ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.279
Committed: Sat Sep 12 21:57:45 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.278: +3 -3 lines
Log Message:
use preferred tense in javadoc

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42
43 /**
44 * A hash table supporting full concurrency of retrievals and
45 * high expected concurrency for updates. This class obeys the
46 * same functional specification as {@link java.util.Hashtable}, and
47 * includes versions of methods corresponding to each method of
48 * {@code Hashtable}. However, even though all operations are
49 * thread-safe, retrieval operations do <em>not</em> entail locking,
50 * and there is <em>not</em> any support for locking the entire table
51 * in a way that prevents all access. This class is fully
52 * interoperable with {@code Hashtable} in programs that rely on its
53 * thread safety but not on its synchronization details.
54 *
55 * <p>Retrieval operations (including {@code get}) generally do not
56 * block, so may overlap with update operations (including {@code put}
57 * and {@code remove}). Retrievals reflect the results of the most
58 * recently <em>completed</em> update operations holding upon their
59 * onset. (More formally, an update operation for a given key bears a
60 * <em>happens-before</em> relation with any (non-null) retrieval for
61 * that key reporting the updated value.) For aggregate operations
62 * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 * reflect insertion or removal of only some entries. Similarly,
64 * Iterators, Spliterators and Enumerations return elements reflecting the
65 * state of the hash table at some point at or since the creation of the
66 * iterator/enumeration. They do <em>not</em> throw {@link
67 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 * However, iterators are designed to be used by only one thread at a time.
69 * Bear in mind that the results of aggregate status methods including
70 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 * useful only when a map is not undergoing concurrent updates in other threads.
72 * Otherwise the results of these methods reflect transient states
73 * that may be adequate for monitoring or estimation purposes, but not
74 * for program control.
75 *
76 * <p>The table is dynamically expanded when there are too many
77 * collisions (i.e., keys that have distinct hash codes but fall into
78 * the same slot modulo the table size), with the expected average
79 * effect of maintaining roughly two bins per mapping (corresponding
80 * to a 0.75 load factor threshold for resizing). There may be much
81 * variance around this average as mappings are added and removed, but
82 * overall, this maintains a commonly accepted time/space tradeoff for
83 * hash tables. However, resizing this or any other kind of hash
84 * table may be a relatively slow operation. When possible, it is a
85 * good idea to provide a size estimate as an optional {@code
86 * initialCapacity} constructor argument. An additional optional
87 * {@code loadFactor} constructor argument provides a further means of
88 * customizing initial table capacity by specifying the table density
89 * to be used in calculating the amount of space to allocate for the
90 * given number of elements. Also, for compatibility with previous
91 * versions of this class, constructors may optionally specify an
92 * expected {@code concurrencyLevel} as an additional hint for
93 * internal sizing. Note that using many keys with exactly the same
94 * {@code hashCode()} is a sure way to slow down performance of any
95 * hash table. To ameliorate impact, when keys are {@link Comparable},
96 * this class may use comparison order among keys to help break ties.
97 *
98 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 * (using {@link #keySet(Object)} when only keys are of interest, and the
101 * mapped values are (perhaps transiently) not used or all take the
102 * same mapping value.
103 *
104 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 * form of histogram or multiset) by using {@link
106 * java.util.concurrent.atomic.LongAdder} values and initializing via
107 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 *
111 * <p>This class and its views and iterators implement all of the
112 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 * interfaces.
114 *
115 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 * does <em>not</em> allow {@code null} to be used as a key or value.
117 *
118 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 * operations that, unlike most {@link Stream} methods, are designed
120 * to be safely, and often sensibly, applied even with maps that are
121 * being concurrently updated by other threads; for example, when
122 * computing a snapshot summary of the values in a shared registry.
123 * There are three kinds of operation, each with four forms, accepting
124 * functions with keys, values, entries, and (key, value) pairs as
125 * arguments and/or return values. Because the elements of a
126 * ConcurrentHashMap are not ordered in any particular way, and may be
127 * processed in different orders in different parallel executions, the
128 * correctness of supplied functions should not depend on any
129 * ordering, or on any other objects or values that may transiently
130 * change while computation is in progress; and except for forEach
131 * actions, should ideally be side-effect-free. Bulk operations on
132 * {@link java.util.Map.Entry} objects do not support method {@code
133 * setValue}.
134 *
135 * <ul>
136 * <li> forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.</li>
139 *
140 * <li> search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.</li>
143 *
144 * <li> reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li> Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)</li>
153 *
154 * <li> Mapped reductions that accumulate the results of a given
155 * function applied to each element.</li>
156 *
157 * <li> Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.</li>
159 *
160 * </ul>
161 * </li>
162 * </ul>
163 *
164 * <p>These bulk operations accept a {@code parallelismThreshold}
165 * argument. Methods proceed sequentially if the current map size is
166 * estimated to be less than the given threshold. Using a value of
167 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
168 * of {@code 1} results in maximal parallelism by partitioning into
169 * enough subtasks to fully utilize the {@link
170 * ForkJoinPool#commonPool()} that is used for all parallel
171 * computations. Normally, you would initially choose one of these
172 * extreme values, and then measure performance of using in-between
173 * values that trade off overhead versus throughput.
174 *
175 * <p>The concurrency properties of bulk operations follow
176 * from those of ConcurrentHashMap: Any non-null result returned
177 * from {@code get(key)} and related access methods bears a
178 * happens-before relation with the associated insertion or
179 * update. The result of any bulk operation reflects the
180 * composition of these per-element relations (but is not
181 * necessarily atomic with respect to the map as a whole unless it
182 * is somehow known to be quiescent). Conversely, because keys
183 * and values in the map are never null, null serves as a reliable
184 * atomic indicator of the current lack of any result. To
185 * maintain this property, null serves as an implicit basis for
186 * all non-scalar reduction operations. For the double, long, and
187 * int versions, the basis should be one that, when combined with
188 * any other value, returns that other value (more formally, it
189 * should be the identity element for the reduction). Most common
190 * reductions have these properties; for example, computing a sum
191 * with basis 0 or a minimum with basis MAX_VALUE.
192 *
193 * <p>Search and transformation functions provided as arguments
194 * should similarly return null to indicate the lack of any result
195 * (in which case it is not used). In the case of mapped
196 * reductions, this also enables transformations to serve as
197 * filters, returning null (or, in the case of primitive
198 * specializations, the identity basis) if the element should not
199 * be combined. You can create compound transformations and
200 * filterings by composing them yourself under this "null means
201 * there is nothing there now" rule before using them in search or
202 * reduce operations.
203 *
204 * <p>Methods accepting and/or returning Entry arguments maintain
205 * key-value associations. They may be useful for example when
206 * finding the key for the greatest value. Note that "plain" Entry
207 * arguments can be supplied using {@code new
208 * AbstractMap.SimpleEntry(k,v)}.
209 *
210 * <p>Bulk operations may complete abruptly, throwing an
211 * exception encountered in the application of a supplied
212 * function. Bear in mind when handling such exceptions that other
213 * concurrently executing functions could also have thrown
214 * exceptions, or would have done so if the first exception had
215 * not occurred.
216 *
217 * <p>Speedups for parallel compared to sequential forms are common
218 * but not guaranteed. Parallel operations involving brief functions
219 * on small maps may execute more slowly than sequential forms if the
220 * underlying work to parallelize the computation is more expensive
221 * than the computation itself. Similarly, parallelization may not
222 * lead to much actual parallelism if all processors are busy
223 * performing unrelated tasks.
224 *
225 * <p>All arguments to all task methods must be non-null.
226 *
227 * <p>This class is a member of the
228 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
229 * Java Collections Framework</a>.
230 *
231 * @since 1.5
232 * @author Doug Lea
233 * @param <K> the type of keys maintained by this map
234 * @param <V> the type of mapped values
235 */
236 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
237 implements ConcurrentMap<K,V>, Serializable {
238 private static final long serialVersionUID = 7249069246763182397L;
239
240 /*
241 * Overview:
242 *
243 * The primary design goal of this hash table is to maintain
244 * concurrent readability (typically method get(), but also
245 * iterators and related methods) while minimizing update
246 * contention. Secondary goals are to keep space consumption about
247 * the same or better than java.util.HashMap, and to support high
248 * initial insertion rates on an empty table by many threads.
249 *
250 * This map usually acts as a binned (bucketed) hash table. Each
251 * key-value mapping is held in a Node. Most nodes are instances
252 * of the basic Node class with hash, key, value, and next
253 * fields. However, various subclasses exist: TreeNodes are
254 * arranged in balanced trees, not lists. TreeBins hold the roots
255 * of sets of TreeNodes. ForwardingNodes are placed at the heads
256 * of bins during resizing. ReservationNodes are used as
257 * placeholders while establishing values in computeIfAbsent and
258 * related methods. The types TreeBin, ForwardingNode, and
259 * ReservationNode do not hold normal user keys, values, or
260 * hashes, and are readily distinguishable during search etc
261 * because they have negative hash fields and null key and value
262 * fields. (These special nodes are either uncommon or transient,
263 * so the impact of carrying around some unused fields is
264 * insignificant.)
265 *
266 * The table is lazily initialized to a power-of-two size upon the
267 * first insertion. Each bin in the table normally contains a
268 * list of Nodes (most often, the list has only zero or one Node).
269 * Table accesses require volatile/atomic reads, writes, and
270 * CASes. Because there is no other way to arrange this without
271 * adding further indirections, we use intrinsics
272 * (sun.misc.Unsafe) operations.
273 *
274 * We use the top (sign) bit of Node hash fields for control
275 * purposes -- it is available anyway because of addressing
276 * constraints. Nodes with negative hash fields are specially
277 * handled or ignored in map methods.
278 *
279 * Insertion (via put or its variants) of the first node in an
280 * empty bin is performed by just CASing it to the bin. This is
281 * by far the most common case for put operations under most
282 * key/hash distributions. Other update operations (insert,
283 * delete, and replace) require locks. We do not want to waste
284 * the space required to associate a distinct lock object with
285 * each bin, so instead use the first node of a bin list itself as
286 * a lock. Locking support for these locks relies on builtin
287 * "synchronized" monitors.
288 *
289 * Using the first node of a list as a lock does not by itself
290 * suffice though: When a node is locked, any update must first
291 * validate that it is still the first node after locking it, and
292 * retry if not. Because new nodes are always appended to lists,
293 * once a node is first in a bin, it remains first until deleted
294 * or the bin becomes invalidated (upon resizing).
295 *
296 * The main disadvantage of per-bin locks is that other update
297 * operations on other nodes in a bin list protected by the same
298 * lock can stall, for example when user equals() or mapping
299 * functions take a long time. However, statistically, under
300 * random hash codes, this is not a common problem. Ideally, the
301 * frequency of nodes in bins follows a Poisson distribution
302 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
303 * parameter of about 0.5 on average, given the resizing threshold
304 * of 0.75, although with a large variance because of resizing
305 * granularity. Ignoring variance, the expected occurrences of
306 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
307 * first values are:
308 *
309 * 0: 0.60653066
310 * 1: 0.30326533
311 * 2: 0.07581633
312 * 3: 0.01263606
313 * 4: 0.00157952
314 * 5: 0.00015795
315 * 6: 0.00001316
316 * 7: 0.00000094
317 * 8: 0.00000006
318 * more: less than 1 in ten million
319 *
320 * Lock contention probability for two threads accessing distinct
321 * elements is roughly 1 / (8 * #elements) under random hashes.
322 *
323 * Actual hash code distributions encountered in practice
324 * sometimes deviate significantly from uniform randomness. This
325 * includes the case when N > (1<<30), so some keys MUST collide.
326 * Similarly for dumb or hostile usages in which multiple keys are
327 * designed to have identical hash codes or ones that differs only
328 * in masked-out high bits. So we use a secondary strategy that
329 * applies when the number of nodes in a bin exceeds a
330 * threshold. These TreeBins use a balanced tree to hold nodes (a
331 * specialized form of red-black trees), bounding search time to
332 * O(log N). Each search step in a TreeBin is at least twice as
333 * slow as in a regular list, but given that N cannot exceed
334 * (1<<64) (before running out of addresses) this bounds search
335 * steps, lock hold times, etc, to reasonable constants (roughly
336 * 100 nodes inspected per operation worst case) so long as keys
337 * are Comparable (which is very common -- String, Long, etc).
338 * TreeBin nodes (TreeNodes) also maintain the same "next"
339 * traversal pointers as regular nodes, so can be traversed in
340 * iterators in the same way.
341 *
342 * The table is resized when occupancy exceeds a percentage
343 * threshold (nominally, 0.75, but see below). Any thread
344 * noticing an overfull bin may assist in resizing after the
345 * initiating thread allocates and sets up the replacement array.
346 * However, rather than stalling, these other threads may proceed
347 * with insertions etc. The use of TreeBins shields us from the
348 * worst case effects of overfilling while resizes are in
349 * progress. Resizing proceeds by transferring bins, one by one,
350 * from the table to the next table. However, threads claim small
351 * blocks of indices to transfer (via field transferIndex) before
352 * doing so, reducing contention. A generation stamp in field
353 * sizeCtl ensures that resizings do not overlap. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged in part by proceeding from the
375 * last bin (table.length - 1) up towards the first. Upon seeing
376 * a forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. To ensure that
378 * no intervening nodes are skipped even when moved out of order,
379 * a stack (see class TableStack) is created on first encounter of
380 * a forwarding node during a traversal, to maintain its place if
381 * later processing the current table. The need for these
382 * save/restore mechanics is relatively rare, but when one
383 * forwarding node is encountered, typically many more will be.
384 * So Traversers use a simple caching scheme to avoid creating so
385 * many new TableStack nodes. (Thanks to Peter Levart for
386 * suggesting use of a stack here.)
387 *
388 * The traversal scheme also applies to partial traversals of
389 * ranges of bins (via an alternate Traverser constructor)
390 * to support partitioned aggregate operations. Also, read-only
391 * operations give up if ever forwarded to a null table, which
392 * provides support for shutdown-style clearing, which is also not
393 * currently implemented.
394 *
395 * Lazy table initialization minimizes footprint until first use,
396 * and also avoids resizings when the first operation is from a
397 * putAll, constructor with map argument, or deserialization.
398 * These cases attempt to override the initial capacity settings,
399 * but harmlessly fail to take effect in cases of races.
400 *
401 * The element count is maintained using a specialization of
402 * LongAdder. We need to incorporate a specialization rather than
403 * just use a LongAdder in order to access implicit
404 * contention-sensing that leads to creation of multiple
405 * CounterCells. The counter mechanics avoid contention on
406 * updates but can encounter cache thrashing if read too
407 * frequently during concurrent access. To avoid reading so often,
408 * resizing under contention is attempted only upon adding to a
409 * bin already holding two or more nodes. Under uniform hash
410 * distributions, the probability of this occurring at threshold
411 * is around 13%, meaning that only about 1 in 8 puts check
412 * threshold (and after resizing, many fewer do so).
413 *
414 * TreeBins use a special form of comparison for search and
415 * related operations (which is the main reason we cannot use
416 * existing collections such as TreeMaps). TreeBins contain
417 * Comparable elements, but may contain others, as well as
418 * elements that are Comparable but not necessarily Comparable for
419 * the same T, so we cannot invoke compareTo among them. To handle
420 * this, the tree is ordered primarily by hash value, then by
421 * Comparable.compareTo order if applicable. On lookup at a node,
422 * if elements are not comparable or compare as 0 then both left
423 * and right children may need to be searched in the case of tied
424 * hash values. (This corresponds to the full list search that
425 * would be necessary if all elements were non-Comparable and had
426 * tied hashes.) On insertion, to keep a total ordering (or as
427 * close as is required here) across rebalancings, we compare
428 * classes and identityHashCodes as tie-breakers. The red-black
429 * balancing code is updated from pre-jdk-collections
430 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 * Algorithms" (CLR).
433 *
434 * TreeBins also require an additional locking mechanism. While
435 * list traversal is always possible by readers even during
436 * updates, tree traversal is not, mainly because of tree-rotations
437 * that may change the root node and/or its linkages. TreeBins
438 * include a simple read-write lock mechanism parasitic on the
439 * main bin-synchronization strategy: Structural adjustments
440 * associated with an insertion or removal are already bin-locked
441 * (and so cannot conflict with other writers) but must wait for
442 * ongoing readers to finish. Since there can be only one such
443 * waiter, we use a simple scheme using a single "waiter" field to
444 * block writers. However, readers need never block. If the root
445 * lock is held, they proceed along the slow traversal path (via
446 * next-pointers) until the lock becomes available or the list is
447 * exhausted, whichever comes first. These cases are not fast, but
448 * maximize aggregate expected throughput.
449 *
450 * Maintaining API and serialization compatibility with previous
451 * versions of this class introduces several oddities. Mainly: We
452 * leave untouched but unused constructor arguments referring to
453 * concurrencyLevel. We accept a loadFactor constructor argument,
454 * but apply it only to initial table capacity (which is the only
455 * time that we can guarantee to honor it.) We also declare an
456 * unused "Segment" class that is instantiated in minimal form
457 * only when serializing.
458 *
459 * Also, solely for compatibility with previous versions of this
460 * class, it extends AbstractMap, even though all of its methods
461 * are overridden, so it is just useless baggage.
462 *
463 * This file is organized to make things a little easier to follow
464 * while reading than they might otherwise: First the main static
465 * declarations and utilities, then fields, then main public
466 * methods (with a few factorings of multiple public methods into
467 * internal ones), then sizing methods, trees, traversers, and
468 * bulk operations.
469 */
470
471 /* ---------------- Constants -------------- */
472
473 /**
474 * The largest possible table capacity. This value must be
475 * exactly 1<<30 to stay within Java array allocation and indexing
476 * bounds for power of two table sizes, and is further required
477 * because the top two bits of 32bit hash fields are used for
478 * control purposes.
479 */
480 private static final int MAXIMUM_CAPACITY = 1 << 30;
481
482 /**
483 * The default initial table capacity. Must be a power of 2
484 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 */
486 private static final int DEFAULT_CAPACITY = 16;
487
488 /**
489 * The largest possible (non-power of two) array size.
490 * Needed by toArray and related methods.
491 */
492 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493
494 /**
495 * The default concurrency level for this table. Unused but
496 * defined for compatibility with previous versions of this class.
497 */
498 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499
500 /**
501 * The load factor for this table. Overrides of this value in
502 * constructors affect only the initial table capacity. The
503 * actual floating point value isn't normally used -- it is
504 * simpler to use expressions such as {@code n - (n >>> 2)} for
505 * the associated resizing threshold.
506 */
507 private static final float LOAD_FACTOR = 0.75f;
508
509 /**
510 * The bin count threshold for using a tree rather than list for a
511 * bin. Bins are converted to trees when adding an element to a
512 * bin with at least this many nodes. The value must be greater
513 * than 2, and should be at least 8 to mesh with assumptions in
514 * tree removal about conversion back to plain bins upon
515 * shrinkage.
516 */
517 static final int TREEIFY_THRESHOLD = 8;
518
519 /**
520 * The bin count threshold for untreeifying a (split) bin during a
521 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 * most 6 to mesh with shrinkage detection under removal.
523 */
524 static final int UNTREEIFY_THRESHOLD = 6;
525
526 /**
527 * The smallest table capacity for which bins may be treeified.
528 * (Otherwise the table is resized if too many nodes in a bin.)
529 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 * conflicts between resizing and treeification thresholds.
531 */
532 static final int MIN_TREEIFY_CAPACITY = 64;
533
534 /**
535 * Minimum number of rebinnings per transfer step. Ranges are
536 * subdivided to allow multiple resizer threads. This value
537 * serves as a lower bound to avoid resizers encountering
538 * excessive memory contention. The value should be at least
539 * DEFAULT_CAPACITY.
540 */
541 private static final int MIN_TRANSFER_STRIDE = 16;
542
543 /**
544 * The number of bits used for generation stamp in sizeCtl.
545 * Must be at least 6 for 32bit arrays.
546 */
547 private static int RESIZE_STAMP_BITS = 16;
548
549 /**
550 * The maximum number of threads that can help resize.
551 * Must fit in 32 - RESIZE_STAMP_BITS bits.
552 */
553 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
554
555 /**
556 * The bit shift for recording size stamp in sizeCtl.
557 */
558 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
559
560 /*
561 * Encodings for Node hash fields. See above for explanation.
562 */
563 static final int MOVED = -1; // hash for forwarding nodes
564 static final int TREEBIN = -2; // hash for roots of trees
565 static final int RESERVED = -3; // hash for transient reservations
566 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
567
568 /** Number of CPUS, to place bounds on some sizings */
569 static final int NCPU = Runtime.getRuntime().availableProcessors();
570
571 /** For serialization compatibility. */
572 private static final ObjectStreamField[] serialPersistentFields = {
573 new ObjectStreamField("segments", Segment[].class),
574 new ObjectStreamField("segmentMask", Integer.TYPE),
575 new ObjectStreamField("segmentShift", Integer.TYPE)
576 };
577
578 /* ---------------- Nodes -------------- */
579
580 /**
581 * Key-value entry. This class is never exported out as a
582 * user-mutable Map.Entry (i.e., one supporting setValue; see
583 * MapEntry below), but can be used for read-only traversals used
584 * in bulk tasks. Subclasses of Node with a negative hash field
585 * are special, and contain null keys and values (but are never
586 * exported). Otherwise, keys and vals are never null.
587 */
588 static class Node<K,V> implements Map.Entry<K,V> {
589 final int hash;
590 final K key;
591 volatile V val;
592 volatile Node<K,V> next;
593
594 Node(int hash, K key, V val, Node<K,V> next) {
595 this.hash = hash;
596 this.key = key;
597 this.val = val;
598 this.next = next;
599 }
600
601 public final K getKey() { return key; }
602 public final V getValue() { return val; }
603 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
604 public final String toString() {
605 return Helpers.mapEntryToString(key, val);
606 }
607 public final V setValue(V value) {
608 throw new UnsupportedOperationException();
609 }
610
611 public final boolean equals(Object o) {
612 Object k, v, u; Map.Entry<?,?> e;
613 return ((o instanceof Map.Entry) &&
614 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 (v = e.getValue()) != null &&
616 (k == key || k.equals(key)) &&
617 (v == (u = val) || v.equals(u)));
618 }
619
620 /**
621 * Virtualized support for map.get(); overridden in subclasses.
622 */
623 Node<K,V> find(int h, Object k) {
624 Node<K,V> e = this;
625 if (k != null) {
626 do {
627 K ek;
628 if (e.hash == h &&
629 ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 return e;
631 } while ((e = e.next) != null);
632 }
633 return null;
634 }
635 }
636
637 /* ---------------- Static utilities -------------- */
638
639 /**
640 * Spreads (XORs) higher bits of hash to lower and also forces top
641 * bit to 0. Because the table uses power-of-two masking, sets of
642 * hashes that vary only in bits above the current mask will
643 * always collide. (Among known examples are sets of Float keys
644 * holding consecutive whole numbers in small tables.) So we
645 * apply a transform that spreads the impact of higher bits
646 * downward. There is a tradeoff between speed, utility, and
647 * quality of bit-spreading. Because many common sets of hashes
648 * are already reasonably distributed (so don't benefit from
649 * spreading), and because we use trees to handle large sets of
650 * collisions in bins, we just XOR some shifted bits in the
651 * cheapest possible way to reduce systematic lossage, as well as
652 * to incorporate impact of the highest bits that would otherwise
653 * never be used in index calculations because of table bounds.
654 */
655 static final int spread(int h) {
656 return (h ^ (h >>> 16)) & HASH_BITS;
657 }
658
659 /**
660 * Returns a power of two table size for the given desired capacity.
661 * See Hackers Delight, sec 3.2
662 */
663 private static final int tableSizeFor(int c) {
664 int n = c - 1;
665 n |= n >>> 1;
666 n |= n >>> 2;
667 n |= n >>> 4;
668 n |= n >>> 8;
669 n |= n >>> 16;
670 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 }
672
673 /**
674 * Returns x's Class if it is of the form "class C implements
675 * Comparable<C>", else null.
676 */
677 static Class<?> comparableClassFor(Object x) {
678 if (x instanceof Comparable) {
679 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 if ((c = x.getClass()) == String.class) // bypass checks
681 return c;
682 if ((ts = c.getGenericInterfaces()) != null) {
683 for (int i = 0; i < ts.length; ++i) {
684 if (((t = ts[i]) instanceof ParameterizedType) &&
685 ((p = (ParameterizedType)t).getRawType() ==
686 Comparable.class) &&
687 (as = p.getActualTypeArguments()) != null &&
688 as.length == 1 && as[0] == c) // type arg is c
689 return c;
690 }
691 }
692 }
693 return null;
694 }
695
696 /**
697 * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 * class), else 0.
699 */
700 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 static int compareComparables(Class<?> kc, Object k, Object x) {
702 return (x == null || x.getClass() != kc ? 0 :
703 ((Comparable)k).compareTo(x));
704 }
705
706 /* ---------------- Table element access -------------- */
707
708 /*
709 * Volatile access methods are used for table elements as well as
710 * elements of in-progress next table while resizing. All uses of
711 * the tab arguments must be null checked by callers. All callers
712 * also paranoically precheck that tab's length is not zero (or an
713 * equivalent check), thus ensuring that any index argument taking
714 * the form of a hash value anded with (length - 1) is a valid
715 * index. Note that, to be correct wrt arbitrary concurrency
716 * errors by users, these checks must operate on local variables,
717 * which accounts for some odd-looking inline assignments below.
718 * Note that calls to setTabAt always occur within locked regions,
719 * and so in principle require only release ordering, not
720 * full volatile semantics, but are currently coded as volatile
721 * writes to be conservative.
722 */
723
724 @SuppressWarnings("unchecked")
725 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727 }
728
729 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 Node<K,V> c, Node<K,V> v) {
731 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 }
733
734 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 }
737
738 /* ---------------- Fields -------------- */
739
740 /**
741 * The array of bins. Lazily initialized upon first insertion.
742 * Size is always a power of two. Accessed directly by iterators.
743 */
744 transient volatile Node<K,V>[] table;
745
746 /**
747 * The next table to use; non-null only while resizing.
748 */
749 private transient volatile Node<K,V>[] nextTable;
750
751 /**
752 * Base counter value, used mainly when there is no contention,
753 * but also as a fallback during table initialization
754 * races. Updated via CAS.
755 */
756 private transient volatile long baseCount;
757
758 /**
759 * Table initialization and resizing control. When negative, the
760 * table is being initialized or resized: -1 for initialization,
761 * else -(1 + the number of active resizing threads). Otherwise,
762 * when table is null, holds the initial table size to use upon
763 * creation, or 0 for default. After initialization, holds the
764 * next element count value upon which to resize the table.
765 */
766 private transient volatile int sizeCtl;
767
768 /**
769 * The next table index (plus one) to split while resizing.
770 */
771 private transient volatile int transferIndex;
772
773 /**
774 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 */
776 private transient volatile int cellsBusy;
777
778 /**
779 * Table of counter cells. When non-null, size is a power of 2.
780 */
781 private transient volatile CounterCell[] counterCells;
782
783 // views
784 private transient KeySetView<K,V> keySet;
785 private transient ValuesView<K,V> values;
786 private transient EntrySetView<K,V> entrySet;
787
788
789 /* ---------------- Public operations -------------- */
790
791 /**
792 * Creates a new, empty map with the default initial table size (16).
793 */
794 public ConcurrentHashMap() {
795 }
796
797 /**
798 * Creates a new, empty map with an initial table size
799 * accommodating the specified number of elements without the need
800 * to dynamically resize.
801 *
802 * @param initialCapacity The implementation performs internal
803 * sizing to accommodate this many elements.
804 * @throws IllegalArgumentException if the initial capacity of
805 * elements is negative
806 */
807 public ConcurrentHashMap(int initialCapacity) {
808 if (initialCapacity < 0)
809 throw new IllegalArgumentException();
810 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 MAXIMUM_CAPACITY :
812 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 this.sizeCtl = cap;
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), table
848 * density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null,
991 new Node<K,V>(hash, key, value, null)))
992 break; // no lock when adding to empty bin
993 }
994 else if ((fh = f.hash) == MOVED)
995 tab = helpTransfer(tab, f);
996 else {
997 V oldVal = null;
998 synchronized (f) {
999 if (tabAt(tab, i) == f) {
1000 if (fh >= 0) {
1001 binCount = 1;
1002 for (Node<K,V> e = f;; ++binCount) {
1003 K ek;
1004 if (e.hash == hash &&
1005 ((ek = e.key) == key ||
1006 (ek != null && key.equals(ek)))) {
1007 oldVal = e.val;
1008 if (!onlyIfAbsent)
1009 e.val = value;
1010 break;
1011 }
1012 Node<K,V> pred = e;
1013 if ((e = e.next) == null) {
1014 pred.next = new Node<K,V>(hash, key,
1015 value, null);
1016 break;
1017 }
1018 }
1019 }
1020 else if (f instanceof TreeBin) {
1021 Node<K,V> p;
1022 binCount = 2;
1023 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 value)) != null) {
1025 oldVal = p.val;
1026 if (!onlyIfAbsent)
1027 p.val = value;
1028 }
1029 }
1030 else if (f instanceof ReservationNode)
1031 throw new IllegalStateException("Recursive update");
1032 }
1033 }
1034 if (binCount != 0) {
1035 if (binCount >= TREEIFY_THRESHOLD)
1036 treeifyBin(tab, i);
1037 if (oldVal != null)
1038 return oldVal;
1039 break;
1040 }
1041 }
1042 }
1043 addCount(1L, binCount);
1044 return null;
1045 }
1046
1047 /**
1048 * Copies all of the mappings from the specified map to this one.
1049 * These mappings replace any mappings that this map had for any of the
1050 * keys currently in the specified map.
1051 *
1052 * @param m mappings to be stored in this map
1053 */
1054 public void putAll(Map<? extends K, ? extends V> m) {
1055 tryPresize(m.size());
1056 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1057 putVal(e.getKey(), e.getValue(), false);
1058 }
1059
1060 /**
1061 * Removes the key (and its corresponding value) from this map.
1062 * This method does nothing if the key is not in the map.
1063 *
1064 * @param key the key that needs to be removed
1065 * @return the previous value associated with {@code key}, or
1066 * {@code null} if there was no mapping for {@code key}
1067 * @throws NullPointerException if the specified key is null
1068 */
1069 public V remove(Object key) {
1070 return replaceNode(key, null, null);
1071 }
1072
1073 /**
1074 * Implementation for the four public remove/replace methods:
1075 * Replaces node value with v, conditional upon match of cv if
1076 * non-null. If resulting value is null, delete.
1077 */
1078 final V replaceNode(Object key, V value, Object cv) {
1079 int hash = spread(key.hashCode());
1080 for (Node<K,V>[] tab = table;;) {
1081 Node<K,V> f; int n, i, fh;
1082 if (tab == null || (n = tab.length) == 0 ||
1083 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1084 break;
1085 else if ((fh = f.hash) == MOVED)
1086 tab = helpTransfer(tab, f);
1087 else {
1088 V oldVal = null;
1089 boolean validated = false;
1090 synchronized (f) {
1091 if (tabAt(tab, i) == f) {
1092 if (fh >= 0) {
1093 validated = true;
1094 for (Node<K,V> e = f, pred = null;;) {
1095 K ek;
1096 if (e.hash == hash &&
1097 ((ek = e.key) == key ||
1098 (ek != null && key.equals(ek)))) {
1099 V ev = e.val;
1100 if (cv == null || cv == ev ||
1101 (ev != null && cv.equals(ev))) {
1102 oldVal = ev;
1103 if (value != null)
1104 e.val = value;
1105 else if (pred != null)
1106 pred.next = e.next;
1107 else
1108 setTabAt(tab, i, e.next);
1109 }
1110 break;
1111 }
1112 pred = e;
1113 if ((e = e.next) == null)
1114 break;
1115 }
1116 }
1117 else if (f instanceof TreeBin) {
1118 validated = true;
1119 TreeBin<K,V> t = (TreeBin<K,V>)f;
1120 TreeNode<K,V> r, p;
1121 if ((r = t.root) != null &&
1122 (p = r.findTreeNode(hash, key, null)) != null) {
1123 V pv = p.val;
1124 if (cv == null || cv == pv ||
1125 (pv != null && cv.equals(pv))) {
1126 oldVal = pv;
1127 if (value != null)
1128 p.val = value;
1129 else if (t.removeTreeNode(p))
1130 setTabAt(tab, i, untreeify(t.first));
1131 }
1132 }
1133 }
1134 else if (f instanceof ReservationNode)
1135 throw new IllegalStateException("Recursive update");
1136 }
1137 }
1138 if (validated) {
1139 if (oldVal != null) {
1140 if (value == null)
1141 addCount(-1L, -1);
1142 return oldVal;
1143 }
1144 break;
1145 }
1146 }
1147 }
1148 return null;
1149 }
1150
1151 /**
1152 * Removes all of the mappings from this map.
1153 */
1154 public void clear() {
1155 long delta = 0L; // negative number of deletions
1156 int i = 0;
1157 Node<K,V>[] tab = table;
1158 while (tab != null && i < tab.length) {
1159 int fh;
1160 Node<K,V> f = tabAt(tab, i);
1161 if (f == null)
1162 ++i;
1163 else if ((fh = f.hash) == MOVED) {
1164 tab = helpTransfer(tab, f);
1165 i = 0; // restart
1166 }
1167 else {
1168 synchronized (f) {
1169 if (tabAt(tab, i) == f) {
1170 Node<K,V> p = (fh >= 0 ? f :
1171 (f instanceof TreeBin) ?
1172 ((TreeBin<K,V>)f).first : null);
1173 while (p != null) {
1174 --delta;
1175 p = p.next;
1176 }
1177 setTabAt(tab, i++, null);
1178 }
1179 }
1180 }
1181 }
1182 if (delta != 0L)
1183 addCount(delta, -1);
1184 }
1185
1186 /**
1187 * Returns a {@link Set} view of the keys contained in this map.
1188 * The set is backed by the map, so changes to the map are
1189 * reflected in the set, and vice-versa. The set supports element
1190 * removal, which removes the corresponding mapping from this map,
1191 * via the {@code Iterator.remove}, {@code Set.remove},
1192 * {@code removeAll}, {@code retainAll}, and {@code clear}
1193 * operations. It does not support the {@code add} or
1194 * {@code addAll} operations.
1195 *
1196 * <p>The view's iterators and spliterators are
1197 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 *
1199 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1200 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1201 *
1202 * @return the set view
1203 */
1204 public KeySetView<K,V> keySet() {
1205 KeySetView<K,V> ks;
1206 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1207 }
1208
1209 /**
1210 * Returns a {@link Collection} view of the values contained in this map.
1211 * The collection is backed by the map, so changes to the map are
1212 * reflected in the collection, and vice-versa. The collection
1213 * supports element removal, which removes the corresponding
1214 * mapping from this map, via the {@code Iterator.remove},
1215 * {@code Collection.remove}, {@code removeAll},
1216 * {@code retainAll}, and {@code clear} operations. It does not
1217 * support the {@code add} or {@code addAll} operations.
1218 *
1219 * <p>The view's iterators and spliterators are
1220 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1221 *
1222 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1223 * and {@link Spliterator#NONNULL}.
1224 *
1225 * @return the collection view
1226 */
1227 public Collection<V> values() {
1228 ValuesView<K,V> vs;
1229 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1230 }
1231
1232 /**
1233 * Returns a {@link Set} view of the mappings contained in this map.
1234 * The set is backed by the map, so changes to the map are
1235 * reflected in the set, and vice-versa. The set supports element
1236 * removal, which removes the corresponding mapping from the map,
1237 * via the {@code Iterator.remove}, {@code Set.remove},
1238 * {@code removeAll}, {@code retainAll}, and {@code clear}
1239 * operations.
1240 *
1241 * <p>The view's iterators and spliterators are
1242 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1243 *
1244 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1245 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1246 *
1247 * @return the set view
1248 */
1249 public Set<Map.Entry<K,V>> entrySet() {
1250 EntrySetView<K,V> es;
1251 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1252 }
1253
1254 /**
1255 * Returns the hash code value for this {@link Map}, i.e.,
1256 * the sum of, for each key-value pair in the map,
1257 * {@code key.hashCode() ^ value.hashCode()}.
1258 *
1259 * @return the hash code value for this map
1260 */
1261 public int hashCode() {
1262 int h = 0;
1263 Node<K,V>[] t;
1264 if ((t = table) != null) {
1265 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1266 for (Node<K,V> p; (p = it.advance()) != null; )
1267 h += p.key.hashCode() ^ p.val.hashCode();
1268 }
1269 return h;
1270 }
1271
1272 /**
1273 * Returns a string representation of this map. The string
1274 * representation consists of a list of key-value mappings (in no
1275 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1276 * mappings are separated by the characters {@code ", "} (comma
1277 * and space). Each key-value mapping is rendered as the key
1278 * followed by an equals sign ("{@code =}") followed by the
1279 * associated value.
1280 *
1281 * @return a string representation of this map
1282 */
1283 public String toString() {
1284 Node<K,V>[] t;
1285 int f = (t = table) == null ? 0 : t.length;
1286 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1287 StringBuilder sb = new StringBuilder();
1288 sb.append('{');
1289 Node<K,V> p;
1290 if ((p = it.advance()) != null) {
1291 for (;;) {
1292 K k = p.key;
1293 V v = p.val;
1294 sb.append(k == this ? "(this Map)" : k);
1295 sb.append('=');
1296 sb.append(v == this ? "(this Map)" : v);
1297 if ((p = it.advance()) == null)
1298 break;
1299 sb.append(',').append(' ');
1300 }
1301 }
1302 return sb.append('}').toString();
1303 }
1304
1305 /**
1306 * Compares the specified object with this map for equality.
1307 * Returns {@code true} if the given object is a map with the same
1308 * mappings as this map. This operation may return misleading
1309 * results if either map is concurrently modified during execution
1310 * of this method.
1311 *
1312 * @param o object to be compared for equality with this map
1313 * @return {@code true} if the specified object is equal to this map
1314 */
1315 public boolean equals(Object o) {
1316 if (o != this) {
1317 if (!(o instanceof Map))
1318 return false;
1319 Map<?,?> m = (Map<?,?>) o;
1320 Node<K,V>[] t;
1321 int f = (t = table) == null ? 0 : t.length;
1322 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1323 for (Node<K,V> p; (p = it.advance()) != null; ) {
1324 V val = p.val;
1325 Object v = m.get(p.key);
1326 if (v == null || (v != val && !v.equals(val)))
1327 return false;
1328 }
1329 for (Map.Entry<?,?> e : m.entrySet()) {
1330 Object mk, mv, v;
1331 if ((mk = e.getKey()) == null ||
1332 (mv = e.getValue()) == null ||
1333 (v = get(mk)) == null ||
1334 (mv != v && !mv.equals(v)))
1335 return false;
1336 }
1337 }
1338 return true;
1339 }
1340
1341 /**
1342 * Stripped-down version of helper class used in previous version,
1343 * declared for the sake of serialization compatibility
1344 */
1345 static class Segment<K,V> extends ReentrantLock implements Serializable {
1346 private static final long serialVersionUID = 2249069246763182397L;
1347 final float loadFactor;
1348 Segment(float lf) { this.loadFactor = lf; }
1349 }
1350
1351 /**
1352 * Saves the state of the {@code ConcurrentHashMap} instance to a
1353 * stream (i.e., serializes it).
1354 * @param s the stream
1355 * @throws java.io.IOException if an I/O error occurs
1356 * @serialData
1357 * the key (Object) and value (Object)
1358 * for each key-value mapping, followed by a null pair.
1359 * The key-value mappings are emitted in no particular order.
1360 */
1361 private void writeObject(java.io.ObjectOutputStream s)
1362 throws java.io.IOException {
1363 // For serialization compatibility
1364 // Emulate segment calculation from previous version of this class
1365 int sshift = 0;
1366 int ssize = 1;
1367 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1368 ++sshift;
1369 ssize <<= 1;
1370 }
1371 int segmentShift = 32 - sshift;
1372 int segmentMask = ssize - 1;
1373 @SuppressWarnings("unchecked")
1374 Segment<K,V>[] segments = (Segment<K,V>[])
1375 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1376 for (int i = 0; i < segments.length; ++i)
1377 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1378 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1379 streamFields.put("segments", segments);
1380 streamFields.put("segmentShift", segmentShift);
1381 streamFields.put("segmentMask", segmentMask);
1382 s.writeFields();
1383
1384 Node<K,V>[] t;
1385 if ((t = table) != null) {
1386 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1387 for (Node<K,V> p; (p = it.advance()) != null; ) {
1388 s.writeObject(p.key);
1389 s.writeObject(p.val);
1390 }
1391 }
1392 s.writeObject(null);
1393 s.writeObject(null);
1394 segments = null; // throw away
1395 }
1396
1397 /**
1398 * Reconstitutes the instance from a stream (that is, deserializes it).
1399 * @param s the stream
1400 * @throws ClassNotFoundException if the class of a serialized object
1401 * could not be found
1402 * @throws java.io.IOException if an I/O error occurs
1403 */
1404 private void readObject(java.io.ObjectInputStream s)
1405 throws java.io.IOException, ClassNotFoundException {
1406 /*
1407 * To improve performance in typical cases, we create nodes
1408 * while reading, then place in table once size is known.
1409 * However, we must also validate uniqueness and deal with
1410 * overpopulated bins while doing so, which requires
1411 * specialized versions of putVal mechanics.
1412 */
1413 sizeCtl = -1; // force exclusion for table construction
1414 s.defaultReadObject();
1415 long size = 0L;
1416 Node<K,V> p = null;
1417 for (;;) {
1418 @SuppressWarnings("unchecked")
1419 K k = (K) s.readObject();
1420 @SuppressWarnings("unchecked")
1421 V v = (V) s.readObject();
1422 if (k != null && v != null) {
1423 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1424 ++size;
1425 }
1426 else
1427 break;
1428 }
1429 if (size == 0L)
1430 sizeCtl = 0;
1431 else {
1432 int n;
1433 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1434 n = MAXIMUM_CAPACITY;
1435 else {
1436 int sz = (int)size;
1437 n = tableSizeFor(sz + (sz >>> 1) + 1);
1438 }
1439 @SuppressWarnings("unchecked")
1440 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1441 int mask = n - 1;
1442 long added = 0L;
1443 while (p != null) {
1444 boolean insertAtFront;
1445 Node<K,V> next = p.next, first;
1446 int h = p.hash, j = h & mask;
1447 if ((first = tabAt(tab, j)) == null)
1448 insertAtFront = true;
1449 else {
1450 K k = p.key;
1451 if (first.hash < 0) {
1452 TreeBin<K,V> t = (TreeBin<K,V>)first;
1453 if (t.putTreeVal(h, k, p.val) == null)
1454 ++added;
1455 insertAtFront = false;
1456 }
1457 else {
1458 int binCount = 0;
1459 insertAtFront = true;
1460 Node<K,V> q; K qk;
1461 for (q = first; q != null; q = q.next) {
1462 if (q.hash == h &&
1463 ((qk = q.key) == k ||
1464 (qk != null && k.equals(qk)))) {
1465 insertAtFront = false;
1466 break;
1467 }
1468 ++binCount;
1469 }
1470 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1471 insertAtFront = false;
1472 ++added;
1473 p.next = first;
1474 TreeNode<K,V> hd = null, tl = null;
1475 for (q = p; q != null; q = q.next) {
1476 TreeNode<K,V> t = new TreeNode<K,V>
1477 (q.hash, q.key, q.val, null, null);
1478 if ((t.prev = tl) == null)
1479 hd = t;
1480 else
1481 tl.next = t;
1482 tl = t;
1483 }
1484 setTabAt(tab, j, new TreeBin<K,V>(hd));
1485 }
1486 }
1487 }
1488 if (insertAtFront) {
1489 ++added;
1490 p.next = first;
1491 setTabAt(tab, j, p);
1492 }
1493 p = next;
1494 }
1495 table = tab;
1496 sizeCtl = n - (n >>> 2);
1497 baseCount = added;
1498 }
1499 }
1500
1501 // ConcurrentMap methods
1502
1503 /**
1504 * {@inheritDoc}
1505 *
1506 * @return the previous value associated with the specified key,
1507 * or {@code null} if there was no mapping for the key
1508 * @throws NullPointerException if the specified key or value is null
1509 */
1510 public V putIfAbsent(K key, V value) {
1511 return putVal(key, value, true);
1512 }
1513
1514 /**
1515 * {@inheritDoc}
1516 *
1517 * @throws NullPointerException if the specified key is null
1518 */
1519 public boolean remove(Object key, Object value) {
1520 if (key == null)
1521 throw new NullPointerException();
1522 return value != null && replaceNode(key, null, value) != null;
1523 }
1524
1525 /**
1526 * {@inheritDoc}
1527 *
1528 * @throws NullPointerException if any of the arguments are null
1529 */
1530 public boolean replace(K key, V oldValue, V newValue) {
1531 if (key == null || oldValue == null || newValue == null)
1532 throw new NullPointerException();
1533 return replaceNode(key, newValue, oldValue) != null;
1534 }
1535
1536 /**
1537 * {@inheritDoc}
1538 *
1539 * @return the previous value associated with the specified key,
1540 * or {@code null} if there was no mapping for the key
1541 * @throws NullPointerException if the specified key or value is null
1542 */
1543 public V replace(K key, V value) {
1544 if (key == null || value == null)
1545 throw new NullPointerException();
1546 return replaceNode(key, value, null);
1547 }
1548
1549 // Overrides of JDK8+ Map extension method defaults
1550
1551 /**
1552 * Returns the value to which the specified key is mapped, or the
1553 * given default value if this map contains no mapping for the
1554 * key.
1555 *
1556 * @param key the key whose associated value is to be returned
1557 * @param defaultValue the value to return if this map contains
1558 * no mapping for the given key
1559 * @return the mapping for the key, if present; else the default value
1560 * @throws NullPointerException if the specified key is null
1561 */
1562 public V getOrDefault(Object key, V defaultValue) {
1563 V v;
1564 return (v = get(key)) == null ? defaultValue : v;
1565 }
1566
1567 public void forEach(BiConsumer<? super K, ? super V> action) {
1568 if (action == null) throw new NullPointerException();
1569 Node<K,V>[] t;
1570 if ((t = table) != null) {
1571 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1572 for (Node<K,V> p; (p = it.advance()) != null; ) {
1573 action.accept(p.key, p.val);
1574 }
1575 }
1576 }
1577
1578 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1579 if (function == null) throw new NullPointerException();
1580 Node<K,V>[] t;
1581 if ((t = table) != null) {
1582 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1583 for (Node<K,V> p; (p = it.advance()) != null; ) {
1584 V oldValue = p.val;
1585 for (K key = p.key;;) {
1586 V newValue = function.apply(key, oldValue);
1587 if (newValue == null)
1588 throw new NullPointerException();
1589 if (replaceNode(key, newValue, oldValue) != null ||
1590 (oldValue = get(key)) == null)
1591 break;
1592 }
1593 }
1594 }
1595 }
1596
1597 /**
1598 * Helper method for EntrySetView.removeIf
1599 */
1600 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1601 if (function == null) throw new NullPointerException();
1602 Node<K,V>[] t;
1603 boolean removed = false;
1604 if ((t = table) != null) {
1605 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1606 for (Node<K,V> p; (p = it.advance()) != null; ) {
1607 K k = p.key;
1608 V v = p.val;
1609 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1610 if (function.test(e) && replaceNode(k, null, v) != null)
1611 removed = true;
1612 }
1613 }
1614 return removed;
1615 }
1616
1617 /**
1618 * Helper method for ValuesView.removeIf
1619 */
1620 boolean removeValueIf(Predicate<? super V> function) {
1621 if (function == null) throw new NullPointerException();
1622 Node<K,V>[] t;
1623 boolean removed = false;
1624 if ((t = table) != null) {
1625 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1626 for (Node<K,V> p; (p = it.advance()) != null; ) {
1627 K k = p.key;
1628 V v = p.val;
1629 if (function.test(v) && replaceNode(k, null, v) != null)
1630 removed = true;
1631 }
1632 }
1633 return removed;
1634 }
1635
1636 /**
1637 * If the specified key is not already associated with a value,
1638 * attempts to compute its value using the given mapping function
1639 * and enters it into this map unless {@code null}. The entire
1640 * method invocation is performed atomically, so the function is
1641 * applied at most once per key. Some attempted update operations
1642 * on this map by other threads may be blocked while computation
1643 * is in progress, so the computation should be short and simple,
1644 * and must not attempt to update any other mappings of this map.
1645 *
1646 * @param key key with which the specified value is to be associated
1647 * @param mappingFunction the function to compute a value
1648 * @return the current (existing or computed) value associated with
1649 * the specified key, or null if the computed value is null
1650 * @throws NullPointerException if the specified key or mappingFunction
1651 * is null
1652 * @throws IllegalStateException if the computation detectably
1653 * attempts a recursive update to this map that would
1654 * otherwise never complete
1655 * @throws RuntimeException or Error if the mappingFunction does so,
1656 * in which case the mapping is left unestablished
1657 */
1658 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1659 if (key == null || mappingFunction == null)
1660 throw new NullPointerException();
1661 int h = spread(key.hashCode());
1662 V val = null;
1663 int binCount = 0;
1664 for (Node<K,V>[] tab = table;;) {
1665 Node<K,V> f; int n, i, fh;
1666 if (tab == null || (n = tab.length) == 0)
1667 tab = initTable();
1668 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1669 Node<K,V> r = new ReservationNode<K,V>();
1670 synchronized (r) {
1671 if (casTabAt(tab, i, null, r)) {
1672 binCount = 1;
1673 Node<K,V> node = null;
1674 try {
1675 if ((val = mappingFunction.apply(key)) != null)
1676 node = new Node<K,V>(h, key, val, null);
1677 } finally {
1678 setTabAt(tab, i, node);
1679 }
1680 }
1681 }
1682 if (binCount != 0)
1683 break;
1684 }
1685 else if ((fh = f.hash) == MOVED)
1686 tab = helpTransfer(tab, f);
1687 else {
1688 boolean added = false;
1689 synchronized (f) {
1690 if (tabAt(tab, i) == f) {
1691 if (fh >= 0) {
1692 binCount = 1;
1693 for (Node<K,V> e = f;; ++binCount) {
1694 K ek;
1695 if (e.hash == h &&
1696 ((ek = e.key) == key ||
1697 (ek != null && key.equals(ek)))) {
1698 val = e.val;
1699 break;
1700 }
1701 Node<K,V> pred = e;
1702 if ((e = e.next) == null) {
1703 if ((val = mappingFunction.apply(key)) != null) {
1704 if (pred.next != null)
1705 throw new IllegalStateException("Recursive update");
1706 added = true;
1707 pred.next = new Node<K,V>(h, key, val, null);
1708 }
1709 break;
1710 }
1711 }
1712 }
1713 else if (f instanceof TreeBin) {
1714 binCount = 2;
1715 TreeBin<K,V> t = (TreeBin<K,V>)f;
1716 TreeNode<K,V> r, p;
1717 if ((r = t.root) != null &&
1718 (p = r.findTreeNode(h, key, null)) != null)
1719 val = p.val;
1720 else if ((val = mappingFunction.apply(key)) != null) {
1721 added = true;
1722 t.putTreeVal(h, key, val);
1723 }
1724 }
1725 else if (f instanceof ReservationNode)
1726 throw new IllegalStateException("Recursive update");
1727 }
1728 }
1729 if (binCount != 0) {
1730 if (binCount >= TREEIFY_THRESHOLD)
1731 treeifyBin(tab, i);
1732 if (!added)
1733 return val;
1734 break;
1735 }
1736 }
1737 }
1738 if (val != null)
1739 addCount(1L, binCount);
1740 return val;
1741 }
1742
1743 /**
1744 * If the value for the specified key is present, attempts to
1745 * compute a new mapping given the key and its current mapped
1746 * value. The entire method invocation is performed atomically.
1747 * Some attempted update operations on this map by other threads
1748 * may be blocked while computation is in progress, so the
1749 * computation should be short and simple, and must not attempt to
1750 * update any other mappings of this map.
1751 *
1752 * @param key key with which a value may be associated
1753 * @param remappingFunction the function to compute a value
1754 * @return the new value associated with the specified key, or null if none
1755 * @throws NullPointerException if the specified key or remappingFunction
1756 * is null
1757 * @throws IllegalStateException if the computation detectably
1758 * attempts a recursive update to this map that would
1759 * otherwise never complete
1760 * @throws RuntimeException or Error if the remappingFunction does so,
1761 * in which case the mapping is unchanged
1762 */
1763 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1764 if (key == null || remappingFunction == null)
1765 throw new NullPointerException();
1766 int h = spread(key.hashCode());
1767 V val = null;
1768 int delta = 0;
1769 int binCount = 0;
1770 for (Node<K,V>[] tab = table;;) {
1771 Node<K,V> f; int n, i, fh;
1772 if (tab == null || (n = tab.length) == 0)
1773 tab = initTable();
1774 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1775 break;
1776 else if ((fh = f.hash) == MOVED)
1777 tab = helpTransfer(tab, f);
1778 else {
1779 synchronized (f) {
1780 if (tabAt(tab, i) == f) {
1781 if (fh >= 0) {
1782 binCount = 1;
1783 for (Node<K,V> e = f, pred = null;; ++binCount) {
1784 K ek;
1785 if (e.hash == h &&
1786 ((ek = e.key) == key ||
1787 (ek != null && key.equals(ek)))) {
1788 val = remappingFunction.apply(key, e.val);
1789 if (val != null)
1790 e.val = val;
1791 else {
1792 delta = -1;
1793 Node<K,V> en = e.next;
1794 if (pred != null)
1795 pred.next = en;
1796 else
1797 setTabAt(tab, i, en);
1798 }
1799 break;
1800 }
1801 pred = e;
1802 if ((e = e.next) == null)
1803 break;
1804 }
1805 }
1806 else if (f instanceof TreeBin) {
1807 binCount = 2;
1808 TreeBin<K,V> t = (TreeBin<K,V>)f;
1809 TreeNode<K,V> r, p;
1810 if ((r = t.root) != null &&
1811 (p = r.findTreeNode(h, key, null)) != null) {
1812 val = remappingFunction.apply(key, p.val);
1813 if (val != null)
1814 p.val = val;
1815 else {
1816 delta = -1;
1817 if (t.removeTreeNode(p))
1818 setTabAt(tab, i, untreeify(t.first));
1819 }
1820 }
1821 }
1822 else if (f instanceof ReservationNode)
1823 throw new IllegalStateException("Recursive update");
1824 }
1825 }
1826 if (binCount != 0)
1827 break;
1828 }
1829 }
1830 if (delta != 0)
1831 addCount((long)delta, binCount);
1832 return val;
1833 }
1834
1835 /**
1836 * Attempts to compute a mapping for the specified key and its
1837 * current mapped value (or {@code null} if there is no current
1838 * mapping). The entire method invocation is performed atomically.
1839 * Some attempted update operations on this map by other threads
1840 * may be blocked while computation is in progress, so the
1841 * computation should be short and simple, and must not attempt to
1842 * update any other mappings of this Map.
1843 *
1844 * @param key key with which the specified value is to be associated
1845 * @param remappingFunction the function to compute a value
1846 * @return the new value associated with the specified key, or null if none
1847 * @throws NullPointerException if the specified key or remappingFunction
1848 * is null
1849 * @throws IllegalStateException if the computation detectably
1850 * attempts a recursive update to this map that would
1851 * otherwise never complete
1852 * @throws RuntimeException or Error if the remappingFunction does so,
1853 * in which case the mapping is unchanged
1854 */
1855 public V compute(K key,
1856 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1857 if (key == null || remappingFunction == null)
1858 throw new NullPointerException();
1859 int h = spread(key.hashCode());
1860 V val = null;
1861 int delta = 0;
1862 int binCount = 0;
1863 for (Node<K,V>[] tab = table;;) {
1864 Node<K,V> f; int n, i, fh;
1865 if (tab == null || (n = tab.length) == 0)
1866 tab = initTable();
1867 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1868 Node<K,V> r = new ReservationNode<K,V>();
1869 synchronized (r) {
1870 if (casTabAt(tab, i, null, r)) {
1871 binCount = 1;
1872 Node<K,V> node = null;
1873 try {
1874 if ((val = remappingFunction.apply(key, null)) != null) {
1875 delta = 1;
1876 node = new Node<K,V>(h, key, val, null);
1877 }
1878 } finally {
1879 setTabAt(tab, i, node);
1880 }
1881 }
1882 }
1883 if (binCount != 0)
1884 break;
1885 }
1886 else if ((fh = f.hash) == MOVED)
1887 tab = helpTransfer(tab, f);
1888 else {
1889 synchronized (f) {
1890 if (tabAt(tab, i) == f) {
1891 if (fh >= 0) {
1892 binCount = 1;
1893 for (Node<K,V> e = f, pred = null;; ++binCount) {
1894 K ek;
1895 if (e.hash == h &&
1896 ((ek = e.key) == key ||
1897 (ek != null && key.equals(ek)))) {
1898 val = remappingFunction.apply(key, e.val);
1899 if (val != null)
1900 e.val = val;
1901 else {
1902 delta = -1;
1903 Node<K,V> en = e.next;
1904 if (pred != null)
1905 pred.next = en;
1906 else
1907 setTabAt(tab, i, en);
1908 }
1909 break;
1910 }
1911 pred = e;
1912 if ((e = e.next) == null) {
1913 val = remappingFunction.apply(key, null);
1914 if (val != null) {
1915 if (pred.next != null)
1916 throw new IllegalStateException("Recursive update");
1917 delta = 1;
1918 pred.next =
1919 new Node<K,V>(h, key, val, null);
1920 }
1921 break;
1922 }
1923 }
1924 }
1925 else if (f instanceof TreeBin) {
1926 binCount = 1;
1927 TreeBin<K,V> t = (TreeBin<K,V>)f;
1928 TreeNode<K,V> r, p;
1929 if ((r = t.root) != null)
1930 p = r.findTreeNode(h, key, null);
1931 else
1932 p = null;
1933 V pv = (p == null) ? null : p.val;
1934 val = remappingFunction.apply(key, pv);
1935 if (val != null) {
1936 if (p != null)
1937 p.val = val;
1938 else {
1939 delta = 1;
1940 t.putTreeVal(h, key, val);
1941 }
1942 }
1943 else if (p != null) {
1944 delta = -1;
1945 if (t.removeTreeNode(p))
1946 setTabAt(tab, i, untreeify(t.first));
1947 }
1948 }
1949 else if (f instanceof ReservationNode)
1950 throw new IllegalStateException("Recursive update");
1951 }
1952 }
1953 if (binCount != 0) {
1954 if (binCount >= TREEIFY_THRESHOLD)
1955 treeifyBin(tab, i);
1956 break;
1957 }
1958 }
1959 }
1960 if (delta != 0)
1961 addCount((long)delta, binCount);
1962 return val;
1963 }
1964
1965 /**
1966 * If the specified key is not already associated with a
1967 * (non-null) value, associates it with the given value.
1968 * Otherwise, replaces the value with the results of the given
1969 * remapping function, or removes if {@code null}. The entire
1970 * method invocation is performed atomically. Some attempted
1971 * update operations on this map by other threads may be blocked
1972 * while computation is in progress, so the computation should be
1973 * short and simple, and must not attempt to update any other
1974 * mappings of this Map.
1975 *
1976 * @param key key with which the specified value is to be associated
1977 * @param value the value to use if absent
1978 * @param remappingFunction the function to recompute a value if present
1979 * @return the new value associated with the specified key, or null if none
1980 * @throws NullPointerException if the specified key or the
1981 * remappingFunction is null
1982 * @throws RuntimeException or Error if the remappingFunction does so,
1983 * in which case the mapping is unchanged
1984 */
1985 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1986 if (key == null || value == null || remappingFunction == null)
1987 throw new NullPointerException();
1988 int h = spread(key.hashCode());
1989 V val = null;
1990 int delta = 0;
1991 int binCount = 0;
1992 for (Node<K,V>[] tab = table;;) {
1993 Node<K,V> f; int n, i, fh;
1994 if (tab == null || (n = tab.length) == 0)
1995 tab = initTable();
1996 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1997 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1998 delta = 1;
1999 val = value;
2000 break;
2001 }
2002 }
2003 else if ((fh = f.hash) == MOVED)
2004 tab = helpTransfer(tab, f);
2005 else {
2006 synchronized (f) {
2007 if (tabAt(tab, i) == f) {
2008 if (fh >= 0) {
2009 binCount = 1;
2010 for (Node<K,V> e = f, pred = null;; ++binCount) {
2011 K ek;
2012 if (e.hash == h &&
2013 ((ek = e.key) == key ||
2014 (ek != null && key.equals(ek)))) {
2015 val = remappingFunction.apply(e.val, value);
2016 if (val != null)
2017 e.val = val;
2018 else {
2019 delta = -1;
2020 Node<K,V> en = e.next;
2021 if (pred != null)
2022 pred.next = en;
2023 else
2024 setTabAt(tab, i, en);
2025 }
2026 break;
2027 }
2028 pred = e;
2029 if ((e = e.next) == null) {
2030 delta = 1;
2031 val = value;
2032 pred.next =
2033 new Node<K,V>(h, key, val, null);
2034 break;
2035 }
2036 }
2037 }
2038 else if (f instanceof TreeBin) {
2039 binCount = 2;
2040 TreeBin<K,V> t = (TreeBin<K,V>)f;
2041 TreeNode<K,V> r = t.root;
2042 TreeNode<K,V> p = (r == null) ? null :
2043 r.findTreeNode(h, key, null);
2044 val = (p == null) ? value :
2045 remappingFunction.apply(p.val, value);
2046 if (val != null) {
2047 if (p != null)
2048 p.val = val;
2049 else {
2050 delta = 1;
2051 t.putTreeVal(h, key, val);
2052 }
2053 }
2054 else if (p != null) {
2055 delta = -1;
2056 if (t.removeTreeNode(p))
2057 setTabAt(tab, i, untreeify(t.first));
2058 }
2059 }
2060 else if (f instanceof ReservationNode)
2061 throw new IllegalStateException("Recursive update");
2062 }
2063 }
2064 if (binCount != 0) {
2065 if (binCount >= TREEIFY_THRESHOLD)
2066 treeifyBin(tab, i);
2067 break;
2068 }
2069 }
2070 }
2071 if (delta != 0)
2072 addCount((long)delta, binCount);
2073 return val;
2074 }
2075
2076 // Hashtable legacy methods
2077
2078 /**
2079 * Tests if some key maps into the specified value in this table.
2080 *
2081 * <p>Note that this method is identical in functionality to
2082 * {@link #containsValue(Object)}, and exists solely to ensure
2083 * full compatibility with class {@link java.util.Hashtable},
2084 * which supported this method prior to introduction of the Java
2085 * Collections Framework.
2086 *
2087 * @param value a value to search for
2088 * @return {@code true} if and only if some key maps to the
2089 * {@code value} argument in this table as
2090 * determined by the {@code equals} method;
2091 * {@code false} otherwise
2092 * @throws NullPointerException if the specified value is null
2093 */
2094 public boolean contains(Object value) {
2095 return containsValue(value);
2096 }
2097
2098 /**
2099 * Returns an enumeration of the keys in this table.
2100 *
2101 * @return an enumeration of the keys in this table
2102 * @see #keySet()
2103 */
2104 public Enumeration<K> keys() {
2105 Node<K,V>[] t;
2106 int f = (t = table) == null ? 0 : t.length;
2107 return new KeyIterator<K,V>(t, f, 0, f, this);
2108 }
2109
2110 /**
2111 * Returns an enumeration of the values in this table.
2112 *
2113 * @return an enumeration of the values in this table
2114 * @see #values()
2115 */
2116 public Enumeration<V> elements() {
2117 Node<K,V>[] t;
2118 int f = (t = table) == null ? 0 : t.length;
2119 return new ValueIterator<K,V>(t, f, 0, f, this);
2120 }
2121
2122 // ConcurrentHashMap-only methods
2123
2124 /**
2125 * Returns the number of mappings. This method should be used
2126 * instead of {@link #size} because a ConcurrentHashMap may
2127 * contain more mappings than can be represented as an int. The
2128 * value returned is an estimate; the actual count may differ if
2129 * there are concurrent insertions or removals.
2130 *
2131 * @return the number of mappings
2132 * @since 1.8
2133 */
2134 public long mappingCount() {
2135 long n = sumCount();
2136 return (n < 0L) ? 0L : n; // ignore transient negative values
2137 }
2138
2139 /**
2140 * Creates a new {@link Set} backed by a ConcurrentHashMap
2141 * from the given type to {@code Boolean.TRUE}.
2142 *
2143 * @param <K> the element type of the returned set
2144 * @return the new set
2145 * @since 1.8
2146 */
2147 public static <K> KeySetView<K,Boolean> newKeySet() {
2148 return new KeySetView<K,Boolean>
2149 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2150 }
2151
2152 /**
2153 * Creates a new {@link Set} backed by a ConcurrentHashMap
2154 * from the given type to {@code Boolean.TRUE}.
2155 *
2156 * @param initialCapacity The implementation performs internal
2157 * sizing to accommodate this many elements.
2158 * @param <K> the element type of the returned set
2159 * @return the new set
2160 * @throws IllegalArgumentException if the initial capacity of
2161 * elements is negative
2162 * @since 1.8
2163 */
2164 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2165 return new KeySetView<K,Boolean>
2166 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2167 }
2168
2169 /**
2170 * Returns a {@link Set} view of the keys in this map, using the
2171 * given common mapped value for any additions (i.e., {@link
2172 * Collection#add} and {@link Collection#addAll(Collection)}).
2173 * This is of course only appropriate if it is acceptable to use
2174 * the same value for all additions from this view.
2175 *
2176 * @param mappedValue the mapped value to use for any additions
2177 * @return the set view
2178 * @throws NullPointerException if the mappedValue is null
2179 */
2180 public KeySetView<K,V> keySet(V mappedValue) {
2181 if (mappedValue == null)
2182 throw new NullPointerException();
2183 return new KeySetView<K,V>(this, mappedValue);
2184 }
2185
2186 /* ---------------- Special Nodes -------------- */
2187
2188 /**
2189 * A node inserted at head of bins during transfer operations.
2190 */
2191 static final class ForwardingNode<K,V> extends Node<K,V> {
2192 final Node<K,V>[] nextTable;
2193 ForwardingNode(Node<K,V>[] tab) {
2194 super(MOVED, null, null, null);
2195 this.nextTable = tab;
2196 }
2197
2198 Node<K,V> find(int h, Object k) {
2199 // loop to avoid arbitrarily deep recursion on forwarding nodes
2200 outer: for (Node<K,V>[] tab = nextTable;;) {
2201 Node<K,V> e; int n;
2202 if (k == null || tab == null || (n = tab.length) == 0 ||
2203 (e = tabAt(tab, (n - 1) & h)) == null)
2204 return null;
2205 for (;;) {
2206 int eh; K ek;
2207 if ((eh = e.hash) == h &&
2208 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2209 return e;
2210 if (eh < 0) {
2211 if (e instanceof ForwardingNode) {
2212 tab = ((ForwardingNode<K,V>)e).nextTable;
2213 continue outer;
2214 }
2215 else
2216 return e.find(h, k);
2217 }
2218 if ((e = e.next) == null)
2219 return null;
2220 }
2221 }
2222 }
2223 }
2224
2225 /**
2226 * A place-holder node used in computeIfAbsent and compute
2227 */
2228 static final class ReservationNode<K,V> extends Node<K,V> {
2229 ReservationNode() {
2230 super(RESERVED, null, null, null);
2231 }
2232
2233 Node<K,V> find(int h, Object k) {
2234 return null;
2235 }
2236 }
2237
2238 /* ---------------- Table Initialization and Resizing -------------- */
2239
2240 /**
2241 * Returns the stamp bits for resizing a table of size n.
2242 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2243 */
2244 static final int resizeStamp(int n) {
2245 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2246 }
2247
2248 /**
2249 * Initializes table, using the size recorded in sizeCtl.
2250 */
2251 private final Node<K,V>[] initTable() {
2252 Node<K,V>[] tab; int sc;
2253 while ((tab = table) == null || tab.length == 0) {
2254 if ((sc = sizeCtl) < 0)
2255 Thread.yield(); // lost initialization race; just spin
2256 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2257 try {
2258 if ((tab = table) == null || tab.length == 0) {
2259 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2260 @SuppressWarnings("unchecked")
2261 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2262 table = tab = nt;
2263 sc = n - (n >>> 2);
2264 }
2265 } finally {
2266 sizeCtl = sc;
2267 }
2268 break;
2269 }
2270 }
2271 return tab;
2272 }
2273
2274 /**
2275 * Adds to count, and if table is too small and not already
2276 * resizing, initiates transfer. If already resizing, helps
2277 * perform transfer if work is available. Rechecks occupancy
2278 * after a transfer to see if another resize is already needed
2279 * because resizings are lagging additions.
2280 *
2281 * @param x the count to add
2282 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2283 */
2284 private final void addCount(long x, int check) {
2285 CounterCell[] as; long b, s;
2286 if ((as = counterCells) != null ||
2287 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2288 CounterCell a; long v; int m;
2289 boolean uncontended = true;
2290 if (as == null || (m = as.length - 1) < 0 ||
2291 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2292 !(uncontended =
2293 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2294 fullAddCount(x, uncontended);
2295 return;
2296 }
2297 if (check <= 1)
2298 return;
2299 s = sumCount();
2300 }
2301 if (check >= 0) {
2302 Node<K,V>[] tab, nt; int n, sc;
2303 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2304 (n = tab.length) < MAXIMUM_CAPACITY) {
2305 int rs = resizeStamp(n);
2306 if (sc < 0) {
2307 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2309 transferIndex <= 0)
2310 break;
2311 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2312 transfer(tab, nt);
2313 }
2314 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2315 (rs << RESIZE_STAMP_SHIFT) + 2))
2316 transfer(tab, null);
2317 s = sumCount();
2318 }
2319 }
2320 }
2321
2322 /**
2323 * Helps transfer if a resize is in progress.
2324 */
2325 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2326 Node<K,V>[] nextTab; int sc;
2327 if (tab != null && (f instanceof ForwardingNode) &&
2328 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2329 int rs = resizeStamp(tab.length);
2330 while (nextTab == nextTable && table == tab &&
2331 (sc = sizeCtl) < 0) {
2332 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2333 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2334 break;
2335 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2336 transfer(tab, nextTab);
2337 break;
2338 }
2339 }
2340 return nextTab;
2341 }
2342 return table;
2343 }
2344
2345 /**
2346 * Tries to presize table to accommodate the given number of elements.
2347 *
2348 * @param size number of elements (doesn't need to be perfectly accurate)
2349 */
2350 private final void tryPresize(int size) {
2351 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2352 tableSizeFor(size + (size >>> 1) + 1);
2353 int sc;
2354 while ((sc = sizeCtl) >= 0) {
2355 Node<K,V>[] tab = table; int n;
2356 if (tab == null || (n = tab.length) == 0) {
2357 n = (sc > c) ? sc : c;
2358 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2359 try {
2360 if (table == tab) {
2361 @SuppressWarnings("unchecked")
2362 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2363 table = nt;
2364 sc = n - (n >>> 2);
2365 }
2366 } finally {
2367 sizeCtl = sc;
2368 }
2369 }
2370 }
2371 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2372 break;
2373 else if (tab == table) {
2374 int rs = resizeStamp(n);
2375 if (U.compareAndSwapInt(this, SIZECTL, sc,
2376 (rs << RESIZE_STAMP_SHIFT) + 2))
2377 transfer(tab, null);
2378 }
2379 }
2380 }
2381
2382 /**
2383 * Moves and/or copies the nodes in each bin to new table. See
2384 * above for explanation.
2385 */
2386 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2387 int n = tab.length, stride;
2388 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2389 stride = MIN_TRANSFER_STRIDE; // subdivide range
2390 if (nextTab == null) { // initiating
2391 try {
2392 @SuppressWarnings("unchecked")
2393 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2394 nextTab = nt;
2395 } catch (Throwable ex) { // try to cope with OOME
2396 sizeCtl = Integer.MAX_VALUE;
2397 return;
2398 }
2399 nextTable = nextTab;
2400 transferIndex = n;
2401 }
2402 int nextn = nextTab.length;
2403 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2404 boolean advance = true;
2405 boolean finishing = false; // to ensure sweep before committing nextTab
2406 for (int i = 0, bound = 0;;) {
2407 Node<K,V> f; int fh;
2408 while (advance) {
2409 int nextIndex, nextBound;
2410 if (--i >= bound || finishing)
2411 advance = false;
2412 else if ((nextIndex = transferIndex) <= 0) {
2413 i = -1;
2414 advance = false;
2415 }
2416 else if (U.compareAndSwapInt
2417 (this, TRANSFERINDEX, nextIndex,
2418 nextBound = (nextIndex > stride ?
2419 nextIndex - stride : 0))) {
2420 bound = nextBound;
2421 i = nextIndex - 1;
2422 advance = false;
2423 }
2424 }
2425 if (i < 0 || i >= n || i + n >= nextn) {
2426 int sc;
2427 if (finishing) {
2428 nextTable = null;
2429 table = nextTab;
2430 sizeCtl = (n << 1) - (n >>> 1);
2431 return;
2432 }
2433 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2434 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2435 return;
2436 finishing = advance = true;
2437 i = n; // recheck before commit
2438 }
2439 }
2440 else if ((f = tabAt(tab, i)) == null)
2441 advance = casTabAt(tab, i, null, fwd);
2442 else if ((fh = f.hash) == MOVED)
2443 advance = true; // already processed
2444 else {
2445 synchronized (f) {
2446 if (tabAt(tab, i) == f) {
2447 Node<K,V> ln, hn;
2448 if (fh >= 0) {
2449 int runBit = fh & n;
2450 Node<K,V> lastRun = f;
2451 for (Node<K,V> p = f.next; p != null; p = p.next) {
2452 int b = p.hash & n;
2453 if (b != runBit) {
2454 runBit = b;
2455 lastRun = p;
2456 }
2457 }
2458 if (runBit == 0) {
2459 ln = lastRun;
2460 hn = null;
2461 }
2462 else {
2463 hn = lastRun;
2464 ln = null;
2465 }
2466 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2467 int ph = p.hash; K pk = p.key; V pv = p.val;
2468 if ((ph & n) == 0)
2469 ln = new Node<K,V>(ph, pk, pv, ln);
2470 else
2471 hn = new Node<K,V>(ph, pk, pv, hn);
2472 }
2473 setTabAt(nextTab, i, ln);
2474 setTabAt(nextTab, i + n, hn);
2475 setTabAt(tab, i, fwd);
2476 advance = true;
2477 }
2478 else if (f instanceof TreeBin) {
2479 TreeBin<K,V> t = (TreeBin<K,V>)f;
2480 TreeNode<K,V> lo = null, loTail = null;
2481 TreeNode<K,V> hi = null, hiTail = null;
2482 int lc = 0, hc = 0;
2483 for (Node<K,V> e = t.first; e != null; e = e.next) {
2484 int h = e.hash;
2485 TreeNode<K,V> p = new TreeNode<K,V>
2486 (h, e.key, e.val, null, null);
2487 if ((h & n) == 0) {
2488 if ((p.prev = loTail) == null)
2489 lo = p;
2490 else
2491 loTail.next = p;
2492 loTail = p;
2493 ++lc;
2494 }
2495 else {
2496 if ((p.prev = hiTail) == null)
2497 hi = p;
2498 else
2499 hiTail.next = p;
2500 hiTail = p;
2501 ++hc;
2502 }
2503 }
2504 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2505 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2506 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2507 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2508 setTabAt(nextTab, i, ln);
2509 setTabAt(nextTab, i + n, hn);
2510 setTabAt(tab, i, fwd);
2511 advance = true;
2512 }
2513 }
2514 }
2515 }
2516 }
2517 }
2518
2519 /* ---------------- Counter support -------------- */
2520
2521 /**
2522 * A padded cell for distributing counts. Adapted from LongAdder
2523 * and Striped64. See their internal docs for explanation.
2524 */
2525 @sun.misc.Contended static final class CounterCell {
2526 volatile long value;
2527 CounterCell(long x) { value = x; }
2528 }
2529
2530 final long sumCount() {
2531 CounterCell[] as = counterCells; CounterCell a;
2532 long sum = baseCount;
2533 if (as != null) {
2534 for (int i = 0; i < as.length; ++i) {
2535 if ((a = as[i]) != null)
2536 sum += a.value;
2537 }
2538 }
2539 return sum;
2540 }
2541
2542 // See LongAdder version for explanation
2543 private final void fullAddCount(long x, boolean wasUncontended) {
2544 int h;
2545 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2546 ThreadLocalRandom.localInit(); // force initialization
2547 h = ThreadLocalRandom.getProbe();
2548 wasUncontended = true;
2549 }
2550 boolean collide = false; // True if last slot nonempty
2551 for (;;) {
2552 CounterCell[] as; CounterCell a; int n; long v;
2553 if ((as = counterCells) != null && (n = as.length) > 0) {
2554 if ((a = as[(n - 1) & h]) == null) {
2555 if (cellsBusy == 0) { // Try to attach new Cell
2556 CounterCell r = new CounterCell(x); // Optimistic create
2557 if (cellsBusy == 0 &&
2558 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2559 boolean created = false;
2560 try { // Recheck under lock
2561 CounterCell[] rs; int m, j;
2562 if ((rs = counterCells) != null &&
2563 (m = rs.length) > 0 &&
2564 rs[j = (m - 1) & h] == null) {
2565 rs[j] = r;
2566 created = true;
2567 }
2568 } finally {
2569 cellsBusy = 0;
2570 }
2571 if (created)
2572 break;
2573 continue; // Slot is now non-empty
2574 }
2575 }
2576 collide = false;
2577 }
2578 else if (!wasUncontended) // CAS already known to fail
2579 wasUncontended = true; // Continue after rehash
2580 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2581 break;
2582 else if (counterCells != as || n >= NCPU)
2583 collide = false; // At max size or stale
2584 else if (!collide)
2585 collide = true;
2586 else if (cellsBusy == 0 &&
2587 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2588 try {
2589 if (counterCells == as) {// Expand table unless stale
2590 CounterCell[] rs = new CounterCell[n << 1];
2591 for (int i = 0; i < n; ++i)
2592 rs[i] = as[i];
2593 counterCells = rs;
2594 }
2595 } finally {
2596 cellsBusy = 0;
2597 }
2598 collide = false;
2599 continue; // Retry with expanded table
2600 }
2601 h = ThreadLocalRandom.advanceProbe(h);
2602 }
2603 else if (cellsBusy == 0 && counterCells == as &&
2604 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2605 boolean init = false;
2606 try { // Initialize table
2607 if (counterCells == as) {
2608 CounterCell[] rs = new CounterCell[2];
2609 rs[h & 1] = new CounterCell(x);
2610 counterCells = rs;
2611 init = true;
2612 }
2613 } finally {
2614 cellsBusy = 0;
2615 }
2616 if (init)
2617 break;
2618 }
2619 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2620 break; // Fall back on using base
2621 }
2622 }
2623
2624 /* ---------------- Conversion from/to TreeBins -------------- */
2625
2626 /**
2627 * Replaces all linked nodes in bin at given index unless table is
2628 * too small, in which case resizes instead.
2629 */
2630 private final void treeifyBin(Node<K,V>[] tab, int index) {
2631 Node<K,V> b; int n;
2632 if (tab != null) {
2633 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2634 tryPresize(n << 1);
2635 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2636 synchronized (b) {
2637 if (tabAt(tab, index) == b) {
2638 TreeNode<K,V> hd = null, tl = null;
2639 for (Node<K,V> e = b; e != null; e = e.next) {
2640 TreeNode<K,V> p =
2641 new TreeNode<K,V>(e.hash, e.key, e.val,
2642 null, null);
2643 if ((p.prev = tl) == null)
2644 hd = p;
2645 else
2646 tl.next = p;
2647 tl = p;
2648 }
2649 setTabAt(tab, index, new TreeBin<K,V>(hd));
2650 }
2651 }
2652 }
2653 }
2654 }
2655
2656 /**
2657 * Returns a list on non-TreeNodes replacing those in given list.
2658 */
2659 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2660 Node<K,V> hd = null, tl = null;
2661 for (Node<K,V> q = b; q != null; q = q.next) {
2662 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2663 if (tl == null)
2664 hd = p;
2665 else
2666 tl.next = p;
2667 tl = p;
2668 }
2669 return hd;
2670 }
2671
2672 /* ---------------- TreeNodes -------------- */
2673
2674 /**
2675 * Nodes for use in TreeBins
2676 */
2677 static final class TreeNode<K,V> extends Node<K,V> {
2678 TreeNode<K,V> parent; // red-black tree links
2679 TreeNode<K,V> left;
2680 TreeNode<K,V> right;
2681 TreeNode<K,V> prev; // needed to unlink next upon deletion
2682 boolean red;
2683
2684 TreeNode(int hash, K key, V val, Node<K,V> next,
2685 TreeNode<K,V> parent) {
2686 super(hash, key, val, next);
2687 this.parent = parent;
2688 }
2689
2690 Node<K,V> find(int h, Object k) {
2691 return findTreeNode(h, k, null);
2692 }
2693
2694 /**
2695 * Returns the TreeNode (or null if not found) for the given key
2696 * starting at given root.
2697 */
2698 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2699 if (k != null) {
2700 TreeNode<K,V> p = this;
2701 do {
2702 int ph, dir; K pk; TreeNode<K,V> q;
2703 TreeNode<K,V> pl = p.left, pr = p.right;
2704 if ((ph = p.hash) > h)
2705 p = pl;
2706 else if (ph < h)
2707 p = pr;
2708 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2709 return p;
2710 else if (pl == null)
2711 p = pr;
2712 else if (pr == null)
2713 p = pl;
2714 else if ((kc != null ||
2715 (kc = comparableClassFor(k)) != null) &&
2716 (dir = compareComparables(kc, k, pk)) != 0)
2717 p = (dir < 0) ? pl : pr;
2718 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2719 return q;
2720 else
2721 p = pl;
2722 } while (p != null);
2723 }
2724 return null;
2725 }
2726 }
2727
2728 /* ---------------- TreeBins -------------- */
2729
2730 /**
2731 * TreeNodes used at the heads of bins. TreeBins do not hold user
2732 * keys or values, but instead point to list of TreeNodes and
2733 * their root. They also maintain a parasitic read-write lock
2734 * forcing writers (who hold bin lock) to wait for readers (who do
2735 * not) to complete before tree restructuring operations.
2736 */
2737 static final class TreeBin<K,V> extends Node<K,V> {
2738 TreeNode<K,V> root;
2739 volatile TreeNode<K,V> first;
2740 volatile Thread waiter;
2741 volatile int lockState;
2742 // values for lockState
2743 static final int WRITER = 1; // set while holding write lock
2744 static final int WAITER = 2; // set when waiting for write lock
2745 static final int READER = 4; // increment value for setting read lock
2746
2747 /**
2748 * Tie-breaking utility for ordering insertions when equal
2749 * hashCodes and non-comparable. We don't require a total
2750 * order, just a consistent insertion rule to maintain
2751 * equivalence across rebalancings. Tie-breaking further than
2752 * necessary simplifies testing a bit.
2753 */
2754 static int tieBreakOrder(Object a, Object b) {
2755 int d;
2756 if (a == null || b == null ||
2757 (d = a.getClass().getName().
2758 compareTo(b.getClass().getName())) == 0)
2759 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2760 -1 : 1);
2761 return d;
2762 }
2763
2764 /**
2765 * Creates bin with initial set of nodes headed by b.
2766 */
2767 TreeBin(TreeNode<K,V> b) {
2768 super(TREEBIN, null, null, null);
2769 this.first = b;
2770 TreeNode<K,V> r = null;
2771 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2772 next = (TreeNode<K,V>)x.next;
2773 x.left = x.right = null;
2774 if (r == null) {
2775 x.parent = null;
2776 x.red = false;
2777 r = x;
2778 }
2779 else {
2780 K k = x.key;
2781 int h = x.hash;
2782 Class<?> kc = null;
2783 for (TreeNode<K,V> p = r;;) {
2784 int dir, ph;
2785 K pk = p.key;
2786 if ((ph = p.hash) > h)
2787 dir = -1;
2788 else if (ph < h)
2789 dir = 1;
2790 else if ((kc == null &&
2791 (kc = comparableClassFor(k)) == null) ||
2792 (dir = compareComparables(kc, k, pk)) == 0)
2793 dir = tieBreakOrder(k, pk);
2794 TreeNode<K,V> xp = p;
2795 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2796 x.parent = xp;
2797 if (dir <= 0)
2798 xp.left = x;
2799 else
2800 xp.right = x;
2801 r = balanceInsertion(r, x);
2802 break;
2803 }
2804 }
2805 }
2806 }
2807 this.root = r;
2808 assert checkInvariants(root);
2809 }
2810
2811 /**
2812 * Acquires write lock for tree restructuring.
2813 */
2814 private final void lockRoot() {
2815 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2816 contendedLock(); // offload to separate method
2817 }
2818
2819 /**
2820 * Releases write lock for tree restructuring.
2821 */
2822 private final void unlockRoot() {
2823 lockState = 0;
2824 }
2825
2826 /**
2827 * Possibly blocks awaiting root lock.
2828 */
2829 private final void contendedLock() {
2830 boolean waiting = false;
2831 for (int s;;) {
2832 if (((s = lockState) & ~WAITER) == 0) {
2833 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2834 if (waiting)
2835 waiter = null;
2836 return;
2837 }
2838 }
2839 else if ((s & WAITER) == 0) {
2840 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2841 waiting = true;
2842 waiter = Thread.currentThread();
2843 }
2844 }
2845 else if (waiting)
2846 LockSupport.park(this);
2847 }
2848 }
2849
2850 /**
2851 * Returns matching node or null if none. Tries to search
2852 * using tree comparisons from root, but continues linear
2853 * search when lock not available.
2854 */
2855 final Node<K,V> find(int h, Object k) {
2856 if (k != null) {
2857 for (Node<K,V> e = first; e != null; ) {
2858 int s; K ek;
2859 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2860 if (e.hash == h &&
2861 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2862 return e;
2863 e = e.next;
2864 }
2865 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2866 s + READER)) {
2867 TreeNode<K,V> r, p;
2868 try {
2869 p = ((r = root) == null ? null :
2870 r.findTreeNode(h, k, null));
2871 } finally {
2872 Thread w;
2873 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2874 (READER|WAITER) && (w = waiter) != null)
2875 LockSupport.unpark(w);
2876 }
2877 return p;
2878 }
2879 }
2880 }
2881 return null;
2882 }
2883
2884 /**
2885 * Finds or adds a node.
2886 * @return null if added
2887 */
2888 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2889 Class<?> kc = null;
2890 boolean searched = false;
2891 for (TreeNode<K,V> p = root;;) {
2892 int dir, ph; K pk;
2893 if (p == null) {
2894 first = root = new TreeNode<K,V>(h, k, v, null, null);
2895 break;
2896 }
2897 else if ((ph = p.hash) > h)
2898 dir = -1;
2899 else if (ph < h)
2900 dir = 1;
2901 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2902 return p;
2903 else if ((kc == null &&
2904 (kc = comparableClassFor(k)) == null) ||
2905 (dir = compareComparables(kc, k, pk)) == 0) {
2906 if (!searched) {
2907 TreeNode<K,V> q, ch;
2908 searched = true;
2909 if (((ch = p.left) != null &&
2910 (q = ch.findTreeNode(h, k, kc)) != null) ||
2911 ((ch = p.right) != null &&
2912 (q = ch.findTreeNode(h, k, kc)) != null))
2913 return q;
2914 }
2915 dir = tieBreakOrder(k, pk);
2916 }
2917
2918 TreeNode<K,V> xp = p;
2919 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2920 TreeNode<K,V> x, f = first;
2921 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2922 if (f != null)
2923 f.prev = x;
2924 if (dir <= 0)
2925 xp.left = x;
2926 else
2927 xp.right = x;
2928 if (!xp.red)
2929 x.red = true;
2930 else {
2931 lockRoot();
2932 try {
2933 root = balanceInsertion(root, x);
2934 } finally {
2935 unlockRoot();
2936 }
2937 }
2938 break;
2939 }
2940 }
2941 assert checkInvariants(root);
2942 return null;
2943 }
2944
2945 /**
2946 * Removes the given node, that must be present before this
2947 * call. This is messier than typical red-black deletion code
2948 * because we cannot swap the contents of an interior node
2949 * with a leaf successor that is pinned by "next" pointers
2950 * that are accessible independently of lock. So instead we
2951 * swap the tree linkages.
2952 *
2953 * @return true if now too small, so should be untreeified
2954 */
2955 final boolean removeTreeNode(TreeNode<K,V> p) {
2956 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2957 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2958 TreeNode<K,V> r, rl;
2959 if (pred == null)
2960 first = next;
2961 else
2962 pred.next = next;
2963 if (next != null)
2964 next.prev = pred;
2965 if (first == null) {
2966 root = null;
2967 return true;
2968 }
2969 if ((r = root) == null || r.right == null || // too small
2970 (rl = r.left) == null || rl.left == null)
2971 return true;
2972 lockRoot();
2973 try {
2974 TreeNode<K,V> replacement;
2975 TreeNode<K,V> pl = p.left;
2976 TreeNode<K,V> pr = p.right;
2977 if (pl != null && pr != null) {
2978 TreeNode<K,V> s = pr, sl;
2979 while ((sl = s.left) != null) // find successor
2980 s = sl;
2981 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2982 TreeNode<K,V> sr = s.right;
2983 TreeNode<K,V> pp = p.parent;
2984 if (s == pr) { // p was s's direct parent
2985 p.parent = s;
2986 s.right = p;
2987 }
2988 else {
2989 TreeNode<K,V> sp = s.parent;
2990 if ((p.parent = sp) != null) {
2991 if (s == sp.left)
2992 sp.left = p;
2993 else
2994 sp.right = p;
2995 }
2996 if ((s.right = pr) != null)
2997 pr.parent = s;
2998 }
2999 p.left = null;
3000 if ((p.right = sr) != null)
3001 sr.parent = p;
3002 if ((s.left = pl) != null)
3003 pl.parent = s;
3004 if ((s.parent = pp) == null)
3005 r = s;
3006 else if (p == pp.left)
3007 pp.left = s;
3008 else
3009 pp.right = s;
3010 if (sr != null)
3011 replacement = sr;
3012 else
3013 replacement = p;
3014 }
3015 else if (pl != null)
3016 replacement = pl;
3017 else if (pr != null)
3018 replacement = pr;
3019 else
3020 replacement = p;
3021 if (replacement != p) {
3022 TreeNode<K,V> pp = replacement.parent = p.parent;
3023 if (pp == null)
3024 r = replacement;
3025 else if (p == pp.left)
3026 pp.left = replacement;
3027 else
3028 pp.right = replacement;
3029 p.left = p.right = p.parent = null;
3030 }
3031
3032 root = (p.red) ? r : balanceDeletion(r, replacement);
3033
3034 if (p == replacement) { // detach pointers
3035 TreeNode<K,V> pp;
3036 if ((pp = p.parent) != null) {
3037 if (p == pp.left)
3038 pp.left = null;
3039 else if (p == pp.right)
3040 pp.right = null;
3041 p.parent = null;
3042 }
3043 }
3044 } finally {
3045 unlockRoot();
3046 }
3047 assert checkInvariants(root);
3048 return false;
3049 }
3050
3051 /* ------------------------------------------------------------ */
3052 // Red-black tree methods, all adapted from CLR
3053
3054 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3055 TreeNode<K,V> p) {
3056 TreeNode<K,V> r, pp, rl;
3057 if (p != null && (r = p.right) != null) {
3058 if ((rl = p.right = r.left) != null)
3059 rl.parent = p;
3060 if ((pp = r.parent = p.parent) == null)
3061 (root = r).red = false;
3062 else if (pp.left == p)
3063 pp.left = r;
3064 else
3065 pp.right = r;
3066 r.left = p;
3067 p.parent = r;
3068 }
3069 return root;
3070 }
3071
3072 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3073 TreeNode<K,V> p) {
3074 TreeNode<K,V> l, pp, lr;
3075 if (p != null && (l = p.left) != null) {
3076 if ((lr = p.left = l.right) != null)
3077 lr.parent = p;
3078 if ((pp = l.parent = p.parent) == null)
3079 (root = l).red = false;
3080 else if (pp.right == p)
3081 pp.right = l;
3082 else
3083 pp.left = l;
3084 l.right = p;
3085 p.parent = l;
3086 }
3087 return root;
3088 }
3089
3090 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3091 TreeNode<K,V> x) {
3092 x.red = true;
3093 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3094 if ((xp = x.parent) == null) {
3095 x.red = false;
3096 return x;
3097 }
3098 else if (!xp.red || (xpp = xp.parent) == null)
3099 return root;
3100 if (xp == (xppl = xpp.left)) {
3101 if ((xppr = xpp.right) != null && xppr.red) {
3102 xppr.red = false;
3103 xp.red = false;
3104 xpp.red = true;
3105 x = xpp;
3106 }
3107 else {
3108 if (x == xp.right) {
3109 root = rotateLeft(root, x = xp);
3110 xpp = (xp = x.parent) == null ? null : xp.parent;
3111 }
3112 if (xp != null) {
3113 xp.red = false;
3114 if (xpp != null) {
3115 xpp.red = true;
3116 root = rotateRight(root, xpp);
3117 }
3118 }
3119 }
3120 }
3121 else {
3122 if (xppl != null && xppl.red) {
3123 xppl.red = false;
3124 xp.red = false;
3125 xpp.red = true;
3126 x = xpp;
3127 }
3128 else {
3129 if (x == xp.left) {
3130 root = rotateRight(root, x = xp);
3131 xpp = (xp = x.parent) == null ? null : xp.parent;
3132 }
3133 if (xp != null) {
3134 xp.red = false;
3135 if (xpp != null) {
3136 xpp.red = true;
3137 root = rotateLeft(root, xpp);
3138 }
3139 }
3140 }
3141 }
3142 }
3143 }
3144
3145 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3146 TreeNode<K,V> x) {
3147 for (TreeNode<K,V> xp, xpl, xpr;;) {
3148 if (x == null || x == root)
3149 return root;
3150 else if ((xp = x.parent) == null) {
3151 x.red = false;
3152 return x;
3153 }
3154 else if (x.red) {
3155 x.red = false;
3156 return root;
3157 }
3158 else if ((xpl = xp.left) == x) {
3159 if ((xpr = xp.right) != null && xpr.red) {
3160 xpr.red = false;
3161 xp.red = true;
3162 root = rotateLeft(root, xp);
3163 xpr = (xp = x.parent) == null ? null : xp.right;
3164 }
3165 if (xpr == null)
3166 x = xp;
3167 else {
3168 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3169 if ((sr == null || !sr.red) &&
3170 (sl == null || !sl.red)) {
3171 xpr.red = true;
3172 x = xp;
3173 }
3174 else {
3175 if (sr == null || !sr.red) {
3176 if (sl != null)
3177 sl.red = false;
3178 xpr.red = true;
3179 root = rotateRight(root, xpr);
3180 xpr = (xp = x.parent) == null ?
3181 null : xp.right;
3182 }
3183 if (xpr != null) {
3184 xpr.red = (xp == null) ? false : xp.red;
3185 if ((sr = xpr.right) != null)
3186 sr.red = false;
3187 }
3188 if (xp != null) {
3189 xp.red = false;
3190 root = rotateLeft(root, xp);
3191 }
3192 x = root;
3193 }
3194 }
3195 }
3196 else { // symmetric
3197 if (xpl != null && xpl.red) {
3198 xpl.red = false;
3199 xp.red = true;
3200 root = rotateRight(root, xp);
3201 xpl = (xp = x.parent) == null ? null : xp.left;
3202 }
3203 if (xpl == null)
3204 x = xp;
3205 else {
3206 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3207 if ((sl == null || !sl.red) &&
3208 (sr == null || !sr.red)) {
3209 xpl.red = true;
3210 x = xp;
3211 }
3212 else {
3213 if (sl == null || !sl.red) {
3214 if (sr != null)
3215 sr.red = false;
3216 xpl.red = true;
3217 root = rotateLeft(root, xpl);
3218 xpl = (xp = x.parent) == null ?
3219 null : xp.left;
3220 }
3221 if (xpl != null) {
3222 xpl.red = (xp == null) ? false : xp.red;
3223 if ((sl = xpl.left) != null)
3224 sl.red = false;
3225 }
3226 if (xp != null) {
3227 xp.red = false;
3228 root = rotateRight(root, xp);
3229 }
3230 x = root;
3231 }
3232 }
3233 }
3234 }
3235 }
3236
3237 /**
3238 * Recursive invariant check
3239 */
3240 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3241 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3242 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3243 if (tb != null && tb.next != t)
3244 return false;
3245 if (tn != null && tn.prev != t)
3246 return false;
3247 if (tp != null && t != tp.left && t != tp.right)
3248 return false;
3249 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3250 return false;
3251 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3252 return false;
3253 if (t.red && tl != null && tl.red && tr != null && tr.red)
3254 return false;
3255 if (tl != null && !checkInvariants(tl))
3256 return false;
3257 if (tr != null && !checkInvariants(tr))
3258 return false;
3259 return true;
3260 }
3261
3262 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3263 private static final long LOCKSTATE;
3264 static {
3265 try {
3266 LOCKSTATE = U.objectFieldOffset
3267 (TreeBin.class.getDeclaredField("lockState"));
3268 } catch (ReflectiveOperationException e) {
3269 throw new Error(e);
3270 }
3271 }
3272 }
3273
3274 /* ----------------Table Traversal -------------- */
3275
3276 /**
3277 * Records the table, its length, and current traversal index for a
3278 * traverser that must process a region of a forwarded table before
3279 * proceeding with current table.
3280 */
3281 static final class TableStack<K,V> {
3282 int length;
3283 int index;
3284 Node<K,V>[] tab;
3285 TableStack<K,V> next;
3286 }
3287
3288 /**
3289 * Encapsulates traversal for methods such as containsValue; also
3290 * serves as a base class for other iterators and spliterators.
3291 *
3292 * Method advance visits once each still-valid node that was
3293 * reachable upon iterator construction. It might miss some that
3294 * were added to a bin after the bin was visited, which is OK wrt
3295 * consistency guarantees. Maintaining this property in the face
3296 * of possible ongoing resizes requires a fair amount of
3297 * bookkeeping state that is difficult to optimize away amidst
3298 * volatile accesses. Even so, traversal maintains reasonable
3299 * throughput.
3300 *
3301 * Normally, iteration proceeds bin-by-bin traversing lists.
3302 * However, if the table has been resized, then all future steps
3303 * must traverse both the bin at the current index as well as at
3304 * (index + baseSize); and so on for further resizings. To
3305 * paranoically cope with potential sharing by users of iterators
3306 * across threads, iteration terminates if a bounds checks fails
3307 * for a table read.
3308 */
3309 static class Traverser<K,V> {
3310 Node<K,V>[] tab; // current table; updated if resized
3311 Node<K,V> next; // the next entry to use
3312 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3313 int index; // index of bin to use next
3314 int baseIndex; // current index of initial table
3315 int baseLimit; // index bound for initial table
3316 final int baseSize; // initial table size
3317
3318 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3319 this.tab = tab;
3320 this.baseSize = size;
3321 this.baseIndex = this.index = index;
3322 this.baseLimit = limit;
3323 this.next = null;
3324 }
3325
3326 /**
3327 * Advances if possible, returning next valid node, or null if none.
3328 */
3329 final Node<K,V> advance() {
3330 Node<K,V> e;
3331 if ((e = next) != null)
3332 e = e.next;
3333 for (;;) {
3334 Node<K,V>[] t; int i, n; // must use locals in checks
3335 if (e != null)
3336 return next = e;
3337 if (baseIndex >= baseLimit || (t = tab) == null ||
3338 (n = t.length) <= (i = index) || i < 0)
3339 return next = null;
3340 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3341 if (e instanceof ForwardingNode) {
3342 tab = ((ForwardingNode<K,V>)e).nextTable;
3343 e = null;
3344 pushState(t, i, n);
3345 continue;
3346 }
3347 else if (e instanceof TreeBin)
3348 e = ((TreeBin<K,V>)e).first;
3349 else
3350 e = null;
3351 }
3352 if (stack != null)
3353 recoverState(n);
3354 else if ((index = i + baseSize) >= n)
3355 index = ++baseIndex; // visit upper slots if present
3356 }
3357 }
3358
3359 /**
3360 * Saves traversal state upon encountering a forwarding node.
3361 */
3362 private void pushState(Node<K,V>[] t, int i, int n) {
3363 TableStack<K,V> s = spare; // reuse if possible
3364 if (s != null)
3365 spare = s.next;
3366 else
3367 s = new TableStack<K,V>();
3368 s.tab = t;
3369 s.length = n;
3370 s.index = i;
3371 s.next = stack;
3372 stack = s;
3373 }
3374
3375 /**
3376 * Possibly pops traversal state.
3377 *
3378 * @param n length of current table
3379 */
3380 private void recoverState(int n) {
3381 TableStack<K,V> s; int len;
3382 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3383 n = len;
3384 index = s.index;
3385 tab = s.tab;
3386 s.tab = null;
3387 TableStack<K,V> next = s.next;
3388 s.next = spare; // save for reuse
3389 stack = next;
3390 spare = s;
3391 }
3392 if (s == null && (index += baseSize) >= n)
3393 index = ++baseIndex;
3394 }
3395 }
3396
3397 /**
3398 * Base of key, value, and entry Iterators. Adds fields to
3399 * Traverser to support iterator.remove.
3400 */
3401 static class BaseIterator<K,V> extends Traverser<K,V> {
3402 final ConcurrentHashMap<K,V> map;
3403 Node<K,V> lastReturned;
3404 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3405 ConcurrentHashMap<K,V> map) {
3406 super(tab, size, index, limit);
3407 this.map = map;
3408 advance();
3409 }
3410
3411 public final boolean hasNext() { return next != null; }
3412 public final boolean hasMoreElements() { return next != null; }
3413
3414 public final void remove() {
3415 Node<K,V> p;
3416 if ((p = lastReturned) == null)
3417 throw new IllegalStateException();
3418 lastReturned = null;
3419 map.replaceNode(p.key, null, null);
3420 }
3421 }
3422
3423 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3424 implements Iterator<K>, Enumeration<K> {
3425 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3426 ConcurrentHashMap<K,V> map) {
3427 super(tab, index, size, limit, map);
3428 }
3429
3430 public final K next() {
3431 Node<K,V> p;
3432 if ((p = next) == null)
3433 throw new NoSuchElementException();
3434 K k = p.key;
3435 lastReturned = p;
3436 advance();
3437 return k;
3438 }
3439
3440 public final K nextElement() { return next(); }
3441 }
3442
3443 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3444 implements Iterator<V>, Enumeration<V> {
3445 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3446 ConcurrentHashMap<K,V> map) {
3447 super(tab, index, size, limit, map);
3448 }
3449
3450 public final V next() {
3451 Node<K,V> p;
3452 if ((p = next) == null)
3453 throw new NoSuchElementException();
3454 V v = p.val;
3455 lastReturned = p;
3456 advance();
3457 return v;
3458 }
3459
3460 public final V nextElement() { return next(); }
3461 }
3462
3463 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3464 implements Iterator<Map.Entry<K,V>> {
3465 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3466 ConcurrentHashMap<K,V> map) {
3467 super(tab, index, size, limit, map);
3468 }
3469
3470 public final Map.Entry<K,V> next() {
3471 Node<K,V> p;
3472 if ((p = next) == null)
3473 throw new NoSuchElementException();
3474 K k = p.key;
3475 V v = p.val;
3476 lastReturned = p;
3477 advance();
3478 return new MapEntry<K,V>(k, v, map);
3479 }
3480 }
3481
3482 /**
3483 * Exported Entry for EntryIterator
3484 */
3485 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3486 final K key; // non-null
3487 V val; // non-null
3488 final ConcurrentHashMap<K,V> map;
3489 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3490 this.key = key;
3491 this.val = val;
3492 this.map = map;
3493 }
3494 public K getKey() { return key; }
3495 public V getValue() { return val; }
3496 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3497 public String toString() {
3498 return Helpers.mapEntryToString(key, val);
3499 }
3500
3501 public boolean equals(Object o) {
3502 Object k, v; Map.Entry<?,?> e;
3503 return ((o instanceof Map.Entry) &&
3504 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3505 (v = e.getValue()) != null &&
3506 (k == key || k.equals(key)) &&
3507 (v == val || v.equals(val)));
3508 }
3509
3510 /**
3511 * Sets our entry's value and writes through to the map. The
3512 * value to return is somewhat arbitrary here. Since we do not
3513 * necessarily track asynchronous changes, the most recent
3514 * "previous" value could be different from what we return (or
3515 * could even have been removed, in which case the put will
3516 * re-establish). We do not and cannot guarantee more.
3517 */
3518 public V setValue(V value) {
3519 if (value == null) throw new NullPointerException();
3520 V v = val;
3521 val = value;
3522 map.put(key, value);
3523 return v;
3524 }
3525 }
3526
3527 static final class KeySpliterator<K,V> extends Traverser<K,V>
3528 implements Spliterator<K> {
3529 long est; // size estimate
3530 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531 long est) {
3532 super(tab, size, index, limit);
3533 this.est = est;
3534 }
3535
3536 public Spliterator<K> trySplit() {
3537 int i, f, h;
3538 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3540 f, est >>>= 1);
3541 }
3542
3543 public void forEachRemaining(Consumer<? super K> action) {
3544 if (action == null) throw new NullPointerException();
3545 for (Node<K,V> p; (p = advance()) != null;)
3546 action.accept(p.key);
3547 }
3548
3549 public boolean tryAdvance(Consumer<? super K> action) {
3550 if (action == null) throw new NullPointerException();
3551 Node<K,V> p;
3552 if ((p = advance()) == null)
3553 return false;
3554 action.accept(p.key);
3555 return true;
3556 }
3557
3558 public long estimateSize() { return est; }
3559
3560 public int characteristics() {
3561 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3562 Spliterator.NONNULL;
3563 }
3564 }
3565
3566 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3567 implements Spliterator<V> {
3568 long est; // size estimate
3569 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570 long est) {
3571 super(tab, size, index, limit);
3572 this.est = est;
3573 }
3574
3575 public Spliterator<V> trySplit() {
3576 int i, f, h;
3577 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3579 f, est >>>= 1);
3580 }
3581
3582 public void forEachRemaining(Consumer<? super V> action) {
3583 if (action == null) throw new NullPointerException();
3584 for (Node<K,V> p; (p = advance()) != null;)
3585 action.accept(p.val);
3586 }
3587
3588 public boolean tryAdvance(Consumer<? super V> action) {
3589 if (action == null) throw new NullPointerException();
3590 Node<K,V> p;
3591 if ((p = advance()) == null)
3592 return false;
3593 action.accept(p.val);
3594 return true;
3595 }
3596
3597 public long estimateSize() { return est; }
3598
3599 public int characteristics() {
3600 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3601 }
3602 }
3603
3604 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3605 implements Spliterator<Map.Entry<K,V>> {
3606 final ConcurrentHashMap<K,V> map; // To export MapEntry
3607 long est; // size estimate
3608 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3609 long est, ConcurrentHashMap<K,V> map) {
3610 super(tab, size, index, limit);
3611 this.map = map;
3612 this.est = est;
3613 }
3614
3615 public Spliterator<Map.Entry<K,V>> trySplit() {
3616 int i, f, h;
3617 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3618 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3619 f, est >>>= 1, map);
3620 }
3621
3622 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3623 if (action == null) throw new NullPointerException();
3624 for (Node<K,V> p; (p = advance()) != null; )
3625 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3626 }
3627
3628 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3629 if (action == null) throw new NullPointerException();
3630 Node<K,V> p;
3631 if ((p = advance()) == null)
3632 return false;
3633 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3634 return true;
3635 }
3636
3637 public long estimateSize() { return est; }
3638
3639 public int characteristics() {
3640 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3641 Spliterator.NONNULL;
3642 }
3643 }
3644
3645 // Parallel bulk operations
3646
3647 /**
3648 * Computes initial batch value for bulk tasks. The returned value
3649 * is approximately exp2 of the number of times (minus one) to
3650 * split task by two before executing leaf action. This value is
3651 * faster to compute and more convenient to use as a guide to
3652 * splitting than is the depth, since it is used while dividing by
3653 * two anyway.
3654 */
3655 final int batchFor(long b) {
3656 long n;
3657 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3658 return 0;
3659 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3660 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3661 }
3662
3663 /**
3664 * Performs the given action for each (key, value).
3665 *
3666 * @param parallelismThreshold the (estimated) number of elements
3667 * needed for this operation to be executed in parallel
3668 * @param action the action
3669 * @since 1.8
3670 */
3671 public void forEach(long parallelismThreshold,
3672 BiConsumer<? super K,? super V> action) {
3673 if (action == null) throw new NullPointerException();
3674 new ForEachMappingTask<K,V>
3675 (null, batchFor(parallelismThreshold), 0, 0, table,
3676 action).invoke();
3677 }
3678
3679 /**
3680 * Performs the given action for each non-null transformation
3681 * of each (key, value).
3682 *
3683 * @param parallelismThreshold the (estimated) number of elements
3684 * needed for this operation to be executed in parallel
3685 * @param transformer a function returning the transformation
3686 * for an element, or null if there is no transformation (in
3687 * which case the action is not applied)
3688 * @param action the action
3689 * @param <U> the return type of the transformer
3690 * @since 1.8
3691 */
3692 public <U> void forEach(long parallelismThreshold,
3693 BiFunction<? super K, ? super V, ? extends U> transformer,
3694 Consumer<? super U> action) {
3695 if (transformer == null || action == null)
3696 throw new NullPointerException();
3697 new ForEachTransformedMappingTask<K,V,U>
3698 (null, batchFor(parallelismThreshold), 0, 0, table,
3699 transformer, action).invoke();
3700 }
3701
3702 /**
3703 * Returns a non-null result from applying the given search
3704 * function on each (key, value), or null if none. Upon
3705 * success, further element processing is suppressed and the
3706 * results of any other parallel invocations of the search
3707 * function are ignored.
3708 *
3709 * @param parallelismThreshold the (estimated) number of elements
3710 * needed for this operation to be executed in parallel
3711 * @param searchFunction a function returning a non-null
3712 * result on success, else null
3713 * @param <U> the return type of the search function
3714 * @return a non-null result from applying the given search
3715 * function on each (key, value), or null if none
3716 * @since 1.8
3717 */
3718 public <U> U search(long parallelismThreshold,
3719 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3720 if (searchFunction == null) throw new NullPointerException();
3721 return new SearchMappingsTask<K,V,U>
3722 (null, batchFor(parallelismThreshold), 0, 0, table,
3723 searchFunction, new AtomicReference<U>()).invoke();
3724 }
3725
3726 /**
3727 * Returns the result of accumulating the given transformation
3728 * of all (key, value) pairs using the given reducer to
3729 * combine values, or null if none.
3730 *
3731 * @param parallelismThreshold the (estimated) number of elements
3732 * needed for this operation to be executed in parallel
3733 * @param transformer a function returning the transformation
3734 * for an element, or null if there is no transformation (in
3735 * which case it is not combined)
3736 * @param reducer a commutative associative combining function
3737 * @param <U> the return type of the transformer
3738 * @return the result of accumulating the given transformation
3739 * of all (key, value) pairs
3740 * @since 1.8
3741 */
3742 public <U> U reduce(long parallelismThreshold,
3743 BiFunction<? super K, ? super V, ? extends U> transformer,
3744 BiFunction<? super U, ? super U, ? extends U> reducer) {
3745 if (transformer == null || reducer == null)
3746 throw new NullPointerException();
3747 return new MapReduceMappingsTask<K,V,U>
3748 (null, batchFor(parallelismThreshold), 0, 0, table,
3749 null, transformer, reducer).invoke();
3750 }
3751
3752 /**
3753 * Returns the result of accumulating the given transformation
3754 * of all (key, value) pairs using the given reducer to
3755 * combine values, and the given basis as an identity value.
3756 *
3757 * @param parallelismThreshold the (estimated) number of elements
3758 * needed for this operation to be executed in parallel
3759 * @param transformer a function returning the transformation
3760 * for an element
3761 * @param basis the identity (initial default value) for the reduction
3762 * @param reducer a commutative associative combining function
3763 * @return the result of accumulating the given transformation
3764 * of all (key, value) pairs
3765 * @since 1.8
3766 */
3767 public double reduceToDouble(long parallelismThreshold,
3768 ToDoubleBiFunction<? super K, ? super V> transformer,
3769 double basis,
3770 DoubleBinaryOperator reducer) {
3771 if (transformer == null || reducer == null)
3772 throw new NullPointerException();
3773 return new MapReduceMappingsToDoubleTask<K,V>
3774 (null, batchFor(parallelismThreshold), 0, 0, table,
3775 null, transformer, basis, reducer).invoke();
3776 }
3777
3778 /**
3779 * Returns the result of accumulating the given transformation
3780 * of all (key, value) pairs using the given reducer to
3781 * combine values, and the given basis as an identity value.
3782 *
3783 * @param parallelismThreshold the (estimated) number of elements
3784 * needed for this operation to be executed in parallel
3785 * @param transformer a function returning the transformation
3786 * for an element
3787 * @param basis the identity (initial default value) for the reduction
3788 * @param reducer a commutative associative combining function
3789 * @return the result of accumulating the given transformation
3790 * of all (key, value) pairs
3791 * @since 1.8
3792 */
3793 public long reduceToLong(long parallelismThreshold,
3794 ToLongBiFunction<? super K, ? super V> transformer,
3795 long basis,
3796 LongBinaryOperator reducer) {
3797 if (transformer == null || reducer == null)
3798 throw new NullPointerException();
3799 return new MapReduceMappingsToLongTask<K,V>
3800 (null, batchFor(parallelismThreshold), 0, 0, table,
3801 null, transformer, basis, reducer).invoke();
3802 }
3803
3804 /**
3805 * Returns the result of accumulating the given transformation
3806 * of all (key, value) pairs using the given reducer to
3807 * combine values, and the given basis as an identity value.
3808 *
3809 * @param parallelismThreshold the (estimated) number of elements
3810 * needed for this operation to be executed in parallel
3811 * @param transformer a function returning the transformation
3812 * for an element
3813 * @param basis the identity (initial default value) for the reduction
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating the given transformation
3816 * of all (key, value) pairs
3817 * @since 1.8
3818 */
3819 public int reduceToInt(long parallelismThreshold,
3820 ToIntBiFunction<? super K, ? super V> transformer,
3821 int basis,
3822 IntBinaryOperator reducer) {
3823 if (transformer == null || reducer == null)
3824 throw new NullPointerException();
3825 return new MapReduceMappingsToIntTask<K,V>
3826 (null, batchFor(parallelismThreshold), 0, 0, table,
3827 null, transformer, basis, reducer).invoke();
3828 }
3829
3830 /**
3831 * Performs the given action for each key.
3832 *
3833 * @param parallelismThreshold the (estimated) number of elements
3834 * needed for this operation to be executed in parallel
3835 * @param action the action
3836 * @since 1.8
3837 */
3838 public void forEachKey(long parallelismThreshold,
3839 Consumer<? super K> action) {
3840 if (action == null) throw new NullPointerException();
3841 new ForEachKeyTask<K,V>
3842 (null, batchFor(parallelismThreshold), 0, 0, table,
3843 action).invoke();
3844 }
3845
3846 /**
3847 * Performs the given action for each non-null transformation
3848 * of each key.
3849 *
3850 * @param parallelismThreshold the (estimated) number of elements
3851 * needed for this operation to be executed in parallel
3852 * @param transformer a function returning the transformation
3853 * for an element, or null if there is no transformation (in
3854 * which case the action is not applied)
3855 * @param action the action
3856 * @param <U> the return type of the transformer
3857 * @since 1.8
3858 */
3859 public <U> void forEachKey(long parallelismThreshold,
3860 Function<? super K, ? extends U> transformer,
3861 Consumer<? super U> action) {
3862 if (transformer == null || action == null)
3863 throw new NullPointerException();
3864 new ForEachTransformedKeyTask<K,V,U>
3865 (null, batchFor(parallelismThreshold), 0, 0, table,
3866 transformer, action).invoke();
3867 }
3868
3869 /**
3870 * Returns a non-null result from applying the given search
3871 * function on each key, or null if none. Upon success,
3872 * further element processing is suppressed and the results of
3873 * any other parallel invocations of the search function are
3874 * ignored.
3875 *
3876 * @param parallelismThreshold the (estimated) number of elements
3877 * needed for this operation to be executed in parallel
3878 * @param searchFunction a function returning a non-null
3879 * result on success, else null
3880 * @param <U> the return type of the search function
3881 * @return a non-null result from applying the given search
3882 * function on each key, or null if none
3883 * @since 1.8
3884 */
3885 public <U> U searchKeys(long parallelismThreshold,
3886 Function<? super K, ? extends U> searchFunction) {
3887 if (searchFunction == null) throw new NullPointerException();
3888 return new SearchKeysTask<K,V,U>
3889 (null, batchFor(parallelismThreshold), 0, 0, table,
3890 searchFunction, new AtomicReference<U>()).invoke();
3891 }
3892
3893 /**
3894 * Returns the result of accumulating all keys using the given
3895 * reducer to combine values, or null if none.
3896 *
3897 * @param parallelismThreshold the (estimated) number of elements
3898 * needed for this operation to be executed in parallel
3899 * @param reducer a commutative associative combining function
3900 * @return the result of accumulating all keys using the given
3901 * reducer to combine values, or null if none
3902 * @since 1.8
3903 */
3904 public K reduceKeys(long parallelismThreshold,
3905 BiFunction<? super K, ? super K, ? extends K> reducer) {
3906 if (reducer == null) throw new NullPointerException();
3907 return new ReduceKeysTask<K,V>
3908 (null, batchFor(parallelismThreshold), 0, 0, table,
3909 null, reducer).invoke();
3910 }
3911
3912 /**
3913 * Returns the result of accumulating the given transformation
3914 * of all keys using the given reducer to combine values, or
3915 * null if none.
3916 *
3917 * @param parallelismThreshold the (estimated) number of elements
3918 * needed for this operation to be executed in parallel
3919 * @param transformer a function returning the transformation
3920 * for an element, or null if there is no transformation (in
3921 * which case it is not combined)
3922 * @param reducer a commutative associative combining function
3923 * @param <U> the return type of the transformer
3924 * @return the result of accumulating the given transformation
3925 * of all keys
3926 * @since 1.8
3927 */
3928 public <U> U reduceKeys(long parallelismThreshold,
3929 Function<? super K, ? extends U> transformer,
3930 BiFunction<? super U, ? super U, ? extends U> reducer) {
3931 if (transformer == null || reducer == null)
3932 throw new NullPointerException();
3933 return new MapReduceKeysTask<K,V,U>
3934 (null, batchFor(parallelismThreshold), 0, 0, table,
3935 null, transformer, reducer).invoke();
3936 }
3937
3938 /**
3939 * Returns the result of accumulating the given transformation
3940 * of all keys using the given reducer to combine values, and
3941 * the given basis as an identity value.
3942 *
3943 * @param parallelismThreshold the (estimated) number of elements
3944 * needed for this operation to be executed in parallel
3945 * @param transformer a function returning the transformation
3946 * for an element
3947 * @param basis the identity (initial default value) for the reduction
3948 * @param reducer a commutative associative combining function
3949 * @return the result of accumulating the given transformation
3950 * of all keys
3951 * @since 1.8
3952 */
3953 public double reduceKeysToDouble(long parallelismThreshold,
3954 ToDoubleFunction<? super K> transformer,
3955 double basis,
3956 DoubleBinaryOperator reducer) {
3957 if (transformer == null || reducer == null)
3958 throw new NullPointerException();
3959 return new MapReduceKeysToDoubleTask<K,V>
3960 (null, batchFor(parallelismThreshold), 0, 0, table,
3961 null, transformer, basis, reducer).invoke();
3962 }
3963
3964 /**
3965 * Returns the result of accumulating the given transformation
3966 * of all keys using the given reducer to combine values, and
3967 * the given basis as an identity value.
3968 *
3969 * @param parallelismThreshold the (estimated) number of elements
3970 * needed for this operation to be executed in parallel
3971 * @param transformer a function returning the transformation
3972 * for an element
3973 * @param basis the identity (initial default value) for the reduction
3974 * @param reducer a commutative associative combining function
3975 * @return the result of accumulating the given transformation
3976 * of all keys
3977 * @since 1.8
3978 */
3979 public long reduceKeysToLong(long parallelismThreshold,
3980 ToLongFunction<? super K> transformer,
3981 long basis,
3982 LongBinaryOperator reducer) {
3983 if (transformer == null || reducer == null)
3984 throw new NullPointerException();
3985 return new MapReduceKeysToLongTask<K,V>
3986 (null, batchFor(parallelismThreshold), 0, 0, table,
3987 null, transformer, basis, reducer).invoke();
3988 }
3989
3990 /**
3991 * Returns the result of accumulating the given transformation
3992 * of all keys using the given reducer to combine values, and
3993 * the given basis as an identity value.
3994 *
3995 * @param parallelismThreshold the (estimated) number of elements
3996 * needed for this operation to be executed in parallel
3997 * @param transformer a function returning the transformation
3998 * for an element
3999 * @param basis the identity (initial default value) for the reduction
4000 * @param reducer a commutative associative combining function
4001 * @return the result of accumulating the given transformation
4002 * of all keys
4003 * @since 1.8
4004 */
4005 public int reduceKeysToInt(long parallelismThreshold,
4006 ToIntFunction<? super K> transformer,
4007 int basis,
4008 IntBinaryOperator reducer) {
4009 if (transformer == null || reducer == null)
4010 throw new NullPointerException();
4011 return new MapReduceKeysToIntTask<K,V>
4012 (null, batchFor(parallelismThreshold), 0, 0, table,
4013 null, transformer, basis, reducer).invoke();
4014 }
4015
4016 /**
4017 * Performs the given action for each value.
4018 *
4019 * @param parallelismThreshold the (estimated) number of elements
4020 * needed for this operation to be executed in parallel
4021 * @param action the action
4022 * @since 1.8
4023 */
4024 public void forEachValue(long parallelismThreshold,
4025 Consumer<? super V> action) {
4026 if (action == null)
4027 throw new NullPointerException();
4028 new ForEachValueTask<K,V>
4029 (null, batchFor(parallelismThreshold), 0, 0, table,
4030 action).invoke();
4031 }
4032
4033 /**
4034 * Performs the given action for each non-null transformation
4035 * of each value.
4036 *
4037 * @param parallelismThreshold the (estimated) number of elements
4038 * needed for this operation to be executed in parallel
4039 * @param transformer a function returning the transformation
4040 * for an element, or null if there is no transformation (in
4041 * which case the action is not applied)
4042 * @param action the action
4043 * @param <U> the return type of the transformer
4044 * @since 1.8
4045 */
4046 public <U> void forEachValue(long parallelismThreshold,
4047 Function<? super V, ? extends U> transformer,
4048 Consumer<? super U> action) {
4049 if (transformer == null || action == null)
4050 throw new NullPointerException();
4051 new ForEachTransformedValueTask<K,V,U>
4052 (null, batchFor(parallelismThreshold), 0, 0, table,
4053 transformer, action).invoke();
4054 }
4055
4056 /**
4057 * Returns a non-null result from applying the given search
4058 * function on each value, or null if none. Upon success,
4059 * further element processing is suppressed and the results of
4060 * any other parallel invocations of the search function are
4061 * ignored.
4062 *
4063 * @param parallelismThreshold the (estimated) number of elements
4064 * needed for this operation to be executed in parallel
4065 * @param searchFunction a function returning a non-null
4066 * result on success, else null
4067 * @param <U> the return type of the search function
4068 * @return a non-null result from applying the given search
4069 * function on each value, or null if none
4070 * @since 1.8
4071 */
4072 public <U> U searchValues(long parallelismThreshold,
4073 Function<? super V, ? extends U> searchFunction) {
4074 if (searchFunction == null) throw new NullPointerException();
4075 return new SearchValuesTask<K,V,U>
4076 (null, batchFor(parallelismThreshold), 0, 0, table,
4077 searchFunction, new AtomicReference<U>()).invoke();
4078 }
4079
4080 /**
4081 * Returns the result of accumulating all values using the
4082 * given reducer to combine values, or null if none.
4083 *
4084 * @param parallelismThreshold the (estimated) number of elements
4085 * needed for this operation to be executed in parallel
4086 * @param reducer a commutative associative combining function
4087 * @return the result of accumulating all values
4088 * @since 1.8
4089 */
4090 public V reduceValues(long parallelismThreshold,
4091 BiFunction<? super V, ? super V, ? extends V> reducer) {
4092 if (reducer == null) throw new NullPointerException();
4093 return new ReduceValuesTask<K,V>
4094 (null, batchFor(parallelismThreshold), 0, 0, table,
4095 null, reducer).invoke();
4096 }
4097
4098 /**
4099 * Returns the result of accumulating the given transformation
4100 * of all values using the given reducer to combine values, or
4101 * null if none.
4102 *
4103 * @param parallelismThreshold the (estimated) number of elements
4104 * needed for this operation to be executed in parallel
4105 * @param transformer a function returning the transformation
4106 * for an element, or null if there is no transformation (in
4107 * which case it is not combined)
4108 * @param reducer a commutative associative combining function
4109 * @param <U> the return type of the transformer
4110 * @return the result of accumulating the given transformation
4111 * of all values
4112 * @since 1.8
4113 */
4114 public <U> U reduceValues(long parallelismThreshold,
4115 Function<? super V, ? extends U> transformer,
4116 BiFunction<? super U, ? super U, ? extends U> reducer) {
4117 if (transformer == null || reducer == null)
4118 throw new NullPointerException();
4119 return new MapReduceValuesTask<K,V,U>
4120 (null, batchFor(parallelismThreshold), 0, 0, table,
4121 null, transformer, reducer).invoke();
4122 }
4123
4124 /**
4125 * Returns the result of accumulating the given transformation
4126 * of all values using the given reducer to combine values,
4127 * and the given basis as an identity value.
4128 *
4129 * @param parallelismThreshold the (estimated) number of elements
4130 * needed for this operation to be executed in parallel
4131 * @param transformer a function returning the transformation
4132 * for an element
4133 * @param basis the identity (initial default value) for the reduction
4134 * @param reducer a commutative associative combining function
4135 * @return the result of accumulating the given transformation
4136 * of all values
4137 * @since 1.8
4138 */
4139 public double reduceValuesToDouble(long parallelismThreshold,
4140 ToDoubleFunction<? super V> transformer,
4141 double basis,
4142 DoubleBinaryOperator reducer) {
4143 if (transformer == null || reducer == null)
4144 throw new NullPointerException();
4145 return new MapReduceValuesToDoubleTask<K,V>
4146 (null, batchFor(parallelismThreshold), 0, 0, table,
4147 null, transformer, basis, reducer).invoke();
4148 }
4149
4150 /**
4151 * Returns the result of accumulating the given transformation
4152 * of all values using the given reducer to combine values,
4153 * and the given basis as an identity value.
4154 *
4155 * @param parallelismThreshold the (estimated) number of elements
4156 * needed for this operation to be executed in parallel
4157 * @param transformer a function returning the transformation
4158 * for an element
4159 * @param basis the identity (initial default value) for the reduction
4160 * @param reducer a commutative associative combining function
4161 * @return the result of accumulating the given transformation
4162 * of all values
4163 * @since 1.8
4164 */
4165 public long reduceValuesToLong(long parallelismThreshold,
4166 ToLongFunction<? super V> transformer,
4167 long basis,
4168 LongBinaryOperator reducer) {
4169 if (transformer == null || reducer == null)
4170 throw new NullPointerException();
4171 return new MapReduceValuesToLongTask<K,V>
4172 (null, batchFor(parallelismThreshold), 0, 0, table,
4173 null, transformer, basis, reducer).invoke();
4174 }
4175
4176 /**
4177 * Returns the result of accumulating the given transformation
4178 * of all values using the given reducer to combine values,
4179 * and the given basis as an identity value.
4180 *
4181 * @param parallelismThreshold the (estimated) number of elements
4182 * needed for this operation to be executed in parallel
4183 * @param transformer a function returning the transformation
4184 * for an element
4185 * @param basis the identity (initial default value) for the reduction
4186 * @param reducer a commutative associative combining function
4187 * @return the result of accumulating the given transformation
4188 * of all values
4189 * @since 1.8
4190 */
4191 public int reduceValuesToInt(long parallelismThreshold,
4192 ToIntFunction<? super V> transformer,
4193 int basis,
4194 IntBinaryOperator reducer) {
4195 if (transformer == null || reducer == null)
4196 throw new NullPointerException();
4197 return new MapReduceValuesToIntTask<K,V>
4198 (null, batchFor(parallelismThreshold), 0, 0, table,
4199 null, transformer, basis, reducer).invoke();
4200 }
4201
4202 /**
4203 * Performs the given action for each entry.
4204 *
4205 * @param parallelismThreshold the (estimated) number of elements
4206 * needed for this operation to be executed in parallel
4207 * @param action the action
4208 * @since 1.8
4209 */
4210 public void forEachEntry(long parallelismThreshold,
4211 Consumer<? super Map.Entry<K,V>> action) {
4212 if (action == null) throw new NullPointerException();
4213 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4214 action).invoke();
4215 }
4216
4217 /**
4218 * Performs the given action for each non-null transformation
4219 * of each entry.
4220 *
4221 * @param parallelismThreshold the (estimated) number of elements
4222 * needed for this operation to be executed in parallel
4223 * @param transformer a function returning the transformation
4224 * for an element, or null if there is no transformation (in
4225 * which case the action is not applied)
4226 * @param action the action
4227 * @param <U> the return type of the transformer
4228 * @since 1.8
4229 */
4230 public <U> void forEachEntry(long parallelismThreshold,
4231 Function<Map.Entry<K,V>, ? extends U> transformer,
4232 Consumer<? super U> action) {
4233 if (transformer == null || action == null)
4234 throw new NullPointerException();
4235 new ForEachTransformedEntryTask<K,V,U>
4236 (null, batchFor(parallelismThreshold), 0, 0, table,
4237 transformer, action).invoke();
4238 }
4239
4240 /**
4241 * Returns a non-null result from applying the given search
4242 * function on each entry, or null if none. Upon success,
4243 * further element processing is suppressed and the results of
4244 * any other parallel invocations of the search function are
4245 * ignored.
4246 *
4247 * @param parallelismThreshold the (estimated) number of elements
4248 * needed for this operation to be executed in parallel
4249 * @param searchFunction a function returning a non-null
4250 * result on success, else null
4251 * @param <U> the return type of the search function
4252 * @return a non-null result from applying the given search
4253 * function on each entry, or null if none
4254 * @since 1.8
4255 */
4256 public <U> U searchEntries(long parallelismThreshold,
4257 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4258 if (searchFunction == null) throw new NullPointerException();
4259 return new SearchEntriesTask<K,V,U>
4260 (null, batchFor(parallelismThreshold), 0, 0, table,
4261 searchFunction, new AtomicReference<U>()).invoke();
4262 }
4263
4264 /**
4265 * Returns the result of accumulating all entries using the
4266 * given reducer to combine values, or null if none.
4267 *
4268 * @param parallelismThreshold the (estimated) number of elements
4269 * needed for this operation to be executed in parallel
4270 * @param reducer a commutative associative combining function
4271 * @return the result of accumulating all entries
4272 * @since 1.8
4273 */
4274 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4275 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4276 if (reducer == null) throw new NullPointerException();
4277 return new ReduceEntriesTask<K,V>
4278 (null, batchFor(parallelismThreshold), 0, 0, table,
4279 null, reducer).invoke();
4280 }
4281
4282 /**
4283 * Returns the result of accumulating the given transformation
4284 * of all entries using the given reducer to combine values,
4285 * or null if none.
4286 *
4287 * @param parallelismThreshold the (estimated) number of elements
4288 * needed for this operation to be executed in parallel
4289 * @param transformer a function returning the transformation
4290 * for an element, or null if there is no transformation (in
4291 * which case it is not combined)
4292 * @param reducer a commutative associative combining function
4293 * @param <U> the return type of the transformer
4294 * @return the result of accumulating the given transformation
4295 * of all entries
4296 * @since 1.8
4297 */
4298 public <U> U reduceEntries(long parallelismThreshold,
4299 Function<Map.Entry<K,V>, ? extends U> transformer,
4300 BiFunction<? super U, ? super U, ? extends U> reducer) {
4301 if (transformer == null || reducer == null)
4302 throw new NullPointerException();
4303 return new MapReduceEntriesTask<K,V,U>
4304 (null, batchFor(parallelismThreshold), 0, 0, table,
4305 null, transformer, reducer).invoke();
4306 }
4307
4308 /**
4309 * Returns the result of accumulating the given transformation
4310 * of all entries using the given reducer to combine values,
4311 * and the given basis as an identity value.
4312 *
4313 * @param parallelismThreshold the (estimated) number of elements
4314 * needed for this operation to be executed in parallel
4315 * @param transformer a function returning the transformation
4316 * for an element
4317 * @param basis the identity (initial default value) for the reduction
4318 * @param reducer a commutative associative combining function
4319 * @return the result of accumulating the given transformation
4320 * of all entries
4321 * @since 1.8
4322 */
4323 public double reduceEntriesToDouble(long parallelismThreshold,
4324 ToDoubleFunction<Map.Entry<K,V>> transformer,
4325 double basis,
4326 DoubleBinaryOperator reducer) {
4327 if (transformer == null || reducer == null)
4328 throw new NullPointerException();
4329 return new MapReduceEntriesToDoubleTask<K,V>
4330 (null, batchFor(parallelismThreshold), 0, 0, table,
4331 null, transformer, basis, reducer).invoke();
4332 }
4333
4334 /**
4335 * Returns the result of accumulating the given transformation
4336 * of all entries using the given reducer to combine values,
4337 * and the given basis as an identity value.
4338 *
4339 * @param parallelismThreshold the (estimated) number of elements
4340 * needed for this operation to be executed in parallel
4341 * @param transformer a function returning the transformation
4342 * for an element
4343 * @param basis the identity (initial default value) for the reduction
4344 * @param reducer a commutative associative combining function
4345 * @return the result of accumulating the given transformation
4346 * of all entries
4347 * @since 1.8
4348 */
4349 public long reduceEntriesToLong(long parallelismThreshold,
4350 ToLongFunction<Map.Entry<K,V>> transformer,
4351 long basis,
4352 LongBinaryOperator reducer) {
4353 if (transformer == null || reducer == null)
4354 throw new NullPointerException();
4355 return new MapReduceEntriesToLongTask<K,V>
4356 (null, batchFor(parallelismThreshold), 0, 0, table,
4357 null, transformer, basis, reducer).invoke();
4358 }
4359
4360 /**
4361 * Returns the result of accumulating the given transformation
4362 * of all entries using the given reducer to combine values,
4363 * and the given basis as an identity value.
4364 *
4365 * @param parallelismThreshold the (estimated) number of elements
4366 * needed for this operation to be executed in parallel
4367 * @param transformer a function returning the transformation
4368 * for an element
4369 * @param basis the identity (initial default value) for the reduction
4370 * @param reducer a commutative associative combining function
4371 * @return the result of accumulating the given transformation
4372 * of all entries
4373 * @since 1.8
4374 */
4375 public int reduceEntriesToInt(long parallelismThreshold,
4376 ToIntFunction<Map.Entry<K,V>> transformer,
4377 int basis,
4378 IntBinaryOperator reducer) {
4379 if (transformer == null || reducer == null)
4380 throw new NullPointerException();
4381 return new MapReduceEntriesToIntTask<K,V>
4382 (null, batchFor(parallelismThreshold), 0, 0, table,
4383 null, transformer, basis, reducer).invoke();
4384 }
4385
4386
4387 /* ----------------Views -------------- */
4388
4389 /**
4390 * Base class for views.
4391 */
4392 abstract static class CollectionView<K,V,E>
4393 implements Collection<E>, java.io.Serializable {
4394 private static final long serialVersionUID = 7249069246763182397L;
4395 final ConcurrentHashMap<K,V> map;
4396 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4397
4398 /**
4399 * Returns the map backing this view.
4400 *
4401 * @return the map backing this view
4402 */
4403 public ConcurrentHashMap<K,V> getMap() { return map; }
4404
4405 /**
4406 * Removes all of the elements from this view, by removing all
4407 * the mappings from the map backing this view.
4408 */
4409 public final void clear() { map.clear(); }
4410 public final int size() { return map.size(); }
4411 public final boolean isEmpty() { return map.isEmpty(); }
4412
4413 // implementations below rely on concrete classes supplying these
4414 // abstract methods
4415 /**
4416 * Returns an iterator over the elements in this collection.
4417 *
4418 * <p>The returned iterator is
4419 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4420 *
4421 * @return an iterator over the elements in this collection
4422 */
4423 public abstract Iterator<E> iterator();
4424 public abstract boolean contains(Object o);
4425 public abstract boolean remove(Object o);
4426
4427 private static final String oomeMsg = "Required array size too large";
4428
4429 public final Object[] toArray() {
4430 long sz = map.mappingCount();
4431 if (sz > MAX_ARRAY_SIZE)
4432 throw new OutOfMemoryError(oomeMsg);
4433 int n = (int)sz;
4434 Object[] r = new Object[n];
4435 int i = 0;
4436 for (E e : this) {
4437 if (i == n) {
4438 if (n >= MAX_ARRAY_SIZE)
4439 throw new OutOfMemoryError(oomeMsg);
4440 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4441 n = MAX_ARRAY_SIZE;
4442 else
4443 n += (n >>> 1) + 1;
4444 r = Arrays.copyOf(r, n);
4445 }
4446 r[i++] = e;
4447 }
4448 return (i == n) ? r : Arrays.copyOf(r, i);
4449 }
4450
4451 @SuppressWarnings("unchecked")
4452 public final <T> T[] toArray(T[] a) {
4453 long sz = map.mappingCount();
4454 if (sz > MAX_ARRAY_SIZE)
4455 throw new OutOfMemoryError(oomeMsg);
4456 int m = (int)sz;
4457 T[] r = (a.length >= m) ? a :
4458 (T[])java.lang.reflect.Array
4459 .newInstance(a.getClass().getComponentType(), m);
4460 int n = r.length;
4461 int i = 0;
4462 for (E e : this) {
4463 if (i == n) {
4464 if (n >= MAX_ARRAY_SIZE)
4465 throw new OutOfMemoryError(oomeMsg);
4466 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4467 n = MAX_ARRAY_SIZE;
4468 else
4469 n += (n >>> 1) + 1;
4470 r = Arrays.copyOf(r, n);
4471 }
4472 r[i++] = (T)e;
4473 }
4474 if (a == r && i < n) {
4475 r[i] = null; // null-terminate
4476 return r;
4477 }
4478 return (i == n) ? r : Arrays.copyOf(r, i);
4479 }
4480
4481 /**
4482 * Returns a string representation of this collection.
4483 * The string representation consists of the string representations
4484 * of the collection's elements in the order they are returned by
4485 * its iterator, enclosed in square brackets ({@code "[]"}).
4486 * Adjacent elements are separated by the characters {@code ", "}
4487 * (comma and space). Elements are converted to strings as by
4488 * {@link String#valueOf(Object)}.
4489 *
4490 * @return a string representation of this collection
4491 */
4492 public final String toString() {
4493 StringBuilder sb = new StringBuilder();
4494 sb.append('[');
4495 Iterator<E> it = iterator();
4496 if (it.hasNext()) {
4497 for (;;) {
4498 Object e = it.next();
4499 sb.append(e == this ? "(this Collection)" : e);
4500 if (!it.hasNext())
4501 break;
4502 sb.append(',').append(' ');
4503 }
4504 }
4505 return sb.append(']').toString();
4506 }
4507
4508 public final boolean containsAll(Collection<?> c) {
4509 if (c != this) {
4510 for (Object e : c) {
4511 if (e == null || !contains(e))
4512 return false;
4513 }
4514 }
4515 return true;
4516 }
4517
4518 public final boolean removeAll(Collection<?> c) {
4519 if (c == null) throw new NullPointerException();
4520 boolean modified = false;
4521 for (Iterator<E> it = iterator(); it.hasNext();) {
4522 if (c.contains(it.next())) {
4523 it.remove();
4524 modified = true;
4525 }
4526 }
4527 return modified;
4528 }
4529
4530 public final boolean retainAll(Collection<?> c) {
4531 if (c == null) throw new NullPointerException();
4532 boolean modified = false;
4533 for (Iterator<E> it = iterator(); it.hasNext();) {
4534 if (!c.contains(it.next())) {
4535 it.remove();
4536 modified = true;
4537 }
4538 }
4539 return modified;
4540 }
4541
4542 }
4543
4544 /**
4545 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4546 * which additions may optionally be enabled by mapping to a
4547 * common value. This class cannot be directly instantiated.
4548 * See {@link #keySet() keySet()},
4549 * {@link #keySet(Object) keySet(V)},
4550 * {@link #newKeySet() newKeySet()},
4551 * {@link #newKeySet(int) newKeySet(int)}.
4552 *
4553 * @since 1.8
4554 */
4555 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4556 implements Set<K>, java.io.Serializable {
4557 private static final long serialVersionUID = 7249069246763182397L;
4558 private final V value;
4559 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4560 super(map);
4561 this.value = value;
4562 }
4563
4564 /**
4565 * Returns the default mapped value for additions,
4566 * or {@code null} if additions are not supported.
4567 *
4568 * @return the default mapped value for additions, or {@code null}
4569 * if not supported
4570 */
4571 public V getMappedValue() { return value; }
4572
4573 /**
4574 * {@inheritDoc}
4575 * @throws NullPointerException if the specified key is null
4576 */
4577 public boolean contains(Object o) { return map.containsKey(o); }
4578
4579 /**
4580 * Removes the key from this map view, by removing the key (and its
4581 * corresponding value) from the backing map. This method does
4582 * nothing if the key is not in the map.
4583 *
4584 * @param o the key to be removed from the backing map
4585 * @return {@code true} if the backing map contained the specified key
4586 * @throws NullPointerException if the specified key is null
4587 */
4588 public boolean remove(Object o) { return map.remove(o) != null; }
4589
4590 /**
4591 * @return an iterator over the keys of the backing map
4592 */
4593 public Iterator<K> iterator() {
4594 Node<K,V>[] t;
4595 ConcurrentHashMap<K,V> m = map;
4596 int f = (t = m.table) == null ? 0 : t.length;
4597 return new KeyIterator<K,V>(t, f, 0, f, m);
4598 }
4599
4600 /**
4601 * Adds the specified key to this set view by mapping the key to
4602 * the default mapped value in the backing map, if defined.
4603 *
4604 * @param e key to be added
4605 * @return {@code true} if this set changed as a result of the call
4606 * @throws NullPointerException if the specified key is null
4607 * @throws UnsupportedOperationException if no default mapped value
4608 * for additions was provided
4609 */
4610 public boolean add(K e) {
4611 V v;
4612 if ((v = value) == null)
4613 throw new UnsupportedOperationException();
4614 return map.putVal(e, v, true) == null;
4615 }
4616
4617 /**
4618 * Adds all of the elements in the specified collection to this set,
4619 * as if by calling {@link #add} on each one.
4620 *
4621 * @param c the elements to be inserted into this set
4622 * @return {@code true} if this set changed as a result of the call
4623 * @throws NullPointerException if the collection or any of its
4624 * elements are {@code null}
4625 * @throws UnsupportedOperationException if no default mapped value
4626 * for additions was provided
4627 */
4628 public boolean addAll(Collection<? extends K> c) {
4629 boolean added = false;
4630 V v;
4631 if ((v = value) == null)
4632 throw new UnsupportedOperationException();
4633 for (K e : c) {
4634 if (map.putVal(e, v, true) == null)
4635 added = true;
4636 }
4637 return added;
4638 }
4639
4640 public int hashCode() {
4641 int h = 0;
4642 for (K e : this)
4643 h += e.hashCode();
4644 return h;
4645 }
4646
4647 public boolean equals(Object o) {
4648 Set<?> c;
4649 return ((o instanceof Set) &&
4650 ((c = (Set<?>)o) == this ||
4651 (containsAll(c) && c.containsAll(this))));
4652 }
4653
4654 public Spliterator<K> spliterator() {
4655 Node<K,V>[] t;
4656 ConcurrentHashMap<K,V> m = map;
4657 long n = m.sumCount();
4658 int f = (t = m.table) == null ? 0 : t.length;
4659 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4660 }
4661
4662 public void forEach(Consumer<? super K> action) {
4663 if (action == null) throw new NullPointerException();
4664 Node<K,V>[] t;
4665 if ((t = map.table) != null) {
4666 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4667 for (Node<K,V> p; (p = it.advance()) != null; )
4668 action.accept(p.key);
4669 }
4670 }
4671 }
4672
4673 /**
4674 * A view of a ConcurrentHashMap as a {@link Collection} of
4675 * values, in which additions are disabled. This class cannot be
4676 * directly instantiated. See {@link #values()}.
4677 */
4678 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4679 implements Collection<V>, java.io.Serializable {
4680 private static final long serialVersionUID = 2249069246763182397L;
4681 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4682 public final boolean contains(Object o) {
4683 return map.containsValue(o);
4684 }
4685
4686 public final boolean remove(Object o) {
4687 if (o != null) {
4688 for (Iterator<V> it = iterator(); it.hasNext();) {
4689 if (o.equals(it.next())) {
4690 it.remove();
4691 return true;
4692 }
4693 }
4694 }
4695 return false;
4696 }
4697
4698 public final Iterator<V> iterator() {
4699 ConcurrentHashMap<K,V> m = map;
4700 Node<K,V>[] t;
4701 int f = (t = m.table) == null ? 0 : t.length;
4702 return new ValueIterator<K,V>(t, f, 0, f, m);
4703 }
4704
4705 public final boolean add(V e) {
4706 throw new UnsupportedOperationException();
4707 }
4708 public final boolean addAll(Collection<? extends V> c) {
4709 throw new UnsupportedOperationException();
4710 }
4711
4712 public boolean removeIf(Predicate<? super V> filter) {
4713 return map.removeValueIf(filter);
4714 }
4715
4716 public Spliterator<V> spliterator() {
4717 Node<K,V>[] t;
4718 ConcurrentHashMap<K,V> m = map;
4719 long n = m.sumCount();
4720 int f = (t = m.table) == null ? 0 : t.length;
4721 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4722 }
4723
4724 public void forEach(Consumer<? super V> action) {
4725 if (action == null) throw new NullPointerException();
4726 Node<K,V>[] t;
4727 if ((t = map.table) != null) {
4728 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4729 for (Node<K,V> p; (p = it.advance()) != null; )
4730 action.accept(p.val);
4731 }
4732 }
4733 }
4734
4735 /**
4736 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4737 * entries. This class cannot be directly instantiated. See
4738 * {@link #entrySet()}.
4739 */
4740 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4741 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4742 private static final long serialVersionUID = 2249069246763182397L;
4743 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4744
4745 public boolean contains(Object o) {
4746 Object k, v, r; Map.Entry<?,?> e;
4747 return ((o instanceof Map.Entry) &&
4748 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4749 (r = map.get(k)) != null &&
4750 (v = e.getValue()) != null &&
4751 (v == r || v.equals(r)));
4752 }
4753
4754 public boolean remove(Object o) {
4755 Object k, v; Map.Entry<?,?> e;
4756 return ((o instanceof Map.Entry) &&
4757 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4758 (v = e.getValue()) != null &&
4759 map.remove(k, v));
4760 }
4761
4762 /**
4763 * @return an iterator over the entries of the backing map
4764 */
4765 public Iterator<Map.Entry<K,V>> iterator() {
4766 ConcurrentHashMap<K,V> m = map;
4767 Node<K,V>[] t;
4768 int f = (t = m.table) == null ? 0 : t.length;
4769 return new EntryIterator<K,V>(t, f, 0, f, m);
4770 }
4771
4772 public boolean add(Entry<K,V> e) {
4773 return map.putVal(e.getKey(), e.getValue(), false) == null;
4774 }
4775
4776 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4777 boolean added = false;
4778 for (Entry<K,V> e : c) {
4779 if (add(e))
4780 added = true;
4781 }
4782 return added;
4783 }
4784
4785 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4786 return map.removeEntryIf(filter);
4787 }
4788
4789 public final int hashCode() {
4790 int h = 0;
4791 Node<K,V>[] t;
4792 if ((t = map.table) != null) {
4793 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4794 for (Node<K,V> p; (p = it.advance()) != null; ) {
4795 h += p.hashCode();
4796 }
4797 }
4798 return h;
4799 }
4800
4801 public final boolean equals(Object o) {
4802 Set<?> c;
4803 return ((o instanceof Set) &&
4804 ((c = (Set<?>)o) == this ||
4805 (containsAll(c) && c.containsAll(this))));
4806 }
4807
4808 public Spliterator<Map.Entry<K,V>> spliterator() {
4809 Node<K,V>[] t;
4810 ConcurrentHashMap<K,V> m = map;
4811 long n = m.sumCount();
4812 int f = (t = m.table) == null ? 0 : t.length;
4813 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4814 }
4815
4816 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4817 if (action == null) throw new NullPointerException();
4818 Node<K,V>[] t;
4819 if ((t = map.table) != null) {
4820 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4821 for (Node<K,V> p; (p = it.advance()) != null; )
4822 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4823 }
4824 }
4825
4826 }
4827
4828 // -------------------------------------------------------
4829
4830 /**
4831 * Base class for bulk tasks. Repeats some fields and code from
4832 * class Traverser, because we need to subclass CountedCompleter.
4833 */
4834 @SuppressWarnings("serial")
4835 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4836 Node<K,V>[] tab; // same as Traverser
4837 Node<K,V> next;
4838 TableStack<K,V> stack, spare;
4839 int index;
4840 int baseIndex;
4841 int baseLimit;
4842 final int baseSize;
4843 int batch; // split control
4844
4845 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4846 super(par);
4847 this.batch = b;
4848 this.index = this.baseIndex = i;
4849 if ((this.tab = t) == null)
4850 this.baseSize = this.baseLimit = 0;
4851 else if (par == null)
4852 this.baseSize = this.baseLimit = t.length;
4853 else {
4854 this.baseLimit = f;
4855 this.baseSize = par.baseSize;
4856 }
4857 }
4858
4859 /**
4860 * Same as Traverser version
4861 */
4862 final Node<K,V> advance() {
4863 Node<K,V> e;
4864 if ((e = next) != null)
4865 e = e.next;
4866 for (;;) {
4867 Node<K,V>[] t; int i, n;
4868 if (e != null)
4869 return next = e;
4870 if (baseIndex >= baseLimit || (t = tab) == null ||
4871 (n = t.length) <= (i = index) || i < 0)
4872 return next = null;
4873 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4874 if (e instanceof ForwardingNode) {
4875 tab = ((ForwardingNode<K,V>)e).nextTable;
4876 e = null;
4877 pushState(t, i, n);
4878 continue;
4879 }
4880 else if (e instanceof TreeBin)
4881 e = ((TreeBin<K,V>)e).first;
4882 else
4883 e = null;
4884 }
4885 if (stack != null)
4886 recoverState(n);
4887 else if ((index = i + baseSize) >= n)
4888 index = ++baseIndex;
4889 }
4890 }
4891
4892 private void pushState(Node<K,V>[] t, int i, int n) {
4893 TableStack<K,V> s = spare;
4894 if (s != null)
4895 spare = s.next;
4896 else
4897 s = new TableStack<K,V>();
4898 s.tab = t;
4899 s.length = n;
4900 s.index = i;
4901 s.next = stack;
4902 stack = s;
4903 }
4904
4905 private void recoverState(int n) {
4906 TableStack<K,V> s; int len;
4907 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4908 n = len;
4909 index = s.index;
4910 tab = s.tab;
4911 s.tab = null;
4912 TableStack<K,V> next = s.next;
4913 s.next = spare; // save for reuse
4914 stack = next;
4915 spare = s;
4916 }
4917 if (s == null && (index += baseSize) >= n)
4918 index = ++baseIndex;
4919 }
4920 }
4921
4922 /*
4923 * Task classes. Coded in a regular but ugly format/style to
4924 * simplify checks that each variant differs in the right way from
4925 * others. The null screenings exist because compilers cannot tell
4926 * that we've already null-checked task arguments, so we force
4927 * simplest hoisted bypass to help avoid convoluted traps.
4928 */
4929 @SuppressWarnings("serial")
4930 static final class ForEachKeyTask<K,V>
4931 extends BulkTask<K,V,Void> {
4932 final Consumer<? super K> action;
4933 ForEachKeyTask
4934 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4935 Consumer<? super K> action) {
4936 super(p, b, i, f, t);
4937 this.action = action;
4938 }
4939 public final void compute() {
4940 final Consumer<? super K> action;
4941 if ((action = this.action) != null) {
4942 for (int i = baseIndex, f, h; batch > 0 &&
4943 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944 addToPendingCount(1);
4945 new ForEachKeyTask<K,V>
4946 (this, batch >>>= 1, baseLimit = h, f, tab,
4947 action).fork();
4948 }
4949 for (Node<K,V> p; (p = advance()) != null;)
4950 action.accept(p.key);
4951 propagateCompletion();
4952 }
4953 }
4954 }
4955
4956 @SuppressWarnings("serial")
4957 static final class ForEachValueTask<K,V>
4958 extends BulkTask<K,V,Void> {
4959 final Consumer<? super V> action;
4960 ForEachValueTask
4961 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4962 Consumer<? super V> action) {
4963 super(p, b, i, f, t);
4964 this.action = action;
4965 }
4966 public final void compute() {
4967 final Consumer<? super V> action;
4968 if ((action = this.action) != null) {
4969 for (int i = baseIndex, f, h; batch > 0 &&
4970 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 addToPendingCount(1);
4972 new ForEachValueTask<K,V>
4973 (this, batch >>>= 1, baseLimit = h, f, tab,
4974 action).fork();
4975 }
4976 for (Node<K,V> p; (p = advance()) != null;)
4977 action.accept(p.val);
4978 propagateCompletion();
4979 }
4980 }
4981 }
4982
4983 @SuppressWarnings("serial")
4984 static final class ForEachEntryTask<K,V>
4985 extends BulkTask<K,V,Void> {
4986 final Consumer<? super Entry<K,V>> action;
4987 ForEachEntryTask
4988 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4989 Consumer<? super Entry<K,V>> action) {
4990 super(p, b, i, f, t);
4991 this.action = action;
4992 }
4993 public final void compute() {
4994 final Consumer<? super Entry<K,V>> action;
4995 if ((action = this.action) != null) {
4996 for (int i = baseIndex, f, h; batch > 0 &&
4997 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4998 addToPendingCount(1);
4999 new ForEachEntryTask<K,V>
5000 (this, batch >>>= 1, baseLimit = h, f, tab,
5001 action).fork();
5002 }
5003 for (Node<K,V> p; (p = advance()) != null; )
5004 action.accept(p);
5005 propagateCompletion();
5006 }
5007 }
5008 }
5009
5010 @SuppressWarnings("serial")
5011 static final class ForEachMappingTask<K,V>
5012 extends BulkTask<K,V,Void> {
5013 final BiConsumer<? super K, ? super V> action;
5014 ForEachMappingTask
5015 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5016 BiConsumer<? super K,? super V> action) {
5017 super(p, b, i, f, t);
5018 this.action = action;
5019 }
5020 public final void compute() {
5021 final BiConsumer<? super K, ? super V> action;
5022 if ((action = this.action) != null) {
5023 for (int i = baseIndex, f, h; batch > 0 &&
5024 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5025 addToPendingCount(1);
5026 new ForEachMappingTask<K,V>
5027 (this, batch >>>= 1, baseLimit = h, f, tab,
5028 action).fork();
5029 }
5030 for (Node<K,V> p; (p = advance()) != null; )
5031 action.accept(p.key, p.val);
5032 propagateCompletion();
5033 }
5034 }
5035 }
5036
5037 @SuppressWarnings("serial")
5038 static final class ForEachTransformedKeyTask<K,V,U>
5039 extends BulkTask<K,V,Void> {
5040 final Function<? super K, ? extends U> transformer;
5041 final Consumer<? super U> action;
5042 ForEachTransformedKeyTask
5043 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5045 super(p, b, i, f, t);
5046 this.transformer = transformer; this.action = action;
5047 }
5048 public final void compute() {
5049 final Function<? super K, ? extends U> transformer;
5050 final Consumer<? super U> action;
5051 if ((transformer = this.transformer) != null &&
5052 (action = this.action) != null) {
5053 for (int i = baseIndex, f, h; batch > 0 &&
5054 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5055 addToPendingCount(1);
5056 new ForEachTransformedKeyTask<K,V,U>
5057 (this, batch >>>= 1, baseLimit = h, f, tab,
5058 transformer, action).fork();
5059 }
5060 for (Node<K,V> p; (p = advance()) != null; ) {
5061 U u;
5062 if ((u = transformer.apply(p.key)) != null)
5063 action.accept(u);
5064 }
5065 propagateCompletion();
5066 }
5067 }
5068 }
5069
5070 @SuppressWarnings("serial")
5071 static final class ForEachTransformedValueTask<K,V,U>
5072 extends BulkTask<K,V,Void> {
5073 final Function<? super V, ? extends U> transformer;
5074 final Consumer<? super U> action;
5075 ForEachTransformedValueTask
5076 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5077 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5078 super(p, b, i, f, t);
5079 this.transformer = transformer; this.action = action;
5080 }
5081 public final void compute() {
5082 final Function<? super V, ? extends U> transformer;
5083 final Consumer<? super U> action;
5084 if ((transformer = this.transformer) != null &&
5085 (action = this.action) != null) {
5086 for (int i = baseIndex, f, h; batch > 0 &&
5087 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5088 addToPendingCount(1);
5089 new ForEachTransformedValueTask<K,V,U>
5090 (this, batch >>>= 1, baseLimit = h, f, tab,
5091 transformer, action).fork();
5092 }
5093 for (Node<K,V> p; (p = advance()) != null; ) {
5094 U u;
5095 if ((u = transformer.apply(p.val)) != null)
5096 action.accept(u);
5097 }
5098 propagateCompletion();
5099 }
5100 }
5101 }
5102
5103 @SuppressWarnings("serial")
5104 static final class ForEachTransformedEntryTask<K,V,U>
5105 extends BulkTask<K,V,Void> {
5106 final Function<Map.Entry<K,V>, ? extends U> transformer;
5107 final Consumer<? super U> action;
5108 ForEachTransformedEntryTask
5109 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5110 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5111 super(p, b, i, f, t);
5112 this.transformer = transformer; this.action = action;
5113 }
5114 public final void compute() {
5115 final Function<Map.Entry<K,V>, ? extends U> transformer;
5116 final Consumer<? super U> action;
5117 if ((transformer = this.transformer) != null &&
5118 (action = this.action) != null) {
5119 for (int i = baseIndex, f, h; batch > 0 &&
5120 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5121 addToPendingCount(1);
5122 new ForEachTransformedEntryTask<K,V,U>
5123 (this, batch >>>= 1, baseLimit = h, f, tab,
5124 transformer, action).fork();
5125 }
5126 for (Node<K,V> p; (p = advance()) != null; ) {
5127 U u;
5128 if ((u = transformer.apply(p)) != null)
5129 action.accept(u);
5130 }
5131 propagateCompletion();
5132 }
5133 }
5134 }
5135
5136 @SuppressWarnings("serial")
5137 static final class ForEachTransformedMappingTask<K,V,U>
5138 extends BulkTask<K,V,Void> {
5139 final BiFunction<? super K, ? super V, ? extends U> transformer;
5140 final Consumer<? super U> action;
5141 ForEachTransformedMappingTask
5142 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5143 BiFunction<? super K, ? super V, ? extends U> transformer,
5144 Consumer<? super U> action) {
5145 super(p, b, i, f, t);
5146 this.transformer = transformer; this.action = action;
5147 }
5148 public final void compute() {
5149 final BiFunction<? super K, ? super V, ? extends U> transformer;
5150 final Consumer<? super U> action;
5151 if ((transformer = this.transformer) != null &&
5152 (action = this.action) != null) {
5153 for (int i = baseIndex, f, h; batch > 0 &&
5154 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5155 addToPendingCount(1);
5156 new ForEachTransformedMappingTask<K,V,U>
5157 (this, batch >>>= 1, baseLimit = h, f, tab,
5158 transformer, action).fork();
5159 }
5160 for (Node<K,V> p; (p = advance()) != null; ) {
5161 U u;
5162 if ((u = transformer.apply(p.key, p.val)) != null)
5163 action.accept(u);
5164 }
5165 propagateCompletion();
5166 }
5167 }
5168 }
5169
5170 @SuppressWarnings("serial")
5171 static final class SearchKeysTask<K,V,U>
5172 extends BulkTask<K,V,U> {
5173 final Function<? super K, ? extends U> searchFunction;
5174 final AtomicReference<U> result;
5175 SearchKeysTask
5176 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5177 Function<? super K, ? extends U> searchFunction,
5178 AtomicReference<U> result) {
5179 super(p, b, i, f, t);
5180 this.searchFunction = searchFunction; this.result = result;
5181 }
5182 public final U getRawResult() { return result.get(); }
5183 public final void compute() {
5184 final Function<? super K, ? extends U> searchFunction;
5185 final AtomicReference<U> result;
5186 if ((searchFunction = this.searchFunction) != null &&
5187 (result = this.result) != null) {
5188 for (int i = baseIndex, f, h; batch > 0 &&
5189 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5190 if (result.get() != null)
5191 return;
5192 addToPendingCount(1);
5193 new SearchKeysTask<K,V,U>
5194 (this, batch >>>= 1, baseLimit = h, f, tab,
5195 searchFunction, result).fork();
5196 }
5197 while (result.get() == null) {
5198 U u;
5199 Node<K,V> p;
5200 if ((p = advance()) == null) {
5201 propagateCompletion();
5202 break;
5203 }
5204 if ((u = searchFunction.apply(p.key)) != null) {
5205 if (result.compareAndSet(null, u))
5206 quietlyCompleteRoot();
5207 break;
5208 }
5209 }
5210 }
5211 }
5212 }
5213
5214 @SuppressWarnings("serial")
5215 static final class SearchValuesTask<K,V,U>
5216 extends BulkTask<K,V,U> {
5217 final Function<? super V, ? extends U> searchFunction;
5218 final AtomicReference<U> result;
5219 SearchValuesTask
5220 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5221 Function<? super V, ? extends U> searchFunction,
5222 AtomicReference<U> result) {
5223 super(p, b, i, f, t);
5224 this.searchFunction = searchFunction; this.result = result;
5225 }
5226 public final U getRawResult() { return result.get(); }
5227 public final void compute() {
5228 final Function<? super V, ? extends U> searchFunction;
5229 final AtomicReference<U> result;
5230 if ((searchFunction = this.searchFunction) != null &&
5231 (result = this.result) != null) {
5232 for (int i = baseIndex, f, h; batch > 0 &&
5233 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234 if (result.get() != null)
5235 return;
5236 addToPendingCount(1);
5237 new SearchValuesTask<K,V,U>
5238 (this, batch >>>= 1, baseLimit = h, f, tab,
5239 searchFunction, result).fork();
5240 }
5241 while (result.get() == null) {
5242 U u;
5243 Node<K,V> p;
5244 if ((p = advance()) == null) {
5245 propagateCompletion();
5246 break;
5247 }
5248 if ((u = searchFunction.apply(p.val)) != null) {
5249 if (result.compareAndSet(null, u))
5250 quietlyCompleteRoot();
5251 break;
5252 }
5253 }
5254 }
5255 }
5256 }
5257
5258 @SuppressWarnings("serial")
5259 static final class SearchEntriesTask<K,V,U>
5260 extends BulkTask<K,V,U> {
5261 final Function<Entry<K,V>, ? extends U> searchFunction;
5262 final AtomicReference<U> result;
5263 SearchEntriesTask
5264 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5265 Function<Entry<K,V>, ? extends U> searchFunction,
5266 AtomicReference<U> result) {
5267 super(p, b, i, f, t);
5268 this.searchFunction = searchFunction; this.result = result;
5269 }
5270 public final U getRawResult() { return result.get(); }
5271 public final void compute() {
5272 final Function<Entry<K,V>, ? extends U> searchFunction;
5273 final AtomicReference<U> result;
5274 if ((searchFunction = this.searchFunction) != null &&
5275 (result = this.result) != null) {
5276 for (int i = baseIndex, f, h; batch > 0 &&
5277 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5278 if (result.get() != null)
5279 return;
5280 addToPendingCount(1);
5281 new SearchEntriesTask<K,V,U>
5282 (this, batch >>>= 1, baseLimit = h, f, tab,
5283 searchFunction, result).fork();
5284 }
5285 while (result.get() == null) {
5286 U u;
5287 Node<K,V> p;
5288 if ((p = advance()) == null) {
5289 propagateCompletion();
5290 break;
5291 }
5292 if ((u = searchFunction.apply(p)) != null) {
5293 if (result.compareAndSet(null, u))
5294 quietlyCompleteRoot();
5295 return;
5296 }
5297 }
5298 }
5299 }
5300 }
5301
5302 @SuppressWarnings("serial")
5303 static final class SearchMappingsTask<K,V,U>
5304 extends BulkTask<K,V,U> {
5305 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5306 final AtomicReference<U> result;
5307 SearchMappingsTask
5308 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5310 AtomicReference<U> result) {
5311 super(p, b, i, f, t);
5312 this.searchFunction = searchFunction; this.result = result;
5313 }
5314 public final U getRawResult() { return result.get(); }
5315 public final void compute() {
5316 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5317 final AtomicReference<U> result;
5318 if ((searchFunction = this.searchFunction) != null &&
5319 (result = this.result) != null) {
5320 for (int i = baseIndex, f, h; batch > 0 &&
5321 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5322 if (result.get() != null)
5323 return;
5324 addToPendingCount(1);
5325 new SearchMappingsTask<K,V,U>
5326 (this, batch >>>= 1, baseLimit = h, f, tab,
5327 searchFunction, result).fork();
5328 }
5329 while (result.get() == null) {
5330 U u;
5331 Node<K,V> p;
5332 if ((p = advance()) == null) {
5333 propagateCompletion();
5334 break;
5335 }
5336 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5337 if (result.compareAndSet(null, u))
5338 quietlyCompleteRoot();
5339 break;
5340 }
5341 }
5342 }
5343 }
5344 }
5345
5346 @SuppressWarnings("serial")
5347 static final class ReduceKeysTask<K,V>
5348 extends BulkTask<K,V,K> {
5349 final BiFunction<? super K, ? super K, ? extends K> reducer;
5350 K result;
5351 ReduceKeysTask<K,V> rights, nextRight;
5352 ReduceKeysTask
5353 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5354 ReduceKeysTask<K,V> nextRight,
5355 BiFunction<? super K, ? super K, ? extends K> reducer) {
5356 super(p, b, i, f, t); this.nextRight = nextRight;
5357 this.reducer = reducer;
5358 }
5359 public final K getRawResult() { return result; }
5360 public final void compute() {
5361 final BiFunction<? super K, ? super K, ? extends K> reducer;
5362 if ((reducer = this.reducer) != null) {
5363 for (int i = baseIndex, f, h; batch > 0 &&
5364 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5365 addToPendingCount(1);
5366 (rights = new ReduceKeysTask<K,V>
5367 (this, batch >>>= 1, baseLimit = h, f, tab,
5368 rights, reducer)).fork();
5369 }
5370 K r = null;
5371 for (Node<K,V> p; (p = advance()) != null; ) {
5372 K u = p.key;
5373 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5374 }
5375 result = r;
5376 CountedCompleter<?> c;
5377 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5378 @SuppressWarnings("unchecked")
5379 ReduceKeysTask<K,V>
5380 t = (ReduceKeysTask<K,V>)c,
5381 s = t.rights;
5382 while (s != null) {
5383 K tr, sr;
5384 if ((sr = s.result) != null)
5385 t.result = (((tr = t.result) == null) ? sr :
5386 reducer.apply(tr, sr));
5387 s = t.rights = s.nextRight;
5388 }
5389 }
5390 }
5391 }
5392 }
5393
5394 @SuppressWarnings("serial")
5395 static final class ReduceValuesTask<K,V>
5396 extends BulkTask<K,V,V> {
5397 final BiFunction<? super V, ? super V, ? extends V> reducer;
5398 V result;
5399 ReduceValuesTask<K,V> rights, nextRight;
5400 ReduceValuesTask
5401 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5402 ReduceValuesTask<K,V> nextRight,
5403 BiFunction<? super V, ? super V, ? extends V> reducer) {
5404 super(p, b, i, f, t); this.nextRight = nextRight;
5405 this.reducer = reducer;
5406 }
5407 public final V getRawResult() { return result; }
5408 public final void compute() {
5409 final BiFunction<? super V, ? super V, ? extends V> reducer;
5410 if ((reducer = this.reducer) != null) {
5411 for (int i = baseIndex, f, h; batch > 0 &&
5412 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413 addToPendingCount(1);
5414 (rights = new ReduceValuesTask<K,V>
5415 (this, batch >>>= 1, baseLimit = h, f, tab,
5416 rights, reducer)).fork();
5417 }
5418 V r = null;
5419 for (Node<K,V> p; (p = advance()) != null; ) {
5420 V v = p.val;
5421 r = (r == null) ? v : reducer.apply(r, v);
5422 }
5423 result = r;
5424 CountedCompleter<?> c;
5425 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5426 @SuppressWarnings("unchecked")
5427 ReduceValuesTask<K,V>
5428 t = (ReduceValuesTask<K,V>)c,
5429 s = t.rights;
5430 while (s != null) {
5431 V tr, sr;
5432 if ((sr = s.result) != null)
5433 t.result = (((tr = t.result) == null) ? sr :
5434 reducer.apply(tr, sr));
5435 s = t.rights = s.nextRight;
5436 }
5437 }
5438 }
5439 }
5440 }
5441
5442 @SuppressWarnings("serial")
5443 static final class ReduceEntriesTask<K,V>
5444 extends BulkTask<K,V,Map.Entry<K,V>> {
5445 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5446 Map.Entry<K,V> result;
5447 ReduceEntriesTask<K,V> rights, nextRight;
5448 ReduceEntriesTask
5449 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450 ReduceEntriesTask<K,V> nextRight,
5451 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5452 super(p, b, i, f, t); this.nextRight = nextRight;
5453 this.reducer = reducer;
5454 }
5455 public final Map.Entry<K,V> getRawResult() { return result; }
5456 public final void compute() {
5457 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 if ((reducer = this.reducer) != null) {
5459 for (int i = baseIndex, f, h; batch > 0 &&
5460 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5461 addToPendingCount(1);
5462 (rights = new ReduceEntriesTask<K,V>
5463 (this, batch >>>= 1, baseLimit = h, f, tab,
5464 rights, reducer)).fork();
5465 }
5466 Map.Entry<K,V> r = null;
5467 for (Node<K,V> p; (p = advance()) != null; )
5468 r = (r == null) ? p : reducer.apply(r, p);
5469 result = r;
5470 CountedCompleter<?> c;
5471 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5472 @SuppressWarnings("unchecked")
5473 ReduceEntriesTask<K,V>
5474 t = (ReduceEntriesTask<K,V>)c,
5475 s = t.rights;
5476 while (s != null) {
5477 Map.Entry<K,V> tr, sr;
5478 if ((sr = s.result) != null)
5479 t.result = (((tr = t.result) == null) ? sr :
5480 reducer.apply(tr, sr));
5481 s = t.rights = s.nextRight;
5482 }
5483 }
5484 }
5485 }
5486 }
5487
5488 @SuppressWarnings("serial")
5489 static final class MapReduceKeysTask<K,V,U>
5490 extends BulkTask<K,V,U> {
5491 final Function<? super K, ? extends U> transformer;
5492 final BiFunction<? super U, ? super U, ? extends U> reducer;
5493 U result;
5494 MapReduceKeysTask<K,V,U> rights, nextRight;
5495 MapReduceKeysTask
5496 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497 MapReduceKeysTask<K,V,U> nextRight,
5498 Function<? super K, ? extends U> transformer,
5499 BiFunction<? super U, ? super U, ? extends U> reducer) {
5500 super(p, b, i, f, t); this.nextRight = nextRight;
5501 this.transformer = transformer;
5502 this.reducer = reducer;
5503 }
5504 public final U getRawResult() { return result; }
5505 public final void compute() {
5506 final Function<? super K, ? extends U> transformer;
5507 final BiFunction<? super U, ? super U, ? extends U> reducer;
5508 if ((transformer = this.transformer) != null &&
5509 (reducer = this.reducer) != null) {
5510 for (int i = baseIndex, f, h; batch > 0 &&
5511 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512 addToPendingCount(1);
5513 (rights = new MapReduceKeysTask<K,V,U>
5514 (this, batch >>>= 1, baseLimit = h, f, tab,
5515 rights, transformer, reducer)).fork();
5516 }
5517 U r = null;
5518 for (Node<K,V> p; (p = advance()) != null; ) {
5519 U u;
5520 if ((u = transformer.apply(p.key)) != null)
5521 r = (r == null) ? u : reducer.apply(r, u);
5522 }
5523 result = r;
5524 CountedCompleter<?> c;
5525 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 @SuppressWarnings("unchecked")
5527 MapReduceKeysTask<K,V,U>
5528 t = (MapReduceKeysTask<K,V,U>)c,
5529 s = t.rights;
5530 while (s != null) {
5531 U tr, sr;
5532 if ((sr = s.result) != null)
5533 t.result = (((tr = t.result) == null) ? sr :
5534 reducer.apply(tr, sr));
5535 s = t.rights = s.nextRight;
5536 }
5537 }
5538 }
5539 }
5540 }
5541
5542 @SuppressWarnings("serial")
5543 static final class MapReduceValuesTask<K,V,U>
5544 extends BulkTask<K,V,U> {
5545 final Function<? super V, ? extends U> transformer;
5546 final BiFunction<? super U, ? super U, ? extends U> reducer;
5547 U result;
5548 MapReduceValuesTask<K,V,U> rights, nextRight;
5549 MapReduceValuesTask
5550 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5551 MapReduceValuesTask<K,V,U> nextRight,
5552 Function<? super V, ? extends U> transformer,
5553 BiFunction<? super U, ? super U, ? extends U> reducer) {
5554 super(p, b, i, f, t); this.nextRight = nextRight;
5555 this.transformer = transformer;
5556 this.reducer = reducer;
5557 }
5558 public final U getRawResult() { return result; }
5559 public final void compute() {
5560 final Function<? super V, ? extends U> transformer;
5561 final BiFunction<? super U, ? super U, ? extends U> reducer;
5562 if ((transformer = this.transformer) != null &&
5563 (reducer = this.reducer) != null) {
5564 for (int i = baseIndex, f, h; batch > 0 &&
5565 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 addToPendingCount(1);
5567 (rights = new MapReduceValuesTask<K,V,U>
5568 (this, batch >>>= 1, baseLimit = h, f, tab,
5569 rights, transformer, reducer)).fork();
5570 }
5571 U r = null;
5572 for (Node<K,V> p; (p = advance()) != null; ) {
5573 U u;
5574 if ((u = transformer.apply(p.val)) != null)
5575 r = (r == null) ? u : reducer.apply(r, u);
5576 }
5577 result = r;
5578 CountedCompleter<?> c;
5579 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 @SuppressWarnings("unchecked")
5581 MapReduceValuesTask<K,V,U>
5582 t = (MapReduceValuesTask<K,V,U>)c,
5583 s = t.rights;
5584 while (s != null) {
5585 U tr, sr;
5586 if ((sr = s.result) != null)
5587 t.result = (((tr = t.result) == null) ? sr :
5588 reducer.apply(tr, sr));
5589 s = t.rights = s.nextRight;
5590 }
5591 }
5592 }
5593 }
5594 }
5595
5596 @SuppressWarnings("serial")
5597 static final class MapReduceEntriesTask<K,V,U>
5598 extends BulkTask<K,V,U> {
5599 final Function<Map.Entry<K,V>, ? extends U> transformer;
5600 final BiFunction<? super U, ? super U, ? extends U> reducer;
5601 U result;
5602 MapReduceEntriesTask<K,V,U> rights, nextRight;
5603 MapReduceEntriesTask
5604 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5605 MapReduceEntriesTask<K,V,U> nextRight,
5606 Function<Map.Entry<K,V>, ? extends U> transformer,
5607 BiFunction<? super U, ? super U, ? extends U> reducer) {
5608 super(p, b, i, f, t); this.nextRight = nextRight;
5609 this.transformer = transformer;
5610 this.reducer = reducer;
5611 }
5612 public final U getRawResult() { return result; }
5613 public final void compute() {
5614 final Function<Map.Entry<K,V>, ? extends U> transformer;
5615 final BiFunction<? super U, ? super U, ? extends U> reducer;
5616 if ((transformer = this.transformer) != null &&
5617 (reducer = this.reducer) != null) {
5618 for (int i = baseIndex, f, h; batch > 0 &&
5619 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620 addToPendingCount(1);
5621 (rights = new MapReduceEntriesTask<K,V,U>
5622 (this, batch >>>= 1, baseLimit = h, f, tab,
5623 rights, transformer, reducer)).fork();
5624 }
5625 U r = null;
5626 for (Node<K,V> p; (p = advance()) != null; ) {
5627 U u;
5628 if ((u = transformer.apply(p)) != null)
5629 r = (r == null) ? u : reducer.apply(r, u);
5630 }
5631 result = r;
5632 CountedCompleter<?> c;
5633 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5634 @SuppressWarnings("unchecked")
5635 MapReduceEntriesTask<K,V,U>
5636 t = (MapReduceEntriesTask<K,V,U>)c,
5637 s = t.rights;
5638 while (s != null) {
5639 U tr, sr;
5640 if ((sr = s.result) != null)
5641 t.result = (((tr = t.result) == null) ? sr :
5642 reducer.apply(tr, sr));
5643 s = t.rights = s.nextRight;
5644 }
5645 }
5646 }
5647 }
5648 }
5649
5650 @SuppressWarnings("serial")
5651 static final class MapReduceMappingsTask<K,V,U>
5652 extends BulkTask<K,V,U> {
5653 final BiFunction<? super K, ? super V, ? extends U> transformer;
5654 final BiFunction<? super U, ? super U, ? extends U> reducer;
5655 U result;
5656 MapReduceMappingsTask<K,V,U> rights, nextRight;
5657 MapReduceMappingsTask
5658 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5659 MapReduceMappingsTask<K,V,U> nextRight,
5660 BiFunction<? super K, ? super V, ? extends U> transformer,
5661 BiFunction<? super U, ? super U, ? extends U> reducer) {
5662 super(p, b, i, f, t); this.nextRight = nextRight;
5663 this.transformer = transformer;
5664 this.reducer = reducer;
5665 }
5666 public final U getRawResult() { return result; }
5667 public final void compute() {
5668 final BiFunction<? super K, ? super V, ? extends U> transformer;
5669 final BiFunction<? super U, ? super U, ? extends U> reducer;
5670 if ((transformer = this.transformer) != null &&
5671 (reducer = this.reducer) != null) {
5672 for (int i = baseIndex, f, h; batch > 0 &&
5673 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5674 addToPendingCount(1);
5675 (rights = new MapReduceMappingsTask<K,V,U>
5676 (this, batch >>>= 1, baseLimit = h, f, tab,
5677 rights, transformer, reducer)).fork();
5678 }
5679 U r = null;
5680 for (Node<K,V> p; (p = advance()) != null; ) {
5681 U u;
5682 if ((u = transformer.apply(p.key, p.val)) != null)
5683 r = (r == null) ? u : reducer.apply(r, u);
5684 }
5685 result = r;
5686 CountedCompleter<?> c;
5687 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5688 @SuppressWarnings("unchecked")
5689 MapReduceMappingsTask<K,V,U>
5690 t = (MapReduceMappingsTask<K,V,U>)c,
5691 s = t.rights;
5692 while (s != null) {
5693 U tr, sr;
5694 if ((sr = s.result) != null)
5695 t.result = (((tr = t.result) == null) ? sr :
5696 reducer.apply(tr, sr));
5697 s = t.rights = s.nextRight;
5698 }
5699 }
5700 }
5701 }
5702 }
5703
5704 @SuppressWarnings("serial")
5705 static final class MapReduceKeysToDoubleTask<K,V>
5706 extends BulkTask<K,V,Double> {
5707 final ToDoubleFunction<? super K> transformer;
5708 final DoubleBinaryOperator reducer;
5709 final double basis;
5710 double result;
5711 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5712 MapReduceKeysToDoubleTask
5713 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5714 MapReduceKeysToDoubleTask<K,V> nextRight,
5715 ToDoubleFunction<? super K> transformer,
5716 double basis,
5717 DoubleBinaryOperator reducer) {
5718 super(p, b, i, f, t); this.nextRight = nextRight;
5719 this.transformer = transformer;
5720 this.basis = basis; this.reducer = reducer;
5721 }
5722 public final Double getRawResult() { return result; }
5723 public final void compute() {
5724 final ToDoubleFunction<? super K> transformer;
5725 final DoubleBinaryOperator reducer;
5726 if ((transformer = this.transformer) != null &&
5727 (reducer = this.reducer) != null) {
5728 double r = this.basis;
5729 for (int i = baseIndex, f, h; batch > 0 &&
5730 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5731 addToPendingCount(1);
5732 (rights = new MapReduceKeysToDoubleTask<K,V>
5733 (this, batch >>>= 1, baseLimit = h, f, tab,
5734 rights, transformer, r, reducer)).fork();
5735 }
5736 for (Node<K,V> p; (p = advance()) != null; )
5737 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5738 result = r;
5739 CountedCompleter<?> c;
5740 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 @SuppressWarnings("unchecked")
5742 MapReduceKeysToDoubleTask<K,V>
5743 t = (MapReduceKeysToDoubleTask<K,V>)c,
5744 s = t.rights;
5745 while (s != null) {
5746 t.result = reducer.applyAsDouble(t.result, s.result);
5747 s = t.rights = s.nextRight;
5748 }
5749 }
5750 }
5751 }
5752 }
5753
5754 @SuppressWarnings("serial")
5755 static final class MapReduceValuesToDoubleTask<K,V>
5756 extends BulkTask<K,V,Double> {
5757 final ToDoubleFunction<? super V> transformer;
5758 final DoubleBinaryOperator reducer;
5759 final double basis;
5760 double result;
5761 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5762 MapReduceValuesToDoubleTask
5763 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5764 MapReduceValuesToDoubleTask<K,V> nextRight,
5765 ToDoubleFunction<? super V> transformer,
5766 double basis,
5767 DoubleBinaryOperator reducer) {
5768 super(p, b, i, f, t); this.nextRight = nextRight;
5769 this.transformer = transformer;
5770 this.basis = basis; this.reducer = reducer;
5771 }
5772 public final Double getRawResult() { return result; }
5773 public final void compute() {
5774 final ToDoubleFunction<? super V> transformer;
5775 final DoubleBinaryOperator reducer;
5776 if ((transformer = this.transformer) != null &&
5777 (reducer = this.reducer) != null) {
5778 double r = this.basis;
5779 for (int i = baseIndex, f, h; batch > 0 &&
5780 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5781 addToPendingCount(1);
5782 (rights = new MapReduceValuesToDoubleTask<K,V>
5783 (this, batch >>>= 1, baseLimit = h, f, tab,
5784 rights, transformer, r, reducer)).fork();
5785 }
5786 for (Node<K,V> p; (p = advance()) != null; )
5787 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5788 result = r;
5789 CountedCompleter<?> c;
5790 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5791 @SuppressWarnings("unchecked")
5792 MapReduceValuesToDoubleTask<K,V>
5793 t = (MapReduceValuesToDoubleTask<K,V>)c,
5794 s = t.rights;
5795 while (s != null) {
5796 t.result = reducer.applyAsDouble(t.result, s.result);
5797 s = t.rights = s.nextRight;
5798 }
5799 }
5800 }
5801 }
5802 }
5803
5804 @SuppressWarnings("serial")
5805 static final class MapReduceEntriesToDoubleTask<K,V>
5806 extends BulkTask<K,V,Double> {
5807 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5808 final DoubleBinaryOperator reducer;
5809 final double basis;
5810 double result;
5811 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5812 MapReduceEntriesToDoubleTask
5813 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5814 MapReduceEntriesToDoubleTask<K,V> nextRight,
5815 ToDoubleFunction<Map.Entry<K,V>> transformer,
5816 double basis,
5817 DoubleBinaryOperator reducer) {
5818 super(p, b, i, f, t); this.nextRight = nextRight;
5819 this.transformer = transformer;
5820 this.basis = basis; this.reducer = reducer;
5821 }
5822 public final Double getRawResult() { return result; }
5823 public final void compute() {
5824 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5825 final DoubleBinaryOperator reducer;
5826 if ((transformer = this.transformer) != null &&
5827 (reducer = this.reducer) != null) {
5828 double r = this.basis;
5829 for (int i = baseIndex, f, h; batch > 0 &&
5830 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5831 addToPendingCount(1);
5832 (rights = new MapReduceEntriesToDoubleTask<K,V>
5833 (this, batch >>>= 1, baseLimit = h, f, tab,
5834 rights, transformer, r, reducer)).fork();
5835 }
5836 for (Node<K,V> p; (p = advance()) != null; )
5837 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5838 result = r;
5839 CountedCompleter<?> c;
5840 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5841 @SuppressWarnings("unchecked")
5842 MapReduceEntriesToDoubleTask<K,V>
5843 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5844 s = t.rights;
5845 while (s != null) {
5846 t.result = reducer.applyAsDouble(t.result, s.result);
5847 s = t.rights = s.nextRight;
5848 }
5849 }
5850 }
5851 }
5852 }
5853
5854 @SuppressWarnings("serial")
5855 static final class MapReduceMappingsToDoubleTask<K,V>
5856 extends BulkTask<K,V,Double> {
5857 final ToDoubleBiFunction<? super K, ? super V> transformer;
5858 final DoubleBinaryOperator reducer;
5859 final double basis;
5860 double result;
5861 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5862 MapReduceMappingsToDoubleTask
5863 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5864 MapReduceMappingsToDoubleTask<K,V> nextRight,
5865 ToDoubleBiFunction<? super K, ? super V> transformer,
5866 double basis,
5867 DoubleBinaryOperator reducer) {
5868 super(p, b, i, f, t); this.nextRight = nextRight;
5869 this.transformer = transformer;
5870 this.basis = basis; this.reducer = reducer;
5871 }
5872 public final Double getRawResult() { return result; }
5873 public final void compute() {
5874 final ToDoubleBiFunction<? super K, ? super V> transformer;
5875 final DoubleBinaryOperator reducer;
5876 if ((transformer = this.transformer) != null &&
5877 (reducer = this.reducer) != null) {
5878 double r = this.basis;
5879 for (int i = baseIndex, f, h; batch > 0 &&
5880 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5881 addToPendingCount(1);
5882 (rights = new MapReduceMappingsToDoubleTask<K,V>
5883 (this, batch >>>= 1, baseLimit = h, f, tab,
5884 rights, transformer, r, reducer)).fork();
5885 }
5886 for (Node<K,V> p; (p = advance()) != null; )
5887 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5888 result = r;
5889 CountedCompleter<?> c;
5890 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5891 @SuppressWarnings("unchecked")
5892 MapReduceMappingsToDoubleTask<K,V>
5893 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5894 s = t.rights;
5895 while (s != null) {
5896 t.result = reducer.applyAsDouble(t.result, s.result);
5897 s = t.rights = s.nextRight;
5898 }
5899 }
5900 }
5901 }
5902 }
5903
5904 @SuppressWarnings("serial")
5905 static final class MapReduceKeysToLongTask<K,V>
5906 extends BulkTask<K,V,Long> {
5907 final ToLongFunction<? super K> transformer;
5908 final LongBinaryOperator reducer;
5909 final long basis;
5910 long result;
5911 MapReduceKeysToLongTask<K,V> rights, nextRight;
5912 MapReduceKeysToLongTask
5913 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 MapReduceKeysToLongTask<K,V> nextRight,
5915 ToLongFunction<? super K> transformer,
5916 long basis,
5917 LongBinaryOperator reducer) {
5918 super(p, b, i, f, t); this.nextRight = nextRight;
5919 this.transformer = transformer;
5920 this.basis = basis; this.reducer = reducer;
5921 }
5922 public final Long getRawResult() { return result; }
5923 public final void compute() {
5924 final ToLongFunction<? super K> transformer;
5925 final LongBinaryOperator reducer;
5926 if ((transformer = this.transformer) != null &&
5927 (reducer = this.reducer) != null) {
5928 long r = this.basis;
5929 for (int i = baseIndex, f, h; batch > 0 &&
5930 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931 addToPendingCount(1);
5932 (rights = new MapReduceKeysToLongTask<K,V>
5933 (this, batch >>>= 1, baseLimit = h, f, tab,
5934 rights, transformer, r, reducer)).fork();
5935 }
5936 for (Node<K,V> p; (p = advance()) != null; )
5937 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5938 result = r;
5939 CountedCompleter<?> c;
5940 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 @SuppressWarnings("unchecked")
5942 MapReduceKeysToLongTask<K,V>
5943 t = (MapReduceKeysToLongTask<K,V>)c,
5944 s = t.rights;
5945 while (s != null) {
5946 t.result = reducer.applyAsLong(t.result, s.result);
5947 s = t.rights = s.nextRight;
5948 }
5949 }
5950 }
5951 }
5952 }
5953
5954 @SuppressWarnings("serial")
5955 static final class MapReduceValuesToLongTask<K,V>
5956 extends BulkTask<K,V,Long> {
5957 final ToLongFunction<? super V> transformer;
5958 final LongBinaryOperator reducer;
5959 final long basis;
5960 long result;
5961 MapReduceValuesToLongTask<K,V> rights, nextRight;
5962 MapReduceValuesToLongTask
5963 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 MapReduceValuesToLongTask<K,V> nextRight,
5965 ToLongFunction<? super V> transformer,
5966 long basis,
5967 LongBinaryOperator reducer) {
5968 super(p, b, i, f, t); this.nextRight = nextRight;
5969 this.transformer = transformer;
5970 this.basis = basis; this.reducer = reducer;
5971 }
5972 public final Long getRawResult() { return result; }
5973 public final void compute() {
5974 final ToLongFunction<? super V> transformer;
5975 final LongBinaryOperator reducer;
5976 if ((transformer = this.transformer) != null &&
5977 (reducer = this.reducer) != null) {
5978 long r = this.basis;
5979 for (int i = baseIndex, f, h; batch > 0 &&
5980 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 addToPendingCount(1);
5982 (rights = new MapReduceValuesToLongTask<K,V>
5983 (this, batch >>>= 1, baseLimit = h, f, tab,
5984 rights, transformer, r, reducer)).fork();
5985 }
5986 for (Node<K,V> p; (p = advance()) != null; )
5987 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5988 result = r;
5989 CountedCompleter<?> c;
5990 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 @SuppressWarnings("unchecked")
5992 MapReduceValuesToLongTask<K,V>
5993 t = (MapReduceValuesToLongTask<K,V>)c,
5994 s = t.rights;
5995 while (s != null) {
5996 t.result = reducer.applyAsLong(t.result, s.result);
5997 s = t.rights = s.nextRight;
5998 }
5999 }
6000 }
6001 }
6002 }
6003
6004 @SuppressWarnings("serial")
6005 static final class MapReduceEntriesToLongTask<K,V>
6006 extends BulkTask<K,V,Long> {
6007 final ToLongFunction<Map.Entry<K,V>> transformer;
6008 final LongBinaryOperator reducer;
6009 final long basis;
6010 long result;
6011 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6012 MapReduceEntriesToLongTask
6013 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014 MapReduceEntriesToLongTask<K,V> nextRight,
6015 ToLongFunction<Map.Entry<K,V>> transformer,
6016 long basis,
6017 LongBinaryOperator reducer) {
6018 super(p, b, i, f, t); this.nextRight = nextRight;
6019 this.transformer = transformer;
6020 this.basis = basis; this.reducer = reducer;
6021 }
6022 public final Long getRawResult() { return result; }
6023 public final void compute() {
6024 final ToLongFunction<Map.Entry<K,V>> transformer;
6025 final LongBinaryOperator reducer;
6026 if ((transformer = this.transformer) != null &&
6027 (reducer = this.reducer) != null) {
6028 long r = this.basis;
6029 for (int i = baseIndex, f, h; batch > 0 &&
6030 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031 addToPendingCount(1);
6032 (rights = new MapReduceEntriesToLongTask<K,V>
6033 (this, batch >>>= 1, baseLimit = h, f, tab,
6034 rights, transformer, r, reducer)).fork();
6035 }
6036 for (Node<K,V> p; (p = advance()) != null; )
6037 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6038 result = r;
6039 CountedCompleter<?> c;
6040 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 @SuppressWarnings("unchecked")
6042 MapReduceEntriesToLongTask<K,V>
6043 t = (MapReduceEntriesToLongTask<K,V>)c,
6044 s = t.rights;
6045 while (s != null) {
6046 t.result = reducer.applyAsLong(t.result, s.result);
6047 s = t.rights = s.nextRight;
6048 }
6049 }
6050 }
6051 }
6052 }
6053
6054 @SuppressWarnings("serial")
6055 static final class MapReduceMappingsToLongTask<K,V>
6056 extends BulkTask<K,V,Long> {
6057 final ToLongBiFunction<? super K, ? super V> transformer;
6058 final LongBinaryOperator reducer;
6059 final long basis;
6060 long result;
6061 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6062 MapReduceMappingsToLongTask
6063 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6064 MapReduceMappingsToLongTask<K,V> nextRight,
6065 ToLongBiFunction<? super K, ? super V> transformer,
6066 long basis,
6067 LongBinaryOperator reducer) {
6068 super(p, b, i, f, t); this.nextRight = nextRight;
6069 this.transformer = transformer;
6070 this.basis = basis; this.reducer = reducer;
6071 }
6072 public final Long getRawResult() { return result; }
6073 public final void compute() {
6074 final ToLongBiFunction<? super K, ? super V> transformer;
6075 final LongBinaryOperator reducer;
6076 if ((transformer = this.transformer) != null &&
6077 (reducer = this.reducer) != null) {
6078 long r = this.basis;
6079 for (int i = baseIndex, f, h; batch > 0 &&
6080 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6081 addToPendingCount(1);
6082 (rights = new MapReduceMappingsToLongTask<K,V>
6083 (this, batch >>>= 1, baseLimit = h, f, tab,
6084 rights, transformer, r, reducer)).fork();
6085 }
6086 for (Node<K,V> p; (p = advance()) != null; )
6087 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6088 result = r;
6089 CountedCompleter<?> c;
6090 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 @SuppressWarnings("unchecked")
6092 MapReduceMappingsToLongTask<K,V>
6093 t = (MapReduceMappingsToLongTask<K,V>)c,
6094 s = t.rights;
6095 while (s != null) {
6096 t.result = reducer.applyAsLong(t.result, s.result);
6097 s = t.rights = s.nextRight;
6098 }
6099 }
6100 }
6101 }
6102 }
6103
6104 @SuppressWarnings("serial")
6105 static final class MapReduceKeysToIntTask<K,V>
6106 extends BulkTask<K,V,Integer> {
6107 final ToIntFunction<? super K> transformer;
6108 final IntBinaryOperator reducer;
6109 final int basis;
6110 int result;
6111 MapReduceKeysToIntTask<K,V> rights, nextRight;
6112 MapReduceKeysToIntTask
6113 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6114 MapReduceKeysToIntTask<K,V> nextRight,
6115 ToIntFunction<? super K> transformer,
6116 int basis,
6117 IntBinaryOperator reducer) {
6118 super(p, b, i, f, t); this.nextRight = nextRight;
6119 this.transformer = transformer;
6120 this.basis = basis; this.reducer = reducer;
6121 }
6122 public final Integer getRawResult() { return result; }
6123 public final void compute() {
6124 final ToIntFunction<? super K> transformer;
6125 final IntBinaryOperator reducer;
6126 if ((transformer = this.transformer) != null &&
6127 (reducer = this.reducer) != null) {
6128 int r = this.basis;
6129 for (int i = baseIndex, f, h; batch > 0 &&
6130 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6131 addToPendingCount(1);
6132 (rights = new MapReduceKeysToIntTask<K,V>
6133 (this, batch >>>= 1, baseLimit = h, f, tab,
6134 rights, transformer, r, reducer)).fork();
6135 }
6136 for (Node<K,V> p; (p = advance()) != null; )
6137 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6138 result = r;
6139 CountedCompleter<?> c;
6140 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6141 @SuppressWarnings("unchecked")
6142 MapReduceKeysToIntTask<K,V>
6143 t = (MapReduceKeysToIntTask<K,V>)c,
6144 s = t.rights;
6145 while (s != null) {
6146 t.result = reducer.applyAsInt(t.result, s.result);
6147 s = t.rights = s.nextRight;
6148 }
6149 }
6150 }
6151 }
6152 }
6153
6154 @SuppressWarnings("serial")
6155 static final class MapReduceValuesToIntTask<K,V>
6156 extends BulkTask<K,V,Integer> {
6157 final ToIntFunction<? super V> transformer;
6158 final IntBinaryOperator reducer;
6159 final int basis;
6160 int result;
6161 MapReduceValuesToIntTask<K,V> rights, nextRight;
6162 MapReduceValuesToIntTask
6163 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6164 MapReduceValuesToIntTask<K,V> nextRight,
6165 ToIntFunction<? super V> transformer,
6166 int basis,
6167 IntBinaryOperator reducer) {
6168 super(p, b, i, f, t); this.nextRight = nextRight;
6169 this.transformer = transformer;
6170 this.basis = basis; this.reducer = reducer;
6171 }
6172 public final Integer getRawResult() { return result; }
6173 public final void compute() {
6174 final ToIntFunction<? super V> transformer;
6175 final IntBinaryOperator reducer;
6176 if ((transformer = this.transformer) != null &&
6177 (reducer = this.reducer) != null) {
6178 int r = this.basis;
6179 for (int i = baseIndex, f, h; batch > 0 &&
6180 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6181 addToPendingCount(1);
6182 (rights = new MapReduceValuesToIntTask<K,V>
6183 (this, batch >>>= 1, baseLimit = h, f, tab,
6184 rights, transformer, r, reducer)).fork();
6185 }
6186 for (Node<K,V> p; (p = advance()) != null; )
6187 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6188 result = r;
6189 CountedCompleter<?> c;
6190 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6191 @SuppressWarnings("unchecked")
6192 MapReduceValuesToIntTask<K,V>
6193 t = (MapReduceValuesToIntTask<K,V>)c,
6194 s = t.rights;
6195 while (s != null) {
6196 t.result = reducer.applyAsInt(t.result, s.result);
6197 s = t.rights = s.nextRight;
6198 }
6199 }
6200 }
6201 }
6202 }
6203
6204 @SuppressWarnings("serial")
6205 static final class MapReduceEntriesToIntTask<K,V>
6206 extends BulkTask<K,V,Integer> {
6207 final ToIntFunction<Map.Entry<K,V>> transformer;
6208 final IntBinaryOperator reducer;
6209 final int basis;
6210 int result;
6211 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6212 MapReduceEntriesToIntTask
6213 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6214 MapReduceEntriesToIntTask<K,V> nextRight,
6215 ToIntFunction<Map.Entry<K,V>> transformer,
6216 int basis,
6217 IntBinaryOperator reducer) {
6218 super(p, b, i, f, t); this.nextRight = nextRight;
6219 this.transformer = transformer;
6220 this.basis = basis; this.reducer = reducer;
6221 }
6222 public final Integer getRawResult() { return result; }
6223 public final void compute() {
6224 final ToIntFunction<Map.Entry<K,V>> transformer;
6225 final IntBinaryOperator reducer;
6226 if ((transformer = this.transformer) != null &&
6227 (reducer = this.reducer) != null) {
6228 int r = this.basis;
6229 for (int i = baseIndex, f, h; batch > 0 &&
6230 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6231 addToPendingCount(1);
6232 (rights = new MapReduceEntriesToIntTask<K,V>
6233 (this, batch >>>= 1, baseLimit = h, f, tab,
6234 rights, transformer, r, reducer)).fork();
6235 }
6236 for (Node<K,V> p; (p = advance()) != null; )
6237 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6238 result = r;
6239 CountedCompleter<?> c;
6240 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 @SuppressWarnings("unchecked")
6242 MapReduceEntriesToIntTask<K,V>
6243 t = (MapReduceEntriesToIntTask<K,V>)c,
6244 s = t.rights;
6245 while (s != null) {
6246 t.result = reducer.applyAsInt(t.result, s.result);
6247 s = t.rights = s.nextRight;
6248 }
6249 }
6250 }
6251 }
6252 }
6253
6254 @SuppressWarnings("serial")
6255 static final class MapReduceMappingsToIntTask<K,V>
6256 extends BulkTask<K,V,Integer> {
6257 final ToIntBiFunction<? super K, ? super V> transformer;
6258 final IntBinaryOperator reducer;
6259 final int basis;
6260 int result;
6261 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6262 MapReduceMappingsToIntTask
6263 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6264 MapReduceMappingsToIntTask<K,V> nextRight,
6265 ToIntBiFunction<? super K, ? super V> transformer,
6266 int basis,
6267 IntBinaryOperator reducer) {
6268 super(p, b, i, f, t); this.nextRight = nextRight;
6269 this.transformer = transformer;
6270 this.basis = basis; this.reducer = reducer;
6271 }
6272 public final Integer getRawResult() { return result; }
6273 public final void compute() {
6274 final ToIntBiFunction<? super K, ? super V> transformer;
6275 final IntBinaryOperator reducer;
6276 if ((transformer = this.transformer) != null &&
6277 (reducer = this.reducer) != null) {
6278 int r = this.basis;
6279 for (int i = baseIndex, f, h; batch > 0 &&
6280 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6281 addToPendingCount(1);
6282 (rights = new MapReduceMappingsToIntTask<K,V>
6283 (this, batch >>>= 1, baseLimit = h, f, tab,
6284 rights, transformer, r, reducer)).fork();
6285 }
6286 for (Node<K,V> p; (p = advance()) != null; )
6287 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6288 result = r;
6289 CountedCompleter<?> c;
6290 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6291 @SuppressWarnings("unchecked")
6292 MapReduceMappingsToIntTask<K,V>
6293 t = (MapReduceMappingsToIntTask<K,V>)c,
6294 s = t.rights;
6295 while (s != null) {
6296 t.result = reducer.applyAsInt(t.result, s.result);
6297 s = t.rights = s.nextRight;
6298 }
6299 }
6300 }
6301 }
6302 }
6303
6304 // Unsafe mechanics
6305 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6306 private static final long SIZECTL;
6307 private static final long TRANSFERINDEX;
6308 private static final long BASECOUNT;
6309 private static final long CELLSBUSY;
6310 private static final long CELLVALUE;
6311 private static final int ABASE;
6312 private static final int ASHIFT;
6313
6314 static {
6315 try {
6316 SIZECTL = U.objectFieldOffset
6317 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6318 TRANSFERINDEX = U.objectFieldOffset
6319 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6320 BASECOUNT = U.objectFieldOffset
6321 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6322 CELLSBUSY = U.objectFieldOffset
6323 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6324
6325 CELLVALUE = U.objectFieldOffset
6326 (CounterCell.class.getDeclaredField("value"));
6327
6328 ABASE = U.arrayBaseOffset(Node[].class);
6329 int scale = U.arrayIndexScale(Node[].class);
6330 if ((scale & (scale - 1)) != 0)
6331 throw new Error("array index scale not a power of two");
6332 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6333 } catch (ReflectiveOperationException e) {
6334 throw new Error(e);
6335 }
6336
6337 // Reduce the risk of rare disastrous classloading in first call to
6338 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6339 Class<?> ensureLoaded = LockSupport.class;
6340 }
6341 }