFor(parallelismThreshold), 0, 0, table,
4083 null, transformer, reducer).invoke();
4084 }
4085
4086 /**
4087 * Returns the result of accumulating the given transformation
4088 * of all values using the given reducer to combine values,
4089 * and the given basis as an identity value.
4090 *
4091 * @param parallelismThreshold the (estimated) number of elements
4092 * needed for this operation to be executed in parallel
4093 * @param transformer a function returning the transformation
4094 * for an element
4095 * @param basis the identity (initial default value) for the reduction
4096 * @param reducer a commutative associative combining function
4097 * @return the result of accumulating the given transformation
4098 * of all values
4099 * @since 1.8
4100 */
4101 public double reduceValuesToDouble(long parallelismThreshold,
4102 ToDoubleFunction<? super V> transformer,
4103 double basis,
4104 DoubleBinaryOperator reducer) {
4105 if (transformer == null || reducer == null)
4106 throw new NullPointerException();
4107 return new MapReduceValuesToDoubleTask<K,V>
4108 (null, batchFor(parallelismThreshold), 0, 0, table,
4109 null, transformer, basis, reducer).invoke();
4110 }
4111
4112 /**
4113 * Returns the result of accumulating the given transformation
4114 * of all values using the given reducer to combine values,
4115 * and the given basis as an identity value.
4116 *
4117 * @param parallelismThreshold the (estimated) number of elements
4118 * needed for this operation to be executed in parallel
4119 * @param transformer a function returning the transformation
4120 * for an element
4121 * @param basis the identity (initial default value) for the reduction
4122 * @param reducer a commutative associative combining function
4123 * @return the result of accumulating the given transformation
4124 * of all values
4125 * @since 1.8
4126 */
4127 public long reduceValuesToLong(long parallelismThreshold,
4128 ToLongFunction<? super V> transformer,
4129 long basis,
4130 LongBinaryOperator reducer) {
4131 if (transformer == null || reducer == null)
4132 throw new NullPointerException();
4133 return new MapReduceValuesToLongTask<K,V>
4134 (null, batchFor(parallelismThreshold), 0, 0, table,
4135 null, transformer, basis, reducer).invoke();
4136 }
4137
4138 /**
4139 * Returns the result of accumulating the given transformation
4140 * of all values using the given reducer to combine values,
4141 * and the given basis as an identity value.
4142 *
4143 * @param parallelismThreshold the (estimated) number of elements
4144 * needed for this operation to be executed in parallel
4145 * @param transformer a function returning the transformation
4146 * for an element
4147 * @param basis the identity (initial default value) for the reduction
4148 * @param reducer a commutative associative combining function
4149 * @return the result of accumulating the given transformation
4150 * of all values
4151 * @since 1.8
4152 */
4153 public int reduceValuesToInt(long parallelismThreshold,
4154 ToIntFunction<? super V> transformer,
4155 int basis,
4156 IntBinaryOperator reducer) {
4157 if (transformer == null || reducer == null)
4158 throw new NullPointerException();
4159 return new MapReduceValuesToIntTask<K,V>
4160 (null, batchFor(parallelismThreshold), 0, 0, table,
4161 null, transformer, basis, reducer).invoke();
4162 }
4163
4164 /**
4165 * Performs the given action for each entry.
4166 *
4167 * @param parallelismThreshold the (estimated) number of elements
4168 * needed for this operation to be executed in parallel
4169 * @param action the action
4170 * @since 1.8
4171 */
4172 public void forEachEntry(long parallelismThreshold,
4173 Consumer<? super Map.Entry<K,V>> action) {
4174 if (action == null) throw new NullPointerException();
4175 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4176 action).invoke();
4177 }
4178
4179 /**
4180 * Performs the given action for each non-null transformation
4181 * of each entry.
4182 *
4183 * @param parallelismThreshold the (estimated) number of elements
4184 * needed for this operation to be executed in parallel
4185 * @param transformer a function returning the transformation
4186 * for an element, or null if there is no transformation (in
4187 * which case the action is not applied)
4188 * @param action the action
4189 * @param <U> the return type of the transformer
4190 * @since 1.8
4191 */
4192 public <U> void forEachEntry(long parallelismThreshold,
4193 Function<Map.Entry<K,V>, ? extends U> transformer,
4194 Consumer<? super U> action) {
4195 if (transformer == null || action == null)
4196 throw new NullPointerException();
4197 new ForEachTransformedEntryTask<K,V,U>
4198 (null, batchFor(parallelismThreshold), 0, 0, table,
4199 transformer, action).invoke();
4200 }
4201
4202 /**
4203 * Returns a non-null result from applying the given search
4204 * function on each entry, or null if none. Upon success,
4205 * further element processing is suppressed and the results of
4206 * any other parallel invocations of the search function are
4207 * ignored.
4208 *
4209 * @param parallelismThreshold the (estimated) number of elements
4210 * needed for this operation to be executed in parallel
4211 * @param searchFunction a function returning a non-null
4212 * result on success, else null
4213 * @param <U> the return type of the search function
4214 * @return a non-null result from applying the given search
4215 * function on each entry, or null if none
4216 * @since 1.8
4217 */
4218 public <U> U searchEntries(long parallelismThreshold,
4219 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4220 if (searchFunction == null) throw new NullPointerException();
4221 return new SearchEntriesTask<K,V,U>
4222 (null, batchFor(parallelismThreshold), 0, 0, table,
4223 searchFunction, new AtomicReference<U>()).invoke();
4224 }
4225
4226 /**
4227 * Returns the result of accumulating all entries using the
4228 * given reducer to combine values, or null if none.
4229 *
4230 * @param parallelismThreshold the (estimated) number of elements
4231 * needed for this operation to be executed in parallel
4232 * @param reducer a commutative associative combining function
4233 * @return the result of accumulating all entries
4234 * @since 1.8
4235 */
4236 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4237 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4238 if (reducer == null) throw new NullPointerException();
4239 return new ReduceEntriesTask<K,V>
4240 (null, batchFor(parallelismThreshold), 0, 0, table,
4241 null, reducer).invoke();
4242 }
4243
4244 /**
4245 * Returns the result of accumulating the given transformation
4246 * of all entries using the given reducer to combine values,
4247 * or null if none.
4248 *
4249 * @param parallelismThreshold the (estimated) number of elements
4250 * needed for this operation to be executed in parallel
4251 * @param transformer a function returning the transformation
4252 * for an element, or null if there is no transformation (in
4253 * which case it is not combined)
4254 * @param reducer a commutative associative combining function
4255 * @param <U> the return type of the transformer
4256 * @return the result of accumulating the given transformation
4257 * of all entries
4258 * @since 1.8
4259 */
4260 public <U> U reduceEntries(long parallelismThreshold,
4261 Function<Map.Entry<K,V>, ? extends U> transformer,
4262 BiFunction<? super U, ? super U, ? extends U> reducer) {
4263 if (transformer == null || reducer == null)
4264 throw new NullPointerException();
4265 return new MapReduceEntriesTask<K,V,U>
4266 (null, batchFor(parallelismThreshold), 0, 0, table,
4267 null, transformer, reducer).invoke();
4268 }
4269
4270 /**
4271 * Returns the result of accumulating the given transformation
4272 * of all entries using the given reducer to combine values,
4273 * and the given basis as an identity value.
4274 *
4275 * @param parallelismThreshold the (estimated) number of elements
4276 * needed for this operation to be executed in parallel
4277 * @param transformer a function returning the transformation
4278 * for an element
4279 * @param basis the identity (initial default value) for the reduction
4280 * @param reducer a commutative associative combining function
4281 * @return the result of accumulating the given transformation
4282 * of all entries
4283 * @since 1.8
4284 */
4285 public double reduceEntriesToDouble(long parallelismThreshold,
4286 ToDoubleFunction<Map.Entry<K,V>> transformer,
4287 double basis,
4288 DoubleBinaryOperator reducer) {
4289 if (transformer == null || reducer == null)
4290 throw new NullPointerException();
4291 return new MapReduceEntriesToDoubleTask<K,V>
4292 (null, batchFor(parallelismThreshold), 0, 0, table,
4293 null, transformer, basis, reducer).invoke();
4294 }
4295
4296 /**
4297 * Returns the result of accumulating the given transformation
4298 * of all entries using the given reducer to combine values,
4299 * and the given basis as an identity value.
4300 *
4301 * @param parallelismThreshold the (estimated) number of elements
4302 * needed for this operation to be executed in parallel
4303 * @param transformer a function returning the transformation
4304 * for an element
4305 * @param basis the identity (initial default value) for the reduction
4306 * @param reducer a commutative associative combining function
4307 * @return the result of accumulating the given transformation
4308 * of all entries
4309 * @since 1.8
4310 */
4311 public long reduceEntriesToLong(long parallelismThreshold,
4312 ToLongFunction<Map.Entry<K,V>> transformer,
4313 long basis,
4314 LongBinaryOperator reducer) {
4315 if (transformer == null || reducer == null)
4316 throw new NullPointerException();
4317 return new MapReduceEntriesToLongTask<K,V>
4318 (null, batchFor(parallelismThreshold), 0, 0, table,
4319 null, transformer, basis, reducer).invoke();
4320 }
4321
4322 /**
4323 * Returns the result of accumulating the given transformation
4324 * of all entries using the given reducer to combine values,
4325 * and the given basis as an identity value.
4326 *
4327 * @param parallelismThreshold the (estimated) number of elements
4328 * needed for this operation to be executed in parallel
4329 * @param transformer a function returning the transformation
4330 * for an element
4331 * @param basis the identity (initial default value) for the reduction
4332 * @param reducer a commutative associative combining function
4333 * @return the result of accumulating the given transformation
4334 * of all entries
4335 * @since 1.8
4336 */
4337 public int reduceEntriesToInt(long parallelismThreshold,
4338 ToIntFunction<Map.Entry<K,V>> transformer,
4339 int basis,
4340 IntBinaryOperator reducer) {
4341 if (transformer == null || reducer == null)
4342 throw new NullPointerException();
4343 return new MapReduceEntriesToIntTask<K,V>
4344 (null, batchFor(parallelismThreshold), 0, 0, table,
4345 null, transformer, basis, reducer).invoke();
4346 }
4347
4348
4349 /* ----------------Views -------------- */
4350
4351 /**
4352 * Base class for views.
4353 */
4354 abstract static class CollectionView<K,V,E>
4355 implements Collection<E>, java.io.Serializable {
4356 private static final long serialVersionUID = 7249069246763182397L;
4357 final ConcurrentHashMap<K,V> map;
4358 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4359
4360 /**
4361 * Returns the map backing this view.
4362 *
4363 * @return the map backing this view
4364 */
4365 public ConcurrentHashMap<K,V> getMap() { return map; }
4366
4367 /**
4368 * Removes all of the elements from this view, by removing all
4369 * the mappings from the map backing this view.
4370 */
4371 public final void clear() { map.clear(); }
4372 public final int size() { return map.size(); }
4373 public final boolean isEmpty() { return map.isEmpty(); }
4374
4375 // implementations below rely on concrete classes supplying these
4376 // abstract methods
4377 /**
4378 * Returns an iterator over the elements in this collection.
4379 *
4380 * <p>The returned iterator is
4381 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4382 *
4383 * @return an iterator over the elements in this collection
4384 */
4385 public abstract Iterator<E> iterator();
4386 public abstract boolean contains(Object o);
4387 public abstract boolean remove(Object o);
4388
4389 private static final String oomeMsg = "Required array size too large";
4390
4391 public final Object[] toArray() {
4392 long sz = map.mappingCount();
4393 if (sz > MAX_ARRAY_SIZE)
4394 throw new OutOfMemoryError(oomeMsg);
4395 int n = (int)sz;
4396 Object[] r = new Object[n];
4397 int i = 0;
4398 for (E e : this) {
4399 if (i == n) {
4400 if (n >= MAX_ARRAY_SIZE)
4401 throw new OutOfMemoryError(oomeMsg);
4402 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4403 n = MAX_ARRAY_SIZE;
4404 else
4405 n += (n >>> 1) + 1;
4406 r = Arrays.copyOf(r, n);
4407 }
4408 r[i++] = e;
4409 }
4410 return (i == n) ? r : Arrays.copyOf(r, i);
4411 }
4412
4413 @SuppressWarnings("unchecked")
4414 public final <T> T[] toArray(T[] a) {
4415 long sz = map.mappingCount();
4416 if (sz > MAX_ARRAY_SIZE)
4417 throw new OutOfMemoryError(oomeMsg);
4418 int m = (int)sz;
4419 T[] r = (a.length >= m) ? a :
4420 (T[])java.lang.reflect.Array
4421 .newInstance(a.getClass().getComponentType(), m);
4422 int n = r.length;
4423 int i = 0;
4424 for (E e : this) {
4425 if (i == n) {
4426 if (n >= MAX_ARRAY_SIZE)
4427 throw new OutOfMemoryError(oomeMsg);
4428 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4429 n = MAX_ARRAY_SIZE;
4430 else
4431 n += (n >>> 1) + 1;
4432 r = Arrays.copyOf(r, n);
4433 }
4434 r[i++] = (T)e;
4435 }
4436 if (a == r && i < n) {
4437 r[i] = null; // null-terminate
4438 return r;
4439 }
4440 return (i == n) ? r : Arrays.copyOf(r, i);
4441 }
4442
4443 /**
4444 * Returns a string representation of this collection.
4445 * The string representation consists of the string representations
4446 * of the collection's elements in the order they are returned by
4447 * its iterator, enclosed in square brackets ({@code "[]"}).
4448 * Adjacent elements are separated by the characters {@code ", "}
4449 * (comma and space). Elements are converted to strings as by
4450 * {@link String#valueOf(Object)}.
4451 *
4452 * @return a string representation of this collection
4453 */
4454 public final String toString() {
4455 StringBuilder sb = new StringBuilder();
4456 sb.append('[');
4457 Iterator<E> it = iterator();
4458 if (it.hasNext()) {
4459 for (;;) {
4460 Object e = it.next();
4461 sb.append(e == this ? "(this Collection)" : e);
4462 if (!it.hasNext())
4463 break;
4464 sb.append(',').append(' ');
4465 }
4466 }
4467 return sb.append(']').toString();
4468 }
4469
4470 public final boolean containsAll(Collection<?> c) {
4471 if (c != this) {
4472 for (Object e : c) {
4473 if (e == null || !contains(e))
4474 return false;
4475 }
4476 }
4477 return true;
4478 }
4479
4480 public final boolean removeAll(Collection<?> c) {
4481 if (c == null) throw new NullPointerException();
4482 boolean modified = false;
4483 for (Iterator<E> it = iterator(); it.hasNext();) {
4484 if (c.contains(it.next())) {
4485 it.remove();
4486 modified = true;
4487 }
4488 }
4489 return modified;
4490 }
4491
4492 public final boolean retainAll(Collection<?> c) {
4493 if (c == null) throw new NullPointerException();
4494 boolean modified = false;
4495 for (Iterator<E> it = iterator(); it.hasNext();) {
4496 if (!c.contains(it.next())) {
4497 it.remove();
4498 modified = true;
4499 }
4500 }
4501 return modified;
4502 }
4503
4504 }
4505
4506 /**
4507 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4508 * which additions may optionally be enabled by mapping to a
4509 * common value. This class cannot be directly instantiated.
4510 * See {@link #keySet() keySet()},
4511 * {@link #keySet(Object) keySet(V)},
4512 * {@link #newKeySet() newKeySet()},
4513 * {@link #newKeySet(int) newKeySet(int)}.
4514 *
4515 * @since 1.8
4516 */
4517 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4518 implements Set<K>, java.io.Serializable {
4519 private static final long serialVersionUID = 7249069246763182397L;
4520 private final V value;
4521 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4522 super(map);
4523 this.value = value;
4524 }
4525
4526 /**
4527 * Returns the default mapped value for additions,
4528 * or {@code null} if additions are not supported.
4529 *
4530 * @return the default mapped value for additions, or {@code null}
4531 * if not supported
4532 */
4533 public V getMappedValue() { return value; }
4534
4535 /**
4536 * {@inheritDoc}
4537 * @throws NullPointerException if the specified key is null
4538 */
4539 public boolean contains(Object o) { return map.containsKey(o); }
4540
4541 /**
4542 * Removes the key from this map view, by removing the key (and its
4543 * corresponding value) from the backing map. This method does
4544 * nothing if the key is not in the map.
4545 *
4546 * @param o the key to be removed from the backing map
4547 * @return {@code true} if the backing map contained the specified key
4548 * @throws NullPointerException if the specified key is null
4549 */
4550 public boolean remove(Object o) { return map.remove(o) != null; }
4551
4552 /**
4553 * @return an iterator over the keys of the backing map
4554 */
4555 public Iterator<K> iterator() {
4556 Node<K,V>[] t;
4557 ConcurrentHashMap<K,V> m = map;
4558 int f = (t = m.table) == null ? 0 : t.length;
4559 return new KeyIterator<K,V>(t, f, 0, f, m);
4560 }
4561
4562 /**
4563 * Adds the specified key to this set view by mapping the key to
4564 * the default mapped value in the backing map, if defined.
4565 *
4566 * @param e key to be added
4567 * @return {@code true} if this set changed as a result of the call
4568 * @throws NullPointerException if the specified key is null
4569 * @throws UnsupportedOperationException if no default mapped value
4570 * for additions was provided
4571 */
4572 public boolean add(K e) {
4573 V v;
4574 if ((v = value) == null)
4575 throw new UnsupportedOperationException();
4576 return map.putVal(e, v, true) == null;
4577 }
4578
4579 /**
4580 * Adds all of the elements in the specified collection to this set,
4581 * as if by calling {@link #add} on each one.
4582 *
4583 * @param c the elements to be inserted into this set
4584 * @return {@code true} if this set changed as a result of the call
4585 * @throws NullPointerException if the collection or any of its
4586 * elements are {@code null}
4587 * @throws UnsupportedOperationException if no default mapped value
4588 * for additions was provided
4589 */
4590 public boolean addAll(Collection<? extends K> c) {
4591 boolean added = false;
4592 V v;
4593 if ((v = value) == null)
4594 throw new UnsupportedOperationException();
4595 for (K e : c) {
4596 if (map.putVal(e, v, true) == null)
4597 added = true;
4598 }
4599 return added;
4600 }
4601
4602 public int hashCode() {
4603 int h = 0;
4604 for (K e : this)
4605 h += e.hashCode();
4606 return h;
4607 }
4608
4609 public boolean equals(Object o) {
4610 Set<?> c;
4611 return ((o instanceof Set) &&
4612 ((c = (Set<?>)o) == this ||
4613 (containsAll(c) && c.containsAll(this))));
4614 }
4615
4616 public Spliterator<K> spliterator() {
4617 Node<K,V>[] t;
4618 ConcurrentHashMap<K,V> m = map;
4619 long n = m.sumCount();
4620 int f = (t = m.table) == null ? 0 : t.length;
4621 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4622 }
4623
4624 public void forEach(Consumer<? super K> action) {
4625 if (action == null) throw new NullPointerException();
4626 Node<K,V>[] t;
4627 if ((t = map.table) != null) {
4628 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4629 for (Node<K,V> p; (p = it.advance()) != null; )
4630 action.accept(p.key);
4631 }
4632 }
4633 }
4634
4635 /**
4636 * A view of a ConcurrentHashMap as a {@link Collection} of
4637 * values, in which additions are disabled. This class cannot be
4638 * directly instantiated. See {@link #values()}.
4639 */
4640 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4641 implements Collection<V>, java.io.Serializable {
4642 private static final long serialVersionUID = 2249069246763182397L;
4643 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4644 public final boolean contains(Object o) {
4645 return map.containsValue(o);
4646 }
4647
4648 public final boolean remove(Object o) {
4649 if (o != null) {
4650 for (Iterator<V> it = iterator(); it.hasNext();) {
4651 if (o.equals(it.next())) {
4652 it.remove();
4653 return true;
4654 }
4655 }
4656 }
4657 return false;
4658 }
4659
4660 public final Iterator<V> iterator() {
4661 ConcurrentHashMap<K,V> m = map;
4662 Node<K,V>[] t;
4663 int f = (t = m.table) == null ? 0 : t.length;
4664 return new ValueIterator<K,V>(t, f, 0, f, m);
4665 }
4666
4667 public final boolean add(V e) {
4668 throw new UnsupportedOperationException();
4669 }
4670 public final boolean addAll(Collection<? extends V> c) {
4671 throw new UnsupportedOperationException();
4672 }
4673
4674 public Spliterator<V> spliterator() {
4675 Node<K,V>[] t;
4676 ConcurrentHashMap<K,V> m = map;
4677 long n = m.sumCount();
4678 int f = (t = m.table) == null ? 0 : t.length;
4679 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4680 }
4681
4682 public void forEach(Consumer<? super V> action) {
4683 if (action == null) throw new NullPointerException();
4684 Node<K,V>[] t;
4685 if ((t = map.table) != null) {
4686 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4687 for (Node<K,V> p; (p = it.advance()) != null; )
4688 action.accept(p.val);
4689 }
4690 }
4691 }
4692
4693 /**
4694 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4695 * entries. This class cannot be directly instantiated. See
4696 * {@link #entrySet()}.
4697 */
4698 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4699 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4700 private static final long serialVersionUID = 2249069246763182397L;
4701 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4702
4703 public boolean contains(Object o) {
4704 Object k, v, r; Map.Entry<?,?> e;
4705 return ((o instanceof Map.Entry) &&
4706 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4707 (r = map.get(k)) != null &&
4708 (v = e.getValue()) != null &&
4709 (v == r || v.equals(r)));
4710 }
4711
4712 public boolean remove(Object o) {
4713 Object k, v; Map.Entry<?,?> e;
4714 return ((o instanceof Map.Entry) &&
4715 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4716 (v = e.getValue()) != null &&
4717 map.remove(k, v));
4718 }
4719
4720 /**
4721 * @return an iterator over the entries of the backing map
4722 */
4723 public Iterator<Map.Entry<K,V>> iterator() {
4724 ConcurrentHashMap<K,V> m = map;
4725 Node<K,V>[] t;
4726 int f = (t = m.table) == null ? 0 : t.length;
4727 return new EntryIterator<K,V>(t, f, 0, f, m);
4728 }
4729
4730 public boolean add(Entry<K,V> e) {
4731 return map.putVal(e.getKey(), e.getValue(), false) == null;
4732 }
4733
4734 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4735 boolean added = false;
4736 for (Entry<K,V> e : c) {
4737 if (add(e))
4738 added = true;
4739 }
4740 return added;
4741 }
4742
4743 public final int hashCode() {
4744 int h = 0;
4745 Node<K,V>[] t;
4746 if ((t = map.table) != null) {
4747 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4748 for (Node<K,V> p; (p = it.advance()) != null; ) {
4749 h += p.hashCode();
4750 }
4751 }
4752 return h;
4753 }
4754
4755 public final boolean equals(Object o) {
4756 Set<?> c;
4757 return ((o instanceof Set) &&
4758 ((c = (Set<?>)o) == this ||
4759 (containsAll(c) && c.containsAll(this))));
4760 }
4761
4762 public Spliterator<Map.Entry<K,V>> spliterator() {
4763 Node<K,V>[] t;
4764 ConcurrentHashMap<K,V> m = map;
4765 long n = m.sumCount();
4766 int f = (t = m.table) == null ? 0 : t.length;
4767 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4768 }
4769
4770 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4771 if (action == null) throw new NullPointerException();
4772 Node<K,V>[] t;
4773 if ((t = map.table) != null) {
4774 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4775 for (Node<K,V> p; (p = it.advance()) != null; )
4776 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4777 }
4778 }
4779
4780 }
4781
4782 // -------------------------------------------------------
4783
4784 /**
4785 * Base class for bulk tasks. Repeats some fields and code from
4786 * class Traverser, because we need to subclass CountedCompleter.
4787 */
4788 @SuppressWarnings("serial")
4789 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4790 Node<K,V>[] tab; // same as Traverser
4791 Node<K,V> next;
4792 TableStack<K,V> stack, spare;
4793 int index;
4794 int baseIndex;
4795 int baseLimit;
4796 final int baseSize;
4797 int batch; // split control
4798
4799 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4800 super(par);
4801 this.batch = b;
4802 this.index = this.baseIndex = i;
4803 if ((this.tab = t) == null)
4804 this.baseSize = this.baseLimit = 0;
4805 else if (par == null)
4806 this.baseSize = this.baseLimit = t.length;
4807 else {
4808 this.baseLimit = f;
4809 this.baseSize = par.baseSize;
4810 }
4811 }
4812
4813 /**
4814 * Same as Traverser version
4815 */
4816 final Node<K,V> advance() {
4817 Node<K,V> e;
4818 if ((e = next) != null)
4819 e = e.next;
4820 for (;;) {
4821 Node<K,V>[] t; int i, n;
4822 if (e != null)
4823 return next = e;
4824 if (baseIndex >= baseLimit || (t = tab) == null ||
4825 (n = t.length) <= (i = index) || i < 0)
4826 return next = null;
4827 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4828 if (e instanceof ForwardingNode) {
4829 tab = ((ForwardingNode<K,V>)e).nextTable;
4830 e = null;
4831 pushState(t, i, n);
4832 continue;
4833 }
4834 else if (e instanceof TreeBin)
4835 e = ((TreeBin<K,V>)e).first;
4836 else
4837 e = null;
4838 }
4839 if (stack != null)
4840 recoverState(n);
4841 else if ((index = i + baseSize) >= n)
4842 index = ++baseIndex;
4843 }
4844 }
4845
4846 private void pushState(Node<K,V>[] t, int i, int n) {
4847 TableStack<K,V> s = spare;
4848 if (s != null)
4849 spare = s.next;
4850 else
4851 s = new TableStack<K,V>();
4852 s.tab = t;
4853 s.length = n;
4854 s.index = i;
4855 s.next = stack;
4856 stack = s;
4857 }
4858
4859 private void recoverState(int n) {
4860 TableStack<K,V> s; int len;
4861 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4862 n = len;
4863 index = s.index;
4864 tab = s.tab;
4865 s.tab = null;
4866 TableStack<K,V> next = s.next;
4867 s.next = spare; // save for reuse
4868 stack = next;
4869 spare = s;
4870 }
4871 if (s == null && (index += baseSize) >= n)
4872 index = ++baseIndex;
4873 }
4874 }
4875
4876 /*
4877 * Task classes. Coded in a regular but ugly format/style to
4878 * simplify checks that each variant differs in the right way from
4879 * others. The null screenings exist because compilers cannot tell
4880 * that we've already null-checked task arguments, so we force
4881 * simplest hoisted bypass to help avoid convoluted traps.
4882 */
4883 @SuppressWarnings("serial")
4884 static final class ForEachKeyTask<K,V>
4885 extends BulkTask<K,V,Void> {
4886 final Consumer<? super K> action;
4887 ForEachKeyTask
4888 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4889 Consumer<? super K> action) {
4890 super(p, b, i, f, t);
4891 this.action = action;
4892 }
4893 public final void compute() {
4894 final Consumer<? super K> action;
4895 if ((action = this.action) != null) {
4896 for (int i = baseIndex, f, h; batch > 0 &&
4897 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4898 addToPendingCount(1);
4899 new ForEachKeyTask<K,V>
4900 (this, batch >>>= 1, baseLimit = h, f, tab,
4901 action).fork();
4902 }
4903 for (Node<K,V> p; (p = advance()) != null;)
4904 action.accept(p.key);
4905 propagateCompletion();
4906 }
4907 }
4908 }
4909
4910 @SuppressWarnings("serial")
4911 static final class ForEachValueTask<K,V>
4912 extends BulkTask<K,V,Void> {
4913 final Consumer<? super V> action;
4914 ForEachValueTask
4915 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4916 Consumer<? super V> action) {
4917 super(p, b, i, f, t);
4918 this.action = action;
4919 }
4920 public final void compute() {
4921 final Consumer<? super V> action;
4922 if ((action = this.action) != null) {
4923 for (int i = baseIndex, f, h; batch > 0 &&
4924 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4925 addToPendingCount(1);
4926 new ForEachValueTask<K,V>
4927 (this, batch >>>= 1, baseLimit = h, f, tab,
4928 action).fork();
4929 }
4930 for (Node<K,V> p; (p = advance()) != null;)
4931 action.accept(p.val);
4932 propagateCompletion();
4933 }
4934 }
4935 }
4936
4937 @SuppressWarnings("serial")
4938 static final class ForEachEntryTask<K,V>
4939 extends BulkTask<K,V,Void> {
4940 final Consumer<? super Entry<K,V>> action;
4941 ForEachEntryTask
4942 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4943 Consumer<? super Entry<K,V>> action) {
4944 super(p, b, i, f, t);
4945 this.action = action;
4946 }
4947 public final void compute() {
4948 final Consumer<? super Entry<K,V>> action;
4949 if ((action = this.action) != null) {
4950 for (int i = baseIndex, f, h; batch > 0 &&
4951 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4952 addToPendingCount(1);
4953 new ForEachEntryTask<K,V>
4954 (this, batch >>>= 1, baseLimit = h, f, tab,
4955 action).fork();
4956 }
4957 for (Node<K,V> p; (p = advance()) != null; )
4958 action.accept(p);
4959 propagateCompletion();
4960 }
4961 }
4962 }
4963
4964 @SuppressWarnings("serial")
4965 static final class ForEachMappingTask<K,V>
4966 extends BulkTask<K,V,Void> {
4967 final BiConsumer<? super K, ? super V> action;
4968 ForEachMappingTask
4969 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4970 BiConsumer<? super K,? super V> action) {
4971 super(p, b, i, f, t);
4972 this.action = action;
4973 }
4974 public final void compute() {
4975 final BiConsumer<? super K, ? super V> action;
4976 if ((action = this.action) != null) {
4977 for (int i = baseIndex, f, h; batch > 0 &&
4978 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4979 addToPendingCount(1);
4980 new ForEachMappingTask<K,V>
4981 (this, batch >>>= 1, baseLimit = h, f, tab,
4982 action).fork();
4983 }
4984 for (Node<K,V> p; (p = advance()) != null; )
4985 action.accept(p.key, p.val);
4986 propagateCompletion();
4987 }
4988 }
4989 }
4990
4991 @SuppressWarnings("serial")
4992 static final class ForEachTransformedKeyTask<K,V,U>
4993 extends BulkTask<K,V,Void> {
4994 final Function<? super K, ? extends U> transformer;
4995 final Consumer<? super U> action;
4996 ForEachTransformedKeyTask
4997 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4998 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4999 super(p, b, i, f, t);
5000 this.transformer = transformer; this.action = action;
5001 }
5002 public final void compute() {
5003 final Function<? super K, ? extends U> transformer;
5004 final Consumer<? super U> action;
5005 if ((transformer = this.transformer) != null &&
5006 (action = this.action) != null) {
5007 for (int i = baseIndex, f, h; batch > 0 &&
5008 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5009 addToPendingCount(1);
5010 new ForEachTransformedKeyTask<K,V,U>
5011 (this, batch >>>= 1, baseLimit = h, f, tab,
5012 transformer, action).fork();
5013 }
5014 for (Node<K,V> p; (p = advance()) != null; ) {
5015 U u;
5016 if ((u = transformer.apply(p.key)) != null)
5017 action.accept(u);
5018 }
5019 propagateCompletion();
5020 }
5021 }
5022 }
5023
5024 @SuppressWarnings("serial")
5025 static final class ForEachTransformedValueTask<K,V,U>
5026 extends BulkTask<K,V,Void> {
5027 final Function<? super V, ? extends U> transformer;
5028 final Consumer<? super U> action;
5029 ForEachTransformedValueTask
5030 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5031 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5032 super(p, b, i, f, t);
5033 this.transformer = transformer; this.action = action;
5034 }
5035 public final void compute() {
5036 final Function<? super V, ? extends U> transformer;
5037 final Consumer<? super U> action;
5038 if ((transformer = this.transformer) != null &&
5039 (action = this.action) != null) {
5040 for (int i = baseIndex, f, h; batch > 0 &&
5041 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5042 addToPendingCount(1);
5043 new ForEachTransformedValueTask<K,V,U>
5044 (this, batch >>>= 1, baseLimit = h, f, tab,
5045 transformer, action).fork();
5046 }
5047 for (Node<K,V> p; (p = advance()) != null; ) {
5048 U u;
5049 if ((u = transformer.apply(p.val)) != null)
5050 action.accept(u);
5051 }
5052 propagateCompletion();
5053 }
5054 }
5055 }
5056
5057 @SuppressWarnings("serial")
5058 static final class ForEachTransformedEntryTask<K,V,U>
5059 extends BulkTask<K,V,Void> {
5060 final Function<Map.Entry<K,V>, ? extends U> transformer;
5061 final Consumer<? super U> action;
5062 ForEachTransformedEntryTask
5063 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5064 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5065 super(p, b, i, f, t);
5066 this.transformer = transformer; this.action = action;
5067 }
5068 public final void compute() {
5069 final Function<Map.Entry<K,V>, ? extends U> transformer;
5070 final Consumer<? super U> action;
5071 if ((transformer = this.transformer) != null &&
5072 (action = this.action) != null) {
5073 for (int i = baseIndex, f, h; batch > 0 &&
5074 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5075 addToPendingCount(1);
5076 new ForEachTransformedEntryTask<K,V,U>
5077 (this, batch >>>= 1, baseLimit = h, f, tab,
5078 transformer, action).fork();
5079 }
5080 for (Node<K,V> p; (p = advance()) != null; ) {
5081 U u;
5082 if ((u = transformer.apply(p)) != null)
5083 action.accept(u);
5084 }
5085 propagateCompletion();
5086 }
5087 }
5088 }
5089
5090 @SuppressWarnings("serial")
5091 static final class ForEachTransformedMappingTask<K,V,U>
5092 extends BulkTask<K,V,Void> {
5093 final BiFunction<? super K, ? super V, ? extends U> transformer;
5094 final Consumer<? super U> action;
5095 ForEachTransformedMappingTask
5096 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5097 BiFunction<? super K, ? super V, ? extends U> transformer,
5098 Consumer<? super U> action) {
5099 super(p, b, i, f, t);
5100 this.transformer = transformer; this.action = action;
5101 }
5102 public final void compute() {
5103 final BiFunction<? super K, ? super V, ? extends U> transformer;
5104 final Consumer<? super U> action;
5105 if ((transformer = this.transformer) != null &&
5106 (action = this.action) != null) {
5107 for (int i = baseIndex, f, h; batch > 0 &&
5108 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5109 addToPendingCount(1);
5110 new ForEachTransformedMappingTask<K,V,U>
5111 (this, batch >>>= 1, baseLimit = h, f, tab,
5112 transformer, action).fork();
5113 }
5114 for (Node<K,V> p; (p = advance()) != null; ) {
5115 U u;
5116 if ((u = transformer.apply(p.key, p.val)) != null)
5117 action.accept(u);
5118 }
5119 propagateCompletion();
5120 }
5121 }
5122 }
5123
5124 @SuppressWarnings("serial")
5125 static final class SearchKeysTask<K,V,U>
5126 extends BulkTask<K,V,U> {
5127 final Function<? super K, ? extends U> searchFunction;
5128 final AtomicReference<U> result;
5129 SearchKeysTask
5130 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5131 Function<? super K, ? extends U> searchFunction,
5132 AtomicReference<U> result) {
5133 super(p, b, i, f, t);
5134 this.searchFunction = searchFunction; this.result = result;
5135 }
5136 public final U getRawResult() { return result.get(); }
5137 public final void compute() {
5138 final Function<? super K, ? extends U> searchFunction;
5139 final AtomicReference<U> result;
5140 if ((searchFunction = this.searchFunction) != null &&
5141 (result = this.result) != null) {
5142 for (int i = baseIndex, f, h; batch > 0 &&
5143 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5144 if (result.get() != null)
5145 return;
5146 addToPendingCount(1);
5147 new SearchKeysTask<K,V,U>
5148 (this, batch >>>= 1, baseLimit = h, f, tab,
5149 searchFunction, result).fork();
5150 }
5151 while (result.get() == null) {
5152 U u;
5153 Node<K,V> p;
5154 if ((p = advance()) == null) {
5155 propagateCompletion();
5156 break;
5157 }
5158 if ((u = searchFunction.apply(p.key)) != null) {
5159 if (result.compareAndSet(null, u))
5160 quietlyCompleteRoot();
5161 break;
5162 }
5163 }
5164 }
5165 }
5166 }
5167
5168 @SuppressWarnings("serial")
5169 static final class SearchValuesTask<K,V,U>
5170 extends BulkTask<K,V,U> {
5171 final Function<? super V, ? extends U> searchFunction;
5172 final AtomicReference<U> result;
5173 SearchValuesTask
5174 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5175 Function<? super V, ? extends U> searchFunction,
5176 AtomicReference<U> result) {
5177 super(p, b, i, f, t);
5178 this.searchFunction = searchFunction; this.result = result;
5179 }
5180 public final U getRawResult() { return result.get(); }
5181 public final void compute() {
5182 final Function<? super V, ? extends U> searchFunction;
5183 final AtomicReference<U> result;
5184 if ((searchFunction = this.searchFunction) != null &&
5185 (result = this.result) != null) {
5186 for (int i = baseIndex, f, h; batch > 0 &&
5187 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5188 if (result.get() != null)
5189 return;
5190 addToPendingCount(1);
5191 new SearchValuesTask<K,V,U>
5192 (this, batch >>>= 1, baseLimit = h, f, tab,
5193 searchFunction, result).fork();
5194 }
5195 while (result.get() == null) {
5196 U u;
5197 Node<K,V> p;
5198 if ((p = advance()) == null) {
5199 propagateCompletion();
5200 break;
5201 }
5202 if ((u = searchFunction.apply(p.val)) != null) {
5203 if (result.compareAndSet(null, u))
5204 quietlyCompleteRoot();
5205 break;
5206 }
5207 }
5208 }
5209 }
5210 }
5211
5212 @SuppressWarnings("serial")
5213 static final class SearchEntriesTask<K,V,U>
5214 extends BulkTask<K,V,U> {
5215 final Function<Entry<K,V>, ? extends U> searchFunction;
5216 final AtomicReference<U> result;
5217 SearchEntriesTask
5218 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5219 Function<Entry<K,V>, ? extends U> searchFunction,
5220 AtomicReference<U> result) {
5221 super(p, b, i, f, t);
5222 this.searchFunction = searchFunction; this.result = result;
5223 }
5224 public final U getRawResult() { return result.get(); }
5225 public final void compute() {
5226 final Function<Entry<K,V>, ? extends U> searchFunction;
5227 final AtomicReference<U> result;
5228 if ((searchFunction = this.searchFunction) != null &&
5229 (result = this.result) != null) {
5230 for (int i = baseIndex, f, h; batch > 0 &&
5231 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5232 if (result.get() != null)
5233 return;
5234 addToPendingCount(1);
5235 new SearchEntriesTask<K,V,U>
5236 (this, batch >>>= 1, baseLimit = h, f, tab,
5237 searchFunction, result).fork();
5238 }
5239 while (result.get() == null) {
5240 U u;
5241 Node<K,V> p;
5242 if ((p = advance()) == null) {
5243 propagateCompletion();
5244 break;
5245 }
5246 if ((u = searchFunction.apply(p)) != null) {
5247 if (result.compareAndSet(null, u))
5248 quietlyCompleteRoot();
5249 return;
5250 }
5251 }
5252 }
5253 }
5254 }
5255
5256 @SuppressWarnings("serial")
5257 static final class SearchMappingsTask<K,V,U>
5258 extends BulkTask<K,V,U> {
5259 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5260 final AtomicReference<U> result;
5261 SearchMappingsTask
5262 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5263 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5264 AtomicReference<U> result) {
5265 super(p, b, i, f, t);
5266 this.searchFunction = searchFunction; this.result = result;
5267 }
5268 public final U getRawResult() { return result.get(); }
5269 public final void compute() {
5270 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5271 final AtomicReference<U> result;
5272 if ((searchFunction = this.searchFunction) != null &&
5273 (result = this.result) != null) {
5274 for (int i = baseIndex, f, h; batch > 0 &&
5275 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5276 if (result.get() != null)
5277 return;
5278 addToPendingCount(1);
5279 new SearchMappingsTask<K,V,U>
5280 (this, batch >>>= 1, baseLimit = h, f, tab,
5281 searchFunction, result).fork();
5282 }
5283 while (result.get() == null) {
5284 U u;
5285 Node<K,V> p;
5286 if ((p = advance()) == null) {
5287 propagateCompletion();
5288 break;
5289 }
5290 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5291 if (result.compareAndSet(null, u))
5292 quietlyCompleteRoot();
5293 break;
5294 }
5295 }
5296 }
5297 }
5298 }
5299
5300 @SuppressWarnings("serial")
5301 static final class ReduceKeysTask<K,V>
5302 extends BulkTask<K,V,K> {
5303 final BiFunction<? super K, ? super K, ? extends K> reducer;
5304 K result;
5305 ReduceKeysTask<K,V> rights, nextRight;
5306 ReduceKeysTask
5307 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5308 ReduceKeysTask<K,V> nextRight,
5309 BiFunction<? super K, ? super K, ? extends K> reducer) {
5310 super(p, b, i, f, t); this.nextRight = nextRight;
5311 this.reducer = reducer;
5312 }
5313 public final K getRawResult() { return result; }
5314 public final void compute() {
5315 final BiFunction<? super K, ? super K, ? extends K> reducer;
5316 if ((reducer = this.reducer) != null) {
5317 for (int i = baseIndex, f, h; batch > 0 &&
5318 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5319 addToPendingCount(1);
5320 (rights = new ReduceKeysTask<K,V>
5321 (this, batch >>>= 1, baseLimit = h, f, tab,
5322 rights, reducer)).fork();
5323 }
5324 K r = null;
5325 for (Node<K,V> p; (p = advance()) != null; ) {
5326 K u = p.key;
5327 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5328 }
5329 result = r;
5330 CountedCompleter<?> c;
5331 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5332 @SuppressWarnings("unchecked")
5333 ReduceKeysTask<K,V>
5334 t = (ReduceKeysTask<K,V>)c,
5335 s = t.rights;
5336 while (s != null) {
5337 K tr, sr;
5338 if ((sr = s.result) != null)
5339 t.result = (((tr = t.result) == null) ? sr :
5340 reducer.apply(tr, sr));
5341 s = t.rights = s.nextRight;
5342 }
5343 }
5344 }
5345 }
5346 }
5347
5348 @SuppressWarnings("serial")
5349 static final class ReduceValuesTask<K,V>
5350 extends BulkTask<K,V,V> {
5351 final BiFunction<? super V, ? super V, ? extends V> reducer;
5352 V result;
5353 ReduceValuesTask<K,V> rights, nextRight;
5354 ReduceValuesTask
5355 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5356 ReduceValuesTask<K,V> nextRight,
5357 BiFunction<? super V, ? super V, ? extends V> reducer) {
5358 super(p, b, i, f, t); this.nextRight = nextRight;
5359 this.reducer = reducer;
5360 }
5361 public final V getRawResult() { return result; }
5362 public final void compute() {
5363 final BiFunction<? super V, ? super V, ? extends V> reducer;
5364 if ((reducer = this.reducer) != null) {
5365 for (int i = baseIndex, f, h; batch > 0 &&
5366 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5367 addToPendingCount(1);
5368 (rights = new ReduceValuesTask<K,V>
5369 (this, batch >>>= 1, baseLimit = h, f, tab,
5370 rights, reducer)).fork();
5371 }
5372 V r = null;
5373 for (Node<K,V> p; (p = advance()) != null; ) {
5374 V v = p.val;
5375 r = (r == null) ? v : reducer.apply(r, v);
5376 }
5377 result = r;
5378 CountedCompleter<?> c;
5379 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5380 @SuppressWarnings("unchecked")
5381 ReduceValuesTask<K,V>
5382 t = (ReduceValuesTask<K,V>)c,
5383 s = t.rights;
5384 while (s != null) {
5385 V tr, sr;
5386 if ((sr = s.result) != null)
5387 t.result = (((tr = t.result) == null) ? sr :
5388 reducer.apply(tr, sr));
5389 s = t.rights = s.nextRight;
5390 }
5391 }
5392 }
5393 }
5394 }
5395
5396 @SuppressWarnings("serial")
5397 static final class ReduceEntriesTask<K,V>
5398 extends BulkTask<K,V,Map.Entry<K,V>> {
5399 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5400 Map.Entry<K,V> result;
5401 ReduceEntriesTask<K,V> rights, nextRight;
5402 ReduceEntriesTask
5403 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5404 ReduceEntriesTask<K,V> nextRight,
5405 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5406 super(p, b, i, f, t); this.nextRight = nextRight;
5407 this.reducer = reducer;
5408 }
5409 public final Map.Entry<K,V> getRawResult() { return result; }
5410 public final void compute() {
5411 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5412 if ((reducer = this.reducer) != null) {
5413 for (int i = baseIndex, f, h; batch > 0 &&
5414 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5415 addToPendingCount(1);
5416 (rights = new ReduceEntriesTask<K,V>
5417 (this, batch >>>= 1, baseLimit = h, f, tab,
5418 rights, reducer)).fork();
5419 }
5420 Map.Entry<K,V> r = null;
5421 for (Node<K,V> p; (p = advance()) != null; )
5422 r = (r == null) ? p : reducer.apply(r, p);
5423 result = r;
5424 CountedCompleter<?> c;
5425 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5426 @SuppressWarnings("unchecked")
5427 ReduceEntriesTask<K,V>
5428 t = (ReduceEntriesTask<K,V>)c,
5429 s = t.rights;
5430 while (s != null) {
5431 Map.Entry<K,V> tr, sr;
5432 if ((sr = s.result) != null)
5433 t.result = (((tr = t.result) == null) ? sr :
5434 reducer.apply(tr, sr));
5435 s = t.rights = s.nextRight;
5436 }
5437 }
5438 }
5439 }
5440 }
5441
5442 @SuppressWarnings("serial")
5443 static final class MapReduceKeysTask<K,V,U>
5444 extends BulkTask<K,V,U> {
5445 final Function<? super K, ? extends U> transformer;
5446 final BiFunction<? super U, ? super U, ? extends U> reducer;
5447 U result;
5448 MapReduceKeysTask<K,V,U> rights, nextRight;
5449 MapReduceKeysTask
5450 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5451 MapReduceKeysTask<K,V,U> nextRight,
5452 Function<? super K, ? extends U> transformer,
5453 BiFunction<? super U, ? super U, ? extends U> reducer) {
5454 super(p, b, i, f, t); this.nextRight = nextRight;
5455 this.transformer = transformer;
5456 this.reducer = reducer;
5457 }
5458 public final U getRawResult() { return result; }
5459 public final void compute() {
5460 final Function<? super K, ? extends U> transformer;
5461 final BiFunction<? super U, ? super U, ? extends U> reducer;
5462 if ((transformer = this.transformer) != null &&
5463 (reducer = this.reducer) != null) {
5464 for (int i = baseIndex, f, h; batch > 0 &&
5465 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5466 addToPendingCount(1);
5467 (rights = new MapReduceKeysTask<K,V,U>
5468 (this, batch >>>= 1, baseLimit = h, f, tab,
5469 rights, transformer, reducer)).fork();
5470 }
5471 U r = null;
5472 for (Node<K,V> p; (p = advance()) != null; ) {
5473 U u;
5474 if ((u = transformer.apply(p.key)) != null)
5475 r = (r == null) ? u : reducer.apply(r, u);
5476 }
5477 result = r;
5478 CountedCompleter<?> c;
5479 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5480 @SuppressWarnings("unchecked")
5481 MapReduceKeysTask<K,V,U>
5482 t = (MapReduceKeysTask<K,V,U>)c,
5483 s = t.rights;
5484 while (s != null) {
5485 U tr, sr;
5486 if ((sr = s.result) != null)
5487 t.result = (((tr = t.result) == null) ? sr :
5488 reducer.apply(tr, sr));
5489 s = t.rights = s.nextRight;
5490 }
5491 }
5492 }
5493 }
5494 }
5495
5496 @SuppressWarnings("serial")
5497 static final class MapReduceValuesTask<K,V,U>
5498 extends BulkTask<K,V,U> {
5499 final Function<? super V, ? extends U> transformer;
5500 final BiFunction<? super U, ? super U, ? extends U> reducer;
5501 U result;
5502 MapReduceValuesTask<K,V,U> rights, nextRight;
5503 MapReduceValuesTask
5504 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5505 MapReduceValuesTask<K,V,U> nextRight,
5506 Function<? super V, ? extends U> transformer,
5507 BiFunction<? super U, ? super U, ? extends U> reducer) {
5508 super(p, b, i, f, t); this.nextRight = nextRight;
5509 this.transformer = transformer;
5510 this.reducer = reducer;
5511 }
5512 public final U getRawResult() { return result; }
5513 public final void compute() {
5514 final Function<? super V, ? extends U> transformer;
5515 final BiFunction<? super U, ? super U, ? extends U> reducer;
5516 if ((transformer = this.transformer) != null &&
5517 (reducer = this.reducer) != null) {
5518 for (int i = baseIndex, f, h; batch > 0 &&
5519 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5520 addToPendingCount(1);
5521 (rights = new MapReduceValuesTask<K,V,U>
5522 (this, batch >>>= 1, baseLimit = h, f, tab,
5523 rights, transformer, reducer)).fork();
5524 }
5525 U r = null;
5526 for (Node<K,V> p; (p = advance()) != null; ) {
5527 U u;
5528 if ((u = transformer.apply(p.val)) != null)
5529 r = (r == null) ? u : reducer.apply(r, u);
5530 }
5531 result = r;
5532 CountedCompleter<?> c;
5533 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5534 @SuppressWarnings("unchecked")
5535 MapReduceValuesTask<K,V,U>
5536 t = (MapReduceValuesTask<K,V,U>)c,
5537 s = t.rights;
5538 while (s != null) {
5539 U tr, sr;
5540 if ((sr = s.result) != null)
5541 t.result = (((tr = t.result) == null) ? sr :
5542 reducer.apply(tr, sr));
5543 s = t.rights = s.nextRight;
5544 }
5545 }
5546 }
5547 }
5548 }
5549
5550 @SuppressWarnings("serial")
5551 static final class MapReduceEntriesTask<K,V,U>
5552 extends BulkTask<K,V,U> {
5553 final Function<Map.Entry<K,V>, ? extends U> transformer;
5554 final BiFunction<? super U, ? super U, ? extends U> reducer;
5555 U result;
5556 MapReduceEntriesTask<K,V,U> rights, nextRight;
5557 MapReduceEntriesTask
5558 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5559 MapReduceEntriesTask<K,V,U> nextRight,
5560 Function<Map.Entry<K,V>, ? extends U> transformer,
5561 BiFunction<? super U, ? super U, ? extends U> reducer) {
5562 super(p, b, i, f, t); this.nextRight = nextRight;
5563 this.transformer = transformer;
5564 this.reducer = reducer;
5565 }
5566 public final U getRawResult() { return result; }
5567 public final void compute() {
5568 final Function<Map.Entry<K,V>, ? extends U> transformer;
5569 final BiFunction<? super U, ? super U, ? extends U> reducer;
5570 if ((transformer = this.transformer) != null &&
5571 (reducer = this.reducer) != null) {
5572 for (int i = baseIndex, f, h; batch > 0 &&
5573 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5574 addToPendingCount(1);
5575 (rights = new MapReduceEntriesTask<K,V,U>
5576 (this, batch >>>= 1, baseLimit = h, f, tab,
5577 rights, transformer, reducer)).fork();
5578 }
5579 U r = null;
5580 for (Node<K,V> p; (p = advance()) != null; ) {
5581 U u;
5582 if ((u = transformer.apply(p)) != null)
5583 r = (r == null) ? u : reducer.apply(r, u);
5584 }
5585 result = r;
5586 CountedCompleter<?> c;
5587 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5588 @SuppressWarnings("unchecked")
5589 MapReduceEntriesTask<K,V,U>
5590 t = (MapReduceEntriesTask<K,V,U>)c,
5591 s = t.rights;
5592 while (s != null) {
5593 U tr, sr;
5594 if ((sr = s.result) != null)
5595 t.result = (((tr = t.result) == null) ? sr :
5596 reducer.apply(tr, sr));
5597 s = t.rights = s.nextRight;
5598 }
5599 }
5600 }
5601 }
5602 }
5603
5604 @SuppressWarnings("serial")
5605 static final class MapReduceMappingsTask<K,V,U>
5606 extends BulkTask<K,V,U> {
5607 final BiFunction<? super K, ? super V, ? extends U> transformer;
5608 final BiFunction<? super U, ? super U, ? extends U> reducer;
5609 U result;
5610 MapReduceMappingsTask<K,V,U> rights, nextRight;
5611 MapReduceMappingsTask
5612 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5613 MapReduceMappingsTask<K,V,U> nextRight,
5614 BiFunction<? super K, ? super V, ? extends U> transformer,
5615 BiFunction<? super U, ? super U, ? extends U> reducer) {
5616 super(p, b, i, f, t); this.nextRight = nextRight;
5617 this.transformer = transformer;
5618 this.reducer = reducer;
5619 }
5620 public final U getRawResult() { return result; }
5621 public final void compute() {
5622 final BiFunction<? super K, ? super V, ? extends U> transformer;
5623 final BiFunction<? super U, ? super U, ? extends U> reducer;
5624 if ((transformer = this.transformer) != null &&
5625 (reducer = this.reducer) != null) {
5626 for (int i = baseIndex, f, h; batch > 0 &&
5627 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5628 addToPendingCount(1);
5629 (rights = new MapReduceMappingsTask<K,V,U>
5630 (this, batch >>>= 1, baseLimit = h, f, tab,
5631 rights, transformer, reducer)).fork();
5632 }
5633 U r = null;
5634 for (Node<K,V> p; (p = advance()) != null; ) {
5635 U u;
5636 if ((u = transformer.apply(p.key, p.val)) != null)
5637 r = (r == null) ? u : reducer.apply(r, u);
5638 }
5639 result = r;
5640 CountedCompleter<?> c;
5641 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5642 @SuppressWarnings("unchecked")
5643 MapReduceMappingsTask<K,V,U>
5644 t = (MapReduceMappingsTask<K,V,U>)c,
5645 s = t.rights;
5646 while (s != null) {
5647 U tr, sr;
5648 if ((sr = s.result) != null)
5649 t.result = (((tr = t.result) == null) ? sr :
5650 reducer.apply(tr, sr));
5651 s = t.rights = s.nextRight;
5652 }
5653 }
5654 }
5655 }
5656 }
5657
5658 @SuppressWarnings("serial")
5659 static final class MapReduceKeysToDoubleTask<K,V>
5660 extends BulkTask<K,V,Double> {
5661 final ToDoubleFunction<? super K> transformer;
5662 final DoubleBinaryOperator reducer;
5663 final double basis;
5664 double result;
5665 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5666 MapReduceKeysToDoubleTask
5667 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5668 MapReduceKeysToDoubleTask<K,V> nextRight,
5669 ToDoubleFunction<? super K> transformer,
5670 double basis,
5671 DoubleBinaryOperator reducer) {
5672 super(p, b, i, f, t); this.nextRight = nextRight;
5673 this.transformer = transformer;
5674 this.basis = basis; this.reducer = reducer;
5675 }
5676 public final Double getRawResult() { return result; }
5677 public final void compute() {
5678 final ToDoubleFunction<? super K> transformer;
5679 final DoubleBinaryOperator reducer;
5680 if ((transformer = this.transformer) != null &&
5681 (reducer = this.reducer) != null) {
5682 double r = this.basis;
5683 for (int i = baseIndex, f, h; batch > 0 &&
5684 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5685 addToPendingCount(1);
5686 (rights = new MapReduceKeysToDoubleTask<K,V>
5687 (this, batch >>>= 1, baseLimit = h, f, tab,
5688 rights, transformer, r, reducer)).fork();
5689 }
5690 for (Node<K,V> p; (p = advance()) != null; )
5691 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5692 result = r;
5693 CountedCompleter<?> c;
5694 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5695 @SuppressWarnings("unchecked")
5696 MapReduceKeysToDoubleTask<K,V>
5697 t = (MapReduceKeysToDoubleTask<K,V>)c,
5698 s = t.rights;
5699 while (s != null) {
5700 t.result = reducer.applyAsDouble(t.result, s.result);
5701 s = t.rights = s.nextRight;
5702 }
5703 }
5704 }
5705 }
5706 }
5707
5708 @SuppressWarnings("serial")
5709 static final class MapReduceValuesToDoubleTask<K,V>
5710 extends BulkTask<K,V,Double> {
5711 final ToDoubleFunction<? super V> transformer;
5712 final DoubleBinaryOperator reducer;
5713 final double basis;
5714 double result;
5715 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5716 MapReduceValuesToDoubleTask
5717 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5718 MapReduceValuesToDoubleTask<K,V> nextRight,
5719 ToDoubleFunction<? super V> transformer,
5720 double basis,
5721 DoubleBinaryOperator reducer) {
5722 super(p, b, i, f, t); this.nextRight = nextRight;
5723 this.transformer = transformer;
5724 this.basis = basis; this.reducer = reducer;
5725 }
5726 public final Double getRawResult() { return result; }
5727 public final void compute() {
5728 final ToDoubleFunction<? super V> transformer;
5729 final DoubleBinaryOperator reducer;
5730 if ((transformer = this.transformer) != null &&
5731 (reducer = this.reducer) != null) {
5732 double r = this.basis;
5733 for (int i = baseIndex, f, h; batch > 0 &&
5734 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5735 addToPendingCount(1);
5736 (rights = new MapReduceValuesToDoubleTask<K,V>
5737 (this, batch >>>= 1, baseLimit = h, f, tab,
5738 rights, transformer, r, reducer)).fork();
5739 }
5740 for (Node<K,V> p; (p = advance()) != null; )
5741 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5742 result = r;
5743 CountedCompleter<?> c;
5744 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5745 @SuppressWarnings("unchecked")
5746 MapReduceValuesToDoubleTask<K,V>
5747 t = (MapReduceValuesToDoubleTask<K,V>)c,
5748 s = t.rights;
5749 while (s != null) {
5750 t.result = reducer.applyAsDouble(t.result, s.result);
5751 s = t.rights = s.nextRight;
5752 }
5753 }
5754 }
5755 }
5756 }
5757
5758 @SuppressWarnings("serial")
5759 static final class MapReduceEntriesToDoubleTask<K,V>
5760 extends BulkTask<K,V,Double> {
5761 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5762 final DoubleBinaryOperator reducer;
5763 final double basis;
5764 double result;
5765 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5766 MapReduceEntriesToDoubleTask
5767 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5768 MapReduceEntriesToDoubleTask<K,V> nextRight,
5769 ToDoubleFunction<Map.Entry<K,V>> transformer,
5770 double basis,
5771 DoubleBinaryOperator reducer) {
5772 super(p, b, i, f, t); this.nextRight = nextRight;
5773 this.transformer = transformer;
5774 this.basis = basis; this.reducer = reducer;
5775 }
5776 public final Double getRawResult() { return result; }
5777 public final void compute() {
5778 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5779 final DoubleBinaryOperator reducer;
5780 if ((transformer = this.transformer) != null &&
5781 (reducer = this.reducer) != null) {
5782 double r = this.basis;
5783 for (int i = baseIndex, f, h; batch > 0 &&
5784 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5785 addToPendingCount(1);
5786 (rights = new MapReduceEntriesToDoubleTask<K,V>
5787 (this, batch >>>= 1, baseLimit = h, f, tab,
5788 rights, transformer, r, reducer)).fork();
5789 }
5790 for (Node<K,V> p; (p = advance()) != null; )
5791 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5792 result = r;
5793 CountedCompleter<?> c;
5794 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5795 @SuppressWarnings("unchecked")
5796 MapReduceEntriesToDoubleTask<K,V>
5797 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5798 s = t.rights;
5799 while (s != null) {
5800 t.result = reducer.applyAsDouble(t.result, s.result);
5801 s = t.rights = s.nextRight;
5802 }
5803 }
5804 }
5805 }
5806 }
5807
5808 @SuppressWarnings("serial")
5809 static final class MapReduceMappingsToDoubleTask<K,V>
5810 extends BulkTask<K,V,Double> {
5811 final ToDoubleBiFunction<? super K, ? super V> transformer;
5812 final DoubleBinaryOperator reducer;
5813 final double basis;
5814 double result;
5815 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5816 MapReduceMappingsToDoubleTask
5817 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5818 MapReduceMappingsToDoubleTask<K,V> nextRight,
5819 ToDoubleBiFunction<? super K, ? super V> transformer,
5820 double basis,
5821 DoubleBinaryOperator reducer) {
5822 super(p, b, i, f, t); this.nextRight = nextRight;
5823 this.transformer = transformer;
5824 this.basis = basis; this.reducer = reducer;
5825 }
5826 public final Double getRawResult() { return result; }
5827 public final void compute() {
5828 final ToDoubleBiFunction<? super K, ? super V> transformer;
5829 final DoubleBinaryOperator reducer;
5830 if ((transformer = this.transformer) != null &&
5831 (reducer = this.reducer) != null) {
5832 double r = this.basis;
5833 for (int i = baseIndex, f, h; batch > 0 &&
5834 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5835 addToPendingCount(1);
5836 (rights = new MapReduceMappingsToDoubleTask<K,V>
5837 (this, batch >>>= 1, baseLimit = h, f, tab,
5838 rights, transformer, r, reducer)).fork();
5839 }
5840 for (Node<K,V> p; (p = advance()) != null; )
5841 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5842 result = r;
5843 CountedCompleter<?> c;
5844 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5845 @SuppressWarnings("unchecked")
5846 MapReduceMappingsToDoubleTask<K,V>
5847 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5848 s = t.rights;
5849 while (s != null) {
5850 t.result = reducer.applyAsDouble(t.result, s.result);
5851 s = t.rights = s.nextRight;
5852 }
5853 }
5854 }
5855 }
5856 }
5857
5858 @SuppressWarnings("serial")
5859 static final class MapReduceKeysToLongTask<K,V>
5860 extends BulkTask<K,V,Long> {
5861 final ToLongFunction<? super K> transformer;
5862 final LongBinaryOperator reducer;
5863 final long basis;
5864 long result;
5865 MapReduceKeysToLongTask<K,V> rights, nextRight;
5866 MapReduceKeysToLongTask
5867 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5868 MapReduceKeysToLongTask<K,V> nextRight,
5869 ToLongFunction<? super K> transformer,
5870 long basis,
5871 LongBinaryOperator reducer) {
5872 super(p, b, i, f, t); this.nextRight = nextRight;
5873 this.transformer = transformer;
5874 this.basis = basis; this.reducer = reducer;
5875 }
5876 public final Long getRawResult() { return result; }
5877 public final void compute() {
5878 final ToLongFunction<? super K> transformer;
5879 final LongBinaryOperator reducer;
5880 if ((transformer = this.transformer) != null &&
5881 (reducer = this.reducer) != null) {
5882 long r = this.basis;
5883 for (int i = baseIndex, f, h; batch > 0 &&
5884 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5885 addToPendingCount(1);
5886 (rights = new MapReduceKeysToLongTask<K,V>
5887 (this, batch >>>= 1, baseLimit = h, f, tab,
5888 rights, transformer, r, reducer)).fork();
5889 }
5890 for (Node<K,V> p; (p = advance()) != null; )
5891 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5892 result = r;
5893 CountedCompleter<?> c;
5894 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5895 @SuppressWarnings("unchecked")
5896 MapReduceKeysToLongTask<K,V>
5897 t = (MapReduceKeysToLongTask<K,V>)c,
5898 s = t.rights;
5899 while (s != null) {
5900 t.result = reducer.applyAsLong(t.result, s.result);
5901 s = t.rights = s.nextRight;
5902 }
5903 }
5904 }
5905 }
5906 }
5907
5908 @SuppressWarnings("serial")
5909 static final class MapReduceValuesToLongTask<K,V>
5910 extends BulkTask<K,V,Long> {
5911 final ToLongFunction<? super V> transformer;
5912 final LongBinaryOperator reducer;
5913 final long basis;
5914 long result;
5915 MapReduceValuesToLongTask<K,V> rights, nextRight;
5916 MapReduceValuesToLongTask
5917 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5918 MapReduceValuesToLongTask<K,V> nextRight,
5919 ToLongFunction<? super V> transformer,
5920 long basis,
5921 LongBinaryOperator reducer) {
5922 super(p, b, i, f, t); this.nextRight = nextRight;
5923 this.transformer = transformer;
5924 this.basis = basis; this.reducer = reducer;
5925 }
5926 public final Long getRawResult() { return result; }
5927 public final void compute() {
5928 final ToLongFunction<? super V> transformer;
5929 final LongBinaryOperator reducer;
5930 if ((transformer = this.transformer) != null &&
5931 (reducer = this.reducer) != null) {
5932 long r = this.basis;
5933 for (int i = baseIndex, f, h; batch > 0 &&
5934 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5935 addToPendingCount(1);
5936 (rights = new MapReduceValuesToLongTask<K,V>
5937 (this, batch >>>= 1, baseLimit = h, f, tab,
5938 rights, transformer, r, reducer)).fork();
5939 }
5940 for (Node<K,V> p; (p = advance()) != null; )
5941 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5942 result = r;
5943 CountedCompleter<?> c;
5944 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5945 @SuppressWarnings("unchecked")
5946 MapReduceValuesToLongTask<K,V>
5947 t = (MapReduceValuesToLongTask<K,V>)c,
5948 s = t.rights;
5949 while (s != null) {
5950 t.result = reducer.applyAsLong(t.result, s.result);
5951 s = t.rights = s.nextRight;
5952 }
5953 }
5954 }
5955 }
5956 }
5957
5958 @SuppressWarnings("serial")
5959 static final class MapReduceEntriesToLongTask<K,V>
5960 extends BulkTask<K,V,Long> {
5961 final ToLongFunction<Map.Entry<K,V>> transformer;
5962 final LongBinaryOperator reducer;
5963 final long basis;
5964 long result;
5965 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5966 MapReduceEntriesToLongTask
5967 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5968 MapReduceEntriesToLongTask<K,V> nextRight,
5969 ToLongFunction<Map.Entry<K,V>> transformer,
5970 long basis,
5971 LongBinaryOperator reducer) {
5972 super(p, b, i, f, t); this.nextRight = nextRight;
5973 this.transformer = transformer;
5974 this.basis = basis; this.reducer = reducer;
5975 }
5976 public final Long getRawResult() { return result; }
5977 public final void compute() {
5978 final ToLongFunction<Map.Entry<K,V>> transformer;
5979 final LongBinaryOperator reducer;
5980 if ((transformer = this.transformer) != null &&
5981 (reducer = this.reducer) != null) {
5982 long r = this.basis;
5983 for (int i = baseIndex, f, h; batch > 0 &&
5984 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5985 addToPendingCount(1);
5986 (rights = new MapReduceEntriesToLongTask<K,V>
5987 (this, batch >>>= 1, baseLimit = h, f, tab,
5988 rights, transformer, r, reducer)).fork();
5989 }
5990 for (Node<K,V> p; (p = advance()) != null; )
5991 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5992 result = r;
5993 CountedCompleter<?> c;
5994 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5995 @SuppressWarnings("unchecked")
5996 MapReduceEntriesToLongTask<K,V>
5997 t = (MapReduceEntriesToLongTask<K,V>)c,
5998 s = t.rights;
5999 while (s != null) {
6000 t.result = reducer.applyAsLong(t.result, s.result);
6001 s = t.rights = s.nextRight;
6002 }
6003 }
6004 }
6005 }
6006 }
6007
6008 @SuppressWarnings("serial")
6009 static final class MapReduceMappingsToLongTask<K,V>
6010 extends BulkTask<K,V,Long> {
6011 final ToLongBiFunction<? super K, ? super V> transformer;
6012 final LongBinaryOperator reducer;
6013 final long basis;
6014 long result;
6015 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6016 MapReduceMappingsToLongTask
6017 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6018 MapReduceMappingsToLongTask<K,V> nextRight,
6019 ToLongBiFunction<? super K, ? super V> transformer,
6020 long basis,
6021 LongBinaryOperator reducer) {
6022 super(p, b, i, f, t); this.nextRight = nextRight;
6023 this.transformer = transformer;
6024 this.basis = basis; this.reducer = reducer;
6025 }
6026 public final Long getRawResult() { return result; }
6027 public final void compute() {
6028 final ToLongBiFunction<? super K, ? super V> transformer;
6029 final LongBinaryOperator reducer;
6030 if ((transformer = this.transformer) != null &&
6031 (reducer = this.reducer) != null) {
6032 long r = this.basis;
6033 for (int i = baseIndex, f, h; batch > 0 &&
6034 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6035 addToPendingCount(1);
6036 (rights = new MapReduceMappingsToLongTask<K,V>
6037 (this, batch >>>= 1, baseLimit = h, f, tab,
6038 rights, transformer, r, reducer)).fork();
6039 }
6040 for (Node<K,V> p; (p = advance()) != null; )
6041 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6042 result = r;
6043 CountedCompleter<?> c;
6044 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6045 @SuppressWarnings("unchecked")
6046 MapReduceMappingsToLongTask<K,V>
6047 t = (MapReduceMappingsToLongTask<K,V>)c,
6048 s = t.rights;
6049 while (s != null) {
6050 t.result = reducer.applyAsLong(t.result, s.result);
6051 s = t.rights = s.nextRight;
6052 }
6053 }
6054 }
6055 }
6056 }
6057
6058 @SuppressWarnings("serial")
6059 static final class MapReduceKeysToIntTask<K,V>
6060 extends BulkTask<K,V,Integer> {
6061 final ToIntFunction<? super K> transformer;
6062 final IntBinaryOperator reducer;
6063 final int basis;
6064 int result;
6065 MapReduceKeysToIntTask<K,V> rights, nextRight;
6066 MapReduceKeysToIntTask
6067 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6068 MapReduceKeysToIntTask<K,V> nextRight,
6069 ToIntFunction<? super K> transformer,
6070 int basis,
6071 IntBinaryOperator reducer) {
6072 super(p, b, i, f, t); this.nextRight = nextRight;
6073 this.transformer = transformer;
6074 this.basis = basis; this.reducer = reducer;
6075 }
6076 public final Integer getRawResult() { return result; }
6077 public final void compute() {
6078 final ToIntFunction<? super K> transformer;
6079 final IntBinaryOperator reducer;
6080 if ((transformer = this.transformer) != null &&
6081 (reducer = this.reducer) != null) {
6082 int r = this.basis;
6083 for (int i = baseIndex, f, h; batch > 0 &&
6084 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6085 addToPendingCount(1);
6086 (rights = new MapReduceKeysToIntTask<K,V>
6087 (this, batch >>>= 1, baseLimit = h, f, tab,
6088 rights, transformer, r, reducer)).fork();
6089 }
6090 for (Node<K,V> p; (p = advance()) != null; )
6091 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6092 result = r;
6093 CountedCompleter<?> c;
6094 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 @SuppressWarnings("unchecked")
6096 MapReduceKeysToIntTask<K,V>
6097 t = (MapReduceKeysToIntTask<K,V>)c,
6098 s = t.rights;
6099 while (s != null) {
6100 t.result = reducer.applyAsInt(t.result, s.result);
6101 s = t.rights = s.nextRight;
6102 }
6103 }
6104 }
6105 }
6106 }
6107
6108 @SuppressWarnings("serial")
6109 static final class MapReduceValuesToIntTask<K,V>
6110 extends BulkTask<K,V,Integer> {
6111 final ToIntFunction<? super V> transformer;
6112 final IntBinaryOperator reducer;
6113 final int basis;
6114 int result;
6115 MapReduceValuesToIntTask<K,V> rights, nextRight;
6116 MapReduceValuesToIntTask
6117 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6118 MapReduceValuesToIntTask<K,V> nextRight,
6119 ToIntFunction<? super V> transformer,
6120 int basis,
6121 IntBinaryOperator reducer) {
6122 super(p, b, i, f, t); this.nextRight = nextRight;
6123 this.transformer = transformer;
6124 this.basis = basis; this.reducer = reducer;
6125 }
6126 public final Integer getRawResult() { return result; }
6127 public final void compute() {
6128 final ToIntFunction<? super V> transformer;
6129 final IntBinaryOperator reducer;
6130 if ((transformer = this.transformer) != null &&
6131 (reducer = this.reducer) != null) {
6132 int r = this.basis;
6133 for (int i = baseIndex, f, h; batch > 0 &&
6134 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6135 addToPendingCount(1);
6136 (rights = new MapReduceValuesToIntTask<K,V>
6137 (this, batch >>>= 1, baseLimit = h, f, tab,
6138 rights, transformer, r, reducer)).fork();
6139 }
6140 for (Node<K,V> p; (p = advance()) != null; )
6141 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6142 result = r;
6143 CountedCompleter<?> c;
6144 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6145 @SuppressWarnings("unchecked")
6146 MapReduceValuesToIntTask<K,V>
6147 t = (MapReduceValuesToIntTask<K,V>)c,
6148 s = t.rights;
6149 while (s != null) {
6150 t.result = reducer.applyAsInt(t.result, s.result);
6151 s = t.rights = s.nextRight;
6152 }
6153 }
6154 }
6155 }
6156 }
6157
6158 @SuppressWarnings("serial")
6159 static final class MapReduceEntriesToIntTask<K,V>
6160 extends BulkTask<K,V,Integer> {
6161 final ToIntFunction<Map.Entry<K,V>> transformer;
6162 final IntBinaryOperator reducer;
6163 final int basis;
6164 int result;
6165 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6166 MapReduceEntriesToIntTask
6167 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6168 MapReduceEntriesToIntTask<K,V> nextRight,
6169 ToIntFunction<Map.Entry<K,V>> transformer,
6170 int basis,
6171 IntBinaryOperator reducer) {
6172 super(p, b, i, f, t); this.nextRight = nextRight;
6173 this.transformer = transformer;
6174 this.basis = basis; this.reducer = reducer;
6175 }
6176 public final Integer getRawResult() { return result; }
6177 public final void compute() {
6178 final ToIntFunction<Map.Entry<K,V>> transformer;
6179 final IntBinaryOperator reducer;
6180 if ((transformer = this.transformer) != null &&
6181 (reducer = this.reducer) != null) {
6182 int r = this.basis;
6183 for (int i = baseIndex, f, h; batch > 0 &&
6184 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6185 addToPendingCount(1);
6186 (rights = new MapReduceEntriesToIntTask<K,V>
6187 (this, batch >>>= 1, baseLimit = h, f, tab,
6188 rights, transformer, r, reducer)).fork();
6189 }
6190 for (Node<K,V> p; (p = advance()) != null; )
6191 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6192 result = r;
6193 CountedCompleter<?> c;
6194 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6195 @SuppressWarnings("unchecked")
6196 MapReduceEntriesToIntTask<K,V>
6197 t = (MapReduceEntriesToIntTask<K,V>)c,
6198 s = t.rights;
6199 while (s != null) {
6200 t.result = reducer.applyAsInt(t.result, s.result);
6201 s = t.rights = s.nextRight;
6202 }
6203 }
6204 }
6205 }
6206 }
6207
6208 @SuppressWarnings("serial")
6209 static final class MapReduceMappingsToIntTask<K,V>
6210 extends BulkTask<K,V,Integer> {
6211 final ToIntBiFunction<? super K, ? super V> transformer;
6212 final IntBinaryOperator reducer;
6213 final int basis;
6214 int result;
6215 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6216 MapReduceMappingsToIntTask
6217 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6218 MapReduceMappingsToIntTask<K,V> nextRight,
6219 ToIntBiFunction<? super K, ? super V> transformer,
6220 int basis,
6221 IntBinaryOperator reducer) {
6222 super(p, b, i, f, t); this.nextRight = nextRight;
6223 this.transformer = transformer;
6224 this.basis = basis; this.reducer = reducer;
6225 }
6226 public final Integer getRawResult() { return result; }
6227 public final void compute() {
6228 final ToIntBiFunction<? super K, ? super V> transformer;
6229 final IntBinaryOperator reducer;
6230 if ((transformer = this.transformer) != null &&
6231 (reducer = this.reducer) != null) {
6232 int r = this.basis;
6233 for (int i = baseIndex, f, h; batch > 0 &&
6234 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6235 addToPendingCount(1);
6236 (rights = new MapReduceMappingsToIntTask<K,V>
6237 (this, batch >>>= 1, baseLimit = h, f, tab,
6238 rights, transformer, r, reducer)).fork();
6239 }
6240 for (Node<K,V> p; (p = advance()) != null; )
6241 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6242 result = r;
6243 CountedCompleter<?> c;
6244 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6245 @SuppressWarnings("unchecked")
6246 MapReduceMappingsToIntTask<K,V>
6247 t = (MapReduceMappingsToIntTask<K,V>)c,
6248 s = t.rights;
6249 while (s != null) {
6250 t.result = reducer.applyAsInt(t.result, s.result);
6251 s = t.rights = s.nextRight;
6252 }
6253 }
6254 }
6255 }
6256 }
6257
6258 // Unsafe mechanics
6259 private static final sun.misc.Unsafe U;
6260 private static final long SIZECTL;
6261 private static final long TRANSFERINDEX;
6262 private static final long BASECOUNT;
6263 private static final long CELLSBUSY;
6264 private static final long CELLVALUE;
6265 private static final long ABASE;
6266 private static final int ASHIFT;
6267
6268 static {
6269 try {
6270 U = sun.misc.Unsafe.getUnsafe();
6271 Class<?> k = ConcurrentHashMap.class;
6272 SIZECTL = U.objectFieldOffset
6273 (k.getDeclaredField("sizeCtl"));
6274 TRANSFERINDEX = U.objectFieldOffset
6275 (k.getDeclaredField("transferIndex"));
6276 BASECOUNT = U.objectFieldOffset
6277 (k.getDeclaredField("baseCount"));
6278 CELLSBUSY = U.objectFieldOffset
6279 (k.getDeclaredField("cellsBusy"));
6280 Class<?> ck = CounterCell.class;
6281 CELLVALUE = U.objectFieldOffset
6282 (ck.getDeclaredField("value"));
6283 Class<?> ak = Node[].class;
6284 ABASE = U.arrayBaseOffset(ak);
6285 int scale = U.arrayIndexScale(ak);
6286 if ((scale & (scale - 1)) != 0)
6287 throw new Error("data type scale not a power of two");
6288 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6289 } catch (Exception e) {
6290 throw new Error(e);
6291 }
6292 }
6293 }